WorldWideScience

Sample records for heavy-ion induced desorption

  1. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  2. Heavy-ion induced electronic desorption of gas from metals

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Kramer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2006-12-19

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  3. Heavy-ion-induced desorption of organic molecules studied with Langmuir-Blodgett multilayer systems (DE)

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.; Schoppmann, C.; Brandl, D.; Ostrowski, A.; Voit, H. (Physikalisches Institut der Universitaet Erlangen-Nuernberg D-8520 Erlangen, (Germany)); Johannsmann, D.; Knoll, W. (Max-Planck-Institut fuer Polymerforschung Mainz D-6500 Mainz, (Germany))

    1991-07-01

    Heavy-ion-induced desorption has been studied with samples consisting of Langmuir-Blodgett films made from Cd salts of fatty acids. The experiments confirm the result of previous works that heavy ions drill a crater into the sample surface. The explicit dependence of the crater depth on the electronic energy loss could be determined from the experiments. The craters exhibit the shape of a symmetric cone as obtained from a desorption model applied to the experimental data.

  4. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Evans, L; Kollmus, H; Küchler, D; Scrivens, R; Severin, D; Wengenroth, M; CERN. Geneva. ATS Department

    2011-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and goldcoated copper, were bombarded under perpendicular impact with 4.2 MeV/u Pb54+ ions. Partial pressure rises of H2, CH4, CO, and CO2 and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  5. Review of Heavy-ion Induced Desorption Studies for Particle Accelerators

    CERN Document Server

    Mahner, E

    2008-01-01

    During high-intensity heavy-ion operation of several particle accelerators worldwide, large dynamic pressure rises of orders of magnitude were caused by lost beam ions that impacted under grazing angle onto the vacuum chamber walls. This ion-induced desorption, observed, for example, at CERN, GSI, and BNL, can seriously limit the ion intensity, luminosity, and beam lifetime of the accelerator. For the heavyion program at CERN's Large Hadron Collider collisions between beams of fully stripped lead (208Pb82+) ions with a beam energy of 2.76 TeV/u and a nominal luminosity of 10**27 cm**-2 s**-1 are foreseen. The GSI future project FAIR (Facility for Antiproton and Ion Research) aims at a beam intensity of 10**12 uranium (238U28+) ions per second to be extracted from the synchrotron SIS18. Over the past years an experimental effort has been made to study the observed dynamic vacuum degradations, which are important to understand and overcome for present and future particle accelerators. The paper reviews the resu...

  6. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus

    2008-02-22

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  7. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2  MeV/u lead ions

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2011-05-01

    Full Text Available The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and gold-coated copper, were bombarded under perpendicular impact with 4.2  MeV/u Pb^{54+} ions. Partial pressure rises of H_{2}, CH_{4}, CO, and CO_{2} and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  8. Heavy-ion induced desorption yields of amorphous carbon films bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Scrivens, R; Costa Pinto, P; Yin Vallgren, C; Bender, M

    2011-01-01

    During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4.2 Me...

  9. Heavy ion induced mutation in arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, Shigemitsu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy ions, He, C, Ar and Ne were irradiated to the seeds of Arabidopsis thaliana for inducing the new mutants. In the irradiated generation (M{sub 1}), germination and survival rate were observed to estimate the relative biological effectiveness in relation to the LET including the inactivation cross section. Mutation frequencies were compared by using three kinds of genetic loci after irradiation with C ions and electrons. Several interesting new mutants were selected in the selfed progenies of heavy ion irradiated seeds. (author)

  10. Local brain heavy ion irradiation induced Immunosuppression

    Science.gov (United States)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  11. Experimental Investigation of DNA Damage Induced by Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    DNA is considered the critical target for radiobiological effects. It is highly important to study DNAdamage induced by ionizing radiation. Especially DNA double strand breaks have been identified as themost initial damage. In this experiment, DNA double strand breaks induced by heavy ions wereinvestigated with atomic force microscopy (AFM).

  12. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  13. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  14. L X-ray emission induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Braziewicz, J.; Majewska, U.; Semaniak, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Fijał-Kirejczyk, I. [The Institute of Atomic Energy, 05-400 Otwock-Świerk (Poland); Jaskóła, M.; Czarnacki, W.; Korman, A. [The National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kretschmer, W. [Physikalisches Institut, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Mukoyama, T. [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen (Hungary); Trautmann, D. [Institut für Physik, Universität Basel, Basel (Switzerland)

    2015-11-15

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster–Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L{sub 2}-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  15. L X-ray emission induced by heavy ions

    Science.gov (United States)

    Pajek, M.; Banaś, D.; Braziewicz, J.; Majewska, U.; Semaniak, J.; Fijał-Kirejczyk, I.; Jaskóła, M.; Czarnacki, W.; Korman, A.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2015-11-01

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster-Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L2-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  16. Recent studies in heavy ion induced fission reactions

    Science.gov (United States)

    Choudhury, R. K.

    2001-08-01

    Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus--nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to

  17. Simulation of induced radioactivity for Heavy Ion Medical Machine

    CERN Document Server

    Jun-Kui, Xu; Wu-Yuan, Li; Wang, Mao; Jia-Wen, Xia; Xi-Meng, Chen; Wei-Wei, Yan; Chong, Xu

    2013-01-01

    For radiation protection and environmental impact assessment purpose, the radioactivity induced by carbon ion of Heavy Ion Medical Machine (HIMM) was studied. Radionuclides in accelerator component, cooling water and air at target area which are induced from primary beam and secondary particles are simulated by FLUKA Monte Carlo code. It is found that radioactivity in cooling water and air is not very important at the required beam intensity and energy which is needed for treatment, radionuclides in accelerator component may cause some problem for maintenance work, suitable cooling time is needed after the machine are shut down.

  18. A new prompt heavy-ion-induced fission mode

    Indian Academy of Sciences (India)

    W Udo Schröder

    2015-08-01

    Fission instabilities induced by mechanical and thermal stresses on intermediate nuclear systems in heavy-ion reactions are poorly understood but should reveal independent evidence for the nuclear equation of state (EoS), notably the tensile strength of finite nuclei. Experimental evidence is presented in support of a new mode of prompt fission of the composite nucleus formed in central 78Kr+40Ca collisions at only a few MeV per nucleon above the interaction barrier. The new process recalls the ‘L-window for fusion’ phenomenon, which was predicted by the early reaction theory and reappears in modern DFT model calculations.

  19. Heavy-ion induced genetic changes and evolution processes

    Science.gov (United States)

    Yang, C. H.; Craise, L. M.; Durante, M.; Mei, M.

    1994-01-01

    On Moon and Mars, there will be more galactic cosmic rays and higher radiation doses than on Earth. Our experimental studies showed that heavy ion radiation can effectively cause mutation and chromosome aberrations and that high Linear Energy Transfer (LET) heavy-ion induced mutants can be irreversible. Chromosome translocations and deletions are common in cells irradiated by heavy particles, and ionizing radiations are effective in causing hyperploidy. The importance of the genetic changes in the evolution of life is an interesting question. Through evolution, there is an increase of DNA content in cells from lower forms of life to higher organisms. The DNA content, however, reached a plateau in vertebrates. By increasing DNA content, there can be an increase of information in the cell. For a given DNA content, the quality of information can be changed by rearranging the DNA. Because radiation can cause hyperploidy, an increase of DNA content in cells, and can induce DNA rearrangement, it is likely that the evolution of life on Mars will be effected by its radiation environment. A simple analysis shows that the radiation level on Mars may cause a mutation frequency comparable to that of the spontaneous mutation rate on Earth. To the extent that mutation plays a role in adaptation, radiation alone on Mars may thus provide sufficient mutation for the evolution of life.

  20. Heavy ion induced double strand breaks in bacteria and bacteriophages

    Science.gov (United States)

    Micke, U.; Schäfer, M.; Anton, A.; Horneck, G.; Bücker, H.

    DNA damage induced by heavy ions in bacterial cells and bacteriophages such as Bacillus subtilis, E. coli and Bacteriophage Tl were investigated by analyzing the double strand breaks in the chromosomal DNA. This kind of lesion is considered as one of the main reasons for lethal events. To analyze double strand breaks in long molecules of DNA - up to some Mbp in length - the technique of pulse field agarose gel electrophoresis has been used. This allows the detection of one double strand break per genome. Cell lysis and DNA isolation were performed in small agarose blocks directly. This procedure secured minimum DNA destruction by shearing forces. After running a gel, the DNA was stained with ethidium bromide. The light intensity of ethidium bromide fluorescence for both the outcoming (running) DNA and the remaining intact DNA were measured by scanning. The mean number of double strand breaks was calculated by determining the quotient of these intensities. Strand break induction after heavy ion and X-ray irradiation was compared.

  1. Recent studies in heavy ion induced fission reactions

    Indian Academy of Sciences (India)

    R K Choudhury

    2001-08-01

    Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus–nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the -distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two

  2. Study of transient current induced by heavy-ion microbeams in Si and GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hirao, Toshio; Nashiyama, Isamu; Kamiya, Tomihiro; Suda, Tamotu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Heavy-ion microbeams were applied to the study of mechanism of single event upset (SEU). Transient current induced in p{sup +}n junction diodes by strike of heavy ion microbeam were measured by using a high-speed digitizing sampling system. (author)

  3. Swift heavy ion induced modification of aliphatic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Umme Habiba

    2015-01-15

    In this thesis, the high energy heavy ion induced modification of aliphatic polymers is studied. Two polymer groups, namely polyvinyl polymers (PVF, PVAc, PVA and PMMA) and fluoropolymers (PVDF, ETFE, PFA and FEP) were used in this work. Polyvinyl polymers were investigated since they will be used as insulating materials in the superconducting magnets of the new ion accelerators of the planned International Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz-Centre of Heavy Ion Research (GSI) in Darmstadt. In order to study ion-beam induced degradation, all polymer foils were irradiated at the GSI linear accelerator UNILAC using several projectiles (U, Au, Sm, Xe) and experimentation sites (beam lines X0 and M3) over a large fluence regime (1 x 10{sup 10} - 5 x 10{sup 12} ions/cm{sup 2}). Five independent techniques, namely infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy, residual gas analysis (RGA), thermal gravimetric analysis (TGA), and mass loss analysis (ML), were used to analyze the irradiated samples. FT-IR spectroscopy revealed that ion irradiation led to the decrease of characteristic band intensities showing the general degradation of the polymers, with scission of side groups and the main backbone. As a consequence of the structural modification, new bands appeared. UV-Vis transmission analysis showed an absorption edge shift from the ultraviolet region towards the visible region indicating double bond and conjugated double bond formation. On-line massspectrometric residual gas analysis showed the release of small gaseous fragment molecules. TGA analysis gave evidence of a changed thermal stability. With ML analysis, the considerable mass loss was quantified. The results of the five complementary analytical methods show how heavy ion irradiation changes the molecular structure of the polymers. Molecular degradation mechanisms are postulated. The amount of radiation damage is found to be sensitive to the used type of ionic

  4. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Pant, L.M. E-mail: lalit.pant@exp2.physik.uni-giessen.de; Biswas, D.C.; Dinesh, B.V.; Thomas, R.G.; Saxena, A.; Sawant, Y.S.; Choudhury, R.K

    2002-12-11

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with {alpha} particles from {sup 241}Am-{sup 239}Pu source, fission fragments from {sup 252}Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  5. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  6. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

    Science.gov (United States)

    Wada, S.; Natsuhori, M.; Ito, N.; Funayama, T.; Kobayashi, Y.

    2003-05-01

    Investigating the biological effects of high-LET heavy ion irradiation at low fluence is important to evaluate the risk of charged particles. Especially it is important to detect radiation damage induced by the precise number of heavy ions in the individual cells. Thus we studied the relationship between the number of ions traversing the cell and DNA damage produced by the ion irradiation. We applied comet assay to measure the DNA damage in the individual cells. Cells attached on the ion track detector CR-39 were irradiated with ion beams at TIARA, JAERI-Takasaki. After irradiation, the cells were stained with ethidium bromide and the opposite side of the CR-39 was etched. We observed that the heavy ions with higher LET values induced the heavier DNA damage. The result indicated that the amount of DNA damage induced by one particle increased with the LET values of the heavy ions.

  7. Ion desorption from frozen H 2O irradiated by MeV heavy ions

    Science.gov (United States)

    Collado, V. M.; Farenzena, L. S.; Ponciano, C. R.; Silveira, E. F. da; Wien, K.

    2004-10-01

    Nitrogen (0.13-0.85 MeV) and 252Cf fission fragments (˜65 MeV) beams are employed to sputter positive and negative secondary ions from frozen water. Desorption yields are measured for different ice temperatures and projectile energies. Target surface is continuously refreshed by condensed water while the target temperature varies and ice thickness changes. In both projectile energy ranges, the preferentially ejected ions are H +, H2+ and (H 2O) nH +-cluster ions. The yields of the corresponding negative ions H - and (H 2O) nO - or (H 2O) nOH - are 1-2 orders of magnitude lower. The (H 2O) nH + desorption yields decrease exponentially as the cluster size, n, increases. In the low energy range, the desorption of positive ion clusters may occur in a two-step process: first, desorption of preformed H 2O clusters and, then, ionization by H + or H 3O + capture. For 0.81 MeV N + projectile ions, the cluster ion emission contributes with 0.05% to the total H 2O desorbed yield. There are indications that emission of the (H 2O) nH + disappears for an electronic energy loss lower than 20 eV/Å. For the high energy range, desorption of small ion clusters is particularly enhanced, revealing that a fragmentation process also exists.

  8. Heavy-ion radiation induced Photosynthesis changes in Oryza sativa L.

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Meng, Qingmei

    The abnormal development of rice was observed frequently after the seed was exposed to heavy-ion radiation. The heavy-ion radiation could change the chloroplast structure in mesophyll cell by decreasing chloroplast grana and loosing the thylakoid lamellas. To study the mechanism of heavy-ion radiation induced photosynthesis changes, rice seed was exposed to 0-20 Gy dose of (12) C radiation. By measuring the changes of chlorophyll fluorescence parameters, the content of chlorophyll as well as the expression of CP24 in the leaves of rice at the three-leaf stage, we analyzed the influence mechanism of heavy-ion radiation on photosynthesis in rice. The results indicated that chlorophyll fluorescence parameter Fv/Fm and content of chlorophyll (including chlorophyll a, chlorophyll b and total chlorophyll) changed significantly in different doses. Both the relative expression of CP24 and its encoding gene lhcb6 altered after exposed to different dose of radiation. By using Pearson correlation analysis, we found that the 1 Gy was the bound of low-dose radiation. The possible molecular mechanisms and biological consequences of the observed changes are discussed. Key Words: Heavy-ion Radiation; Rice; Photosynthesis; Fv/Fm; CP24.

  9. Discussion of the metric in characterizing the single-event effect induced by heavy ions

    Institute of Scientific and Technical Information of China (English)

    Zhang Ke-Ying; Zhang Feng-Qi; Luo Yin-Hong; Guo Hong-Xia

    2013-01-01

    The single-event effect (SEE) is the most serious problem in space environment.The modern semiconductor technology is concerned with the feasibility of the linear energy transfer (LET) as metric in characterizing SEE induced by heavy ions.In this paper,we calibrate the detailed static random access memory (SRAM) cell structure model of an advanced field programmable gate array (FPGA) device using the computer-aided design tool,and calculate the heavy ion energy loss in multi-layer metal utilizing Geant4.Based on the heavy ion accelerator experiment and numerical simulation,it is proved that the metric of LET at the device surface,ignoring the top metal material in the advanced semiconductor device,would underestimate the SEE.In the SEE evaluation in space radiation environment the top-layers on the semiconductor device must be taken into consideration.

  10. Gold ion beams induced desorption studies for Booster Nuclotron

    Science.gov (United States)

    Kuznetsov, A. B.; Tuzikov, A. V.; Philippov, A. V.

    2016-12-01

    Heavy ions induced pressure rise is one of the machine limits. The calculation results of the gold ion beam 197Au31+ losses due to residual gas interaction in view of desorption of adsorbed particles on the Booster Nuclotron vacuum chamber surface are discussed.

  11. Fission fragment angular distribution in heavy-ion-induced fission with anomalous behavior

    Science.gov (United States)

    Soheyli, S.; Feizi, B.

    2014-08-01

    Fission fragment angular distribution in heavy-ion-induced fission reactions is of particular importance. Transition state theory is provided to determine the angular distribution of fission fragments which includes standard saddle-point statistical and standard scission-point statistical models. The standard saddle-point statistical model was not able to reproduce the experimental fission fragment angular anisotropies for several heavy-ion-induced fission systems. In contrast to the standard saddle-point model, the standard scission-point statistical model was fairly successful in the prediction of angular anisotropy in heavy-ion-induced fission reaction systems with an anomalous behavior in angular anisotropy of fission fragments, but this model is not widely used as the standard saddle-point statistical model. In this research, a generalized model is introduced for the prediction of fission fragments angular anisotropy in the heavy-ion-induced fission reaction systems having an anomalous behavior. For this purpose, we study the N14,O16,F19+Th232;O16,F19+U238;Mg24,Si28,S32+Pb208;S32+Au197; and O16+Cm248 reaction systems. Finally, it is shown that the presented model is much more successful than previous models.

  12. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  13. Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei

    Institute of Scientific and Technical Information of China (English)

    CHEN Lie-wen; KO Che-Ming; LI Bao-an; YONG Gao-chan

    2007-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide a unique means to investigate the equation of state of isospin-asymmetric nuclear matter,especially the density dependence of the nuclear symmetry energy.In particular,recent analyses of the isospin diffusion data in heavyion reactions have already put a stringent constraint on thenuclear symmetry energy around the nuclear matter saturation density.We review this exciting result and discuss its implications on nuclear effective interactions and the neutron skin thickness of heavy nuclei.In addition,we also review the theoretical progress on probing the high density behaviors of the nuclear symmetry energy in heavy-ion reactions induced by high energy radioactive beams.

  14. Ion beam induced charge characterisation of a silicon microdosimeter using a heavy ion microprobe

    Science.gov (United States)

    Cornelius, Iwan; Siegele, Rainer; Rosenfeld, Anatoly B.; Cohen, David D.

    2002-05-01

    An ion beam induced charge (IBIC) facility has been added to the existing capabilities of the ANSTO heavy ion microprobe and the results of the first measurements are presented. Silicon on insulator (SOI) diode arrays with microscopic junction sizes have recently been proposed as microdosimeters for hadron therapy. A 20 MeV carbon beam was used to perform IBIC imaging of a 10 μm thick SOI device.

  15. Nanolesions induced by heavy ions in human tissues: Experimental and theoretical studies

    Directory of Open Access Journals (Sweden)

    Marcus Bleicher

    2012-07-01

    Full Text Available The biological effects of energetic heavy ions are attracting increasing interest for their applications in cancer therapy and protection against space radiation. The cascade of events leading to cell death or late effects starts from stochastic energy deposition on the nanometer scale and the corresponding lesions in biological molecules, primarily DNA. We have developed experimental techniques to visualize DNA nanolesions induced by heavy ions. Nanolesions appear in cells as “streaks” which can be visualized by using different DNA repair markers. We have studied the kinetics of repair of these “streaks” also with respect to the chromatin conformation. Initial steps in the modeling of the energy deposition patterns at the micrometer and nanometer scale were made with MCHIT and TRAX models, respectively.

  16. Novel quantum phenomena induced by strong magnetic fields in heavy-ion collisions

    CERN Document Server

    Hattori, Koichi

    2016-01-01

    The relativistic heavy-ion collisions create both hot quark-gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics (QCD) and quantum electrodynamics (QED). In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark-gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic-field induced novel quantum effects. In particular, we focus on the magnetic effect on the heavy-flavor mesons, and the heavy quark transports, and also the phenomena closely related to chiral anomaly.

  17. Thermal photon production from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions

    CERN Document Server

    Ayala, Alejandro; Dominguez, C A; Hernandez, L A

    2016-01-01

    We compute the production of thermal photons in relativistic heavy-ion collisions by gluon fusion in the presence of an intense magnetic field, and during the early stages of the reaction. This photon yield is an excess over calculations that do not consider magnetic field effects. We add this excess to recent hydrodynamic calculations that are close to describing the experimental transverse momentum distribution in RHIC and LHC. We then show that with reasonable values for the temperature, magnetic field strength, and strong coupling constant, our results provide a very good description of such excess. These results support the idea that the origin of at least some of the photon excess observed in heavy-ion experiments may arise from magnetic field induced processes.

  18. Intense heavy ion beam-induced effects in carbon-based stripper foils

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Katharina

    2016-08-15

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  19. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    Science.gov (United States)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  20. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    Science.gov (United States)

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-05

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms.

  1. Heavy-ion induced modification of lithium fluoride observed by scanning force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.; Neumann, R.; Schwartz, K.; Steckenreiter, T.; Trautmann, C.

    1997-12-01

    To study ion-induced damages in single crystals of lithium fluoride with scanning force microscopy (SFM), samples were irradiated with several heavy-ion species of a kinetic energy of 11.4 MeV per nucleon at the linear accelerator UNILAC of GSI. As concluded from a previous analysis of ion tracks in LiF by optical absorption spectroscopy and small-angle X-ray scattering, single point defects occur in a track halo with a radius of about 15-30 nm, whereas defect aggregates are formed in a track core region possessing a radius of only about 1-2 nm. These aggregates can be attacked by chemical etching if the energy loss along the ion trajectory surpasses a critical value of about 1 keV/Aa. SFM images of etched as well as unetched sample surfaces revealed new damage characteristics: Etched ion track profiles directed parallel to the ion trajectories exhibit a sequence of single etch pits with an average distance of about 140 nm. After exposure to heavy-ion irradiation at normal incidence, the unetched LiF surface is covered with round hillocks with a mean diameter of 55(8) nm and heights in the order of 3 nm. (orig.)

  2. Microscopic dynamics simulations of heavy-ion fusion reactions induced by neutron-rich nuclei

    CERN Document Server

    Wang, Ning; Zhang, Yingxun; Li, Zhuxia

    2014-01-01

    The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions $^{16}$O+$^{76}$Ge, $^{16}$O+$^{154}$Sm, $^{40}$Ca+$^{96}$Zr and $^{132}$Sn+$^{40}$Ca are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is $L \\approx 78$ MeV and the surface energy coefficient is $g_{\\rm sur}=18\\pm 1.5$ MeVfm$^2$. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at ...

  3. Modification of magnetic anisotropy induced by swift heavy ion irradiation in cobalt ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nongjai, Razia [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Khan, Shakeel, E-mail: skhanapad@gmail.com [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Ahmed, Hilal; Khan, Imran [Department of Applied Physics, Zakir Hussain College of Engineering & Technology, A.M.U., Aligarh 202002 (India); Annapoorni, S. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Gautam, Sanjeev [Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Lin, Hong-Ji; Chang, Fan-Hsiu [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Hwa Chae, Keun [Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Asokan, K. [Material Science Division, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-11-15

    The present study demonstrates the modification of magnetic anisotropy in cobalt ferrite (CoFe{sub 2}O{sub 4}) thin films induced by swift heavy ion irradiations of 200 MeV Ag-ion beams. The study reveals that both magnetizations and coercive field are sensitive to Ag-ions irradiation and to the fluences. The magnetic anisotropy enhanced at low fluence of Ag-ions due to domain wall pinning at defect sites created by ion bombardment and at high fluence, this magnetic anisotropy ceases and changes to isotropic behavior which is explained based on the significant structural and morphological changes. An X-ray absorption and x-ray magnetic circular dichroism studies confirms the inverse spinel structure of these compounds. - Highlights: • CoFe{sub 2}O{sub 4} thin films have been deposited on Silicon substrate by pulsed laser deposition technique. • Swift heavy ion irradiation of thin films at three different fluences. • Studied the structural and magnetic properties of the samples. • XRD and Raman studies indicate strain in the films. • Observed perpendicular magnetic anisotropy.

  4. Heavy Ion Induced SEU Sensitivity Evaluation of 3D Integrated SRAMs

    CERN Document Server

    Cao, Xuebing; Huo, Mingxue; Wang, Tianqi; Li, Anlong; Qi, Chunhua; Wang, Jinxiang

    2016-01-01

    Heavy ions induced single event upset (SEU) sensitivity of three-dimensional integrated SRAMs are evaluated by using Monte Carlo sumulation methods based on Geant4. The cross sections of SEUs and Multi Cell Upsets (MCUs) for 3D SRAM are simulated by using heavy ions with different energies and LETs. The results show that the sensitivity of different die of 3D SRAM has obvious discrepancies at low LET. Average percentage of MCUs of 3D SRAMs rises from 17.2% to 32.95% when LET increases from 42.19 MeV cm2/mg to 58.57MeV cm2/mg. As for a certain LET, the percentage of MCUs shows a notable distinction between face-to-face structure and back-to-face structure. For back-to-face structure, the percentage of MCUs increases with the deeper die. However, the face-to-face die presents the relatively low percentage of MCUs. The comparison of SEU cross sections for planar SRAMs and experiment data are conducted to indicate the effectiveness of our simulation method. Finally, we compare the upset cross sections of planar p...

  5. Swift heavy ion induced surface modifications in nano-crystalline Li-Mg ferrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sanjukta [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India) and Department of Physics, University of Calcutta, 92 A.P.C. Road, Kolkata 700009 (India)]. E-mail: sanjukta@iopb.res.in; Ganesan, V. [Inter University Consortium for DAE facilities, Khandwa Road, Indore 452017 (India); Khan, S.A. [Nuclear Science Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Ayyub, Pushan [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Kumar, Nitendar [Solid State Physics Laboratory, DRDO, Lucknow Road, Delhi 110054 (India)

    2006-09-30

    The swift heavy ion (190 MeV Au{sup 14+}) induced modifications in surface morphologies of the nanocrystals of ferrite thin films have been extensively studied through the images of atomic force microscopy (AFM). In most of the irradiated films significant features like, the ditch and dike structures, have been observed through out the surface. We try to explain the observed changes on the basis of thermal spike model followed by momentum transfer induced lateral mass transport. In addition to these changes some new and interesting features have been noticed after irradiation in 8F and 9F ferrite thin films. These new features are attributed to sputtering phenomenon due to the presence of defects like latent tracks.

  6. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  7. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2016-01-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  8. Spectator induced electromagnetic effect on directed flow in heavy ion collisions

    CERN Document Server

    Rybicki, Andrzej

    2013-01-01

    We estimate the electromagnetic effect of the spectator charge on azimuthal anisotropies observed in heavy ion collisions. For peripheral Pb+Pb reactions at the top energy of the CERN Super Proton Synchrotron, $\\sqrt{s_{NN}}=17.3$ GeV, we predict this effect to bring very large distortions to the observed directed flow, $v_1$, of positive and negative pions emitted close to beam rapidity. The overall magnitude of this effect is comparable to values of $v_1$ reported by the WA98 experiment. We argue that also at lower rapidities, the spectator induced electromagnetic effect may result in the splitting of values of $v_1$ observed for positive and negative pions. Such a splitting is visible in the data reported by the STAR Collaboration from the RHIC Beam Energy Scan. Both effects are sensitive to the space-time scenario assumed for pion emission. Therefore, they bring new information on the collision dynamics.

  9. Swift Heavy Ion Beam-induced Recrystallisation of Buried Silicon Nitride Layer (Review Paper

    Directory of Open Access Journals (Sweden)

    T. Som

    2009-07-01

    Full Text Available Studies on MeV heavy ion beam-induced epitaxial crystallisation of a buried silicon nitride layer are reported. Transmission electron micrographs and selected area diffraction patterns have been used to study the recrystallisation of an ion beam-synthesised layer. Complete recrystallisation of the silicon nitride layer having good quality interfaces with the top- and the substrate-Si has been obsorved. Recrystallisation is achieved at significantly lower temperatures of 100 and 200OC for oxygen and silver ions, respectively. The fact that recrystallisation is achieved at the lowest temperature for the oxygen ions is discussed on the basis of energy loss processes.Defence Science Journal, 2009, 59(4, pp.351-355, DOI:http://dx.doi.org/10.14429/dsj.59.1533

  10. Heavy ion induced DNA-DSB in yeast and mammalian cells

    Science.gov (United States)

    Loebrich, M.; Ikpeme, S.; Kiefer, J.

    1994-01-01

    Molecular changes at the DNA are assumed to be the main cause for radiation effects in a number of organisms. During the course of the last decades techniques have been developed for measuring DNA double-strand breaks (dsb), generally assumed to be the most critical DNA lesions. The outcome of all those different approaches portrays a collection of data useful for a theoretical description of radiation action mechanisms. However, in the case of heavy ion induced DNA dsb the picture is not quite clear yet and further projects and strategies have to be developed. The biological systems studied in our group are yeast and mammalian cells. While in the case of yeast cells technical and methodical reasons highlight these organisms mammalian cells reach greater importance when dsb repair studies are performed. In both types of organisms the technique of pulsed-field gel electrophoresis (PFGE) is applied, although with different modifications and evaluation procedures mainly due to the different genome sizes.

  11. Multifragmentation in intermediate energy 129Xe-induced heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Tso, Kin [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    The 129Xe-induced reactions on natCu, 89Y, 165Ho, and 197Au at bombarding energies of E/A = 40 & 60 MeV have been studied theoretically and experimentally in order to establish the underlying mechanism of multifragmentation at intermediate energy heavy-Ion collisions. Nuclear disks formed in central heavy-ion collisions, as simulated by means of Boltzmann-like kinetic equations, break up into several fragments due to a new kind of Rayleigh-like surface instability. A sheet of liquid, stable in the limit of non-interacting surfaces, is shown to become unstable due to surface-surface interactions. The onset of this instability is determined analytically. A thin bubble behaves like a sheet and is susceptible to the surface instability through the crispation mode. The Coulomb effects associated with the depletion of charges in the central cavity of nuclear bubbles are investigated. The onset of Coulomb instability is demonstrated for perturbations of the radial mode. Experimental intermediate-mass-fragment multiplicity distributions for the 129Xe-induced reactions are shown to be binomial at each transverse energy. From these distributions, independent of the specific target, an elementary binary decay probability p can be extracted that has a thermal dependence. Thus it is inferred that multifragmentation is reducible to a combination of nearly independent emission processes. If sequential decay is assumed, the increase of p with transverse energy implies a contraction of the emission time scale. The sensitivity of p to the lower Z threshold in the definition of intermediate-mass-fragments points to a physical Poisson simulations of the particle multiplicities show that the weak auto-correlation between the fragment multiplicity and the transverse energy does not distort a Poisson distribution into a binomial distribution. The effect of device efficiency on the experimental results has also been studied.

  12. Heavy-ion radiation induces both activation of multiple endogenous transposable elements and alterations in DNA methylation in rice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Xiaolin, Cui; Li, Xiang

    2012-07-01

    Space radiation represents a complex environmental condition in which several interacting factors such as electron, neutron, proton, heavy-ion are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic aswell as external perturbations, it is conceivable that epigenetic markers like DNA methylation and transposition may undergo alterations in response to space radiation. Cytosine DNA methylation plays important roles in maintaining genome stability and controlling gene expression. A predominant means for Transposable elements (TEs) to cause genetic instability is via their transpositional activation. To find the detailed molecular characterization of the nature of genomic changes induced by space radiation, the seeds of rice were exposed to 0.02, 0.2, 1, 2 and 20 Gy dose of ^{12}C heavy-ion radiation, respectively. We found that extensive alteration in both DNA methylation and gene expression occurred in rice plants after different dose of heavy-ion radiation. Here we shown that heavy-ion radiation has induced transposition of mPing and Tos17 in rice, which belong to distinct classes including the miniature inverted terminal repeat TEs (MITEs) and long-terminal repeat (LTR) retrotransposons, respectively. mPing and Tos17 mobility were found to correlate with cytosine methylation alteration detected by MSAP and genetic variation detected by AFLP. The result showed that at least in some cases transposition of TEs was associated with cytosine demethylation within the elements. Our results implicate that the heavy-ion radiation represents a potent mutagenic agent that can cause genomic instabilities by eliciting transposition of endogenous TEs in rice. Keywords: Heavy-ion radiation, DNA methylation, Transposable elements, mPing, Tos17

  13. Photon and dilepton spectra from nonlinear QED effects in supercritical magnetic fields induced by heavy-ion collisions

    CERN Document Server

    Hattori, Koichi

    2015-01-01

    We discuss properties of photons in extremely strong magnetic fields induced by the relativistic heavy-ion collisions. We investigate the vacuum birefringence, the real-photon decay, and the photon splitting which are all forbidden in the ordinary vacuum, but become possible in strong magnetic fields. These effects potentially give rise to anisotropies in photon and dilepton spectra.

  14. Swift heavy ion irradiation induced nanograin formation in CdTe thin films

    Science.gov (United States)

    Survase, Smita; Narayan, Himanshu; Sulania, I.; Thakurdesai, Madhavi

    2016-11-01

    Swift Heavy Ion (SHI) irradiation is a unique technique for nanograin formation through grain fragmentation. Contrary to the generally reported SHI irradiation induced grain growth on CdTe thin films, we report fragmentation leading to nanograin formation. Thermally evaporated polycrystalline CdTe thin films were irradiated with 100 MeV 197Au, 107Ag and 58Ni ions beams up to a fluence of 5 × 1012 ions/cm2. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were carried out for surface analysis before and after irradiation. SEM micrographs indicate that the larger grains in the as-deposited films were fragmented into smaller grains due to irradiation. The extent of fragmentation was found to increase with increasing electronic energy loss (Se). AFM pictures also supported the irradiation induced fragmentation. Structural characterization was done using X-ray Diffraction (XRD) technique. The ion induced strain and dislocation density were calculated from the XRD data. Both the strain and dislocation density were found to increase with increasing Se . The observed grain fragmentation is explained on the basis of a combined effect of strain induced disintegration of grains after the Coulomb explosion, and an 'incomplete' re-crystallization of the molten thermal spikes. Moreover, the optical band gap Eg (1.5 eV for as-deposited film), determined from UV-vis spectroscopy, increased with Se, and possibly because of ion induced strain and defect annealing.

  15. Carbon Heavy-ion Radiation Induced Biological effects on Oryza sativa L.

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Gong, Ning; Meng, Qingmei; Liu, Jiawei; Wang, Ting

    2016-07-01

    Large number of researches on rice after spaceflights indicated that rice was a favorable model organism to study biological effects induced by space radiation. The stimulative effect could often be found on rice seedlings after irradiation by low-dose energetic heavy-ion radiation. Spaceflight also could induce stimulative effect on kinds of seeds. To further understand the mechanism of low-dose radiation biological effects and the dose range, the germinated rice seeds which were irradiated by different doses of carbon heavy-ion (0, 0.02, 0.1, 0.2, 1, 2, 5, 10, 15 and 20Gy, LET=27.3keV/µm) were used as materials to study. By investigating the variation of rice phenotype under different doses, we found that 2Gy radiation dose was a dividing point of the phenotypic variation. Transmission electron microscopy was used to observe the variation of mitochondria, chloroplast, endoplasmic reticulum, ribosome and nucleus in mesophyll cell of rice apical meristem at 24 hours after radiation with different doses. The cells were not apparently physiologically damaged when the dose of radiation was less than 2Gy. The number of chloroplast did not change significantly, but the number of mitochondria was significantly increased, and gathered around in the chloroplast and endoplasmic reticulum; the obvious lesion of chloroplast and mitochondria were found at the mesophyll cells when radiation dose was higher than 2Gy. The mitochondria were swelling and appearing blurred crest. The chloroplast and mitochondrial mutation rate increased significantly (p<0.01). These phenomena showed that cell biological changes may be the reasons of the stimulation and inhibition effects with the boundary of 2Gy. Since mitochondrial was an important organelle involved in the antioxidative systems, its dysfunction could result in the increase of reactive oxygen species and lipid peroxidation. We found that the growth stimulation induced by low-dose radiation mainly occurred at three-leaf stage along

  16. Characterization of radiation damage induced by swift heavy ions in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Christian

    2016-05-15

    Graphite is a classical material in neutron radiation environments, being widely used in nuclear reactors and power plants as a moderator. For high energy particle accelerators, graphite provides ideal material properties because of the low Z of carbon and its corresponding low stopping power, thus when ion projectiles interact with graphite is the energy deposition rather low. This work aims to improve the understanding of how the irradiation with swift heavy ions (SHI) of kinetic energies in the range of MeV to GeV affects the structure of graphite and other carbon-based materials. Special focus of this project is given to beam induced changes of thermo-mechanical properties. For this purpose the Highly oriented pyrolytic graphite (HOPG) and glassy carbon (GC) (both serving as model materials), isotropic high density polycrystalline graphite (PG) and other carbon based materials like carbon fiber carbon composites (CFC), chemically expanded graphite (FG) and molybdenum carbide enhanced graphite composites (MoC) were exposed to different ions ranging from {sup 131}Xe to {sup 238}U provided by the UNILAC accelerator at GSI in Darmstadt, Germany. To investigate structural changes, various in-situ and off-line measurements were performed including Raman spectroscopy, x-ray diffraction and x-ray photo-electron spectroscopy. Thermo-mechanical properties were investigated using the laser-flash-analysis method, differential scanning calorimetry, micro/nano-indentation and 4-point electrical resistivity measurements. Beam induced stresses were investigated using profilometry. Obtained results provided clear evidence that ion beam-induced radiation damage leads to structural changes and degradation of thermal, mechanical and electrical properties of graphite. PG transforms towards a disordered sp2 structure, comparable to GC at high fluences. Irradiation-induced embrittlement is strongly reducing the lifetime of most high-dose exposed accelerator components. For

  17. Visualization of heavy ion-induced charge production in a CMOS image sensor

    CERN Document Server

    Végh, J; Klamra, W; Molnár, J; Norlin, LO; Novák, D; Sánchez-Crespo, A; Van der Marel, J; Fenyvesi, A; Valastyan, I; Sipos, A

    2004-01-01

    A commercial CMOS image sensor was irradiated with heavy ion beams in the several MeV energy range. The image sensor is equipped with a standard video output. The data were collected on-line through frame grabbing and analysed off-line after digitisation. It was shown that the response of the image sensor to the heavy ion bombardment varied with the type and energy of the projectiles. The sensor will be used for the CMS Barrel Muon Alignment system.

  18. Effects of an induced electric field on \\pi^{-}/\\pi^{+} ratio in heavy-ion collisions

    CERN Document Server

    Wei, Gao-Feng; Cao, Xin-Wei; Zhang, Yun-Liang

    2016-01-01

    Using an isospin- and momentum-dependent transport model, we examine the effects of an electric field induced by a variable magnetic field on the \\pi^{-}/\\pi^{+} ratio in central to peripheral heavy-ion collisions at beam energies of 400 and 1500MeV/nucleon. It is shown that while the induced electric field does not affect the total multiplicities of both $\\pi^{-}$ and $\\pi^{+}$ mesons at both the lower beam energy of 400MeV/nucleon and the higher beam energy of 1500MeV/nucleon, it reduces (enhances) the emission of $\\pi^{-}$ ($\\pi^{+}$) mesons in midrapidity, but enhances (reduces) the emission of $\\pi^{-}$ ($\\pi^{+}$) mesons in forward and backward rapidities especially for the more peripheral collisions at the lower beam energy because of the rapidly transient variable magnetic field at more peripheral collisions and longer reaction duration time at the lower beam energy. These findings indicate that the total \\pi^{-}/\\pi^{+} ratio is still a precisely reliable probe of symmetry energy at both the lower an...

  19. Heavy-ion beam induced effects in enriched gadolinium target films prepared by molecular plating

    Science.gov (United States)

    Mayorov, D. A.; Tereshatov, E. E.; Werke, T. A.; Frey, M. M.; Folden, C. M.

    2017-09-01

    A series of enriched gadolinium (Gd, Z = 64) targets was prepared using the molecular plating process for nuclear physics experiments at the Cyclotron Institute at Texas A&M University. After irradiation with 48Ca and 45Sc projectiles at center-of-target energies of Ecot = 3.8-4.7 MeV/u, the molecular films displayed visible discoloration. The morphology of the films was examined and compared to the intact target surface. The thin films underwent a heavy-ion beam-induced density change as identified by scanning electron microscopy and α-particle energy loss measurements. The films became thinner and more homogenous, with the transformation occurring early on in the irradiation. This transformation is best described as a crystalline-to-amorphous phase transition induced by atomic displacement and destruction of structural order of the original film. The chemical composition of the thin films was surveyed using energy dispersive spectroscopy and X-ray diffraction, with the results confirming the complex chemistry of the molecular films previously noted in other publications.

  20. In situ study of heavy ion induced radiation damage in NF616 (P92) alloy

    Science.gov (United States)

    Topbasi, Cem; Motta, Arthur T.; Kirk, Mark A.

    2012-06-01

    NF616 is a nominal 9Cr ferritic-martensitic steel that is amongst the primary candidates for cladding and duct applications in the Sodium-Cooled Fast Reactor, one of the Generation IV nuclear energy systems. In this study, an in situ investigation of the microstructure evolution in NF616 under heavy ion irradiation has been conducted. NF616 was irradiated to 8.4 dpa at 50 K and to 7.6 dpa at 473 K with 1 MeV Kr ions. Nano-sized defects first appeared as white dots in dark-field TEM images and their areal density increased until saturation (˜6 dpa). Dynamic observations at 50 K and 473 K showed appearance and disappearance of TEM-visible defect clusters under irradiation that continued above saturation dose. Quantitative analysis showed no significant change in the average size (˜3-4 nm) and distribution of defect clusters with increasing dose at 50 K and 473 K. These results indicate a cascade-driven process of microstructure evolution under irradiation in these alloys that involves both the formation of TEM-visible defect clusters by various degrees of cascade overlap and cascade induced defect cluster elimination. According to this mechanism, saturation of defect cluster density is reached when the rate of defect cluster formation by overlap is equal to the rate of cluster elimination during irradiation.

  1. Swelling of SiO{sub 2} quartz induced by energetic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Trautmann, C.; Schwartz, K. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Costantini, J.M. [CEA Centre d`Etudes de Bruyeres-le-Chatel, 91 (France). DPTA/PMC; Meftah, A. [ENSET, Skikda (Algeria); Stoquert, J.P. [Centre National de la Recherche Scientifique, 67 - Strasbourg (France). Lab. PHASE; Toulemonde, M. [Centre Interdisciplinaire de Recherches avec les Ions Lourds (CIRIL), 14 - Caen (France)

    1997-12-01

    A pronounced swelling effect occurs when irradiating SiO{sub 2} quartz with heavy ions (F, S, Cu, Kr, Xe, Ta, and Pb) in the electronic energy loss regime. Using a profilometer, the out-of-plane swelling was measured by scanning over the border line between an irradiated and a virgin area of the sample surface. The step height varied between 20 and 300 nm depending on the fluence, the electronic energy loss and the total range of the ions. From complementary Rutherford backscattering experiments under channelling condition (RBS-C), the damage fraction and corresponding track radii were extracted. Normalising the step height per incoming ion and by the projected range, a critical energy loss of 1.8{+-}0.5 keV/nm was found which is in good agreement with the threshold observed by RBS-C. Swelling can be explained by the amorphisation induced along the ion trajectories. The experimental results in quartz are compared to swelling data obtained under similar irradiation conditions in LiNbO{sub 3}. (orig.)

  2. Manifestation of transient effects in fission induced by relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Benlliure, J. [Universidad de Santiago de Compostela (Spain); Junghans, A.R. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2004-03-01

    We examine the manifestation of transient effects in fission by analysing experimental data where fission is induced by peripheral heavy-ion collisions at relativistic energies. Available total nuclear fission cross sections of {sup 238}U at1.A GeV on gold and uranium targets are compared with a nuclear-reaction code, where transient effects in fission are modelled using different approximations to the numerical time-dependent fission-decay width: a new analytical description based on the solution of the Fokker-Planck equation and two widely used but less realistic descriptions, a step function and an exponential-like function. The experimental data are only reproduced when transient effects are considered. The deduced value of the dissipation strength {beta} depends strongly on the approximation applied for the time-dependent fission-decay width and is estimated to be of the order of 2 x 10{sup 21} s{sup -1}. A careful analysis sheds severe doubts on the use of the exponential-like in-growth function largely used in the past. Finally, we discuss which should be the characteristics of experimental observables to be most sensitive to transient effects in fission. (orig.)

  3. Study on swift heavy ions induced modifications of Ag-ZnO nanocomposite thin film

    Science.gov (United States)

    Singh, S. K.; Singhal, R.; Siva Kumar, V. V.

    2017-03-01

    In the present work, swift heavy ion (SHI) irradiation induced modifications in structural and optical properties of Ag-ZnO nanocomposite thin films have been investigated. Ag-ZnO nanocomposite (NCs) thin films were synthesized by RF magnetron sputtering technique and irradiated with 100 MeV Ag7+ ions at three different fluences 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Rutherford Backscattering Spectrometry revealed Ag concentration to be ∼8.0 at.%, and measured thickness of the films was ∼55 nm. Structural properties of pristine and irradiated films have been analyzed by X-ray diffraction analysis and found that variation in crystallite size of the film with ion irradiation. X-ray photoelectron spectroscopy (XPS) indicates the formation of Ag-ZnO nanocomposite thin film with presence of Ag, Zn and O elements. Oxidation state of Ag and Zn also estimated by XPS analysis. Surface plasmon resonance (SPR) of Ag nanoparticle has appeared at ∼475 nm in the pristine thin film, which is blue shifted by ∼30 nm in film irradiated at fluence of 3 × 1012 ions/cm2 and completely disappeared in film irradiated at higher fluences, 1 × 1013 and 3 × 1013 ions/cm2. A marginal change in the optical band gap of Ag-ZnO nanocomposite thin film is also found with increasing ion fluence. Surface morphology of pristine and irradiated films have been studied using Atomic Force Microscopy (AFM). Raman and Photo-luminance (PL) spectra of nanocomposite thin films have been investigated to understand the ion induced modifications such as lattice defects and disordering in the nanocomposite thin film.

  4. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy.

    Science.gov (United States)

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D

    2015-05-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10(-12) [μm(2)], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation.

  5. Heavy Ion Beams Induce Survivin Expression in Human Hepatoma SMMC-7721 Cells More Effectively than X-rays

    Institute of Scientific and Technical Information of China (English)

    Li GONG; Xiaodong JIN; Qiang LI; Jiangtao LIU; Lizhe AN

    2007-01-01

    High linear energy transfer (LET) heavy ion radiation is more effective in inducing biological damage than low-LET X-rays or γ-rays. Heavy ion beam provides good dose localization (Bragg peak) in critical cancer tissue and gives higher relative biological effectiveness in cell killing across the dose peak, so high-LET heavy ion beam is superior to low-LET radiation in cancer treatment. Survivin, as a member of the inhibitor of apoptosis protein family, might help cancerous cells to overcome the G2/M apoptotic checkpoint and favor the aberrant progression of transformed cells through mitosis. Survivin expression in the human hepatoma SMMC-7721 cell line after exposure to low-LET X-ray and high-LET carbon ion irradiation was investigated in this study. Compared with X-ray irradiation, the carbon ion beam clearly caused G2/M arrest and promoted the expression of the survivin gene in a dose-dependent manner. Clonogenic survival assay showed that SMMC-7721 cells were more radiosensitive to the high-LET carbon ions than to the X-rays, and the radiosensitivity was promoted after treatment with specific survivin short interfering RNA. Differential survivin expression at both transcriptional and translational levels was found for SMMC-7721 cells following low- and high-LET irradiation. The overexpression of survivin in SMMC-7721 cells is probably an important reason why the cancerous cells have radioresistance to strong stimulus such as dense ionizing high-LET radiation. However, the direct killing effect on cancerous cells by high-LET radiation might be more significant than the apoptosis inhibition through the overexpression of survivin following heavy ion irradiation.

