WorldWideScience

Sample records for heavy-duty on-highway engines

  1. 77 FR 4678 - Nonconformance Penalties for On-Highway Heavy Heavy-Duty Diesel Engines

    Science.gov (United States)

    2012-01-31

    ...), optimized turbo-charging, optimized fuel injection, diesel particulate filters), plus liquid urea based...-Highway Heavy Heavy-Duty Diesel Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Interim... manufacturers of heavy heavy-duty diesel engines in model years 2012 and 2013 for emissions of oxides of...

  2. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines

    Science.gov (United States)

    Khalek, Imad A.; Blanks, Matthew G.; Merritt, Patrick M.; Zielinska, Barbara

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially

  3. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    Science.gov (United States)

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90

  4. Test/QA plan for the verification testing of selective catalytic reduction control technologies for highway, nonroad use heavy-duty diesel engines

    Science.gov (United States)

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  5. Final Rule for Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines

    Science.gov (United States)

    EPA is taking final action to establish nonconformance penalties (NCPs) for manufacturers of heavy heavy-duty diesel engines (HHDDE) in model years 2012 and later for emissions of oxides of nitrogen (NOX) because we have found the criteria for NCPs.

  6. Heavy-Duty Diesel Fuel Analysis

    Science.gov (United States)

    EPA's heavy-duty diesel fuel analysis program sought to quantify the hydrocarbon, NOx, and PM emission effects of diesel fuel parameters (such as cetane number, aromatics content, and fuel density) on various nonroad and highway heavy-duty diesel engines.

  7. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later...

  8. Test/QA plan for the verification testing of alternative or reformulated liquid fuels, fuel additives, fuel emulsions, and lubricants for highway and nonroad use heavy-duty diesel engines

    Science.gov (United States)

    This Environmental Technology Verification Program test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR P...

  9. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to... Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  10. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... to Otto-cycle engines used in such MDPVs, except as specified in subpart S of this part. The term... AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later...

  11. Fuel composition impact on heavy duty diesel engine combustion & emissions

    NARCIS (Netherlands)

    Frijters, P.J.M.

    2012-01-01

    The Heavy Duty Diesel or compression ignition (CI) engine plays an important economical role in societies all over the world. Although it is a fuel efficient internal combustion engine design, CI engine emissions are an important contributor to global pollution. To further reduce engine emissions

  12. Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

    Energy Technology Data Exchange (ETDEWEB)

    LeePhD, John [Aramco Services Company; TzanetakisPhD, Tom [Aramco Services Company; Travers, Michael [Aramco Services Company; Storey, John Morse [ORNL; DeBusk, Melanie Moses [ORNL; Lance, Michael J [ORNL; Partridge Jr, William P [ORNL

    2017-01-01

    With higher volatility and longer ignition delay characteristics than typical diesel fuel, low cetane naphtha fuel has been shown to promote partially premixed combustion and produce lower soot for improved fuel economy. In this study, emission performance of low cetane, low octane naphtha (CN 35, RON 60) as a drop-in fuel was examined on a MY13 Cummins ISX15 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using the production hardware and development calibrations, both the engine-out and tailpipe emissions of naphtha and ultra-low sulfur diesel (ULSD) fuels were examined during the EPA s heavy-duty emission testing cycles. Without any modification to the calibrations, the tailpipe emissions were comparable when using naphtha or ULSD on the heavy duty Federal Test Procedure (FTP) and ramped modal cycle (RMC) test cycles. Overall lower CO2 emissions and fuel consumption were also measured for naphtha due in part to its higher heating value and higher hydrogen to carbon ratio. Engine-out and tailpipe NOx emissions were lower for naphtha fuel at the same catalyst conversion levels and measured particulate matter (PM) emissions were also lower when using naphtha due to its higher volatility and lower aromatic content compared to ULSD. To help assess the potential impact on diesel particulate filter design and operation, engine-out PM samples were collected and characterized at the B50 operating point. A significant reduction in elemental carbon (EC) within the particulate emissions was found when using naphtha compared to ULSD.

  13. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  14. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Directory of Open Access Journals (Sweden)

    Barouch Giechaskiel

    2018-02-01

    Full Text Available Particulate matter (PM, and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG, or Liquefied Natural Gas (LNG. Urban, rural and motorway (highway emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS. Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  15. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  16. Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, E.H.

    2002-07-22

    The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

  17. Critical component wear in heavy duty engines

    CERN Document Server

    Lakshminarayanan, P A

    2011-01-01

    The critical parts of a heavy duty engine are theoretically designed for infinite life without mechanical fatigue failure. Yet the life of an engine is in reality determined by wear of the critical parts. Even if an engine is designed and built to have normal wear life, abnormal wear takes place either due to special working conditions or increased loading.  Understanding abnormal and normal wear enables the engineer to control the external conditions leading to premature wear, or to design the critical parts that have longer wear life and hence lower costs. The literature on wear phenomenon r

  18. 40 CFR Appendix X to Part 86 - Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Sampling Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks X Appendix X to Part 86 Protection of... Plans for Selective Enforcement Auditing of Heavy-Duty Engines and Light-Duty Trucks Table 1—Sampling...

  19. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S. Environmental Protection Agency 2007 emissions standards.

    Science.gov (United States)

    Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara

    2011-04-01

    As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was

  20. Single bank NOx adsorber for heavy duty diesel engines

    NARCIS (Netherlands)

    Genderen, M. van; Aken, M.G. van

    2003-01-01

    In a NOx adsorber programme the feasibility for applying this technology to heavy duty diesel engines was investigated. After modelling and simulations for realising best λ < 1 engine conditions a platform was build which was used to obtain good NOx adsorber regeneration settings in a number of

  1. Robust cylinder pressure estimation in heavy-duty diesel engines

    NARCIS (Netherlands)

    Kulah, S.; Forrai, A.; Rentmeester, F.; Donkers, T.; Willems, F.P.T.

    2017-01-01

    The robustness of a new single-cylinder pressure sensor concept is experimentally demonstrated on a six-cylinder heavy-duty diesel engine. Using a single-cylinder pressure sensor and a crank angle sensor, this single-cylinder pressure sensor concept estimates the in-cylinder pressure traces in the

  2. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, James [Caterpillar Inc., Mossville, IL (United States)

    2017-06-13

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the next generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.

  3. On particulate characterization in a heavy-duty diesel engine by time-resolved laser-induced incandescence

    NARCIS (Netherlands)

    Bougie, H.J.T.

    2007-01-01

    This dissertation describes the results of soot measurements acquired in the combustion chamber of an optically accessible heavy-duty Diesel engine. The Diesel engine is the most efficient internal combustion engine. Pollutant emissions from the engine, such as soot and NOx, however, form a

  4. Test/QA plan for the verification testing of diesel exhaust catalysts, particulate filters and engine modification control technologies for highway and nonroad use diesel engines

    Science.gov (United States)

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  5. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    Science.gov (United States)

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  6. Comparisons of system benefits and thermo-economics for exhaust energy recovery applied on a heavy-duty diesel engine and a light-duty vehicle gasoline engine

    International Nuclear Information System (INIS)

    Wang, Tianyou; Zhang, Yajun; Zhang, Jie; Peng, Zhijun; Shu, Gequn

    2014-01-01

    Highlights: • Comparisons of exhaust energy recovery are launched between two types of engine. • System performances are analyzed in terms of benefits and thermo-economics. • Diesel engine system presents superior to gasoline type in economic applicability. • Only diesel engine system using water under full load meets the economic demand. - Abstract: Exhaust energy recovery system (EERS) based on Rankine cycle (RC) in internal combustion engines have been studied mainly on heavy-duty diesel engines (D) and light-duty vehicle gasoline engines (G), however, little information available on systematical comparisons and evaluations between the two applications, which is a particularly necessary summary for clarifying the differences. In this paper, the two particular systems are compared quantitatively using water, R141b, R123 and R245fa as working fluids. The influences of evaporating pressure, engine type and load on the system performances are analyzed with multi-objectives, including the thermal efficiency improvement, the reduced CO 2 emission, the total heat transfer area per net power output (APP), the electricity production cost (EPC) and the payback period (PBP). The results reveal that higher pressure and engine load would be attractive for better performances. R141b shows the best performances in system benefits for the D-EERS, while water exhibits the largest contributions in the G-EERS. Besides, water performs the best thermo-economics, and R245fa serves as the most uneconomical fluid. The D-EERS presents superior to the G-EERS in the economic applicability as well as much more CO 2 emission reductions, although with slightly lower thermal efficiency improvement, and only the D-EERS with water under the full load meets the economic demand. Therefore the EERS based on RC serve more applicable on the heavy-duty diesel engine, while it might be feasible for the light-duty vehicle gasoline engine as the state-of-the art technologies are developed in the

  7. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of..., exhaust emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For Otto-cycle heavy-duty engines fueled with either gasoline or liquefied petroleum gas, and intended...

  8. Cost of lower NO x emissions: Increased CO 2 emissions from heavy-duty diesel engines

    Science.gov (United States)

    Krishnamurthy, Mohan; Carder, Daniel K.; Thompson, Gregory; Gautam, Mridul

    This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared. The objective of this study was to determine the changes in brake-specific emissions of NO x as a result of emission regulations, and to highlight the effect these have had on brake-specific CO 2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO 2 and NO x. Comparison of on-road in-use emissions data suggests NO x reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995-2002. However, the results indicate that the fuel consumption; hence, CO 2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.

  9. Diluted Operation of a Heavy-Duty Natural Gas Engine - Aiming at Improved Effciency, Emission and Maximum Load

    OpenAIRE

    Kaiadi, Mehrzad

    2011-01-01

    Most heavy-duty engines are diesel operated. Severe emission regulations, high fuel prices, high technology costs (e.g. catalysts, fuel injection systems) and unsustainably in supplying fuel are enough reasons to convenience engine developers to explore alternative technologies or fuels. Using natural gas/biogas can be a very good alternative due to the attractive fuel properties regarding emission reduction and engine operation. Heavy-duty diesel engines can be easily converted for natur...

  10. Comparison of EGR-VTG control schemes for an EPA2010 heavy-duty diesel engine

    NARCIS (Netherlands)

    Criens, C.H.A.; Willems, F.P.T.; Steinbuch, M.

    2011-01-01

    Next generation heavy-duty diesel engines require tight air path control to meet upcoming emission legislation with minimal fuel consumption. This study concentrates on the emission control of a 13l, 360 kW EGR diesel engine, which is compliant with EPA2010 emission targets. Currently, an

  11. Stoichiometric and lean burn heavy-duty gas engines: a dilemma between emissions and fuel consumption?

    NARCIS (Netherlands)

    Steen, M. van der; Rijke, J. de; Seppen, J.J.

    1996-01-01

    This paper compares stoichiometric with lean burn technology for heavy-duty gas engines (natural gas and LPG) and demonstrates that there is a future for both engine concepts on the multilateral global market. Emission limits in Europe as expected in the near future will facilitate both engine

  12. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Robert W. Carling; Gurpreet Singh

    2000-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work

  13. Direct injection of a diesel-butane blend in a heavy duty engine

    NARCIS (Netherlands)

    Leermakers, C.A.J.; van den Berge, B.; Luijten, C.C.M.; Somers, L.M.T.; Jaasma, S.A.M.; Goey, de L.P.H.

    2011-01-01

    LPG (Liquefied Petroleum Gas) has for long been used in passenger cars. Presently, LPG sup-ply systems have also attracted considerable at-tention for heavy duty use. LPG can be applied in these engines combining port fuel injected LPG with a direct injection of diesel. These engines equipped with a

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION OF EMISSION CONTROLS FOR HEAVY-DUTY DIESEL ENGINES

    Science.gov (United States)

    While lower emissions limits that took effect in 2004 and reduced sulfur content in diesel fuels will reduce emissions from new heavy-duty engines, the existing diesel fleet, which pollutes at much higher levels, may still have a lifetime of 20 to 30 years. Fleet operators seekin...

  15. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Otto-cycle HDE. (d) Every manufacturer of new motor vehicle engines subject to the standards prescribed... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  16. Optimising the cam profile of an electronic unit pump for a heavy-duty diesel engine

    International Nuclear Information System (INIS)

    Qiu, Tao; Dai, Hefei; Lei, Yan; Cao, Chunlei; Li, Xuchu

    2015-01-01

    For a fuel system with a tangent cam or a constant-velocity cam, the peak injection pressure continues to rise as the injection duration increases, but overly high peak pressures induce mechanical loads and wear, limiting the maximum engine speed and injection quantity. To improve the performance of an EUP (Electronic Unit Pump) fuel system for heavy-duty diesel engines, this work proposes a new pump cam, namely the constant-pressure cam. It helps the EUP run at a higher speed and deliver larger fuel quantities while maintaining a constant peak injection pressure, which improves the power of the heavy-duty diesel engine. A model based on the EUP was built to determine the three constraints for optimising the constant-pressure cam: 1) the pump pressure should equal the nozzle pressure; 2) the cam speed should decrease with the increase in the injection duration; and 3) the cam acceleration gradient should be zero. An EUP system was tested with the tangent cam and the optimised cam under different conditions. The experimental results show that the EUP system with the optimised cam delivers more injection quantity and runs at higher engine speeds while maintaining the same peak pressure as the tangent cam. - Highlights: • We propose a constant-pressure cam to improve the power of heavy-duty diesel engine. • We deduce three constraints for the CP (constant-peak pressure) cam based on a model. • The EUP system with the new cam works well under higher engine speed. • The peak pressure of the constant-pressure cam fuel system maintains high

  17. Evaluation of the potential of the Stirling engine for heavy duty application

    Science.gov (United States)

    Meijer, R. J.; Ziph, B.

    1981-01-01

    A 150 hp four cylinder heavy duty Stirling engine was evaluated. The engine uses a variable stroke power control system, swashplate drive and ceramic insulation. The sensitivity of the design to engine size and heater temperature is investigated. Optimization shows that, with porous ceramics, indicated efficiencies as high as 52% can be achieved. It is shown that the gain in engine efficiency becomes insignificant when the heater temperature is raised above 200 degrees F.

  18. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  19. Quantitative laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Klein-Douwel, R. J. H.; van Viet, A. P.; Donkerbroek, A. J.; Meerts, W. L.; Dam, N. J.; ter Meulen, J. J.

    2007-01-01

    We present quantitative, in-cylinder, UV-laser-induced fluorescence measurements of nitric oxide in a heavy-duty Diesel engine. Processing of the raw fluorescence signals includes a detailed correction, based on additional measurements, for the effect of laser beam and fluorescence attenuation, and

  20. Soot particulate size characterisation in a heavy-duty diesel engine for different engine loads by laser-induced incandescence

    NARCIS (Netherlands)

    Bougie, B.; Ganippa, L.C.; Vliet, van A.P.; Meerts, W.L.; Dam, N.J.; Meulen, ter J.J.

    2007-01-01

    Time-resolved laser-induced incandescence was used to estimate primary particle size distributions inside the combustion chamber of a heavy-duty diesel engine as a function of the crank angle, for two different engine loads at two different probe locations. Assuming a log-normal particle size

  1. Carbonyl compounds and PAH emissions from CNG heavy-duty engine

    International Nuclear Information System (INIS)

    Gambino, M.; Cericola, R.; Corbo, P.; Iannaccone, S.

    1993-01-01

    Previous works carried out in Istituto Motori laboratories have shown that natural gas is a suitable fuel for general means of transportation. This is because of its favorable effects on engine performance and pollutant emissions. The natural gas fueled engine provided the same performance as the diesel engine, met R49 emission standards, and showed very low smoke levels. On the other hand, it is well known that internal combustion engines emit some components that are harmful for human health, such as carbonyl compounds and polycyclic aromatic hydrocarbons (PAH). This paper shows the results of carbonyl compounds and PAH emissions analysis for a heavy-duty Otto cycle engine fueled with natural gas. The engine was tested using the R49 cycle that is used to measure the regulated emissions. The test analysis has been compared with an analysis of a diesel engine, tested under the same conditions. Total PAH emissions from the CNG engine were about three orders of magnitude lower than from the diesel engine. Formaldehyde emission from the CNG engine was about ten times as much as from the diesel engine, while emissions of other carbonyl compounds were comparable

  2. Experimental comparison of R123 and R245fa as working fluids for waste heat recovery from heavy-duty diesel engine

    International Nuclear Information System (INIS)

    Shu, Gequn; Zhao, Mingru; Tian, Hua; Huo, Yongzhan; Zhu, Weijie

    2016-01-01

    Organic Rankine Cycle (ORC) on-board is a solution for vehicles to save energy and reduce emission. Considering the characteristics of waste heat from vehicle, the criterions of the suitable working fluid are very strict. R123 and R245fa have been widely used in companies and labs, however, the difference of their properties under different engine conditions still requires further study. During this research, a series of experiments have been done to compare the performance of these two working fluids, what's more, to determine under which engine conditions they are suitable separately. These experimental comparisons are new and important for the targeting design of ORC for vehicles. The result shows that, considering the difference of thermodynamic properties and the limited cooling capacity on board, R123 shows its advantage for the waste heat recovery at heavy duty, while R245fa is more suitable at light-and-medium duty. These properties make R123 suitable for the ORC designed for long-haul heavy-duty truck, while R245fa is suggested for city bus. The following performance test of R123 for waste heat recovery from heavy-duty diesel engine shows that the maximum fuel consumption improvement can be as much as 2.8%. - Highlights: • R123 is more suitable for heavy duty and steady working condition. • R245fa shows its advantage at light-and-medium duty and varying working condition. • R123 suits better for long-haul heavy-duty truck, while R245fa for city bus. • The maximum fuel consumption improvement is as much as 2.8%.

  3. 77 FR 50502 - California State Nonroad Engine Pollution Control Standards; In-Use Heavy-Duty Vehicles (As...

    Science.gov (United States)

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL 9716-9] California State Nonroad Engine Pollution Control Standards; In- Use Heavy-Duty Vehicles (As Applicable to Yard Trucks and Two-Engine Sweepers); Opportunity... control of emissions from new nonroad engines which are used in construction equipment or vehicles or used...

  4. Experimental study into a hybrid PCCI/CI concept for next-generation heavy-duty diesel engines

    NARCIS (Netherlands)

    Doosje, E.; Willems, F.P.T.; Baert, R.S.G.; Dijk, M.D. van

    2012-01-01

    This paper presents the first results of an experimental study into a hybrid combustion concept for next-generation heavy-duty diesel engines. In this hybrid concept, at low load operating conditions, the engine is run in Pre-mixed Charge Compression Ignition (PCCI) mode, whereas at high load

  5. An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine

    OpenAIRE

    Benajes Calvo, Jesus Vicente; Pastor Soriano, José Vicente; García Martínez, Antonio; Monsalve Serrano, Javier

    2015-01-01

    This experimental work investigates the effects of piston bowl geometry on RCCI performance and emissions at low, medium and high engine loads. For this purpose three different piston bowl geometries with compression ratio 14.4:1 have been evaluated using single and double injection strategies. The experiments were conducted in a heavy-duty single-cylinder engine adapted for dual fuel operation. All the tests were carried out at 1200 rev/min. Results suggest that piston geometry has grea...

  6. Characteristics of heavy metal pollution on roadside soil along highway

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    Highway traffic is the main source of heavy metal pollution. Due to limited cropland, it is very common to plant crops along the highways. So, in view of agricultural products safety, heavy metal pollution by highway traffic to soils along highway is widely concerned. Therefore, to study distribution traits, accumulative laws and influence factors of heavy metals in agricultural soils could provide scientific evidence and theoretical basis for environmental protection along express way.

  7. The ethanol heavy-duty truck fleet demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

  8. Appliance of high EGR rates with a short and long route EGR system on a heavy duty diesel engine

    NARCIS (Netherlands)

    Aken, van M.; Willems, F.P.T.; Jong, de D.J.

    2007-01-01

    The goal of this work was to investigate the possibilities of applying high EGR rates with low NOx and PM emission levels on a two-stage turbocharged 12 liter heavy duty diesel engine. The EGR is applied by using a long and short route EGR system. For the ESC operating points A25 and C100 EGR is

  9. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Musculus, Mark P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emissions-control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Various diesel engine manufacturers have adopted close-coupled post-injection combustion strategies to both reduce pollutant emissions and to increase engine efficiency for heavy-duty applications, as well as for light- and medium-duty applications. Close-coupled post-injections are typically short injections that follow a larger main injection in the same cycle after a short dwell, such that the energy conversion efficiency of the post-injection is typical of diesel combustion. Of the various post-injection schedules that have been reported in the literature, effects on exhaust soot vary by roughly an order of magnitude in either direction of increasing or decreasing emissions relative to single injections (O’Connor et al., 2015). While several hypotheses have been offered in the literature to help explain these observations, no clear consensus has been established. For new engines to take full advantage of the benefits that post-injections can offer, the in-cylinder mechanisms that affect emissions and efficiency must be identified and described to provide guidance for engine design.