  6. Heavy ion-induced damage in SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Kamezawa, C. [Japan Aerospace Exploration Agency, Tsukuba Space Center, 2-1-1 Sengen, Ibaraki 305-8505 (Japan)]. E-mail: kamezawa.chihiro@jaxa.jp; Sindou, H. [Japan Aerospace Exploration Agency, Tsukuba Space Center, 2-1-1 Sengen, Ibaraki 305-8505 (Japan); Hirao, T. [Japan Atomic Energy Research Institute, Gunma 370-1292 (Japan); Ohyama, H. [Kumamoto National College of Technology, Kumamoto 861-1102 (Japan); Kuboyama, S. [Japan Aerospace Exploration Agency, Tsukuba Space Center, 2-1-1 Sengen, Ibaraki 305-8505 (Japan)

    2006-04-01

    Silicon carbide (SiC) is a very promising material for future electronic devices. Also it is an attractive material for space applications, that require long-term endurance and higher efficiency, where tolerance to space radiations is a major problem. In this study, we have performed some irradiation examinations and evaluations on a commercial SiC Schottky barrier diode by looking at the damage caused by ion incidence using heavy ions. Ions of Xe, Kr, Ar, Ne, and N, with specific energies, were used in the irradiation process. Sudden breakdown condition at higher bias voltage and gradual damage created by heavy ion incidence were confirmed. The collected charge spectra were also obtained and revealed mechanisms that resulted to permanent damage. The observed anomalous charge collection was an essential factor for the susceptibility. This indicates a problem that need to be solved in the future for SiC space application.

  7. Development of diagnostic method for deep levels in semiconductors using charge induced by heavy ion microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kambayashi, Yuya [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Iwamoto, Naoya; Onoda, Shinobu; Makino, Takahiro; Koka, Masashi; Kamiya, Tomihiro [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Hoshino, Norihiro; Tsuchida, Hidekazu [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Kojima, Kazutoshi [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Hanaizumi, Osamu [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Ohshima, Takeshi, E-mail: ohshima.takeshi20@jaea.go.jp [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2015-04-01

    Highlights: •Charge Transient Spectroscopy using heavy ion microbeams (HIQTS) was developed. •HIQTS system is connected with 3 MeV Tandem accelerator at JAEA Takasaki. •Defects in 4H Silicon Carbide (SiC) Schottky diodes were evaluated using HIQTS. •6H-SiC pn diodes with partial damaged areas were also evaluated using HIQTS. -- Abstract: In order to study defects that create deep energy levels in semiconductors which act as carrier traps, Charge Transient Spectroscopy using heavy ion microbeams (HIQTS) was developed at JAEA Takasaki. The HIQTS system was connected with the heavy ion microbeam line of the 3 MV Tandem accelerator. Using the HIQTS system, deep levels in 4H-SiC Schottky barrier diodes irradiated with 3 MeV-protons were studied. As a result, a HIQTS peak with an activation energy of 0.73 eV was observed. In addition, local damage in 6H-SiC pn diodes partially irradiated with 12 MeV-O ion microbeams was studied using HIQTS. With increasing 12 MeV-O ion fluence, charge collection efficiency in locally damaged areas decreased and HIQTS signals increased.

  8. Oxygen loss induced by swift heavy ions of low and high dE/dx in PMMA thin films

    Science.gov (United States)

    Thomaz, R.; Gutierres, L. I.; Morais, J.; Louette, P.; Severin, D.; Trautmann, C.; Pireaux, J. J.; Papaléo, R. M.

    2015-12-01

    Investigations on the chemical modifications induced by swift heavy ions in PMMA thin films were carried out using beams of high dE/dx (2.2 GeV Bi, 14,090 eV/nm) and low dE/dx (2 MeV H, 19 eV/nm). The induced chemical modifications were monitored by XPS for films with initial thickness of 50 and 100 nm. For both beams, the irradiation decreased the amount of carbon atoms bound to oxygen (Cdbnd O and Csbnd Osbnd C), with a larger decrease of the carboxyl moiety, as expected. However, the chemical changes induced by light and heavy ions were qualitatively different. For the same mean deposited energy density, proton irradiation induced a decrease of the relative intensity of the carbon-oxygen bonds up to ∼20% larger than the irradiation with Bi ions. This suggests a greater importance of particle ejection by unzipping of PMMA chains at high dE/dx, which tends to keep the O/C ratio closer to the pristine value.

  9. Oxygen loss induced by swift heavy ions of low and high dE/dx in PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Thomaz, R.; Gutierres, L.I. [Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre (Brazil); Morais, J. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av Bento Gonçalves 9500, 91501-970 Porto Alegre (Brazil); Louette, P. [Université de Namur, Rue de Bruxelles 61, 5000 Namur (Belgium); Severin, D. [Materials Research, GSI Helmholtz Centre, Planckstr. 1, 64291 Darmstadt (Germany); Trautmann, C. [Materials Research, GSI Helmholtz Centre, Planckstr. 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Alarich-Weiss-Straße2, 64287 Darmstadt (Germany); Pireaux, J.J. [Université de Namur, Rue de Bruxelles 61, 5000 Namur (Belgium); Papaléo, R.M. [Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre (Brazil)

    2015-12-15

    Investigations on the chemical modifications induced by swift heavy ions in PMMA thin films were carried out using beams of high dE/dx (2.2 GeV Bi, 14,090 eV/nm) and low dE/dx (2 MeV H, 19 eV/nm). The induced chemical modifications were monitored by XPS for films with initial thickness of 50 and 100 nm. For both beams, the irradiation decreased the amount of carbon atoms bound to oxygen (C=O and C−O−C), with a larger decrease of the carboxyl moiety, as expected. However, the chemical changes induced by light and heavy ions were qualitatively different. For the same mean deposited energy density, proton irradiation induced a decrease of the relative intensity of the carbon–oxygen bonds up to ∼20% larger than the irradiation with Bi ions. This suggests a greater importance of particle ejection by unzipping of PMMA chains at high dE/dx, which tends to keep the O/C ratio closer to the pristine value.

  10. Heavy ion-induced chromosomal aberrations analyzed by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M. [Univ. ``Federico II``, Naples (Italy). Dept. of Physics]|[INFN, Naples (Italy); Cella, L.; Greco, O. [Univ. ``Federico II``, Naples (Italy). Dept. of Physics; Furusawa, Y. [NIRS, Chiba (Japan); George, K.; Yang, T.C. [NASA Lyndon B. Johnson Space Center, Houston, TX (United States)

    1997-09-01

    We have investigated the effectiveness of heavy ions in the induction of chromosomal aberrations in mammalian cells by the recent technique of fluorescence in situ hybridization (FISH) with whole-chromosome probes. FISH-painting was used both in metaphase and interphase (prematurely condensed) chromosomes. The purpose of our experiments was to address the following problems: (a) the ratio of different types of aberrations as a function of radiation quality (search for biomarkers); (b) the ratio between aberrations scored in interphase and metaphase as a function of radiation quality (role of apoptosis); (c) differences between cytogenetic effects produced by different ions at the same LET (role of track structure). (orig./MG)

  11. Heavy Ion Induced Single Event Upsets on 65 nm Advanced CMOS Technology SRAM

    Institute of Scientific and Technical Information of China (English)

    CAI; Li; GAO; Li-juan; SHI; Shu-ting; LIU; Jian-cheng; WANG; Hui; FAN; Hui

    2012-01-01

    <正>With rapid development of semiconductor industry, the problem of single event effects (SEE) has become exacerbated with shrinking technology feature size and power supply voltages. Accompanying smaller technology scaling is closer spacing between transistors, smaller sensitive areas requiring less critical charge to upset, and lower power supply voltages resulting in a smaller critical charge (Qcrit) to upset. Experimental assessment of circuit sensitivity to radiation is of the most importance. And in this paper we studied the heavy ion characterization on 65 nm advanced CMOS technology SRAM.

  12. Swift heavy ion induced nano-dimensional phase separation in liquid immiscible binary Mn-Bi

    Science.gov (United States)

    Srivastava, S. K.; Khan, S. A.; Sudheer Babu, P.; Avasthi, D. K.

    2014-08-01

    Pulsed laser deposited 60 nm thin film of homogeneous Mn0.82Bi0.18 composite has been irradiated by 100 MeV Au ions at fluence 1 × 1013 ions/cm2, and investigated by field emission scanning electron microscopy, X-ray diffraction, magnetic hysteresis, X-ray photoelectron spectroscopy, and nanoindentation measurements. Dispersed nanostructures of soft Bi-rich phase of about 20 nm diameter emerged in a hard Mn-rich matrix on irradiation. Such structures, as synthesized by the present novel swift heavy ion irradiation approach, are usable as self-lubricating thin films.

  13. Experimental studies of single-event effects induced by heavy ions

    Science.gov (United States)

    Liu, J.; Hou, M. D.; Li, B. Q.; Liu, C. L.; Wang, Z. G.; Cheng, S.; Sun, Y. M.; Jin, Y. F.; Lin, Y. L.; Cai, J. R.; Wang, S. J.; Ye, Z. H.; Zhu, G. W.; Du, H.; Ren, Q. Y.; Wu, W.; Mao, X. M.; Sun, Y. Q.; Guo, R.

    2000-04-01

    This paper presents the results of ground-based heavy ion test of single-event effect (SEE) vulnerability on microcircuits used in space. We observed the dependence of upset cross-sections on the incident angle of ions in Intel 8086 CPU. SEU cross-sections of various SRAMs did not depend on the stored pattern, but 0→1 and 1→0 transitions were completely different for different manufacturer products. Some SEE protection methods were verified in conditions of ground simulation experiments.

  14. Somatic mutation in larvae of the silkworm, Bombyx mori, induced by heavy ion irradiation to diapause eggs

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Eiji; Furusawa, Toshiharu [Kyoto Inst. of Tech. (Japan). Faculty of Textile Science; Nagaoka, Shunji [Fujita Health Univ., Toyoake, Aichi (Japan). School of Health Sciences] [and others

    2002-12-01

    In order to investigate whether eggs of the black-striped strain (P{sup S}) of the silkworm, Bombyx mori, represent an appropriate model for estimating the biological effect of cosmic radiation, radiosensitivity of the eggs against X-rays and heavy ion particles was examined as ground-based experiments. The exposure of diapause eggs to X-rays or heavy ion particles resulted in somatic mutations appearing as a white spot on the black integument during larval stage. Irradiation of non-diapause eggs with X-rays demonstrated a significant difference in frequency of the mutation between fractionated and single administration doses, but no difference was observed in diapause eggs. Incidence of the mutation as induced by carbon ion beams for 15-day old eggs was higher for eggs that had been kept at 15 deg C than those kept at 25 deg C. Neon beam irradiation of diapause eggs displayed dose- and linear energy transfer (LET)-dependent effects, causing a maximal rate of the mutation at 150 keV/{mu}m. These results confirm that B. mori eggs represent valid models for estimating the biological effects of cosmic radiation. (author)

  15. Experimental research of heavy ion and proton induced single event effects for a Bi-CMOS technology DC/DC converter

    Science.gov (United States)

    Anlin, He; Gang, Guo; Shuting, Shi; Dongjun, Shen; Jiancheng, Liu; Li, Cai; Hui, Fan

    2015-11-01

    This paper tested and analyzed heavy ion and proton induced single event effects (SEE) of a commercial DC/DC converter based on a 600 nm Bi-CMOS technology. Heavy ion induced single event transients (SET) testing has been carried out by using the Beijing HI-13 tandem accelerator at China Institute of Atomic Energy. Proton test has been carried out by using the Canadian TRIUMF proton accelerator. Both SET cross section versus linear energy transfer (LET) and proton energy has been measured. The main study conclusions are: (1) the DC/DC is both sensitive to heavy ion and proton radiations although at a pretty large feature size (600 nm), and threshold LET is about 0.06 MeV·mg/cm2 (2) heavy ion SET saturation cross section is about 5 magnitudes order larger than proton SET saturation cross section, which is consistent with the theory calculation result deduced by the RPP model and the proton nuclear reaction model; (3) on-orbit soft error rate (SER) prediction showed, on GEO orbit, proton induced SERs calculated by the heavy ion derived model are 4-5 times larger than those calculated by proton test data.

  16. Swift heavy ion induced modifications of single walled carbon nanotube thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli, E-mail: vishalli_2008@yahoo.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Raina, K.K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, P.O. Box 32, Patiala 147004, Punjab (India); Avasthi, D.K. [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Srivastava, Alok [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-04-15

    Thin films of single walled carbon nanotubes (SWCNTs) were prepared by Langmuir–Blodgett method and irradiated with swift heavy ions, carbon and nickel each of energy 60 MeV. The ion beams have different electronic energy loss (S{sub e}) values and the samples were exposed to various irradiation doses. The irradiated films were characterized using Raman and optical absorption spectroscopy. Raman spectroscopy results indicate the competing processes of defect creation and healing (annealing) of SWCNTs at lower fluences, while at higher fluences defect creation or damage dominates. In UV–Vis–NIR spectroscopy we find that there is decrease in the intensity of characteristic peaks with every increasing fluence, indicating decrease in the optically active states with irradiation.

  17. Differential effects of p53 on bystander phenotypes induced by gamma ray and high LET heavy ion radiation

    Science.gov (United States)

    He, Mingyuan; Dong, Chen; Konishi, Teruaki; Tu, Wenzhi; Liu, Weili; Shiomi, Naoko; Kobayashi, Alisa; Uchihori, Yukio; Furusawa, Yoshiya; Hei, Tom K.; Dang, Bingrong; Shao, Chunlin

    2014-04-01

    High LET particle irradiation has several potential advantages over γ-rays such as p53-independent response. The purpose of this work is to disclose the effect of p53 on the bystander effect induced by different LET irradiations and underlying mechanism. Lymphocyte cells of TK6 (wild type p53) and HMy2.CIR (mutated p53) were exposed to either low or high LET irradiation, then their mitochondrial dysfunction and ROS generation were detected. The micronuclei (MN) induction in HL-7702 hepatocytes co-cultured with irradiated lymphocytes was also measured. It was found that the mitochondrial dysfunction, p66Shc activation, and intracellular ROS were enhanced in TK6 but not in HMy2.CIR cells after γ-ray irradiation, but all of them were increased in both cell lines after carbon and iron irradiation. Consistently, the bystander effect of MN formation in HL-7702 cells was only triggered by γ-irradiated TK6 cells but not by γ-irradiated HMy2.CIR cells. But this bystander effect was induced by both lymphocyte cell lines after heavy ion irradiation. PFT-μ, an inhibitor of p53, only partly inhibited ROS generation and bystander effect induced by 30 keV/μm carbon-irradiated TK6 cells but failed to suppress the bystander effect induced by the TK6 cells irradiated with either 70 keV/μm carbon or 180 keV/μm iron. The mitochondrial inhibitors of rotenone and oligomycin eliminated heavy ion induced ROS generation in TK6 and HMy2.CIR cells and hence diminished the bystander effect on HL-7702 cells. These results clearly demonstrate that the bystander effect is p53-dependent for low LET irradiation, but it is p53-independent for high LET irradiation which may be because of p53-independent ROS generation due to mitochondrial dysfunction.

  18. Characterisation of Swift Heavy Ion-induced Mixing using Secondary Ion Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    B. R. Chakraborty

    2009-07-01

    Full Text Available Swift heavy ions of Au at 120 MeV are irradiated at the interface of Si/Me/Si (Me=V,Fe,Co and the behaviour of mixing examined wrt to different ion doses. The fluences were varied from 1x1013 ions/cm2 to 1x1014 ions/cm2 on the multilayers of Si/Me/Se (Me=V,Fe,Co and the interface of Si/Me(Me=V,Fe,Co were characterised using Rutherford backscattering spectroscopy(RBS and secondary ion mass spectrometry (SIMS. The atomic mixing width was found to be increasing monotonically with ion fluence in all the three cases,. The mixing rate and efficiency calculations were made and the diffusivity values thus obtained suggested a transient melt phase at the interface according to thermal spike model. In case of Me=Co, it was further probed with XRD and Raman spectroscopy to confirm the formation of cobalt silicides even at room temperature.Defence Science Journal, 2009, 59(4, pp.356-362, DOI:http://dx.doi.org/10.14429/dsj.59.1534

  19. Study on target spallation reaction cross sections induced by high energy neutrons and heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center

    1996-03-01

    The target spallation reaction cross sections of neutrons and heavy ions which have not been observed are determined in this paper. The object of this work is to make clear the differences between the spallation reaction cross section of neutron and that of proton by comparing the obtained value of neutron with the known value of proton. To this end, the quasi monochromatic neutron field of 20{approx}50 MeV was developed in 4 cyclotrons, INS, CYRIC, TIARA and RIKEN. The nuclear spallation reaction cross sections of C, Al and Bi were measured in the above field and the distribution of nuclear spallation reaction products in Cu determined by C ion beam of HIMAC. {sup 12}C(n,2n){sup 11}C reaction cross section shows the maximum value of about 20 mb at near 40{approx}50 MeV and then the value gradually decreased to 10 mb. The cross sections of {sup 209}Bi(n,Xn) are shown. The distribution of {sup 61}Cu is lower at the entrance and higher in the depth. (S.Y.)

  20. Mixing induced by swift heavy ion irradiation at Fe/Si interface

    Indian Academy of Sciences (India)

    Veenu Sisodia; I P Jain

    2004-08-01

    The present work deals with the mixing of metal and silicon by swift heavy ions in high-energy range. Threshold value for the defect creation in metal Fe calculated was found to be ∼ 40 keV/nm. A thin film of Fe (10 nm) was deposited on Si (100) at a pressure of 4 × 10-8 Torr and was irradiated with 95 MeV Au ions. Irradiation was done at RT, to a dose of 1013 ions/cm2 and 1 pna current. The electronic energy loss was found to be 29.23 keV/nm for 95 MeV Au ions in Fe using TRIM calculation. Compositional analysis of samples was done by Rutherford backscattering spectroscopy. Reflectivity studies were carried out on the pre-annealed and post-annealed samples to study irradiation effects. Grazing incidence X-ray diffraction was done to study the interface. It was observed that ion beam mixing reactions at RT lead to mixing as a result of high electronic excitations.

  1. Studies of K-shell x-ray energy shifts induced by MeV/u heavy ions

    Institute of Scientific and Technical Information of China (English)

    Song Zhang-Yong; Yang Zhi-Hu; Shao Jian-Xiong; Cui Ying; Zhang Hong-Qiang; Ruan Fang-Fang; Du Juan; Gao Zhi-Min; Yu De-Yang; Chen Xi-Meng; Cai Xiao-Hong

    2009-01-01

    This paper reports that the K x-ray spectra of the thin target 47Ag,48Cd,49In and 50Sn were measured by an HPGe semi-conductor detector in collisions with 84.5 MeV 6C4+ ions.Our experiment revealed the Kα x-ray energy shifts were not obvious and the Kβ1 x-ray energy shifts were about 90~110 eV.The simple model of Burch et al has been previously used to calculate the K x-ray energy shifts due to an additional vacancy in 2p orbit.The present work extends the model of Butch to calculate the x-ray energy shifts of multiple ionized atoms induced by heavy ions with kinetic energy of MeV/u.In addition to our experimental results,many other experimental results are compared with the calculated values by using the model.

  2. Prompt photon yield and elliptic flow from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions

    Science.gov (United States)

    Ayala, Alejandro; Castaño-Yepes, Jorge David; Dominguez, C. A.; Hernández, L. A.; Hernández-Ortiz, Saúl; Tejeda-Yeomans, María Elena

    2017-07-01

    We compute photon production at early times in semicentral relativistic heavy-ion collisions from nonequilibrium gluon fusion induced by a magnetic field. The calculation accounts for the main features of the collision at these early times, namely, the intense magnetic field and the high gluon occupation number. The gluon fusion channel is made possible by the magnetic field and would otherwise be forbidden due to charge conjugation invariance. Thus, the photon yield from this process is an excess over calculations without magnetic field effects. We compare this excess to the difference between PHENIX data and recent hydrodynamic calculations for the photon transverse momentum distribution and elliptic flow coefficient v2 . We show that with reasonable values for the saturation scale and magnetic field strength, the calculation helps us better describe the experimental results obtained at RHIC energies for the lowest part of the transverse photon momentum.

  3. Kinetics of amorphization induced by swift heavy ions in {alpha}-quartz

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Rodriguez, O., E-mail: ovidio.pena@uam.es [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Instituto de Optica, Consejo Superior de Investigaciones Cientificas (IO-CSIC), C/Serrano 121, E-28006 Madrid (Spain); Manzano-Santamaria, J. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Euratom/CIEMAT Fusion Association, Madrid (Spain); Rivera, A. [Instituto de Fusion Nuclear, Universidad Politecnica de Madrid, C/ Jose Gutierrez Abascal 2, E-28006 Madrid (Spain); Garcia, G. [Laboratory of Synchrotron Light (CELLS-ALBA), 08290 Cerdanyola del Valles, Barcelona (Spain); Olivares, J. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Instituto de Optica, Consejo Superior de Investigaciones Cientificas (IO-CSIC), C/Serrano 121, E-28006 Madrid (Spain); Agullo-Lopez, F. [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid (CMAM-UAM), Cantoblanco, E-28049 Madrid (Spain); Departamento de Fisica de Materiales, Universidad Autonoma de Madrid (UAM), Cantoblanco, E-28049 Madrid (Spain)

    2012-11-15

    The kinetics of amorphization in crystalline SiO{sub 2} ({alpha}-quartz) under irradiation with swift heavy ions (O{sup +1} at 4 MeV, O{sup +4} at 13 MeV, F{sup +2} at 5 MeV, F{sup +4} at 15 MeV, Cl{sup +3} at 10 MeV, Cl{sup +4} at 20 MeV, Br{sup +5} at 15 and 25 MeV and Br{sup +8} at 40 MeV) has been analyzed in this work with an Avrami-type law and also with a recently developed cumulative approach (track-overlap model). This latter model assumes a track morphology consisting of an amorphous core (area {sigma}) and a surrounding defective halo (area h), both being axially symmetric. The parameters of the two approaches which provide the best fit to the experimental data have been obtained as a function of the electronic stopping power S{sub e}. The extrapolation of the {sigma}(S{sub e}) dependence yields a threshold value for amorphization, S{sub th} Almost-Equal-To 2.1 keV/nm; a second threshold is also observed around 4.1 keV/nm. We believe that this double-threshold effect could be related to the appearance of discontinuous tracks in the region between 2.1 and 4.1 keV/nm. For stopping power values around or below the lower threshold, where the ratio h/{sigma} is large, the track-overlap model provides a much better fit than the Avrami function. Therefore, the data show that a right modeling of the amorphization kinetics needs to take into account the contribution of the defective track halo. Finally, a short comparative discussion with the kinetic laws obtained for elastic collision damage is given.

  4. Swift heavy ion induced modification in morphological and physico-chemical properties of tin oxide nanocomposites

    Science.gov (United States)

    Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh

    2013-11-01

    Nanocomposite thin films of tin oxide (SnO2)/titanium oxide (TiO2) were grown on silicon (1 0 0) substrates by electron beam evaporation deposition technique using sintered nanocomposite pellet of SnO2/TiO2 in the percentage ratio of 95:5. Sintering of the nanocomposite pellet was done at 1300 °C for 24 h. The thicknesses of these films were measured to be 100 nm during deposition using piezo-sensor attached to the deposition chamber. TiO2 doped SnO2 nanocomposite films were irradiated by 100 MeV Au8+ ion beam at fluence range varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2 at Inter University Accelerator Center (IUAC), New Delhi, India. Chemical properties of pristine and ion irradiation modified thin films were characterized by Fourier Transform Infrared (FTIR) spectroscopy. FTIR peak at 610 cm-1 confirms the presence of O-Sn-O bridge of tin (IV) oxide signifying the composite nature of pristine and irradiated thin films. Atomic Force Microscope (AFM) in tapping mode was used to study the surface morphology and grain growth due to swift heavy ion irradiation at different fluencies. Grain size calculations obtained from sectional analysis of AFM images were compared with results obtained from Glancing Angle X-ray Diffraction (GAXRD) measurements using Scherrer’s formulae. Phase transformation due to irradiation was observed from Glancing Angle X-ray Diffraction (GAXRD) results. The prominent 2θ peaks observed in GAXRD spectrum are at 30.67°, 32.08°, 43.91°, 44.91° and 52.35° in the irradiated films.

  5. On the common solution within a framework of single matrix algorithm for radical suppression of background products in heavy-ion induced reaction

    CERN Document Server

    Tsyganov, Y S

    2015-01-01

    Application of real-time matrix algorithm in heavy ion induced complete fusion nuclear reactions of superheavy elements synthesis is reviewed in brief. An extended algorithm, for the case of the recoil detection efficiency is not close to 100% has been proposed.

  6. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    Science.gov (United States)

    Gautam, Subodh K.; Chettah, Abdelhak; Singh, R. G.; Ojha, Sunil; Singh, Fouran

    2016-07-01

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO2 composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb2O5) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb2O5 phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO2 and Nb2O5 phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO2 phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  7. Swift heavy ion induced optical and structural modifications in RF sputtered nanocrystalline ZnO thin film

    Science.gov (United States)

    Singh, S. K.; Singhal, R.; Vishnoi, R.; Kumar, V. V. S.; Kulariya, P. K.

    2017-01-01

    In the present study, 100 MeV Ag7+ ion beam-induced structural and optical modifications of nanocrystalline ZnO thin films are investigated. The nanocrystalline ZnO thin films are grown using radio frequency magnetron sputtering and irradiated at fluences of 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. The incident swift heavy ions induced change in the crystallinity together with the preferential growth of crystallite size along the c axis (002) orientation. The average crystallite size is found to be increased from 10.8 ± 0.7 to 20.5 ± 0.3 nm with increasing the ion fluence. The Atomic force microscopy analysis confirms the variation in the surface roughness by varying the incident ion fluences. The UV-visible spectroscopy shows the decrement in transmittance of the film with ion irradiation. The micro-Raman spectra of ZnO thin films are investigated to observe ion-induced modifications which support the increased lattice defects with higher fluence. The variation in crystallinity indicates that ZnO-based devices can be used in piezoelectric transduction mechanism.

  8. Effects of electronic and nuclear stopping power on disorder induced in GaN under swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Moisy, F., E-mail: moisy@ganil.fr [CIMAP, Normandie Universite ENSICAEN/CEA/CNRS, 6 Bd Maréchal Juin, 14050 Caen (France); Sall, M.; Grygiel, C.; Balanzat, E.; Boisserie, M.; Lacroix, B. [CIMAP, Normandie Universite ENSICAEN/CEA/CNRS, 6 Bd Maréchal Juin, 14050 Caen (France); Simon, P. [CNRS, UPR 3079 CEMHTI, CS 90055, 45071 Orléans Cedex 2 (France); Monnet, I. [CIMAP, Normandie Universite ENSICAEN/CEA/CNRS, 6 Bd Maréchal Juin, 14050 Caen (France)

    2016-08-15

    Wurtzite GaN epilayers, grown on the c-plane of sapphire substrate, have been irradiated with swift heavy ions at different energies and fluences, and thereafter studied by Raman scattering spectroscopy, UV–visible spectroscopy and transmission electron microscopy. Raman spectra show strong structural modifications in the GaN layer. Indeed, in addition to the broadening of the allowed modes, a large continuum and three new modes at approximately 200 cm{sup −1}, 300 cm{sup −1} and 670 cm{sup −1} appear after irradiation attributed to disorder-activated Raman scattering. In this case, spectra are driven by the phonon density of states of the material due to the loss of translation symmetry of the lattice induced by defects. It was shown qualitatively that both electronic excitations and elastic collisions play an important role in the disorder induced by irradiation. UV–visible spectra reveal an absorption band at 2.8 eV which is linked to the new mode at 300 cm{sup −1} observed in irradiated Raman spectra and comes from Ga-vacancies. These color centers are produced by elastic collisions (without any visible effect of electronic excitations).

  9. Heavy ion irradiation induced dislocation loops in AREVA's M5 Registered-Sign alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hengstler-Eger, R.M., E-mail: Rosmarie.Hengstler-Eger@areva.com [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Baldo, P. [Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, 60439 Argonne IL (United States); Beck, L. [Maier-Leibnitz-Laboratorium (MLL), Am Coulombwall 6, 85748 Garching (Germany); Dorner, J.; Ertl, K. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Hoffmann, P.B. [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany); Hugenschmidt, C. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Lichtenbergstr. 1, 85747 Garching (Germany); Kirk, M.A. [Argonne National Laboratory, Materials Science Division, 9700 South Cass Avenue, 60439 Argonne IL (United States); Petry, W.; Pikart, P. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Lichtenbergstr. 1, 85747 Garching (Germany); Rempel, A. [AREVA, AREVA NP GmbH, Paul-Gossen-Str. 100, 91052 Erlangen (Germany)

    2012-04-15

    Pressurized water reactor (PWR) Zr-based alloy structural materials show creep and growth under neutron irradiation as a consequence of the irradiation induced microstructural changes in the alloy. A better scientific understanding of these microstructural processes can improve simulation programs for structural component deformation and simplify the development of advanced deformation resistant alloys. As in-pile irradiation leads to high material activation and requires long irradiation times, the objective of this work was to study whether ion irradiation is an applicable method to simulate typical PWR neutron damage in Zr-based alloys, with AREVA's M5 Registered-Sign alloy as reference material. The irradiated specimens were studied by electron backscatter diffraction (EBSD), positron Doppler broadening spectroscopy (DBS) and in situ transmission electron microscopy (TEM) at different dose levels and temperatures. The irradiation induced microstructure consisted of - and -type dislocation loops with their characteristics corresponding to typical neutron damage in Zr-based alloys; it can thus be concluded that heavy ion irradiation under the chosen conditions is an excellent method to simulate PWR neutron damage.

  10. Effects of electronic and nuclear stopping power on disorder induced in GaN under swift heavy ion irradiation

    Science.gov (United States)

    Moisy, F.; Sall, M.; Grygiel, C.; Balanzat, E.; Boisserie, M.; Lacroix, B.; Simon, P.; Monnet, I.

    2016-08-01

    Wurtzite GaN epilayers, grown on the c-plane of sapphire substrate, have been irradiated with swift heavy ions at different energies and fluences, and thereafter studied by Raman scattering spectroscopy, UV-visible spectroscopy and transmission electron microscopy. Raman spectra show strong structural modifications in the GaN layer. Indeed, in addition to the broadening of the allowed modes, a large continuum and three new modes at approximately 200 cm-1, 300 cm-1 and 670 cm-1 appear after irradiation attributed to disorder-activated Raman scattering. In this case, spectra are driven by the phonon density of states of the material due to the loss of translation symmetry of the lattice induced by defects. It was shown qualitatively that both electronic excitations and elastic collisions play an important role in the disorder induced by irradiation. UV-visible spectra reveal an absorption band at 2.8 eV which is linked to the new mode at 300 cm-1 observed in irradiated Raman spectra and comes from Ga-vacancies. These color centers are produced by elastic collisions (without any visible effect of electronic excitations).

  11. Swift heavy ion induced structural and luminescence characterization of Y₂O₃:Eu³⁺ phosphor: a comparative study.

    Science.gov (United States)

    Som, S; Sharma, S K; Lochab, S P

    2014-08-01

    We report a comparative study on structural and thermoluminescence modifications of Y2O3:Eu(3+) phosphor induced by 150 MeV Ni(7+), 120 MeV Ag(9+) and 110 MeV Au(8+) swift heavy ions (SHI) in the fluence range 1 × 10(11) to 1 × 10(13) ions/cm(2). X-Ray diffraction and transition electron microscopy studies confirm the loss of crystallinity of the phosphors after ion irradiation, which is greater in the case of Au ion irradiation. Structural refinement using the Rietveld method yields the various structural parameters of ion-irradiated phosphors. Thermoluminescence glow curves of ion-irradiated phosphors show a small shift in the position of the peaks, along with an increase in intensity with ion fluence. Stopping range of ions in Matter (SRIM) calculations were performed to correlate the change in thermoluminescence properties of various ion-irradiated phosphors. It shows that the defects created by 110 MeV Au(8+) ions are greater in number. Trapping parameters of ion-irradiated phosphors were calculated from thermoluminescence data using various glow curve analysis methods.

  12. Analysis of heavy-ion-induced DNA strand breaks in plasmid pUC18

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Plasmid DNA was irradiated or implanted by mixed particle field(CR) or lithium-ion-beam to detect strand breaks.The primary results showed that mixed particle field could induce single and double strand breaks with positive linear-dose-effects;most of sequence changes induced by CR were point mutant.Lithium-ion-beam could induce strand breaks also,but it was only at dose of 20Gy.

  13. Structural changes of DNA in heavy ion-induced mutants on Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tano, S.; Shikazono, N.; Tanaka, A.; Yokota, Y.; Watanabe, H. [Japan Atomic Research Research Inst., Watanuki, Takasaki (Japan). Advanced Science Research Center

    1997-09-01

    In order to investigate the frequency of structural changes induced by high LET radiation in plants, a comparison was made between DNA fragments amplified by the polymerase chain reaction (PCR) from C ion- and electron-induced Arabidopsis mutants at GL and TT loci. (orig./MG)

  14. Relativistically Induced Transparency Acceleration (RITA) of Protons and Light-ions with Ultrashort Laser Interaction with Heavy-ion Plasma Density Gradient

    CERN Document Server

    Sahai, Aakash A; Tableman, A R; Mori, W B; Katsouleas, T C

    2014-01-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma ...

  15. Swift-heavy ion irradiation-induced latent tracks in few- and mono-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hang; Zhang, Shengxia [Chinese Academy of Sciences (CAS), Institute of Modern Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Sun, Youmei; Zhai, Pengfei; Yao, Huijun; Zeng, Jian; Duan, Jinglai; Hou, Mingdong; Liu, Jie [Chinese Academy of Sciences (CAS), Institute of Modern Physics, Lanzhou (China); Khan, Maaz [Chinese Academy of Sciences (CAS), Institute of Modern Physics, Lanzhou (China); PINSTECH, Nanomaterials Research Group, Physics Division, Nilore, Islamabad (Pakistan)

    2016-04-15

    The latent tracks in mono- and few-layer molybdenum disulfide (MoS{sub 2}) induced by {sup 209}Bi ions with energies of 0.45-1.23 GeV were characterized by atomic force microscopy (AFM). The hillock-like latent tracks were observed on the surface of irradiated monolayer MoS{sub 2}. The diameter of the hillock after deconvolution procedure is 15.8± 1.7 nm and the height is 1.0±0.3 nm. Hillock-like tracks are induced by energy transfer from energetic {sup 209}Bi ions to electron system of MoS{sub 2}, resulting in the ionization and excitation and then the displacement of target atoms. Since Raman spectroscopy is sensitive to damages induced by swift-heavy ion irradiation, the in-plane E{sub 2g}{sup 1} mode (∝385 cm{sup -1}) and the out-of-plane A{sub 1g} mode (∝408 cm{sup -1}) of MoS{sub 2} were investigated. With increasing ion fluence, the A{sub 1g} peak shifts to higher frequencies, and the intensity ratio between A{sub 1g} and E{sub 2g}{sup 1} peak increases. Besides, the A{sub 1g} peak narrows. The evolution of the structural and vibrational properties of MoS{sub 2} with fluence is discussed. It can be concluded that the blue shift and narrowing of A{sub 1g} peak in irradiated MoS{sub 2} is due to the adsorption of oxygen molecules at latent tracks. With decreasing thickness of MoS{sub 2}, the irradiation resistance decreases. (orig.)

  16. Swift heavy ion irradiation induced phase transformation in undoped and niobium doped titanium dioxide composite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Subodh K., E-mail: subodhkgtm@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Chettah, Abdelhak [LGMM Laboratory, Université 20 Août 1955-Skikda, BP 26, 21000 Skikda (Algeria); Singh, R.G. [Department of Physics, Bhagini Nivedita College, Delhi University, Delhi 110043 (India); Ojha, Sunil; Singh, Fouran [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India)

    2016-07-15

    Study reports the effect of swift heavy ion (SHI) irradiation induced phase transformation in undoped and Niobium doped anatase TiO{sub 2} composite thin films. Investigations were carried out at different densities of electronic excitations (EEs) using 120 MeV Ag and 130 MeV Ni ions irradiations. Films were initially annealed at 900 °C and results revealed that undoped films were highly stable in anatase phase, while the Nb doped films showed the composite nature with the weak presence of Niobium penta-oxide (Nb{sub 2}O{sub 5}) phase. The effect at low density of EEs in undoped film show partial anatase to rutile phase transformation; however doped film shows only further growth of Nb{sub 2}O{sub 5} phase beside the anatase to rutile phase transformation. At higher density of EEs induced by Ag ions, registered continuous ion track of ∼3 nm in lattice which leads to nano-crystallization followed by decomposition/amorphization of rutile TiO{sub 2} and Nb{sub 2}O{sub 5} phases in undoped and doped films, respectively. However, Ni ions are only induced discontinuous sequence of ion tracks with creation of damage and disorder and do not show amorphization in the lattice. The in-elastic thermal spike calculations were carried out for anatase TiO{sub 2} phase to understand the effect of EEs on anatase to rutile phase transformation followed by amorphization in NTO films in terms of continuous and discontinuous track formation by SHI irradiation.

  17. Combined experimental and computational study of the recrystallization process induced by electronic interactions of swift heavy ions with silicon carbide crystals

    Science.gov (United States)

    Debelle, A.; Backman, M.; Thomé, L.; Weber, W. J.; Toulemonde, M.; Mylonas, S.; Boulle, A.; Pakarinen, O. H.; Juslin, N.; Djurabekova, F.; Nordlund, K.; Garrido, F.; Chaussende, D.

    2012-09-01

    The healing effect of intense electronic energy deposition arising during swift heavy ion (SHI) irradiation is demonstrated in the case of 3C-SiC damaged by nuclear energy deposition. Experimental (ion channeling experiments) and computational (molecular dynamics simulations) studies provide consistent indications of disorder decrease after SHI irradiation. Furthermore, both methods establish that SHI-induced recrystallization takes place at amorphous-crystalline interfaces. The recovery process is unambiguously accounted for by the thermal spike phenomenon.

  18. Equivalence of displacement radiation damage in superluminescent diodes induced by protons and heavy ions

    Science.gov (United States)

    Li, Xingji; Liu, Chaoming; Lan, Mujie; Xiao, Liyi; Liu, Jianchun; Ding, Dongfa; Yang, Dezhuang; He, Shiyu

    2013-07-01

    The degradation of optical power for superluminescent diodes is in situ measured under exposures of protons with various energies (170 keV, 3 MeV and 5 MeV), and 25 MeV carbon ions for several irradiation fluences. Experimental results show that the optical power of the SLDs decreases with increasing fluence. The protons with lower energies cause more degradation in the optical power of SLDs than those with higher energies at a given fluence. Compared to the proton irradiation with various energies, the 25 MeV carbon ions induce more severe degradation to the optical power. To characterize the radiation damage of the SLDs, the displacement doses as a function of chip depth in the SLDs are calculated by SRIM code for the protons and carbon ions. Based on the irradiation testing and calculation results, an approach is given to normalize the equivalence of displacement damage induced by various charged particles in SLDs.

  19. Chemical modifications of polymer films induced by high energy heavy ions

    Science.gov (United States)

    Zhu, Zhiyong; Sun, Youmei; Liu, Changlong; Liu, Jie; Jin, Yunfan

    2002-06-01

    Polymer films including polyethylene terephthalate (PET), polystyrene (PS) and polycarbonate (PC) were irradiated at room temperature with ions of 35 MeV/u 40Ar, 25 MeV/u 84Kr, 15.1 MeV/u 136Xe and 11.4 MeV/u 238U to fluences ranging from 9×10 9 to 5.5×10 12 ions/cm 2. The radiation-induced chemical changes of the materials were investigated by Fourier-transform infrared (FTIR) and ultraviolet/visible spectroscopies. It is found that the absorbance in the ultraviolet and visible range induced by all irradiations follows a linear relationship with fluence. The radiation-induced absorbance normalized to one particle increases slowly with increasing of electronic energy loss below about 8 keV/nm followed by a sharp increase up to about 15 keV/nm above which saturation is reached. FTIR measurements reveal that the materials suffer serious degradation through bond breaking. The absorbance of the typical infrared bands decays exponentially with increase of ion fluence and the bond-disruption cross-section shows a sigmoid variation with electronic energy loss. In PET loss of crystallinity is attributed to the configuration transformation of the ethylene glycol residue from trans into the gauche. Alkyne end groups are induced in all the materials above certain electronic energy loss threshold, which is found to be about 0.8 keV/nm for PS and 0.4 keV/nm for PC. The production cross-section of alkyne end group increases with increasing of electronic energy loss and shows saturation at high electronic energy loss values. It is concluded that not only the physical processes but also the chemical processes of the energy deposition determine the modification of polymer.

  20. Chemical modifications of polymer films induced by high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhiyong E-mail: zyzhu@impcas.ac.cn; Sun Youmei; Liu Changlong; Liu Jie; Jin Yunfan

    2002-06-01

    Polymer films including polyethylene terephthalate (PET), polystyrene (PS) and polycarbonate (PC) were irradiated at room temperature with ions of 35 MeV/u {sup 40}Ar, 25 MeV/u {sup 84}Kr, 15.1 MeV/u {sup 136}Xe and 11.4 MeV/u {sup 238}U to fluences ranging from 9x10{sup 9} to 5.5x10{sup 12} ions/cm{sup 2}. The radiation-induced chemical changes of the materials were investigated by Fourier-transform infrared (FTIR) and ultraviolet/visible spectroscopies. It is found that the absorbance in the ultraviolet and visible range induced by all irradiations follows a linear relationship with fluence. The radiation-induced absorbance normalized to one particle increases slowly with increasing of electronic energy loss below about 8 keV/nm followed by a sharp increase up to about 15 keV/nm above which saturation is reached. FTIR measurements reveal that the materials suffer serious degradation through bond breaking. The absorbance of the typical infrared bands decays exponentially with increase of ion fluence and the bond-disruption cross-section shows a sigmoid variation with electronic energy loss. In PET loss of crystallinity is attributed to the configuration transformation of the ethylene glycol residue from trans into the gauche. Alkyne end groups are induced in all the materials above certain electronic energy loss threshold, which is found to be about 0.8 keV/nm for PS and 0.4 keV/nm for PC. The production cross-section of alkyne end group increases with increasing of electronic energy loss and shows saturation at high electronic energy loss values. It is concluded that not only the physical processes but also the chemical processes of the energy deposition determine the modification of polymer.

  1. Impact of p53 status on heavy-ion radiation-induced micronuclei in circulating erythrocytes

    Science.gov (United States)

    Chang, P. Y.; Torous, D.; Lutze-Mann, L.; Winegar, R.

    2000-01-01

    Transgenic mice that differed in their p53 genetic status were exposed to an acute dose of highly charged and energetic (HZE) iron particle radiation. Micronuclei (MN) in two distinct populations of circulating peripheral blood erythrocytes, the immature reticulocytes (RETs) and the mature normochromatic erythrocytes (NCEs), were measured using a simple and efficient flow cytometric procedure. Our results show significant elevation in the frequency of micronucleated RETs (%MN-RETs) at 2 and 3 days post-radiation. At 3 days post-irradiation, the magnitude of the radiation-induced MN-RET was 2.3-fold higher in the irradiated p53 wild-type animals compared to the unirradiated controls, 2.5-fold higher in the p53 hemizygotes and 4.3-fold higher in the p53 nullizygotes. The persistence of this radiation-induced elevation of MN-RETs is dependent on the p53 genetic background of the animal. In the p53 wild-type and p53 hemizygotes, %MN-RETs returned to control levels by 9 days post-radiation. However, elevated levels of %MN-RETs in p53 nullizygous mice persisted beyond 56 days post-radiation. We also observed elevated MN-NCEs in the peripheral circulation after radiation, but the changes in radiation-induced levels of MN-NCEs appear dampened compared to those of the MN-RETs for all three strains of animals. These results suggest that the lack of p53 gene function may play a role in the iron particle radiation-induced genomic instability in stem cell populations in the hematopoietic system.

  2. Density effect of the neutron halo nucleus induced reactions in intermediate energy heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    CAO Xi-Guang; CHEN Jin-Gen; MA Yu-Gang; FANG De-Qing; TIAN Wen-Dong; YAN Ting-Zhi; CAI Xiang-Zhou

    2009-01-01

    Using an isospin-dependent quantum molecular dynamics (IQMD) model, we study the 15C induced reactions from 30-120 MeV/nucleon systematically. Here the valence neutron of 15C is assigned at both 1d5/2 and 2s1/2 states respectively in order to study the density effect of reaction mechanism. It is. believed that the existent neutron halo structure at the 2s1/2 state of 15C will affect the light particle emission evidently.In our calculation, the different density distributions of 15C at two states are calculated by relativistic mean field (RMF) model and introduced in the initiation of IQMD model, respectively. It is found that some observables such as emission fragmentation multiplicity, emission neutron/proton ratio and emission neutrons'kinetic energy spectrum are sensitive to the initial density distribution.

  3. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Meinerzhagen, F.; Breuer, L.; Bukowska, H.; Herder, M.; Schleberger, M.; Wucher, A. [Fakultät für Physik, Universität Duisburg-Essen and Cenide, 47057 Duisburg (Germany); Bender, M.; Severin, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Lebius, H. [CIMAP (CEA-CNRS-ENSICAEN-UCN), 14070 Caen Cedex 5 (France)

    2016-01-15

    The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.

  4. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    Science.gov (United States)

    Meinerzhagen, F.; Breuer, L.; Bukowska, H.; Bender, M.; Severin, D.; Herder, M.; Lebius, H.; Schleberger, M.; Wucher, A.

    2016-01-01

    The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.

  5. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    Science.gov (United States)

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel

    2015-12-16

    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  6. Dissipation of the tilting degree of freedom in heavy-ion-induced fission from four-dimensional Langevin dynamics

    Science.gov (United States)

    Nadtochy, P. N.; Ryabov, E. G.; Cheredov, A. V.; Adeev, G. D.

    2016-10-01

    A stochastic approach based on four-dimensional Langevin fission dynamics is applied to the calculation of a wide set of experimental observables of excited compound nuclei from 199Pb to 248Cf formed in reactions induced by heavy ions. In the model under investigation, the tilting degree of freedom ( K coordinate) representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of {c,h,α} parametrization. The evolution of the K coordinate is described by means of the Langevin equation in the overdamped regime. The friction tensor for the shape collective coordinates is calculated under the assumption of the modified version of the one-body dissipation mechanism, where the reduction coefficient ks of the contribution from the "wall" formula is introduced. The calculations are performed both for the constant values of the coefficient ks and for the coordinate-dependent reduction coefficient ks(q) which is found on the basis of the "chaos-weighted wall formula". Different possibilities of the deformation-dependent dissipation coefficient (γK) for the K coordinate are investigated. The presented results demonstrate that an impact of the ks and γK parameters on the calculated observable fission characteristics can be selectively probed. It was found that it is possible to describe the experimental data consistently with the deformation-dependent γK(q) coefficient for shapes featuring a neck, which predicts quite small values of γK=0.0077 (MeV zs)-1/2 and constant γK=0.1-0.4 (MeV zs)-1/2 for compact shapes featuring no neck.

  7. Involvement of gap junctional intercellular communication in the bystander effect induced by broad-beam or microbeam heavy ions

    Science.gov (United States)

    Shao, Chunlin; Furusawa, Yoshiya; Kobayashi, Yasuhiko; Funayama, Tomoo

    2006-09-01

    Most of the reported bystander responses were studied by using low dose irradiation of γ-rays and light ions such as alpha-particles. In this study, primary human fibroblasts AG1522 in confluent cultures were irradiated with either broad-beam of 100 keV/μm 12C or microbeams of 380 keV/μm 20Ne and 1260 keV/μm 40Ar. When cells were irradiated with 12C ions, the induction of micronucleus (MN) had a low-dose sensitive effect, i.e. a lower dose of irradiation gave a higher yield of MN per cell-traversal. This phenomenon was further reinforced by using a microbeam to irradiate a fraction of cells within a population. Even when only a single cell was targeted with one particle of 40Ar or 20Ne, the MN yield was increased to 1.4-fold of the non-irradiated control. When the number of microbeam targeted cells increased, the MN yield per targeted-cell decreased drastically. In addition, the bystander MN induction did not vary significantly with the number and the linear energy transfer (LET) of microbeam particles. When the culture was treated with PMA, an inhibitor of gap junctional intercellular communication (GJIC), MN induction was decreased for both microbeam and broad-beam irradiations even at high-doses where all cells were hit. The present findings indicate that a GJIC-mediated signaling amplification mechanism was involved in the high-LET heavy ion irradiation induced bystander effect. Moreover, at high-doses of radiation, the bystander signals could perform a complex interaction with direct irradiation.