  10. Modeling and control of a parallel waste heat recovery system for Euro-VI heavy-duty diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery systemfor a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  11. Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, B. de; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and control of a waste heat recovery system for a Euro-VI heavy-duty truck engine. The considered waste heat recovery system consists of two parallel evaporators with expander and pumps mechanically coupled to the engine crankshaft. Compared to previous work, the

  12. Demand Forecasting for Heavy-Duty Diesel Engines Considering Emission Regulations

    Directory of Open Access Journals (Sweden)

    Yoon Seong Kim

    2017-01-01

    Full Text Available Makers of heavy-duty diesel engines (HDDEs need to reduce their inventory of old-generation products in preparation for the demand for next-generation products that satisfy new emission regulations. In this paper, a new demand forecasting model is proposed to reflect special conditions raised by the technological generational shift owing to new emission regulation enforcement. In addition, sensitivity analyses are conducted to better accommodate uncertainty involved at the time of prediction. Our proposed model can help support manufacturers’ production and sales management for a series of products in response to new emission regulations.

  13. Analysis of the Journal Bearing Friction Losses in a Heavy-Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Christoph Knauder

    2015-04-01

    Full Text Available Internal combustion engines (ICE for the use in heavy-duty trucks and buses have to fulfil demanding requirements for both vehicle efficiency as well as for emission of greenhouse gases. Beside the piston assembly the journal bearings are among the largest contributors to friction in the ICE. Through a combination of measurements and validated simulation methods the journal bearing friction losses of a state-of-the-art heavy-duty Diesel engine are investigated for a large range of real world operating conditions. To this task recently developed and extensively validated simulation methods are used together with realistic lubricant models that consider the Non-Newtonian behaviour as well as the piezoviscous effect. In addition, the potential for further friction reduction with the use of ultra-low viscosity lubricants is explored. The results reveal a potential of about 8% friction reduction in the journal bearings using a 0W20 ultra-low viscosity oil with an HTHS-viscosity (The HTHS-viscosity is defined as the dynamic viscosity of the lubricant measured at 150 °C and at a shear rate of 106 s

  14. Opportunities for High-Value Bioblendstocks to Enable Advanced Light- and Heavy-Duty Engines: Insights from the Co-Optima Project

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John T [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-25

    Co-Optima research and analysis have identified fuel properties that enable advanced light-duty and heavy-duty engines. There are a large number of blendstocks readily derived from biomass that possess beneficial properties. Key research needs have been identified for performance, technology, economic, and environmental metrics.

  15. Comparative measurement of the efficiency of catalytic after-burning devices on a heavy-duty diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Pattas, K.N.; Kyriakis, N.A.; Samaras, Z.C.; Aidarinis, J.K.

    1984-01-01

    The effect of three oxidation catalysts (Honeycat DEP 290, Engelhard PTX 623, Herapur 20L) and one catalytic trap oxidizer (Johnson Matthey JM 13/II) on the emissions of a RABA (M.A.N. Licensed) heavy-duty diesel engine has been comparatively studied. Tests were conducted according to EPA 13 mode test to measure CO, total HC, NO/sub x/ and total particulate matter emitted by the engine with and without devices. The test results were also correlated to the total emissions of the Athenian buses through new weighing factors of an ''Athenian 13 mode test''. The engine tests for all four devices resulted in: (1) considerable reduction of the engine's CO and total HC emissions - being already low (2) practically no difference in NO/sub x/ emissions and (3) increase of the total particulate emissions at high load modes.

  16. Simulated Fuel Economy and Emissions Performance during City and Interstate Driving for a Heavy-Duty Hybrid Truck

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C. Stuart; Gao, Zhiming; Smith, David E.; Laclair, Tim J.; Pihl, Josh A.; Edwards, K. Dean

    2013-04-08

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  17. Engineering Solutions to Enhance Traffic Safety Performance on Two-Lane Highways

    Directory of Open Access Journals (Sweden)

    Lina Wu

    2015-01-01

    Full Text Available Improving two-lane highway traffic safety conditions is of practical importance to the traffic system, which has attracted significant research attention within the last decade. Many cost-effective and proactive solutions such as low-cost treatments and roadway safety monitoring programs have been developed to enhance traffic safety performance under prevailing conditions. This study presents research perspectives achieved from the Highway Safety Enhancement Project (HSEP that assessed safety performance on two-lane highways in Beijing, China. Potential causal factors are identified based on proposed evaluation criteria, and primary countermeasures are developed against inferior driving conditions such as sharp curves, heavy gradients, continuous downgrades, poor sight distance, and poor clear zones. Six cost-effective engineering solutions were specifically implemented to improve two-lane highway safety conditions, including (1 traffic sign replacement, (2 repainting pavement markings, (3 roadside barrier installation, (4 intersection channelization, (5 drainage optimization, and (6 sight distance improvement. The effectiveness of these solutions was examined and evaluated based on Empirical Bayes (EB models. The results indicate that the proposed engineering solutions effectively improved traffic safety performance by significantly reducing crash occurrence risks and crash severities.

  18. Performance and emissions of a heavy duty diesel engine fuelled whit palm oil biodiesel and premium diesel

    International Nuclear Information System (INIS)

    Acevedo, Helmer; Mantilla, Juan

    2011-01-01

    Biodiesels are promoted as alternative fuels due their potential to reduce dependency on fossil fuels and carbon emissions. Research has been addressed in order to study the emissions of light duty vehicles. However, the particle matter and gaseous emissions emitted from heavy-duty diesel engines fueled with palm-biodiesel and premium diesel fuel have seldom been addressed. The objective of this study was to explore the performance and emission levels of a Cummins 4-stroke, 9.5 liter, 6-cylinder diesel engine with common rail fuel injection, and a cooled exhaust gas recirculation (EGR). The palm-biodiesel lowered maximum engine output by much as 10 %. The engine emissions data is compared to standards from 2004, and is determined to pass all standards for diesel fuel, but does not meet emissions standards for PM or NOx for palm-biodiesel.

  19. Quantitative nitric oxide measurements by means of laser-induced fluorescence in a heavy-duty Diesel engine

    NARCIS (Netherlands)

    Verbiezen, K.; Vliet, van A.P.; Klein-Douwel, R.J.H.; Ganippa, L.C.; Bougie, H.J.T.; Meerts, W.L.; Dam, N.J.; Meulen, ter J.J.

    2005-01-01

    Quantitative in-cylinder laser-induced fluorescence measurements ofnitric oxide in a heavy-duty Diesel engine are presented. Special attention is paid to experimental techniques to assess the attenuation of the laser beam and the fluorescence signal by the cylinder contents.This attenuation can be

  20. Efficient common rail injection systems and intelligent control strategies for the fulfillment of future on/off highway emission limits; Effiziente Common Rail Einspritzsysteme und intelligente Regelstrategien fuer die Erfuellung zukuenftiger On-/Off-Highway Emissionsgrenzwerte

    Energy Technology Data Exchange (ETDEWEB)

    Schugger, Christian; Krauss, Jost; Projahn, Ulrich; Gerhardt, Juergen [Robert Bosch GmbH, Stuttgart-Feuerbach (Germany)

    2011-07-01

    The diesel engine is the most common powertrain in commercial applications, and will retain that position for the foreseeable future. In order to meet future emission standards, a wide variety of solutions within combustion process control, exhaust gas aftertreatment, air and injection systems have been developed. The development of common rail injection systems for trucks with 2000 and 2200 bar injection pressure increases the opportunities for internal engine emissions reductions. The systems are designed for medium-duty and heavy-duty applications, on-highway (on-HW) and Off-highway (off-HW). Besides increasing the injection pressure this system features high efficiency in hydraulic pressure generation and injection, making a direct contribution to reducing fuel consumption. To meet even greater requirements, a system with an injection pressure of 2500 bar is under development. As an indicator for the hydraulic efficiency of an injector, the ''effective injection pressure'' is derived. This indicator allows for a uniform rating of different injector concepts. Software functions contribute to the fulfillment of the system requirements over lifetime. An engine speed based function calibrates the pilot injection quantity during low idle operation for on- and off-highway applications. The increase in system pressure results in increased loads for the components. A calibration function for the pump delivery characteristics minimizes pressure overshoots and ensures the pressure control dynamics over lifetime. (orig.)

  1. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport

    Science.gov (United States)

    Quiros, David C.; Smith, Jeremy; Thiruvengadam, Arvind; Huai, Tao; Hu, Shaohua

    2017-11-01

    Heavy-duty on-road vehicles account for 70% of all freight transport and 20% of transportation-sector greenhouse gas (GHG) emissions in the United States. This study measured three prevalent GHG emissions - carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) - from seven heavy-duty vehicles, fueled by diesel and compressed natural gas (CNG), and compliant to the MY 2007 or 2010 U.S. EPA emission standards, while operated over six routes used for freight movement in California. Total combined (tractor, trailer, and payload) weights were 68,000 ± 1000 lbs. for the seven vehicles. Using the International Panel on Climate Change (IPCC) radiative forcing values for a 100-year time horizon, N2O emissions accounted for 2.6-8.3% of total tailpipe CO2 equivalent emissions (CO2-eq) for diesel vehicles equipped with Diesel Oxidation Catalyst, Diesel Particulate Filter, and Selective Catalytic Reduction system (DOC + DPF + SCR), and CH4 emissions accounted for 1.4-5.9% of CO2-eq emissions from the CNG-powered vehicle with a three-way catalyst (TWC). N2O emissions from diesel vehicles equipped with SCR (0.17-0.30 g/mi) were an order of magnitude higher than diesel vehicles without SCR (0.013-0.023 g/mi) during highway operation. For the vehicles selected in this test program, we measured 11-22% lower CO2-eq emissions from a hybrid compared to conventional diesel vehicles during transport over lower-speed routes of the freight transport system, but 20-27% higher CO2-eq emissions during higher-speed routes. Similarly, a CNG vehicle emitted up to 15% lower CO2-eq compared to conventional diesel vehicles over more neutral-grade highway routes, but emitted up to 12% greater CO2-eq emissions over routes with higher engine loads.

  2. 76 FR 65971 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 523 and 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions... fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles, responding to the...

  3. Heavy-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Heavy-Duty Vehicle Thermal Management Heavy-Duty Vehicle Thermal Management Infrared image of a control materials and equipment on heavy-duty vehicles. Photo by Dennis Schroeder, NREL Illustration of a Ray David, NREL National Renewable Energy Laboratory (NREL) researchers are assisting heavy-duty

  4. Design of power steering systems for heavy-duty long-haul vehicles

    NARCIS (Netherlands)

    Silvas, E.; Backx, E.A.; Hofman, T.; Voets, H.; Steinbuch, M.

    2014-01-01

    Conventionally, all auxiliaries present in a heavy-duty vehicle (e.g., power-steering pump, air-conditioning compressor) are engine-driven systems, which put high constraints on their performance. Outputs (e.g., speed, temperature) and energy consumption are dictated by engine speed, while most

  5. A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine

    OpenAIRE

    Amin Mahmoudzadeh Andwari; Apostolos Pesiridis; Vahid Esfahanian; Ali Salavati-Zadeh; Apostolos Karvountzis-Kontakiotis; Vishal Muralidharan

    2017-01-01

    In this study the influence of utilization of two Waste Heat Recovery (WHR) strategies, namely organic Rankine cycle (ORC) and turbocompounding, have been investigated based on the performance of a heavy-duty diesel engine using 1-D simulation engine code (GT-Power) in terms of Brake Specific Fuel Consumptions (BSFC) at various engine speeds and Brake Mean Effective Pressures (BMEP). The model of a 6-cylinder turbocharged engine (Holset HDX55V) was calibrated using an experimental BSFC map to...

  6. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    Science.gov (United States)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  7. Idle emissions from medium heavy-duty diesel and gasoline trucks.

    Science.gov (United States)

    Khan, A B M S; Clark, Nigel N; Gautam, Mridul; Wayne, W Scott; Thompson, Gregory J; Lyons, Donald W

    2009-03-01

    Idle emissions data from 19 medium heavy-duty diesel and gasoline trucks are presented in this paper. Emissions from these trucks were characterized using full-flow exhaust dilution as part of the Coordinating Research Council (CRC) Project E-55/59. Idle emissions data were not available from dedicated measurements, but were extracted from the continuous emissions data on the low-speed transient mode of the medium heavy-duty truck (MHDTLO) cycle. The four gasoline trucks produced very low oxides of nitrogen (NOx) and negligible particulate matter (PM) during idle. However, carbon monoxide (CO) and hydrocarbons (HCs) from these four trucks were approximately 285 and 153 g/hr on average, respectively. The gasoline trucks consumed substantially more fuel at an hourly rate (0.84 gal/hr) than their diesel counterparts (0.44 gal/hr) during idling. The diesel trucks, on the other hand, emitted higher NOx (79 g/hr) and comparatively higher PM (4.1 g/hr), on average, than the gasoline trucks (3.8 g/hr of NOx and 0.9 g/hr of PM, on average). Idle NOx emissions from diesel trucks were high for post-1992 model year engines, but no trends were observed for fuel consumption. Idle emissions and fuel consumption from the medium heavy-duty diesel trucks (MHDDTs) were marginally lower than those from the heavy heavy-duty diesel trucks (HHDDTs), previously reported in the literature.

  8. Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    Science.gov (United States)

    Assanis, D. N.; Ekchian, J. A.; Heywood, J. B.; Replogle, K. K.

    1984-01-01

    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described.

  9. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.

    Science.gov (United States)

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J

    2015-06-01

    Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating

  10. 75 FR 70237 - California State Motor Vehicle Pollution Control Standards; California Heavy-Duty On-Highway Otto...

    Science.gov (United States)

    2010-11-17

    ... for the current CARB categories of heavy-duty vehicles are within-the-scope of the previously granted...) (Diesel) and 53 FR 7022 (March 4, 1988) (Otto-cycle). \\3\\ 69 FR 59920 (October 6, 2004). CARB's current... threshold test of materiality and * * * thereafter assess such material evidence against a standard of proof...

  11. Powertrain Test Procedure Development for EPA GHG Certification of Medium- and Heavy-Duty Engines and Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Paul H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deter, Dean D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.

  12. Heavy Truck Engine Program

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient

  13. Heavy Vehicles on Minor Highway Bridges

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Enevoldsen, I.

    of heavier trucks moving at larger speeds, and partly because the authorities want to permit transportation of special heavy goods at a larger part of the road net. These needs will in many cases cause the strengthening of the bridges becomes necessary. In order to keep the expenses of such strengthening...... the results obtained using the numerical models given in details in "Heavy Vehicles on Minor Highway Bridges : dynamic modelling of vehicles and bridges". The models are established using a ordinary vehicle which consists of a 48 t Scania with a 3 axle tractor and a 3 axle trailer, joined in a flexible hinge...

  14. EFFECTS OF ENGINE SPEED AND ACCESSORY LOAD ON IDLING EMISSIONS FROM HEAVY-DUTY DIESEL TRUCK ENGINES

    Science.gov (United States)

    A nontrivial portion of heavy-duty vehicle emissions of nitrogen oxides (NOx) and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them ac...

  15. 77 FR 4736 - Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines

    Science.gov (United States)

    2012-01-31

    ... have evaluated, especially in the context of this third requirement. (1) Competitive Advantage for Non... competitive advantage remains. A manufacturer of a non-complying engine generally gains a competitive... the operator will vary based on several factors. An even harder to quantify competitive advantage is...

  16. The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from heavy duty diesel buses

    Energy Technology Data Exchange (ETDEWEB)

    M.C.H. Lim; G.A. Ayoko; L. Morawska; Z.D. Ristovski; E.R. Jayaratne [Queensland University of Technology, Brisbane, Qld. (Australia). International Laboratory for Air Quality and Health, School of Physical and Chemical Sciences

    2007-08-15

    The effects of fuel characteristics and engine operating conditions on elemental composition of emissions from twelve heavy duty diesel buses have been investigated. Two types of diesel fuels - low sulfur diesel (LSD) and ultra low sulfur diesel (ULSD) fuels with 500 ppm and 50 ppm sulfur contents respectively and 3 driving modes corresponding to 25%, 50% and 100% power were used. Elements present in the tailpipe emissions were quantified by inductively coupled plasma mass spectrometry (ICPMS) and those found in measurable quantities included Mg, Ca, Cr, Fe, Cu, Zn, Ti, Ni, Pb, Be, P, Se, Ti and Ge. Multivariate analyses using multi-criteria decision making methods (MCDM), principal component analysis (PCA) and partial least squares (PLS) facilitated the extraction of information about the structure of the data. MCDM showed that the emissions of the elements were strongly influenced by the engine driving conditions while the PCA loadings plots showed that the emission factors of the elements were correlated with those of other pollutants such as particle number, total suspended particles, CO, CO{sub 2} and NOx. Partial least square analysis revealed that the emission factors of the elements were strongly dependent on the fuel parameters such as the fuel sulfur content, fuel density, distillation point and cetane index. Strong correlations were also observed between these pollutants and the engine power or exhaust temperature. The study provides insights into the possible role of fuel sulfur content in the emission of inorganic elements from heavy duty diesel vehicles. 39 refs., 1 fig., 4 tabs.

  17. Model based control for waste heat recovery rankine cycle system in heavy duty trucks

    OpenAIRE

    Grelet, Vincent; Dufour, Pascal; Nadri, Madiha; Lemort, Vincent; Reiche, Thomas

    2015-01-01

    Driven by future emissions legislations and increase in fuel prices engine, gas heat recovering has recently attracted a lot of interest. In the past few years, a high number of studies have shown the interest of energy recovery Rankine based systems for heavy duty trucks engine compounding. Recent studies have brought a significant potential for such a system in a Heavy Duty (HD) vehicle, which can lead to a decrease in fuel consumption of about 5% [Wang et al. (2011)] and reduce engine emis...

  18. Simulations of Multi Combustion Modes Hydrogen Engines for Heavy Duty Trucks

    Directory of Open Access Journals (Sweden)

    Alberto A. Boretti

    2012-01-01

    Full Text Available The paper presents the numerical study of a diesel direct injection heavy duty truck engine converted to hydrogen. The engine has a power turbine connected through a clutch and a continuously variable transmission to the crankshaft. The power turbine may be disconnected and by-passed when it is inefficient or inconvenient to use. The conversion is obtained by replacing the Diesel injector with a hydrogen injector and the glow plug with a jet ignition device. The hydrogen engine operates different modes of combustion depending on the relative phasing of the main injection and the jet ignition. The engine generally operates mostly in Diesel-like mode, with the most part of the main injection following the suitable creation in cylinder conditions by jet ignition. For medium-low loads, better efficienciy is obtained with the gasoline-like mode jet igniting the premixed homogeneous mixture at top dead centre. It’s permitted at higher loads or at very low loads for the excessive peak pressure or the mixture too lean to burn rapidly. The hydrogen engine has better efficiency than Diesel outputs and fuel conversion. Thanks to the larger rate of heat release, it has the opportunity to run closer to stoichiometry and the multi mode capabilities. The critical area for this engine development is found in the design of a hydrogen injector delivering the amount of fuel needed to the large volume cylinder within a Diesel-like injection time.

  19. 76 FR 59922 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-28

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel... comprehensive Heavy-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions...

  20. PROBABILISTIC FINITE ELEMENT ANALYSIS OF A HEAVY DUTY RADIATOR UNDER INTERNAL PRESSURE LOADING

    Directory of Open Access Journals (Sweden)

    ROBIN ROY P.

    2017-09-01

    Full Text Available Engine cooling is vital in keeping the engine at most efficient temperature for the different vehicle speed and operating road conditions. Radiator is one of the key components in the heavy duty engine cooling system. Heavy duty radiator is subjected to various kinds of loading such as pressure, thermal, vibration, internal erosion, external corrosion, creep. Pressure cycle durability is one of the most important characteristic in the design of heavy duty radiator. Current design methodologies involve design of heavy duty radiator using the nominal finite element approach which does not take into account of the variations occurring in the geometry, material and boundary condition, leading to over conservative and uneconomical designs of radiator system. A new approach is presented in the paper to integrate traditional linear finite element method and probabilistic approach to design a heavy duty radiator by including the uncertainty in the computational model. As a first step, nominal run is performed with input design variables and desired responses are extracted. A probabilistic finite elementanalysis is performed to identify the robust designs and validated for reliability. Probabilistic finite element includes the uncertainty of the material thickness, dimensional and geometrical variation. Gaussian distribution is employed to define the random variation and uncertainty. Monte Carlo method is used to generate the random design points.Output response distributions of the random design points are post-processed using different statistical and probability technique to find the robust design. The above approach of systematic virtual modelling and analysis of the data helps to find efficient and reliable robust design.