  8. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor

  9. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC(1638N/+) mice.

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC(1638N/+)) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC(1638N/+) mice after exposure to energetic heavy ions at high (50cGy/min) and relatively low (0.33cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50cGy of (28)Si (energy: 300MeV/n; LET: 70keV/μm) or (56)Fe (energy: 1000MeV/n; LET: 148keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n=20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150days after radiation exposure. Intestinal tumorigenesis in male mice exposed to (56)Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after (28)Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic

  10. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    Science.gov (United States)

    Raghavan, Lisha; Joy, P. A.; Vijaykumar, B. Varma; Ramanujan, R. V.; Anantharaman, M. R.

    2017-04-01

    Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  11. DNA-DSB in CHO-K1 cells induced by heavy-ions: Break rejoining and residual damage (GSI)

    Science.gov (United States)

    Taucher-Scholz, G.; Heilmann, J.; Becher, G.; Kraft, G.

    1994-01-01

    DNA double strand breaks (DSB's) are the critical lesions involved in cellular effects of ionizing radiation. Therefore, the evaluation of DSB induction in mammalian cells after heavy ion irradiation is an essential task for the assessment of high-LET radiation risk in space. Of particular interest has been the question of how the biological efficiency for the cellular inactivation endpoint relates to the initial lesions (DSBs) at varying LETs. For cell killing, an increased Relative Biological Efficiency (RBE) has been determined for highLET radiation around 100-200 keV/mu m. At higher LET, the RBE's decrease again to values below one for the very heavy particles. At GSI, DSB-induction was measured in CHO-K1 cells following irradiation with accelerated particles covering a wide LET range. The electrophoretic elution of fragmented DNA out of agarose plugs in a constant electrical field was applied for the detection of DSB's. The fraction of DNA retained was determined considering the relative intensities of ethidium bromide fluorescence in the well and in the gel lane. Dose-effect curves were established, from which the RBE for DSB induction was calculated at a fraction of 0.7 of DNA retained In summary, these rejoining studies are in line with an enhanced severity of the DNA DSB's at higher LET's, resulting in a decreased repairability of the induced lesions. However, no information concerning the fidelity of strand breaks rejoining is provided in these studies. To assess correct rejoining of DNA fragments an experimental system involving individual DNA hybridization bands has been set up. In preliminary experiments Sal I generated DNA fragments of 0.9 Mbp were irradiated with xrays and incubated for repair However, restitution of the original signals was not observed, probably due to the high radiation dose necessary for breakage of a fragment of this size. A banding pattern with NotI hybridization signals in a higher MW range (3Mbp) has been obtained by varying

  12. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  13. Electronic Desorption of gas from metals

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bender, M; Bieniosek, F M; Kramer, A; Kwan, J; Prost, L; Seidl, P A; Westenskow, G

    2006-11-02

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  14. Neutrons formed by heavy ions and activation induced in different materials; Neutrons crees par ions lourds et activation induite dans divers materiaux

    Energy Technology Data Exchange (ETDEWEB)

    Clapier, F.; Pauwels, N.; Proust, J.

    1995-12-31

    This work deals with the Spiral project and more particularly with the neutrons flux formed by heavy ions and the activation induced in different materials. Indeed, the beams power suggests the interest of different materials behaviour study for allowing a possible selection to optimize radioprotection. Moreover, it is important to establish the activation mechanisms in order to be able to extrapolate the measures realized at 400 W (actual GANIL) to those of the future running taking into account the radioisotopes real mixtures formed during the reaction and their daughter products. A best knowledge of energizing and angular neutrons distributions is searched too. (O.L.). 11 refs., 23 figs., 9 tabs.

  15. Heavy ion storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  16. Comparison of total dose effects on SiGe heterojunction bipolar transistors induced by different swift heavy ion irradiation

    Science.gov (United States)

    Sun, Ya-Bin; Fu, Jun; Xu, Jun; Wang, Yu-Dong; Zhou, Wei; Zhang, Wei; Cui, Jie; Li, Gao-Qing; Liu, Zhi-Hong

    2014-11-01

    The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV Cl, 20-MeV Br, and 10-MeV Br ion irradiation, respectively. Electrical parameters such as the base current (IB), current gain (β), neutral base recombination (NBR), and Early voltage (VA) were investigated and used to evaluate the tolerance to heavy ion irradiation. Experimental results demonstrate that device degradations are indeed radiation-source-dependent, and the larger the ion nuclear energy loss is, the more the displacement damages are, and thereby the more serious the performance degradation is. The maximum degradation was observed in the transistors irradiated by 10-MeV Br. For 20-MeV and 10-MeV Br ion irradiation, an unexpected degradation in IC was observed and Early voltage decreased with increasing ion fluence, and NBR appeared to slow down at high ion fluence. The degradations in SiGe HBTs were mainly attributed to the displacement damages created by heavy ion irradiation in the transistors. The underlying physical mechanisms are analyzed and investigated in detail.

  17. Process in high energy heavy ion acceleration

    Science.gov (United States)

    Dinev, D.

    2009-03-01

    A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter.

  18. Heavy ions at the Future Circular Collider

    CERN Document Server

    Dainese, A; Armesto, N; d'Enterria, D; Jowett, J M; Lansberg, J -P; Milhano, J G; Salgado, C A; Schaumann, M; van Leeuwen, M; Albacete, J L; Andronic, A; Antonioli, P; Apolinario, L; Bass, S; Beraudo, A; Bilandzic, A; Borsanyi, S; Braun-Munzinger, P; Chen, Z; Mendez, L Cunqueiro; Denicol, G S; Eskola, K J; Floerchinger, S; Fujii, H; Giubellino, P; Greiner, C; Grosse-Oetringhaus, J F; Ko, C -M; Kotko, P; Krajczar, K; Kutak, K; Laine, M; Liu, Y; Lombardo, M P; Luzum, M; Marquet, C; Masciocchi, S; Okorokov, V; Paquet, J -F; Paukkunen, H; Petreska, E; Pierog, T; Ploskon, M; Ratti, C; Rezaeian, A H; Riegler, W; Rojo, J; Roland, C; Rossi, A; Salam, G P; Sapeta, S; Schicker, R; Schmidt, C; Stachel, J; Uphoff, J; van Hameren, A; Watanabe, K; Xiao, B -W; Yuan, F; Zaslavsky, D; Zhou, K; Zhuang, P

    2016-01-01

    The Future Circular Collider (FCC) Study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode, seven times larger than the nominal LHC energies. Operating such machine with heavy ions is an option that is being considered in the accelerator design studies. It would provide, for example, Pb-Pb and p-Pb collisions at sqrt{s_NN} = 39 and 63 TeV, respectively, per nucleon-nucleon collision, with integrated luminosities above 30 nb^-1 per month for Pb-Pb. This is a report by the working group on heavy-ion physics of the FCC Study. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of the Quark-Gluon Plasma, of gluon saturation, of photon-induced collisions, as well as connections with other fields of high-energy physics.

  19. Experimental Verification of Heavy Ion Simulation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    1 IntroductionThe investigation of radiation damage induced by high dose neutrons and/or protons is a currently interesting topic in nuclear power, ADS etc., The lack of high dose neutron and proton sources hampers this investigation. The advent of heavy ion accelerators opens up a way to study radiation damage caused by high dose neutron and/or proton irradiation[1]. The displacement rate of heavy ions is much higher than that of neutrons and protons. Higher displacement rate leads to short irradiation time. An irradiation dose of -20 dpa takes about a year in a reactor, while only a few minutes or hours by

  20. European heavy ion ICF driver development

    CERN Document Server

    Plass, Günther

    1996-01-01

    Approaches in Europe to heavy ion induced Inertial Confinement Fusion are oriented toward the linac-plus- storage ring technique. Despite the very limited support of this work, technical pro gress was achieved in some important areas. For the immediate future, a substantial intensity upgrade of the GSI accelerator facilities at Darmstadt is being implemented, leading to specific energy depositions of the order of 100 kJ/g and plasma temperatures of 10 to 20 eV. For the longer term, a conceptual design study of a heavy ion based Ignition Facility is being initiated.

  1. Bucharest heavy ion accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Ceausescu, V.; Dobrescu, S.; Duma, M.; Indreas, G.; Ivascu, M.; Papureanu, S.; Pascovici, G.; Semenescu, G.

    1986-02-15

    The heavy ion accelerator facility of the Heavy Ion Physics Department at the Institute of Physics and Nuclear Engineering in Bucharest is described. The Tandem accelerator development and the operation of the first stage of the heavy ion postaccelerating system are discussed. Details are given concerning the resonance cavities, the pulsing system matching the dc beam to the RF cavities and the computer control system.

  2. Modifications of structural and physical properties induced by swift heavy ions in Gd2Ti2O7 and Y2Ti2O7 pyrochlores

    Science.gov (United States)

    Sellami, N.; Sattonnay, G.; Grygiel, C.; Monnet, I.; Debelle, A.; Legros, C.; Menut, D.; Miro, S.; Simon, P.; Bechade, J. L.; Thomé, L.

    2015-12-01

    The structural transformations induced by ionization processes in Gd2Ti2O7 and Y2Ti2O7 pyrochlores irradiated with swift heavy ions have been studied using XRD and Raman experiments. Results show that irradiation induces amorphization and that the phase transformation build-up can be accounted for in the framework of a model involving a single-impact mechanism. The radiation induced amorphization build-up is faster in Gd2Ti2O7 than in Y2Ti2O7. Moreover, a decrease of the thermal conductivity (measured by the laser flash method) is induced by irradiation both in Gd2Ti2O7 and Y2Ti2O7.

  3. Results (and future prospects) of the CMS experiment in photon-induced collisions in heavy-ion collisions

    CERN Document Server

    Kenny, Raymond Patrick

    2014-01-01

    Ultra-peripheral collisions (UPCs) of heavy ions involve long range electromagnetic interactions at impact parameters larger than twice the nuclear radius. At TeV energies, the strong electromagnetic field due to the coherent action of the Z=82 proton charges generates a large flux of photons, which can be used for high-energy photoproduction studies. Heavy vector mesons produced in electromagnetic interactions provide direct information on the parton distribution functions in the nucleus at very low values of Bjorken-x. These events are characterized by a very low hadron multiplicity. The wide pseudorapidity coverage of the CMS detectors is used to separate such events from very peripheral nuclear interactions. The CMS experiment has excellent capabilities for the measurement of the heavy vector mesons in the dimuon decay channel using the tracker and the muon chambers. This analysis demonstrates CMS's capabilities for measuring J/$\\psi$ and the two-photon process in ultra-peripheral collisions, using the 2...

  4. Swift heavy ion irradiation induced modification of structure and surface morphology of BiFeO3 thin film

    Indian Academy of Sciences (India)

    B N Dash; P Mallick; P Dash; R Biswal; Jai Prakash; A Tripathi; D Kanjilal; N C Mishra

    2013-10-01

    BiFeO3 (BFO) thin films of thickness about 800 nm deposited on Si (100) substrates by sol–gel spin coating method were irradiated by 200 MeV Ag ions. Modification of structure and surface morphology of the films under irradiation was studied using glancing incidence X-ray diffraction (GIXRD) and atomic force microscope (AFM). Fluence dependence of GIXRD peak intensity indicated formation of 10 nm diameter cylindrical amorphous columns in crystalline BFO due to 200 MeV Ag ion irradiation. AFM analysis indicated that the pristine film consists of agglomerated grains with diffuse grain boundary. Irradiation led to reduced agglomeration of the grains with the formation of sharper grain boundaries. The rms roughness (rms) estimated from AFM analysis increased from 6.2 in pristine film to 12.7 nm when the film irradiated at a fluence of 1 × 1011 ions cm-2. Further irradiation led to decrease of rms which finally saturated at a value of 7–8 nm at high ion fluences. The power spectral density analysis indicated that the evolution of surface morphology of the pristine film is governed by the combined effect of evaporation condensation and volume diffusion processes. Swift heavy ion irradiation seems to increase the dominance of volume diffusion in controlling surface morphology of the film at high ion fluences.

  5. Data consistencies of swift heavy ion induced damage creation in yttrium iron garnet analyzed by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Meftah, A., E-mail: ameftah@hotmail.fr [LRPCSI, Faculté des Sciences, Université 20 août 1955-Skikda, BP 26, Route d’El-Hadaïek, 21000 Skikda (Algeria); Benhacine, H. [LRPCSI, Faculté des Sciences, Université 20 août 1955-Skikda, BP 26, Route d’El-Hadaïek, 21000 Skikda (Algeria); Benyagoub, A. [CIMAP (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), BP 5133, 14070 Caen Cedex 5 (France); Grob, J.J. [InESS, CNRS, Université de Strasbourg, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Izerrouken, M. [CRND, BP 43, Sebbala, Draria, Algiers (Algeria); Kadid, S. [LRPCSI, Faculté des Sciences, Université 20 août 1955-Skikda, BP 26, Route d’El-Hadaïek, 21000 Skikda (Algeria); Khalfaoui, N. [CIMAP (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), BP 5133, 14070 Caen Cedex 5 (France); Stoquert, J.P. [InESS, CNRS, Université de Strasbourg, 23 rue du Loess, 67037 Strasbourg Cedex 2 (France); Toulemonde, M. [CIMAP (CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie), BP 5133, 14070 Caen Cedex 5 (France); Trautmann, C. [GSI, Helmholtz Zentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, Petersenstraße 23, 64287 Darmstadt (Germany)

    2016-01-01

    Pronounced swelling is observed when single crystals of yttrium iron garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) are irradiated in the electronic energy loss regime with various swift heavy ions. The out-of-plane swelling was measured by scanning across the border line between an irradiated and a virgin area of the sample surface with the tip of a profilometer. The step height varied between 20 and 600 nm depending on fluence, electronic energy loss and total range of the ions. The step height divided by the ion range as a function of the ion fluence exhibits a linear increase in the initial phase and saturates at high fluences leading to a density decrease of around 1.7%. With complementary channeling-Rutherford-backscattering experiments (c-RBS), the damage fraction and the corresponding damage cross section were extracted and compared to the cross section deduced from swelling measurements. Irradiation effects were also characterized by scanning force microscopy (SFM). A threshold for damage creation as deduced from all the present physical characterizations is 5.5 ± 1.0 keV/nm. The value is in full agreement with previous measurements confirming that swelling and SFM characterizations can provide information concerning the electronic energy loss threshold for track formation. In contrast, track radii deduced from swelling measurements are smaller and radii from SFM are larger than deduced from c-RBS analysis. The results of Y{sub 3}Fe{sub 5}O{sub 12} of this work are compared with data obtained for other crystalline oxides and for ionic crystals.

  6. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  7. 高能重离子在聚合物中的辐照效应研究%Radiation effects in polymers induced by high energy heavy ion beams

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhiyong; LIU Qi; SUN Youmei; JIN Yunfan

    2005-01-01

    Ion irradiation of polymers can induce irreversible changes in their macroscopic properties such as electrical and optical properties and the surface-related mechanical properties. Electronic excitation, ionization, chains scission, cross-links and mass losses are accepted as the fundamental events that give rise to the observed macroscopic changes. Detailed and systematic study of radiation induced effects in polymers enriches not only the knowledge of ion-material interactions but also supplies new bases for polymeric materials synthesis through ion-beam technologies. Previous work has concentrated mainly on effects induced by low-ionization particles such as γ-rays and electrons. Since 1980,s the application of high energy heavy ion accelerators enables the use of high energy heavy ion as an irradiation source, and many new and exciting effects and phenomena have been revealed.Energetic heavy ions in matter lose energy mainly through electronic excitation and ionization. Compared to low-ionization particles, high energy heavy ion possesses higher LET(linear energy transfer) values which can reach several to several tens keV/nm. As most of the primary ionizations and excitations occur close to the ion trajectory in a core of a few nanometers in diameter, a continuous damaged zone along the ion path can be induced,in which all bonds inside the zone can be destroyed due to the high rate energy deposition. Studies on this particularity of high energy heavy ion irradiation and its effects in materials will cause great influence on industry as well as on our daily life.The previous work has revealed the great difference in the effects induced by high energy heavy ions compared to the other particles. It has been shown that under irradiation with lower LET particles gas release depends on molecular structure and material composition, whereas under irradiation with high LET particles, such as high energy heavy ions, it is not the case. Some materials that undergo

  8. Kinetic study of the effects of energetic fluence, the fluence flow, and the induced fading by heavy ions and. gamma. photons in cellulose triacetate

    Energy Technology Data Exchange (ETDEWEB)

    Moliton, J.P. (Laboratoire des Radiations Ionisantes, Limoges, France); Boutinaud, C.; Vareille, J.C.; Decossas, J.L.; Teyssier, J.L.; Delaunay, B.

    1982-07-01

    The kinetic interpretation of the damage produced by heavy ions (/sup 84/Kr and /sup 35/Cl from 1 MeV/amu) and ..gamma.. radiation in cellulose triacetate leads to an exponential dependence on the ion fluence. A comparison of the fading effect produced by heavy ions and ..gamma.. rays shows that the heavy ions, unlike ..gamma.. rays, cause irreversible damage. Finally, a nonlinear dependence on the flux of ions and ..gamma.. rays is found in the kinetics of radiation damage. This result is contrary to the usual assumption that heavy-ion flux, like ..gamma..-ray flux, is additive, at least for the fluxes of 10/sup 9/ to 2 x 10/sup 10/ ions/cm/sup 2/ s and dose rates of 10/sup 3/ to 10/sup 4/ Gy/h used in this work.

  9. Comparison of Single-Event Transients Induced in an Operational Amplifier (LM124) by Pulsed Laser Light and a Broad Beam of Heavy Ions

    Science.gov (United States)

    Buchner, Steve; McMorrow, Dale; Poivey, Christian; Howard, James, Jr.; Pease, Rom; Savage, Mark; Boulghassoul, Younis; Massengill, Lloyd

    2003-01-01

    A comparison of transients from heavy-ion and pulsed-laser testing shows good agreement for many different voltage configurations. The agreement is illustrated by comparing directly individual transients and plots of transient amplitude versus width.

  10. Heavy-ion nucleus scattering

    CERN Document Server

    Rahman, M A; Haque, S

    2003-01-01

    Heavy ion-nucleus scattering is an excellent laboratory to probe high spin phenomena, exotic nuclei and for the analysis of various exit channels. The Strong Absorption Model or the generalized diffraction models, which are semi-classical in nature, have been employed in the description of various heavy ion-nucleus scattering phenomena with reasonable success. But one needs to treat the deflection function (scattering angles) quantum mechanically in the Wave Mechanical picture for the appropriate description of the heavy-ion nucleus scattering phenomena. We have brought the mathematics for the cross-section of the heavy-ion nucleus scattering to an analytic expression taking account of the deflection function (scattering angles) quantum mechanically. sup 9 Be, sup 1 sup 6 O, sup 2 sup 0 Ne and sup 3 sup 2 S heavy-ion beams elastic scattering from sup 2 sup 8 Si, sup 2 sup 4 Mg and sup 4 sup 0 Ca target nuclei at various projectile energies over the range 20-151 MeV have been analysed in terms of the 2-paramet...

  11. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient

    Science.gov (United States)

    Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783

  12. Results of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues. Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.

  13. Irradiation effects in 6H-SiC induced by neutron and heavy ions: Raman spectroscopy and high-resolution XRD analysis

    Science.gov (United States)

    Chen, Xiaofei; Zhou, Wei; Feng, Qijie; Zheng, Jian; Liu, Xiankun; Tang, Bin; Li, Jiangbo; Xue, Jianming; Peng, Shuming

    2016-09-01

    Irradiation effects of neutron and 3 MeV C+, Si+ in 6H-SiC were investigated by Raman spectroscopy and high-resolution XRD. The total disorder values of neutron irradiated SiC agree well with that of samples irradiated by ions at the same doses respectively. On the other hand, high-resolution XRD results shows that the lattice strain rate caused by neutron irradiation is 6.8%/dpa, while it is only 2.6%/dpa and 4.2%/dpa for Si+ and C+ irradiations respectively. Our results illustrate that the total disorder in neutron irradiated SiC can be accurately simulated by MeV Si+ or C+ irradiations at the same dose, but for the lattice strain and strain-related properties like surface hardness, the depth profile of irradiation damages induced by energetic ions must be considered. This research will contribute to a better understanding of the difference in irradiation effects between neutron and heavy ions.

  14. Radio-resistance induced by nitric oxide to heavy ion irradiation in A172 human glioma cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qingming; ZHANG Hong; ZHANG Xingxia

    2007-01-01

    To investigate effects of nitric oxide on cellular radio-sensitivity, three human glioma cell lines, i.e. A172,A172 transfected green fluorescence protein (EGFP) gene (EA172) and A172 transfected inducible nitric oxide synthesis (iNOS) gene (iA172), were irradiated by 12C6+ ions to 0, 1 or 2Gy. Productions of nitric oxide and glutathione (GSH) in A172, EA172 and iA172 were determined by chemical methods, cell cycle was analyzed by flow cytometry at the 24th hour after irradiation, and survival fraction of the cells was measured by colorimetric MTT assay at the 5th day after irradiation. The results showed that the concentrations of nitric oxide and GSH in iA172 were significantly higher than in A172 and EA172; the G2/M stage arrest induced by the 12C6+ ion irradiation was observed in A172 and EA172 but not in iA172 at the 24th hour after exposure; and the survival fraction of iA172 was higher than that of EA172 and iA172. Data suggest that the radio-sensitivity of the A172 was reduced after the iNOS gene transfection.The increase of GSH production and the change of cellular signals such as the cell cycle control induced by nitric oxide may be involved in this radio-resistance.

  15. Radiation induced muscositis as space flight risk. Model studies on X-ray and heavy ion irradiated typical oral mucosa models; Strahlungsinduzierte Mukositis als Risiko der Raumfahrt. Modelluntersuchungen an Roentgen- und Schwerionen-bestrahlten organotypischen Mundschleimhaut-Modellen

    Energy Technology Data Exchange (ETDEWEB)

    Tschachojan, Viktoria

    2014-07-29

    Humans in exomagnetospheric space are exposed to highly energetic heavy ion radiation which can be hardly shielded. Since radiation-induced mucositis constitutes a severe complication of heavy ion radiotherapy, it would also implicate a serious medical safety risk for the crew members during prolonged space flights such as missions to Moon or Mars. For assessment of risk developing radiation-induced mucositis, three-dimensional organotypic cultures of immortalized human keratinocytes and fibroblasts were irradiated with a {sup 12}C particle beam at high energies or X-Rays. Immunofluorescence stainings were done from cryosections and radiation induced release of cytokines and chemokines was quantified by ELISA from culture supernatants. The major focuses of this study were on 4, 8, 24 and 48 hours after irradiation. The conducted analyses of our mucosa model showed many structural similarities with the native oral mucosa and authentic immunological responses to radiation exposure. Quantification of the DNA damage in irradiated mucosa models revealed about twice as many DSB after heavy-ion irradiation compared to X-rays at definite doses and time points, suggesting a higher gene toxicity of heavy ions. Nuclear factor κB activation was observed after treatment with X-rays or {sup 12}C particles. An activation of NF κB p65 in irradiated samples could not be detected. ELISA analyses showed significantly higher interleukin 6 and interleukin 8 levels after irradiation with X-rays and {sup 12}C particles compared to non-irradiated controls. However, only X-rays induced significantly higher levels of interleukin 1β. Analyses of TNF-α and IFN-γ showed no radiation-induced effects. Further analyses revealed a radiation-induced reduction in proliferation and loss of compactness in irradiated oral mucosa model, which would lead to local lesions in vivo. In this study we revealed that several pro-inflammatory markers and structural changes are induced by X-rays and heavy-ion

  16. High-dose neutron induced radiation swelling simulated by heavy ion irradiation and its microscopic study with positron annihilation technique

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    70 MeV-carbon-ion irradiation is used to simulate the radiation swelling induced by neutron irradiation of 3.2×1022 n·cm-2 in domestically-made 316 austenitic stainless steels modified by a 20%-cold-working and Ti-adding from room temperature to 802°C. The created swelling is microscopically examined by the positron annihilation lifetime technique. A radiation swelling peak is observed at 580°C and the corresponding void has an average diameter of 0.7nm which is hardly probed by macroscopic methods.

  17. Heavy ions: Report from Relativistic Heavy Ion Collider

    Indian Academy of Sciences (India)

    Sonia Kabana

    2012-10-01

    We review selected highlights from the experiments at the Relativistic Heavy Ion Collider (RHIC) exploring the QCD phase diagram. A wealth of new results appeared recently from RHIC due to major recent upgrades, like for example the $\\Upsilon$ suppression in central nucleus-nucleus collisions which has been discovered recently in both RHIC and LHC. Furthermore, we discuss RHIC results from the beam energy scan (BES) program aiming to search for a possible critical point and to map out the QCD phase diagram.

  18. Recent progress in heavy ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.J.

    1977-03-01

    A summary is given of the progress during the last several years in the technology of sources of high charge state positive heavy ions and negative heavy ions. Subjects covered include recent results in ECR and EBIS source development and comparison of various source types for high charge state heavy ions.

  19. SHIPS: A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    CERN Document Server

    Meinerzhagen, Florian; Bukowska, Hanna; Bender, Markus; Severin, Daniel; Herder, Matthias; Lebius, Henning; Schleberger, Marika; Wucher, Andreas

    2015-01-01

    The irradiation with fast ions with kinetic energies of > 10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in-situ analysis of differ...

  20. Study of the Particle Production in $^{12}$C Induced Heavy Ion Reactions at 86 MeV/N

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to study various characteristics of light and heavy particle production in |1|2C induced reactions if possible over the whole unexplored energy region 50-86~MeV/N. In particular we want to investigate how the correlations in the multiparticle events can help us to distinguish bet existing models. \\\\ \\\\ Two-proton large-angle correlations and correlations between two heavier (Z~=~1 or 2) particles are studied with scintillator +~NaI and range telescopes, complemented with a 24 telescope scintillator wall for projectile fragments. Thereby we receive information about the reaction plane and the impact parameter in coincidence with the two-particle correlation spectra. Small @Dp correlations can also be studied. The inclusive @p|+ and @p|- production has been followed far below the nucleon-nucleon threshold. Pions are thereby identified from @DE-E correlations and the @p|+ decay in plastic range telescopes. These results are now followed up by @p-projectile fragment and @p-p correlat...

  1. Radiation damage induced by swift heavy ions in TiO{sub 2} sol–gel films nanocrystallines

    Energy Technology Data Exchange (ETDEWEB)

    Hazem, R. [USTHB, Faculté de Physique, BP. 32 El-Alia, Bab-Ezzouar, Algiers (Algeria); Izerrouken, M., E-mail: izerrouken@yahoo.com [Centre de Recherche Nucléaire de Draria, BP. 43, Sebbala, Draria, Algiers (Algeria); Sari, A. [Centre de Recherche Nucléaire de Birine, BP. 108, Ain-Oussara, Djelfa (Algeria); Kermadi, S. [UDTS, 2 Bd Frantz Fanon, BP. 399, Alger gare, Algiers (Algeria); Msimanga, M. [NRF iThemba LABS, Gauteng Private Bag, 11 WITS 2050, Johannesburg (South Africa); Benyagoub, A. [CIMAP, (ex-CIRIL-GANIL), CEA-CNRS-ENSICAEN-Université de Caen Basse Normandie, Bd Henri Becquerel, BP. 5133, F-14070 Caen cedex 5 (France); Maaza, M. [iThemba LABS, P.O. Box 722, Somerset West 7129, Cap Town (South Africa); Belgaid, M. [USTHB, Faculté de Physique, BP. 32 El-Alia, Bab-Ezzouar, Algiers (Algeria); Boumaour, M. [UDTS, 2 Bd Frantz Fanon, BP. 399, Alger gare, Algiers (Algeria)

    2013-06-01

    TiO{sub 2} films prepared by sol–gel were irradiated with 25.8 MeV Cu and 90 MeV Xe ions at room temperature under normal incidence. The irradiation with Cu and Xe ions were performed respectively at iThemba labs, South Africa and GANIL, Caen, France. The properties of radiation defects induced in TiO{sub 2} nanostructures were investigated using grazing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM) and UV–visible spectrophotometry. From GAXRD analysis, it is found that anatase (1 0 1) peak intensity decrease with increasing the fluence and disappear completely above a threshold ion fluence of 5 × 10{sup 12} ion/cm{sup 2}. This indicates that the crystallinity of the TiO{sub 2} film is destroyed upon irradiation due to the amorphous track formation. The track radius estimated from the Poisson’s law is about 2 and 4 nm after irradiation with 25.8 MeV Cu and 90 MeV Xe ions, respectively. According to the AFM analysis, the elaborated TiO{sub 2} films are composed of particles with a triangular shape of a size in the range of 200–500 nm. It is found that the particle size increases after irradiation with both Cu and Xe ions. In addition, the root-mean-square (RMS) surface roughness for 780 nm × 780 nm area scans decreases exponentially with increasing fluence up to 10{sup 13} ions/cm{sup 2} in the case of Xe irradiation, but increases drastically above 2.68 × 10{sup 11} ions/cm{sup 2} in the case of Cu ion irradiation and reaches a mean value of ∼3 nm. The absorption measurements reveal that the optical band gap is not affected by both Xe and Cu ions irradiation.

  2. Swift Heavy Ion Induced Defect Study in Epitaxial n-Type CaAs from {In} {Situ} Hall Effect Measurements

    Science.gov (United States)

    Mikou, M.; Carin, R.; Bogdanski, P.; Marie, P.

    1997-08-01

    N-type (Si-doped, N_D ≈ 10^{17} cm^{-3}) GaAs epitaxial layers (MOCVD) are irradiated at 77 K with oxygen (0.163 GeV), krypton (5.15 GeV), xenon (5.73 GeV) and at 300 K with krypton (5.15 GeV). Hall effect measurements are performed, in situ, with increasing fluence. A decrease of the electron concentration and a degradation of the Hall mobility, respectively due to trapping and to scattering on irradiation-induced point defects are pointed out. In the heavily doped layers, shallow donor impurities merge with the conduction band in distorted band tail. A simple two band conduction model is used as a simulation tool, which allows the carrier Hall concentration variation to be correctly fitted, as a function of both temperature and ion fluence. The Hall mobility versus fluence variation at 77 K, which is mainly limited by screened ionized impurities and defects, is also simulated. From these simulations, the arsenic vacancy levels E_1 and E_2 are most likely to correspond respectively to single acceptor (-/0) and single donor (0/+) transitions. The introduction rates of induced defects (in particular V_As) are estimated: the total experimental introduction rate appears to be about 50% of the theoretical atomic displacement rate associated with nuclear collisions, independently of ion nature and of temperature. Although electronic stopping power S_e is about 2000 times larger than nuclear stopping power S_n, it is then suggested that irradiation-induced electronic excitation, in the investigated range S_e = 1 12 MeV/μm, has no effect on the degradation of n-type GaAs epitaxial layers. Des couches épitaxiées de GaAs de type n (dopage au silicium, N_D ≈ 10^{17} cm^{-3}) sont irradiées à 77 K avec des ions oxygène (0,163 GeV), krypton (5,15 GeV), xénon (5,73 GeV) et à 300 K avec des ions krypton (5,15 GeV). Les mesures d'effet Hall sont effectuées in situ, au fur et à mesure de l'accroissement de fluence. On observe une diminution de la concentration

  3. RHIC heavy ion operations performance

    CERN Document Server

    Satogata, T; Ferrone, R; Pilat, F

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) completed its fifth year of operation in 2005, colliding copper ion beams with ps=200 GeV/u and 62.4 GeV/u[1]. Previous heavy ion runs have collided gold ions at ps=130 GeV/u, 200 GeV/u, and 62.4 GeV/u[2], and deuterons and gold ions at ps=200 GeV/u[3]. This paper discusses operational performance statistics of this facility, including Cu- Cu delivered luminosity, availability, calendar time spent in physics stores, and time between physics stores. We summarize the major factors affecting operations efficiency, and characterize machine activities between physics stores.

  4. Semiholography for heavy ion collisions

    Science.gov (United States)

    Mukhopadhyay, Ayan; Preis, Florian

    2017-03-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  5. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2016-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  6. Relativistic heavy-ion collisions

    CERN Document Server

    Bhalerao, Rajeev S

    2014-01-01

    The field of relativistic heavy-ion collisions is introduced to the high-energy physics students with no prior knowledge in this area. The emphasis is on the two most important observables, namely the azimuthal collective flow and jet quenching, and on the role fluid dynamics plays in the interpretation of the data. Other important observables described briefly are constituent quark number scaling, ratios of particle abundances, strangeness enhancement, and sequential melting of heavy quarkonia. Comparison is made of some of the basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial findings at LHC which seem to be in apparent conflict with the accumulated RHIC data are highlighted.

  7. Heavy Ion Physics in CMS

    CERN Document Server

    Baur, G; Chatrchyan, Serguei; Contardo, Didier; Damgov, Jordan; De Min, Alberto; Denegri, Daniel; Drapier, Olivier; Geist, Walter; Genchev, Vladimir; Haroutunian, Roger; Hayrapetyan, M G; Hencken, K; Jenkovszky, L L; Kartvelishvili, Vakhtang; Kharlov, Yuri; Kodolova, Olga; Kotlinski, Danek; Kruglov, Nikolai A; Kva, R

    2000-01-01

    This note summarizes the CMS potential for Heavy Ions Collisions studies. The main physics topic is the study of Y to muon pair decays in view of Y family supression studies, with a detailed discussion of muon reconstruction efficiencies and purities in conditions of central Pb-Pb collisions. We also discuss energy flow and impact parameter measurements, the observability of continuum muon pairs and of Z to mu + mu decays, and of jets and hard direct photons as a means to study jet quenching. We also discuss pA interactions as well as gamma-gamma physics. The instrumental specificities of CMS for heavy ion running are discussed, including trigger and data acquisition aspects.

  8. Timescales in heavy ion collisions

    CERN Document Server

    Lisa, Mike

    2016-01-01

    The study of high energy collisions between heavy nuclei is a field unto itself, distinct from nuclear and particle physics. A defining aspect of heavy ion physics is the importance of a bulk, self-interacting system with a rich space-time substructure. I focus on the issue of timescales in heavy ion collisions, starting with proof from low-energy collisions that femtoscopy can, indeed, measure very long timescales. I then discuss the relativistic case, where detailed measurements over three orders of magnitude in energy reveal a timescale increase that might be due to a first-order phase transition. I discuss also consistency in evolution timescales as determined from traditional longitudinal sizes and a novel analysis using shape information.

  9. Central collisions of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Fung, Sun-yiu.

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

  10. Heavy ion therapy: Bevalac epoch

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  11. Progress Toward Heavy Ion IFE

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R; Logan, B G; Waldron, W L; Sabbi, G L; Callahan-Miller, D A; Peterson, P F; Goodin, D T

    2002-01-17

    Successful development of Heavy Ion Fusion (HIF) will require scientific and technology advances in areas of targets, drivers and chambers. Design work on heavy ion targets indicates that high gain (60-130) may be possible with a -3-6 MJ driver depending on the ability to focus the beams to small spot sizes. Significant improvements have been made on key components of heavy ion drivers, including sources, injectors, insulators and ferromagnetic materials for long-pulse induction accelerator cells, solid-state pulsers, and superconducting quadrupole magnets. The leading chamber concept for HIF is the thick-liquid-wall HYLEE-II design, which uses an array of flibe jets to protect chamber structures from x-ray, debris, and neutron damage. Significant progress has been made in demonstrating the ability to create and control the types of flow needed to form the protective liquid blanket. Progress has also been made on neutron shielding for the final focus magnet arrays with predicted lifetimes now exceeding the life of the power plant. Safety analyses have been completed for the HYLEE-II design using state-of-the-art codes. Work also continues on target fabrication and injection for HE. A target injector experiment capable of > 5 Hz operation has been designed and construction will start in 2002. Methods for mass production of hohlraum targets are being evaluated with small-scale experiments and analyses. Progress in these areas will be reviewed.

  12. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Karakurt, G., E-mail: karakurt_gokhan@yahoo.fr [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Abdelouas, A. [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Guin, J.-P.; Nivard, M. [Institut de Physique de Rennes, Université de Rennes 1 – UMR 62051 IPR, 263 avenue du Général Leclerc, 35042 Rennes (France); Sauvage, T. [Laboratoire CEMHTI (Conditions Extrêmes et Matériaux: Haute Température et Irradiation), CNRS UPR, 3079 Orléans (France); Paris, M. [Institut des Matériaux Jean ROUXEL, Université de Nantes, UMR 6502 CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03 (France); Bardeau, J.-F. [Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, avenue Olivier Messiaen, 72085 Le Mans (France)

    2016-07-15

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He{sup +} ions and 7 MeV Au{sup 5+} ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to −0.7% and −2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about −22% to −38% of the hardness and a decrease of the reduced Young's modulus by −8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also {sup 11}B and {sup 27}Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO{sub 4} to BO{sub 3} units but also a formation of AlO{sub 5} and AlO{sub 6} species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed. - Highlights: • Mechanical and structural properties of two borosilicate glass compositions irradiated with alpha particles and heavy ions were investigated. • Both kinds of particles induced a decrease of the hardness, reduced Young's modulus and density. • Electronic and nuclear interactions are responsible for the changes observed. • The evolution of the mechanical properties under irradiation is linked

  13. A comparison of heavy ion induced single event upset susceptibility in unhardened 6T/SRAM and hardened ADE/SRAM

    Science.gov (United States)

    Wang, Bin; Zeng, Chuanbin; Geng, Chao; Liu, Tianqi; Khan, Maaz; Yan, Weiwei; Hou, Mingdong; Ye, Bing; Sun, Youmei; Yin, Yanan; Luo, Jie; Ji, Qinggang; Zhao, Fazhan; Liu, Jie

    2017-09-01

    Single event upset (SEU) susceptibility of unhardened 6T/SRAM and hardened active delay element (ADE)/SRAM, fabricated with 0.35 μm silicon-on-insulator (SOI) CMOS technology, was investigated at heavy ion accelerator. The mechanisms were revealed by the laser irradiation and resistor-capacitor hardened techniques. Compared with conventional 6T/SRAM, the hardened ADE/SRAM exhibited higher tolerance to heavy ion irradiation, with an increase of about 80% in the LET threshold and a decrease of ∼64% in the limiting upset cross-section. Moreover, different probabilities between 0 → 1 and 1 → 0 transitions were observed, which were attributed to the specific architecture of ADE/SRAM memory cell. Consequently, the radiation-hardened technology can be an attractive alternative to the SEU tolerance of the device-level.

  14. Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Pang, Long-Gang; Endrődi, Gergely; Petersen, Hannah

    2016-04-01

    In off-central heavy-ion collisions, quark-gluon plasma (QGP) is exposed to the strongest magnetic fields ever created in the universe. Because of the paramagnetic nature of the QGP at high temperatures, the spatially inhomogeneous magnetic field configuration exerts an anisotropic force density that competes with the pressure gradients resulting from purely geometric effects. In this paper, we simulate (3+1)-dimensional ideal hydrodynamics with external magnetic fields to estimate the effect of this force density on the anisotropic expansion of the QGP in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider (LHC). While negligible for quickly decaying magnetic fields, we find that long-lived fields generate a substantial force density that suppresses the momentum anisotropy of the plasma by up to 20 % at the LHC energy and also leaves its imprint on the elliptic flow v2 of charged pions.

  15. Heavy ion tracks in polycarbonate. Comparison with a heavy ion irradiated model compound (diphenyl carbonate)

    Science.gov (United States)

    Ferain, E.; Legras, R.

    1993-09-01

    The chemical modifications induced by energetic heavy ion irradiation of polycarbonate (PC) film are determined by GPC, HPLC, ESR, TGA, IR and UV spectrophotometry. The main results of the irradiation are creation of radicals, chain scission, cross-linking and appearance of new chemical groups in the main polymer chain. As far as the creation of new groups is concerned, they are determined by means of a model compound of PC: the diphenyl carbonate (DPC). The following compounds are identified after energetic heavy ion irradiation of DPC: salicylic acid, phenol, 4,4'-biphenol, 2,4'-biphenol, 2,2'-biphenol, 4-phenoxyphenol, 2-phenoxyphenol, phenyl ether, phenyl benzoate, phenyl salicylate, 2-phenylphenol and 2-phenoxyphenyl benzoate. A similarity between the heavy ion irradiation and a heat treatment has also been established with DPC. On the basis of these results, we try to give an explanation of the preferential attack along the tracks of the irradiated film. Also, an explanation of the well-known beneficial effect of an UV exposition of the irradiated film on the selectivity of this preferential chemical attack is suggested.

  16. Jet Structure in Heavy Ion Collisions

    CERN Document Server

    Blaizot, Jean-Paul

    2015-01-01

    We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter $\\hat q $. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.

  17. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    Science.gov (United States)

    Wang, Shu-Yang; Jiang, Bo-Ling; Zhou, Xiang; Chen, Ji-Hong; Li, Wen-Jian; Liu, Jing; Hu, Wei; Xiao, Guo-Qing; Dong, Miao-Yin; Wang, Yu-Chen

    2015-01-01

    The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger) or mutagenesis via mixed Trichoderma viride (T. viride) culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei) and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH) activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL) and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA), endoglucanase (EG) and β-glucosidase (BGL) activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  18. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei.

    Directory of Open Access Journals (Sweden)

    Shu-Yang Wang

    Full Text Available The aim of this study was to evaluate and validate the efficiency of 12C6+ irradiation of Aspergillus niger (A. niger or mutagenesis via mixed Trichoderma viride (T. viride culturing as well as a liquid cultivation method for cellulase production via mixed Trichoderma reesei (T. reesei and A. niger culture fermentation. The first mutagenesis approach was employed to optimize yield from a cellulase-producing strain via heavy-ion mutagenesis and high-throughput screening, and the second was to effectively achieve enzymatic hydrolysis of cellulase from a mixed culture of mutant T. viride and A. niger. We found that 12C6+-ion irradiation induced changes in cellulase biosynthesis in A. niger but had no effect on the time course of the synthesis. It is notable that the exoglucanases (CBH activities of A. niger strains H11-1 and H differed (6.71 U/mL vs. 6.01 U/mL and were significantly higher than that of A. niger mutant H3-1. Compared with strain H, the filter paper assay (FPA, endoglucanase (EG and β-glucosidase (BGL activities of mutant strain H11-1 were increased by 250.26%, 30.26% and 34.91%, respectively. A mixed culture system was successfully optimized, and the best ratio of T. reesei to A. niger was 5:1 for 96 h with simultaneous inoculation. The BGL activity of the mixed culture increased after 72 h. At 96 h, the FPA and BGL activities of the mixed culture were 689.00 and 797.15 U/mL, respectively, significantly higher than those of monocultures, which were 408.70 and 646.98 U/mL for T. reesei and 447.29 and 658.89 U/mL for A. niger, respectively. The EG activity of the mixed culture was 2342.81 U/mL, a value that was significantly higher than that of monocultures at 2206.57 U/mL for T. reesei and 1727.62 U/mL for A. niger. In summary, cellulose production and hydrolysis yields were significantly enhanced by the proposed combination scheme.

  19. The Toledo heavy ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Haar, R.R. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Beideck, D.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Curtis, L.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Kvale, T.J. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Sen, A. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Schectman, R.M. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States)); Stevens, H.W. (Dept. of Physics and Astronomy, Univ. of Toledo, OH (United States))

    1993-06-01

    The recently installed 330 kV electrostatic positive ion accelerator at the University of Toledo is described. Experiments have been performed using ions ranging from H[sup +] to Hg[sup 2+] and exotic molecules such as HeH[sup +]. Most of these experiments involve the beam-foil studies of the lifetimes of excited atomic states and the apparatus used for these experiments is also described. Another beamline is available for ion-implantation. The Toledo heavy ion accelerator facility welcomes outside users. (orig.)

  20. The ANSTO high energy heavy ion microprobe

    Science.gov (United States)

    Siegele, Rainer; Cohen, David D.; Dytlewski, Nick

    1999-10-01

    Recently the construction of the ANSTO High Energy Heavy Ion Microprobe (HIMP) at the 10 MV ANTARES tandem accelerator has been completed. The high energy heavy ion microprobe focuses not only light ions at energies of 2-3 MeV, but is also capable of focusing heavy ions at high energies with ME/ q2 values up to 150 MeV amu and greater. First performance tests and results are reported here.

  1. The Relativistic Heavy Ion Collider

    Science.gov (United States)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  2. Heavy Ion Physics at CMS

    CERN Document Server

    Veres, Gabor

    2017-01-01

    In the present proceedings recent heavy ion results from the Compact Muon Solenoid collaboration at the LHC are presented. These contain comparisons between small and large collision systems, as well as studies of energy evolution, thus include data collected in proton-proton collisions at 13 TeV (2015 and 2016), proton-proton and lead-lead collisions at 5 TeV (2015), and proton-lead collisions at 5 TeV and 8 TeV (2016) center-of-mass energy per nucleon pair. They provide new insights into the properties of the extremely high density and high temperature matter created in heavy ion collisions, while pointing out similarities and differences in comparison to smaller collision systems. These include gluon distribution functions in the lead nucleus; the azimuthal anisotropy of final state particle distributions in all the three different collision systems; charge separation signals from proton-lead collisions and consequences for the Chiral Magnetic Effect; new studies of parton energy loss and its dependence on...

  3. Heavy ion physics at the LHC

    CERN Document Server

    Schükraft, Jürgen

    2002-01-01

    The field of ultra-relativistic heavy ion physics, which started some 15 years ago at the Brookhaven AGS and the CERN SPS with fixed target experiments, is entering today a new era with the recent start-up of the Relativistic Heavy Ion Collider RHIC and preparations well under way for a new large heavy ion experiment at the Large Hadron Collider (LHC). At this crossroads, the article will give a summary of the experimental program and our current view of heavy ion physics at the LHC, concentrating in particular on physics topics that are different or unique compared to current facilities.

  4. QCD in heavy ion collisions

    CERN Document Server

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  5. On-line Mass Spectrometric Study of Heavy-Ion Induced Reactions at Energies up to 86 MeV/amu

    CERN Multimedia

    2002-01-01

    The aim of the experiment was to measure isotopic distributions of Li, Na, K, Rb, Cs and Fr as reaction fragments in heavy ion collisions. In order to get an overall view of the new energy range for heavy ions available from the SC, different energies and projectile-target combinations had to be studied. The data taking status is now finished. |1|2C and |1|8O beams were used in bombarding |1|2C, |9|3Nb, |1|8|1Ta and |2|3|8U in order to look at target fragmentation, projectile fragmentation and evaporative residues of spallation processes. The experimental apparatus is composed of three parts: \\item a)~A target-oven-ionizer assembly where selective thermal diffusion and selective surface ionization takes place in order to obtain a chemical separation of the reaction products. \\item b)~The mass spectrometer where the different-mass fragments are selected. \\item c)~An electrostatic ion beam line through which the fragments are transported to a low-background area where the detector (an electron multiplier) is lo...

  6. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    Science.gov (United States)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  7. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  8. Mutagenic effects of heavy ions in bacteria

    Science.gov (United States)

    Horneck, G.; Krasavin, E. A.; Kozubek, S.

    1994-10-01

    Various mutagenic effects by heavy ions were studied in bacteria, irradiated at accelerators in Dubna, Prague, Berkeley or Darmstadt. Endpoints investigated are histidine reversion (B. subtilis, S. typhimurium), azide resistance (B. subtilis), mutation in the lactose operon (E. coli), SOS chromotest (E. coli) and λ-prophage induction (E. coli). It was found that the cross sections of the different endpoints show a similar dependence on energy. For light ions (Z = 26) it increases with energy up to a maximum or saturation. The increment becomes steeper with increasing Z. This dependence on energy suggests a ``mutagenic belt'' inside the track that is restricted to an area where the density of departed energy is low enough not to kill the cell, but high enough to induce mutations.