  1. Real-world exhaust temperature profiles of on-road heavy-duty diesel vehicles equipped with selective catalytic reduction.

    Science.gov (United States)

    Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug

    2018-09-01

    On-road heavy-duty diesel vehicles are a major contributor of oxides of nitrogen (NO x ) emissions. In the US, many heavy-duty diesel vehicles employ selective catalytic reduction (SCR) technology to meet the 2010 emission standard for NO x . Typically, SCR needs to be at least 200°C before a significant level of NO x reduction is achieved. However, this SCR temperature requirement may not be met under some real-world operating conditions, such as during cold starts, long idling, or low speed/low engine load driving activities. The frequency of vehicle operation with low SCR temperature varies partly by the vehicle's vocational use. In this study, detailed vehicle and engine activity data were collected from 90 heavy-duty vehicles involved in a range of vocations, including line haul, drayage, construction, agricultural, food distribution, beverage distribution, refuse, public work, and utility repair. The data were used to create real-world SCR temperature and engine load profiles and identify the fraction of vehicle operating time that SCR may not be as effective for NO x control. It is found that the vehicles participated in this study operate with SCR temperature lower than 200°C for 11-70% of the time depending on their vocation type. This implies that real-world NO x control efficiency could deviate from the control efficiency observed during engine certification. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. HEAVY-DUTY GREENHOUSE GAS EMISSIONS MODEL ...

    Science.gov (United States)

    Class 2b-8 vocational truck manufacturers and Class 7/8 tractor manufacturers would be subject to vehicle-based fuel economy and emission standards that would use a truck simulation model to evaluate the impact of the truck tires and/or tractor cab design on vehicle compliance with any new standards. The EPA has created a model called “GHG Emissions Model (GEM)”, which is specifically tailored to predict truck GHG emissions. As the model is designed for the express purpose of vehicle compliance demonstration, it is less configurable than similar commercial products and its only outputs are GHG emissions and fuel consumption. This approach gives a simple and compact tool for vehicle compliance without the overhead and costs of a more sophisticated model. Evaluation of both fuel consumption and CO2 emissions from heavy-duty highway vehicles through a whole-vehicle operation simulation model.

  3. Off-highway vehicle technology roadmap.; TOPICAL

    International Nuclear Information System (INIS)

    NONE

    2002-01-01

    The off-highway sector is under increasing pressure to reduce operating costs (including fuel costs) and to reduce emissions. Recognizing this, the Society of Automotive Engineers and the U.S. Department of Energy (DOE) convened a workshop in April 2001 (ANL 2001) to (1) determine the interest of the off-highway sector (consisting of agriculture, construction, surface mining, inland marine) in crafting a shared vision of off-highway, heavy machines of the future and (2) identify critical research and development (R and D) needs for minimizing off-highway vehicle emissions while cost-effectively maintaining or enhancing system performance. The workshop also enabled government and industry participants to exchange information. During the workshop, it became clear that the challenges facing the heavy, surface-based off-highway sector can be addressed in three major machine categories: (1) engine/aftertreatment and fuels/lubes, (2) machine systems, and (3) thermal management. Working groups convened to address these topical areas. The status of off-highway technologies was determined, critical technical barriers to achieving future emission standards were identified, and strategies and technologies for reducing fuel consumption were discussed. Priority areas for R and D were identified. Given the apparent success of the discussions at the workshop, several participants from industry agreed to help in the formation of a joint industry/government ''roadmap'' team. The U.S. Department of Energy's Office of Heavy Vehicle Technologies has an extensive role in researching ways to make heavy-duty trucks and trains more efficient, with respect to both fuel usage and air emissions. The workshop participants felt that a joint industry/government research program that addresses the unique needs of the off-highway sector would complement the current research program for highway vehicles. With industry expertise, in-kind contributions, and federal government funding (coupled with

  4. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  5. Computational study of the effect of different injection angle on heavy duty diesel engine combustion

    Directory of Open Access Journals (Sweden)

    Ranjbar Ali Akbar

    2009-01-01

    Full Text Available Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The choosing various injection strategies is not only motivated by cost reduction but is also one of the potentially effective techniques to reduce exhaust emission from diesel engines. The purpose of this study is to investigate the effect of different injection angles on a heavy duty diesel engine and emission characteristics. The varieties of injection angle were simulated and the emissions like soot and NO is calculated. The comparison between the different injection strategies was also investigated. A combustion chamber for three injection strategies (injection direction with angles of α=67.5, 70, and 72.5 degree was simulated. The comparative study involving rate of heat release, in-cylinder temperature, in-cylinder pressure, NO and soot emissions were also reported for different injection strategies. The case of α=70 is optimum because in this manner the emissions are lower in almost most of crank angle than two other cases and the in-cylinder pressure, which is a representation of engine power, is higher than in the case of α=67.5 and just a little lower than in the case of α=72.5.

  6. Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Kakaras, E.C.; Giakoumis, E.G.

    2008-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two ethanol-diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. Theoretical aspects of diesel engine combustion combined with the widely differing physical and chemical properties of the ethanol against those for the diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  7. Exhaust Fine Particle and Nitrogen Oxide Emissions from Individual Heavy-Duty Trucks at the Port of Oakland

    Science.gov (United States)

    Dallmann, T. R.; Harley, R. A.; Kirchstetter, T.

    2010-12-01

    Heavy-duty (HD) diesel trucks are a source of nitrogen oxide (NOx) emissions as well as primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. Heavy-duty trucks contribute significantly to elevated levels of diesel particulate matter found near highways and in communities surrounding major freight-handling facilities. To reduce the air quality impact of diesel engine emissions, the California Air Resources Board has adopted new rules requiring the retrofit or replacement of in-use HD trucks. These rules take effect during 2010 at ports and railyards, and apply to all trucks operating in California by 2014. This study involves on-road measurements of PM2.5, BC, and NOx emission factor distributions from individual HD trucks driving into the Port of Oakland in the San Francisco Bay area. Measurements of exhaust plumes from individual trucks were made using a mobile laboratory equipped with fast time response (1 Hz) PM2.5, BC, NOx, and carbon dioxide (CO2) sensors. The mobile laboratory was stationed on an overpass above an arterial roadway that connects the Port to a nearby highway (I-880). The air sampling inlet was thereby located above the vertical exhaust pipes of HD diesel trucks passing by on the arterial roadway below. Fuel-specific PM2.5, BC, and NOx emission factors for individual trucks were calculated using a carbon balance method in which concentrations of these species in an exhaust plume are normalized to CO2 concentrations. Initial field sampling was conducted in November, 2009 prior to the implementation of new emission rules. Additional emission measurements were made at the same location during June 2010 and emission factor distributions and averages will be compared.

  8. Performance and emissions of a heavy-duty diesel/LPG dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Schaberg, Paul [Sasol Technology, Cape Town (South Africa)

    2013-06-01

    This paper describes an investigation into the combustion characteristics and exhaust emissions of a heavy-duty truck engine which has been equipped with an aftermarket conversion kit to enable operation as a diesel/LPG (Liquefied Petroleum Gas) dual fuel engine. During operation diesel fuel is displaced by LPG which is vaporised and metered into the inlet manifold by means of solenoid injectors. It was found that, as the LPG fuelling rate is increased, the cylinder pressure rise rates and peak cylinder pressures increase, as do the carbon monoxide and unburned hydrocarbon emissions. At higher loads it was found that the LPG autoignites independently of the diesel fuel, resulting in very high rates of cylinder pressure rise. Particulate and nitrogen oxide emissions remain largely unchanged, and carbon dioxide emissions are reduced due to the lower carbon content of the LPG fuel. Different LPG compositions were also investigated and it was found that the LPG properties that have the most significant effect on combustion and emissions were the autoignition and volatility characteristics. (orig.)

  9. Program Guide for Diesel Engine Mechanics 8742000 (IN47.060500) and Heavy Duty Truck and Bus Mechanics DIM0991 (IN47.060501).

    Science.gov (United States)

    University of South Florida, Tampa. Coll. of Education.

    This competency-based program guide provides course content information and procedures for secondary schools, postsecondary vocational schools, and community colleges in Florida that conduct programs in diesel engine mechanics and heavy duty truck and bus mechanics. The first section is on legal authority, which applies to all vocational education…

  10. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  11. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  12. On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.

    Science.gov (United States)

    Kear, Tom; Niemeier, D A

    2006-12-15

    This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.

  13. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Gorji-Bandpy Mofid

    2012-04-01

    Full Text Available This paper presents a computational fluid dynamics (CFD calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  14. Direct injection of diesel-butane blends in a heavy duty engine

    NARCIS (Netherlands)

    Leermakers, C.A.J.; van den Berge, B.; Luijten, C.C.M.; Goey, de L.P.H.; Jaasma, S.A.M.

    2011-01-01

    Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles.

  15. Impact of biodiesel and renewable diesel on emissions of regulated pollutants and greenhouse gases on a 2000 heavy duty diesel truck

    Science.gov (United States)

    Na, Kwangsam; Biswas, Subhasis; Robertson, William; Sahay, Keshav; Okamoto, Robert; Mitchell, Alexander; Lemieux, Sharon

    2015-04-01

    As part of a broad evaluation of the environmental impacts of biodiesel and renewable diesel as alternative motor fuels and fuel blends in California, the California Air Resources Board's (CARB) Heavy-duty Diesel Emission Testing Laboratory conducted chassis dynamometer exhaust emission measurements on in-use heavy-heavy-duty diesel trucks (HHDDT). The results presented here detail the impact of biodiesel and renewable diesel fuels and fuel blends as compared to CARB ULSD on particulate matter (PM), regulated gases, and two greenhouse gases emissions from a HHDDT with a 2000 C15 Caterpillar engine with no exhaust after treatment devices. This vehicle was tested over the Urban Dynamometer Driving Schedule (UDDS) and the cruise portion of the California HHDDT driving schedule. Three neat blend stocks (soy-based and animal-based fatty acid methyl ester (FAME) biodiesels, and a renewable diesel) and CARB-certified ultra-low sulfur diesel (CARB ULSD) along with their 20% and 50% blends (blended with CARB ULSD) were tested. The effects of blend level on emission characteristics were discussed on g·km-1 basis. The results showed that PM, total hydrocarbon (THC), and carbon monoxide (CO) emissions were dependent on driving cycles, showing higher emissions for the UDDS cycles with medium load than the highway cruise cycle with high load on per km basis. When comparing CARB ULSD to biodiesels and renewable diesel blends, it was observed that the PM, THC, and CO emissions decreased with increasing blend levels regardless of the driving cycles. Note that biodiesel blends showed higher degree of emission reductions for PM, THC, and CO than renewable diesel blends. Both biodiesels and renewable diesel blends effectively reduced PM emissions, mainly due to reduction in elemental carbon emissions (EC), however no readily apparent reductions in organic carbon (OC) emissions were observed. When compared to CARB ULSD, soy- and animal-based biodiesel blends showed statistically

  16. The effect of the position of oxygen group to the aromatic ring to emission performance in a heavy-duty diesel engine

    NARCIS (Netherlands)

    Zhou, L.; Boot, M.D.; Goey, de L.P.H.

    2012-01-01

    In this paper the soot-NOx trade-off and fuel efficiency of various aromatic oxygenates is investigated in a modern DAF heavy-duty diesel engine. All oxygenates were blended to diesel fuel such that the blend oxygen concentration was 2.59 wt.-%. The oxygenates in question, anisole, benzyl alcohol

  17. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads.

    Science.gov (United States)

    Cheng, Man-Ting; Chen, Hsun-Jung; Young, Li-Hao; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Lu, Jau-Huai; Chen, Chung-Bang

    2015-10-30

    Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Distributed Road Grade Estimation for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sahlholm, Per

    2011-07-01

    An increasing need for goods and passenger transportation drives continued worldwide growth in traffic. As traffic increases environmental concerns, traffic safety, and cost efficiency become ever more important. Advancements in microelectronics open the possibility to address these issues through new advanced driver assistance systems. Applications such as predictive cruise control, automated gearbox control, predictive front lighting control, and hybrid vehicle state-of-charge control decrease the energy consumption of vehicles and increase the safety. These control systems can benefit significantly from preview road grade information. This information is currently obtained using specialized survey vehicles, and is not widely available. This thesis proposes new methods to obtain road grade information using on-board sensors. The task of creating road grade maps is addressed by the proposal of a framework where vehicles using a road network collect the necessary data for estimating the road grade. The estimation can then be carried out locally in the vehicle, or in the presence of a communication link to the infrastructure, centrally. In either case the accuracy of the map increases over time, and costly road surveys can be avoided. This thesis presents a new distributed method for creating accurate road grade maps for vehicle control applications. Standard heavy duty vehicles in normal operation are used to collect measurements. Estimates from multiple passes along a road segment are merged to form a road grade map, which improves each time a vehicle retraces a route. The design and implementation of the road grade estimator are described, and the performance is experimentally evaluated using real vehicles. Three different grade estimation methods, based on different assumption on the road grade signal, are proposed and compared. They all use data from sensors that are standard equipment in heavy duty vehicles. Measurements of the vehicle speed and the engine

  19. Influence of real-world engine load conditions on nanoparticle emissions from a DPF and SCR equipped heavy-duty diesel engine.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc C; Carder, Daniel K; Oshinuga, Adewale; Gautam, Mridul

    2012-02-07

    The experiments aimed at investigating the effect of real-world engine load conditions on nanoparticle emissions from a Diesel Particulate Filter and Selective Catalytic Reduction after-treatment system (DPF-SCR) equipped heavy-duty diesel engine. The results showed the emission of nucleation mode particles in the size range of 6-15 nm at conditions with high exhaust temperatures. A direct result of higher exhaust temperatures (over 380 °C) contributing to higher concentration of nucleation mode nanoparticles is presented in this study. The action of an SCR catalyst with urea injection was found to increase the particle number count by over an order of magnitude in comparison to DPF out particle concentrations. Engine operations resulting in exhaust temperatures below 380 °C did not contribute to significant nucleation mode nanoparticle concentrations. The study further suggests the fact that SCR-equipped engines operating within the Not-To-Exceed (NTE) zone over a critical exhaust temperature and under favorable ambient dilution conditions could contribute to high nanoparticle concentrations to the environment. Also, some of the high temperature modes resulted in DPF out accumulation mode (between 50 and 200 nm) particle concentrations an order of magnitude greater than typical background PM concentrations. This leads to the conclusion that sustained NTE operation could trigger high temperature passive regeneration which in turn would result in lower filtration efficiencies of the DPF that further contributes to the increased solid fraction of the PM number count.

  20. Hennepin County`s experience with heavy-duty ethanol vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urban and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.

  1. Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami Nathan [Eaton Corporation

    2017-06-30

    Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach to reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.

  2. Emissions During and Real-world Frequency of Heavy-duty Diesel Particulate Filter Regeneration.

    Science.gov (United States)

    Ruehl, Chris; Smith, Jeremy D; Ma, Yilin; Shields, Jennifer Erin; Burnitzki, Mark; Sobieralski, Wayne; Ianni, Robert; Chernich, Donald J; Chang, M-C Oliver; Collins, John Francis; Yoon, Seungju; Quiros, David; Hu, Shaohua; Dwyer, Harry

    2018-05-15

    Recent tightening of particulate matter (PM) emission standards for heavy-duty engines has spurred the widespread adoption of diesel particulate filters (DPFs), which need to be regenerated periodically to remove trapped PM. The total impact of DPFs therefore depends not only on their filtering efficiency during normal operation, but also on the emissions during and the frequency of regeneration events. We performed active (parked and driving) and passive regenerations on two heavy-duty diesel vehicles (HDDVs), and report the chemical composition of emissions during these events, as well as the efficiency with which trapped PM is converted to gas-phase products. We also collected activity data from 85 HDDVs to determine how often regeneration occurs during real-world operation. PM emitted during regeneration ranged from 0.2 to 16.3 g, and the average time and distance between real-world active regenerations was 28.0 h and 599 miles. These results indicate that regeneration of real-world DPFs does not substantially offset the reduction of PM by DPFs during normal operation. The broad ranges of regeneration frequency per truck (3-100 h and 23-4078 miles) underscore the challenges in designing engines and associated aftertreatments that reduce emissions for all real-world duty cycles.

  3. Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-12-15

    On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low

  4. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    Science.gov (United States)

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. 40 CFR 1042.605 - Dressing engines already certified to other standards for nonroad or heavy-duty highway engines...

    Science.gov (United States)

    2010-07-01

    ... regulations during their useful life, we may require you to recall them under 40 CFR part 85, 89, 92, or 1068... regard to which company manufactures the vessel or equipment. Show this as follows: (i) If you are the... test data on the appropriate marine duty cycles. You can include the data in your application for...

  6. Quasi-Dimensional Modelling and Parametric Studies of a Heavy-Duty HCCI Engine

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Pandey

    2011-01-01

    Full Text Available A quasi-dimensional modelling study is conducted for the first time for a heavy duty, diesel-fuelled, multicylinder engine operating in HCCI mode. This quasidimensional approach involves a zero-dimensional single-zone homogeneous charge compression ignition (HCCI combustion model along with a one-dimensional treatment of the intake and exhaust systems. A skeletal chemical kinetic scheme for n-heptane was used in the simulations. Exhaust gas recirculation (EGR and compression ratio (CR were the two parameters that were altered in order to deal with the challenges of combustion phasing control and operating load range extension. Results from the HCCI mode simulations show good potential when compared to conventional diesel performance with respect to important performance parameters such as peak firing pressure, specific fuel consumption, peak pressure rise, and combustion noise. This study shows that HCCI combustion mode can be employed at part load of 25% varying the EGR rates between 0 and 60%.

  7. The effect of rapeseed oil biodiesel fuel on combustion, performance, and the emission formation process within a heavy-duty DI diesel engine

    International Nuclear Information System (INIS)

    Lešnik, Luka; Biluš, Ignacijo

    2016-01-01

    Highlights: • Sub-models for parameter determination can be derived using experimental results. • Proposed sub-models can be used for calculation of model parameters. • Biodiesel fuel reduces emissions compared to diesel fuel on full engine load. • Usage of biodiesel fuel slow down the emission formation rate. • Oxygen content in biodiesel fuel decreases the amount of formatted CO emissions. - Abstract: This study presents the influence of biodiesel fuel and blends with mineral diesel fuel on diesel engine performance, the combustion process, and the formation of emissions. The study was conducted numerically and experimentally. The aim of the study was to test the possibility of replacing mineral diesel fuel with biodiesel fuel made from rapeseed oil. Pure biodiesel fuel and three blends of biodiesel fuel with mineral diesel fuel were tested experimentally for that purpose on a heavy-duty bus diesel engine. The engine’s performance, in-cylinder pressure, fuel consumption, and the amount of produced NO_x and CO emissions were monitored during experimental measurements, which were repeated numerically using the AVL BOOST simulation program. New empirical sub-models are proposed for determining a combustion model and emission models parameters. The proposed sub-models allow the determination of necessary combustion and emission model parameters regarding the properties of the tested fuel and the engine speed. When increasing the percentage of biodiesel fuel within the fuel blends, the reduction in engine torque and brake mean effective pressures are obtained for most of the test regimes. The reduction is caused due to the lower calorific value of the biodiesel fuel. Higher oxygen content in biodiesel fuel contributes to a better oxidation process within the combustion chamber when running on pure biodiesel or its blends. Better oxidation further results in a reduction of the formatted carbon and nitrogen oxides. The reduction of carbon emission is also

  8. Heavy-duty diesel engine NO{sub x} reduction with nitrogen-enriched combustion air. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, S.; Energy Systems

    2010-07-28

    The concept of engine emissions control by modifying intake combustion gas composition from that of ambient air using gas separation membranes has been developed during several programs undertaken at Argonne. These have led to the current program which is targeted at heavy-duty diesel truck engines. The specific objective is reduction of NO{sub x} emissions by the target engine to meet anticipated 2007 standards while extracting a maximum of 5 percent power loss and allowing implementation within commercial constraints of size, weight, and cost. This report includes a brief review of related past programs, describes work completed to date during the current program, and presents interim conclusions. Following a work schedule adjustment in August 2002 to accommodate problems in module procurement and data analysis, activities are now on schedule and planned work is expected to be completed in September, 2004. Currently, we believe that the stated program requirements for the target engine can be met, based upon extrapolation of the work completed. Planned project work is designed to experimentally confirm these projections and result in a specification for a module package that will meet program objectives.

  9. Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks.

    Science.gov (United States)

    Camuzeaux, Jonathan R; Alvarez, Ramón A; Brooks, Susanne A; Browne, Joshua B; Sterner, Thomas

    2015-06-02

    While natural gas produces lower carbon dioxide emissions than diesel during combustion, if enough methane is emitted across the fuel cycle, then switching a heavy-duty truck fleet from diesel to natural gas can produce net climate damages (more radiative forcing) for decades. Using the Technology Warming Potential methodology, we assess the climate implications of a diesel to natural gas switch in heavy-duty trucks. We consider spark ignition (SI) and high-pressure direct injection (HPDI) natural gas engines and compressed and liquefied natural gas. Given uncertainty surrounding several key assumptions and the potential for technology to evolve, results are evaluated for a range of inputs for well-to-pump natural gas loss rates, vehicle efficiency, and pump-to-wheels (in-use) methane emissions. Using reference case assumptions reflecting currently available data, we find that converting heavy-duty truck fleets leads to damages to the climate for several decades: around 70-90 years for the SI cases, and 50 years for the more efficient HPDI. Our range of results indicates that these fuel switches have the potential to produce climate benefits on all time frames, but combinations of significant well-to-wheels methane emissions reductions and natural gas vehicle efficiency improvements would be required.

  10. Effects of After-Treatment Control Technologies on Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R.; Kirchstetter, T.

    2015-12-01

    Diesel engines are major emitters of nitrogen oxides (NOx) and the black carbon (BC) fraction of particulate matter (PM). Diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have recently become standard on new heavy-duty diesel trucks (HDDT). There is concern that DPFs may increase ultrafine particle (UFP) and total particle number (PN) emissions while reducing PM mass emissions. Also, the deliberate catalytic oxidation of engine-out NO to NO2 in continuously regenerating DPFs may lead to increased tailpipe emission of NO2 and near-roadway concentrations that exceed the 1-hr national ambient air quality standard. Increased NO2 emissions can also promote formation of ozone and secondary PM. We report results from ongoing on-road studies of HDDT emissions at the Port of Oakland and the Caldecott Tunnel in California's San Francisco Bay Area. Emission factors (g pollutant per kg diesel) were linked via recorded license plates to each truck's engine model year and installed emission controls. At both sites, DPF use significantly increased the NO2/NOx emission ratio. DPFs also significantly increased NO2 emissions when installed as retrofits on older trucks with higher baseline NOx emissions. While SCR systems on new trucks effectively reduce total NOx emissions and mitigate these undesirable DPF-related NO2 emissions, they also lead to significant emission of N2O, a potent greenhouse gas. When expressed on a CO2-equivalent basis, the N2O emissions increase offsets the fuel economy gain (i.e., the CO2 emission reduction) associated with SCR use. At the Port, average NOx, BC and PN emission factors from new trucks equipped with DPF and SCR were 69 ± 15%, 92 ± 32% and 66 ± 35% lower, respectively, than modern trucks without these emission controls. In contrast, at the Tunnel, PN emissions from older trucks retrofit with DPFs were ~2 times greater than modern trucks without DPFs. The difference

  11. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  12. Research on Correlation between Vehicle Cycle and Engine Cycle in Heavy-duty commercial vehicle

    Science.gov (United States)

    lin, Chen; Zhong, Wang; Shuai, Liu

    2017-12-01

    In order to study the correlation between vehicle cycle and engine cycle in heavy commercial vehicles, the conversion model of vehicle cycle to engine cycle is constructed based on the vehicle power system theory and shift strategy, which considers the verification on diesel truck. The results show that the model has high rationality and reliability in engine operation. In the acceleration process of high speed, the difference of model gear selection leads to the actual deviation. Compared with the drum test, the engine speed distribution obtained by the model deviates to right, which fits to the lower grade. The grade selection has high influence on the model.

  13. Analysis of application of alternative drive systems for international heavy-duty transport on Wroclaw-Dresden-Prague routes

    Science.gov (United States)

    Skrętowicz, Maria; Sroka, Zbigniew

    2017-11-01

    The depletion of the fossil fuels resources, significant increase of the air pollution caused by the use of internal combustion engines, and emission of carbon dioxide which is responsible for the greenhouse effect escalates the development of vehicle's alternative drive systems. Generally, the emphasis is given to the alternative fuels (natural gas CNG, mixture of propane-butane gases LPG, hydrogen, alcohol fuels, biofuels) and hybrid or electric vehicles. Roads between large industrial and commercial centres, i.e. Wroclaw - Dresden - Prague, are used mainly by heavy-duty vehicles. Consequently, the contribution of the road transport to the ecological threat in this realm is significant. The objectives of this research were the assessment of the traffic volume and emission rate of exhaust gases caused by heavy-duty vehicles on the analysed roads and evaluation of the possibility of using existing and alternative drive systems in vehicles driving on the roads in the analysed region.

  14. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Man-Ting; Chen, Hsun-Jung [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40254, Taiwan (China); Young, Li-Hao, E-mail: lhy@mail.cmu.edu.tw [Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Yang, Hsi-Hsien [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Jifeng E. Road, Wufeng District, Taichung 41349, Taiwan (China); Tsai, Ying I. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, 60, Sec. 1, Erren Rd., Rende District, Tainan 71710, Taiwan (China); Wang, Lin-Chi [Department of Civil Engineering and Geomatics, Cheng Shiu University, 840, Chengcing Road, Niaosong District, Kaohsiung 83347, Taiwan (China); Lu, Jau-Huai [Department of Mechanical Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40254, Taiwan (China); Chen, Chung-Bang [Fuel Quality and Engine Performance Research, Refining and Manufacturing Research Institute, Chinese Petroleum Corporation, 217, Minsheng S. Road, West District, Chiayi 60051, Taiwan (China)

    2015-10-30

    Highlights: • We study particulate OC and EC under 3 fuels, 2 aftertreatments and 4 engine loads. • Negligible to minor OC and EC changes with low, ultralow sulfur and 10% biodiesels. • Moderate reductions of EC and particularly OC from diesel oxidation catalyst (DOC). • Large reductions of OC and particularly EC from DOC plus diesel particulate filter. • Highest at idle, whereas OC decreases but EC increases from low to high load. - Abstract: Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study.

  15. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads

    International Nuclear Information System (INIS)

    Cheng, Man-Ting; Chen, Hsun-Jung; Young, Li-Hao; Yang, Hsi-Hsien; Tsai, Ying I.; Wang, Lin-Chi; Lu, Jau-Huai; Chen, Chung-Bang

    2015-01-01

    Highlights: • We study particulate OC and EC under 3 fuels, 2 aftertreatments and 4 engine loads. • Negligible to minor OC and EC changes with low, ultralow sulfur and 10% biodiesels. • Moderate reductions of EC and particularly OC from diesel oxidation catalyst (DOC). • Large reductions of OC and particularly EC from DOC plus diesel particulate filter. • Highest at idle, whereas OC decreases but EC increases from low to high load. - Abstract: Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study

  16. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    Science.gov (United States)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area

  17. Medium- and Heavy-Duty Vehicle Duty Cycles for Electric Powertrains

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kenneth; Bennion, Kevin; Miller, Eric; Prohaska, Bob

    2016-03-02

    NREL's Fleet Test and Evaluation group has extensive in-use vehicle data demonstrating the importance of understanding the vocational duty cycle for appropriate sizing of electric vehicle (EV) and power electronics components for medium- and heavy-duty EV applications. This presentation includes an overview of recent EV fleet evaluation projects that have valuable in-use data that can be leveraged for sub-system research, analysis, and validation. Peak power and power distribution data from in-field EVs are presented for four different vocations, including class 3 delivery vans, class 6 delivery trucks, class 8 transit buses, and class 8 port drayage trucks, demonstrating the impacts of duty cycle on performance requirements.

  18. An experimental investigation of the combustion process of a heavy-duty diesel engine enriched with H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liew, C.; Li, H.; Nuszkowski, J.; Liu, S.; Gatts, T.; Atkinson, R.; Clark, N. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506-6106 (United States)

    2010-10-15

    This paper investigated the effect of hydrogen (H{sub 2}) addition on the combustion process of a heavy-duty diesel engine. The addition of a small amount of H{sub 2} was shown to have a mild effect on the cylinder pressure and combustion process. When operated at high load, the addition of a relatively large amount of H{sub 2} substantially increased the peak cylinder pressure and the peak heat release rate. Compared to the two-stage combustion process of diesel engines, a featured three-stage combustion process of the H{sub 2}-diesel dual fuel engine was observed. The extremely high peak heat release rate represented a combination of diesel diffusion combustion and the premixed combustion of H{sub 2} consumed by multiple turbulent flames, which substantially enhanced the combustion process of H{sub 2}-diesel dual fuel engine. However, the addition of a relatively large amount of H{sub 2} at low load did not change the two-stage heat release process pattern. The premixed combustion was dramatically inhibited while the diffusion combustion was slightly enhanced and elongated. The substantially reduced peak cylinder pressure at low load was due to the deteriorated premixed combustion. (author)

  19. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, K.

    2014-06-01

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  20. Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami [Eaton Corporation, Menomonee Falls, WI (United States)

    2015-10-01

    Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.

  1. On-road emission characteristics of heavy-duty diesel vehicles in Shanghai

    Science.gov (United States)

    Chen, Changhong; Huang, Cheng; Jing, Qiguo; Wang, Haikun; Pan, Hansheng; Li, Li; Zhao, Jing; Dai, Yi; Huang, Haiying; Schipper, Lee; Streets, David G.

    On-road vehicle tests of nine heavy-duty diesel trucks were conducted using SEMTECH-D, an emissions measuring instrument provided by Sensors, Inc. The total length of roads for the tests was 186 km. Data were obtained for 37,255 effective driving cycles, including 17,216 on arterial roads, 15,444 on residential roads, and 4595 on highways. The impacts of speed and acceleration on fuel consumption and emissions were analyzed. Results show that trucks spend an average of 16.5% of the time in idling mode, 25.5% in acceleration mode, 27.9% in deceleration mode, and only 30.0% at cruise speed. The average emission factors of CO, total hydrocarbons (THC), and NO x for the selected vehicles are (4.96±2.90), (1.88±1.03) and (6.54±1.90) g km -1, respectively. The vehicle emission rates vary significantly with factors like speed and acceleration. The test results reflect the actual traffic situation and the current emission status of diesel trucks in Shanghai. The measurements show that low-speed conditions with frequent acceleration and deceleration, particularly in congestion conditions, are the main factors that aggravate vehicle emissions and cause high emissions of CO and THC. Alleviating congestion would significantly improve vehicle fuel economy and reduce CO and THC emissions.

  2. Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load

    International Nuclear Information System (INIS)

    Pedrozo, Vinícius B.; May, Ian; Dalla Nora, Macklini; Cairns, Alasdair; Zhao, Hua

    2016-01-01

    Highlights: • Dual-fuel combustion offers promising results on a stock heavy-duty diesel engine. • The use of split diesel injections extends the benefits of the dual-fuel mode. • Ethanol–diesel dual-fuel combustion results in high indicated efficiencies. • NOx and soot emissions are significantly reduced. • Combustion efficiency reaches 98% with an ethanol energy ratio of 53%. - Abstract: Conventional diesel combustion produces harmful exhaust emissions which adversely affect the air quality if not controlled by in-cylinder measures and exhaust aftertreatment systems. Dual-fuel combustion can potentially reduce the formation of nitrogen oxides (NOx) and soot which are characteristic of diesel diffusion flame. The in-cylinder blending of different fuels to control the charge reactivity allows for lower local equivalence ratios and temperatures. The use of ethanol, an oxygenated biofuel with high knock resistance and high latent heat of vaporisation, increases the reactivity gradient. In addition, renewable biofuels can provide a sustainable alternative to petroleum-based fuels as well as reduce greenhouse gas emissions. However, ethanol–diesel dual-fuel combustion suffers from poor engine efficiency at low load due to incomplete combustion. Therefore, experimental studies were carried out at 1200 rpm and 0.615 MPa indicated mean effective pressure on a heavy-duty diesel engine. Fuel delivery was in the form of port fuel injection of ethanol and common rail direct injection of diesel. The objective was to improve combustion efficiency, maximise ethanol substitution, and minimise NOx and soot emissions. Ethanol energy fractions up to 69% were explored in conjunction with the effect of different diesel injection strategies on combustion, emissions, and efficiency. Optimisation tests were performed for the optimum fuelling and diesel injection strategy. The resulting effects of exhaust gas recirculation, intake air pressure, and rail pressure were

  3. 75 FR 39251 - Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty...

    Science.gov (United States)

    2010-07-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9173-5] Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty Diesel Engines Employing Selective Catalyst Reduction Technology... engine manufacturers have recently begun utilizing a NO X emission control technology called selective...

  4. Field Measurement of Dynamic Compressive Stress Response of Pavement-Subgrade Induced by Moving Heavy-Duty Trucks

    Directory of Open Access Journals (Sweden)

    Lingshi An

    2018-01-01

    Full Text Available This paper presents the dynamic compressive stress response of pavement-subgrade induced by moving heavy-duty trucks. In order to study the distribution characteristic of dynamic pressure of pavement-subgrade in more detail, truck loadings, truck speeds, and dynamic pressure distributions at different depths were monitored under twenty-five working conditions on the section of Qiqihar-Nenjiang Highway in Heilongjiang Province, China. The effects of truck loading, truck speed, and depth on dynamic compressive stress response can be concluded as follows: (1 increasing truck loading will increase the dynamic pressure amplitude of subgrade-pavement and dominant frequencies are close to the characteristic frequencies caused by heavy-duty trucks at the speed of 70 km/h; (2 as truck speed increases, the dynamic pressure amplitudes of measuring points have an increasing tendency; the dynamic pressure spectrums are also significantly influenced by truck speed: the higher the truck speed, the wider the spectrum and the higher the dominant frequencies; (3 as depth increases, the dynamic pressure amplitudes of measuring points decrease rapidly. The influence of the front axle decreases gradually until disappearing and the compressive stress superposition phenomenon caused by rear double axles can be found with increasing depth.

  5. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Young, Li-Hao, E-mail: lhy@mail.cmu.edu.tw [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Liou, Yi-Jyun [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Cheng, Man-Ting [Department of Environmental Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40254, Taiwan (China); Lu, Jau-Huai [Department of Mechanical Engineering, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung 40254, Taiwan (China); Yang, Hsi-Hsien [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Jifeng E. Road, Taichung 41349, Taiwan (China); Tsai, Ying I. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, 60, Sec. 1, Erh-Jen Road, Tainan 71710, Taiwan (China); Wang, Lin-Chi [Department of Chemical and Materials Engineering, Cheng Shiu University, 840, Chengcing Road, Kaohsiung 83347, Taiwan (China); Chen, Chung-Bang [Fuel Quality and Engine Performance Research, Refining and Manufacturing Research Institute, Chinese Petroleum Corporation, 217, Minsheng S. Road, Chiayi 60036, Taiwan (China); Lai, Jim-Shoung [Department of Occupational Safety and Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The effects of waste cooking oil biodiesel, engine load and DOC + DPF on nonvolatile particle size distributions in HDDE exhaust. Black-Right-Pointing-Pointer Increasing biodiesel blends cause slight decreases in the total particle number concentrations and negligible changes in size distributions. Black-Right-Pointing-Pointer Increasing load results in modest increases in both the total particle number concentrations and sizes. Black-Right-Pointing-Pointer The effects of semivolatile materials are strongest at idle, during which nonvolatile cores <16 nm were observed. Black-Right-Pointing-Pointer The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of biodiesel blend and load. - Abstract: Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC + DPF) under steady modes. For a given load, the total particle number concentrations (N{sub TOT}) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N{sub TOT} and mode diameters increase modestly with increasing load of above 25%. The N{sub TOT} at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N{sub TOT} post the DOC + DPF are comparable to typical ambient levels of

  6. Fretting fatigue cracking of a center guide bolt supporting the combustion chamber in a heavy-duty gas turbine engine

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Fischer, Boromir; Gaedicke, Tobias [Siemens AG, Energy Sector, Gasturbinenwerk Berlin (Germany). Werkstoffprueflabor

    2018-04-01

    The slotted center guide bolt of the center guide feature of the lower part of the outer shell of an annular combustion chamber was found fractured in a heavy-duty gas turbine engine used for power generation, after approximately 5.500 operating hours. The incident was a one-off event and not a recurring incident. No similar events were reported from the fleet; hence the failure was not considered a field issue. The metallurgical root cause investigation that was ordered to determine the failure mechanism revealed that the incident center guide bolt failed by fretting fatigue cracking, a high cycle fatigue (HCF) phenomenon.

  7. 77 FR 65840 - Section 610 Reviews of Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur...

    Science.gov (United States)

    2012-10-31

    ... Standards and Highway Diesel Fuel Sulfur Control Requirements, please contact Tad Wysor, Office of... address: wysor.tad@epa.gov . If you have questions concerning EPA's 610 Review related to NESHAP...

  8. Effects of particulate oxidation catalyst on unregulated pollutant emission and toxicity characteristics from heavy-duty diesel engine.

    Science.gov (United States)

    Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei

    2015-01-01

    To evaluate the effects of particulate oxidation catalyst (POC) on unregulated pollutant emission and toxicity characteristics, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), soot, soluble organic fractions (SOF) and sulphate emissions emitted from a heavy-duty diesel engine retrofitted with a POC were investigated on a diesel bench. The particulate matter (PM) in the exhaust was collected by Teflon membrane, and the PAHs and VOCs were analysed by a gas chromatography/mass spectrometer (GC/MS). The results indicate that the POC exhibits good performance on the emission control of VOCs, PAHs and PM. The POC and the diesel particulate filters (DPF) both show a good performance on reducing the VOCs emission. Though the brake-specific emission (BSE) reductions of the total PAHs by the POC were lower than those by the DPF, the POC still removed almost more than 50% of the total PAHs emission. After the engine was retrofitted with the POC, the reductions of the PM mass, SOF and soot emissions were 45.2-89.0%, 7.8-97.7% and 41.7-93.3%, respectively. The sulphate emissions decreased at low and medium loads, whereas at high load, the results were contrary. The PAHs emissions were decreased by 32.4-69.1%, and the contributions of the PAH compounds were affected by the POC, as well as by load level. The benzo[a]pyrene equivalent (BaPeq) of PAHs emissions were reduced by 35.9-97.6% with the POC. The VOCs emissions were reduced by 21.8-94.1% with the POC, and the reduction was more evident under high load.

  9. Real-world NOx emissions of Euro V and Euro VI heavy duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, R.; Dekker, H.; Vonk, W.

    2012-04-15

    TNO regularly performs measurements to determine the in-service performance and durability with respect to the pollutant emissions of heavy-duty vehicles under representative driving conditions. The 2011 measurement programme yields new insights regarding the emission performance of the upcoming Euro VI technology for heavy-duty vehicles, mandatory as of 31 December 2013 and, together with the results from earlier performed programmes, leads to conclusions on the emission performance of past and present generations of heavy-duty vehicles (Euro V, EEV)

  10. Quantitative Evaluation of Heavy Duty Machine Tools Remanufacturing Based on Modified Catastrophe Progression Method

    Science.gov (United States)

    shunhe, Li; jianhua, Rao; lin, Gui; weimin, Zhang; degang, Liu

    2017-11-01

    The result of remanufacturing evaluation is the basis for judging whether the heavy duty machine tool can remanufacture in the EOL stage of the machine tool lifecycle management.The objectivity and accuracy of evaluation is the key to the evaluation method.In this paper, the catastrophe progression method is introduced into the quantitative evaluation of heavy duty machine tools’ remanufacturing,and the results are modified by the comprehensive adjustment method,which makes the evaluation results accord with the standard of human conventional thinking.Using the catastrophe progression method to establish the heavy duty machine tools’ quantitative evaluation model,to evaluate the retired TK6916 type CNC floor milling-boring machine’s remanufacturing.The evaluation process is simple,high quantification,the result is objective.

  11. Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling

    International Nuclear Information System (INIS)

    Mobasheri, Raouf; Peng, Zhijun; Mirsalim, Seyed Mostafa

    2012-01-01

    Highlights: ► Explore the effects of advanced multiple injection strategies in a DI-diesel engine. ► Achieving good agreement between the predicted results and experimental values. ► Analyzing three factors for optimization including pilot, main and post-injection. ► Injecting adequate fuel in each pulse accompanied with an appropriate EGR rate. ► Beneficial effects for significant soot reduction without a NOx penalty rate. - Abstract: An Advanced CFD simulation has been carried out in order to explore the combined effects of pilot-, post- and multiple-fuel injection strategies and EGR on engine performance and emission formation in a heavy duty DI-diesel engine. An improved version of the ECFM-3Z combustion model has been applied coupled with advanced models for NOx and soot formation. The model was validated with experimental data achieved from a Caterpillar 3401 DI diesel engine and good agreement between predicted and measured in-cylinder pressure, heat release rate, NOx and soot emissions was obtained. The optimizations were conducted separately for different split injection cases without pilot injection and then, for various multiple injection cases. Totally, three factors were considered for the injection optimization, which included EGR rate, the separation between main injection and post-injection and the amount of injected fuel in each pulse. For the multiple injection cases, two more factors (including double and triple injections during main injection) were also added. Results show that using pilot injection accompanied with an optimized main injection has a significant beneficial effect on combustion process so that it could form a separate 2nd stage of heat release which could reduce the maximum combustion temperature, which leads to the reduction of the NOx formation. In addition, it has found that injecting adequate fuel in post-injection at an appropriate EGR allows significant soot reduction without a NOx penalty rate.