  9. Heavy ion irradiation of crystalline water ice

    CERN Document Server

    Dartois, E; Boduch, P; Brunetto, R; Chabot, M; Domaracka, A; Ding, J J; Kamalou, O; Lv, X Y; Rothard, H; da Silveira, E F; Thomas, J C

    2015-01-01

    Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic ...

  10. Prompt processes in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.; Remington, B.A.

    1987-12-01

    We test a relaxation model based on two body nucleon-nucleon scattering processes to interpret phenomena observed in heavy ion reactions. We use the Boltzmann Master Equation to accomplish this. By assuming that the projectile nucleons partition the total excitation with equal a-priori probability of all configurations, we are able to reproduce several sets of neutron spectra from /sup 20/Ne and /sup 12/C induced reactions on /sup 165/Ho and from reactions of /sup 40/Ar or /sup 40/Ca. We point out ambiguities in deducing angle-integrated energy spectra from double differential spectra. With no additional free parameters, our model successfully reproduces a large body of high energy ..gamma..-ray spectra by assuming an incoherent n-p-bremsstrahlung mechanism. 45 refs., 13 figs.

  11. Relativistic heavy-ion physics: Experimental overview

    Indian Academy of Sciences (India)

    Itzhak Tserruya

    2003-04-01

    The field of relativistic heavy-ion physics is reviewed with emphasis on new results and highlights from the first run of the relativistic heavy-ion collider at BNL and the 15 year research programme at the super proton synchrotron (SPS) at CERN and the AGS at BNL.

  12. Probing QED Vacuum with Heavy Ions

    CERN Document Server

    Rafelski, Johann; Müller, Berndt; Reinhardt, Joachim; Greiner, Walter

    2016-01-01

    We recall how nearly half a century ago the proposal was made to explore the structure of the quantum vacuum using slow heavy-ion collisions. Pursuing this topic we review the foundational concept of spontaneous vacuum decay accompanied by observable positron emission in heavy-ion collisions and describe the related theoretical developments in strong fields QED.

  13. Beam losses in heavy ion drivers

    CERN Document Server

    Mustafin, E R; Hofmann, I; Spiller, P J

    2002-01-01

    While beam loss issues have hardly been considered in detail for heavy ion fusion scenarios, recent heavy ion machine developments in different labs (European Organization for Nuclear Research (CERN), Gesellschaft fur Schwerionenforschung (GSI), Institute for Theoretical and Experimental Physics (ITEP), Relativistic Heavy-Ion Collider (RHIC)) have shown the great importance of beam current limitations due to ion losses. Two aspects of beam losses in heavy ion accelerators are theoretically considered: (1) secondary neutron production due to lost ions, and (2) vacuum pressure instability due to charge exchange losses. Calculations are compared and found to be in good agreement with measured data. The application to a Heavy-Ion Driven Inertial Fusion (HIDIF) scenario is discussed. 12 Refs.

  14. Modifications of structural and physical properties induced by swift heavy ions in Gd{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}Ti{sub 2}O{sub 7} pyrochlores

    Energy Technology Data Exchange (ETDEWEB)

    Sellami, N., E-mail: neila.sellami@u-psud.fr [Univ. Paris Sud, ICMMO-LEMHE, Bât. 410, F-91405 Orsay (France); Sattonnay, G. [Univ. Paris Sud, ICMMO-LEMHE, Bât. 410, F-91405 Orsay (France); Grygiel, C.; Monnet, I. [CIMAP, CEA, CNRS, Université de Caen, BP 5133, F-14070 Caen Cedex 5 (France); Debelle, A. [CSNSM, CNRS, IN2P3, Université Paris-Sud, Bât. 108, F- 91405 Orsay (France); Legros, C. [Univ. Paris Sud, ICMMO-LEMHE, Bât. 410, F-91405 Orsay (France); Menut, D. [CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-Sur-Yvette (France); Miro, S. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Simon, P. [CNRS UPR 3079 CEMHTI, 1D avenue de la Recherche Scientifique, F-45071 Orléans Cedex 2 (France); Bechade, J.L [CEA, DEN, Service de Recherches Métallurgiques Appliquées, 91191 Gif-Sur-Yvette (France); Thomé, L. [CSNSM, CNRS, IN2P3, Université Paris-Sud, Bât. 108, F- 91405 Orsay (France)

    2015-12-15

    The structural transformations induced by ionization processes in Gd{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}Ti{sub 2}O{sub 7} pyrochlores irradiated with swift heavy ions have been studied using XRD and Raman experiments. Results show that irradiation induces amorphization and that the phase transformation build-up can be accounted for in the framework of a model involving a single-impact mechanism. The radiation induced amorphization build-up is faster in Gd{sub 2}Ti{sub 2}O{sub 7} than in Y{sub 2}Ti{sub 2}O{sub 7}. Moreover, a decrease of the thermal conductivity (measured by the laser flash method) is induced by irradiation both in Gd{sub 2}Ti{sub 2}O{sub 7} and Y{sub 2}Ti{sub 2}O{sub 7}.

  15. Laser-induced thermal desorption of aniline from silica surfaces

    Science.gov (United States)

    Voumard, Pierre; Zenobi, Renato

    1995-10-01

    A complete study on the energy partitioning upon laser-induced thermal desorption of aniline from silica surfaces was undertaken. The measurements include characterization of the aniline-quartz adsorption system using temperature-programmed desorption, the extrapolation of quasiequilibrium desorption temperatures to the regime of laser heating rates on the order of 109-1010 K/s by computational means, measurement of the kinetic energy distributions of desorbing aniline using a pump-probe method, and the determination of internal energies with resonance-enhanced multiphoton ionization spectroscopy. The measurements are compared to calculations of the surface temperature rise and the resulting desorption rates, based on a finite-difference mathematical description of pulsed laser heating. While the surface temperature of laser-heated silica reaches about 600-700 K at the time of desorption, the translational temperature of laser-desorbed aniline was measured to be Tkin=420±60 K, Tvib was 360±60 K, and Trot was 350±100 K. These results are discussed using different models for laser-induced thermal desorption from surfaces.

  16. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    CERN Document Server

    Gardés, E; Ban-d'Etat, B; Cassimi, A; Durantel, F; Grygiel, C; Madi, T; Monnet, I; Ramillon, J -M; Ropars, F; Lebius, H

    2013-01-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/\\mu m. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteri...

  17. Separation of no-carrier-added {sup 66,67}Ga produced in heavy ion-induced cobalt target using alginate biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Dalia [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India); Banerjee, Anupam [University of Calcutta, 35 Ballygunge Circular Road, Kolkata-700019 (India); Lahiri, Susanta [Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)]. E-mail: susanta.lahiri@saha.ac.in

    2007-08-15

    Heavy ion activation of natural cobalt foil with 84 MeV {sup 12}C results in the formation of no-carrier-added (nca) {sup 66,67}As radionuclides, along with their corresponding decay products, {sup 66,67}Ge and {sup 66,67}Ga, in the matrix. Because arsenic and germanium radionuclides are short-lived, after a cooling period of 10 h only nca gallium radionuclides remain in the matrix. We attempted to separate the nca gallium radionuclides from the target matrix cobalt by biopolymeric calcium alginate (CA) and Fe-doped calcium alginate (Fe-CA) beads. A complete separation has been achieved by adsorbing {sup 66,67}Ga and a lesser amount of bulk cobalt at pH 3 on Fe-CA beads, followed by desorbing cobalt from the beads with 0.4 M NaNO{sub 2}.

  18. Benchmarking of Heavy Ion Transport Codes

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [ORNL; Ronningen, Reginald M. [Michigan State University, East Lansing; Heilbronn, Lawrence [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  19. Femtosecond laser pulse induced desorption: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lončarić, Ivor, E-mail: ivor.loncaric@gmail.com [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Alducin, Maite [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain); Juaristi, J. Iñaki [Departamento de Física de Materiales, Facultad de Químicas, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), P. Manuel de Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center DIPC, P. Manuel de Lardizabal 4, 20018 San Sebastián (Spain)

    2016-09-01

    In recent simulations of femtosecond laser induced desorption of molecular oxygen from the Ag(110) surface, it has been shown that depending on the properties (depth and electronic environment) of the well in which O{sub 2} is adsorbed, the desorption can be either induced dominantly by hot electrons or via excitations of phonons. In this work we explore whether the ratios between the desorption yields from different adsorption wells can be tuned by changing initial surface temperature and laser pulse properties. We show that the initial surface temperature is an important parameter, and that by using low initial surface temperatures the electronically mediated process can be favored. In contrast, laser properties seem to have only a modest influence on the results.

  20. Proceedings of the heavy ion fusion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R C [ed.

    1978-01-01

    These proceedings contain reviews of current laboratory programs dealing with inertial fusion driven by beams of heavy ions, as well as several individually abstracted invited talks, workshop reports and contributed papers.

  1. Historical aspects of heavy ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1995-03-01

    This paper presents historical developments of heavy-ion radiotherapy including discussion of HILAC and HIMAC and discussion of cooperation between Japan and the United States, along with personal reflections.

  2. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  3. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  4. Mutagenic effects of heavy ion radiation in plants

    Science.gov (United States)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  5. EDITORIAL: Focus on Heavy Ions in Biophysics and Medical Physics FOCUS ON HEAVY IONS IN BIOPHYSICS AND MEDICAL PHYSICS

    Science.gov (United States)

    Durante, Marco

    2008-07-01

    include carcinogenesis, late degenerative tissue effects (including damage to the central nervous system), and hereditary effects. For these studies, microbeams represent an essential tool, considering that in space each cell in the human body will not experience more than one heavy-ion traversal. Both NASA and ESA are investing important resources in ground-based space radiation research programs, to reduce risk uncertainty and to develop countermeasures. For both cancer therapy and space radiation protection a better understanding of the effects of energetic heavy ions is needed. Physics should be improved, especially the measurements of nuclear fragmentation cross-sections, and the transport calculations. Biological effects need to be studied in greater detail, and clearly only understanding the mechanisms of heavy-ion induced biological damage will reduce the uncertainty on late effects in humans. This focus issue of New Journal of Physics aims to provide the state-of-the-art of the biophysics of energetic heavy ions and to highlight the areas where more research is urgently needed for therapy and the space program. Focus on Heavy Ions in Biophysics and Medical Physics Contents Heavy ion microprobes: a unique tool for bystander research and other radiobiological applications K O Voss, C Fournier and G Taucher-Scholz Heavy ions light flashes and brain functions: recent observations at accelerators and in spaceflight L Narici Clinical advantages of carbon-ion radiotherapy Hirohiko Tsujii, Tadashi Kamada, Masayuki Baba, Hiroshi Tsuji, Hirotoshi Kato, Shingo Kato, Shigeru Yamada, Shigeo Yasuda, Takeshi Yanagi, Hiroyuki Kato, Ryusuke Hara, Naotaka Yamamoto and Junetsu Mizoe Heavy-ion effects: from track structure to DNA and chromosome damage F Ballarini, D Alloni, A Facoetti and A Ottolenghi Shielding experiments with high-energy heavy ions for spaceflight applications C Zeitlin, S Guetersloh, L Heilbronn, J Miller, N Elkhayari, A Empl, M LeBourgeois, B W Mayes, L Pinsky

  6. Heavy ion induced damage in MgAl sub 2 O sub 4 , an inert matrix candidate for the transmutation of minor actinides

    CERN Document Server

    Wiss, T

    1999-01-01

    Magnesium aluminum spinel (MgAl sub 2 O sub 4) is a material selected as a possible matrix for transmutation of minor actinides by neutron capture or fission in nuclear reactors. To study the radiation stability of this inert matrix, especially against fission product impact, irradiations with heavy energetic ions or clusters have been performed. The high electronic energy losses of the heavy ions in this material led to the formation of visible tracks as evidenced by transmission electron microscopy for 30 MeV C sub 6 sub 0 -Buckminster fullerenes and for ions of energy close to or higher than fission energy ( sup 2 sup 0 sup 9 Bi with 120 MeV and 2.38 GeV energy). The irradiations at high energies showed a pronounced degradation of the spinel. Additionally, MgAl sub 2 O sub 4 exhibited a large swelling for irradiation at high fluences with fission products of fission energy (here I-ions of 72 MeV) and at temperatures <= 500 deg. C. These observations are discussed from the technological point of view in ...

  7. Development of the positron-induced ion-desorption apparatus

    CERN Document Server

    Kanazawa, I

    2002-01-01

    The principle of the positron-induced ion-desorption, which is developed recently, and experimental apparatus are explained and study of desorption of positron-induced hydrogen ion from surface of Ni is reported as an example. The slow positron beam system in the positron-induced ion-desorption spectroscopy is consisted of two stages, moderator and transformation from magnetic transport type to electrostatic transport type. Positron is antiparticle of electron and localized both outside and monolayer of surface, which is special futures and used to analyze the surface. The number of emission positive charge particles from the clean Ni surface was changed by coil current at 1.9 keV and 2.9 keV incident positron energy. The number of re-emission positron at 1.9 keV was larger than at 2.9 keV. The number of emission positive charge particles from the clean Ni surface adsorbed monolayer hydrogen atom were decreased with coil current at 1.9 keV and 2.9 keV. The number of desorption hydrogen particle at 1.9 keV was...

  8. Applications of heavy ion microprobe for single event effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Robert A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States)]. E-mail: robert.reed@vanderbilt.edu; Vizkelethy, Gyorgy [Sandia National Laboratory, Albuquerque, NM 87185 (United States); Pellish, Jonathan A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Sierawski, Brian [Institute for Space and Defense Electronics, Vanderbilt University, Box 351821 Station B, Nashville, TN 37235 (United States); Warren, Kevin M. [Institute for Space and Defense Electronics, Vanderbilt University, Box 351821 Station B, Nashville, TN 37235 (United States); Porter, Mark [Medtronic Microelectronics Center, 2343 W. Medtronic Way, Tempe, AZ 85281 (United States); Wilkinson, Jeff [Medtronic, CRDM Device Technology, 7000 Central Avenue NE, Minneapolis, MN 55432 (United States); Marshall, Paul W. [NASA consultant, Brookneal, VA 24528 (United States); Niu, Guofu [Auburn University, Auburn, AL 36894 (United States); Cressler, John D. [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Schrimpf, Ronald D. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Tipton, Alan [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Weller, Robert A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States)

    2007-08-15

    The motion of ionizing-radiation-induced rogue charge carriers in a semiconductor can create unwanted voltage and current conditions within a microelectronic circuit. If sufficient unwanted charge or current occurs on a sensitive node, a variety of single event effects (SEEs) can occur with consequences ranging from trivial to catastrophic. This paper describes the application of heavy ion microprobes to assist with calibration and validation of SEE modeling approaches.

  9. Folding two dimensional crystals by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ochedowski, Oliver; Bukowska, Hanna [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Freire Soler, Victor M. [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Departament de Fisica Aplicada i Optica, Universitat de Barcelona, E08028 Barcelona (Spain); Brökers, Lara [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Ban-d' Etat, Brigitte; Lebius, Henning [CIMAP (CEA-CNRS-ENSICAEN-UCBN), 14070 Caen Cedex 5 (France); Schleberger, Marika, E-mail: marika.schleberger@uni-due.de [Fakultät für Physik and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS{sub 2} and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS{sub 2} does not.

  10. Design status of heavy ion injector program

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, E.O.; Meyer, E.A.; Riepe, K.B.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.

    1985-10-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Berkeley Laboratory. The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10 X torr) high voltage (HV) accelerating column. The column consists of two 28-inch diameter insulator modules made of 85 percent Al2O3 ceramic rings brazed to niobium feedthrough rings to which the electrodes are mechanically attached. Field shaping is used to minimize electron avalanche induced flashover along the inside surface of the ceramic rings. The column is self-supporting and is cantilevered from one end of the containment vessel. A brazed assembly was chosen to provide the required bond strength and high vacuum capability. The HV pulsed power supply is a 2MV Marx generator cantilevered from the opposite end of the containment vessel. The stainless steel pressure vessel (PV) contains a 65 psig mixture of SF6(30%) and nitrogen (70%) to provide the electrical insulation.

  11. Study of Mutagenic Effects of M1 Generation of Maize Seeds Irradiated by Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    LUOHong-bing; ZHAOKui; GUOJi-yu; SUILi; NIMei-nan; MEIJun-ping; LUXiu-qin; ZHOUPing; KONGFu-quan; ZHANGGen-fa

    2003-01-01

    In order to study M1 biological effects induced by heavy ion irradiation on maize seeds, the embryos of dry maize seeds are irradiated with 7Li and 12C ions. The experiment is performed at the heavy ion scanning tube of the HI-13 tandem accelerator. The beam goes through a thickness of 25μm. Then the maize seeds are irradiated in the air uniformly.

  12. Heavy Ion Acceleration in Impulsive Solar Flares

    Institute of Scientific and Technical Information of China (English)

    王德焴

    2002-01-01

    The abundance enhancements of heavy ions Ne, Mg, Si and Fe in impulsive solar energetic particle (SEP) eventsare explained by a plasma acceleration mechanism. In consideration of the fact that the coronal plasma is mainlycomposed of hydrogen and helium ions, we think that theion-ion hybrid wave and quasi-perpendicular wave can.be excited by the energetic electron beam in impulsive solar flares. These waves may resonantly be absorbed byheavy ions when the frequencies of these waves are close to the second-harmonic gyrofrequencies of these heavyions. This requires the coronal plasma temperature to be located in the range ofT ~ (5 - 9) × 106 K in impulsivesolar flares and makes the average ionic charge state of these heavy ions in impulsive SEP events higher than theaverage ionic charge state of these heavy ions in gradual SEP events. These pre-heated and enhanced heavy ionsin impulsive SEP events.

  13. Effects of low-dose heavy ion irradiation on male germ cell adaptation and genetics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; LI Wen-Jian; ZHENG Rong-Liang

    2005-01-01

    The heavy ions with high linear energy transfer and high relative biological effectiveness are much more deleterious on the male germ cells, ones of the most radiosensitive cells of the body, than low-LET ionizing radiation such as X-ray or gamma-ray. The effects of low-dose heavy ion irradiation on male germ cell adaptation and genetics and the possible mechanism of this adaptation are summarized in our laboratory. Our results showed that the heavy ion irradiation significantly increased the frequencies of chromosomal aberrations in spermatogonia and spermatocytes of mice, the low dose heavy ion irradiation could induce significant adaptative response on mouse testes and human sperm, and pre-exposure of mouse testes with low-dose heavy ion can markedly alleviate damage effects induced by subsequent high-dose irradiation. The increase of SOD activity and decrease of lipid peroxidation levels induced by low-dose ionizing radiation may be involved in this adaptative response mechanism. These studies may provide useful theoretical and clinical bases for radioprotection of reproductive potential and assessment of genetic risks for human exposed to heavy ions in radiotherapy and in outer space environment.

  14. Strongly coupled quark-gluon plasma in heavy ion collisions

    Science.gov (United States)

    Shuryak, Edward

    2017-07-01

    A decade ago, a brief summary of the field of the relativistic heavy ion physics could be formulated as the discovery of strongly coupled quark-gluon plasma, sQGP for short, a near-perfect fluid with surprisingly large entropy-density-to-viscosity ratio. Since 2010, the LHC heavy ion program added excellent new data and discoveries. Significant theoretical efforts have been made to understand these phenomena. Now there is a need to consolidate what we have learned and formulate a list of issues to be studied next. Studies of angular correlations of two and more secondaries reveal higher harmonics of flow, identified as the sound waves induced by the initial state perturbations. As in cosmology, detailed measurements and calculations of these correlations helped to make our knowledge of the explosion much more quantitative. In particular, their damping had quantified the viscosity. Other kinetic coefficients—the heavy-quark diffusion constants and the jet quenching parameters—also show enhancements near the critical point T ≈Tc. Since densities of QGP quarks and gluons strongly decrease at this point, these facts indicate large role of nonperturbative mechanisms, e.g., scattering on monopoles. New studies of the p p and p A collisions at high multiplicities reveal collective explosions similar to those in heavy ion A A collisions. These "smallest drops of the sQGP" revived debates about the initial out-of-equilibrium stage of the collisions and mechanisms of subsequent equilibration.

  15. Jets in Heavy Ion Collisions with CMS

    CERN Document Server

    Salur, Sevil

    2016-01-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  16. Holographic heavy ion collisions with baryon charge

    CERN Document Server

    Casalderrey-Solana, Jorge; van der Schee, Wilke; Triana, Miquel

    2016-01-01

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15\\%. %The rapidity profile of the charge is wider than the profile of the local energy density. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  17. Unconventional resource's production under desorption-induced effects

    Directory of Open Access Journals (Sweden)

    S. Sina Hosseini Boosari

    2016-06-01

    We have developed a numerical model to study the effect of changes in porosity, permeability and compaction on four major U.S. shale formations considering their Langmuir isotherm desorption behavior. These resources include; Marcellus, New Albany, Barnett and Haynesville Shales. First, we introduced a model that is a physical transport of single-phase gas flow in shale porous rock. Later, the governing equations are implemented into a one-dimensional numerical model and solved using a fully implicit solution method. It is found that the natural gas production is substantially affected by desorption-induced porosity/permeability changes and geomechancis. This paper provides valuable insights into accurate modeling of unconventional reservoirs that is more significant when an even small correction to the future production prediction can enormously contribute to the U.S. economy.

  18. A heavy load for heavy ions

    CERN Multimedia

    2003-01-01

    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  19. Heavy ion isotope resolution with polymer detectors

    OpenAIRE

    Vidal-Quadras Roca, Alejo; Ortega Girón, Manuel; Fernández Moreno, Francisco; Font Garcia, Josep Lluís; Casas Ametller, Montserrat; Baixeras Divar, Carmen; Gonzalo Cestero, Miguel

    1984-01-01

    The heavy ion mass resolution power of polymer detectors Lexan and cellulose nitrate is systematically studied both for accelerator and for cosmic ions. It is concluded that a satisfactory isotopic discrimination, better than 1 u, is hardly attainable with these detectors. Peer Reviewed

  20. HIGH DENSITY QCD WITH HEAVY-IONS

    CERN Multimedia

    The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...

  1. The quarkonium saga in heavy ion collisions

    CERN Document Server

    Tserruya, Itzhak

    2013-01-01

    J/psi suppression was proposed more than 25 years ago as an unambiguous signature for the formation of the Quark Gluon Plasma in relativistic heavy ion collisions. After intensive efforts, both experimental and theoretical, the quarkonium saga remains exciting, producing surprising results and not fully understood. This talk focuses on recent results on quarkonium production at RHIC and the LHC.

  2. "Super" Cocktails for Heavy Ion Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael B; Johnson, Michael B.; McMahan, Margaret A.; Galloway, Michelle; Leitner, Daniela; Morel, James R.; Gimpel, ThomasL.; Ninemire, Brien F.; Siero, Reba; Thatcher, Raymond K.

    2007-07-21

    The 4.5 MeV/nucleon heavy ion cocktail at the 88-Inch Cyclotron has been expanded by incorporating beams from solid material to fill in the linear energy transfer curve. This supercocktail is available by special request and is useful when only normal incidence between the beam and the device under test is possible or desirable.

  3. Relativistic Hydrodynamics for Heavy-Ion Collisions

    Science.gov (United States)

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  4. Heavy-Ion Physics in a Nutshell

    Directory of Open Access Journals (Sweden)

    Hirano Tetsufumi

    2013-05-01

    Full Text Available The physics of quark gluon plasma (QGP and heavy ion collisions at the collider energies is briefly reviewed. We first discuss about the discovery of a nearly perfect fluidity of the QGP. We also highlights recent topics on responses of the QGP to initial deformation and propagation of a jet.

  5. Quarkonium production in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Arnaldi Roberta

    2014-03-01

    Full Text Available The production of quarkonium states plays a crucial role among the probes to investigate the formation of the plasma of quarks and gluons (QGP in heavy-ion collisions. A review of the charmonium and bottomonium production, mainly focussing on the latest results from the LHC experiments, is presented.

  6. RELATIVISTIC HEAVY ION PHYSICS: A THEORETICAL OVERVIEW.

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    2004-03-28

    This is a mini-review of recent theoretical work in the field of relativistic heavy ion physics. The following topics are discussed initial conditions and the Color Glass Condensate; approach to thermalization and the hydrodynamic evolution; hard probes and the properties of the Quark-Gluon Plasma. Some of the unsolved problems and potentially promising directions for future research are listed as well.

  7. String theory and relativistic heavy ion collisions

    Science.gov (United States)

    Friess, Joshua J.

    It has long been known that string theory describes not only quantum gravity, but also gauge theories with a high degree of supersymmetry. Said gauge theories also have a large number of colors in a regime with a large effective coupling constant that does not depend on energy scale. Supersymmetry is broken in nature, if it is present at all, however the gauge theory described by string theory shares many common features with QCD at temperatures above the quark deconfinement transition. It is generally though not entirely accepted that collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) produce a thermalized Quark-Gluon Plasma (QGP) at temperatures distinctly above the transition temperature as determined from lattice simulations. Hence, we might hope that a string theoretic description of gauge dynamics can elucidate some otherwise intractable physics of the strongly coupled plasma. Here we use string theory to calculate the outgoing energy flux from a RHIC process called "jet quenching", in which a high-momentum quark or gluon traverses a large distance in the QGP. Our setup is in the context of the highly supersymmetric string dual gauge theory, but we nevertheless find that the gross features of the resulting stress-energy tensor match reasonably well with experimental data. We will furthermore discuss the technology behind computations of the leading-order corrections to gauge theory observables that are uniquely string-induced, and we will describe a potential solution to string theory that could resolve a number of discrepancies between the traditional highly supersymmetric setup and QCD---in particular, a significant reduction in the amount of supersymmetry, and a finite effective coupling that is still greater than unity but does depend on energy scale.

  8. Laser-induced acoustic desorption (LIAD) mass spectrometry.

    Science.gov (United States)

    Dow, Alex M; Wittrig, Ashley R; Kenttämaa, Hilkka I

    2012-01-01

    Large thermally labile molecules were not amenable to mass spectrometric analysis until the development of atmospheric pressure evaporation/ionization methods, such as electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), since attempts to evaporate these molecules by heating induces degradation of the sample. While ESI and MALDI are relatively soft desorption/ionization techniques, they are both limited to preferential ionization of acidic and basic analytes. This limitation has been the driving force for the development of other soft desorption/ionization techniques. One such method employs laser-induced acoustic desorption (LIAD) to evaporate neutral sample molecules into mass spectrometers. LIAD utilizes acoustic waves generated by a laser pulse in a thin metal foil. The acoustic waves travel through the foil and cause desorption of neutral molecules that have been deposited on the opposite side of the foil. One of the advantages of LIAD is that it desorbs low-energy molecules that can be ionized by a variety of methods, thus allowing the analysis of large molecules that are not amenable to ESI and MALDI. This review covers the generation of acoustic waves in foils via a laser pulse, the parameters affecting the generation of acoustic waves, possible mechanisms for desorption of neutral molecules, as well as the various uses of LIAD by mass spectrometrists. The conditions used to generate acoustic or stress waves in solid materials consist of three regimes: thermal, ablative, and constrained. Each regime is discussed, in addition to the mechanisms that lead to the ablation of the metal from the foil and generation of acoustic waves for two of the regimes. Previously proposed desorption mechanisms for LIAD are presented along with the flaws associated with some of them. Various experimental parameters, such as the exact characteristics of the laser pulse and foil used, are discussed. The internal and kinetic energy of the neutral

  9. Rapid decompression and desorption induced energetic failure in coal

    Directory of Open Access Journals (Sweden)

    Shugang Wang

    2015-06-01

    Full Text Available In this study, laboratory experiments are conducted to investigate the rapid decompression and desorption induced energetic failure in coal using a shock tube apparatus. Coal specimens are recovered from Colorado at a depth of 610 m. The coal specimens are saturated with the strong sorbing gas CO2 for a certain period and then the rupture disc is suddenly broken on top of the shock tube to generate a shock wave propagating upwards and a rarefaction wave propagating downwards through the specimen. This rapid decompression and desorption has the potential to cause energetic fragmentation in coal. Three types of behaviors in coal after rapid decompression are found, i.e. degassing without fragmentation, horizontal fragmentation, and vertical fragmentation. We speculate that the characteristics of fracture network (e.g. aperture, spacing, orientation and stiffness and gas desorption play a role in this dynamic event as coal can be considered as a dual porosity, dual permeability, dual stiffness sorbing medium. This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts.

  10. Some properties of the central heavy ion collisions

    CERN Document Server

    Wazir, Z; Khan, E U; Haseeb, Mahnaz Q; Ajaz, M; Khan, K H

    2009-01-01

    Some experimental results are discussed in connection with the properties of the central heavy ion collisions. These experiments indicate the regime changes and saturation at some values of the centrality. This phenomenon is considered to be a signal of the percolation cluster formation in heavy ion collisions at high energies. Keywords: heavy ion collisions, theoretical models, centrality, phase transition.

  11. Exotic hadrons from heavy ion collisions

    Science.gov (United States)

    Cho, Sungtae; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Maeda, Saori; Miyahara, Kenta; Morita, Kenji; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Song, Taesoo; Yasui, Shigehiro; Yazaki, Koichi

    2017-07-01

    High energy heavy ion collisions are excellent ways for producing heavy hadrons and composite particles, including the light (anti)nuclei. With upgraded detectors at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), it has become possible to measure hadrons beyond their ground states. Therefore, heavy ion collisions provide a new method for studying exotic hadrons that are either molecular states made of various hadrons or compact system consisting of multiquarks. Because their structures are related to the fundamental properties of Quantum Chromodynamics (QCD), studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in heavy ion collisions. It also includes discussions on the production of resonances, exotics and hadronic molecular states in these collisions based on the coalescence model and the statistical model. A more detailed discussion is given on the results from these models, leading to the conclusion that the yield of a hadron that is a compact multiquark state is typically an order of magnitude smaller than if it is an excited hadronic state with normal quark numbers or a loosely bound hadronic molecule. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in heavy ion collisions because of the significant numbers of charm and bottom quarks that are produced at RHIC and even larger numbers at LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally

  12. Apoptosis and injuries of heavy ion beam and x-ray radiation on malignant melanoma cell.

    Science.gov (United States)

    Qin, Jin; Li, Sha; Zhang, Chao; Gao, Dong-Wei; Li, Qiang; Zhang, Hong; Jin, Xiao-Dong; Liu, Yang

    2017-05-01

    This study aims to investigate the influence of high linear energy transfer (LET) heavy ion ((12)C(6+)) and low LET X-ray radiation on apoptosis and related proteins of malignant melanoma on tumor-bearing mice under the same physical dosage. C57BL/6 J mice were burdened by tumors and randomized into three groups. These mice received heavy ion ((12)C(6+)) and X-ray radiation under the same physical dosage, respectively; their weight and tumor volumes were measured every three days post-radiation. After 30 days, these mice were sacrificed. Then, median survival time was calculated and tumors on mice were proliferated. In addition, immunohistochemistry was carried out for apoptosis-related proteins to reflect the expression level. After tumor-bearing mice were radiated to heavy ion, median survival time improved and tumor volume significantly decreased in conjunction with the upregulated expression of pro-apoptosis factors, Bax and cytochrome C, and the downregulated expression of apoptosis-profilin (Bcl-2, Survivin) and proliferation-related proteins (proliferating cell nuclear antigen). The results indicated that radiation can promote the apoptosis of malignant melanoma cells and inhibit their proliferation. This case was more suitable for heavy ion ((12)C(6+)). High LET heavy ion ((12)C(6+)) radiation could significantly improve the killing ability for malignant melanoma cells by inducing apoptosis in tumor cells and inhibiting their proliferation. These results demonstrated that heavy ion ((12)C(6+)) presented special advantages in terms of treating malignant melanoma. Impact statement Malignant melanoma is a malignant skin tumor derived from melanin cells, which has a high malignant degree and high fatality rate. In this study, proliferating cell nuclear antigen (PCNA) can induce the apoptosis of malignant melanoma cells and inhibit its proliferation, and its induction effect on apoptosis is significantly higher than low LET X-ray; hence, it is expected to

  13. Working group report: Heavy ion physics

    Indian Academy of Sciences (India)

    Jan-E Alam; K Assamagan; S Chattopadhyay; R Gavai; Sourendu Gupta; B Layek; S Mukherjee; R Ray; Pradip K Roy; A Srivastava

    2004-12-01

    The 8th workshop on high energy physics phenomenology (WHEPP-8) was held at the Indian Institute of Technology, Mumbai, India during January 5–16, 2004. One of the four working groups, group III was dedicated to QCD and heavy ion physics (HIC). The present manuscript gives a summary of the activities of group III during the workshop (see also [1] for completeness). The activities of group III were focused to understand the collective behaviours of the system formed after the collisions of two nuclei at ultra-relativistic energies from the interactions of the elementary degrees of freedom, i.e. quarks and gluons, governed by non-abelian gauge theory, i.e. QCD. This was initiated by two plenary talks on experimental overview of heavy ion collisions and lattice QCD and several working group talks and discussions.

  14. Recent results on relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Munhoz, Marcelo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Inst. de Fisica

    2013-07-01

    Full text: The study of relativistic heavy ion collisions is a very important tool in order to understand the strong interaction described by QCD. The formation of the Quark-Gluon Plasma and the study of its properties is a very challenging quest. The Large Hadron Collider (LHC) from CERN (European Organization for Nuclear Research) generates ultra-relativistic Pb + Pb collisions at the TeV scale inaugurating a new era for such studies. Three experiments, ATLAS, CMS and ALICE are able to measure the products of such collisions. In special, the ALICE experiment was designed specifically for the study of heavy ion collisions. In this presentation, I'll discuss the latest results that shed light in the QGP understanding. (author)

  15. Bremsstrahlung from relativistic heavy ions in matter

    DEFF Research Database (Denmark)

    Sørensen, Allan Hvidkjær

    2010-01-01

    The emission of electromagnetic radiation by relativistic bare heavy ions penetrating ordinary matter is investigated. Our main aim is to determine the bremsstrahlung which we define as the radiation emitted when the projectile does not break up. It pertains to collisions without nuclear contact...... ("ultraperipheral collisions"). Requirement of coherent action of the nucleons in order to keep the penetrating projectile intact limits bremsstrahlung to relatively soft photons. The spectrum shows a resonance structure with peak position near 2γ times the position of the giant dipole resonance, that is, near 25γ....... As a result of its relative softness, bremsstrahlung never dominates the energy-loss process for heavy ions. As to the emission of electromagnetic radiation in collisions with nuclear break-up, it appears modest when pertaining to incoherent action of the projectile nucleons in noncontact collisions...

  16. Diffraction radiation from relativistic heavy ions

    Science.gov (United States)

    Potylitsyna, N. A.

    2001-01-01

    In recent years, the relativistic heavy ion beams at new accelerator facilities are allowed to obtain some new interesting results (see, for instance, Datz et al., Phys. Rev. Lett. 79 (18) (1997) 3355; Ladyrin et al., Nucl. Instr. and Meth. A 404 (1998) 129). The problem of non-destructive heavy ion beam diagnostics at these accelerators is highly pressing. The authors of the papers (Rule et al., Proceedings of the Seventh Beam Instrumentation Workshop, Argonne IL, AIP Conference Proceedings, Vol. 390, NY, 1997; Castellano, Nucl. Instr. and Meth. A 394 (1997) 275) suggested to use diffraction radiation (DR) appearing when a charge moves close to a conducting surface (Bolotovskii and Voskresenskii, Sov. Phys. Usp. 9 (1966) 73) for non-destructive electron beam diagnostics. The DR characteristics are defined by both Lorentz-factor and the particle charge, and do not depend on its mass. The estimation of feasibility of using DR for relativistic ion beam diagnostics is undoubtedly interesting.

  17. Chiral Magnetic Effect in Heavy Ion Collisions

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.

  18. Dynamical processes in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.; Remington, B.A.

    1988-07-25

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy ..gamma..-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/..mu... Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs.

  19. Optical Faraday Cup for Heavy Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, Frank; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2007-06-25

    We have been using alumina scintillators for imaging beams in heavy-ion beam fusion experiments in 2 to 4 transverse dimensions [1]. The scintillator has a limited lifetime under bombardment by the heavy ion beams. As a possible replacement for the scintillator, we are studying the technique of imaging the beam on a gas cloud. A gas cloud for imaging the beam may be created on a solid hole plate placed in the path of the beam, or by a localized gas jet. It is possible to image the beam using certain fast-quenching optical lines that closely follow beam current density and are independent of gas density. We describe this technique and show preliminary experimental data. This approach has promise to be a new fast beam current diagnostic on a nanosecond time scale.

  20. 2nd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Menzel, Dietrich

    1985-01-01

    The second workshop on Desorption Induced by Electronic Transitions (DIET II) took place October 15-17, 1984, in SchloB Elmau, Bavaria. DIET II, fol­ lowing the great success of DIET I (edited by N. H. Tolk, M. M. Traum, J. C. Tully, T. E. Madey and published in Springer Ser. Chem. Phys. , Vol. 24), again brought together over 60 workers in this exciting field. The "hard co­ re of experts" was essentially the same as in DIET I but the general overlap of participants between the two meetings was small. While DIET I had the function of an exposition of the status of the field DIET II focussed more on new developments. The main emphasis was again on the microscopic under­ standing of DIET but a number of side aspects and the application of DIET ideas to other fields such as sputtering, laser-induced desorption, fractu­ re, erosion, etc. were considered, too. New mechanisms and new refined expe­ rimental techniques were proposed and discussed at the meeting critically but with great enthusiasm. In addition t...

  1. 5th International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Jennison, Dwight R; Stechel, Ellen B; DIET V; Desorption induced by electronic transitions

    1993-01-01

    This volume in the Springer Series on Surface Sciences presents a recent account of advances in the ever-broadening field of electron-and photon-stimulated sur­ face processes. As in previous volumes, these advances are presented as the proceedings of the International Workshop on Desorption Induced by Electronic Transitions; the fifth workshop (DIET V) was held in Taos, New Mexico, April 1-4, 1992. It will be abundantly clear to the reader that "DIET" is not restricted to desorption, but has for several years included photochemistry, non-thermal surface modification, exciton self-trapping, and many other phenomena that are induced by electron or photon bombardment. However, most stimulated surface processes do share a common physics: initial electronic excitation, localization of the excitation, and conversion of electronic energy into nuclear kinetic energy. It is the rich variation of this theme which makes the field so interesting and fruitful. We have divided the book into eleven parts in orde...

  2. Medium energy heavy ion operations at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Drees, K.A.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blackler, I.M.C.; Blaskiewicz, M.; Brown, K.A.; Brennan, M.; Bruno, D.; Butler, J.; Carlson, C.; Connolly, R.; D' Ottavio, T.; Fischer, W.; Fu, W.; Gassner, D.; Harvey, M.; Hayes, T.; Huang, H.; Hulsart, R.; Ingrassia, P.; Kling, N.; Lafky, M.; Laster, J.; Lee, R.C.; Litvinenko, V.; Luo, Y.; MacKay, W.W.; Marr, G.; Mapes. M.; Marusic, A.; Mernick, K.; Michnoff, R.; Minty, M.; Montag, C.; Morris, J.; Naylor, C.; Nemesure, S.; Pilat, F.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Sampson, P.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Shrey, T.; Smith, K.S.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; van Kuik, B.; Wilinski, M.; Zaltsman, A.; Zeno, K.; Zhang, S.Y.

    2011-03-28

    As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. The medium energy AuAu run covered two beam energies, both above the RHIC injection energy of 9.8 GeV but well below the standard store energy of 100 GeV (see table 1). The low energy and full energy runs with heavy ions in FY10 are summarized in [1] and [2]. Stochastic Cooling ([3]) was only used for 100 GeV beams and not used in the medium energy run. The efficiency of the transition from 100 GeV operation to 31.2 GeV and then to 19.5 GeV was remarkable. Setup took 32 h and 19 h respectively for the two energy settings. The time in store, defined to be the percentage of time RHIC provides beams in physics conditions versus calendar time, was approximately 52% for the entire FY10 heavy ion run. In both medium energy runs it was well above this average, 68% for 31.5 GeV and 82% for 19.5 GeV. For both energies RHIC was filled with 111 bunches with 1.2 10{sup 9} and 1.3 10{sup 9} ions per bunch respectively.

  3. Femtoscopy in Relativistic Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  4. Size Effects in Heavy Ions Fragmentation

    CERN Document Server

    Barrañon, A; Dorso, C O

    2003-01-01

    Rise-Plateau Caloric curves for different Heavy Ion collisions have been obtained, in the range of experimental observations. Limit temperature decreases when the residual size is increased, in agreement with recent theoretical analysis of experimental results reported by other Collaborations. Besides, promptly emitted particles influence on temperature plateau is shown. LATINO binary interaction semiclassical model is used to reproduce the inter-nucleonic forces via Pandharipande Potential and fragments are detected with an Early Cluster Recognition Algorithm.

  5. Surface spectroscopy using high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, B.L.; Cocke, C.L.; Gray, T.J.; Justiniano, E.; Peercy, P.S.

    1983-04-01

    Surface atoms ionized by high energy heavy ions have been detected by time-of-flight and quadrupole mass spectroscopic techniques. The experimental arrangements are described and potential applications are suggested. Both techniques are demonstrated to produce significant improvements in the detection of atomic hydrogen, with the TOF method producing a nine order of magnitude increase in the sensitivity of atomic hydrogen compared to standard nuclear analysis methods.

  6. Design status of heavy ion injector program

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, E.O.; Meyer, E.A.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.; Riepe, K.B.

    1985-01-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Livermore Laboratory (LBL). The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10/sup -7/ torr) high voltage (HV) accelerating column.

  7. Heavy ion fusion 2 MV injector

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Eylon, S.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States). Accelerator and Fusion Research Div.] [and others

    1995-04-01

    A heavy-ion-fusion driver-scale injector has been constructed and operated at Lawrence Berkeley Laboratory. The injector has produced 2.3 MV and 950 mA of K{sup +}, 15% above original design goals in energy and current. Normalized edge emittance of less than 1 {pi} mm-mr was measured over a broad range of parameters. The head-to-tail energy flatness is less than {+-} 0.2% over the 1 {micro}s pulse.

  8. Heavy Ion Physics with the ATLAS Detector

    CERN Multimedia

    Takai, H

    2003-01-01

    I guess the first thing that comes to people's mind is why is an experiment such as ATLAS interested in heavy ion physics. What is heavy ion physics anyway? The term heavy ion physics refers to the study of collisions between large nuclei such as lead, atomic number 208. But why would someone collide something as large and extensive as lead nuclei? When two nuclei collide there is a unique opportunity to study QCD at extreme energy densities. This said why do we think ATLAS is a good detector to study this particular physics? Among many of the simultaneous collisions that takes place when two nuclei encouter, hard scattering takes place. The unique situation now is that before hadronization partons from hard scattering may feel the surrounding media serving as an ideal probe for the matter formed in these collisions. As a consequence of this, jets may be quenched and their properties, e.g. fragmentation function or cone radius, modified when compared to proton-proton collisions. This is precisely where ATL...

  9. An attempt to apply the inelastic thermal spike model to surface modifications of CaF2 induced by highly charged ions: comparison to swift heavy ions effects and extension to some others material

    Science.gov (United States)

    Dufour, C.; Khomrenkov, V.; Wang, Y. Y.; Wang, Z. G.; Aumayr, F.; Toulemonde, M.

    2017-03-01

    Surface damage appears on materials irradiated by highly charged ions (HCI). Since a direct link has been found between surface damage created by HCI with the one created by swift heavy ions (SHI), the inelastic thermal spike model (i-TS model) developed to explain track creation resulting from the electron excitation induced by SHI can also be applied to describe the response of materials under HCI which transfers its potential energy to electrons of the target. An experimental description of the appearance of the hillock-like nanoscale protrusions induced by SHI at the surface of CaF2 is presented in comparison with track formation in bulk which shows that the only parameter on which we can be confident is the electronic energy loss threshold. Track size and electronic energy loss threshold resulting from SHI irradiation of CaF2 is described by the i-TS model in a 2D geometry. Based on this description the i-TS model is extended to three dimensions to describe the potential threshold of appearance of protrusions by HCI in CaF2 and to other crystalline materials (LiF, crystalline SiO2, mica, LiNbO3, SrTiO3, ZnO, TiO2, HOPG). The strength of the electron–phonon coupling and the depth in which the potential energy is deposited near the surface combined with the energy necessary to melt the material defines the classification of the material sensitivity. As done for SHI, the band gap of the material may play an important role in the determination of the depth in which the potential energy is deposited. Moreover larger is the initial potential energy and larger is the depth in which it is deposited.

  10. An attempt to apply the inelastic thermal spike model to surface modifications of CaF2 induced by highly charged ions: comparison to swift heavy ions effects and extension to some others material.

    Science.gov (United States)

    Dufour, C; Khomrenkov, V; Wang, Y Y; Wang, Z G; Aumayr, F; Toulemonde, M

    2017-03-08

    Surface damage appears on materials irradiated by highly charged ions (HCI). Since a direct link has been found between surface damage created by HCI with the one created by swift heavy ions (SHI), the inelastic thermal spike model (i-TS model) developed to explain track creation resulting from the electron excitation induced by SHI can also be applied to describe the response of materials under HCI which transfers its potential energy to electrons of the target. An experimental description of the appearance of the hillock-like nanoscale protrusions induced by SHI at the surface of CaF2 is presented in comparison with track formation in bulk which shows that the only parameter on which we can be confident is the electronic energy loss threshold. Track size and electronic energy loss threshold resulting from SHI irradiation of CaF2 is described by the i-TS model in a 2D geometry. Based on this description the i-TS model is extended to three dimensions to describe the potential threshold of appearance of protrusions by HCI in CaF2 and to other crystalline materials (LiF, crystalline SiO2, mica, LiNbO3, SrTiO3, ZnO, TiO2, HOPG). The strength of the electron-phonon coupling and the depth in which the potential energy is deposited near the surface combined with the energy necessary to melt the material defines the classification of the material sensitivity. As done for SHI, the band gap of the material may play an important role in the determination of the depth in which the potential energy is deposited. Moreover larger is the initial potential energy and larger is the depth in which it is deposited.

  11. Heavy Ion Reactions with Neutron-Rich Beams - Proceedings of the Riken International Workshop

    Science.gov (United States)

    Yamaji, S.; Ishihara, M.; Takigawa, N.