  12. Fault Tolerant Autonomous Lateral Control for Heavy Vehicles

    OpenAIRE

    Talbot, Craig Matthew; Papadimitriou, Iakovos; Tomizuka, Masayoshi

    2004-01-01

    This report summarizes the research results of TO4233, "Fault Tolerant Autonomous Lateral Control for Heavy Vehicles". This project represents a continuing effort of PATH's research on Automated Highway Systems (AHS) and more specifically in the area of heavy vehicles. Research on the lateral control of heavy vehicles for AHS has been going on at PATH since 1993. MOU129, "Steering and Braking Control of Heavy Duty Vehicles" was the first project and it was followed by MOU242, "Lateral Control...

  13. Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines

    International Nuclear Information System (INIS)

    Kim, Joung Seok; Lee, Wu Sang; Ryu, Je Wook

    2013-01-01

    This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Docosan Heavy Industries. The design procedure mainly consists of three parts: namely, flow path design, airfoil design, and 3a performance calculation. To design the optimized flow path, through flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and had angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2a airfoil planar sections are designed carefully, followed by 2a B2 NS calculations. The designed planar sections are stacked along the span wise direction, leading to a 3a surfaced airfoil shape. To consider the 3a effect on turbine performance, 3a multistage Euler calculation, single row, and multistage NS calculations are performed

  14. An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine

    International Nuclear Information System (INIS)

    Benajes, Jesús; Pastor, José V.; García, Antonio; Monsalve-Serrano, Javier

    2015-01-01

    Highlights: • Great influence of piston geometry at low load using single injection strategies. • Enhanced combustion development at mid load through optimized piston surface area. • Double injection allows ultra-low NOx and soot levels for the three piston geometries. • Unacceptable soot emissions at high load using single injection and bathtub geometry. • Stepped geometry leads to ultra-clean combustion with lower fuel consumption than CDC. - Abstract: This experimental work investigates the effects of piston bowl geometry on RCCI performance and emissions at low, medium and high engine loads. For this purpose three different piston bowl geometries with compression ratio 14.4:1 have been evaluated using single and double injection strategies. The experiments were conducted in a heavy-duty single-cylinder engine adapted for dual fuel operation. All the tests were carried out at 1200 rev/min. Results suggest that piston geometry has great impact on combustion development at low load conditions, more so when single injection strategies are used. It terms of emissions, it was proved that the three geometries enables ultra-low NOx and soot emissions at low and medium load when using double injection strategies. By contrast, unacceptable emissions were measured at high load taking into account EURO VI limitations. Finally, the application of a mathematical function considering certain self-imposed constraints suggested that the more suitable piston geometry for RCCI operation is the stepped one, which has a modified transition from the center to the squish region and reduced piston surface area than the stock geometry

  15. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. PILCs for trapping phosphorus in a heavy duty engine exhaust system : An experimental evaluation of the phosphorus sorption capability of different clay materials

    OpenAIRE

    Kvarned, Anders

    2016-01-01

    In order to fulfil the requirements in the EURO VI standard, regulating emissions from heavy duty vehicles, the exhaust aftertreatment system needs to maintain its efficiency for at least seven years or 700 000 km. In diesel applications the diesel oxidation catalyst (DOC) is located closest to the engine and is thus the most vulnerable to poisoning contaminants, such as phosphorus originating from fuel and oil additives, which deactivates the catalyst. An idea to reduce the impact from phosp...

  17. Effects of Particle Filters and Selective Catalytic Reduction on In-Use Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2016-12-01

    Heavy-duty diesel trucks (HDDT) are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Diesel particle filters (DPFs) and selective catalytic reduction (SCR) systems that target PM and NOx emissions, respectively, have recently become standard equipment on new HDDT. DPFs can also be installed on older engines as a retrofit device. Previous work has shown that DPF and SCR systems can reduce NOx and BC emissions by up to 70% and 90%, respectively, compared to modern trucks without these after-treatment controls (Preble et al., ES&T 2015). DPFs can have the undesirable side-effect of increasing ultrafine particle (UFP) and nitrogen dioxide (NO2) emissions. While SCR systems can partially mitigate DPF-related NO2 increases, these systems can emit nitrous oxide (N2O), a potent greenhouse gas. We report new results from a study of HDDT emissions conducted in fall 2015 at the Port of Oakland and Caldecott Tunnel in California's San Francisco Bay Area. We report pollutant emission factors (g kg-1) for emitted NOx, NO2, BC, PM2.5, UFP, and N2O on a truck-by-truck basis. Using a roadside license plate recognition system, we categorize each truck by its engine model year and installed after-treatment controls. From this, we develop emissions profiles for trucks with and without DPF and SCR. We evaluate the effectiveness of these devices as a function of their age to determine whether degradation is an issue. We also compare the emission profiles of trucks traveling at low speeds along a level, arterial road en route to the port and at high speeds up a 4% grade highway approaching the tunnel. Given the climate impacts of BC and N2O, we also examine the global warming potential of emissions from trucks with and without DPF and SCR.

  18. An Insight into the Effect of Advanced Injection Strategies on Pollutant Emissions of a Heavy-Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Vincenzo Naso

    2013-08-01

    Full Text Available An advanced numerical investigation has been carried out in order to study the effect of multiple injection strategies on Caterpillar heavy-duty diesel engine emissions. Both different injected fuel percentages for each pulse and several dwells between main and post phase were investigated via computational fluid dynamics (CFD and large eddy simulation (LES. Two sets of simulations were taken into account for 10% and 20% exhaust gas recirculation (EGR fractions. In the first one, the main injection was split into two identical phases, while in the second one into three pulses. Within each set, three strategies were considered, increasing the amount of fuel injected during the main and concurrently decreasing the post pulse. Overall, 48 simulations were employed, since four different dwells between the last phase of the main and post injection were considered. Results show that the pollutant emissions minimization has been obtained for the Schemes injecting 65% and 70% of fuel for both two and three split strategies, but for different values of dwell. In fact, emissions very close to each other for NOx and particulate matter have been reached for these cases. Reductions of about −30% and −71% were respectively obtained for NOx and soot in comparison with experimental emissions related to the single injection case.

  19. Technologies for simulation improvement of NOx and PM emissions and fuel consumption of future diesel engines for heavy-duty trucks; Shorai no ogatasha diesel engine ni okeru NOx, PM, nenryo shohi no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Shimoda, M.; Shimokawa, K.; Uchida, N.; Tsuji, Y.; Yokotaa, H.; Hosoya, M. [Hino Motors, Ltd., Tokyo (Japan)

    1999-01-01

    Future diesel engines for heavy-duty trucks are required to have significantly low NO{sub x} and PM emissions and fuel consumption characteristics. In order to improve these characteristics, various technologies including high pressure fuel injection systems, combustion optimization. high boost pressure turbocharging, EGR homogeneous charge compression ignition combined with multiple injections, and aftertreatment are discussed. As each technology has a number of challenges to overcome, it will take long before engines with these technologies are commercially available. In this paper, the research activities accomplished to date are reported. (author)

  20. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  1. Impacts of Aging Emission Control Systems on In-Use Heavy-Duty Diesel Truck Emission Rates

    Science.gov (United States)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2017-12-01

    Heavy-duty diesel trucks are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems have become standard equipment on new trucks. Particle filters can also be installed as a retrofit on older engines. Prior work has shown that exhaust filters and SCR systems effectively reduce BC and NOx emission rates by up to 90 and 80%, respectively (Preble et al., ES&T 2015). There is concern, however, that DPFs may promote the formation of ultrafine particles (UFP) and increase tailpipe emissions of nitrogen dioxide (NO2). Additionally, urea-based SCR systems for NOx control may form nitrous oxide (N2O), an important contributor to stratospheric ozone depletion. The effectiveness of these emission controls has been thoroughly evaluated in the laboratory, but the long-term durability of in-use systems and their impacts on co-emitted species have not been well characterized. To evaluate the in-use performance of DPF and SCR systems, pollutant emissions from thousands of diesel trucks were measured over several years at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Pollutants present in the exhaust plumes of individual trucks were measured at high time resolution (≥1 Hz) as trucks passed under a mobile lab stationed on an overpass. Fuel-based emission factors (g pollutant emitted per kg fuel burned) were calculated for individual trucks and linked via recorded license plates to vehicle attributes, including engine model year and installed emission control systems. Use of DPFs reduced the BC emission rate by up to 95% at both locations. SCR systems were more effective at reducing NOx emissions under the uphill, highway driving conditions at the Caldecott Tunnel. The emission rates of co-emitted species NO2, UFP, and N2O depended on driving

  2. Baumot BA-B Diesel Particulate Filter with Pre-Catalyst (ETV Mobile Source Emissions Control Devices) Verification Report

    Science.gov (United States)

    The Baumot BA-B Diesel Particulate Filter with Pre-Catalyst is a diesel engine retrofit device for light, medium, and heavy heavy-duty diesel on-highway engines for use with commercial ultra-low-sulfur diesel (ULSD) fuel. The BA-B particulate filter is composed of a pre-catalyst ...

  3. Evaluation of duty cycles for heavy-duty urban vehicles : final report of IEA AMF Annex 29

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Erkkila, K. [VTT Technical Research Centre of Finland, Espoo (Finland); Clark, N. [West Virginia Univ., Morgantown, WV (United States); Rideout, G. [Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre, Emissions Research and Measurement Div

    2007-07-01

    Heavy-duty vehicles in Europe and North America will require incylinder measures or exhaust gas after-treatment technology to control emissions and meet ever stringent emission requirements. Alternatively, manufacturers can choose clean burning alternative fuels such as natural gas. Although there are no international standards for heavy-duty vehicle chassis dynamometer testing at present, the IEA Implementing Agreements offer excellent platforms for international collaborative research. Harmonization of test methods for vehicles and fuels is one important task. This paper reported on the work of 3 laboratories that have produced emission results for complete heavy-duty vehicles. VTT Technical Research of Finland, Environment Canada and West Virginia University measured standard size urban buses driving various duty cycles on chassis dynamometers. The number of transient test cycles per laboratory varied from 6 to 16. European and North American diesel and natural gas vehicles were included in the vehicle matrix. The objective was to demonstrate how the driving cycle affects the emission performance of conventional and advanced urban buses. Several driving cycles were run on urban buses to better understand the characteristics of different duty cycles; produce a key for cross-interpretation of emission results generated with different cycles; and study the interaction between vehicle, exhaust after-treatment and fuel technologies and test procedures. Fuel consumption and exhaust emissions were measured. The results varied significantly not only by test cycle, but also by vehicle technology. In general, vehicles emissions were directly proportioned to the amount of fuel consumed, with the exception of NOx-emissions from SCR-vehicles. There was a clear difference in the emission profiles of European and North American vehicles. In Europe, fuel efficiency was emphasized, while in North America, more focus was given to regulated exhaust emissions, especially low

  4. Heavy Duty Vehicle Futures Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  5. Screw expander for light duty diesel engines

    Science.gov (United States)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  6. Emission rates of regulated pollutants from on-road heavy-duty diesel vehicles

    Science.gov (United States)

    Shah, Sandip D.; Johnson, Kent C.; Wayne Miller, J.; Cocker, David R.

    Emissions from heavy-duty diesel (HDD) vehicles are affected by many factors. Changes in engine technology, operating mode, fuel properties, vehicle speed and ambient conditions can have significant effects on emission rates of regulated species. This paper presents the results of on-road emissions testing of 11 HDD vehicles (model years 1996-2000) over the ARB Four Phase driving schedule and the urban dynamometer driving schedule (UDDS). Emission rates were found to be highly dependent on vehicle operating mode. Per mile NO x emission rates for vehicle operation at low speeds, in simulated congested traffic, were three times higher per mile emissions then while cruising on the freeway. Comparisons of NO x emission factors to EMFAC baseline emission factors were within 5-40% for vehicles of various model years tested over the UDDS. A comparison of NO x emission factors for a weighted average of the ARB four phase driving schedule yielded values within 17-57% of EMFAC values. Generally, particulate matter (PM) emission rates were lower than EMFAC values.

  7. Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hwang, Ho-Ling [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Huff, Shean [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-04-08

    The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

  8. Removal of Heavy Metals and PAH in Highway Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Thorndahl, Søren Liedtke

    2005-01-01

    , which has been designed according to standard design criteria for several decades. The study will focus on heavy metals (Cd, Cr, Cu, Pb and Zn) and polyaromatic hydrocarbons (PAH). The long-term simulation of input of flow and pollution to the ponds will be a hind cast based on time series of historical......The paper presents some of the first results from a study of the removal of pollutants in highway detention ponds in Denmark. The objective of the study is to set up a procedure for long-term modelling of discharges of pollutants to the environment from the many Danish highway detention ponds...... rainfalls. The modelling will take place in a special version of the MIKE URBAN. The modelling is calibrated and validated on measurements from selected highway catchments. The removal of pollutants in the ponds is studied by local measurements in combination with CFD modelling using the MIKE 21 and MIKE 3...

  9. A Comparative Study of the Effect of Turbocompounding and ORC Waste Heat Recovery Systems on the Performance of a Turbocharged Heavy-Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Amin Mahmoudzadeh Andwari

    2017-07-01

    Full Text Available In this study the influence of utilization of two Waste Heat Recovery (WHR strategies, namely organic Rankine cycle (ORC and turbocompounding, have been investigated based on the performance of a heavy-duty diesel engine using 1-D simulation engine code (GT-Power in terms of Brake Specific Fuel Consumptions (BSFC at various engine speeds and Brake Mean Effective Pressures (BMEP. The model of a 6-cylinder turbocharged engine (Holset HDX55V was calibrated using an experimental BSFC map to predict engine exhaust thermodynamic conditions such as exhaust mass flow rate and exhaust temperature under various operating conditions. These engine exhaust conditions were then utilized to feed the inlet conditions for both the ORC and turbocompounding models, evaluating the available exhaust energy to be recovered by each technology. Firstly the ORC system model was simulated to obtain the power that can be generated from the system. Having this additional power converted to useful work, the BSFC was observed to reduce around 2–5% depending upon engine’s speed and BMEP. The initial model of the engine was then modified by considering a second turbine representing turbocompounding heat recovery system. The BSFC was increased due to the back-pressure from the second turbine, but the energy generated from the turbine was sufficient to reduce the BSFC further. However, by application of turbocompounding no improvement in BSFC was achieved at low engine’s speeds. It is concluded that ORC heat recovery system produces a satisfactory results at low engine speeds with both low and high loads whereas at medium and high engine speeds turbocompounding heat recovery system causes higher BSFC reduction.

  10. Preliminary engineering cost trends for highway projects.

    Science.gov (United States)

    2011-10-21

    Preliminary engineering (PE) for a highway project encompasses two efforts: planning to minimize the physical, social, and human environmental impacts of projects and engineering design to deliver the best alternative. PE efforts begin years in advan...

  11. Engine testing of ceramic cam-roller followers

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. (Detroit Diesel Corp., MI (United States))

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  12. Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude.

    Science.gov (United States)

    McCormick, R L; Graboski, M S; Alleman, T L; Yanowitz, J

    2000-11-01

    Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.

  13. Marginal abatement cost curves for Heavy Duty Vehicles. Background report

    Energy Technology Data Exchange (ETDEWEB)

    Schroten, A.; Warringa, G.; Bles, M.

    2012-09-15

    Cost curves were calculated for CO2 abatement technologies for Heavy Duty Vehicles. These curves were elaborated for eight different vehicle categories (six categories of truck and two subcategories), as well as for an 'average' truck and bus. Given that cost curves depend very much on underlying assumptions, the MACH model (Marginal Abatement Costs of Heavy duty vehicles) was developed. This model allows users to enter their own assumptions with respect to parameters like fuel prices and cost and lifetime of individual technologies, with the model then generating new cost curves for the various vehicle categories. This background report contains a description of the model and a summary of the results of several model runs.

  14. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity.

    Science.gov (United States)

    Martin, Nathan; Lombard, Melissa; Jensen, Kirk R; Kelley, Patrick; Pratt, Tara; Traviss, Nora

    2017-05-15

    Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (pengine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure, composition and toxicity are not straightforward. Copyright © 2016 Elsevier B.V. All rights

  15. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  16. Heavy Duty Tireman. Open Pit Mining Job Training Series.

    Science.gov (United States)

    McColman, Don

    This training outline for heavy duty tiremen, one in a series of eight outlines, is designed primarily for company training foremen or supervisors and for trainers to use as an industry-wide guideline for heavy equipment operator training in open pit mining in British Columbia. Intended as a guide for preparation of lesson plans both for classroom…

  17. Engine testing of ceramic cam-roller followers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalish, Y. [Detroit Diesel Corp., MI (United States)

    1992-04-01

    For several years, DDC has been developing monolithic ceramic heat engine components. One of the components, developed for an application in our state-of-the-art on-highway, heavy-duty diesel engine, the Series 60, is a silicon nitride cam-roller follower. Prior to starting this program, each valve train component in the Series 60 was considered for conversion to a ceramic material. Many advantages and disadvantages (benefits and risks) were considered. From this effort, one component was selected, the cam-roller follower. Using a system design approach, a ceramic cam-roller follower offered functional improvement at a reasonable cost. The purpose of the project was to inspect and test 100 domestically produced silicon nitride cam-roller followers built to the requirements of the DDC series 60 engine.

  18. Light-duty diesel engine development status and engine needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  19. Chassis dynamometer study of emissions from 21 in-use heavy-duty diesel vehicles

    International Nuclear Information System (INIS)

    Yanowitz, J.; Graboski, M.S.; Ryan, L.B.A.; Alleman, T.L.; McCormick, R.L.

    1999-01-01

    Regulated emissions from 21 in-use heavy-duty diesel vehicles were measured on a heavy-duty chassis dynamometer via three driving cycles using a low-sulfur diesel fuel. Emissions of particulate matter (PM), nitrogen oxides (NO x ), carbon monoxide (CO), total hydrocarbon (THC), and PM sulfate fraction were measured. For hot start tests, emissions ranged from 0.30 to 7.43 g/mi (mean 1.96) for PM; 4.15--54.0 g/mi (mean 23.3) for NO x ; 2.09--86.2 g/mi (mean 19.5) for CO; and 0.25--8.25 g/mi (mean 1.70) for THC. When emissions are converted to a g/gal basis, the effect of driving cycle is eliminated for NO x and largely eliminated for PM. Sulfate comprised less than 1% of the emitted PM for all vehicles and test cycles. A strong correlation is observed between emissions of CO and PM. Cold starting at 77 F produced an 11% increase in PM emissions. Multivariate regression analyses indicate that in-use PM emissions have decreased at a slower rate than anticipated based on the stricter engine certification test standards put into effect since 1985. NO x emissions do not decrease with model year for the vehicles tested here. Smoke opacity measurements are not well correlated with mass emissions of regulated pollutants

  20. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Science.gov (United States)

    2010-07-01

    ..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...

  1. An experimental investigation of H{sub 2} emissions of a 2004 heavy-duty diesel engine supplemented with H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Gatts, T.; Li, H.; Liew, C.; Liu, S.; Spencer, T.; Wayne, S.; Clark, N. [Department of Mechanical and Aerospace Engineering, West Virginia University, P.O. Box 6106, Morgantown, WV 26506 (United States)

    2010-10-15

    Hydrogen (H{sub 2}) emissions characteristics of H{sub 2}-diesel dual fuel engine were measured using a 2004 turbocharged heavy-duty diesel engine with H{sub 2} supplemented into the intake air. The emissions of H{sub 2} were measured using an Electron Pulse Ionization (EPI) Mass Spectrometer (MS). The effect of the amount of H{sub 2} added, the engine load, and diesel fuel flow rates on the emissions of H{sub 2} and its combustion efficiency in the engine were investigated. The addition of H{sub 2} under high load operation was notable for its ability to obtain high H{sub 2} combustion efficiency and improve brake thermal efficiency. However, the addition of H{sub 2} at low load resulted in high emissions of H{sub 2} due to the failure to initiate and support a sufficiently vigorous flame for the complete combustion of H{sub 2} present outside the diesel spray plume. The maximum H{sub 2} emissions of 1.4% (volume in dry exhaust gas) were observed with the addition of 6% H{sub 2} at 10% load. In comparison, the maximum H{sub 2} emissions of 0.13% were observed when operated at 70% load with the addition of 6% H{sub 2}. The slip of a large percentage of H{sub 2} at low load operation was shown to deteriorate the potential of H{sub 2} in improving the brake thermal efficiency. (author)

  2. Experimental study on the heavy-duty gas turbine combustor

    International Nuclear Information System (INIS)

    Antonovsky, V.; Ahn, Kook Young

    2000-01-01

    The results of stand and field testing of a combustion chamber for a heavy-duty 150 MW gas turbine are discussed. The model represented one of 14 identical segments of a tubular multican combustor constructed in the scale 1:1. The model experiments were executed at a pressure smaller than in the real gas turbine. The combustion efficiency, pressure loss factor, pattern factor, liner wall temperature, flame radiation, fluctuating pressure, and NOx emission were measured at partial and full load for both model and on-site testing. The comparison of these items of information, received on similar modes in the stand and field tests, has allowed the development of a method of calculation and the improvement of gas turbine combustors

  3. Superhydrophobic engineered cementitious composites for highway bridge applications : technology transfer and implementation.