    1993-11-01

    The Table of Contents for the book is as follows: * Preface * Opening Address * Fusion I * Heavy Ion Fusion at Subbarrier Energies: Progress and Questions * Angular Momentum in Heavy Ion Subbarrier Interaction * Fusion II * High Precision Fusion Excitation Function Measurements: What Can We Learn from Them? * Transfer Reactions for 16O + 144,152Sm near the Coulomb Barrier * Fusion III * Recent Theoretical Developments in the Study of Subbarrier Fusion * Direct Reaction Approach to Heavy Ion Scattering and Fusion at Energies near Coulomb Barrier * Fusion IV * Roles of Multi-Step Transfer in Fusion Process Induced by Heavy Ion Reactions * Special Session * RIKEN Accelerator Research Facility (RARF) * Fission I * Bimodal Nature of Nuclear Fission * Systematics of Isotope Production Rates: Mass Excess Dependence of Fission Products * Semiclassical Methods for the Multi-Dimensional Quantum Decay * Dynamics of Di-Nucleus Systems: Molecular Resonances * Fission II * The Competition Between Fusion-Fission and Deeply Inelastic Reactions in the Medium Mass Systems * Unstable Nuclei I * Coulomb Dissociation and Momentum Distributions for 11Li → 9Li+n+n Breakup Reactions * Unstable Nuclei II * Elastic Scattering and Fragmentation of Halo Nuclei * Secondary Reactions of Neutron-Rich Nuclei at Intermediate Energies * Life Time of Soft Dipole Excitation * Unstable Nuclei III * Shell Structure of Exotic Unstable Nuclei * Properties of Unstable Nuclei Within the Relativistic Many-Body Theory * Fusion with Unstable Nuclei * Barrier Distributions for Heavy Ion Fusion * Heavy Ion Reactions with Neutron-Rich Beams * Heavy Ion Fusion with Neutron-Rich Beams * Superheavy Elements * Study of α Decays Following 40Ar Bombardment on 238U * Production of Superheavy Elements via Fusion: What is Limiting Us? * Panel Session * Comments * List of Participants

  12. 3rd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Knotek, Michael

    1988-01-01

    These proceedings are the result of the third international workshop on Desorption Induced by Electronic Transitions, DIET III, which took place on Shelter Island, NY, May. 20-22, 1987. The work contained in this volume is an excellent summary of the current status of the field and should be a valuable reference text for both "seasoned" researchers and newcomers in the field of DIET. Based on the success of the meeting it seems clear that interest and enthusiasm in the field is strong. It is also apparent, from the many lively discussions during the meeting, that many unanswered questions (and controversies) remain to be solved. It was particularly pleasing to see many new participants from new and rapidly advancing fields, ranging from gas phase dynamics to semiconductor processing. The resulting cross-fertilization from these separate but related fields is playing an important role in helping us understand desorption processes at solid surfaces. In general, the topics covered during the course of the worksh...

  13. Measurements of induced activity in concrete by secondary particles at forward direction produced by intermediate energy heavy ions on an Fe target

    Science.gov (United States)

    Ogawa, T.; Morev, M. N.; Iimoto, T.; Kosako, T.

    2011-09-01

    Spallation and neutron capture reaction rate distributions were measured using activation detectors inside a 90-cm thick ordinary concrete pile exposed to a field of secondary particles escaping a thick (stopping length) iron target bombarded with various intermediate energy ions, 230 MeV/u He, 400 MeV/u C, and 800 MeV/u Si. Activation detectors of aluminum, bismuth, gold, and gold covered with cadmium were inserted at various depths in the concrete pile. In addition, the distributions of activation reaction rate were simulated by FLUKA and PHITS Monte-Carlo codes. Generally, comparison of measured and calculated reaction rates show agreement within a factor of two. The experimental data will be useful for benchmarking Monte-Carlo radiation transport simulation code capabilities in estimating radioactivity induced in accelerator radiation shielding.

  14. In situ and postradiation analysis of mechanical stress in Al{sub 2}O{sub 3}:Cr induced by swift heavy-ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Skuratov, V.A., E-mail: skuratov@jinr.r [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Bujnarowski, G. [Institute of Physics, Opole University, 45-052 Opole (Poland); Kovalev, Yu.S. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); O' Connell, J. [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Havanscak, K. [Eoetvoes University, Pazmany P. setany 1/A, H-1117 Budapest (Hungary)

    2010-10-01

    Optical spectroscopy and TEM techniques have been applied to study the radiation damage and correlated mechanical stresses in Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}:Cr single crystals induced by (1-3) MeV/amu Kr, Xe and Bi ion irradiation. Mechanical stresses were evaluated in situ using a piezospectroscopic effect through the shift of the respective lines in ionoluminescence spectra. It was found that dose dependence of the stress level for Xe and Bi ions, when ionization energy loss exceeds the threshold of damage formation via electronic excitations, exhibits several alternate stages showing the build-up and relaxation of stresses. The beginning of relaxation stages is observed at fluences associated with beginning of individual ion track regions overlapping. The residual stress profiles through the ion irradiated layers were deduced from depth-resolved photostimulated spectra using laser confocal scanning microscopy set-up. It was determined that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  15. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Science.gov (United States)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  16. Direct photons in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baeuchle, Bjoern

    2010-12-13

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E{sub lab}=35 AGeV and 158 AGeV, (s{sub NN}){sup 1/2}=62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  17. Progress in understanding heavy-ion stopping

    Science.gov (United States)

    Sigmund, P.; Schinner, A.

    2016-09-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul's data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  18. Multifragmentation and dynamics in heavy ion collisions

    Indian Academy of Sciences (India)

    R Roy

    2001-07-01

    A midrapidity zone formed in heavy-ion collisions has been investigated through special selections of light particles and intermediate mass fragments detected in the reaction 35Cl on 12C at 43 MeV/nucleon and the reactions 58Ni on 12C, 24Mg, and 197Au at 34.5 MeV/nucleon, and of neutron energy spectra measured in the reaction 35Cl on natTa. Properties of the observables have been examined to characterize the neck-like structure formed between the two reaction partners.

  19. Non abelian hydrodynamics and heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Calzetta, E. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Buenos Aires 1428 (Argentina)

    2014-01-14

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  20. Thermodynamical Aspects in Heavy Ion Reactions

    Science.gov (United States)

    Bruno, M.; Cannata, F.; D'Agostino, M.; de Sanctis, J.; Fabbri, S.; Fuschini, E.; Geraci, E.; Guiot, B.; Vannini, G.; Verondini, E.; Gulminelli, F.; Chomaz, Ph.; Casini, G.; Chiari, M.; Nannini, A.; Barlini, S.; Gramegna, F.; Kravchuk, V.; Lanchais, A.; Vannucci, L.; Moroni, A.; Ordine, A.; Abbondanno, U.; Margagliotti, G. V.

    2005-12-01

    The excited nuclear systems formed in heavy ion collisions can be studied from a thermodynamical point of view. Charged finite systems have different behaviors with respect to infinite ones. After experimental selection of such equilibrated systems the extraction of thermodynamic coordinates is performed. Different signals compatible with a liquid-gas phase transition have been obtained. In particular a bimodal distribution of the asymmetry between the first two heaviest fragments is presented. Abnormally large fluctuations, which in thermodynamic equilibrium are associated to a negative branch of the heat capacity give indications of a first order phase transition. Perspectives for new generation experiments are indicated.

  1. Pair creation in heavy ion channeling

    Directory of Open Access Journals (Sweden)

    N.A. Belov

    2016-04-01

    Full Text Available Heavy ions channeled through crystals with multi-GeV kinetic energies can create electron–positron pairs. In the framework of the ion, the energy of virtual photons arising from the periodic crystal potential may exceed the threshold 2mec2. The repeated periodic collisions with the crystal ions yield high pair production rates. When the virtual photon frequency matches a nuclear transition in the ion, the production rate can be resonantly increased. In this two-step excitation-pair conversion scheme, the excitation rates are coherently enhanced, and scale approximately quadratically with the number of crystal sites along the channel.

  2. Charmonium physics with heavy ions: experimental results

    CERN Document Server

    Scomparin, E

    2016-01-01

    Thirty years ago, the suppression of charmonium production in heavy-ion collisions was first proposed as an unambiguous signature for the formation of a Quark-Gluon Plasma. Since then, experiments at fixed-target accelerators (SPS) and hadronic colliders (RHIC, LHC) have investigated this observable and discovered a wide range of effects, that have been related to the original proposal but at the same time have also prompted a strong development in the underlying theory concepts. In this contribution, I will review the main achievements of this field, with emphasis on recent results obtained by LHC experiments.

  3. Non abelian hydrodynamics and heavy ion collisions

    CERN Document Server

    Calzetta, Esteban

    2013-01-01

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  4. Helicity separation in Heavy-Ion Collisions

    CERN Document Server

    Baznat, Mircea; Sorin, Alexander; Teryaev, Oleg

    2013-01-01

    We study the P-odd effects related to the vorticity of the medium formed in noncentral heavy ion collisions. Using the kinetic Quark-Gluon Strings Model we perform the numerical simulations of the vorticity and hydrodynamical helicity for the various atomic numbers, energies and centralities. We observed the vortical structures typically occupying the relatively small fraction of the fireball volume. In the course of numerical simulations the noticeable hydrodanamical helicity was observed manifesting the specific mirror behaviour with respect to the reaction plane. The effect is maximal at the NICA and FAIR energy range.

  5. Vorticity in heavy-ion collisions

    Science.gov (United States)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  6. Failla Memorial lecture. The future of heavy-ion science in biology and medicine.

    Science.gov (United States)

    Tobias, C A

    1985-07-01

    Interplanetary space contains fluxes of fast moving atomic nuclei. The distribution of these reflects the atomic composition of the universe, and such particles may pose limitations for space flight and for life in space. Over the past 50 years, since the invention of Ernest Lawrence's cyclotron, advances in accelerator technology have permitted the acceleration of charged nuclei to very high velocities. Currently, beams of any stable isotope species up to uranium are available at kinetic energies of several hundred MeV/nucleon at the Berkeley Bevalac. Recently, new areas of particle physics research relating to the mechanisms of spallation and fission have opened up for investigation, and it is now realistic to search for nuclear super-dense states that might be produced in heavy nuclear collisions. The heavy ions hold interest for a broad spectrum of research because of their effectiveness in producing a series of major lesions in DNA along single particle tracks and because of the Bragg depth ionization properties that allow the precise deposition of highly localized doses deep in the human body. Individual heavy ions can also interrupt the continuity of membraneous regions in cells. Heavy ions, when compared to low-LET radiation, have increased effectiveness for mammalian cell lethality, chromosome mutations, and cell transformation. The molecular mechanisms are not completely understood but appear to involve fragmentation and reintegration of DNA. Cells attempt to repair these lesions, and many of the deleterious effects are due to misrepair or misrejoining of DNA. Heavy ions do not require the presence of oxygen for producing their effects, and hypoxic cells in necrotic regions have nearly the same sensitivity as cells in well-oxygenated tissues. Heavy ions are effective in delaying or blocking the cell division process. Heavy ions are also strong enhancers of viral-induced cell transformation, a process that requires integration of foreign DNA. Some cell

  7. Search for Nuclei in Heavy Ion Collisions at Ultrarelativistic Energies

    CERN Multimedia

    2002-01-01

    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle ($>$10-15|0) they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm|2 Au target bombarded by an |1|6O or |3|2S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from |1|6O incident on Au have been taken last year. The experiment is presently taking data with |3|2S ions.

  8. Characterization of swift heavy ion irradiation damage in ceria

    Energy Technology Data Exchange (ETDEWEB)

    Yablinsky, Clarissa A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devanathan, Ram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pakarinen, Janne [Inst. for Nuclear Research Center (SCK-CEN), Mol, (Belgium); Gan, Jian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Severin, Daniel [GSI-Darmstadt (Germany); Trautmann, Christina [GSI-Darmstadt (Germany); Allen, Todd R. [Univ. of Wisconsin, Madison, WI (United States). Energy Physics Dept.

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  9. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  10. Towards the heavy-ion program at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Sako, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Chujo, T. [University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Gunji, T. [Center for Nuclear Study, University of Tokyo, Wako, Saitama 351-0198 (Japan); Harada, H. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kaneta, M. [Tohoku University, Sendai, Miyagi 980-8578 (Japan); Kinsho, M. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Liu, Y. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nagamiya, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Nishio, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Ozawa, K. [J-PARC Center, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801 (Japan); Saha, P.K. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan); Sakaguchi, T. [Broohaven National Laboratory, Upton, NY 11973-5000 (United States); Sato, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Tamura, J. [J-PARC Center, Japan Atomic Energy Agency, Tokay, Naka, Ibaraki 319-1195 (Japan)

    2014-11-15

    A future heavy-ion program at J-PARC has been discussed. The QCD phase structure in high baryon density regime will be explored with heavy ions at the beam momenta of around 10 A GeV/c at the beam rate of 10{sup 10}–10{sup 11} Hz. For this quest, a large acceptance spectrometer is designed to measure electrons and muons, and rare probes such as multi-strangeness and charmed hadrons/nuclei. A heavy-ion acceleration scheme is under study with a new heavy-ion linac and a new booster ring, which accelerate and inject beams into the existing Rapid-Cycling Synchrotron and Main Ring synchrotron. An overview of the heavy-ion program and an accelerator design, as well as physics goals and a conceptual design of the heavy-ion experiment are discussed.

  11. Radiation effects of pyrochlore-rich synroc by heavy-ion irradiation

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-Wen; XU Yong-Jun; ZHU Sheng-Yun; LUO Shang-Geng

    2005-01-01

    Heavy-ion irradiation is commonly used to study radiation damage of high level radioactive waste (HLW)forms, but S ion was never used before. In this investigation, 100 MeV 32S ions produced by tandem accelerator was used to study radiation effects on pyrochlore-rich synroc which contained simulated actinides. The amorphization and amorphous doses were determined by X-ray diffractometer (XRD) and transmission electron microscopy/select area electron diffraction (TEM/SAED). The vacancy defects induced by heavy-ion irradiation were characterized by using positron annihilation technique (PAT). The experimental results show that the amorphous dose is 0.5 dpa, the defects produced by heavy-ion irradiation are mainly voids, and irradiation could continue to intensify the vacancy defects even after the amorphous dose was reached.

  12. Mass spectrometry analysis of etch products from CR-39 plastic irradiated by heavy ions

    Science.gov (United States)

    Kodaira, S.; Nanjo, D.; Kawashima, H.; Yasuda, N.; Konishi, T.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Naka, S.; Ota, S.; Ideguchi, Y.; Hasebe, N.; Mori, Y.; Yamauchi, T.

    2012-09-01

    As a feasibility study, gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) have been applied to analyze etch products of CR-39 plastic (one of the most frequently used solid states nuclear track detector) for the understanding of track formation and etching mechanisms by heavy ion irradiation. The etch products of irradiated CR-39 dissolved in sodium hydroxide solution (NaOH) contain radiation-induced fragments. For the GC-MS analysis, we found peaks of diethylene glycol (DEG) and a small but a definitive peak of ethylene glycol (EG) in the etch products from CR-39 irradiated by 60 MeV N ion beams. The etch products of unirradiated CR-39 showed a clear peak of DEG, but no other significant peaks were found. DEG is known to be released from the CR-39 molecule as a fragment by alkaline hydrolysis reaction of the polymer. We postulate that EG was formed as a result of the breaking of the ether bond (C-O-C) of the DEG part of the CR-39 polymer by the irradiation. The mass distribution of polyallylalcohol was obtained from the etch products from irradiated and unirradiated CR-39 samples by MALDI-MS analysis. Polyallylalcohol, with the repeating mass interval of m/z = 58 Da (dalton) between m/z = 800 and 3500, was expected to be produced from CR-39 by alkaline hydrolysis. We used IAA as a matrix to assist the ionization of organic analyte in MALDI-MS analysis and found that peaks from IAA covered mass spectrum in the lower m/z region making difficult to identify CR-39 fragment peaks which were also be seen in the same region. The mass spectrometry analysis using GC-MS and MALDI-MS will be powerful tools to investigate the radiation-induced polymeric fragments and helping to understand the track formation mechanism in CR-39 by heavy ions.

  13. A heavy ion spectrometer system for the measurement of projectile fragmentation of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Engelage, J.; Crawford, H.J.; Greiner, L.; Kuo, C. [and others

    1996-06-01

    The Heavy Ion Spectrometer System (HISS) at the LBL Bevalac provided a unique facility for measuring projectile fragmentation cross sections important in deconvolving the Galactic Cosmic Ray (GCR) source composition. The general characteristics of the apparatus specific to this application are described and the main features of the event reconstruction and analysis used in the TRANSPORT experiment are discussed.

  14. Heavy ion facilities and heavy ion research at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-10-01

    Lawrence Berkeley Laboratory has been heavily involved since 1956 in the construction and adaptation of particle accelerators for the acceleration of heavy ions. At the present time it has the most extensive group of accelerators with heavy-ion capability in the United States: The SuperHILAC, the 88-Inch Cyclotron, and the Bevatron/Bevalac. An extensive heavy-ion program in nuclear and particle physics, in nuclear chemistry, and in the study of biological effects of heavy-ion irradiations has been supported in the past; and the Laboratory has a strong interest in expanding both its capabilities for heavy-ion acceleration and its participation in heavy-ion science. The first heavy-ion accelerator at LBL was the HILAC, which began operation in 1957. A vigorous program of research with ion beams of masses 4 through 40 began at that time and continued until the machine was shut down for modifications in February 1971. At that time, a grant of $3 M had been received from the AEC for a total reconstruction of the HILAC, to turn it into an upgraded accelerator, the SuperHILAC. This new machine is designed for the acceleration of all ions through uranium to an energy of 8.5 MeV/u. The SuperHILAC is equipped with two injectors. The lower energy injector, a 750-kV Cockcroft-Walton machine, was put into service in late 1972 for acceleration of ions up through {sup 40}Ar. By spring of 1973, operation of the SuperHILAC with this injector exceeded the performance of the original HILAC. The second injector, a 2.5-MV Dynamitron, was originally designed for the Omnitron project and built with $1 M of Omnitron R and D funds. Commissioning of this injector began in 1973 and proceeded to the point where nanoampere beams of krypton were available for a series of research studies in May and June. The first publishable new results with beams heavier than {sup 40}Ar were obtained at that time. Debugging and injector improvement projects will continue in FY 74.

  15. Multiplicity and theremalization time in heavy-ions collisions

    Science.gov (United States)

    Aref'eva, Irina

    2016-10-01

    We present a concise review of quark-gluon plasma formation in heavy-ions collisions within the holographic approach. In particular, we discuss how to get the total multiplicity in heavy ions collision to fit the recent experimental data. We also discuss theoretical estimations of time formation of QGP in heavy ions collision and show that different observables can give the different times of QGP formation.

  16. Multiplicity and theremalization time in heavy-ions collisions

    Directory of Open Access Journals (Sweden)

    Aref’eva Irina

    2016-01-01

    Full Text Available We present a concise review of quark-gluon plasma formation in heavy-ions collisions within the holographic approach. In particular, we discuss how to get the total multiplicity in heavy ions collision to fit the recent experimental data. We also discuss theoretical estimations of time formation of QGP in heavy ions collision and show that different observables can give the different times of QGP formation.

  17. Resonance propagation in heavy-ion scattering

    Indian Academy of Sciences (India)

    Bijoy Kundu; B K Jain

    2001-06-01

    The formalism developed earlier by us for the propagation of a resonance in the nuclear medium in proton–nucleus collisions has been modified to the case of vector boson production in heavy-ion collisions. The formalism includes coherently the contribution to the observed di-lepton production from the decay of a vector boson inside as well as outside the nuclear medium. The medium modification of the boson is incorporated through an energy dependent optical potential. The calculated invariant mass distributions are presented for the -meson production using optical potentials estimated within the VDM and the resonance model. The shift in the invariant mass distribution is found to be small. To achieve the mass shift (of about 200 MeV towards lower mass) as indicated in the high energy heavy-ion collision experiments, an unusually strong optical potential of about -120 MeV is required. We also observe that, for not so heavy nuclear systems and/or for fast moving resonances, the shape, magnitude and peak position of the invariant mass distribution is substantially different if the contributions from the resonance decay inside and outside are summedup at the amplitude level (coherently) or at the cross section level (incoherently).

  18. QCD and Heavy Ions RHIC Overview

    CERN Document Server

    Granier de Cassagnac, Raphael

    2010-01-01

    Nowadays, the most violent heavy ion collisions available to experimental study occur at the Relativistic Heavy Ion Collider (RHIC) of the Brookhaven National Laboratory. There, gold ions collide at psNN = 200 GeV. The early and most striking RHIC results were summarised in 2005 by its four experiments, BRAHMS, PHENIX, PHOBOS and STAR, in their so-called white papers [1, 2, 3, 4] that will be largely referenced thereafter. Beyond and after this, a wealth of data has been collected and analysed, providing additional information about the properties of the matter created at RHIC. It is categorically impossible to give a comprehensive review of these results in a 20 minutes talk or a 7 pages report. Here, I have made a selection of some of the most striking or intriguing signatures: jet quenching in Section 2, quarkonia suppressions in Section 3 and thermal photons in Section 4. A slightly longer and older version of this review can be found in [5]. Some updates are given here, as well as emphasis on new probes ...

  19. Chamber transport for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Craig L., E-mail: clolson66@msn.com

    2014-01-01

    A brief review is given of research on chamber transport for HIF (heavy ion fusion) dating from the first HIF Workshop in 1976 to the present. Chamber transport modes are categorized into ballistic transport modes and channel-like modes. Four major HIF reactor studies are summarized (HIBALL-II, HYLIFE-II, Prometheus-H, OSIRIS), with emphasis on the chamber transport environment. In general, many beams are used to provide the required symmetry and to permit focusing to the required small spots. Target parameters are then discussed, with a summary of the individual heavy ion beam parameters required for HIF. The beam parameters are then classified as to their line charge density and perveance, with special emphasis on the perveance limits for radial space charge spreading, for the space charge limiting current, and for the magnetic (Alfven) limiting current. The major experiments on ballistic transport (SFFE, Sabre beamlets, GAMBLE II, NTX, NDCX) are summarized, with specific reference to the axial electron trapping limit for charge neutralization. The major experiments on channel-like transport (GAMBLE II channel, GAMBLE II self-pinch, LBNL channels, GSI channels) are discussed. The status of current research on HIF chamber transport is summarized, and the value of future NDCX-II transport experiments for the future of HIF is noted.

  20. Overview of the Heavy Ion Fusion Program

    CERN Document Server

    Celata, C M

    2000-01-01

    The world Heavy Ion Fusion (HIF) Program for inertial fusion energy is looking toward the development and commissioning of several new experiments. Recent and planned upgrades of the facilities at GSI, in Russia, and in Japan greatly enhance the ability to study energy deposition in hot dense matter. Worldwide target design developments have focused on non-ignition targets for nearterm experiments and designs which, while lowering the energy required for ignition, tighten accelerator requirements. The U.S program is transitioning between scaled beam dynamics experiments and high current experiments with power-plant-driver-scale beams. Current effort is aimed at preparation for the next-step large facility, the Integrated Research Experiment (IRE)-- an induction linac accelerating multiple beams to a few hundred MeV, then focusing to deliver tens of kilojoules to a target. The goal is to study heavy ion energy deposition, and to test all of the components and physics needed for an engineering test of a power p...

  1. Future of the ATLAS heavy ion program

    CERN Document Server

    ATLAS-Collaboration, The; The ATLAS collaboration

    2012-01-01

    The primary goal of the heavy ion program at the LHC is to study the properties of deconfined strongly interacting matter, often referred to as ``quark-gluon plasma'' (QGP), created in ultra-relativistic nuclear collisions. That matter is found to be strongly coupled with a viscosity to entropy ratio near a conjectured quantum lower bound. ATLAS foresees a rich program of studies using jets, Upsilons, measurements of global event properties and measurements in proton-nucleus collisions that will measure fundamental transport properties of the QGP, probe the nature of the interactions between constituents of the QGP, elucidate the origin of the strong coupling, and provide insight on the initial state of nuclear collisions. The heavy ion program through the third long shutdown should provide one inverse nb of 5.5~TeV Pb+Pb data. That data will provide more than an order of magnitude increase in statistics over currently available data for high-pT observables such as gamma-jet and Z-jet pairs. However, potentia...

  2. Induction accelerator development for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE). The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator.

  3. Induction accelerator development for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Reginato, L.L.

    1993-05-01

    For approximately a decade, the Heavy Ion Fusion Accelerator Research (HIFAR) group at LBL has been exploring the use of induction accelerators with multiple beams as the driver for inertial fusion targets. Scaled experiments have investigated the transport of space charge dominated beams (SBTE), and the current amplification and transverse emittance control in induction linacs (MBE-4) with very encouraging results. In order to study many of the beam manipulations required by a driver and to further develop economically competitive technology, a proposal has been made in partnership with LLNL to build a 10 MeV accelerator and to conduct a series of experiments collectively called the Induction Linac System Experiments (ILSE).The major components critical to the ILSE accelerator are currently under development. We have constructed a full scale induction module and we have tested a number of amorphous magnetic materials developed by Allied Signal to establish an overall optimal design. The electric and magnetic quadrupoles critical to the transport and focusing of heavy ion beams are also under development. The hardware is intended to be economically competitive for a driver without sacrificing any of the physics or performance requirements. This paper will concentrate on the recent developments and tests of the major components required by the ILSE accelerator.

  4. Recent progress in molecule modification with heavy ion beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research into heavy ion beam biology started in the 1960s, and so far it has become an important interdisciplinary study. Heavy ion beam is more suitable for molecule modification than other sorts of radiation, for it has many superiorities such as the energy transfer effect and the mass deposition effect. Molecule modification with heavy ion beam irradiation can be applied to developing new medicines and their precursors, genetic engineering, protein engi neering, outer space radiobiology, etc. Retrospect and prospect of the research and development of molecule modifica tion with heavy ion beam irradiation are given.

  5. State density formalism of the Iwamoto-Harada model: A suitable tool to treat cluster emission from heavy-ion collisions with account for spin variables

    Directory of Open Access Journals (Sweden)

    Běták Emil

    2017-01-01

    Full Text Available We study the possibility to include the cluster emission into the statistical pre-equilibrium (exciton model suitable also for heavy ion collisions. The direct motivation of this paper is a possibility of producing superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, α-particles.

  6. The Analysis of the Patterns of Radiation-Induced DNA Damage Foci by a Stochastic Monte Carlo Model of DNA Double Strand Breaks Induction by Heavy Ions and Image Segmentation Software

    Science.gov (United States)

    Ponomarev, Artem; Cucinotta, F.

    2011-01-01

    To create a generalized mechanistic model of DNA damage in human cells that will generate analytical and image data corresponding to experimentally observed DNA damage foci and will help to improve the experimental foci yields by simulating spatial foci patterns and resolving problems with quantitative image analysis. Material and Methods: The analysis of patterns of RIFs (radiation-induced foci) produced by low- and high-LET (linear energy transfer) radiation was conducted by using a Monte Carlo model that combines the heavy ion track structure with characteristics of the human genome on the level of chromosomes. The foci patterns were also simulated in the maximum projection plane for flat nuclei. Some data analysis was done with the help of image segmentation software that identifies individual classes of RIFs and colocolized RIFs, which is of importance to some experimental assays that assign DNA damage a dual phosphorescent signal. Results: The model predicts the spatial and genomic distributions of DNA DSBs (double strand breaks) and associated RIFs in a human cell nucleus for a particular dose of either low- or high-LET radiation. We used the model to do analyses for different irradiation scenarios. In the beam-parallel-to-the-disk-of-a-flattened-nucleus scenario we found that the foci appeared to be merged due to their high density, while, in the perpendicular-beam scenario, the foci appeared as one bright spot per hit. The statistics and spatial distribution of regions of densely arranged foci, termed DNA foci chains, were predicted numerically using this model. Another analysis was done to evaluate the number of ion hits per nucleus, which were visible from streaks of closely located foci. In another analysis, our image segmentaiton software determined foci yields directly from images with single-class or colocolized foci. Conclusions: We showed that DSB clustering needs to be taken into account to determine the true DNA damage foci yield, which helps to

  7. Mutagenic effect of accelerated heavy ions on bacterial cells

    Science.gov (United States)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  8. Improved ion guide for heavy-ion fusion-evaporation reactions

    NARCIS (Netherlands)

    Dendooven, P; Beraud, R; Chabanat, E; Emsallem, A; Honkanen, A; Huhta, M; Jokinen, A; Lhersonneau, G; Oinonen, M; Penttila, H; Perajarvi, K; Wang, JC; Aysto, J

    1998-01-01

    The ion guide for heavy-ion-induced reactions developed originally for the SARA facility in Grenoble has been implemented at the Jyvaskyla IGISOL facility. For the Cd-116(Ar-40, 6n)Dy-150 reaction an efficiency of 0.5% relative to the number of reaction products entering the stopping chamber was obt

  9. Photon-jet correlation in heavy ion collisions at the LHC

    CERN Document Server

    Kodolova, Olga; Nikitenko, A N

    2002-01-01

    Transverse momentum imbalance between a jet produced with a hard photon is considered as a signal of medium-induced partonic energy loss in ultrarelativistic heavy ion collisions. We analyze photon-jet correlation in the context of a real experimental situation at the LHC, the problem of neutral pion background being discussed.

  10. HYPERNUCLEAR SPECTROSCOPY WITH HEAVY ION BEAMS : THE HypHI PROJECT AT GSI AND FAIR

    NARCIS (Netherlands)

    Saito, T. R.; Bianchin, S.; Borodina, O.; Hoffmann, J.; Koch, K.; Kurz, N.; Maas, F.; Minami, S.; Nakajima, D.; Ott, W.; Oezel, B.; Rappold, C.; Schmidt, C.; Trautmann, W.; Traeger, M.; Voltz, S.; Achenbach, P.; Pochodzalla, J.; Sekimoto, M.; Takahashi, T.; Kavatsyuk, M.; Hayashi, Y.; Hiraiwa, T.; Moritsu, M.; Nagae, T.; Okamura, A.; Sako, M.; Sugimura, H.; Tanida, K.; Fukuda, T.; Mizoi, Y.; Ajimura, S.; Mochizuki, T.; Sakaguchi, A.; Koike, T.; Tamura, H.

    2010-01-01

    The HypHI experiment for precise hypernuclear spectroscopy with induced reactions of stable heavy ion beams and rare isotope beams is currently under preparation at GSI. The main goal of the HypHI project is to study neutron and proton rich hypernuclei and to measure directly hypernuclear magnetic m

  11. Interphase Death of Chinese Hamster Ovary Cells Exposed to Accelerated Heavy Ions

    Directory of Open Access Journals (Sweden)

    P. Mehnati

    2007-06-01

    Full Text Available Introduction: Heavy ions are nucleus of elements of iron, argon, carbon and neon that all carry positive electrical charges. For these particles to be useful in radiotherapy they need to accelerated to high energy by more than thousand mega volts. Also the cosmic environment is considered to be a complicated mixture of highly energetic photons and heavy ions such as iron. Therefore, the health risks to astronauts during long mission should be considered.  Materials and Methods: The induction of interphase death was tested on Chinese hamster ovary cells by exposing them to accelerated heavy ions (carbon, neon, argon and iron of 10-2000 linear energy transfers (LETs. The fraction of cells that underwent interphase death was determined by observing individual cells with time-lapse photography (direct method as well as by the indirect method of counting cells undergoing interphase death made visible by the addition of caffeine (indirect method. Results: The interphase death due to the exposure to X- rays is increased linearly as the dose exceeds the threshold dose of 10 Gy. Whereas the interphase death increases at a higher rate due to the exposure to high LET heavy ions and no threshold dose was observed. The range of LET values corresponding to the maximum RBE for the interphase death is 120-230 keV/µm. The probability of inducing the interphase death by a single heavy ion traversing through the nucleus is about 0.04-0.08. Discussion and Conclusion: The relative biological effectiveness (RBE of heavy ions as compared to X- rays as determined at the 50% level of induction is increased with LET. It reached a maximum value at a LET of approximately 230 keV/µm and then decreased with further increase in LET. The range of LET values corresponding to the maximum RBE appears to be narrower for interphase death than for reproductive death.

  12. Measurements on the gas desorption yield of the oxygen-free copper irradiated with low-energy Xe10+ and O+

    Science.gov (United States)

    Dong, Z. Q.; Li, P.; Yang, J. C.; Yuan, Y. J.; Xie, W. J.; Zheng, W. H.; Liu, X. J.; Chang, J. J.; Luo, C.; Meng, J.; Wang, J. C.; Wang, Y. M.; Yin, Y.; Chai, Z.

    2017-10-01

    Heavy ion beam lost on the accelerator vacuum wall will release quantity of gas molecules and make the vacuum system deteriorate seriously. This phenomenon is called dynamic vacuum effect, observed at CERN, GSI and BNL, leading to the decrease of beam lifetime when increasing beam intensity. Heavy ion-induced gas desorption, which results in dynamic vacuum effect, becomes one of the most important problems for future accelerators proposed to operate with intermediate charge state beams. In order to investigate the mechanism of this effect and find the solution method for the IMP future project High Intensity heavy-ion Accelerator Facility (HIAF), which is designed to extract 1 × 1011 uranium particles with intermediate charge state per cycle, two dedicated experiment setups have been installed at the beam line of the CSR and the 320 kV HV platform respectively. Recently, experiment was performed at the 320 kV HV platform to study effective gas desorption with oxygen-free copper target irradiated with continuous Xe10+ beam and O+ beam in low energy regime. Gas desorption yield in this energy regime was calculated and the link between gas desorption and electronic energy loss in Cu target was proved. These results will be used to support simulations about dynamic vacuum effect and optimizations about efficiency of collimators to be installed in the HIAF main synchrotron BRing, and will also provide guidance for future gas desorption measurements in high energy regime.

  13. Thermal desorption from surfaces with laser-induced defects

    Energy Technology Data Exchange (ETDEWEB)

    Szabelski, Pawel; Panczyk, Tomasz; Rudzinski, Wladyslaw

    2002-12-30

    Monte Carlo simulation method was used to mimic surface damage development caused by short laser pulses. The influence of pulsed laser irradiation on the creation of defect concentration was examined in the case of a model surface. In particular, the dependence of the intact surface area on a number of laser scans was studied and compared with the experimental results obtained for Rh(1 1 1) crystal face. Changes in the adsorptivoperties of the surface produced by laser irradiation are explained with the help of a simple geometric model connecting the laser intensity and the disordered area generated by a single laser shot. It was demonstrated that exponential decay of the Low Energy Electron Diffraction (LEED) signal with the number of laser scans, which is observed experimentally, may result directly from the overlapping of the laser spots created on the surface. This effect becomes enhanced when the laser intensity, hence the spot size, increases. The importance of laser-induced defects in the kinetics of catalytic/separation processes was examined in the case of temperature programmed desorption (TPD) spectra from surfaces subjected to a different number of laser shots. The spectra were simulated by employing the Monte Carlo method as well as by application of the absolute rate theory (ART) coupled with the mean field approximation. The results obtained with both methods were in a good agreement even when weak lateral interactions in the adsorbed phase were allowed.

  14. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  15. Electromagnetic probes in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    van Hees H.

    2015-01-01

    Full Text Available Due to their penetrating nature, electromagnetic probes, i.e., lepton-antilepton pairs (dileptons and photons are unique tools to gain insight into the nature of the hot and dense medium of strongly-interacting particles created in relativistic heavy-ion collisions, including hints to the nature of the restoration of chiral symmetry of QCD. Of particular interest are the spectral properties of the electromagnetic current-correlation function of these particles within the dense and/or hot medium. The related theoretical investigations of the in-medium properties of the involved particles in both the partonic and hadronic part of the QCD phase diagram underline the importance of a proper understanding of the properties of various hadron resonances in the medium.

  16. Dilepton Production in Heavy-Ion Collisions

    CERN Document Server

    Rapp, R

    2013-01-01

    The properties of electromagnetic radiation from hot fireballs as created in ultra-relativistic heavy-ion collisions are reviewed. We first outline how the medium effects in the electromagnetic spectral function, which governs thermal production rates, relate to the (partial) restoration of chiral symmetry. In particular, we show how chiral and QCD sum rules, together with constraints from lattice QCD, can render these relations quantitative. Turning to dilepton data, we elaborate on updates in the space-time evolution and quark-gluon plasma emission rates from lattice-QCD calculations. With a now available excitation function in dilepton spectra from the RHIC beam-energy scan connecting down to SPS energies, we argue that a consistent interpretation of dilepton data emerges. Combining well-constrained space-time evolutions with state-of-the-art emission rates identifies most of the radiation to emanate from around the pseudo-critical temperature, and thus confirms resonance melting as the prevalent mechanism...

  17. System size in relativistic heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    WANG Yang-Yang; ZHAO Lin-Jie; YUAN Zhong-Sheng; ZHANG Dan-Dan; FANG Wei; XU Ming-Mei

    2011-01-01

    System size is more than a geometrical quantity in relativistic heavy ion collisions; it is closely related to evolution process,i.e.a different system size corresponds to a different evolution process,and whether QGP is produced depends on the system size.We propose that the system size should be under the same level when comparing the measurements from different colliding nuclei.The equivalence of the peripheral collisions of Au-Au and the central collisions of smaller nuclei is studied using the Monte Carlo method.Comparing the transverse overlapping area of the colliding nuclei,the number of participant nucleons and the number of nucleon-nucleon binary collisions in various colliding nuclei,we give an estimate of the correspondence in system size.This is helpful in the experimental comparison of the measurements from different colliding nuclei.

  18. Hadron Production in Heavy Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Hans Georg; Xu, Nu

    2009-05-19

    Heavy ion collisions are an ideal tool to explore the QCD phase diagram. The goal is to study the equation of state (EOS) and to search for possible in-medium modifications of hadrons. By varying the collision energy a variety of regimes with their specific physics interest can be studied. At energies of a few GeV per nucleon, the regime where experiments were performed first at the Berkeley Bevalac and later at the Schwer-Ionen-Synchrotron (SIS) at GSI in Darmstadt, we study the equation of state of dense nuclear matter and try to identify in-medium modifications of hadrons. Towards higher energies, the regime of the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL), the Super-Proton Synchrotron (SPS) at CERN, and the Relativistic Heavy Ion Collider (RHIC) at BNL, we expect to produce a new state of matter, the Quark-Gluon Plasma (QGP). The physics goal is to identify the QGP and to study its properties. By varying the energy, different forms of matter are produced. At low energies we study dense nuclear matter, similar to the type of matter neutron stars are made of. As the energy is increased the main constituents of the matter will change. Baryon excitations will become more prevalent (resonance matter). Eventually we produce deconfined partonic matter that is thought to be in the core of neutron stars and that existed in the early universe. At low energies a great variety of collective effects is observed and a rather good understanding of the particle production has been achieved, especially that of the most abundantly produced pions and kaons. Many observations can be interpreted as time-ordered emission of various particle species. It is possible to determine, albeit model dependent, the equation of state of nuclear matter. We also have seen indications, that the kaon mass, especially the mass of the K{sup +}, might be modified by the medium created in heavy ion collisions. At AGS energies and above, emphasis shifts towards

  19. Theory overview of Heavy Ion collisions

    CERN Document Server

    Lappi, T

    2016-01-01

    This presentation discusses some recently active topics in the theoretical interpretation of high energy heavy ion collisions at the LHC and at RHIC. We argue that the standard paradigm for understanding the spacetime evolution of the bulk of the matter produced in the collision is provided by viscous relativistic hydrodynamics, which can be used to systematically extract properties of the QCD medium from experimental results. The initial conditions of this hydrodynamical evolution are increasingly well understood in terms of gluon saturation, and can be quantified using Classical Yang-Mills fields and QCD effective kinetic theory. Hard and electromagnetic probes of the plasma provide additional constraints. A particularly fascinating subject are high multiplicity proton-proton and proton-nucleus collisions, where some of the characteristics previously attributed to only nucleus-nucleus collisions have been observed.

  20. Hydrodynamic Approaches in Relativistic Heavy Ion Reactions

    CERN Document Server

    de Souza, Rafael Derradi; Kodama, Takeshi

    2016-01-01

    We review several facets of the hydrodynamic description of the relativistic heavy ion collisions, starting from the historical motivation to the present understandings of the observed collective aspects of experimental data, especially those of the most recent RHIC and LHC results. In this report, we particularly focus on the conceptual questions and the physical foundations of the validity of the hydrodynamic approach itself. We also discuss recent efforts to clarify some of the points in this direction, such as the various forms of derivations of relativistic hydrodynamics together with the limitations intrinsic to the traditional approaches, variational approaches, known analytic solutions for special cases, and several new theoretical developments. Throughout this review, we stress the role of course-graining procedure in the hydrodynamic description and discuss its relation with the physical observables through the analysis of a hydrodynamic mapping of a microscopic transport model. Several questions to...

  1. Heavy Ion results from RHIC-BNL

    Directory of Open Access Journals (Sweden)

    Esumi Shinlchi

    2013-05-01

    Full Text Available Recent results from heavy ion collision experiments from RHIC at BNL are presented and discussed in terms of Quark Gluon Plasm properties, such as partonic collectivity and partonic energy loss. The experimental results with direct photons and heavy quarks have given important additional insights of the plasma on top of what has been known with light hadrons. Higher order event anisotropies and the related results have provided the geometrical, temporal and dynamical information of the plasma. The beam energy dependence of the various measurements could reveal the structure of QCD phase diagram and possibly the critical point in the diagram, where the properties of phase transition are expected to change drastically.

  2. Identifying multiquark hadrons from heavy ion collisions.

    Science.gov (United States)

    Cho, Sungtae; Furumoto, Takenori; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Yasui, Shigehiro; Yazaki, Koichi

    2011-05-27

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  3. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  4. Ion sources for heavy ion fusion (invited)

    Science.gov (United States)

    Yu, Simon S.; Eylon, S.; Chupp, W.; Henestroza, E.; Lidia, S.; Peters, C.; Reginato, L.; Tauschwitz, A.; Grote, D.; Deadrick, F.

    1996-03-01

    The development of ion sources for heavy ion fusion will be reported with particular emphasis on a recently built 2 MV injector. The new injector is based on an electrostatic quadrupole configuration, and has produced pulsed K+ ions of 950 mA peak from a 6.7 in. curved alumino silicate source. The ion beam has reached 2.3 MV with an energy flatness of ±0.2% over 1 μs. The measured normalized edge emittance of less than 1 π mm mrad is close to the source temperature limit. The design, construction, performance, and comparisons with three-dimensional particle-in-cell simulations will be described.

  5. Production of Charge in Heavy Ion Collisions

    CERN Document Server

    Pratt, Scott; Ratti, Claudia

    2015-01-01

    By analyzing preliminary experimental measurements of charge-balance functions from the STAR Collaboration at the Relativistic-Heavy-Ion Collider (RHIC), it is found that pictures where balancing charges are produced in a single surge, and therefore separated by a single length scale, are inconsistent with data. In contrast, a model that assumes two surges, one associated with the formation of a thermalized quark-gluon plasma and a second associated with hadronization, provides a far superior reproduction of the data. A statistical analysis of the model comparison finds that the two-surge model best reproduces the data if the charge production from the first surge is similar to expectations for equilibrated matter taken from lattice gauge theory. The charges created in the first surge appear to separate by approximately one unit of spatial rapidity before emission, while charges from the second wave appear to have separated by approximately a half unit or less.

  6. Holography, Hydrodynamization and Heavy-Ion Collisions

    CERN Document Server

    Heller, Michal P

    2016-01-01

    In the course of the past several years holography has emerged as an ab initio tool in exploring strongly-time-dependent phenomena in gauge theories. These lecture notes overview recent developments in this area driven by phenomenological questions concerning applicability of hydrodynamics under extreme conditions occurring in ultrarelativistic heavy-ion collisions at RHIC and LHC. The topics include equilibration time scales, holographic collisions and hydrodynamization from the point of view of the asymptotic character of the hydrodynamic gradient expansion. The emphasis is put on concepts rather than calculational techniques and particular attention is devoted to present these developments in the context of the most recent advances and some of the open problems.

  7. Particle Interferometry in Heavy-Ion Collisions

    CERN Document Server

    Heinz, Ulrich W

    1997-01-01

    By measuring hadronic single-particle spectra and two-particle correlations in heavy-ion collisions, the size and dynamical state of the collision fireball at freeze-out can be reconstructed. I discuss the relevant theoretical methods and their limitations. By applying the formalism to recent pion correlation data from Pb+Pb collisions at CERN we demonstrate that the collision zone has undergone strong transverse growth before freeze-out (by a factor 2-3 in each direction), and that it expands both longitudinally and transversally. From the thermal and flow energy density at freeze-out the energy density at the onset of transverse expansion can be estimated from conservation laws. It comfortably exceeds the critical value for the transition to color deconfined matter.

  8. Cold fission as heavy ion emission

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Maruhn, J.A.; Greiner, W.; Ivascu, M.; Mazilu, D.; Gherghescu, R.

    1987-11-01

    The last version of the analytical superasymmetric fission model is applied to study cold fission processes. Strong shell effects are present either in one or both fission fragments. A smooth behaviour is observed when the proton or the neutron numbers are changed by four units. Increasing Z and N, in the transuranium region, a sharp transition from asymmetry with a large peak-to-valley ratio to symmetry at Z=100 and/or N=164 is obtained. The transition toward asymmetry at higher Z and N is much smoother. The most probable cold fission light fragments from /sup 234/U, /sup 236/U, /sup 239/Np and /sup 240/Pu are /sup 100/Zr, /sup 104/Mo, /sup 106/Mo and /sup 106/Mo, respectively, in good agreement with experimental data. The unified treatment of alpha decay, heavy ion radioactivities and cold fission is illustrated for /sup 234/U - the first nucleus in which all three groups have been already observed.

  9. Observation of DNA damage of human hepatoma cells irradiated by heavy ions using comet assay

    Institute of Scientific and Technical Information of China (English)

    Li-Mei Qiu; Wen-Jian Li; Xin-Yue Pang; Qing-Xiang Gao; Yan Feng; Li-Bin Zhou; Gao-Hua Zhang

    2003-01-01

    to the change of doses indicate that comet assay is a useful tool to detect DNA damage induced by heavy ions.

  10. Heavy-ion physics studies for the Future Circular Collider

    Science.gov (United States)

    Armesto, N.; Dainese, A.; d'Enterria, D.; Masciocchi, S.; Roland, C.; Salgado, C. A.; van Leeuwen, M.; Wiedemann, U. A.

    2014-11-01

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode including proton and nucleus beams, more than seven times larger than the nominal LHC energies. An electron-positron collider in the same tunnel is also considered as an intermediate step, which in the long term would allow for electron-hadron collisions. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of quark-gluon plasma, gluon saturation, photon-induced collisions, as well as connections with the physics of ultra-high-energy cosmic rays.

  11. Heavy-ion physics studies for the Future Circular Collider

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Dainese, A., E-mail: andrea.dainese@pd.infn.it [INFN — Sezione di Padova, 35131 Padova (Italy); D' Enterria, D. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland); Masciocchi, S. [EMMI and GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Roland, C. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Salgado, C.A. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia (Spain); Leeuwen, M. van [Nikhef, National Institute for Subatomic Physics and Institute for Subatomic Physics of Utrecht University, Utrecht (Netherlands); Wiedemann, U.A. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland)

    2014-11-15

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron–hadron collision mode including proton and nucleus beams, more than seven times larger than the nominal LHC energies. An electron–positron collider in the same tunnel is also considered as an intermediate step, which in the long term would allow for electron–hadron collisions. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of quark–gluon plasma, gluon saturation, photon-induced collisions, as well as connections with the physics of ultra-high-energy cosmic rays.

  12. Heavy-ion physics studies for the Future Circular Collider

    CERN Document Server

    Armesto, Nestor; d'Enterria, David; Masciocchi, Silvia; Roland, Christof; Salgado, Carlos; van Leeuwen, Marco; Wiedemann, Urs

    2014-01-01

    The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode including proton and nucleus beams, more than seven-times larger than the nominal LHC energies. An electron-positron collider in the same tunnel is also considered as an intermediate step, which would provide the electron-hadron option in the long term. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of Quark-Gluon Plasma, gluon saturation, photon-induced collisions, as well as connections with ultra-high-energy cosmic rays.

  13. Modification and Characterisation of Materials by Swift Heavy Ions

    Directory of Open Access Journals (Sweden)

    D. K. Avasthi

    2009-07-01

    Full Text Available Swift heavy ions (SHI available with 15 million Volt Pelletron accelerator at Inter University Accelerator Centre (IUAC Delhi, formerly known as Nuclear Science Centre, (NSC, provide a unique opportunity to researchers for accelerator based materials science research. The major research areas can be broadly categorised as electronic sputtering, interface modifications, synthesis and modification of nanostructures, phase transitions and ion beam-induced epitaxial crystallisation. In, general, SHI irradiation based-materials may not be economically feasible, still it could be of interest for very specific cases in defence and space research. The paper gives a glimpse of the current research activities in materials science with SHIs, at IUAC.Defence Science Journal, 2009, 59(4, pp.401-412, DOI:http://dx.doi.org/10.14429/dsj.59.1540

  14. High energy heavy ion tracks in bubble detectors

    CERN Document Server

    Guo, S L; Guo, H Y; Tu, C Q; Wang, Y L; Doke, T; Kato, T; Ozaki, K; Kyan, A; Piao, Y; Murakami, T

    1999-01-01

    Bubble detectors which are commonly used as neutron detectors have been demonstrated through this study to be good detectors for registration of high energy heavy ion tracks. Large size bubble detectors made in China Institute of Atomic Energy were irradiated to heavy ions Ar and C up to 650 MeV/u and 400 MeV/u, respectively. Very clear features of stringy tracks of high energy heavy ions and their fragmentations are manifested and distinguishable. A single track created by a specific high energy heavy ion is composed of a line of bubbles, which is visible by naked eyes and retained for months without reduction in size. The creation of heavy ion tracks in bubble detectors is governed by a threshold whose essence is approximately a critical value of energy loss rate (dE/dX) sub c similar to that of etch track detectors. Ranges of heavy ions in bubble detectors are apparent and predictable by existing formulas. Identification of high energy heavy ions and the applications to heavy ion physics, cosmic rays, exot...

  15. PRISMA - a magnetic spectrometer for heavy ions at LNL

    Energy Technology Data Exchange (ETDEWEB)

    Latina, A.; Stefanini, A.M.; Beghini, S.; Behera, B.R.; Corradi, L.; De Angelis, G.; De Rosa, A.; Fioretto, E.; Gadea, A.; Gulmini, M.; Inglima, G.; La Commara, M.; Maron, G.; Menegazzo, R.; Marginean, N.; Montagnoli, G.; Napoli, D.R.; Pierroutsakou, D.; Pollarolo, G.; Romoli, M.; Sandoli, M.; Scarlassara, F.; Szilner, S.; Toniolo, N.; Trotta, M.; Wu, Y.W

    2004-04-05

    The heavy-ion magnetic spectrometer PRISMA was recently installed at Laboratori Naz. di Legnaro, in order to exploit the heavy-ion beams of the XTU Tandem-ALPI-PIAVE accelerator complex, with masses up to A{approx_equal}200 at energies {approx_equal}5-10 MeV MeV A.

  16. Heavy ion recoil spectrometry of barium strontium titanate films

    Science.gov (United States)

    Stannard, W. B.; Johnston, P. N.; Walker, S. R.; Bubb, I. F.; Scott, J. F.; Cohen, D. D.; Dytlewski, N.; Martin, J. W.

    1995-05-01

    Thin films of barium strontium titanate have been analysed using heavy ion recoil spectrometry with 77 and 98 MeV 127I ions at the new heavy ion recoil facility at ANSTO, Lucas Heights. New calibration procedures have been developed for quantitative analysis. Energy spectra for each of the elements present reveal interdiffusion that was not previously known.

  17. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    McLerran, Larry

    2009-01-01

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark Gluon Plasma, the Color Glass Condensate, the Glasma and Quarkyonic Matter. A novel effect that may be associated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts and explain how they may be seen in ultra-relativistic heavy ion collisions.

  18. Quarkonia at finite temperature in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    Saumen Datta

    2015-05-01

    The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a brief discussion of the experimental results and outlook.

  19. Light and heavy ion beam analysis of thin biological sections

    Science.gov (United States)

    Lee, Joonsup; Siegele, Rainer; Pastuovic, Zeljko; Hackett, Mark J.; Hunt, Nicholas H.; Grau, Georges E.; Cohen, David D.; Lay, Peter A.

    2013-07-01

    The application of ion beam analysis (IBA) techniques to thin biological sections (ThBS) presents unique challenges in sample preparation, data acquisition and analysis. These samples are often the end product of expensive, time-consuming experiments, which involve many steps that require careful attention. Analysis via several techniques can maximise the information that is collected from these samples. Particle-induced X-ray emission (PIXE) and Rutherford backscattering (RBS) spectroscopy are two generally non-destructive IBA techniques that use the same MeV ions and can be performed simultaneously. The use of heavy ion PIXE applied to thick samples has, in the past, resulted in X-ray spectra of a poorer quality when compared to those obtained with proton beams. One of the reasons for this is the shorter probing depth of the heavy ions, which does not affect thin sample analysis. Therefore, we have investigated and compared 3-MeV proton and 36-MeV carbon ion beams on 7-μm thick mouse brain sections at the ANSTO Heavy ion microprobe (HIMP). The application of a 36-MeV C4+ ion beam for PIXE mapping of ThBS on thin Si3N4 substrate windows produced spectra of high quality that displayed close to a nine-times gain in signal yield (Z2/q) when compared to those obtained for 3-MeV protons for P, S, Cl and K but not for Fe, Cu and Zn. Image quality was overall similar; however, some elements showed better contrast and features with protons whilst others showed improved contrast with a carbon ion beam. RBS spectra with high enough counting statistics were easily obtained with 3-MeV proton beams resulting in high resolution carbon maps, however, the count rate for nitrogen and oxygen was too low. The results demonstrate that on thin samples, 36-MeV C4+ will produce good quality PIXE spectra in less time; therefore, carbon ions may be advantageous depending on which element is being studied. However, these advantages may be outweighed by the inherent disadvantages including

  20. Light and heavy ion beam analysis of thin biological sections

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joonsup, E-mail: joonsup.lee@sydney.edu.au [School of Chemistry, The University of Sydney, NSW 2006 (Australia); Siegele, Rainer, E-mail: rainer.siegele@ansto.gov.au [Institute for Environmental Research, ANSTO, NSW 2234 (Australia); Pastuovic, Zeljko, E-mail: zeljko.pastuovic@ansto.gov.au [Institute for Environmental Research, ANSTO, NSW 2234 (Australia); Hackett, Mark J., E-mail: mark.hackett@usask.ca [School of Chemistry, The University of Sydney, NSW 2006 (Australia); Hunt, Nicholas H., E-mail: nhunt@med.usyd.edu.au [Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, NSW 2006 (Australia); Grau, Georges E., E-mail: georges.grau@sydney.edu.au [Vascular Immunology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, NSW 2006 (Australia); Cohen, David D., E-mail: david.cohen@ansto.gov.au [Institute for Environmental Research, ANSTO, NSW 2234 (Australia); Lay, Peter A., E-mail: peter.lay@sydney.edu.au [School of Chemistry, The University of Sydney, NSW 2006 (Australia)

    2013-07-01

    The application of ion beam analysis (IBA) techniques to thin biological sections (ThBS) presents unique challenges in sample preparation, data acquisition and analysis. These samples are often the end product of expensive, time-consuming experiments, which involve many steps that require careful attention. Analysis via several techniques can maximise the information that is collected from these samples. Particle-induced X-ray emission (PIXE) and Rutherford backscattering (RBS) spectroscopy are two generally non-destructive IBA techniques that use the same MeV ions and can be performed simultaneously. The use of heavy ion PIXE applied to thick samples has, in the past, resulted in X-ray spectra of a poorer quality when compared to those obtained with proton beams. One of the reasons for this is the shorter probing depth of the heavy ions, which does not affect thin sample analysis. Therefore, we have investigated and compared 3-MeV proton and 36-MeV carbon ion beams on 7-μm thick mouse brain sections at the ANSTO Heavy ion microprobe (HIMP). The application of a 36-MeV C{sup 4+} ion beam for PIXE mapping of ThBS on thin Si{sub 3}N{sub 4} substrate windows produced spectra of high quality that displayed close to a nine-times gain in signal yield (Z{sup 2}/q) when compared to those obtained for 3-MeV protons for P, S, Cl and K but not for Fe, Cu and Zn. Image quality was overall similar; however, some elements showed better contrast and features with protons whilst others showed improved contrast with a carbon ion beam. RBS spectra with high enough counting statistics were easily obtained with 3-MeV proton beams resulting in high resolution carbon maps, however, the count rate for nitrogen and oxygen was too low. The results demonstrate that on thin samples, 36-MeV C{sup 4+} will produce good quality PIXE spectra in less time; therefore, carbon ions may be advantageous depending on which element is being studied. However, these advantages may be outweighed by the

  1. Heavy ion radiobiology for hadrontherapy and space radiation protection.

    Science.gov (United States)

    Durante, Marco

    2004-12-01

    Research in the field of biological effects of heavy charged particles is needed for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions. Although the exposure conditions (e.g. high- vs. low-dose rate) and relevant endpoints (e.g. cell killing vs. neoplastic transformation) are different in the two fields, it is clear that a substantial overlap exists in several research topics. Three such topics are discussed in this short review: individual radiosensitivity, mixed radiation fields, and late stochastic effects of heavy ions. In addition, researchers involved either in experimental studies on space radiation protection or heavy-ion therapy will basically use the same accelerator facilities. It seems to be important that novel accelerator facilities planned (or under construction) for heavy-ion therapy reserve a substantial amount of beamtime to basic studies of heavy-ion radiobiology and its applications in space radiation research.

  2. CHICO, a heavy ion detector for Gammasphere

    CERN Document Server

    Simon, M W; Wu, C Y; Gray, R W; Teng, R; Long, C

    2000-01-01

    A 4 pi position-sensitive heavy-ion detector system, CHICO, has been developed primarily for use in conjunction with the 4 pi gamma-ray facility, Gammasphere. The CHICO detector comprises an array of 20 Parallel Plate Avalanche Counters (PPACs) covering 12 deg.

  3. Heavy Ion Physics at the LHC

    CERN Document Server

    Morsch, Andreas

    2000-01-01

    Proposal of abstract for HEP99, Tampere, Finland, 15-21 July 1999The Large Hadron Collider (LHC) under construction at CERN is also planned as a heavy ion collider with lead ions colliding at an energy of 5.5 TeV. This corresponds to collisions of matter with cosmic rays of the highest energies observed so far promising the study of new and exciting aspects of physics. In addition to the heaviest system (Pb--Pb), collisions of lower mass ions are foreseen as a means to study collisions at different energy density and proton-nucleus (p--A) collisions provide indispensable reference data for the A--A collisions.ALICE (A Large Ion Collider Experiment) is the only detector fully dedicated to the physics of nuclear collisions. It is designed to cover the full richness of hadronic and leptonic signals expected at the LHC allowing to establish and to study the phase transition from hadronic matter to deconfined partonic matter, the quark gluon plasma (QGP). The CMS experiment is optimised for the study of hard proce...

  4. Heavy ion acceleration at parallel shocks

    Directory of Open Access Journals (Sweden)

    V. L. Galinsky

    2010-11-01

    Full Text Available A study of alpha particle acceleration at parallel shock due to an interaction with Alfvén waves self-consistently excited in both upstream and downstream regions was conducted using a scale-separation model (Galinsky and Shevchenko, 2000, 2007. The model uses conservation laws and resonance conditions to find where waves will be generated or damped and hence where particles will be pitch-angle scattered. It considers the total distribution function (for the bulk plasma and high energy tail, so no standard assumptions (e.g. seed populations, or some ad-hoc escape rate of accelerated particles are required. The heavy ion scattering on hydromagnetic turbulence generated by both protons and ions themselves is considered. The contribution of alpha particles to turbulence generation is important because of their relatively large mass-loading parameter Pα=nαmα/npmp (mp, np and mα, nα are proton and alpha particle mass and density that defines efficiency of wave excitation. The energy spectra of alpha particles are found and compared with those obtained in test particle approximation.

  5. Strange Particles and Heavy Ion Physics

    Energy Technology Data Exchange (ETDEWEB)

    Bassalleck, Bernd [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy; Fields, Douglas [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2016-04-28

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for this award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.

  6. Reaction mechanisms in heavy ion fusion

    Directory of Open Access Journals (Sweden)

    Lubian J.

    2011-10-01

    Full Text Available We discuss the reaction mechanisms involved in heavy ion fusion. We begin with collisions of tightly bound systems, considering three energy regimes: energies above the Coulomb barrier, energies just below the barrier and deep sub-barrier energies. We show that channel coupling effects may influence the fusion process at above-barrier energies, increasing or reducing the cross section predicted by single barrier penetration model. Below the Coulomb barrier, it enhances the cross section, and this effect increases with the system’s size. It is argued that this behavior can be traced back to the increasing importance of Coulomb coupling with the charge of the collision partners. The sharp drop of the fusion cross section observed at deep sub-barrier energies is addressed and the theoretical approaches to this phenomenon are discussed. We then consider the reaction mechanisms involved in fusion reactions of weakly bound systems, paying particular attention to the calculations of complete and incomplete fusion available in the literature.

  7. Inertially confined fusion using heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B. (Stanford Linear Accelerator Center, Menlo Park, CA (United States)); Bangerter, R.O. (Lawrence Berkeley Lab., CA (United States)); Bock, R. (Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)); Hogan, W.J.; Lindl, J.D. (Lawrence Livermore National Lab., CA (United States))

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF (2) Which problems are most appropriate for such collaboration (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  8. Inertially confined fusion using heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Herrmannsfeldt, W.B. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Bangerter, R.O. [Lawrence Berkeley Lab., CA (United States); Bock, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hogan, W.J.; Lindl, J.D. [Lawrence Livermore National Lab., CA (United States)

    1991-10-01

    The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

  9. Electromagnetic Radiations from Heavy Ion Collision

    Directory of Open Access Journals (Sweden)

    Payal Mohanty

    2013-01-01

    Full Text Available In this review, we have discussed the different sources of photons and dileptons produced in heavy ion collision (HIC. The transverse momentum (pT spectra of photons for different collision energies are analyzed with a view of extracting the thermal properties of the system formed in HIC. We showed the effect of viscosity on pT spectra of produced thermal photons. The dilepton productions from hot hadrons are considered including the spectral change of light vector mesons in the thermal bath. We have analyzed the pT and invariant mass (M spectra of dileptons for different collision energies too. As the individual spectra are constrained by certain unambiguous hydrodynamical inputs, so we evaluated the ratio of photon to dilepton spectra, Rem, to overcome those quantities. We argue that the variation of the radial velocity extracted from Rem with M is indicative of a phase transition from the initially produced partons to hadrons. In the calculations of interferometry involving dilepton pairs, it is argued that the nonmonotonic variation of HBT radii with invariant mass of the lepton pairs signals the formation of quark gluon plasma in HIC. Elliptic flow (v2 of dilepton is also studied at sNN=2.76 TeV for 30–40% centrality using the (2+1d hydrodynamical model.

  10. High Gluon Densities in Heavy Ions Collisions

    CERN Document Server

    Blaizot, Jean-Paul

    2016-01-01

    The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction $x$ of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of "saturation" which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the "saturation momentum", that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small $x$ gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in hea...

  11. A radial TPC for heavy ions

    CERN Document Server

    Garabatos, C

    2000-01-01

    The CERES experiment at the CERN SPS has been recently upgraded with a TPC with radial drift field, the first one of its sort. Constructed during 1998, it has been successfully operated in commissioning and physics runs, with muon, proton, and heavy-ion beams. A high voltage electrode of about 0.5 m radius is surrounded by sixteen 2 m long readout chambers, placed at a radius of 1.3 m, with chevron-shaped readout pads. The field cage is enclosed by two low-mass voltage degraders at each end of the cylindrical structure. A Ne-CO/sub 2/ [80-20] gas mixture allows for a safe operation and good transport properties under drift fields ranging from 200 to 600 V/cm. A spatial resolution better than 700 microns and 350 microns in r and rdelta (phi), respectively, has been achieved in a highly inhomogeneous magnetic field. Details of its construction as well as results of the operation and performance in a high multiplicity environment are presented. (0 refs).

  12. Heavy ion acceleration using femtosecond laser pulses

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from ultrathin (<200 nm) gold foils irradiated by a short pulse laser is presented. Using two dimensional particle-in-cell simulations the time history of the laser bullet is examined in order to get insight into the laser energy deposition and ion acceleration process. For laser pulses with intensity , duration 32 fs, focal spot size 5 mkm and energy 27 Joules the calculated reflection, transmission and coupling coefficients from a 20 nm foil are 80 %, 5 % and 15 %, respectively. The conversion efficiency into gold ions is 8 %. Two highly collimated counter-propagating ion beams have been identified. The forward accelerated gold ions have average and maximum charge-to-mass ratio of 0.25 and 0.3, respectively, maximum normalized energy 25 MeV/nucleon and flux . Analytical model was used to determine a range of foil thicknesses suitable for acceleration of gold ions in the Radiation Pressure Acceleration regime and the onset of the Target Normal Sheath Acceleratio...

  13. Heavy ion fusion experiments at LBNL and LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Ahle, L

    1998-08-19

    The long-range goal of the US Heavy Ion Fusion (HIF) program is to develop heavy ion accelerators capable of igniting inertial fusion targets to generate fusion energy for electrical power production. Accelerators for heavy ion fusion consist of several subsystems: ion sources, injectors, matching sections, combiners, induction acceleration sections with electric and magnetic focusing, beam compression and bending sections, and a final-focus system to focus the beams onto the target. We are currently assembling or performing experiments to address the physics of all these subsystems. This paper will discuss some of these experiments.

  14. A short introduction to heavy-ion physics

    CERN Document Server

    Gupta, Sourendu

    2015-01-01

    Heavy-ion collisions provide the only laboratory tests of relativistic quantum field theory at finite temperature. Understanding these is a necessary step in understanding the origins of our universe. These lectures introduce the subject to experimental particle physicists, in the hope that they will be useful to others as well. The phase diagram of QCD is briefly touched upon. Kinematic variables which arise in the collisions of heavy-ions beyond those in the collisions of protons or electrons are introduced. Finally, a few of the signals studied in heavy-ion collisions, and the kind of physics questions which they open up are discussed.

  15. Thermal, chemical and spectral equilibration in heavy-ion collisions

    CERN Document Server

    Almási, Gábor András

    2014-01-01

    We have considered the equilibration in a relativistic heavy ion collision using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20-40 fm/c which time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have also shown that the mass spectra of broad resonances immediately follows their in-medium spectral functions.

  16. An EBIS-based heavy ion injector for the AGS

    Energy Technology Data Exchange (ETDEWEB)

    Kponou, A.; Alessi, J.; Beebe, E.; Brennan, J.M.; Hershcovitch, A.; Prelec, K.; Raparia, D.

    1994-09-01

    An electron beam ion source (EBIS), followed by a heavy ion RFQ and superconducting linac, can be considered as a heavy ion injector for high energy accelerators, such as the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. A test EBIS, on long term loan from Sandia National Laboratory, is presently being commissioned at BNL. Experiments on this source will be used in evaluating the parameters for an EBIS-based RHIC injector. Some results of this commissioning, as well as the conceptual designs of the RFQ and linac, are presented.

  17. Calorimetric low temperature detectors for heavy ion physics

    Energy Technology Data Exchange (ETDEWEB)

    Egelhof, P.; Kraft-Bermuth, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Mainz Univ. (Germany). Inst. fuer Physik

    2005-05-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics at present and at the next generation heavy ion facilities is given with a special emphasis on the conditions for heavy ion detection and the potential advantage of cryogenic detectors for applications in heavy ion physics. Two types of calorimetric low temperature detectors for the detection of energetic heavy ions have been developed and their response to the impact of heavy ions was investigated systematically for a wide range of energies (E=0.1-360 MeV/amu) and ion species ({sup 4}He.. {sup 238}U). Excellent results with respect to energy resolution, {delta}E/E ranging from 1 to 5 x 10{sup -3} even for the heaviest ions, and other basic detector properties such as energy linearity with no indication of a pulse height defect, energy threshold, detection efficiency and radiation hardness have been obtained, representing a considerable improvement as compared to conventional heavy ion detectors based on ionization. With the achieved performance, calorimetric low temperature detectors bear a large potential for applications in various fields of basic and applied heavy ion research. A brief overview of a few prominent examples, such as high resolution nuclear spectroscopy, high resolution nuclear mass determination, which may be favourably used for identification of superheavy elements or in direct reaction experiments with radioactive beams, as well as background discrimination in accelerator mass spectrometry, is given, and first results are presented. For instance, the use of cryogenic detectors allowed to improve the sensitivity in trace analysis of {sup 236}U by one order of magnitude and to determine the up to date smallest isotope ratio of {sup 236}U/{sup 238}U = 6.1 x 10{sup -12} in a sample of natural uranium. Besides the detection of heavy ions, the concept of cryogenic detectors also

  18. Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

    Science.gov (United States)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2017-07-01

    We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to the relativistic induced transparency (RIT) regime for heavy ions akin to light ions. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. A more detailed study involving variation of peak laser intensity I 0 and pulse duration τFWHM revealed that the transition point from RPA to RIT regime depends on the peak laser intensity on target and occurs for pulse duration {τ }{{F}{{W}}{{H}}{{M}}}{{R}{{P}}{{A}}\\to {{R}}{{I}}{{T}}}[{{f}}{{s}}]\\cong 210/\\sqrt{{I}0[{{W}} {{{cm}}}-2]/{10}21}. The most abundant gold ion and charge-to-mass ratio are Au51+ and q/M ≈ 1/4, respectively, half that of light ions. For ultrathin foils, on the order of one skin depth, we established a linear scaling of the maximum energy per nucleon (E/M)max with (q/M)max, which is more favorable than the quadratic one found previously. The numerical simulations predict heavy ion beams with very attractive properties for applications: high directionality (high fluxes (>1011 ions sr-1) and energy (>20 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  19. Study on impurity desorption induced by femtosecond pulse laser based on a stochastic process model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the advantages on non-equilibrium heating and desorption induced by electronic transition, the femtosecond pulse laser introduces a new way for solving the problem of impurity pollution adsorbed on a solid thin film in micro-electro-mechanical systems (MEMS). A model based on stochastic processes was established for stimulated desorption induced by the femtosecond pulse laser to interpret the interaction of the optically excited hot electrons with the adsorbed molecules in a metal substrate. Numerical simulation results reveal a time-dependent desorption probability of adsorbed molecules and indicate that how key parameters of femtosecond pulse laser, such as incident laser energy flux, pulse duration, and wavelength of pulse, have a great effect on the desorption probability.

  20. Cellular and molecular studies of mutation induction by low energy heavy ions

    Institute of Scientific and Technical Information of China (English)

    TomKHei; DavidJChen; 等

    1997-01-01

    Mutation induction by low energy heavy ions was scored at the hypoxanthine guanine phosphoribosyl transferase(HGPRT) locus using both normal human fibroblasts and the human-hamster hybrid AL cells.In addition,the mutation yield at a non-essential chromosome was also examined by using the S1 marker gene locating on human chromosome 11 in AL cells,Mutagenicity induced by low energy heavy ions was dose and LET dependent.THe induced mutant fractions at the S1 locus were consistently higher than those for HGPRT.Using a mutation system that can detect multilocus changes,it can be shown by either Southern blotting or multiplex PCR techniques that radiation can induce chromosomal deletions in the millions of basepairs.

  1. Gamma-ray spectroscopy with relativistic exotic heavy-ions

    Indian Academy of Sciences (India)

    Samit Mandal; J Gerl; H Geissel; K Hauschild; M Hellström; Z Janas; I Kojouharov; Y Kopatch; R C Lemmon; P Mayet; Z Podolyak; P H Regan; H Schaffner; C Schlegel; J Simpson; H J Wollersheim

    2001-07-01

    Feasibility of gamma-ray spectroscopy at relativistic energies with exotic heavy-ions and new generation of germanium detectors (segmented Clover) is discussed. An experiment with such detector array and radioactive is discussed.

  2. Heavy ion physics with the ALICE experiment at LHC

    CERN Document Server

    Zampolli, Chiara

    2007-01-01

    ALICE is the experiment at the LHC collider at CERN dedicated to heavy ion physics. In this report, the ALICE detector will be presented, together with its expected performance as far as some selected physics topics are concerned.

  3. Report of the heavy-ion fusion task group

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, G.A.; Booth, L.A.; Henderson, D.B.; Jameson, R.A.; Kindel, J.M.; Knapp, E.A.; Pollock, R.; Talbert, W.L.; Thode, L.E.; Williams, J.M.

    1980-02-01

    An assessment of heavy-ion fusion has been completed. Energetic heavy ions, for example 10-GeV uranium, provided by an rf linac or an induction linac, are used as alternatives to laser light to drive inertial confinement fusion pellets. The assessment has covered accelerator technology, transport of heavy-ion beams, target interaction physics, civilian power issues, and military applications. It is concluded that particle accelerators promise to be efficient pellet drivers, but that there are formidable technical problems to be solved. It is recommended that a moderate level research program on heavy-ion fusion be pursued and that LASL should continue to work on critical issues in accelerator development, beam transport, reactor systems studies, and target physics over the next few years.

  4. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  5. Sample Management System for Heavy Ion Irradiation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A robotic sample management device and system for the exposure of biological and material specimens to heavy ion beams of the NASA Space Radiation Laboratory (NSRL)...

  6. Elastic recoil detection analysis on the ANSTO heavy ion microprobe

    Science.gov (United States)

    Siegele, R.; Orlic, I.; Cohen, David D.

    2002-05-01

    The heavy ion microprobe at the Australian Nuclear Science and Technology Organisation is capable of focussing heavy ions with an ME/ q2 of up to 100 amu MeV. This makes the microprobe ideally suited for heavy ion elastic recoil detection analysis (ERDA). However, beam currents on a microprobe are usually very small, which requires a detection system with a large solid angle. We apply microbeam heavy ion ERDA using a large solid angle ΔE- E telescope with a gas ΔE detector to layered structures. We demonstrate the capability to measure oxygen and carbon with a lateral resolution of 20 μm, together with determination of the depth of the contamination in thin deposited layers.

  7. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  8. Status of Chemical Equilibrium in Relativistic Heavy Ion Collisions

    CERN Document Server

    Cleymans, Jean

    2009-01-01

    Recent work on chemical equilibrium in heavy ion collisions is reviewed. The energy dependence of thermal parameters is discussed. The centrality dependence of thermal parameters at SPS energies is presented.

  9. Two alpha, three alpha and multiple heavy-ion radioactivities

    Energy Technology Data Exchange (ETDEWEB)

    Poenaru, D.N.; Ivascu, M. (Institute for Physics and Nuclear Engineering, Bucharest (Romania))

    1985-07-01

    New decay modes by spontaneous emission of two and three ..cap alpha.. particles and two identical or different heavy ions, are predicted. The analytical variant of the superasymmetric fission model is used to estimate the half lives.

  10. Two alpha, three alpha and multiple heavy-ion radioactivities

    OpenAIRE

    Poenaru, D.N.; Ivascu, M.

    1985-01-01

    New decay modes by spontaneous emission of two and three α particles and two identical or different heavy ions, are predicted. The analytical variant of the superasymmetric fission model is used to estimate the half lives.

  11. Status of chemical equilibrium in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    J Cleymans

    2003-04-01

    Recent work on chemical equilibrium in heavy-ion collisions is reviewed. The energy dependence of thermal parameters is discussed. The centrality dependence of thermal parameters at SPS energies is presented.

  12. Sample Management System for Heavy Ion Irradiation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A robotic sample management device and system for the exposure of biological and material specimens to heavy ion beams of the NASA Space Radiation Laboratory (NSRL)...

  13. Intense Pulsed Heavy Ion Beam Technology

    Science.gov (United States)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  14. The Relativistic Heavy Ion Collider control system

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, T.S.; Barton, D.S.; Oerter, B.R.

    1997-12-01

    The Relativistic Heavy Ion Collider control system has been used in the commissioning of the AGS to RHIC transfer line and in the first RHIC sextant test. Much of the controls infrastructure for networks and links has been installed throughout the collider. All of the controls hardware modules needed to be built for early RHIC operations have been designed and tested. Many of these VME modules are already being used in normal AGS operations. Over 150 VME based front end computers and device controllers will be installed by the Summer of 1998 in order to be ready for Fall of 1998. A few features are being added to the front end computer core software. The bulk of the Accelerator Device Objects (ADOs) which are instantiated in the FECs, have been written and tested in the early commissioning. A configuration database has been designed. Generic control and display of ADO parameters via a spreadsheet like program on the console level computers was provided early on in the control system development. User interface tools that were developed for the AGS control system have been used in RHIC applications. Some of the basic operations programs, like alarm display and save/restore, that are used in the AGS operations have been or will be expanded to support RHIC operations. A model for application programs which involves a console level manager servicing ADOs have been verified with a few RHIC applications. More applications need to be written for the Fall of 1998 commissioning effort. A sequencer for automatic control of the fill is being written with the expectation that it will be useful in early commissioning.

  15. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  16. CERN achievements in relativistic heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Bruno Giuseppe Eugenio

    2015-01-01

    Full Text Available Twenty years after a Letter of Intent by the GSI and LBL groups for the “Study of particle production and target fragmentation in central 20Ne on Pb reactions, at 12 GeV per nucleon energy of the CERN PS external beam" [1], based on the results found by the NA45/CERES, NA49, NA50, and WA97/NA57 experiments at the SPS, CERN announced compelling evidence for the formation of a new state of matter in heavyion collisions at CERN-SPS energies [2]. Some of the experiments were indeed the 2nd or 3rd generation successors of the apparatuses originally proposed by the GSI-LBL collaboration. Actually, the CERN ion program initiated at the SPS with the acceleration of oxygen ions at 60 and 200 GeV/nucleon only in 1986, and continued with sulphur ions at 200 GeV/nucleon up to 1993. The rest is history: lead-ion beams at 160 GeV/nucleon became available at the SPS in 1994; the LHC accelerated and collided lead beams at a center of mass energy per nucleon pair √sNN = 2.76 TeV in 2010. Heavy ion physics is definitely in the future program of CERN: ALICE will operate a major upgrade of its detectors during the second long shutdown of the LHC, in 2018-2019, and the associated physics program will span the third and fourth LHC runs, till late 2020s.

  17. Phenomenology of Heavy Flavors in Ultrarelativistic Heavy-Ion Collisions

    CERN Document Server

    Isayev, A A

    2010-01-01

    Some recent experimental results obtained in collisions of heavy nuclei ($\\sqrt{s}=200$ GeV) at BNL Relativistic Heavy-Ion Collider (RHIC) are discussed. The probes of dense matter created in heavy-ion collision by quarkonia, $D$ and $B$ mesons containing heavy charm and beauty quarks are considered. The centrality, rapidity and transverse momentum dependences of the nuclear modification factor and elliptic flow coefficient are presented and their possible theoretical interpretation is provided.

  18. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    OpenAIRE

    Kurosaki, T; Kawata, S.; Noguchi, K.; Koseki, S; Barada, D.; Ma, Y. Y.; Ogoyski, A. I.; Barnard, J. J.; Logan, B. G.

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and s...

  19. Experimental results on charge fluctuations in heavy-ion collisions

    CERN Document Server

    Mishra, D K; Netrakanti, P K; Pant, L M; Mohanty, A K

    2016-01-01

    We present a subset of experimental results on charge fluctuation from the heavy-ion collisions to search for phase transition and location of critical point in the QCD phase diagram. Measurements from the heavy-ion experiments at the SPS and RHIC energies observe that total charge fluctuations increase from central to peripheral collisions. The net-charge fluctuations in terms of dynamical fluctuation measure $\

  20. Current experimental situation in heavy-ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.K.

    1978-06-01

    A detailed survey of the present experimental situation in heavy-ion physics is presented. The discussion begins by considering the simple excitation of discrete states in elastic scattering, transfer, and compound-nucleus reactions; it then turns to more drastic perturbations of the nucleus high in the continuum through fusion, fission, and deeply inelastic scattering, and concludes with the (possibly) limiting asymptotic phenomena of relativistic heavy-ion collisions. 138 figures, 5 tables, 451 references. (RWR)

  1. Classical gluon production amplitude in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Chirilli Giovanni Antonio

    2016-01-01

    Full Text Available The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.

  2. FAIR—Status and relevance for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Spiller, P., E-mail: P.Spiller@gsi.de; Barth, W.

    2014-01-01

    The chosen design concepts and technical approaches as described in the Heavy Ion Driver Ignition Facility (HIDIF) study are compared with the present status of accelerator technologies and the experiences gained in the operation of the heavy ion accelerator facilities at GSI. Novel advanced technologies, as developed e.g. for the FAIR Project, may be used for a more compact and realistic driver layout. Major differences between a single shot and a high repetition rate facility will be discussed.

  3. Heavy ions at the LHC: Physics perspectives and experimental program

    Indian Academy of Sciences (India)

    J Schukraft

    2001-08-01

    Ultrarelativistic heavy ion physics is entering the new era of collider experiments with the start-up of RHIC at BNL and construction for detectors at LHC well under way. At this crossroads, the article will give a summary of the experimental program and our current view of heavy ion physics at the LHC, concentrating in particular on physics topics that are different or unique compared to current facilities.

  4. Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)

    Science.gov (United States)

    Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.; Arsene, I.; Tywoniuk, K.

    2009-05-01

    ) Operating system: Linux (Scientific Linux, Red Hat Enterprise, FEDORA, etc.) RAM: 50 MBytes (determined by ROOT requirements) Classification: 11.2 External routines: ROOT [1] ( http://root.cern.ch/) Nature of problem: The experimental and phenomenological study of multi-particle production in relativistic heavy ion collisions is expected to provide valuable information on the dynamical behavior of strongly-interacting matter in the form of quark-gluon plasma (QGP) [2-4], as predicted by lattice Quantum Chromodynamics (QCD) calculations. Ongoing and future experimental studies in a wide range of heavy ion beam energies require the development of new Monte Carlo (MC) event generators and improvement of existing ones. Especially for experiments at the CERN Large Hadron Collider (LHC), implying very high parton and hadron multiplicities, one needs fast (but realistic) MC tools for heavy ion event simulations [5-7]. The main advantage of MC technique for the simulation of high-multiplicity hadroproduction is that it allows a visual comparison of theory and data, including if necessary the detailed detector acceptances, responses and resolutions. The realistic MC event generator has to include maximum possible number of observable physical effects, which are important to determine the event topology: from the bulk properties of soft hadroproduction (domain of low transverse momenta p≲1 GeV/c) such as collective flows, to hard multi-parton production in hot and dense QCD-matter, which reveals itself in the spectra of high- p particles and hadronic jets. Moreover, the role of hard and semi-hard particle production at LHC can be significant even for the bulk properties of created matter, and hard probes of QGP became clearly observable in various new channels [8-11]. In the majority of the available MC heavy ion event generators, the simultaneous treatment of collective flow effects for soft hadroproduction and hard multi-parton in-medium production (medium-induced partonic

  5. Soft errors in 10-nm-scale magnetic tunnel junctions exposed to high-energy heavy-ion radiation

    Science.gov (United States)

    Kobayashi, Daisuke; Hirose, Kazuyuki; Makino, Takahiro; Onoda, Shinobu; Ohshima, Takeshi; Ikeda, Shoji; Sato, Hideo; Inocencio Enobio, Eli Christopher; Endoh, Tetsuo; Ohno, Hideo

    2017-08-01

    The influences of various types of high-energy heavy-ion radiation on 10-nm-scale CoFeB-MgO magnetic tunnel junctions with a perpendicular easy axis have been investigated. In addition to possible latent damage, which has already been pointed out in previous studies, high-energy heavy-ion bombardments demonstrated that the magnetic tunnel junctions may exhibit clear flips between their high- and low-resistance states designed for a digital bit 1 or 0. It was also demonstrated that flipped magnetic tunnel junctions still may provide proper memory functions such as read, write, and hold capabilities. These two findings proved that high-energy heavy ions can produce recoverable bit flips in magnetic tunnel junctions, i.e., soft errors. Data analyses suggested that the resistance flips stem from magnetization reversals of the ferromagnetic layers and that each of them is caused by a single strike of heavy ions. It was concurrently found that an ion strike does not always result in a flip, suggesting a stochastic process behind the flip. Experimental data also showed that the flip phenomenon is dependent on the device and heavy-ion characteristics. Among them, the diameter of the device and the linear energy transfer of the heavy ions were revealed as the key parameters. From their dependences, the physical mechanism behind the flip was discussed. It is likely that a 10-nm-scale ferromagnetic disk loses its magnetization due to a local temperature increase induced by a single strike of heavy ions; this demagnetization is followed by a cooling period associated with a possible stochastic recovery process. On the basis of this hypothesis, a simple analytical model was developed, and it was found that the model accounts for the results reasonably well. This model also predicted that magnetic tunnel junctions provide sufficiently high soft-error reliability for use in space, highlighting their advantage over their counterpart conventional semiconductor memories.

  6. Comparing Tsallis and Boltzmann temperatures from relativistic heavy ion collider and large hadron collider heavy-ion data

    Science.gov (United States)

    Gao, Y.-Q.; Liu, F.-H.

    2016-03-01

    The transverse momentum spectra of charged particles produced in Au + Au collisions at the relativistic heavy ion collider and in Pb + Pb collisions at the large hadron collider with different centrality intervals are described by the multisource thermal model which is based on different statistic distributions for a singular source. Each source in the present work is described by the Tsallis distribution and the Boltzmann distribution, respectively. Then, the interacting system is described by the (two-component) Tsallis distribution and the (two-component) Boltzmann distribution, respectively. The results calculated by the two distributions are in agreement with the experimental data of the Solenoidal Tracker At Relativistic heavy ion collider, Pioneering High Energy Nuclear Interaction eXperiment, and A Large Ion Collider Experiment Collaborations. The effective temperature parameters extracted from the two distributions on the descriptions of heavy-ion data at the relativistic heavy ion collider and large hadron collider are obtained to show a linear correlation.

  7. Structural and electrical properties of swift heavy ion beam irradiated Co/Si interface

    Indian Academy of Sciences (India)

    Garima Agarwal; Ankur Jain; Shivani Agarwal; D Kabiraj; I P Jain

    2006-04-01

    Synthesis of swift heavy ion induced metal silicide is a new advancement in materials science research. We have investigated the mixing at Co/Si interface by swift heavy ion beam induced irradiation in the electronic stopping power regime. Irradiations were undertaken at room temperature using 120 MeV Au ions at the Co/Si interface for investigation of ion beam mixing at various doses: 8 × 1012, 5 × 1013 and 1 × 1014 cm-2. Formation of different phases of cobalt silicide is identified by the grazing incidence X-ray diffraction (GIXRD) technique, which shows enhancement of intermixing and silicide formation as a result of irradiation. – characteristics at Co/Si interface were undertaken to understand the irradiation effect on conduction mechanism at the interface.

  8. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    Science.gov (United States)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  9. Effects of heavy ion radiation on digital micromirror device performance

    Science.gov (United States)

    Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan D.; Pellish, Jonny; Robberto, Massimo; Heap, Sara

    2016-09-01

    There is a pressing need in the astronomical community for space-suitable multiobject spectrometers (MOSs). Several digital micromirror device (DMD)-based prototype MOSs have been developed for ground-based observatories; however, their main use will come with deployment on a space-based mission. Therefore, the performance of DMDs under exoatmospheric radiation needs to be evaluated. DMDs were rewindowed with 2-μm thick pellicle and tested under accelerated heavy-ion radiation (control electronics shielded from radiation), with a focus on the detection of single-event effects (SEEs) including latch-up events. Testing showed that while DMDs are sensitive to nondestructive ion-induced state changes, all SEEs are cleared with a soft reset (i.e., sending a pattern to the device). The DMDs did not experience single-event induced permanent damage or functional changes that required a hard reset (power cycle), even at high ion fluences. This suggests that the SSE rate burden will be manageable for a DMD-based instrument when exposed to solar particle fluxes and cosmic rays in orbit.

  10. Light charged particle emission in heavy-ion reactions – What have we learnt?

    Indian Academy of Sciences (India)

    S Kailas

    2001-07-01

    Light charged particles emitted in heavy-ion induced reactions, their spectra and angular distributions measured over a range of energies, carry the signature of the underlying reaction mechanisms. Analysis of data of light charged particles, both inclusive and exclusive measured in coincidence with gamma rays, fission products, evaporation residues have yielded interesting results which bring out the influence of nuclear structure, nuclear mean field and dynamics on the emission of these particles.

  11. A FTIR characterization of a haemocompatible material obtained by swift heavy ion radiation grafting

    Energy Technology Data Exchange (ETDEWEB)

    Dapoz, S.; Betz, N.; Le Moel, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l`Etat Condense, les Atomes et les Molecules

    1996-01-01

    In order to prepare materials destined to be used as vascular prothesis, a radiation grafting of styrene, induced by swift heavy ions in polyvinylidene fluoride films, was performed. A substitution of the grafted polystyrene with sulfonate and aspartic acid sulfamide groups, which confers to the polymer anticoagulant properties, was achieved. The material was characterized by Fourier Transform Infrared spectroscopy at each step of the synthesis. (authors). 5 refs., 2 figs.

  12. Continuous observation of polarization effects in thin SC-CVD diamond detector designed for heavy ion microbeam measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada.wataru@gunma-u.ac.jp [Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-machi, Kiryu, Gunma 376-8515 (Japan); Iwamoto, Naoya [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Satoh, Takahiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Onoda, Shinobu [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Grilj, Veljko; Skukan, Natko [Ruđer Bošković Institute, P.O. Box 1016, 10001 Zagreb (Croatia); Koka, Masashi [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Ohshima, Takeshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Jakšić, Milko [Ruđer Bošković Institute, P.O. Box 1016, 10001 Zagreb (Croatia); Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2014-07-15

    Continuous irradiation effects on a thin-film diamond detector were investigated for the utilization of these films as a detector for heavy ion microbeams. Temporal signal degradation in the energy spectrum was frequently observed during the focused heavy ion microbeam irradiation. To measure the temporal response to the each ion incidents, focused heavy ion microbeam with different beam fluence rates were irradiated to a single crystal (SC)-CVD diamond film detector with thickness of 50 μm. The responses to each ion were continuously observed and characterized by ion beam-induced charge (IBIC) measurement system. Heavy ions with short penetration path in diamond generate the large difference in mean path of electrons and holes, which is inverted by changing bias polarity. Signal degradation condition was relied on the bias polarity under the irradiation of heavy ions with short penetration length in the diamond. The continuous observation of IBIC signals revealed that temporal degradation in pulse height of signals, so called polarization effects, seems to be mainly caused by the hole trapping in this diamond crystal.

  13. Azimuthal Distributions in Intermediate Energy Heavy-Ion Collisions

    Science.gov (United States)

    Wilson, William Kenneth

    The azimuthal distributions of light particles (Z = 1,2) with respect to the entrance channel reaction plane are investigated with a view towards characterizing the modes of collective motion in intermediate energy heavy -ion collisions. A new technique for reaction plane determination from the distribution of light particles produced in a collision is developed and applied to Ar+V data. The data were acquired using the MSU 4pi Array, a new 215 element large solid angle detector system. At a beam energy of 35 MeV/nucleon, light charged particles are found to exhibit an enhanced emission in the reaction plane which increases with the mass of the detected particle. As the beam energy is increased to 100 MeV/nucleon, the anisotropy nearly vanishes, providing clues to the dynamics of these reactions in a transitional energy regime. The observed anisotropy contains signatures of two distinct modes of collective motion: attractive mean field deflection, and rotation of the fused system. A microscopic calculation based on mean-field mediated interactions plus nucleon-nucleon collisions reproduces both forms of collective motion and their associated azimuthal distributions. The calculation also suggests that the anisotropy due to mean -field deflection is established during the initial stages of the collision. The nature of the nuclear mean-field is further explored using data taken by the 4pi Array for peripheral 50 MeV/nucleon C induced reactions on C and Au targets. Although projectile fragments in grazing collisions are positively deflected by the coulomb force, a specific set of protons are found to be simultaneously attractively deflected by the mean-field towards the opposite side of the reaction plane. This direct observation of attractive mean field deflection supports aspects of the interpretation of the Ar+V data. Lastly, the experimental results are summarized and the potential for extracting more information about the dynamics of heavy-ion collisions using

  14. The effects of heavy ion radiation on digital micromirror device performance

    Science.gov (United States)

    Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan D.; Pellish, Jonathan A.; Robberto, Massimo; Heap, Sara

    2016-07-01

    There is a pressing need in the astronomical community for space-suitable multi-object spectrometers (MOSs). Several digital micromirror device (DMD)-based prototype MOSs have been developed for ground-based observatories; however, their main use will come with deployment on a space based mission. Therefore, performance of DMDs under exoatmospheric radiation needs to be evaluated. In our previous work we demonstrated that DMDs are tolerant to heavy ion irradiation in general and calculated upset rate of 4.3 micromirrors in 24 hours in orbit for 1-megapixel device. The goal of this additional experiment was to acquire more data and therefore increase the accuracy of the predicted in-orbit micromirror upset rate. Similar to the previous experiment, for this testing 0.7 XGA DMDs were re-windowed with 2 μm thick pellicle and tested under accelerated heavy-ion radiation (with control electronics shielded from radiation) with a focus on detection of single-event upsets (SEUs). We concentrated on ions with low levels of linear energy transfer (LET) 1.8 - 13 MeV•cm2•mg-1 to cover the most critical range of the Weibull curve for those devices. As during the previous experiment, we observed and documented non-destructive heavy ion-induced micromirror state changes. All SEUs were always cleared with a soft reset (that is, sending a new pattern to the device). The DMDs we tested did not experience single-event induced permanent damage or functional changes that required a hard reset (power cycle), even at high ion fluences. Based on the data obtained in the experiments we predict micromirror in-orbit upset rate of 5.6 micromirrors in 24 hours in-orbit for the tested devices. This suggests that the heavy-ion induced SEU rate burden for a DMD-based instrument will be manageable when exposed to solar particle fluxes and cosmic rays in orbit.

  15. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  16. Control of fuel target implosion non-uniformity in heavy ion inertial fusion

    CERN Document Server

    Iinuma, T; Kondo, S; Kubo, T; Kato, H; Suzuki, T; Kawata, S; Ogoyski, A I

    2016-01-01

    In inertial fusion, one of scientific issues is to reduce an implosion non-uniformity of a spherical fuel target. The implosion non-uniformity is caused by several factors, including the driver beam illumination non-uniformity, the Rayleigh-Taylor instability (RTI) growth, etc. In this paper we propose a new control method to reduce the implosion non-uniformity; the oscillating implosion acceleration dg(t) is created by pulsating and dephasing heavy ion beams (HIBs) in heavy ion inertial fusion (HIF). The dg(t) would reduce the RTI growth effectively. The original concept of the non- uniformity control in inertial fusion was proposed in (Kawata, et al., 1993). In this paper it was found that the pulsating and dephasing HIBs illumination provide successfully the controlled dg(t) and that dg(t) induced by the pulsating HIBs reduces well the implosion non-uniformity. Consequently the pulsating HIBs improve a pellet gain remarkably in HIF.

  17. Deduction of compound nucleus formation probability from the fragment angular distributions in heavy-ion reactions

    Science.gov (United States)

    Yadav, C.; Thomas, R. G.; Mohanty, A. K.; Kapoor, S. S.

    2015-07-01

    The presence of various fissionlike reactions in heavy-ion induced reactions is a major hurdle in the path to laboratory synthesis of heavy and super-heavy nuclei. It is known that the cross section of forming a heavy evaporation residue in fusion reactions depends on the three factors—the capture cross section, probability of compound nucleus formation PCN, and the survival probability of the compound nucleus against fission. As the probability of compound nucleus formation, PCN is difficult to theoretically estimate because of its complex dependence on several parameters; attempts have been made in the past to deduce it from the fission fragment anisotropy data. In the present work, the fragment anisotropy data for a number of heavy-ion reactions are analyzed and it is found that deduction of PCN from the anisotropy data also requires the knowledge of the ratio of relaxation time of the K degree of freedom to pre-equilibrium fission time.

  18. Moessbauer study of FINEMET type nanocrystalline ribbons irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, Erno, E-mail: kuzmann@ludens.elte.hu; Stichleutner, Sandor; Sapi, Andras [Institute of Chemistry, Eoetvoes University (Hungary); Varga, Lajos Karoly [Research Institute for Solid State Physics and Optics, HAS (Hungary); Havancsak, Karoly [Eoetvoes University, Department of Materials Physics (Hungary); Skuratov, Vlamidir [Joint Institute for Nuclear Research (Russian Federation); Homonnay, Zoltan; Vertes, Attila [Institute of Chemistry, Eoetvoes University (Hungary)

    2012-03-15

    As-quenched and stress field annealed FINEMET ribbons were irradiated with 246 MeV energy Kr, 470 MeV energy Xe and 720 MeV energy Bi ions and investigated by {sup 57}Fe Moessbauer spectroscopy and XRD methods. The change in relative areas of the 2nd and 5th lines in the Moessbauer spectra indicated significant changes in the magnetic anisotropy of both as-quenched and stress annealed FINEMET due to irradiation with swift heavy ions. Differences were observed between the effect of irradiations with various ions having different energy and fluence. The effect of irradiation on the magnetic orientation in FINEMET was explained in terms of radiation induced defects. The swift heavy ion irradiation can be applied to produce FINEMET ribbons with more favorable soft magnetic properties for technological applications.