    Science.gov (United States)

    2013-09-01

    The strength and durability of highway bridges are two of the key components in maintaining a : high level of freight transportation capacity on the nations highways. Superhydrophobic : engineered cementitious composite (SECC) is a new advanced con...

  4. Thermal/structural analysis of radiators for heavy-duty trucks

    International Nuclear Information System (INIS)

    Mao Shaolin; Cheng, Changrui; Li Xianchang; Michaelides, Efstathios E.

    2010-01-01

    A thermal/structural coupling approach is applied to analyze thermal performance and predict the thermal stress of a radiator for heavy-duty transportation cooling systems. Bench test and field test data show that non-uniform temperature gradient and dynamic pressure loads may induce large thermal stress on the radiator. A finite element analysis (FEA) tool is used to predict the strains and displacement of radiator based on the solid wall temperature, wall-based fluid film heat transfer coefficient and pressure drop. These are obtained from a computational fluid dynamics (CFD) simulation. A 3D simulation of turbulent flow and coupled heat transfer between the working fluids poses a major difficulty because the range of length scales involved in heavy-duty radiators varies from few millimeters of the fin pitch and/or tube cross-section to several meters for the overall size of the radiator. It is very computational expensive, if not impossible, to directly simulate the turbulent heat transfer between fins and the thermal boundary layer in each tube. In order to overcome the computational difficulties, a dual porous zone (DPZ) method is applied, in which fins in the air side and turbulators in the water side are treated as porous region. The parameters involved in the DPZ method are tuned based on experimental data in prior. A distinguished advantage of the porous medium method is its effectiveness of modeling wide-range characteristic scale problems. A parametric study of the impact of flow rate on the heat transfer coefficient is presented. The FEA results predict the maximum value of stress/strain and target locations for possible structural failure and the results obtained are consistent with experimental observations. The results demonstrate that the coupling thermal/structural analysis is a powerful tool applied to heavy-duty cooling product design to improve the radiator thermal performance, durability and reliability under rigid working environment.

  5. Differences between emissions measured in urban driving and certification testing of heavy-duty diesel engines

    Science.gov (United States)

    Dixit, Poornima; Miller, J. Wayne; Cocker, David R.; Oshinuga, Adewale; Jiang, Yu; Durbin, Thomas D.; Johnson, Kent C.

    2017-10-01

    Emissions from eight heavy-duty diesel trucks (HDDTs) equipped with three different exhaust aftertreatment systems (ATS) for controlling nitrogen oxide (NOx) emissions were quantified on a chassis dynamometer using driving schedules representative of stop-and-go and free-flow driving in metropolitan areas. The three control technologies were: 1) cooled exhaust gas recirculation (CEGR) plus a diesel particulate filter (DPF); 2) CEGR and DPF plus advanced engine controls; and 3) CEGR and DPF plus selective catalytic reduction with ammonia (SCR). Results for all control technologies and driving conditions showed PM emission factors were less than the standard, while selected non-regulated emissions (ammonia, carbonyls, and C4-C12 hydrocarbons) and a greenhouse gas (nitrous oxide) were at measurement detection limits. However, NOx emission factors depended on the control technology, engine calibration, and driving mode. For example, emissions from engines with cooled-exhaust gas recirculation (CEGR) were 239% higher for stop-and-go driving as compared with free-flow. For CEGR plus selective catalytic reduction (SCR), the ratio was 450%. A deeper analysis was carried out with the assumption that emissions measured for a drive cycle on either the chassis or in-use driving would be similar. Applying the same NTE rules to the chassis data showed emissions during stop-and-go driving often exceeded the certification standard and >90% of the driving did not fall within the Not-To-Exceed (NTE) control area suggesting the NTE requirements do not provide sufficient emissions control under in-use conditions. On-road measurement of emissions using the same mobile lab while the vehicle followed a free-flow driving schedule verified the chassis results. These results have implications for scientists who build inventories using certification values instead of real world emission values and for metropolitan populations, who are exposed to elevated emissions. The differences in values

  6. On-line energy and battery thermal management for hybrid electric heavy-duty truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.; Nevels, R.M.P.A.

    2013-01-01

    This paper discusses an integrated approach for energy and thermal management to minimize the fuel consumption of a hybrid electric heavy-duty truck. Conventional Energy Management Systems (EMS) operate separately from the Battery Thermal Management System (BTMS) in Hybrid Electric Vehicles (HEVs).

  7. Particulate emissions from new heavy duty vehicles (Euro IV and V); Partikeludslip fra nye tunge koeretoejer (Euronorm IV og V)

    Energy Technology Data Exchange (ETDEWEB)

    Jordal-Joergensen, J.; Ohm, A.; Willumsen, E. (COWI A/S, Kgs. Lyngby (DK))

    2008-07-01

    The new Danish act on environmental zones allows local authorities to define zones where EURO III or older heavy duty vehicles should be equipped with a particulate filter. The introduction of EURO IV and V has reduced particulate emissions from heavy duty vehicles by approximately 80 % based on the mass of particles. There is, however, substantial uncertainty about the impact on the number of ultrafine particles, since they are not covered by Euronorm standards. When passing the bill, the Danish Minister for the Environment of the time stated that all relevant knowledge about particle emission from heavy duty vehicles needed to be collected for subsequent publication. To this end, the Danish Environmental Protection Agency (DEPA) commissioned a literature survey. The purpose of the survey is to provide an overview of the latest knowledge in the field of particle emissions from heavy duty vehicles, with special focus on the average size of the particle emissions. Another objective of the study is to analyse the direct emissions of NO{sub 2} from heavy duty vehicles classified under EURO IV and V. (au)

  8. Improved Deep Belief Networks (IDBN Dynamic Model-Based Detection and Mitigation for Targeted Attacks on Heavy-Duty Robots

    Directory of Open Access Journals (Sweden)

    Lianpeng Li

    2018-04-01

    Full Text Available In recent years, the robots, especially heavy-duty robots, have become the hardest-hit areas for targeted attacks. These attacks come from both the cyber-domain and the physical-domain. In order to improve the security of heavy-duty robots, this paper proposes a detection and mitigation mechanism which based on improved deep belief networks (IDBN and dynamic model. The detection mechanism consists of two parts: (1 IDBN security checks, which can detect targeted attacks from the cyber-domain; (2 Dynamic model and security detection, used to detect the targeted attacks which can possibly lead to a physical-domain damage. The mitigation mechanism was established on the base of the detection mechanism and could mitigate transient and discontinuous attacks. Moreover, a test platform was established to carry out the performance evaluation test for the proposed mechanism. The results show that, the detection accuracy for the attack of the cyber-domain of IDBN reaches 96.2%, and the detection accuracy for the attack of physical-domain control commands reaches 94%. The performance evaluation test has verified the reliability and high efficiency of the proposed detection and mitigation mechanism for heavy-duty robots.

  9. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    Energy Technology Data Exchange (ETDEWEB)

    LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  10. Deterioration Models for Cement Bound Materials in Structural Design and Evaluation of Heavy Duty Pavements

    DEFF Research Database (Denmark)

    Skar, Asmus; Holst, Mogens Løvendorf

    Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design of such ......Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design...... of such pavements are today based on Mechanistic-Empirical (M-E) methods. The M-E method is appropriate for many situations, in other situations it may lead to overdesign, or maybe worse, underdesign. The method has limited capabilities and cannot account for signicant factors affecting the pavement response...... number of model parameters. In order to move a step towards more generalised structural design methods for analysis of heavy duty pavements, this study aims at developing a mechanistic approach based on constitutive models. A simple framework for engineering application is sought; creating a rational...

  11. Research on the Obstacle Negotiation Strategy for the Heavy-duty Six-legged Robot based on Force Control

    Directory of Open Access Journals (Sweden)

    Li Mantian

    2017-01-01

    Full Text Available To make heavy-duty six-legged robots without environment reconstruction system negotiate obstacles after the earthquake successfully, an obstacle negotiation strategy is described in this paper. The reflection strategy is generated by the information of plantar force sensors and Bezier Curve is used to plan trajectory. As the heavy-duty six-legged robot has a large inertia, force controller is necessary to ensure the robot not to lose stability while negotiating obstacles. Impedance control is applied to reduce the impact of collision and active force control is applied to adjust the pose of the robot. The robot can walk through zones that are filled with obstacles automatically because of force control. Finally, the algorithm is verified in a simulation environment.

  12. Simulation of a heavy-duty diesel engine with electrical turbocompounding system using operating charts for turbocharger components and power turbine

    International Nuclear Information System (INIS)

    Katsanos, C.O.; Hountalas, D.T.; Zannis, T.C.

    2013-01-01

    Highlights: • A diesel model was developed using charts for turbocharger and power turbine. • The maximum value of bsfc improvement is 4.1% at 100% engine load. • The generated electric power ranges from 23 kW to 62 kW. • Turbocharger turbine efficiency decreases slightly with the power turbine speed. • Turbocompounding increases the average pressure value in the exhaust manifold. - Abstract: In diesel engines, approximately 30–40% of the energy supplied by the fuel is rejected to the ambience through exhaust gases. Therefore, there is a potentiality for further considerable increase of diesel engine efficiency with the utilization of exhaust gas heat and its conversion to mechanical or electrical energy. In the present study, the operational behavior of a heavy-duty (HD) diesel truck engine equipped with an electric turbocompounding system is examined on a theoretical basis. The electrical turbocompounding configuration comprised of a power turbine coupled to an electric generator, which is installed downstream to the turbocharger (T/C) turbine. A diesel engine simulation model has been developed using operating charts for both turbocharger and power turbine. A method for introducing the operating charts into the engine model is described thoroughly. A parametric analysis is conducted with the developed simulation tool, where the varying parameter is the rotational speed of power turbine shaft. In this study, the interaction between the power turbine and the turbocharged diesel engine is examined in detail. The effect of power turbine speed on T/C components efficiencies, power turbine efficiency, exhaust pressure and temperature, engine boost pressure and air to fuel ratio is evaluated. In addition, theoretical results for the potential impact of electrical turbocompounding on the generated electric power, net engine power and relative improvement of brake specific fuel consumption (bsfc) are provided. The critical evaluation of the theoretical

  13. Multi-Year On-Road Emission Factor Trends of Two Heavy-Duty California Fleets

    Science.gov (United States)

    Haugen, M.; Bishop, G.

    2017-12-01

    New heavy-duty vehicle emission regulations have resulted in the development of advanced exhaust after-treatment systems that specifically target particulate matter (PM) and nitrogen oxides (NOx = NO + NO2). This has resulted in significant decreases in the emissions of these species. The University of Denver has collected three data sets of on-road gaseous (CO, HC, NO and NOx) and PM (particle mass, black carbon and particle number) emission measurements from heavy-duty vehicles (HDVs) in the spring of 2013, 2015 and 2017 at two different locations in California. One site is located at the Port of Los Angeles, CA (1,150 HDVs measured in 2017) and the other site is located at a weigh station in Northern California near Cottonwood, CA (780 HDVs measured in 2017). The On-Road Heavy-Duty Measurement Setup measures individual HDV's fuel specific emissions (DOI: 10.1021/acs.est.6b06172). Vehicles drive under a tent-like structure that encapsulates vehicle exhaust and 15 seconds of data collection is integrated to give fuel specific information. The measurements obtained from these campaigns contain real-world emissions affected by different driving modes, after-treatment systems and location. The Port of Los Angeles contributes a fleet that is fully equipped with diesel particulate filters (DPFs) as a result of the San Pedro Ports Clean Air Action Plan enforced since 2010 that allows only vehicles model year 2007 or newer on the premises. This fleet, although comprised with relatively new HDVs with lower PM emissions, has increased PM emissions as it has aged. Cottonwood's fleet contains vehicles with and without after-treatment systems, a result of a gradual turnover rate, and fleet PM has decreased at a slower rate than at the Port of Los Angeles. The decrease in PM emissions is a result of more HDVs being newer model years as well as older model years being retrofit with DPFs. The complimentary fleets, studied over multiple years, have given the University of Denver

  14. Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update

    Energy Technology Data Exchange (ETDEWEB)

    Freese, Charlie

    2000-08-20

    The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

  15. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  16. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    International Nuclear Information System (INIS)

    Wai-Lin Litzke; James Wegrzyn

    2001-01-01

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications

  17. Estimating the supply and demand for commercial heavy truck parking on interstate highways : a case study of I-81 in Virginia.

    Science.gov (United States)

    2002-01-01

    The increasing number of trucks traveling on Virginia highways has led to a growing demand for public rest areas and private truck stops. This study developed a methodology to determine the supply and demand for commercial heavy truck parking using I...

  18. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    Science.gov (United States)

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10 12 to 2.29 × 10 13 particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10 11 to 1.31 × 10 13 particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  19. Euro VI technologies and costs for Heavy Duty vehicles: the expert panels summary of stakeholders responses

    NARCIS (Netherlands)

    Gense, N.L.J.; Riemersma, I.J.; Such, C.l; Ntziachristos, L.

    2006-01-01

    This report is the result of the work carried out under on the Europeans Commission’s call for tender regarding “Technical support for the Commission DG Environment on the development of Euro 5 standards for light-duty vehicles and Euro VI standards for heavy-duty vehicles” (Reference:

  20. 77 FR 54384 - Nonconformance Penalties for On-Highway Heavy-Duty Diesel Engines

    Science.gov (United States)

    2012-09-05

    ... Effects) I. National Technology Transfer Advancement Act J. Executive Order 12898: Federal Actions To... considered it to be a technology-forcing standard and subsequent history has shown that substantial work has... information is not publicly available, e.g., confidential business information or other information whose...

  1. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2010-12-29

    ...-HQ-OAR-2010-0162; FRL-9219-4; NHTSA 2010-0079] RIN 2060-AP61; RIN 2127-AK74 Greenhouse Gas Emissions... will increase fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles...-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions for on...

  2. 40 CFR 86.1804-01 - Acronyms and abbreviations.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General.... HEV—Hybrid electric vehicle. HFID—Heated flame ionization detector. Hg—Mercury. HLDT—Heavy light-duty...). SAE—Society of Automotive Engineers. SBC—Standard Bench Cycle SFTP—Supplemental Federal Test Procedure...

  3. 3D engineered models for highway construction : the Iowa experience.

    Science.gov (United States)

    2015-06-01

    3D engineered modeling is a relatively new and developing technology that can provide numerous bene ts to owners, engineers, : contractors, and the general public. This manual is for highway agencies that are considering or are in the process of s...

  4. Modelling of NO{sub x} emission factors from heavy and light-duty vehicles equipped with advanced aftertreatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.L.M., E-mail: monalisa@unifor.br [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Silva, C.M. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Moreno-Tost, R. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Farias, T.L. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Jimenez-Lopez, Antonio [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain)

    2011-08-15

    Highlights: {yields} Alternative SCR materials. {yields} Catalysts used in heavy-duty vehicles are based on V{sub 2}O{sub 5}-WO{sub 3}-TiO{sub 2}. {yields}Zeolites containing transition metal ions as catalysts for urea SCR has increased. {yields} FeZSM5 catalyst can be a possible candidate as far as pollutants regulation is considered. {yields} Regarding N{sub 2}O emissions mordenite based SCR do not emit this pollutant. - Abstract: NO{sub x} emission standards are becoming stringiest over the world especially for heavy-duty vehicles. To comply with current and future regulations some vehicle manufacturers are adopting exhaust aftertreatment systems known as Selective Catalytic Reduction (SCR). The catalysts are based on Vanadium (Va) and the reductant agent based on ammonia. However, Va is listed on the California Proposition 65 List as potentially causing cancer and alternatives are being studied. This paper presents a model based on neural networks that integrated with a road vehicle simulator allows to estimate NO{sub x} emission factors for different powertrain configurations, along different driving conditions, and covering commercial, zeolite and mordenite alternatives as the base monolith for SCR. The research included the experimental study of copper based and iron based zeolites (ZSM5 and Cuban natural mordenite). The response of NO{sub x} conversion efficiency was monitored in a laboratory for varying space velocity, oxygen, sulfur, water, NO{sub x} and SO{sub 2} emulating the conditions of a Diesel engine exhaust along a trip. The experimental data was used for training neural networks and obtaining a mathematical correlation between the outputs and inputs of the SCR system. The developed correlation was integrated with ADVISOR road vehicle simulator to obtain NO{sub x} emission factors and to test each SCR system installed on light-duty and heavy-duty vehicles for standardized driving cycles and real measured driving cycles. Despite having lower NO

  5. Heavy-duty explosively operated pulsed opening and closing switches

    International Nuclear Information System (INIS)

    Peterson, D.R.; Price, J.H.; Upshaw, J.L.; Weldon, W.F.; Zowarka, R.C.; Gully, J.H.; Spann, M.L.

    1991-01-01

    This paper discusses improvements to heavy duty, explosively operated, opening and closing switches to reduce component cost, installation cost, and turnaround time without sacrificing reliability. Heavy duty opening and closing switches operated by small explosive charges (50 g or less) are essential to operation of the 60 MJ Balcones power supply. The six independent modules - a 10 MJ homopolar generator (HPG) and a 6 μH storage inductor - can be discharged sequentially, a valuable feature for shaping the current pulse delivered to loads such as high-energy railguns. Each delayed inductor must be isolated from the railgun circuit with a heavy duty closing switch capable of carrying megampere currents to millisecond duration. Similar closing switches are used to crowbar the railgun as the projectile approaches the muzzle: noise reduction, reduction of muzzle arc damage, and reduction of post-launch perturbation of projectile flight. The switches - both opening and closing - are characterized by microhm resistance in the closed state. Current is carried in metallic conductors. Metal-to-metal seams which carry current are maintained in uniform high pressure contact. Efficient switching is crucial to efficient conversion: rotor kinetic energy to stored inductive energy with ∼50% efficiency, stored inductive energy to projectile kinetic energy with ∼30% efficiency. The switches must operate with a precision and repeatability of 10 -5 s, readily achievable with explosives. The opening switches must be structurally and thermally capable of carrying megampere currents for more than 100 ms (∼10 5 C) and develop 10 kV upon opening, stay open for 10 - 2 s, and safely and reliably dissipate megajoules of inductive energy in the event of a fault, a failure of the switch to operate or an attempt to commutate into an open circuit

  6. Medium- and Heavy-Duty Vehicle Field Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prohaska, Robert S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-11

    This presentation provides information about NREL's real-world evaluations of commercial vehicle technologies, which compare the performance of advanced medium- and heavy-duty fleet vehicles to conventional vehicles. NREL conducts these customized evaluations in partnership with commercial and government fleets across the nation. Current fleet and industry partners include UPS, Workhorse, Parker Hannifin, Proterra, Foothill Transit, Long Beach Transit, BYD, Odyne, Duke Energy, Miami-Dade, TransPower, Eaton, Cummins, Bosch, and Clean Cities/National Clean Fleet Partnership. The presentation focuses on two particular vehicle evaluation projects -- hydraulic hybrid refuse haulers operated by Miami-Dade and electric transit buses operated by Foothill Transit.

  7. Transient performance and emission characteristics of a heavy-duty diesel engine fuelled with microalga Chlorella variabilis and Jatropha curcas biodiesels

    International Nuclear Information System (INIS)

    Singh, Devendra; Singal, S.K.; Garg, M.O.; Maiti, Pratyush; Mishra, Sandhya; Ghosh, Pushpito K.