  19. Heavy-Ion Collimation at the Large Hadron Collider Simulations and Measurements

    CERN Document Server

    AUTHOR|(CDS)2083002; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with t...

  20. Graphitic nanostripes in silicon carbide surfaces created by swift heavy ion irradiation.

    Science.gov (United States)

    Ochedowski, Oliver; Osmani, Orkhan; Schade, Martin; Bussmann, Benedict Kleine; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-06-06

    The controlled creation of defects in silicon carbide represents a major challenge. A well-known and efficient tool for defect creation in dielectric materials is the irradiation with swift (E(kin) ≥ 500 keV/amu) heavy ions, which deposit a significant amount of their kinetic energy into the electronic system. However, in the case of silicon carbide, a significant defect creation by individual ions could hitherto not be achieved. Here we present experimental evidence that silicon carbide surfaces can be modified by individual swift heavy ions with an energy well below the proposed threshold if the irradiation takes place under oblique angles. Depending on the angle of incidence, these grooves can span several hundreds of nanometres. We show that our experimental data are fully compatible with the assumption that each ion induces the sublimation of silicon atoms along its trajectory, resulting in narrow graphitic grooves in the silicon carbide matrix.

  1. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    Science.gov (United States)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  2. Spatial distributions of photons in plastic scintillator detected by multi-anode photomultiplier for heavy-ion position determination

    Energy Technology Data Exchange (ETDEWEB)

    Omika, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Yamaguchi, T., E-mail: yamaguti@phy.saitama-u.ac.jp [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Fukuda, M. [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Matsunaga, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Nishimura, D. [Department of Physics, Tokyo University of Science, Noda 278-8510 (Japan); Nishimura, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Ozawa, A. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Sato, S. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Sawahata, K. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T.; Takeuchi, Y. [Department of Physics, Saitama University, Saitama 338-8570 (Japan)

    2015-10-11

    The spatial distributions of scintillation photons in a plastic scintillation detector were measured using a multi-anode photomultiplier H7546A coupled with 1-mm-diameter optical fibers. A row of several tens of fibers connected to the scintillator generates one-dimensional spatial distributions of photons induced by the swift passage of heavy ions. The pulse heights from each channel change depending on the beam position. This can be utilized to determine the positions of the heavy ions. To test the performance of the proposed detection method, an experiment using a {sup 84}Kr beam with intermediate energies ranging from 40 to 85 MeV/nucleon was performed at the heavy-ion medical accelerator in Chiba (HIMAC). The photon spatial distributions were successfully observed. By optimizing the photomultiplier bias voltage and threshold in the pulse height analyses, a detection efficiency of 98% and a position resolution of 1.1 mm in σ were achieved simultaneously.

  3. Ion-stimulated gas desorption yields of coated (Au, Ag, Pd) stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator (LINAC 3), has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting on different accelerator-type vacuum chambers. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, and palladium-coated 316LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 10**4 molecules/ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble metal coating by up to 2 orders of magnitude. In addition, the effectiveness of beam scrubbing with heavy ions and the consequence of a subsequent venting on the desorption yields of a beam-scrubbed vacuum chamber are described. Practical consequences for the vacuum system of the future Low Energy Ion Ring (LEIR) are discussed.

  4. Irradiation effects of swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, Orkhan

    2011-12-22

    In the this thesis irradiation effects of swift heavy ions in matter are studied. The focus lies on the projectiles charge exchange and energy loss processes. A commonly used computer code which employs rate equations is the so called ETACHA code. This computer code is capable to also calculate the required input cross-sections. Within this thesis a new model to compute the charge state of swift heavy ions is explored. This model, the so called matrix method, takes the form of a simple algebraic expression, which also requires cross-sections as input. In the present implementation of the matrix method, cross-sections are taken from the ETACHA code, while excitation and deexcitation processes are neglected. Charge fractions for selected ion/target combinations, computed by the ETACHA code and the matrix method are compared. It is shown, that for sufficient large ion energies, both methods agree very well with each other. However, for lower energies pronounced differences are observed. These differences are believed to stem from the fact, that no excited states as well as the decay of theses excited states are included in the present implementation of the matrix method. Both methods are then compared with experimental measurements, where significant deviations are observed for both methods. While the predicted equilibrium charge state by both methods is in good agreement with the experiments, the matrix method predicts a much too large equilibrium thickness compared to both the ETACHA calculation as well as the experiment. Again, these deviations are believed to stem from the fact, that excitation and the decay of excited states are not included in the matrix method. A possible way to include decay processes into the matrix method is presented, while the accuracy of the applied capture cross-sections is tested by comparison with scaling rules. Swift heavy ions penetrating a dielectric are known to induced structural modifications both on the surface and in the bulk

  5. State density formalism of the Iwamoto-Harada model: A suitable tool to treat cluster emission from heavy-ion collisions with account for spin variables

    Science.gov (United States)

    Běták, Emil; Cseh, József

    2017-09-01

    We study the possibility to include the cluster emission into the statistical pre-equilibrium (exciton) model suitable also for heavy ion collisions. The direct motivation of this paper is a possibility of producing superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, α-particles). Note to the reader: the pdf file has been changed on September 22, 2017.

  6. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Kazama Yusuke

    2011-11-01

    Full Text Available Abstract Background Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm-1 for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Results Dry Arabidopsis thaliana seeds were irradiated with carbon (C ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm-1 at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy and glabrous (gl and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm-1 and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. Conclusions The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection

  7. Morphology of High-Multiplicity Events in Heavy Ion Collisions

    CERN Document Server

    Naselsky, P; Christensen, P R; Damgaard, P H; Frejsel, A; Gaardhøje, J J; Hansen, A; Hansen, M; Kim, J; Verkhodanov, O; Wiedemann, U A

    2012-01-01

    We discuss opportunities that may arise from subjecting high-multiplicity events in relativistic heavy ion collisions to an analysis similar to the one used in cosmology for the study of fluctuations of the Cosmic Microwave Background (CMB). To this end, we discuss examples of how pertinent features of heavy ion collisions including global characteristics, signatures of collective flow and event-wise fluctuations are visually represented in a Mollweide projection commonly used in CMB analysis, and how they are statistically analyzed in an expansion over spherical harmonic functions. If applied to the characterization of purely azimuthal dependent phenomena such as collective flow, the expansion coefficients of spherical harmonics are seen to contain redundancies compared to the set of harmonic flow coefficients commonly used in heavy ion collisions. Our exploratory study indicates, however, that these redundancies may offer novel opportunities for a detailed characterization of those event-wise fluctuations t...

  8. Ultrarelativistic heavy ion collisions: the first billion seconds

    Science.gov (United States)

    Baym, Gordon

    2016-12-01

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter - the quark-gluon plasma primarily - and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  9. Study of the heavy ion bunch compression in CSRm

    Institute of Scientific and Technical Information of China (English)

    YIN Da-Yu; LIU Yong; YUAN You-Jing; YANG Jian-Cheng; LI Peng; LI Jie; CHAI Wei-Ping

    2013-01-01

    The feasibility of attaining nanosecond pulse length heavy ion beam is studied in the main ring (CSRm)of the Heavy Ion Research Facility in Lanzhou.Such heavy ion beam can be produced by non-adiabatic compression,and it is implemented by a fast rotation in the longitudinal phase space.In this paper,the possible beam parameters during longitudinal bunch compression are studied with the envelope model and Particle in Cell simulation,and the results are compared.The result shows that the short bunch 238U28+ with the pulse duration of about 50 ns at the energy of 200 MeV/u can be obtained which can satisfy the research of high density plasma physics experiment.

  10. Benchmarking of neutron production of heavy-ion transport codes

    Energy Technology Data Exchange (ETDEWEB)

    Remec, I. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6172 (United States); Ronningen, R. M. [Michigan State Univ., National Superconductiong Cyclotron Laboratory, East Lansing, MI 48824-1321 (United States); Heilbronn, L. [Univ. of Tennessee, 1004 Estabrook Rd., Knoxville, TN 37996-2300 (United States)

    2011-07-01

    Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)

  11. INERTIAL FUSION DRIVEN BY INTENSE HEAVY-ION BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, W. M.; Friedman, A.; Grote, D. P.; Barnard, J. J.; Cohen, R. H.; Dorf, M. A.; Lund, S. M.; Perkins, L. J.; Terry, M. R.; Logan, B. G.; Bieniosek, F. M.; Faltens, A.; Henestroza, E.; Jung, J. Y.; Kwan, J. W.; Lee, E. P.; Lidia, S. M.; Ni, P. A.; Reginato, L. L.; Roy, P. K.; Seidl, P. A.; Takakuwa, J. H.; Vay, J.-L.; Waldron, W. L.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.; Qin, H.; Startsev, E.; Haber, I.; Kishek, R. A.; Koniges, A. E.

    2011-03-31

    Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic-confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.

  12. Clinical trial of cancer therapy with heavy ions at heavy ion research facility in lanzhou

    Science.gov (United States)

    Zhang, Hong

    With collaborative efforts of scientists from the Institute of Modern Physics (IMP), Chinese Academy of Sciences and hospitals in Gansu, initial clinical trial on cancer therapy with heavy ions has been successfully carried out in China. From November 2006 to December 2007, 51 patients with superficially-placed tumors were treated with carbon ions at Heavy Ion Research Facility in Lanzhou (HIRFL) within four beam time blocks of 6-11 days, collaborating with the General Hospital of Lanzhou Command and the Tumor Hospital of Gansu Province. Patients and Methods: There were 51 patients (31 males and 20 females) with superficially-placed tumors (squamous cell carcinoma of the skin, basal cell carcinoma of the skin, malignant skin melanoma, sarcoma, lymphoma, breast cancer, metastatic lymph nodes of carcinomas and other skin lesions). The tumors were less than 2.1 cm deep to the skin surface. All patients had histological confirmation of their tumors. Karnofsky Performance Scale (KPS) of all patients was more than 70. The majority of patients were with failures or recurrences of conventional therapies. Median age at the time of radiotherapy (RT) was 55.5 years (range 5-85 years). Patients were immobilized with a vacuum cushion or a head mask and irradiated by carbon ion beams with energy 80-100 MeV/u at spread-out Bragg peak field generated from HIRFL, with two and three-dimensional conformal irradiation methods. Target volume was defined by physical palpation [ultrasonography and Computerized tomography (CT), for some cases]. The clinical target volume (CTV) was defined as the gross total volume GTV with a 0.5-1.0cm margin axially. Field placement for radiation treatment planning was done based on the surface markings. RBE of 2.5-3 within the target volume, and 40-75 GyE with a weekly fractionation of 7 × 3-15 GyE/fraction were used in the trial. Patients had follow-up examinations performed 1 month after treatment, in 1 or 2 months for the first 6 months, and 3

  13. Preliminary study for the detection of neutrons in heavy-ion collisions with charged particle detectors

    Directory of Open Access Journals (Sweden)

    Auditore L.

    2015-01-01

    Full Text Available At Laboratori Nazionali del Sud (LNS the CHIMERA 4π multidetector has been designed and setup to detect charged particles emitted in heavy ion collisions at intermediate energies. Properties and performances of CHIMERA have been widely demonstrated by published results obtained in the performed experiments. Moreover, in recent years, a new charged particle detector (ChPD for correlation studies (FARCOS has been designed, and recently a first prototype has been coupled to CHIMERA, in order to test performances in view of correlation measurements in coincidence with 4π detectors. Simultaneous neutrons and charged particles detection in heavy ion collisions represents an important experimental progress for future experiments to be performed with both stable and exotic nuclei. In order to investigate about this possibility, simple Monte Carlo simulations have been performed. Preliminary simulations have been carried out by means of MCNPX transport code to evaluate the perturbation effects, including cross-talk and time response, induced in CHIMERA and/or FARCOS Si-CsI(Tl telescopes on (typical 20MeV neutron signals coming froma typical reaction in heavy ion collisions at the Fermi energy. Moreover, first data analysis results of the INKIISSY experiment indicates sizable probability to detect neutrons by properly shadowing CHIMERA Si-CsI(Tl telescopes. Analysis is still in progress.

  14. Laser ion source for isobaric heavy ion collider experiment.

    Science.gov (United States)

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  15. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  16. Complexified boost invariance and holographic heavy ion collisions

    CERN Document Server

    Gubser, Steven S

    2015-01-01

    At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. One of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.

  17. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  18. Laser ion source for high brightness heavy ion beam

    Science.gov (United States)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  19. Hydrodynamics in heavy-ion collisions: recent developments

    CERN Document Server

    Jaiswal, Amaresh

    2016-01-01

    Relativistic hydrodynamics has been quite successful in explaining the collective behaviour of the QCD matter produced in high energy heavy-ion collisions at RHIC and LHC. We briefly review the latest developments in the hydrodynamical modeling of relativistic heavy-ion collisions. Essential ingredients of the model such as the hydrodynamic evolution equations, dissipation, initial conditions, equation of state, and freeze-out process are reviewed. We discuss observable quantities such as particle spectra and anisotropic flow as well as the event-by-event fluctuations of these quantities. We also discuss the extraction of transport coefficients of the hot and dense QCD matter from the experimental data of collective flow.

  20. Swift heavy ions for materials engineering and nanostructuring

    CERN Document Server

    Avasthi, Devesh Kumar

    2011-01-01

    Ion beams have been used for decades for characterizing and analyzing materials. Now energetic ion beams are providing ways to modify the materials in unprecedented ways. This book highlights the emergence of high-energy swift heavy ions as a tool for tailoring the properties of materials with nanoscale structures. Swift heavy ions interact with materials by exciting/ionizing electrons without directly moving the atoms. This opens a new horizon towards the 'so-called' soft engineering. The book discusses the ion beam technology emerging from the non-equilibrium conditions and emphasizes the power of controlled irradiation to tailor the properties of various types of materials for specific needs.

  1. Laser-driven multicharged heavy ion beam acceleration

    Science.gov (United States)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Z.; Nishio, K.; Pikuz, T. A.; Faenov, A. Y.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2015-05-01

    Experimental demonstration of multi-charged heavy ion acceleration from the interaction between the ultra-intense short pulse laser system and the metal target is presented. The laser pulse of ions accelerated up to 0.9 GeV are demonstrated. This is achieved by the high intensity laser field of ˜ 1021Wcm-2 interacting with the solid density target. The demonstrated iron ions with high charge to mass ratio (Q/M) is difficult to be achieved by the conventional heavy ion source technique in the accelerators.

  2. High-Intensity, High Charge-State Heavy Ion Sources

    CERN Document Server

    Alessi, J

    2004-01-01

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions will be reviewed. These sources include ECR, EBIS, and Laser ion sources. The benefits and limitations for these type sources will be described, for both dc and pulsed applications. Possible future improvements in these type sources will also be discussed.

  3. Quark vs Gluon jets in Heavy Ion Collisions

    CERN Document Server

    Drauksas, Simonas

    2017-01-01

    The project concerned quark and gluon jets which are often used as probes of Quantum Chromodynamics(QCD) matter created in nuclear collisions at collider energies. The goal is to look for differences between quark and gluon jets, study their substructure, look for distinguishing features in unquenched (pp collisions) and quenched (heavy ion collisions) jets by using multi-variate analysis which was carried out with the help of ROOT's \\href{https://root.cern.ch/tmva}{TMVA} tool. Mapping out the modification of jets due to medium interactions could give valuable input to constraining the time evolution of the Quark Gluon Plasma created in heavy ion collisions.

  4. Antiradiation vaccine: Technology and development of prophylaxis, prevention and treatment of biological consequences from Heavy Ion irradiation.

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    . Results: Group A -100% mortality within two hours after heavy ion irradiation with clinical symptoms of the acute cerebrovascular and cardiovascular syndromes. Group B -100% mortal-ity within 15 hours following irradiation. Group C -100% mortality within 14-15 hours after irradiation. Group D -100% mortality within 15-16 hours after irradiation. In groups A-D, development of the acute radiation cerebrovascular and cardiovascular syndromes as well as ex-tensive burns of skin caused rapid death. Group E -100% mortality in 280-290 hours (12 days) following heavy ion irradiation while animals were exhibiting a combination or individual forms of the acute cerebrovascular, cardiovascular, and gastrointestinal forms and focal skin burns. Discussion: The Antiradiation Vaccine (ARV) and specific immune-prophylaxis are an effective method of neutralization of Radiation Toxins. Vaccination with the ARV significantly extended the survival time after irradiation with heavy ions from two hours up to 300 hours. Clinical signs, clinical features, symptoms were somewhat attenuated. Degree of clinical forms of the Acute Radiation Syndromes were diminished in their severity. Groups A-D demonstrated an extremely severe degree (Degree 4) of Cerebrovascular and Cardiovascular forms of the Acute Radiation Syndromes and lethality 100% was registered in a short time after irradiation. Radi-ation induced burns in this groups (with Cutaneous sub-syndrome of ARS -Degree 4) that were deep with extensive and total dysfunction and possible muscle involvement developed. Animals from group E -Radioprotectant -anti-radiation vaccine had demonstrated later development of the severe Degree 3 or even Degree 2-3 forms of Cerebrovascular and Cardiovascular forms of the ARS and a survival time of irradiated animals was significantly prolonged. Cutaneous sub-syndrome developed in Degree 3 or Degree 2-3. Our results have demonstrated the potential radioprotection efficacy of specific immune-prophylaxis with the

  5. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas.

    Science.gov (United States)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M; Orlando, Thomas M

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. Graphical Abstract ᅟ.

  6. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    Science.gov (United States)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  7. Experimental Investigation of Impact-Induced Molecular Desorption by 4.2 MeV/u Pb ions

    CERN Document Server

    Chanel, M; Laurent, Jean Michel; Madsen, N; Mahner, E

    2001-01-01

    In preparation for the heavy ion program of the LHC, accumulation and cooling test with lead ion beams have been performed in the LEAR storage ring. These tests have revealed that due to the unexpected, large outgassing of the vacuum system, the dynamic pressure of the ring could not be maintained low enough to reach the required beam intensities. To determine the actions necessary to lower the dynamic pressure rise, an experimental program has been initiated for measuring the molecular desorption yields of stainless steel vacuum chambers by the impact of 4.2 MeV/u lead ions with the charge states +27 and +53. The test chambers were exposed either at grazing or at perpendicular incidence. Different surface treatments are reported in terms of the molecular desorption yields for H2, CH4, CO and CO2. Unpexpected large values of molecular yields per incident ion up to 2x104 molecules/ion have been observed. The implications of these results for the vacuum system of the future ion accumulator ring (LEIR) and possi...

  8. Characterisation of laser induced thermal radiation for the experimental investigation of heavy ion interactions with plasma; Charakterisierung lasererzeugter Hohlraumstrahlung fuer die experimentelle Untersuchung der Wechselwirkung von Schwerionen mit Plasmen

    Energy Technology Data Exchange (ETDEWEB)

    Hessling, Thomas

    2010-02-08

    One major area of interest of the plasma physics group at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI Helmholtz Centre for Heavy Ion Research) and the laser and plasma physics group at the Institut fuer Kernphysik (Nuclear Physics Institute) of the University of Technology Darmstadt is the determination of the energy loss of heavy ions in plasma. The experimental area Z6 at GSI offers the unique opportunity for this in the combination of the ion accelerator UNILAC with two high energy laser systems: nhelix and PHELIX. In recent experiments a thin carbon foil is probed by regular ion bunches every 9.2 ns. A laser pulse of one or both of the laser systems heats the foil to the plasma state at a certain time. The change in arrival time of each ion bunch at a stop detector allows to determine the energy loss in the plasma. In addition to this experimental scheme with a directly heated foil a different scheme with indirectly heated targets is investigated. The laser is unable to penetrate the foil and thus deposits its energy on the surface, leading to gradients in density and temperature. In the indirectly heated set-up the laser energy is converted into thermal X-Rays in a converter hohlraum. A secondary cavity, containing the interaction target for the ion beam, is attached to the converter and heated homogeneously by the X-Rays. In the present work the thermal radiation from a converter cavity with a diameter of either 750 m or 650 m was investigated. The frequency-doubled nhelix beam (532 nm wavelength) with energies of up to 30 joules in six to seven nanoseconds (FWHM) was used as the heating laser. A new diode spectrometer, specifically designed for the temperature measurement, recorded the absolute radiation intensity at four different wavelengths and resolved the temperature evolution during the heating phase. Maximum values between 32 eV and 38 eV have been determined in various measurements. In addition to the temporal characterisation the

  9. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Liu, Hong; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2014-06-01

    1. Opening remarks; 2. A heavy ion phenomenology primer; 3. Results from lattice QCD at nonzero temperature; 4. Introducing the gauge/string duality; 5. A duality toolbox; 6. Bulk properties of strongly coupled plasma; 7. From hydrodynamics for far-from-equilibrium dynamics; 8. Probing strongly coupled plasma; 9. Quarkonium mesons in strongly coupled plasma; 10. Concluding remarks and outlook; Appendixes; References; Index.

  10. Electron cloud studies for heavy-ion and proton machines

    CERN Document Server

    Petrov, F; Weiland, Th

    2013-01-01

    Electron cloud effects are a known problem in various accelerator facilities around the world. Electron clouds cause instabilities and emittance growth in positron and proton beams as well as in heavy ion beams. Most of the hadron machines experience the build-up of EC due to the multipacting. In LHC and in positron machines production of electrons due to the synchrotron radiation becomes as important as the build-up due to the secondary emission. The main source of seed electrons in heavy ion machines is the residual gas ionization. FAIR facility in Darmstadt will operate with heavy-ion and proton beams. However, the beam parameters are such that the multipacting will start to play a role only for the unconditioned wall with the secondary emission yieldmore than 1.8. In this paperwe study the electron cloud build-up and its effect on the beam stability for FAIR heavy-ion coasting beams. These beams will be used during slow extraction. Electron scattering on the beam ions and its effect on the final neutraliz...

  11. Evolution of clusters in energetic heavy ion bombarded amorphous graphite

    CERN Document Server

    Akhtar, M N; Ahmad, Shoaib

    2016-01-01

    Carbon clusters have been generated by a novel technique of energetic heavy ion bombardment of amorphous graphite. The evolution of clusters and their subsequent fragmentation under continuing ion bombardment is revealed by detecting various clusters in the energy spectra of the direct recoils emitted as a result of collision between ions and the surface constituents.

  12. Subthreshold photons in heavy-ion reactions at intermediate energies

    NARCIS (Netherlands)

    Martinez, G

    1998-01-01

    In the present talk, I discuss about the properties of the energetic photons produced in heavy-ion reactions. I show that they are sensitive to the maximum density reached in the first stage of the nuclear reaction. Then, the existence of a thermal contribution to the photon differential cross-secti

  13. Ionization of Sodium Cluster by Heavy Ion Impact

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Energetic ions have recently been used as an efficient means to produce highly charged cold clusters~[1]. There are two ways to obtain highly-charged clusters: low-fluence nano-second lasers irradiation and energetic highly charged ions impact. Compared to the low-density laser, heavy ions, e.g. delivered by ECR sources, have the

  14. Charm resonance production in heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Arnaldi Roberta

    2015-01-01

    Full Text Available The production of charmonium states plays an important role among the probes to investigate the formation of a plasma of quarks and gluons (QGP in heavy-ion collisions. A review of the main J/ψ and ψ(2S results is presented, focussing on the most recent achievements from the LHC experiments.

  15. A detection system for energetic light heavy ions

    NARCIS (Netherlands)

    Engelen, C.P.M. van; Jelmersma, R.; Brink, A. van den; Kamermans, R.

    1984-01-01

    A light heavy ion detection system which consists of a gas-filled ionization chamber (IC) connected to a scattering chamber via a time-of-flight (TOF) system has been constructed. The entrance window of the IC has an area of 14 × 40 cm2, the active depth is 115 cm. Filled with CF4 at a pressure of 3

  16. Connecting QGP-Heavy Ion Physics to the Early Universe

    CERN Document Server

    Rafelski, Johann

    2013-01-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  17. Connecting QGP-Heavy Ion Physics to the Early Universe

    Science.gov (United States)

    Rafelski, Johann

    2013-10-01

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  18. Connecting QGP-Heavy Ion Physics to the Early Universe

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann

    2013-10-15

    We discuss properties and evolution of quark-gluon plasma in the early Universe and compare to laboratory heavy ion experiments. We describe how matter and antimatter emerged from a primordial soup of quarks and gluons. We focus our discussion on similarities and differences between the early Universe and the laboratory experiments.

  19. A short course on relativistic heavy ion collisions

    CERN Document Server

    Chaudhuri, A K

    2012-01-01

    Some ideas/concepts in relativistic heavy ion collisions are discussed. To a large extent, the discussions are non-comprehensive and non-rigorous. It is intended for fresh graduate students of Homi Bhabha National Institute, Kolkata Centre, who are intending to pursue career in theoretical /experimental high energy nuclear physics. Comments and criticisms will be appreciated.

  20. Correlations and fluctuations in high energy heavy ion collision experiments

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dai-Mei; WANG Ya-Ping; WEI Li-Hua; CAI Xu

    2008-01-01

    An overview of research status of soft physics in high energy heavy-ion collision experiments and recent experimental results are presented.The experimental status on fluctuations and correlations has been reviewed and the outlook for research status of soft physics in LHC/ALICE has been introduced in this paper.

  1. Elastic recoil detection (ERD) with extremely heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Forster, J.S. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Currie, P.J. [Royal Tyrrell Museum, Drumheller, Alberta T0J 0Y0 (Canada); Davies, J.A. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Siegele, R. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Wallace, S.G. [Accelerator Laboratory, McMaster University, Hamilton, Ontario L8S 4M1 (Canada); Zelenitsky, D. [Department of Geology and Geophysics, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    1996-06-01

    Extremely heavy-ion beams such as {sup 209}Bi in elastic recoil detection (ERD) make ERD a uniquely valuable technique for thin-film analysis of elements with mass {<=}100. We report ERD measurements of compositional analysis of dinosaur eggshells and bones. We also show the capability of the ERD technique on studies of thin-film, high-temperature superconductors. (orig.).

  2. Collective flow in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    R S Bhalerao

    2003-11-01

    A brief introduction is given to the field of collective flow, currently being investigated experimentally at the Relativistic Heavy-Ion Collider, Brookhaven National Laboratory. It is followed by an outline of the work that I have been doing in this field, in collaboration with Nicolas Borghini and Jean-Yves Ollitrault.

  3. Inferring Magnetospheric Heavy Ion Density using EMIC Waves

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hwa; Johnson, Jay R.; Kim, Hyomin; Lee, Dong-Hun

    2014-05-01

    We present a method to infer heavy ion concentration ratios from EMIC wave observations that result from ionion hybrid (IIH) resonance. A key feature of the ion-ion hybrid resonance is the concentration of wave energy in a field-aligned resonant mode that exhibits linear polarization. This mode converted wave is localized at the location where the frequency of a compressional wave driver matches the IIH resonance condition, which depends sensitively on the heavy ion concentration. This dependence makes it possible to estimate the heavy ion concentration ratio. In this letter, we evaluate the absorption coefficients at the IIH resonance at Earth's geosynchronous orbit for variable concentrations of He+ and field-aligned wave numbers using a dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentrations, it only occurs for a limited range of field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Using the wave absorption and observed EMIC waves from GOES-12 satellite, we demonstrate how this technique can be used to estimate that the He+ concentration is around 4% near L = 6.6.

  4. Theory of heavy ion collision physics in hadron therapy

    CERN Document Server

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.

  5. Theory of Nucleon Transport in Deep Inelastic Heavy Ion Reactions.

    Science.gov (United States)

    Sherman, Andrew Bruce

    Heavy ion reactions induced by projectiles of A > 80 at bombarding energies of 5-10 MeV/nucleon were studied using classical dynamical models. The damping of the relative motion was accounted for by radial and tangential friction, which dissipated both energy and angular momentum. Deformations were initially simulated by a simple phenomenological prescription for the entrance channel/exit channel asymmetry in the nuclear and centrifugal potentials. Later, a time dependent prolate spheroidal deformation was assumed for the exit channel, and its effect on all forces was explicitly treated. In that treatment the nuclear forces were derived from the proximity potential and the one-body proximity friction. The most important aspect of this work was the treatment of mass and charge transport. Transfer was treated as a random process occurring at finite time intervals along the trajectory. The probability of transfer at a given time was governed by a driving force derived from the liquid-drop binding energy and the nuclear temperature. All forces affecting the collision dynamics as well as the transfer driving forces were adjusted instantaneously to reflect any change in the charge or mass. Because the process was random, the equations of motion were solved by a Monte-Carlo procedure, whereby each impact parameter (or partial wave) was integrated many times, yielding a distribution for the scattering angle, final kinetic energy, final mass and final charge. The model was very successful in fitting the peak of the angular distribution and most of the observed energy loss. The qualitative features of the mass or charge distributions were accounted for by the model, including the increase of the width with increased energy loss. However, the model was not able to account for all of the observed width of either the mass (or charge) distributions or the angular distributions. This was true even if the effects of thermal fluctuations were included. The reasons for these

  6. Morphological study of borosilicate glass surface irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T. S.; Du, X.; Yuan, W.; Duan, B. H.; D. Zhang, J.; Chen, L.; Peng, H. B.; Yang, D.; Zhang, G. F.; Zhu, Z. H.

    2016-11-01

    Borosilicate glass is a candidate material for radiation waste formation and other optical applications in various fields. To understand the radiation effect of borosilicate glass, heavy ion (Arq+, Krq+ and Xeq+) irradiations were used to simulate the alpha and recoiled nuclei irradiations in this study. The surface morphology of glass has been compared to ion irradiation doses and ion energies. The surface topography evolution of irradiated samples is characterized by optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS). Micro-bumps are observed on the sample surface after irradiationwith 5 MeV Xeq+ over 5 × 1013 ions·cm-2. The size and density of the bumps increaseswith increasing irradiation dose. At a lowdose, bumps are on the nanometer (nm) scale and rather rare.While the dose is higher than 9 × 1015 ions·cm-2, the size of bumps is on the scale of a few microns, and the density is saturated. However, the height of the bumps increases froma fewnmto over 150nmwith further irradiation. The distribution of micro-bumps is nearly homogeneous. The bumps are condensed and swell up, and there is no crystallized structure according to the TEMdiffraction pattern. Elementmigration and concentrations are observedwith SIMS imaging. The arrayed micro-bumps are a new finding, and they might be used to change the surface properties. Bump formation is caused by phase separation, and volume swelling is induced by ion irradiation.

  7. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  8. Heavy ion fusion program. Half-year report, October 1978--March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Research activities in heavy ion fusion from October 1978 to March 1979 are reported. Primary areas covered include: induction linac systems; R.F. linac/storage ring systems; theory; and heavy ion fusion notes. (GHT)

  9. Heavy Ion Collisions at the LHC - Last Call for Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d' Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise

  10. An Experimental Review on Elliptic Flow of Strange and Multistrange Hadrons in Relativistic Heavy Ion Collisions

    Directory of Open Access Journals (Sweden)

    Shusu Shi

    2016-01-01

    Full Text Available Strange hadrons, especially multistrange hadrons, are good probes for the early partonic stage of heavy ion collisions due to their small hadronic cross sections. In this paper, I give a brief review on the elliptic flow measurements of strange and multistrange hadrons in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC and Large Hadron Collider (LHC.

  11. Track structure and energy deposition distribution of heavy ions in liquid water

    Institute of Scientific and Technical Information of China (English)

    李强; 卫增泉

    1996-01-01

    Progress in theoretical research into track structure and energy deposition distribution of heavy ions in introduced,and some research results are given,such as a Monte Carlo model of heavy ion track structure calculation,frequency distribution of energy deposition inside a electron track and radial dose distribution around a heavy ion path.Moreover,research direction in future is also analysed.

  12. Laser-induced desorption of overlayer films off a heated metal substrate

    Science.gov (United States)

    Gu, Xiang; Urbassek, Herbert M.

    2007-02-01

    The temperature-induced desorption of adsorbed overlayer films with thicknesses between 4 and 200 ML off a suddenly heated metal substrate is studied using molecular-dynamics simulation. We observe that the rapid heating vaporizes the surface-near part of the overlayer film. The initial heating-induced thermoelastic pressure and the vapor pressure in the vapor film drive the remaining film as a large relatively cold cluster away from the surface. In our simulations, the material present in the developing vapor film amounts to roughly 2 ML and is quite independent of the overlayer film thickness. For cluster thicknesses beyond 40 ML, the desorption time increases only little with film thickness, while the resulting cluster velocity decreases only slightly.

  13. Estimation of electric conductivity of the quark gluon plasma via asymmetric heavy-ion collisions

    CERN Document Server

    Hirono, Yuji; Hirano, Tetsufumi

    2012-01-01

    We show that in asymmetric heavy-ion collisions, especially off-central Cu+Au collisions, a sizable strength of electric field directed from Au nucleus to Cu nucleus is generated in the overlapping region, because of the difference in the number of electric charges between the two nuclei. This electric field would induce an electric current in the matter created after the collision, which result in a dipole deformation of the charge distribution. The directed flow parameters $v_1^{\\pm}$ of charged particles turn out to be sensitive to the charge dipole and provide us with information about electric conductivity of the quark gluon plasma.

  14. Response of Alanine Dosemeter to Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    LiWenjian; SuXu; YangYingjie; YuanJianlei; DangBingrong; WangXiao; MaQiufeng; ZhouLibin; HaoJifang; MaoShuhong

    2003-01-01

    The amino acid L-α-alanine has been investigated for use as a radiation detector in low and high LET radiation fields[1]. The radiatioa detector is cheap and easy to handle. The radiation inducing free radicals are stable at normal laboratory conditions for doses below 104 Gy over a long period of time, which makes the detector useful for intercomparison and documentation purposes. The dosimetric features of alanine-based electron spin resonance (ESR) detectors in high energy electron beams used in radiotherapy were considered[2]. The 5 mm long alanine detectors were found to be the most suitable for carrying out in vivo dosimetry on patients undergoing electron beam radiotherapy. However, data concerning dosimetry of the alanine dosemeter to heavy charged particles are lacking, especially in China.

  15. Spiraling Beam Illumination Uniformity on Heavy Ion Fusion Target

    CERN Document Server

    Kurosaki, T; Noguchi, K; Koseki, S; Barada, D; Ma, Y Y; Ogoyski, A I; Barnard, J J; Logan, B G

    2012-01-01

    A few percent wobbling-beam illumination nonuniformity is realized in heavy ion inertial confinement fusion (HIF) by a spiraling beam axis motion in the paper. So far the wobbling heavy ion beam (HIB) illumination was proposed to realize a uniform implosion in HIF. However, the initial imprint of the wobbling HIBs was a serious problem and introduces a large unacceptable energy deposition nonuniformity. In the wobbling HIBs illumination, the illumination nonuniformity oscillates in time and space. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs illumination nonuniformity. The wobbling HIBs can be generated in HIB accelerators and the oscillating frequency may be several 100MHz-1GHz. Three-dimensional HIBs illumination computations presented here show that the few percent wobbling HIBs illumination nonuniformity oscillates successfully with the same wobbling HIBs frequency.

  16. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  17. Heavy ion physics : Exhibition Lepton-Photon 2001

    CERN Multimedia

    2001-01-01

    High-energy Heavy Ion Physics studies strongly interacting matter at extreme energy densities.QCD predicts that at such densities hadronic matter turns into a plasma of deconfined quarks and gluons,the Quark Gluon Plasma (QGP).Matter in the Universe must have existed in this state up to about 10 ms after the Big Bang.Today QGP might exist in the c re of neutron stars.The study of the phase diagram of matter is a new approach to investigate QCD at its natural scale,L QCD ,and to address the fundamental questions of confinement and chiral-symmetry breaking.The combined results obtained by the SPS heavy ion experiments,in particular those obtained with the Pb beam,pr vide compelling evidence for the existence of a new state of matter featuring many of the characteristics predicted for the QGP.The ALICE experiment will carry this research into the LHC era.

  18. Development of heavy-ion radiotherapy technology with HIMAC

    Science.gov (United States)

    Noda, Koji

    2016-09-01

    Since 1994, HIMAC has carried out clinical studies and treatments for more than 9000 cancer patients with carbon-ion beams. During the first decade of the HIMAC study, a single beam-wobbling method, adopted as the HIMAC beam-delivery technique, was improved for treatments of moving tumors and for obtaining more conformal dose distribution. During the second decade, a pencil-beam 3D scanning method has been developed toward an “adaptive cancer treatment” for treatments of both static and moving tumors. A new treatment research facility was constructed with HIMAC in order to verify the developed 3D scanning technology through a clinical study that has been successfully conducted since 2011. As the next stage, a compact heavy-ion rotating gantry with a superconducting technology has been developed for the more accurate and shorter-course treatments. The twenty-year development of the heavy-ion radiotherapy technologies including accelerator technologies with HIMAC is reviewed.

  19. Jet studies in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Slovak, Radim; The ATLAS collaboration

    2016-01-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. ATLAS has provided a quantification of this jet suppression by the jet Raa measurement in run 1 of LHC. A factor of two suppression was seen in central heavy ion collisions with respect to pp collisions. The Raa exhibited only a week, if any, rapidity dependence, and a slow rise with increasing jet momentum. This talk summarizes the run 1 results on the inclusive jet production and the new results on dijet measurements.

  20. Low- to medium-β cavities for heavy ion acceleration

    Science.gov (United States)

    Facco, Alberto

    2017-02-01

    Acceleration of low- and medium-β heavy ions by means of superconducting (SC) linear accelerators (linacs) was made possible by the development, during four decades, of a particular class of cavities characterized by low operation frequency, several different shapes and different electromagnetic modes of operation. Their performance, initially rather poor in operating accelerators, have steadily increased along with the technological progress and nowadays the gap with the high-β, elliptical cavities is close to be filled. Initially confined to a very small number of applications, this family of cavities evolved in many directions becoming one of the most widespread in linacs. Nowadays it is present in the majority of superconducting radio-frequency ion linac projects worldwide. An overview of low- and medium-β SC cavities for heavy ions, focused on their recent evolution and achievements, will be given.

  1. Selected Experimental Results from Heavy-Ion Collisions at LHC

    Directory of Open Access Journals (Sweden)

    Ranbir Singh

    2013-01-01

    Full Text Available We review a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC facility at CERN. Excellent consistency is observed across all the experiments at the LHC (at center of mass energy sNN=2.76 TeV for the measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC at lower energy (sNN=200 GeV suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer time. These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the RHIC and LHC.

  2. Heavy ion acceleration in the Breakout Afterburner regime

    CERN Document Server

    Petrov, G M; Thomas, A G R; Krushelnick, K; Beg, F N

    2015-01-01

    Theoretical study of heavy ion acceleration from an ultrathin (20 nm) gold foil irradiated by sub-picosecond lasers is presented. Using two dimensional particle-in-cell simulations we identified two highly efficient ion acceleration schemes. By varying the laser pulse duration we observed a transition from Radiation Pressure Acceleration to the Breakout Afterburner regime akin to light ions. The underlying physics and ion acceleration regimes are similar to that of light ions, however, nuances of the acceleration process make the acceleration of heavy ions more challenging. Two laser systems are studied in detail: the Texas Petawatt Laser and the Trident laser, the former having pulse duration 180 fs, intermediate between very short femtosecond pulses and picosecond pulses. Both laser systems generated directional gold ions beams (~10 degrees half-angle) with fluxes in excess of 1011 ion/sr and normalized energy >10 MeV/nucleon.

  3. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  4. COLLIMATORS AND MATERIALS FOR HIGH INTENSITY HEAVY ION SYNCHROTRONS

    CERN Document Server

    Stadlmann, J; Kollmus, H; Spiller, P; Strasik, I; Tahir, N A; Tomut, M; Trautmann, C

    2012-01-01

    The operation of high power high brightness accelerators requires huge efforts for beam cleaning and machine protection. Within the WP 8 (ColMat) of the EU research framework EuCARD[1] we investigate new materials and methods for beam collimation and machine protection. We present an overview of these activities at the GSI Helmholtzzentrum f¨ur Schwerionenforschung, Darmstadt. Simulations of accidental beam losses in LHC and SIS100 have been performed. Scenarios for halo collimation of heavy ions and protons in SIS100 routine operation have been investigated. A prototype of a cryogenic collimator for charge exchange losses during intermediate charge state heavy ion operation in SIS100 has been build and tested with beam. Several candidates of advanced composite materials for collimation system upgrades of present and future high power accelerators have been irradiated and their properties are being characterized. Most deliverables and milestones of the R&D programme were already reached before the end of...

  5. Anti-biofilm activity of Fe heavy ion irradiated polycarbonate

    Science.gov (United States)

    Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, Ganesh; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2016-10-01

    Polycarbonate (PC) polymers were investigated before and after high energy heavy ion irradiation for anti-bacterial properties. These PC films were irradiated by Fe heavy ions with two energies, viz, 60 and 120 MeV, at different fluences in the range from 1 × 1011 ions/cm2 to 1 × 1013 ions/cm2. UV-Visible spectroscopic results showed optical band gap decreased with increase in ion fluences due to chain scission mainly at carbonyl group of PC which is also corroborated by Fourier transform infrared spectroscopic results. X-ray diffractogram results showed decrease in crystallinity of PC after irradiation which leads to decrease in molecular weight. This is confirmed by rheological studies and also by differential scanning calorimetric results. The irradiated PC samples showed modification in their surfaces prevents biofilm formation of human pathogen, Salmonella typhi.

  6. Probing transverse momentum broadening in heavy ion collisions

    Science.gov (United States)

    Mueller, A. H.; Wu, Bin; Xiao, Bo-Wen; Yuan, Feng

    2016-12-01

    We study the dijet azimuthal de-correlation in relativistic heavy ion collisions as an important probe of the transverse momentum broadening effects of a high energy jet traversing the quark-gluon plasma. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet PT-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable PT-broadening effects in the measurement of dijet azimuthal correlations in heavy ion collisions. Future investigations at RHIC will provide a unique opportunity to study the PT-broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium.

  7. Scaled beam merging experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    P. A. Seidl

    2003-09-01

    Full Text Available Transverse beam combining is a cost-saving option employed in many designs for heavy ion fusion drivers. However, the resultant transverse phase space dilution must be minimized so as not to sacrifice focusability at the target. A prototype combining experiment has been completed employing four 3-mA Cs^{+} beams injected at 160 keV. The focusing elements upstream of the merge consist of four quadrupoles and a final combined-function element (quadrupole and dipole. Following the merge, the resultant single beam is transported in a single alternating gradient channel where the subsequent evolution of the distribution function is diagnosed. The results are in fair agreement with particle-in-cell simulations. They indicate that for some heavy ion fusion driver designs, the phase space dilution from merging is acceptable.

  8. <span class="hlt">Heavy-Ion</span> Imaging Applied To Medicine

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J. I.; Tobias, C. A.; Capp, M. P.; Benton, E. V.; Holley, W. R.; Gray, Joel E.; Hendee, William R.; Haus, Andrew G.; Properzio, William S.

    1980-08-18

    Heavy particle radiography is a newly developed noninvasive low dose imaging procedure with increased resolution of minute density differences in soft tissues of the body. The method utilizes accelerated high energy ions, primarily carbon and neon, at the BEVALAC accelerator at the Lawrence Berkeley Laboratory. The research program applied to medicine utilizes heavy-ion radiography for low dose mammography, for treatment planning for cancer patients, and for imaging and accurate densitometry of skeletal structures and brain and spinal neoplasms. The presentation will be illustrated with clinical cases under study. Discussion will include the potential of heavy-ion imaging, and particularly reconstruction tomography, as an adjunct to existing diagnostic imaging procedures in medicine, both for the applications to the diagnosis, management and treatment of clinical cancer in man, but also for the early detection of small soft tissue tumors at low radiation dose.

  9. How (non-) linear is the hydrodynamics of heavy ion collisions?

    CERN Document Server

    Floerchinger, Stefan; Beraudo, Andrea; Del Zanna, Luca; Inghirami, Gabriele; Rolando, Valentina

    2014-01-01

    We provide evidence from full numerical solutions that the hydrodynamical evolution of initial density fluctuations in heavy ion collisions can be understood order-by-order in a perturbative series in deviations from a smooth and azimuthally symmetric background solution. To leading linear order, modes with different azimuthal wave numbers do not mix. Quadratic and higher order corrections are small and can be understood as overtones with corresponding wave numbers.

  10. Heavy-ion Results of the CMS Experiment

    CERN Document Server

    Boimska, B

    2016-01-01

    An overview of selected heavy-ion results of the CMS experiment is presented. Jet quenching, quarkonia suppression and two-particle angular correlation results are discussed. The measurements have been performed for lead–lead, proton–lead and proton–proton data samples recorded for Run 1 of the LHC accelerator. In the correlation analysis, low pile-up proton–proton collisions at an energy of 13 TeV (from Run 2) have been used as well

  11. Aspects of heavy-ion collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Wolschin, G. [Institut für Theoretische Physik der Universität Heidelberg, Philosophenweg 16, D-69120 Heidelberg (Germany)

    2014-01-14

    Three aspects of relativistic heavy-ion collisions are considered in this article: (1) Stopping and baryon transport in a QCD-based approach, (2) charged-hadron production in a nonequilibrium-statistical relativistic diffusion model (RDM), and (3) quarkonia suppression and in particular, Υ suppression in PbPb at the current LHC energy of √(s{sub NN}) = 2.76TeV.

  12. BRAHMS collaboration results for relativistic heavy ion collisions

    Science.gov (United States)

    Arsene, I.

    2008-12-01

    In this work we review very briefly a few of the most important results obtained by the BRAHMS Collaboration on the properties of the collisions of heavy ions at relativistic energies. The discussion is general and aims to illustrate the most important achievements of our collaboration during the RHIC run period with short discussions and references to articles that treat the subjects in more detail.

  13. Heavy ion cocktail beams at the 88 inch Cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; McMahan, Margaret A.; Argento, David; Gimpel, Thomas; Guy, Aran; Morel, James; Siero, Christine; Thatcher, Ray; Lyneis, Claude M.

    2002-09-03

    Cyclotrons in combination with ECR ion sources provide the ability to accelerate ''cocktails'' of ions. A cocktail is a mixture of ions of near-identical mass-to-charge (m/q) ratio. The different ions cannot be separated by the injector mass-analyzing magnet and are tuned out of the ion source together. The cyclotron then is utilized as a mass analyzer by shifting the accelerating frequency. This concept was developed soon after the first ECR ion source became operational at the 88-Inch Cyclotron and has since become a powerful tool in the field of heavy ion radiation effects testing. Several different ''cocktails'' at various energies are available at the 88-Inch cyclotron for radiation effect testing, covering a broad range of linear energy transfer and penetration depth. Two standard heavy ion cocktails at 4.5 MeV/nucleon and 10 MeV/nucleon have been developed over the years containing ions from boron to bismuth. Recently, following requests for higher penetration depths, a 15MeV/nucleon heavy ion cocktail has been developed. Up to nine different metal and gaseous ion beams at low to very high charge states are tuned out of the ion source simultaneously and injected together into the cyclotron. It is therefore crucial to balance the ion source very carefully to provide sufficient intensities throughout the cocktail. The paper describes the set-up and tuning of the ion source for the various heavy ion cocktails.

  14. Search for Tetraquarks in Relativistic Heavy-Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-Biao; GAO Chong-Shou

    2006-01-01

    Tetraquarks can be produced in relativistic heavy-ion collision. The yield of this kind of tetraquarks can increase significantly soon as the formation of QGP after the collision. If there is no phase transition after collision, the upper bound of the production of this four-quark states can be estimated from the free hadronic gas model for nuclearmatter. The relative yield ratio of tetraquark cs(s)(s) to Ω is less than 0.0164.