    2015-01-01

    Highlights: • B100 biodiesels from Jatropha (BJ) and marine microalga (BA) compared. • 17% lower NOx and 6% lower specific fuel consumption of BA over BJ. • Brake specific fuel consumption (BSFC) highest in urban mode in all cases. • NOx, HC and CO highest in rural-, motorway-and urban modes, respectively. • Microalga Chlorella variabilis is a promising feedstock for renewable fuels. - Abstract: Biodiesel is a renewable alternative to petro-diesel used in compression ignition (CI) engine. Two B100 biodiesel samples were prepared by patented routes from the lipids extracted from marine microalga Chlorella variabilis (BA) cultivated in salt pans and wasteland-compatible Jatropha curcas (BJ). The fuels complied with ASTM D-6751 and European Standard EN-14214 specifications. Standard Petro-diesel served as a control. Transient performance and emission characteristics of a heavy duty diesel engine fuelled with these B100 fuels (BJ and BA) were studied over European Transient Cycle. Test results showed that both B100 biodiesels outperformed petro-diesel in terms of particulate matter (PM), carbon monoxide (CO) and hydrocarbon (HC) emissions, with slight penalty on NOx emissions. Among the two biodiesels, merits of BA were established over BJ in terms of nitrogen oxides (NOx) emissions and specific fuel consumption. Mode-wise transient emission analysis revealed that NOx was highest in rural mode, CO was highest in urban and HC was highest in motorway mode for all fuels. BA may be considered as a promising alternative fuel for diesel engine which can be produced sustainably through cultivation of the marine microalga in coastal locations using seawater as culture medium, obviating thereby concerns around land use competition for food and fuel.

  8. Model development for air conditioning system in heavy duty trucks

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; van den Bosch, P.P.J.; Zhang, Quansheng; Li, Shengbo Eben; Deng, Kun

    2016-01-01

    This chapter presents a modelling approach for the air conditioning (AC) system in heavy duty trucks. The presented model entails two major elements: a mechanical compressor model and a thermal AC model. The compressor model describes the massflow of the refrigerant as well as the mechanical power

  9. Parameter estimation and analysis of an automotive heavy-duty SCR catalyst model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2017-01-01

    A single channel model for a heavy-duty SCR catalyst was derived based on first principles. The model considered heat and mass transfer between the channel gas phase and the wash coat phase. The parameters of the kinetic model were estimated using bench-scale monolith isothermal data. Validation ...

  10. Rotating Liner Engine: Improving Efficiency of Heavy Duty Diesels by Significant Friction Reduction, and Extending the Life of Heavy Duty Engines.

    Energy Technology Data Exchange (ETDEWEB)

    Dardalis, Dimitrios

    2013-12-31

    This report describes the work on converting a 4 cylinder Cummins ISB engine into a single cylinder Rotating Liner Engine functioning prototype that can be used to measure the friction benefits of rotating the cylinder liner in a high pressure compression ignition engine. A similar baseline engine was also prepared, and preliminary testing was done. Even though the fabrication of the single cylinder prototype was behind schedule due to machine shop delays, the fundamental soundness of the design elements are proven, and the engine has successfully functioned. However, the testing approach of the two engines, as envisioned by the original proposal, proved impossible due to torsional vibration resonance caused by the single active piston. A new approach for proper testing has been proposed,

  11. Analysis of the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged heavy duty diesel power generator for marine applications

    International Nuclear Information System (INIS)

    Michos, Constantine N.; Lion, Simone; Vlaskos, Ioannis; Taccani, Rodolfo

    2017-01-01

    Highlights: • Waste heat recovery on internal combustion engines is studied. • The backpressure effect of the Organic Rankine Cycle boiler has been evaluated. • Three different state-of-the art turbocharging technologies have been assessed. • Six different fluids for medium-high temperature recovery have been considered. • A reduction up to 10% in fuel consumption can be achieved. - Abstract: In marine and power generation sectors, waste heat recovery technologies are attracting growing attention in order to increase heavy duty diesel engines efficiency and decrease fuel consumption, with the purpose of respecting stringent emissions legislations. In this work, the backpressure effect of an Organic Rankine Cycle (ORC) evaporator on the exhaust line of a turbocharged, V12 heavy duty diesel engine, for typical marine and power generation applications has been investigated using the commercial software Ricardo WAVE. Three different state-of-the art turbocharging strategies are assessed in order to counterbalance the increased pumping losses of the engine due to the boiler installation: fixed turbine, Waste-Gate (WG) and Variable Geometry Turbine (VGT). At the same time, the steady-state thermodynamic performance of two different ORC configurations, simple tail-pipe evaporator and recuperated simple tail-pipe evaporator layouts, are assessed, with the scope of further increasing the engine power output, recovering unutilized exhaust gas heat. Several different working fluids, suitable for medium-high temperature waste heat recovery, are evaluated and screened, considering, as well, health and safety issues. Thermodynamic cycle parameters such as, for example, evaporation and condensing pressures, working fluid mass flow and cycle temperatures, are optimized in order to obtain the maximum improvement in Brake Specific Fuel Consumption (bsfc). From the engine side point of view, a VGT turbocharger is the most favorable solution to withstand increased

  12. A new alternative paraffinic-palmbiodiesel fuel for reducing polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from heavy-duty diesel engines.

    Science.gov (United States)

    Lin, Yuan-Chung; Liu, Shou-Heng; Chen, Yan-Min; Wu, Tzi-Yi

    2011-01-15

    Polychlorinated dibenzo-p-dioxin/dibenzofuran (PCDD/F) emissions from heavy-duty diesel engines (HDDEs) fuelled with paraffinic-palmbiodiesel blends have been rarely addressed in the literature. A high-resolution gas chromatograph/high-resolution mass spectrometer (HRGC/HRMS) was used to analyze 17 PCDD/F species. Experimental results indicate that the main species of PCDD/Fs were OCDD (octachlorinated debenzo-p-dioxin) and OCDF (octachlorodibenzofuran), and they accounted for 40-50% of the total PCDD/Fs for all test fuels. Paraffinic-palmbiodiesel blends decreased PCDD/Fs by 86.1-88.9%, toxic PCDD/Fs by 91.9-93.0%, THC (total hydrocarbons) by 13.6-23.3%, CO (carbon monoxide) by 27.2-28.3%, and PM (particulate matter) by 21.3-34.2%. Using biodiesel blends, particularly BP9505 or BP8020, instead of premium diesel fuel (PDF) significantly reduced emissions of both PCDD/Fs and traditional pollutants. Using BP9505 (95vol% paraffinic fuel+5vol% palmbiodiesel) and BP8020 instead of PDF can decrease PCDD/F emissions by 5.93 and 5.99gI-TEQyear(-1) in Taiwan, respectively. Copyright © 2010. Published by Elsevier B.V.

  13. Empirical membrane lifetime model for heavy duty fuel cell systems

    Science.gov (United States)

    Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-12-01

    Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.

  14. GIS for Highway Engineering in Developing Countries | Mulaku ...

    African Journals Online (AJOL)

    A Geographic Information System (GIS) is a computer based information system that enables the input, management, analysis, output and dissemination of geospatial data and information. It is therefore an invaluable management tool in all fields where geospatial data is applied, such as highway engineering. Unfortunately ...

  15. Semivolatile organic compound emissions from heavy-duty trucks operating on diesel and bio-diesel fuel blends

    Science.gov (United States)

    This study measured semivolatile organic compounds (SVOCs) in particle matter (PM) emitted from three heavy-duty trucks equipped with modern after-treatment technologies. Emissions testing was conducted as described by the George et al. VOC study also presented as part of this se...

  16. Cost-effective energy management for hybrid electric heavy-duty truck including battery aging

    NARCIS (Netherlands)

    Pham, H.T.; Bosch, van den P.P.J.; Kessels, J.T.B.A.; Huisman, R.G.M.

    2013-01-01

    Battery temperature has large impact on battery power capability and battery life time. In Hybrid Electric Heavy-duty trucks (HEVs), the high-voltage battery is normally equipped with an active Battery Thermal Management System (BTMS) guaranteeing a desired battery life time. Since the BTMS can

  17. 40 CFR 86.1920 - What in-use testing information must I report to EPA?

    Science.gov (United States)

    2010-07-01

    ... type or application (such as delivery, line haul, or dump truck). Also, identify the type of trailer... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1920 What in-use...

  18. Battery Dimensioning and Life Cycle Costs Analysis for a Heavy-Duty Truck Considering the Requirements of Long-Haul Transportation

    Directory of Open Access Journals (Sweden)

    Ivan Mareev

    2017-12-01

    Full Text Available The use of heavy-duty battery electric trucks for long-haul transportation is challenging because of the required high energy amounts and thus the high capacity of traction batteries. Furthermore a high capacity battery implies high initial costs for the electric vehicle. This study investigates the required battery capacity for battery electric trucks considering the requirements of long-haul transportation in Germany and compares the life cycle costs of battery electric trucks and conventional diesel trucks in different transportation scenarios. The average consumption is simulated for different battery electric truck configurations on the main German highways and transportation scenarios incorporating battery charging during driver rest periods. The results show that in average case the required battery would restrict the payload to only 80% of a usual diesel truck payload that might be acceptable considering the statistical payload use. The life cycle costs in the examined scenarios also considering the charging infrastructure show that battery electric trucks can already perform on the same costs level as diesel trucks in certain scenarios.

  19. Research notes : monitoring water quality along highways.

    Science.gov (United States)

    2006-12-01

    Runoff from highways typically picks up a variety of pollutants from the roadway. These pollutants include sediment, trash, residue from petroleum products, and heavy metals. Depending on the highway and its geographic setting, highway runoff can eva...

  20. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    Science.gov (United States)

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  1. N2O and NO2 Emissions from Heavy-Duty Diesel Trucks with Advanced Emission Controls

    Science.gov (United States)

    Preble, C.; Harley, R.; Kirchstetter, T.

    2014-12-01

    Diesel engines are the largest source of nitrogen oxides (NOx) emissions nationally, and also a major contributor to the black carbon (BC) fraction of fine particulate matter (PM). Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems that target exhaust PM and NOx have become standard equipment on new heavy-duty diesel trucks. However, the deliberate catalytic oxidation of engine-out nitric oxide (NO) to nitrogen dioxide (NO2) in continuously regenerating DPFs leads to increased tailpipe emission of NO2. This is of potential concern due to the toxicity of NO2 and the resulting increases in atmospheric formation of other air pollutants such as ozone, nitric acid, and fine PM. While use of SCR reduces emissions of both NO and NO2, it may lead to increased emissions of nitrous oxide (N2O), a potent greenhouse gas. Here we report results from on-road measurements of heavy-duty diesel truck emissions conducted at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Emission factors (g pollutant per kg of diesel) were linked via recorded license plates to individual truck attributes, including engine model year and installed emission control equipment. Between 2009 and 2013, the fraction of DPF-equipped trucks at the Port of Oakland increased from 2 to 99%, and median engine age decreased from 11 to 6 years. Over the same period, fleet-average emission factors for black carbon and NOx decreased by 76 ± 22% and 53 ± 8%, respectively. However, direct emissions of NO2 increased, and consequently the NO2/NOx emission ratio increased from 0.03 ± 0.02 to 0.18 ± 0.03. Older trucks retrofitted with DPFs emitted approximately 3.5 times more NO2 than newer trucks equipped with both DPF and SCR. Preliminary data from summer 2014 measurements at the Caldecott Tunnel suggest that some older trucks have negative emission factors for N2O, and that for newer trucks, N2O emission factors have changed sign and

  2. Feasibility of shoulder use for highway work zone optimization

    Directory of Open Access Journals (Sweden)

    Bo Du

    2014-08-01

    Full Text Available Highway maintenance, often requiring lane closure, is very expensive in terms of the costs associated with transportation agencies (i. e. work zone setups and road users (i. e. delay. Longer work zones tend to increase the user delay but will be efficient because of fewer repeated setups. To increase road capacity and mitigate congestion impact for a short-term work zone, temporary shoulder use may be applied. This study develops an analytical model to optimize work zone length on a multi-lane highway considering time-varying traffic volume and road capacity affected by light condition, heavy vehicle percentage, and lane width. The results can be used to evaluate the work zone impact (i. e. delay and cost and assist engineers/planners to prepare and develop a cost-effective highway maintenance plan. A case study for a highway work zone in New Jersey has been conducted, in which the optimized solution is found. A guideline of using road shoulder under various circumstances is developed.

  3. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. II. Development of SiC valve lifter by injection molding method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Valve lifter, namely tappet, is supported by lifter hole which is located upper side of camshaft in cylinder block, transforms rotatic movement of camshaft into linear movement and helps to open and shut the engine valve as an engine parts. The face of valve lifter, which is continuously contacting with camshaft, brings about abnormal wears, such as unfair wear and early wear, because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently, this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears, therefore, the valve lifter cast in metal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance. As a result, the optimum process conditions like injection condition, mixture ratio and debonding process could be established. After sintering, fine-sinered dual microstructure in which prior {alpha}-SiC, carbon and silicon was obtained. Based on the new SiC({beta}-SiC) produced by reaction among the {alpha}-SiC, carbon and silicon was obtained. Based on the study, it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100{approx}1200 bending strength (300{approx}350 Pa), fracture toughness (1.5{approx}1.7 MPacentre dotm{sup 1/2}). Through engine dynamo testing, SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such early fracture, unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resistance, reliability, and lightability.

  4. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  5. Are emissions of black carbon from gasoline vehicles underestimated? Insights from near and on-road measurements.

    Science.gov (United States)

    Liggio, John; Gordon, Mark; Smallwood, Gregory; Li, Shao-Meng; Stroud, Craig; Staebler, Ralf; Lu, Gang; Lee, Patrick; Taylor, Brett; Brook, Jeffrey R

    2012-05-01

    Measurements of black carbon (BC) with a high-sensitivity laser-induced incandescence (HS-LII) instrument and a single particle soot photometer (SP2) were conducted upwind, downwind, and while driving on a highway dominated by gasoline vehicles. The results are used with concurrent CO(2) measurements to derive fuel-based BC emission factors for real-world average fleet and heavy-duty diesel vehicles separately. The derived emission factors from both instruments are compared, and a low SP2 bias (relative to the HS-LII) is found to be caused by a BC mass mode diameter less than 75 nm, that is most prominent with the gasoline fleet but is not present in the heavy-duty diesel vehicle exhaust on the highway. Results from both the LII and the SP2 demonstrate that the BC emission factors from gasoline vehicles are at least a factor of 2 higher than previous North American measurements, and a factor of 9 higher than currently used emission inventories in Canada, derived with the MOBILE 6.2C model. Conversely, the measured BC emission factor for heavy-duty diesel vehicles is in reasonable agreement with previous measurements. The results suggest that greater attention must be paid to black carbon from gasoline engines to obtain a full understanding of the impact of black carbon on air quality and climate and to devise appropriate mitigation strategies. © 2012 American Chemical Society

  6. Retrofit SCR system for NOx control from heavy-duty mining equipment

    International Nuclear Information System (INIS)

    Mannan, M.A.

    2009-01-01

    Diesel engines are used extensively in the mining industry and offer many advantages. However, particulate matter (PM) emissions and nitrogen oxide emissions (NOx) are among its disadvantages. A significant concern related to PM and NOx in an underground mine involves the use of diesel exhaust after treatment systems such as diesel particulate filters and selective catalytic reduction (SCR). This presentation discussed NOx and PM control and provided a description of an SCR system and examples of SCR retrofits. Options for NOx control were discussed and a case study involving the installation of an SCR retrofit system in an underground mine operated by Sifto Salt was also presented. The purpose of the case study was to identify cost effective retrofit solutions to lower nitrogen dioxide emissions from heavy-duty trucks operating in underground mines. The case study illustrated and presented the candidate vehicle, baseline emissions, a BlueMax SCR retrofit solution, and BlueMax installation. 1 tab., 6 figs.

  7. 77 FR 34149 - Heavy-Duty Highway Program: Revisions for Emergency Vehicles and SCR Maintenance

    Science.gov (United States)

    2012-06-08

    ... selective catalytic reduction technologies. Third, EPA is proposing to offer short-term relief for nonroad..., Attention Docket No. EPA-HQ-OAR-2011-1032. Such deliveries are only accepted during the Docket's normal..., especially given some emergency vehicles' extreme duty cycles. By this action, EPA intends to help our nation...

  8. 40 CFR 86.1917 - How does in-use testing under this subpart relate to the emission-related warranty in Section 207...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false How does in-use testing under this...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1917 How does in-use testing under this subpart relate...

  9. Combustion and emissions characteristics of high n-butanol/diesel ratio blend in a heavy-duty diesel engine and EGR impact

    International Nuclear Information System (INIS)

    Chen, Zheng; Wu, Zhenkuo; Liu, Jingping; Lee, Chiafon

    2014-01-01

    Highlights: • Effects of EGR on high n-butanol/diesel ratio blend (Bu40) were investigated and compared with neat diesel (Bu00). • Bu40 has higher NOx due to wider combustion high-temperature region. • Bu40 has lower soot due to local lower equivalence ratio distribution. • Bu40 has higher CO due to lower gas temperature in the late expansion process. • For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. - Abstract: In this work, the combustion and emission fundamentals of high n-butanol/diesel ratio blend with 40% butanol (i.e., Bu40) in a heavy-duty diesel engine were investigated by experiment and simulation at constant engine speed of 1400 rpm and an IMEP of 1.0 MPa. Additionally, the impact of EGR was evaluated experimentally and compared with neat diesel fuel (i.e., Bu00). The results show that Bu40 has higher cylinder pressure, longer ignition delay, and faster burning rate than Bu00. Compared with Bu00, moreover, Bu40 has higher NOx due to wider combustion high-temperature region, lower soot due to local lower equivalence ratio distribution, and higher CO due to lower gas temperature in the late expansion process. For Bu40, EGR reduces NOx emissions dramatically with no obvious influence on soot. Meanwhile, there is no significant change in HC and CO emissions and indicated thermal efficiency (ITE) with EGR until EGR threshold is reached. When EGR rate exceeds the threshold level, HC and CO emissions increase dramatically, and ITE decreases markedly. Compared with Bu00, the threshold of Bu40 appears at lower EGR rate. Consequently, combining high butanol/diesel ratio blend with medium EGR has the potential to achieve ultra-low NOx and soot emissions simultaneously while maintaining high thermal efficiency level

  10. Co-Optimization of Fuels & Engines (Co-Optima) Initiative: Recent Progress on Light-Duty Boosted Spark-Ignition Fuels/Engines

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John

    2017-07-03

    This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.

  11. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    Science.gov (United States)

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590

  12. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  13. Gas density and rail pressure effects on diesel spray growth from a heavy-duty common rail injector

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Frijters, P.J.M.; Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2009-01-01

    Formation of nonevaporating sprays from diesel fuel injection through a realistic heavy duty multihole common rail injector is studied in a newly developed high-pressure, high-temperature cell, using digital highspeed shadowgraphy at 4500 frames/s. Gas pressure was varied from 13 to 37 bar

  14. 40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.

    Science.gov (United States)

    2010-07-01

    ... ramped-modal duty cycles. 1042.505 Section 1042.505 Protection of Environment ENVIRONMENTAL PROTECTION... duty cycles. This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for an engine. In these cases, you...

  15. Gas density and rail pressure effects on diesel spray growth from a heavy-duty common rail injector

    NARCIS (Netherlands)

    Klein-Douwel, R.J.H.; Frijters, P.J.M.; Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2009-01-01

    Formation of nonevaporating sprays from diesel fuel injection through a realistic heavy duty multihole common rail injector is studied in a newly developed high-pressure, high-temperature cell, using digital high-speed shadowgraphy at 4500 frames/s. Gas pressure was varied from 13 to 37 bar

  16. Fuel Economy Improvement of a Heavy-Duty Powertrain by Using Hardware-in-Loop Simulation and Calibration

    Directory of Open Access Journals (Sweden)

    Bolan Liu

    2015-09-01

    Full Text Available Fuel economy efficiency is one of the most important parameters for vehicle powertrains, which is of particular interest for heavy-duty powertrain calibration. Conventionally, this work relies heavily on road tests, which cost more and may lead to long duration product development cycles. The paper proposes a novel hardware-in-loop modeling and calibration method to work it out. A dSPACE hardware-based test bench was successfully established and validated, which is valuable for a more efficient and easier shift schedule in calibration. Meanwhile, a real-time dynamic powertrain model, including a diesel engine, torque converter, gear box and driver model was built. Typical driving cycles that both velocity and slope information were constructed for different road conditions. A basic economic shift schedule was initially calculated and then optimal calibrated by the test bench. The results show that there is an optimal relationship between an economic shift schedule and speed regulation. By matching the best economic shift schedule regulation to different road conditions; the fuel economy of vehicles can be improved. In a smooth driving cycle; when the powertrain applies a larger speed regulation such as 12% and the corresponding shift schedule; the fuel consumption is smaller and is reduced by 13%. In a complex driving cycle, when the powertrain applies a smaller speed regulation such as 5% along with the corresponding shift schedule; the fuel consumption is smaller and is reduced by 5%. The method thus can provide guidance for economic calibration experiments of off-road heavy-duty vehicles.

  17. Heavy duty plasma spray gun

    International Nuclear Information System (INIS)

    Irons, G.C.; Klein, J.F.; Lander, R.D.; Thompson, H.C.; Trapani, R.D.