  15. Chimera microscopic approach to heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Lukasik, J.; Majka, Z. [Uniwersytet Jagiellonski, Cracow (Poland). Inst. Fizyki

    1993-12-01

    A microscopic model based on a molecular dynamics concept is presented. The model simulates some quantum effects and thus enables studies of large fermionic systems. It was devised to investigate the dynamics of heavy ion collision at intermediate energies. The model was applied to study an early phase of the {sup 84}Kr+{sup 159}Tb reaction at 45 MeV/nucleon. (author). 30 refs, 9 figs.

  16. Microscopic descriptions of high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A.R.

    1977-01-01

    The essentials of the equation-of-motion (EOM) approach are given and some of its significant and interesting results are described. A framework for the theoretical description of high-energy heavy-ion (HE-HI) collisions is presented; specifically included are a critical assessment of various approaches--EOM calculations, Boltzmann equations/cascade calculations, and hydrodynamics--their relationships and their respective domains of applicability, if any, to HE-HI collisions. 11 figures, 3 tables. (RWR)

  17. Heavy ion beam transmission in the AGOR cyclotron

    NARCIS (Netherlands)

    Sen, Ayanangsha

    2013-01-01

    In the framework of the TRImP program initiated at the KVI in 2002, the AGOR cyclotron was used to accelerate low energy heavy ion beams up to a beam intensity (>=10^12 particles per second). Typical beam ions are: 206Pb accelerated to 8 MeV/amu and 20Ne accelerated to 25 MeV/amu. In the course of b

  18. Transverse Flow of Kaons in Heavy-Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    郑玉明; 储自力; FUCHS Christian; FAESSLER Amand; 肖武; 华大平; 阎玉鹏

    2002-01-01

    The transverse flow of positively charged kaons from heavy-ion collisions at intermediate energy is investigatedwithin the framework of the quantum molecular dynamics model. The calculated results show that the experi-mental data are only consistent with those including the kaon mean-field potential from the chiral Lagrangian.This indicates that the transverse flow pattern of kaons is a useful probe of the kaon potential in a nuclearmedium.

  19. Isotope analysis in central heavy ion collisions at intermediate energies

    Science.gov (United States)

    Geraci, E.; Abbondanno, U.; Bardelli, L.; Barlini, S.; Bini, M.; Bruno, M.; Cannata, F.; Casini, G.; Chiari, M.; D'Agostino, M.; de Sanctis, J.; Giussani, A.; Gramegna, F.; Kravchuk, V. L.; Lanchais, A. L.; Marini, P.; Moroni, A.; Nannini, A.; Olmi, A.; Ordine, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Vannini, G.; Nucl-Ex Collaboration

    2007-11-01

    Symmetry energy is a key quantity in the study of the equation of state of asymmetric nuclear matter. Heavy ion collisions at low and intermediate energies, performed at Laboratori Nazionali di Legnaro and Laboratori Nazionali del Sud, can be used to extract information on the symmetry energy coefficient Csym, which is currently poorly known but relevant both for astrophysics and for deeper knowledge of the structure of exotic nuclei.

  20. What have we learned from relativistic heavy-ion collider?

    Indian Academy of Sciences (India)

    Larry McLerran

    2003-04-01

    In this talk, I present what I believe we have learned from the recent RHIC heavy ion experiments. The goal of these experiments is to make and study matter at very high energy densities, greater than an order of magnitude larger than that of nuclear matter. Have we made such matter? What have we learned about the properties of this matter? What do we hope and expect to learn in the future?

  1. Scaling of elliptic flow in heavy ion collisions

    CERN Document Server

    Torrieri, Giorgio; Gyulassy, Miklos

    2012-01-01

    The common interpretation of $v_2$ in heavy ion collisions is that it is produced by hydrodynamic flow at low transverse momentum and by parton energy loss at high transverse momentum. In this talk we discuss this interpretation in view of the dependence of $v_2$ with energy, rapidity and system size, and show that it might not be trivial to reconcile these models with the relatively simple scaling found in experiment

  2. Neutron dose equivalent rate for heavy ion bombardment

    Institute of Scientific and Technical Information of China (English)

    LiGui-Sheng; ZhangTian-Mei; 等

    1998-01-01

    The fluence rate distribution of neutrons in the reactionsof 50MeV/u 18O-ion on thick Be,Cu and Au targets have been measured with an activation method of threshold detectors andthe neutron dose equivalent rate distributions at 1m from the tqrgets in intermediate energy heavy ion target area are obtained by using the conversion factors from neutron fluence rate to neutron doseequivalent rate.

  3. Range and etching behaviour of swift heavy ions in polymers

    Science.gov (United States)

    Singh, Lakhwant; Singh, Mohan; Samra, Kawaljeet Singh; Singh, Ravinder

    Aliphatic (CR-39) and aromatic (Lexan polycarbonate) polymers have been irradiated with a variety of heavy ions such as 58Ni, 93Nb, 132Xe, 139La, 197Au, 208Pb, 209Bi, and 238U having energy ranges of 5.60-8.00 MeV/n in order to study the range and etching kinetics of heavy ion tracksE The ion fluence (range ˜104-105 ions/cm2) was kept low to avoid the overlapping of etched tracks. The measured values of maximum etched track length were corrected due to bulk etching and over etching to obtain the actual range. The experimental results of range profiles were compared with those obtained by the most used procedures employed in obtaining range and stopping power. The range values of present ions have been computed using the semiempirical codes (SRIM-98, SRIM-2003.26, and LISE++:0-[Hub90]) in order to check their accuracy. The merits and demerits of the adopted formulations have been highlighted in the present work. It is observed that the range of heavy ions is greater in aromatic polymers (Lexan polycarbonate) as compared to the aliphatic polymers (CR-39) irradiated with similar ions having same incident energies. The SRIM-98 and SRIM2003.26 codes don't show any significant trend in deviations, however, LISE++:0-[Hub90] code provides overall good agreement with the experimental values. The ratio of track etch rate (along projectile trajectory) to the bulk etch rate has also been studied as a function of energy loss of heavy ions in these polymers.

  4. An integrated systems model for heavy ion drivers

    Energy Technology Data Exchange (ETDEWEB)

    Bangerter, R O; Faltens, A; Meier, W R

    1998-09-02

    A source-to-target computer model for an induction linac driver for heavy ion fusion has been developed and used to define a reference case driver that meets the requirements of one current target design. Key features of the model are discussed, and the design parameters of the reference case design are described. Examples of the systems analyses leading to the point design are given, and directions for future work are noted.

  5. Coherent rho(0) production in ultraperipheral heavy-ion collisions.

    Science.gov (United States)

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Nystrand, J; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2002-12-30

    The STAR Collaboration reports the first observation of exclusive rho(0) photoproduction, AuAu-->AuAurho(0), and rho(0) production accompanied by mutual nuclear Coulomb excitation, AuAu-->Au*Au*rho(0), in ultraperipheral heavy-ion collisions. The rho(0) have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt[s(NN)]=130 GeV agree with theoretical predictions treating rho(0) production and Coulomb excitation as independent processes.

  6. Cooler storage ring accomplished at heavy ion facility in Lanzhou

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFLCSR),a flagship facility of basic research in China,passed the acceptance check under auspices of the State Development and Reform Commission on 30 July in Lanzhou,capital of Gansu Province.The event was jointly presided over by the Commission's Vice Minister ZHANG Xiaoqian and CAS Executive Vice President BAI Chunli.

  7. Azimuthal Correlation of Collective Motion in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    HUO Lei; ZHANG Wei-Ning; CHEN Xiang-Jun; TANG Gui-Xin; ZHANG Jing-Bo

    2001-01-01

    The out-of-plane squeeze-out effect in relativistic heavy ion collisions is used to estimate the reaction plane by performing a modified transverse momentum analysis. A technique for investigating the azimuthal correlation between the out-of-plane squeeze-out and directed in-plane flow is described. A clear signature of the azimuthal correlation is evidenced in the 600 A MeV Au + Au reaction from the quantum molecular dynamic model calculations.

  8. Stopping of relativistic hydrogen- and heliumlike heavy ions

    CERN Document Server

    Soerensen, A H

    2002-01-01

    The stopping power for hydrogen- and heliumlike heavy ions penetrating matter at energies of 100-1000 MeV/u is calculated. For hydrogenlike ions the difference in dE/dx for an extended and a collapsed electron distribution is at the level of 1% and nonperturbative effects easily account for half of the difference. Differences of this magnitude have drastic effects on charge-exchange straggling. The theoretical results lead to good agreement with experimental values when applied in simulations.

  9. Isotope analysis in central heavy ion collisions at intermediate energies

    CERN Document Server

    Geraci, E; Bardelli, L; Barlini, S; Bini, M; Bruno, M; Cannata, F; Casini, G; Chiari, M; D'Agostino, M; De Sanctis, J; Giussani, A; Gramegna, F; Kravchuk, V L; Lanchais, A L; Marini, P; Moroni, A; Nannini, A; Olmi, A; Ordine, A; Pasquali, G; Piantelli, S; Poggi, G; Vannini, G

    2006-01-01

    Symmetry energy is a key quantity in the study of the equation of state of asymmetric nuclear matter. Heavy ion collisions at low and intermediate energies, performed at Laboratori Nazionali di Legnaro and Laboratori Nazionali del Sud, can be used to extract information on the symmetry energy coefficient Csym, which is currently poorly known but relevant both for astrophysics and for structure of exotic nuclei.

  10. Atomic physics experiments with stored cooled heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.

    1986-01-01

    The wide ranging interest in the development of heavy ion synchrotrons with electron beam cooling is evident from the number of projects presently under way. Although much of the initial motivation for these rings stemmed from nuclear and particle physics, a considerable amount of atomic physics experimentation is planned. This paper surveys some of the new opportunities in atomic physics which may be made available with storage ring systems. 25 refs., 3 tabs.

  11. Modular TPCs for relativistic heavy-ion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C. (Brookhaven National Lab., Upton, NY (USA)); Lindenbaum, S.J. (Brookhaven National Lab., Upton, NY (USA) City Coll., New York (USA)); Chan, C.S.; Kramer, M.A. (City Coll., New York (USA)); Hallman, T.J.; Madansky, L. (Johns Hopkins Univ., Baltimore, MD (USA)); Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Corcoran, M.D.; Krishna, N.; Kruk, J.W.; Miettinen, H.E.; Mutchler, G.S.; Nessi-Tedaldi, F.; Nessi, M.; Phillips, G.C.; Roberts, J.B. (Rice Univ., Houston, TX (USA))

    1989-11-10

    A description is given of a TPC system that operates in a relativistic heavy-ion beam and yields good track reconstruction efficiency in very-high-multiplicity events. The mechanical construction of the chamber is discussed. A set of custom hybrid circuits are used to build a very compact, cost-effective electronics system mounted directly on the chamber. Results from running in test beams and from preliminary experimental runs are given. (orig.).

  12. The effects of heavy ion particles on the developing murine cerebellum, with special reference to cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Chikako; Yaoi, Takeshi; Fushiki, Shinji [Kyoto Prefectural Univ. of Medicine (Japan). Research Inst. for Neurological Diseases and Geriatrics; Nojima, Kumie [National Inst. of Radiological Sciences, Chiba (Japan). Internatinal Space Radiation Lab.

    2003-07-01

    We report here the effects of heavy ion beams on postnatal mouse cerebellar development, with reference to cell death. Eight-day-old B6C3F1 mice were irradiated with single doses of 0.1, 0.25, 0.5, 1.0, and 2.0 Gy, using a carbon beam of 290 MeV delivered from a heavy ion medical accelerator in Chiba (HIMAC). To compare the effects of X-rays with those of accelerated carbon ions, 8-day-old mice were exposed to X-rays single doses of 0.1, 0.25, 0.5, 1.0, and 2.0 Gy, respectively. Pups were fixed at 1, 6, 12 and 24 hr after exposure to HIMAC beams or X-rays. Four-{mu}m-thick parasagittal sections of the cerebella were processed for hematoxylin-eosin staining as well as for staining with the TUNEL (terminal dUTP nick-end labeling) technique. The density of fragmented nuclei in the external granular layer increased with time, peaking at 6 hr after exposure, in both the HIMAC and X-irradiated groups. In the HIMAC groups, the density was significantly higher in those animals exposed to 0.25 Gy or more compared to 0 Gy, whereas in the X-irradiated groups it was significantly higher in those mice exposed to 0.5 Gy or more. Electron microscopic examinations revealed chromatin condensation in the cell nuclei in the HIMAC groups. This is the first in vivo evidence that apoptotic cell death is induced in developing mouse cerebellum after exposure to heavy ion particles. The difference in the frequency of dying cells between exposure to heavy ion particles and to X-rays may reflect the high linear energy transfer (LET) associated with a heavy ion beam. (author)

  13. Heavy ion storage ring without linear dispersion

    Directory of Open Access Journals (Sweden)

    Masahiro Ikegami

    2004-12-01

    Full Text Available A possible method to realize a dispersion-free storage ring is described. The simultaneous use of a magnetic field B and an electric field E in bending regions, where the two fields are set perpendicular to each other, enables us to control the effect of momentum dispersion. When the relation (1+1/γ_{0}^{2}E(ρ=-v_{0}×B is satisfied for a beam with the velocity v_{0}, the linear dispersion can be completely eliminated all around the ring. It is shown that the acceleration and deceleration induced by the electrostatic deflector counteracts the heating mechanism due to the shearing force from dipole magnets. The dispersion-free system is thus beneficial to producing ultracold beams. It looks probable that the technique will allow one to achieve three-dimensional crystalline beams. At ICR Kyoto University, an ion cooler storage ring S-LSR oriented for various beam physics purposes is now under construction. The application of the present idea to S-LSR is discussed and the actual design of the dispersionless bend is given.

  14. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    CERN Document Server

    Casalderrey-Solana, Jorge; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2011-01-01

    Over the last decade, both experimental and theoretical advances have brought the need for strong coupling techniques in the analysis of deconfined QCD matter and heavy ion collisions to the forefront. As a consequence, a fruitful interplay has developed between analyses of strongly-coupled non-abelian plasmas via the gauge/string duality (also referred to as the AdS/CFT correspondence) and the phenomenology of heavy ion collisions. We review some of the main insights gained from this interplay to date. To establish a common language, we start with an introduction to heavy ion phenomenology and finite-temperature QCD, and a corresponding introduction to important concepts and techniques in the gauge/string duality. These introductory sections are written for nonspecialists, with the goal of bringing readers ranging from beginning graduate students to experienced practitioners of either QCD or gauge/string duality to the point that they understand enough about both fields that they can then appreciate their in...

  15. Heavy ions: Results from the Large Hadron Collider

    Indian Academy of Sciences (India)

    Tapan K Nayak

    2012-10-01

    On November 8, 2010 the Large Hadron Collider (LHC) at CERN collided the first stable beams of heavy ions (Pb on Pb) at the centre-of-mass energy of 2.76 TeV/nucleon. The LHC worked exceedingly well during its one month of operation with heavy ions, delivering about 10 −1 of data, with peak luminosity reaching to $L_{O} = 2 × 10^{25}$ cm-2 s-1 towards the end of the run. Three experiments, ALICE, ATLAS and CMS, recorded their first heavy-ion data, which were analysed in a record time. The results of the multiplicity, flow, fluctuations and Bose–Einstein correlations indicate that the fireball formed in nuclear collisions at the LHC is hotter, lives longer, and expands to a larger size at freeze-out as compared to lower energies. We give an overview of these as well as new results on quarkonia and heavy flavour suppression, and jet energy loss.

  16. Validation of Heavy Ion Transport Capabilities in PHITS

    Science.gov (United States)

    Ronningen, Reginald M.

    2007-03-01

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown for a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.

  17. Results from the first heavy ion run at the LHC

    CERN Document Server

    Schukraft, J

    2012-01-01

    Early November 2010, the LHC collided for the first time heavy ions, Pb on Pb, at a centre-of-mass energy of 2.76 TeV/nucleon. This date marked both the end of almost 20 years of preparing for nuclear collisions at the LHC, as well as the start of a new era in ultra-relativistic heavy ion physics at energies exceeding previous machines by more than an order of magnitude. This contribution summarizes some of the early results from all three experiments participating in the LHC heavy ion program (ALICE, ATLAS, and CMS), which show that the high density matter created at the LHC, while much hotter and larger, still behaves like the very strongly interacting, almost perfect liquid discovered at RHIC. Some surprising and even puzzling results are seen in particle ratios, jet-quenching, and Quarkonia suppression observables. The overall experimental conditions at the LHC, together with its set of powerful and state-of-the-art detectors, should allow for precision measurements of quark-gluon-plasma parameters like v...

  18. Heavy-ion performance of the LHC and future colliders

    CERN Document Server

    AUTHOR|(SzGeCERN)696614; Stahl, Achim; Jowett, John M

    2015-10-09

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton–proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term “heavy-ion collisions” refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter l...

  19. Breit interaction effect on dielectronic recombination of heavy ions

    Science.gov (United States)

    Nakamura, Nobuyuki

    2016-11-01

    Interaction of highly charged heavy ions with electrons is one of the most important atomic processes in high temperature plasmas, including astrophysical plasmas such as solar corona and artificial plasmas such as fusion reactor plasmas. Therefore it has been well studied to date, both theoretically and experimentally, to accumulate the atomic data required for understanding or controlling such plasmas. However, there still remains interesting subjects that receive remarkable attention from the atomic physics point of view. One of them, which is the subject of this review, is substantially large Breit interaction effects on the resonance recombination process called dielectronic recombination. The Breit interaction is a relativistic effect in the electron-electron interaction potential; it is thus generally important for highly charged heavy ions. However, in the calculation of the energy levels for heavy ions, the Breit interaction is still a small perturbation compared with the main Coulomb term. On the other hand for the dielectronic recombination, it was found that the Breit interaction can enhance the cross sections significantly. It was also found that the Breit interaction can play not only an important, but even a dominant role in determining the angular distribution of x-rays emitted in the recombination processes. This topical review introduces the recent experimental and theoretical activities to clarify the essential origin of the strong effects.

  20. Heavy Ion Inertial Fusion Energy: Summaries of Program Elements

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A; Barnard, J J; Kaganovich, I; Seidl, P A; Briggs, R J; Faltens, A; Kwan, J W; Lee, E P; Logan, B G

    2011-02-28

    The goal of the Heavy Ion Fusion (HIF) Program is to apply high-current accelerator technology to IFE power production. Ion beams of mass {approx}100 amu and kinetic energy {>=} 1 GeV provide efficient energy coupling into matter, and HIF enjoys R&D-supported favorable attributes of: (1) the driver, projected to be robust and efficient; see 'Heavy Ion Accelerator Drivers.'; (2) the targets, which span a continuum from full direct to full indirect drive (and perhaps fast ignition), and have metal exteriors that enable injection at {approx}10 Hz; see 'IFE Target Designs'; (3) the near-classical ion energy deposition in the targets; see 'Beam-Plasma Interactions'; (4) the magnetic final lens, robust against damage; see 'Final Optics-Heavy Ion Beams'; and (5) the fusion chamber, which may use neutronically-thick liquids; see 'Liquid-Wall Chambers.' Most studies of HIF power plants have assumed indirect drive and thick liquid wall protection, but other options are possible.

  1. Effects of heavy-ion beams on chromosomes of common wheat, Triticum aestivum

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shinji; Saito, Yoshinaka [Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553 (Japan); Ryuto, Hiromichi; Fukunishi, Nobuhisa; Abe, Tomoko [RIKEN Nishina Center, RIKEN, Hirosawa, Wako 351-0198 (Japan); Tanaka, Hiroyuki [Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553 (Japan); Tsujimoto, Hisashi, E-mail: tsujim@muses.tottori-u.ac.jp [Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553 (Japan)

    2009-10-02

    To investigate the nature of plant chromosomes irradiated by heavy-ion beams, the effects of nitrogen (N) and neon (Ne) ion beams on hexaploid wheat chromosomes were compared with those of X-ray. Chromosome aberrations, such as short, ring and dicentric chromosomes appeared in high frequency. The average numbers of chromosome breaks at LD-50 by irradiation with X-ray, N and Ne ion beams were 32, 20 and 20, respectively. These values may be underestimated because chromosome rearrangement without change in chromosome morphology was not counted. Thus, we subsequently used a wheat line with a pair of extra chromosomes from an alien species (Leymus racemosus) and observed the fate of the irradiated marker chromosomes by genomic in situ hybridization. This analysis revealed that 50 Gy of neon beam induced about eight times more breaks than those induced by X-ray. This result suggests that heavy-ion beams induce chromosome rearrangement in high frequency rather than loss of gene function. This suggests further that most of the novel mutations produced by ion beam irradiation, which have been used in plant breeding, may not be caused by ordinary gene disruption but by chromosome rearrangements.

  2. Effects of heavy ion radiation on the brain vascular system and embryonic development

    Science.gov (United States)

    Yang, T. C.; Tobias, C. A.

    Using neonatal rats as a model system, we investigated the response of the brain vascular system to ionizing radiation and found that distinct petechial hemorrages developed in the cerebral cortex within a few hours after irradiation, reached a maximum about 13 to 24 hours, and decreased exponentially with time. No brain hemorrhage was found in neonatal rats 12 days after irradiation. Our experimental results indicate that a dose of a few hundred rad of X rays can induce a significant number of hemorrhages in the brain, and the number of lesions increases exponentially with dose. Heavy ions induce more hemorrhages than X rays for a given dose, and the RBE for 670 MeV/u neon particles ranges from about 2.0 for low doses to about 1.4 for high doses. A histological study on the hemorrhages indicates that a large number of red blood cells leak from the blood vessels. The radiation-induced hemorrhages may be a result of some capillary membrane damages or reproductive death of some blood vessel epithelial cells. The fast onset of hemorrhage after irradiation suggests that some membrane damage may be involved. The effect of heavy-ion radiation on the embryonic development was studied with energetic iron particles. Pregnant mice were whole-body irradiated with 600 MeV/u iron particles on day 6 of gestation and were sacrificed 12 days after irradiation. Various physical abnormalities were observed, and embryos irradiated with 1 rad iron particles showed retardation of body development.

  3. Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider

    Indian Academy of Sciences (India)

    Subrata Pal

    2015-05-01

    We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed.

  4. Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr2+) irradiation

    Science.gov (United States)

    Yu, Hongbing; Zhang, Ken; Yao, Zhongwen; Kirk, Mark A.; Long, Fei; Daymond, Mark R.

    2016-02-01

    Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo, wt.%) has been proposed as a candidate material of pressure tubes in the CANDU-SCWR design. It is a dual-phase alloy containing primary hcp α-Zr and metastable bcc β-Zr. Metastable hexagonal ω-Zr phase could form in β-Zr as a result of aging during the processing of the tube. A synchrotron X-ray study was employed to study the lattice properties of the metastable phases in as-received Zr-Excel pressure tube material. In situ heavy ion (1 MeV Kr2+) irradiations were carried out at 200 °C and 450 °C to emulate the stability of the metastable phase under a reactor environment. Quantitative Chemi-STEM EDS analysis was conducted on both un-irradiated and irradiated samples to investigate alloying element redistribution induced by heavy ion irradiation. It was found that no decomposition of β-Zr was observed under irradiation at both 200 °C and 450 °C. However, ω-Zr particles experienced shape changes and shrinkage associated with enrichment of Fe at the β/ω interface during 200 °C irradiation but not at 450 °C. There is a noticeable increase in the level of Fe in the α matrix after irradiation at both 200 °C and 450 °C. The concentrations of Nb, Mo and Fe are increased in the ω phase but decreased in the β phase at 200 °C. The stability of metastable phases under heavy ion irradiation associated with elemental redistribution is discussed.

  5. Energy Spectra of Light Charged Particles and Evaporation Residues in Heavy Ion Induced Reactions at Low Energy%低能重离子诱导反应中轻带电粒子和蒸发剩余物的能谱

    Institute of Scientific and Technical Information of China (English)

    吕绮雯; 卫华荣; Rahim Magda A; Fakhraddin S; 刘福虎

    2012-01-01

    Using a unified description on multiplicity distributions of final-state particles,the energy spectra of light charged particles and evaporation residues in heavy ion induced reactions at low energy are studied in the framework of a multisource ideal gas model.Each source in an excited composite contributes energy spectra of light charged particles and evaporation residues to be an exponential law.The calculated results are compared and found to be in agreement with the expe-rimental data of inclusive and exclusive energy distributions for light charged particles and evaporation residues measured in the 20Ne(158,170,180,and 200 MeV) + 12C reactions.%在多源理想气体模型的框架内,用一个关于末态粒子多重数分布的统一描述,研究了低能重离子诱导反应中轻带电粒子和蒸发剩余物的能谱。在同一个激发的复合核中,每个源对带电粒子和蒸发剩余物均贡献一个指数分布的能谱。计算结果与158,170,180和200MeV20Ne+12C反应中,轻带电粒子和蒸发剩余物能谱的实验结果符合。

  6. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    Science.gov (United States)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  7. New results on Coulomb effects in meson production in relativistic heavy ion collisions

    Directory of Open Access Journals (Sweden)

    Rybicki Andrzej

    2014-01-01

    Full Text Available We propose a new method of investigating the space-time evolution of meson production in heavy ion collisions, by making use of spectator-induced electromagnetic (“Coulomb” effects. The presence of two nuclear remnants (“spectator systems” in the non-central collision generates a strong Coulomb field, which modifies the trajectories of charged final state hadrons. This results in charge-dependent azimuthal anisotropies in final state meson emission. In our approach, this effect can be computed numerically by means of a high-statistics Monte Carlo simulation, using the distance between the meson formation zone and the spectator system as free parameter. Our simulation correctly describes the electromagnetic effect on azimuthal anisotropies observed for π+ and π−mesons in Au+Au collisions at lower RHIC energy, known from data recently reported by the STAR Collaboration. Similarly to our earlier studies of spectator-induced electromagnetic effects, also in the present study we find that these effects offer sensitivity to the position of the meson formation zone with respect to the spectator system. Therefore, we conclude that they can serve as a new tool to investigate the space-time evolution of meson production, and the dynamics of the heavy ion collision.

  8. Microstructure of Swift Heavy Ion Irradiated MgAl(Sub 2)O(Sub 4) Spinel

    Energy Technology Data Exchange (ETDEWEB)

    Matzke, H.; Skuratov, V.A.; Zinkle, S.J.

    1998-11-30

    Plan view and cross-section transmission electron microscopy was used to investigate the microstructure of magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) following room temperature irradiation with either 430 MeV Kr, 614 MeV Xe, or 72 MeV I ions. The fluences ranged from 1 x 10{sup 16}/m{sup 2} (single track regime) to 1 x 10{sup 20}/m{sup 2}. Destruction of the ordered spinel crystal structure on both the anion and cation sublattices was observed in the ion tracks at low fluences. At intermediate fluences, the overlapping ion tracks induced the formation of a new metastable crystalline phase. Amorphization with a volumetric expansion of {approximately}35% was observed in spinel irradiated with swift heavy ions (electronic stopping powers >7 keV/nm) at fluences above 1 x 10{sup 19}/m{sup 2}. These results demonstrate that swift heavy ion radiation can induce microstructural changes not achievable with conventional elastic collision irradiation at comparable temperatures.

  9. LHC Heavy-Ion Collimation Quench Test at 6.37Z TeV

    CERN Document Server

    Hermes, Pascal Dominik; Bruce, Roderik; Hofle, Wolfgang; Holzer, Eva Barbara; Kalliokoski, Matti; Kotzian, Gerd; Mereghetti, Alessio; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Valentino, Gianluca; Valuch, Daniel; Wollmann, Daniel; Zerlauth, Markus; CERN. Geneva. ATS Department

    2016-01-01

    This note summarizes the collimation quench test MD with 208Pb82+ beams at 6.37Z TeV in which a quench of a dipole magnet in the dispersion suppressor (DS) downstream of the betatron collimation region (IR7) was achieved. The aim of the test was to experimentally validate the quench limit in this region by means of inducing high losses at the LHC collimation system and quench the magnet with the collimation debris mainly lost at the IR7 DS. It was the first test with heavy-ions in which the transverse damper (ADT) could be used to induce these losses over extended periods of time (approximately 10-15s) while previous tests used tune resonance crossing methods in which the beam loss is less controllable and faster. The quench was achieved at a beam loss rate of 15 kW. The note summarizes the measurement strategy, technical realization, the test results and implications for future heavy-ion operation.

  10. Particle emission in the light heavy-ion fusion reactions: 14N, 16,18O+ 12C

    Science.gov (United States)

    Carlin Filho, N.; Coimbra, M. M.; Acquadro, J. C.; Liguori Neto, R.; Szanto, E. M.; Farrelly-Pessoa, E.; Szanto de Toledo, A.

    1985-01-01

    From the energy spectra of light particles produced in light-heavy-ion-induced reactions, level densities of the final nuclei as well as the critical angular momenta for fusion may be obtained. The 14N, 16,18O+ 12C reactions were investigated in the energy range 30 MeVJcr), offering an alternative method for the total fusion cross-section determination.

  11. The Mesozoic Era of relativistic heavy ion physics and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 {times} 10{sup 12} {degrees}K evolved to become today`s Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles.

  12. Charge Transfer and Ionization by Intermediate-Energy Heavy Ions

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L. H. [East Carolina University; McLawhorn, S. L. [East Carolina University; McLawhorn, R. A. [East Carolina University; Evans, N. L. [East Carolina University; Justiniano, E. L. B. [East Carolina University; Shinpaugh, J. L. [East Carolina University; Schultz, David Robert [ORNL; Reinhold, Carlos O [ORNL

    2006-11-01

    The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u-1 or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7+, 32 MeV sulphur ions have an equilibrium charge of approx. 11+, and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C+ ions with energies of 100 and 200 keV u-1 are described.

  13. Charge transfer and ionisation by intermediate-energy heavy ions.

    Science.gov (United States)

    Toburen, L H; McLawhorn, S L; McLawhorn, R A; Evans, N L; Justiniano, E L B; Shinpaugh, J L; Schultz, D R; Reinhold, C O

    2006-01-01

    The use of heavy ion beams for microbeam studies of mammalian cell response leads to a need to better understand interaction cross sections for collisions of heavy ions with tissue constituents. For ion energies of a few MeV u(-1) or less, ions capture electrons from the media in which they travel and undergo subsequent interactions as partially 'dressed' ions. For example, 16 MeV fluorine ions have an equilibrium charge of 7(+), 32 MeV sulphur ions have an equilibrium charge of approximately 11(+), and as the ion energies decrease the equilibrium charge decreases dramatically. Data for interactions of partially dressed ions are extremely rare, making it difficult to estimate microscopic patterns of energy deposition leading to damage to cellular components. Such estimates, normally obtained by Monte Carlo track structure simulations, require a comprehensive database of differential and total ionisation cross sections as well as charge transfer cross sections. To provide information for track simulation, measurement of total ionisation cross sections have been initiated at East Carolina University using the recoil ion time-of-flight method that also yields cross sections for multiple ionisation processes and charge transfer cross sections; multiple ionisation is prevalent for heavy ion interactions. In addition, measurements of differential ionisation cross sections needed for Monte Carlo simulation of detailed event-by-event particle tracks are under way. Differential, total and multiple ionisation cross sections and electron capture and loss cross sections measured for C(+) ions with energies of 100 and 200 keV u(-1) are described.

  14. Towards Reconstructing the Final Stage of Heavy Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim

    1997-01-01

    A Fourier inversion problem lies at the heart of determining spatio-temporal characteristica of the final stage of a heavy ion collision: From the measured two-particle momentum correlations C(p_1,p_2) of identical particles, pions say, a Hanbury-Brown /Twiss (HBT) interferometric analysis aims at extracting as much information as possible about the Wigner phase space density S(x,p) of pion emitting sources in the collision region. Here, we discuss how this analysis allows to separate the effects of temperature and transverse flow which cannot be disentangled completely on the basis of single-particle spectra.

  15. Coupling constant corrections in holographic heavy ion collisions

    CERN Document Server

    Grozdanov, Sašo

    2016-01-01

    We initiate a holographic study of coupling-dependent heavy ion collisions by analysing for the first time the effects of leading-order, inverse coupling constant corrections. In the dual description, this amounts to colliding gravitational shock waves in a theory with curvature-squared terms. We find that at intermediate coupling, nuclei experience less stopping and have more energy deposited near the lightcone. When the decreased coupling results in an 80% larger shear viscosity, the time at which hydrodynamics becomes a good description of the plasma created from high energy collisions increases by 25%. The hydrodynamic phase of the evolution starts with a wider rapidity profile and smaller entropy.

  16. Hydrodynamic analysis of heavy ion collisions at RHIC

    CERN Document Server

    Hirano, Tetsufumi

    2008-01-01

    Current status of dynamical modeling of relativistic heavy ion collisions and hydrodynamic description of the quark gluon plasma is reported. We find the hadronic rescattering effect plays an important role in interpretation of mass splitting pattern in the differential elliptic flow data observed at RHIC. To demonstrate this, we predict the elliptic flow parameter for phi mesons to directly observe the flow just after hadronisation. We also discuss recent applications of outputs from hydrodynamic calculations to J/psi suppression, thermal photon radiation and heavy quark diffusion.

  17. Superconducting focusing quadrupoles for heavy ion fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  18. A Search for Quarks Produced in Heavy-Ion Interactions

    CERN Multimedia

    2002-01-01

    We propose to search for free fractional charges produced in 225~GeV/A heavy-ion collisions at the SPS. A tank of mercury placed in the NA38 beam stop will serve both as a production target and as an absorber to stop reaction products. Mercury from the tank will subsequently be distilled.\\\\ \\\\ This process will decrease the amount of mercury that has to be processed by a factor of about 10|5. The concentrate will be searched for quarks using the proven SFSU automated Millikan apparatus.\\\\ \\\\ This experiment will be sensitive to about one quark produced per 2x10|8 beam particles.

  19. Isotropization and hydrodynamization in weakly coupled heavy-ion collisions

    CERN Document Server

    Kurkela, Aleksi

    2015-01-01

    We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.

  20. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  1. Workshop on Quark-Gluon Plasma and Relativistic Heavy Ions

    CERN Document Server

    Lombardo, Maria Paola; Nardi, Marzia; GISELDA 2002; QGP 2002

    2002-01-01

    This book offers the unique possibility of tackling the problem of hadronic deconfinement from different perspectives. After general introductions to the physical issues, from both the theoretical and the experimental point of view, the book presents the most recent expertise on field theory approaches to the QCD phase diagram, many-body techniques and applications, the dynamics of phase transitions, and phenomenological analysis of relativistic heavy ion collisions. One of the major goals of this book is to promote interchange among those fields of research, which have traditionally been cult

  2. Particle orbit simulation for high energy heavy ion implanter

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takashi; Hattori, Toshiyuki; Oguri, Yoshiyuki; Sasa, Kimikazu; Hayashizaki, Noriyosu [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Osvath, E.

    1995-10-01

    We have studied an Interdigital-H type Quadrupole (IHQ) linac structure for application to heavy ion implanter. It is possible to vary the output energy by changing the voltage between gaps only. Operating frequency of this IHQ linac is 30 MHz and the synchronous phase is -30deg{r_brace} with the exception of -90deg{r_brace} at the first gap that works as a bunching section. The calculated results show that the output energy can be varied from 0.48 MeV (30 keV/u) to 1.6 MeV (100 keV/u) for {sup 16}O{sup +}. (author).

  3. RF characteristics of IHQ linac for heavy ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T.; Sasa, K.; Hayashizaki, N.; Isokawa, K.; Hattori, T. [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Osvath, E. [Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest (Romania); Schubert, H. [HSI, Tuerkenstrasse 28, 80333 Muenchen (Germany)

    1998-04-01

    At Tokyo institute of technology (TIT), an interdigital-H type quadrupole (IHQ) linac has been constructed for application in high energy heavy ion implantation. The linac can accelerate particles with charge to mass ratio greater than 1/16 from 0.24 MeV up to 1.6 MeV (for {sup 16}O{sup +}). As a result of the low power test, the resonant frequency is 36.26 MHz, the shunt impedance is 252 M{Omega}/m and therefore, the required power to accelerate {sup 16}O{sup +} ion is 39.5 kW. (orig.) 8 refs.

  4. Low power test of IHQ linac for heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takashi; Sasa, Kimikazu; Hayashizaki, Noriyosu; Isokawa, Katsushi; Hattori, Toshiyuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors; Osvath, E.; Schubert, H.

    1997-12-31

    At Tokyo Institute of Technology (TIT), An Interdigital-H type Quadrupole (IHQ) linac has been constructed for application of high energy heavy ion implantation. The linac can accelerate the particles with charge to mass ratio grater than 1/16 from 0.48 MeV up to 1.6 MeV (for {sup 16}O{sup +}). As a result of the low power test, the resonant frequency is 36.26 MHz and the shunt impedance is 252 M{Omega}/m. Therefore, required power to accelerate {sup 16}O{sup +} ion is 39.5 kW. (author)

  5. RF characteristics of IHQ linac for heavy ion implantation

    Science.gov (United States)

    Ito, Takashi; Osvath, E.; Sasa, Kimikazu; Hayashizaki, Noriyosu; Isokawa, Katsushi; Schubert, H.; Hattori, Toshiyuki

    1998-04-01

    At Tokyo Institute of Technology (TIT), an Interdigital-H type Quadrupole (IHQ) linac has been constructed for application in high energy heavy ion implantation. The linac can accelerate particles with charge to mass ratio greater than 1/16 from 0.24 MeV up to 1.6 MeV (for 16O +). As a result of the low power test, the resonant frequency is 36.26 MHz, the shunt impedance is 252 MΩ/m and therefore, the required power to accelerate 16O + ion is 39.5 kW.

  6. Thermalization and isotropization in heavy-ion collisions

    Indian Academy of Sciences (India)

    Michael Strickland

    2015-05-01

    Our current understanding of the processes driving the thermalization and isotropization of the quark gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions (URHICs) is reviewed. Initially, the phenomenological evidence in favour of the creation of a thermal but momentum–space anisotropic QGP in URHICs is discussed. Further, the degree of isotropization using viscous (dissipative) hydrodynamics, weak-coupling approaches to QGP dynamics, and strong-coupling approaches to QGP dynamics are discussed. Finally, recent progress in the area of real-time non-Abelian gauge field simulations and non-Abelian Boltzmann–Vlasov-based hard-loop simulations are reported.

  7. Initial operation of the Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1979-01-01

    Initial operation and recent development of the Argonne superconducting heavy-ion linac are discussed. The linac has been developed in order to demonstrate a cost-effective means of extending the performance of electrostatic tandem accelerators. The results of beam acceleration tests which began in June 1978 are described. At present 7 of a planned array of 22 resonators are operating on-line, and the linac system provides an effective accelerating potential of 7.5 MV. Although some technical problems remain, the level of performance and reliability is sufficient that appreciable beam time is becoming available to users.

  8. Studies of multiplicity in relativistic heavy-ion collisions

    CERN Document Server

    Back, B B; Alexa, C; Arnaldi, R; Atayan, M; Baglin, C; Baldit, A; Bedjidian, M; Beolè, S; Boldea, V; Bordalo,a, P; Borenstein, S R; Borges, G; Bussière, A; Capelli, L; Castanier, C; Castor, J I; Chaurand, B; Cheynis, B; Chiavassa, E; Cical, C; Claudino, T; Comets, M P; Constantinescu, S; Cortese, P; Cruz, J; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Drapier, O; Espagnon, B; Fargeix, J; Force, P; Gallio, M; Gavrilov, Yu K; Gerschel, C; Giubellino,c, P; Golubeva, M B; Gonin, M; Grigorian, A A; Grigorian, S; Grossiord, J Y; Guber, F F; Guichard, A; Gulkanian, H R; Hokobyan, R; Haroutunian, R; Idzik, M; Jouan, D; Karavitcheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Macciotta, P; MacCormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Prado da Silva, W L; Prino, F; Puddu, G; Quintans, C; Ramello, L; Ramos,a, S; Rato-Mendes, P; Riccati, L; Romana, A; Santos, H; Saturnini, P; Scalas, E; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Villatte, L; Willis, N; Wu, T

    2005-01-01

    In this talk I'll review the present status of charged particle multiplicity measurements from heavy-ion collisions. The characteristic features of multiplicity distributions obtained in Au+Au collisions will be discussed in terms of collision centrality and energy and compared to those of p+p collisions. Multiplicity measurements of d+Au collisions at 200 GeV nucleon-nucleon center-of-mass energy will also be discussed. The results will be compared to various theoretical models and simple scaling properties of the data will be identified.

  9. Recent results from the ATLAS heavy ion program

    CERN Document Server

    Slovak, Radim; The ATLAS collaboration

    2017-01-01

    The heavy ion program in the ATLAS experiment at the Large Hadron Collider aims to probe and characterize the hot, dense matter created in relativistic lead-lead collisions, in the context of smaller collision systems involving nuclei and hadrons. This talk presents recent results based on LHC Run 1 and Run 2 data, including measurements of bulk collectivity, electroweak bosons, jet modifications, and quarkonium suppression. Results will also be presented on electromagnetic processes in ultra-peripheral collisions, including forward dilepton production and light-by-light scattering.

  10. High density QCD and entropy production at heavy ion colliders

    CERN Document Server

    Kinder-Geiger, Klaus

    1994-01-01

    The role of entropy production in the context of probing QCD properties at high densities and finite temperatures in ultra-relativistic collisions of heavy nuclei is inspected. It is argued that the entropy generated in these reactions provides a powerful tool to investigate the space-time evolution and the question whether and how a deconfined plasma of quarks and gluons is formed. I will address the questions how entropy is produced, and how it is measurable. The uncertainties in predicting the different contributions to the total entropy and particle multiplicities during the course of heavy ion collisions are also discussed.

  11. Thermophoretic Flow in Relativistic Heavy-Ion Collisions

    CERN Document Server

    Thoma, M H

    2001-01-01

    If a quark-gluon plasma is formed in relativistic heavy-ion collisions, there might be a mixed phase of quarks and gluons and hadronic clusters when the critical temperature is reached in the expansion of the fireball. If there is a temperature gradient in the fireball, the hadronic clusters, embedded in the heat bath of quarks and gluons, are subjected to a thermophoretic force. It is shown that even for small temperature gradients and short lifetimes of the mixed phase thermophoresis leads to a strong flow.

  12. 2-MV electrostatic quadrupole injector for heavy-ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan, J.W.; Prost, L.; Seidl, P.A.

    2004-11-10

    High current and low emittance are principal requirements for heavy-ion injection into a linac driver for inertial fusion energy. An electrostatic quadrupole (ESQ) injector is capable of providing these high charge density and low emittance beams. We have modified the existing 2-MV Injector to reduce beam emittance and to double the pulse length. We characterize the beam delivered by the modified injector to the High Current Transport Experiment (HCX) and the effects of finite rise time of the extraction voltage pulse in the diode on the beam head. We demonstrate techniques for mitigating aberrations and reducing beam emittance growth in the injector.

  13. Jet structure modifications in heavy-ion collisions with JEWEL

    CERN Document Server

    Elayavalli, Raghav Kunnawalkam

    2016-01-01

    Key features of jet-medium interactions in heavy-ion collisions are modifications to the jet structure. Recent results from experiments at the LHC and RHIC have motivated several theoretical calculations and monte carlo models towards predicting these observables simultaneously. In this report, the recoil picture in \\textsc{Jewel} is summarized and two independent procedures through which background subtraction can be performed in \\textsc{Jewel} are introduced. Information of the medium recoil in \\textsc{Jewel} significantly improves its description of several jet shape measurements.

  14. Track creation after swift heavy ion irradiation of insulators

    Science.gov (United States)

    Medvedev, N.; Osmani, O.; Rethfeld, B.; Schleberger, M.

    2010-10-01

    The dynamics of structural modifications of insulators irradiated with swift heavy ions were investigated theoretically applying a combination of Monte-Carlo method (MC), used to describe SHI penetration and following excitation and relaxation of the electronic subsystem, with Two Temperature Model (TTM) describing the heating of the lattice. This MC-TTM combination demonstrates that secondary ionizations play a very important role for the track formation process. They lead to an additional term in the heat diffusion equation related to energy stored in the hole subsystem. This storage of energy causes a significant delay of heating and prolongs the timescales up to tens of picoseconds.

  15. Beyond the thermal model in relativistic heavy-ion collisions

    CERN Document Server

    Wolschin, Georg

    2016-01-01

    Deviations from thermal distribution functions of produced particles in relativistic heavy-ion collisions are discussed as indicators for nonequilibrium processes. The focus is on rapidity distributions of produced charged hadrons as functions of collision energy and centrality which are used to infer the fraction of produced particles from a central fireball as compared to the one from the fragmentation sources that are out of equilibrium with the rest of the system. Overall thermal equilibrium would only be reached for large times t -> infinity.

  16. Overview of recent heavy-ion results from CMS

    Science.gov (United States)

    Hong, Byungsik

    2016-12-01

    Most recent CMS data related to the high-density QCD are presented for pp and PbPb collisions at 2.76 TeV and pPb collisions at 5.02 TeV. The PbPb collision is essential to understand collective behavior and the final-state effects for the detailed characteristics of hot, dense partonic matter, whereas the pPb collision provides the critical information on the initial-state effects including the modification of the parton distribution function in cold nuclei. This paper highlights some of recent heavy-ion related results from CMS.

  17. Lattice studies of magnetic phenomena in heavy-ion collisions

    CERN Document Server

    Buividovich, P V; Teryaev, O V

    2012-01-01

    We review some experimental consequences of the presence of superstrong magnetic fields of order of the nuclear scale in noncentral heavy-ion collisions. We present lattice estimates for the strength of the Chiral Magnetic Effect (CME) for different quark flavours and argue that the dependence of the anisotropy of the distribution of emitted hadrons on their flavor content might be used as another experimental evidence of the CME. Another possible effect of superstrong magnetic field might be the observed abnormal enhancement of dilepton yield. We show that the presence of the magnetic field leads to a specific anisotropy of the dilepton emission rate.

  18. Electrostatic quadrupole accelerator for the heavy ion fusion project

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Yu, S.; Eylon, S.

    1994-07-01

    A full scale (2 MeV, 800 mA, K{sup +}), low emittance injector for the Heavy Ion Fusion Project has been built at LBL It consists of a 750 key diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provide strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The actual operation of this new machine has exceeded design parameters. Design of the accelerator, report on experiments performed in connection with the evaluation and characterization of the ESQ and corresponding 3D Particle in Cell simulations will be presented.

  19. Is the Chiral Vortical Effect Vanishing in Heavy Ion Collisions?

    CERN Document Server

    Landsteiner, Karl; Pena-Benitez, Francisco

    2013-01-01

    We study the frequency dependence of all the chiral vortical and magnetic conductivities for a relativistic chiral gas of free fermions and for a strongly coupled CFT with holographic dual in four dimensions. Both systems present gauge and gravitational anomalies and we compute their contribution to the conductivities. The chiral vortical conductivities and the chiral magnetic conductivity in the energy current show an unexpected frequency dependence in the form of a delta centered at zero frequency. We argue that this makes the CVE practically unobservable in heavy ion collisions. In the appendix we discuss why the CME seems to vanish in the consistent current for a particular implementation of the axial chemical potential.

  20. Heavy-ion reactions at the GSI Darmstadt

    Energy Technology Data Exchange (ETDEWEB)

    Metag, V. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Giessen Univ. (Germany). 2. Physikalisches Inst.

    1998-12-01

    In nucleus-nucleus collisions at bombarding energies on the order of 1 AGeV nuclear matter can be compressed to similar densities as encountered in stellar processes, i.e. to 2-3 times normal density. Experimental data providing information on the space-time evolution of these collisions are presented: the properties of hadrons in the hot and compressed nuclear medium in the high-density phase, collective flow phenomena during the expansion phase, and the hadrochemical composition of the collision system in the final stage of the reaction at freeze-out are discussed. Future directions in the heavy-ion reaction program are indicated. (orig.)