    1984-01-01

    A heavy duty plasma spray gun for extended industrial service is disclosed. The gun includes a gas distribution member made of a material having a coefficient of expansion different from that of the parts surrounding it. The gas distribution member is forcibly urged by a resilient member such as a coiled spring against a seal so as to assure the plasma gas is introduced into the gun arc in a manner only defined by the gas distribution member. The gun has liquid cooling for the nozzle (anode) and the cathode. Double seals are provided between the coolant and the arc region and a vent is provided between the seals which provides an indication when a seal has failed. Some parts of the gun are electrically isolated from others by an intermediate member which is formed as a sandwich of two rigid metal face pieces and an insulator disposed between them. The metal face pieces provide a rigid body to attach the remaining parts in proper alignment therewith

  18. Study on heavy duty truck stability control by braking force control; Seidoryoku seigyo ni yoru truck no sharyo kyodo anteika ni taisuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K; Shinjo, H; Harada, M; Ohata, K; Sakata, K [Mitsubishi Motors Corp., Tokyo (Japan)

    1997-10-01

    Now a days we are discussing about the vehicle stability control system which freely controls the braking force of each wheel to apply the yaw t and decelerate the vehicle. The system drastically improve the vehicle cornering performance and stabilize the vehicle behavior in its critical area. This paper discusses a point to notice in case of applying this technique for heavy duty trucks, and describes the possibility of the stabilization for vehicle cornering behavior about heavy duty truck. 3 refs., 10 figs., 2 tabs.

  19. Decision of National and Provincial Highway Asphalt Pavement Structure Based on Value Engineering

    Directory of Open Access Journals (Sweden)

    Yingwei Ren

    2014-01-01

    Full Text Available It is important that decision of asphalt pavement structure requires overall considerations of the performance and financial investment. To have asphalt pavement structure fulfilling good reliability, the asphalt pavement structure decision was researched based on value engineering theory. According to the national and provincial highway investigation data in Shandong Province during the last decade, the asphalt pavement performance attenuation rules of traffic levels and asphalt layer thicknesses were developed, and then the road performance evaluation method was presented. In addition, the initial investments, the costs of road maintenance, and middle-scale repair in a period were analyzed. For the light traffic and medium traffic example, using the value engineering method, the pavement performance and costs of which thickness varies from 6 cm to 10 cm were calculated and compared. It was concluded that value engineering was an effective method in deciding the asphalt pavement structure.

  20. 78 FR 23158 - Organization and Delegation of Duties

    Science.gov (United States)

    2013-04-18

    ... [Docket No. NHTSA-2013-0048] RIN 2127-AL44 Organization and Delegation of Duties AGENCY: National Highway... regulations. These regulations govern the organization of the National Highway Traffic Safety Administration... forth the organization of the National Highway Traffic Safety Administration (NHTSA) and delegations of...

  1. Numerical Investigation of Fuel Distribution Effect on Flow and Temperature Field in a Heavy Duty Gas Turbine Combustor

    Science.gov (United States)

    Deng, Xiaowen; Xing, Li; Yin, Hong; Tian, Feng; Zhang, Qun

    2018-03-01

    Multiple-swirlers structure is commonly adopted for combustion design strategy in heavy duty gas turbine. The multiple-swirlers structure might shorten the flame brush length and reduce emissions. In engineering application, small amount of gas fuel is distributed for non-premixed combustion as a pilot flame while most fuel is supplied to main burner for premixed combustion. The effect of fuel distribution on the flow and temperature field related to the combustor performance is a significant issue. This paper investigates the fuel distribution effect on the combustor performance by adjusting the pilot/main burner fuel percentage. Five pilot fuel distribution schemes are considered including 3 %, 5 %, 7 %, 10 % and 13 %. Altogether five pilot fuel distribution schemes are computed and deliberately examined. The flow field and temperature field are compared, especially on the multiple-swirlers flow field. Computational results show that there is the optimum value for the base load of combustion condition. The pilot fuel percentage curve is calculated to optimize the combustion operation. Under the combustor structure and fuel distribution scheme, the combustion achieves high efficiency with acceptable OTDF and low NOX emission. Besides, the CO emission is also presented.

  2. Lightweight Composite Materials for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  3. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    Science.gov (United States)

    Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng

    2018-03-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.

  4. Relationship Between Accumulation and Influx of Pollutants in Highway Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    The paper discusses the long term mass balance of pollutants in highway ponds. The accumulations of five polycyclic aromatic hydrocarbons (PAHs) and six heavy metals have been measured in eight Danish detention ponds, which receive runoff from highways only. For each pollutant the accumulation has...... been compared to the long-term influx, estimated from short-term measurements of concentrations in highway runoff. The results show that a large proportion of the incoming heavy metals in short-term runoff events has accumulated in the ponds. This is not the case for the toxic organic compounds....... The results also show that the accumulation rates for the heavy metals depend significantly on the relative pond area (pond area divided by catchment area). The conclusion is that the mass balances of heavy metals and PAHs in highway ponds can be estimated with acceptable accuracy from a combination of short...

  5. Driving and engine cycles

    CERN Document Server

    Giakoumis, Evangelos G

    2017-01-01

    This book presents in detail the most important driving and engine cycles used for the certification and testing of new vehicles and engines around the world. It covers chassis and engine-dynamometer cycles for passenger cars, light-duty vans, heavy-duty engines, non-road engines and motorcycles, offering detailed historical information and critical review. The book also provides detailed examples from SI and diesel engines and vehicles operating during various cycles, with a focus on how the engine behaves during transients and how this is reflected in emitted pollutants, CO2 and after-treatment systems operation. It describes the measurement methods for the testing of new vehicles and essential information on the procedure for creating a driving cycle. Lastly, it presents detailed technical specifications on the most important chassis-dynamometer cycles around the world, together with a direct comparison of those cycles.

  6. Use of natural gas on heavy duty vehicles in Brazil: experience, current scene and barriers that still persist; Utilizacao do gas natural em veiculos pesados no Brasil: experiencia, cenario atual e barreiras que ainda persistem

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme B.; Melo, Tadeu C.C.; Lastres, Luiz Fernando M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In the 80's, because of the oil crisis, the Natural Gas (NG) appeared as a fuel with a great potential for Diesel replacement in Heavy Duty Vehicles. At that time, PETROBRAS with other companies have developed partial conversion technologies from Diesel to NG, known as 'Dual Fuel'. Engine dynamometer and vehicle bus tests have been developed to verify its technical and economical viability. Because of several factors, the Dual Fuel Program did not advance and the experience was interrupted. At the same time, other experiences using NG Otto Cycle bus engines, manufactured in Brazil, have been conducted, mainly at Sao Paulo, nevertheless, without expansion. Currently, factors as increase of the NG converted light vehicles fleet; the NG excess in the National Market, which has contributed to the NG distribution net expansion; the Environmental Legislature in vigor, that continuously determine lower emission limits; the government interest in increasing the NG energy matrix share and in reducing Diesel fuel consumption, and the low NG industrial demand, compose together a great scene to the diffusion of NG as substitute to the Diesel fuel in Heavy Duty Vehicles. (author)

  7. Experimental study on transportation safety of package in side collision of heavy duty truck

    International Nuclear Information System (INIS)

    Suga, M.; Sasaki, T.

    1989-01-01

    The accidents in road transportation of package may be collision, fall and fire. It is necessary to examine all cases very carefully because collision might be caused by other vehicle. Collisions are classified into head-on collision, rear-end collision, side collision. A lot of experiments and analyses are reported on head-on collision, so the behavior of vehicle and package may be predicted without difficulty. Rear-end collisions bring about less impact and may be applied corresponding to the head-on collisions. About side collisions, few experiments or analyses are reported, and most of them are about passenger cars not about trucks. So it becomes important to study the transportation safety of package carried on a heavy duty truck when hit on the side by another truck similar in size

  8. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2011-04-08

    ... INFORMATION CONTACT: Amy Bunker, Compliance and Innovative Strategies Division, U.S. Environmental Protection... Vehicle/Engine Selection D. Mixed-Fuel and Dual-Fuel Conversions E. Vehicle/Engine Labels, Packaging Labels, and Marketing F. Compliance 1. Emission Standards a. Light-Duty and Heavy-Duty Chassis Certified...

  9. Characteristics of the event mean concentration (EMC) from rainfall runoff on an urban highway

    International Nuclear Information System (INIS)

    Lee, Ju Young; Kim, Hyoungjun; Kim, Youngjin; Han, Moo Young

    2011-01-01

    The purpose of this study was to investigate the characterization of the event mean concentration (EMC) of runoff during heavy precipitation events on highways. Highway runoff quality data were collected from the 7th highway, in South Korea during 2007-2009. The samples were analyzed for runoff quantity and quality parameters such as COD cr , TSS, TPHs, TKN, NO 3 , TP, PO 4 and six heavy metals, e.g., As, Cu, Cd, Ni, Pb and Zn. Analysis of resulting hydrographs and pollutant graphs indicates that the peak of the pollutant concentrations in runoff occurs 20 min after the first rainfall runoff occurrence. The first flush effect depends on the preceding dry period and the rainfall intensity. The results of this study can be used as a reference for water quality management of urban highways. - Research highlights: → Field test on urban highway were performed to 50 of 100 storm events for 3 years. → The peak pollutant concentrations occurs 20 min after the first runoff. → The first flush effect depends on the preceding dry period and rainfall intensity. → Relationship between runoff and event mean concentration for SS and COD. → A crest of the EMC by 70-80 m 3 /event and decreasing EMC after 70-80 m 3 /event. - This study investigate the characterization of the EMC of runoff during rainfall event on highway.

  10. Similarity Theory Based Radial Turbine Performance and Loss Mechanism Comparison between R245fa and Air for Heavy-Duty Diesel Engine Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-01-01

    Full Text Available Organic Rankine Cycles using radial turbines as expanders are considered as one of the most efficient technologies to convert heavy-duty diesel engine waste heat into useful work. Turbine similarity design based on the existing air turbine profiles is time saving. Due to totally different thermodynamic properties between organic fluids and air, its influence on turbine performance and loss mechanisms need to be analyzed. This paper numerically simulated a radial turbine under similar conditions between R245fa and air, and compared the differences of the turbine performance and loss mechanisms. Larger specific heat ratio of air leads to air turbine operating at higher pressure ratios. As R245fa gas constant is only about one-fifth of air gas constant, reduced rotating speeds of R245fa turbine are only 0.4-fold of those of air turbine, and reduced mass flow rates are about twice of those of air turbine. When using R245fa as working fluid, the nozzle shock wave losses decrease but rotor suction surface separation vortex losses increase, and eventually leads that isentropic efficiencies of R245fa turbine in the commonly used velocity ratio range from 0.5 to 0.9 are 3%–4% lower than those of air turbine.

  11. Experimental Verification of Discretely Variable Compression Braking Control for Heavy Duty Vehicles

    OpenAIRE

    Vahidi, Ardalan; Stefanopoulou, Anna G.; Farias, Phil; Tsao, Tsu Chin

    2003-01-01

    In this report a recursive least square scheme with multiple forgetting factors is proposed for on-line estimation of road grade and vehicle mass. The estimated mass and grade can be used to robustify many automatic controllers in conventional or automated heavy-duty vehicles. We demonstrate with measured test data from the July 26-27, 2002 test dates in San Diego, CA, that the proposed scheme estimates mass within 5% of its actual value and tracks grade with good accuracy. The experimental s...

  12. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    OpenAIRE

    Mo Yang; Lin Gui; Yefa Hu; Guoping Ding; Chunsheng Song

    2018-01-01

    Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. ...

  13. 40 CFR Appendix II to Part 1045 - Duty Cycles for Propulsion Marine Engines

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Duty Cycles for Propulsion Marine... Pt. 1045, App. II Appendix II to Part 1045—Duty Cycles for Propulsion Marine Engines (a) The following duty cycle applies for discrete-mode testing: E4 Mode No. Enginespeed 1 Torque(percent) 2...

  14. 40 CFR 1048.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Science.gov (United States)

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1048.505 Section 1048.505 Protection of Environment... SPARK-IGNITION ENGINES Test Procedures § 1048.505 How do I test engines using steady-state duty cycles... some cases, we allow you to choose the appropriate steady-state duty cycle for an engine. In these...

  15. Pump-to-Wheels Methane Emissions from the Heavy-Duty Transportation Sector.

    Science.gov (United States)

    Clark, Nigel N; McKain, David L; Johnson, Derek R; Wayne, W Scott; Li, Hailin; Akkerman, Vyacheslav; Sandoval, Cesar; Covington, April N; Mongold, Ronald A; Hailer, John T; Ugarte, Orlando J

    2017-01-17

    Pump-to-wheels (PTW) methane emissions from the heavy-duty (HD) transportation sector, which have climate change implications, are poorly documented. In this study, methane emissions from HD natural gas fueled vehicles and the compressed natural gas (CNG) and liquefied natural gas (LNG) fueling stations that serve them were characterized. A novel measurement system was developed to quantify methane leaks and losses. Engine related emissions were characterized from twenty-two natural gas fueled transit buses, refuse trucks, and over-the-road (OTR) tractors. Losses from six LNG and eight CNG stations were characterized during compression, fuel delivery, storage, and from leaks. Cryogenic boil-off pressure rise and pressure control venting from LNG storage tanks were characterized using theoretical and empirical modeling. Field and laboratory observations of LNG storage tanks were used for model development and evaluation. PTW emissions were combined with a specific scenario to view emissions as a percent of throughput. Vehicle tailpipe and crankcase emissions were the highest sources of methane. Data from this research are being applied by the authors to develop models to forecast methane emissions from the future HD transportation sector.

  16. Lifecycle-analysis for heavy vehicles

    International Nuclear Information System (INIS)

    Gaines, L.

    1998-01-01

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants

  17. Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool

    Directory of Open Access Journals (Sweden)

    Mo Yang

    2018-03-01

    Full Text Available Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM, this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool. Keywords: CFRP drive-line system, Dynamic behavior, Transfer matrix, Vibration measurement

  18. 76 FR 57105 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-15

    ... CFR Parts 523, 534, and 535 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for...-2010-0079; FRL-9455-1] RIN 2060-AP61; 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency... Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road...

  19. Emissions of PCDD/Fs, PCBs, and PAHs from legacy on-road heavy-duty diesel engines.

    Science.gov (United States)

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph; Smith, Peter L

    2012-11-01

    Exhaust emissions of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners, tetra-octa PCDD/F homologues, 12 WHO 2005 polychlorinated biphenyl (PCB) congeners, mono-nona chlorinated biphenyl homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from three legacy diesel engines were investigated. The three engines tested were a 1985 model year GM 6.2J-series engine, a 1987 model year Detroit Diesel Corporation 6V92 engine, and a 1993 model year Cummins L10 engine. Results were compared to United States' mobile source inventory for on-road diesel engines, as well as historic and modern diesel engine emission values. The test fuel contained chlorine at 9.8 ppm which is 1.5 orders of magnitude above what is found in current diesel fuel and 3900 ppm sulfur to simulate fuels that would have been available when these engines were produced. Results indicate PCDD/F emissions of 13.1, 7.1, and 13.6 pg International Toxic Equivalency (I-TEQ)L(-1) fuel consumed for the three engines respectively, where non-detects are equal to zero. This compares with a United States' mobile source on-road diesel engine inventory value of 946 pg I-TEQL(-1) fuel consumed and 1.28 pg I-TEQL(-1) fuel consumed for modern engines equipped with a catalyzed diesel particle filter and urea selective catalytic reduction. PCB emissions are 2 orders of magnitude greater than modern diesel engines. PAH results are representative of engines from this era based on historical values and are 3-4 orders of magnitude greater than modern diesel engines. Published by Elsevier Ltd.

  20. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Science.gov (United States)

    2010-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...

  1. COMPARISON OF THE PARTICLE SIZE DISTRIBUTION OF HEAVY-DUTY DIESEL EXHAUST USING A DILUTION TAIL-PIPE SAMPLER AND IN-PLUME SAMPLER DURING ON-ROAD OPERATION

    Science.gov (United States)

    The paper compares the particle size distribution of heavy-duty diesel exhaust using a dilution tail-pipe sampler and an in-plume sampler during on-road operation. EPA's On-road Diesel Emissions Characterization Facility, modified to incorporate particle measurement instrumentat...

  2. Validation of a LES turbulence modeling approach on a steady engine head flow

    NARCIS (Netherlands)

    Huijnen, V.; Somers, L.M.T.; Baert, R.S.G.; Goey, de L.P.H.; Dias, V.

    2005-01-01

    The application of the LES turbulence modeling approach in the Kiva-environment is validated on a complex geometry. Results for the steady flow in a realistic geometry of a production type heavy-duty diesel engine head with 120 mm cylinder bore are presented. The bulk Reynolds number is Reb = 1 fl

  3. Gas fuelled heavy-duty trucks for municipal services

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, A. (City of Helsinki Construction Services (Finland)); Hietanen, L. (Lassila and Tikanoja, Jyvaeskylae (Finland)); Nylund, N.-O. (TEC TransEnergy Consulting, Espoo (Finland))

    2009-07-01

    Helsinki City Public Works Department (HKR) and the environmental management company Lassila and Tikanoja joined forces to demonstrate the suitability of heavy-duty gas fuelled trucks for municipal services. HKR acquired two and Lassila and Tikanoja five Mercedes-Benz Econic trucks. HKR's trucks are equipped with interchangeable platforms, Lassila an Tikanoja's trucks with refuse collection equipment. The trucks are subjected to a two-year follow-up study to establish reliability, operational costs and exhaust emissions. Diesel trucks representing up-to-date technology are used as reference. If the gas fuelled trucks perform well, this can lead to increased numbers of natural gas trucks in municipal services, and in the long run to the introduction of biogas fuelled trucks. (orig.)

  4. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035.

    Science.gov (United States)

    Clark, Nigel N; Johnson, Derek R; McKain, David L; Wayne, W Scott; Li, Hailin; Rudek, Joseph; Mongold, Ronald A; Sandoval, Cesar; Covington, April N; Hailer, John T

    2017-12-01

    Today's heavy-duty natural gas-fueled fleet is estimated to represent less than 2% of the total fleet. However, over the next couple of decades, predictions are that the percentage could grow to represent as much as 50%. Although fueling switching to natural gas could provide a climate benefit relative to diesel fuel, the potential for emissions of methane (a potent greenhouse gas) from natural gas-fueled vehicles has been identified as a concern. Since today's heavy-duty natural gas-fueled fleet penetration is low, today's total fleet-wide emissions will be also be low regardless of per vehicle emissions. However, predicted growth could result in a significant quantity of methane emissions. To evaluate this potential and identify effective options for minimizing emissions, future growth scenarios of heavy-duty natural gas-fueled vehicles, and compressed natural gas and liquefied natural gas fueling stations that serve them, have been developed for 2035, when the populations could be significant. The scenarios rely on the most recent measurement campaign of the latest manufactured technology, equipment, and vehicles reported in a companion paper as well as projections of technology and practice advances. These "pump-to-wheels"(PTW) projections do not include methane emissions outside of the bounds of the vehicles and fuel stations themselves and should not be confused with a complete wells-to-wheels analysis. Stasis, high, medium, and low scenario PTW emissions projections for 2035 were 1.32%, 0.67%, 0.33%, and 0.15% of the fuel used. The scenarios highlight that a large emissions reductions could be realized with closed crankcase operation, improved best practices, and implementation of vent mitigation technologies. Recognition of the potential pathways for emissions reductions could further enhance the heavy-duty transportation sectors ability to reduce carbon emissions. Newly collected pump-to-wheels methane emissions data for current natural gas technologies

  5. GHG emissions from sugar cane ethanol, plug-in hybrids, heavy duty gasoline vehicles and hybrids, and materials review

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided updates of new work and new pathways added to the GHGenius model. The model was developed to analyze lifecycle emissions of contaminants associated with the production and use of alternative and traditional fuels, and is continually updated with new information on existing processes and new innovations. The report described the addition of a new table that showed fossil energy consumption per km driven. New information on energy requirements to remove sulphur from gasoline and diesel fuel in Canada were provided. The report also outlined a new pathway for plug-in hybrid battery-powered electric and gasoline vehicles. Vehicle weight was included as part of the user inputs for modelling gasoline powered heavy duty vehicles and gasoline hybrid heavy duty vehicles. Information on the production processes of ethanol from sugar cane were also added to the model. Amounts of energy consumed during the manufacture of materials for vehicles were also incorporated into the model. 34 refs., 39 tabs., 6 figs

  6. Selection of Fuel System for Modern Heavy Duty Diesel Engines

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonok

    2004-01-01

    Full Text Available Fuel systems of diesel engines have been analyzed. The paper shows components of the systems, peculiarities of their manufacturing process. Difference in efficiency of the systems, their application and market prospects are considered in the paper. While solving problems to design a power installation the essence of fuel system selection is given on the basis of an internal combustion engine.

  7. Analysis of pavement structure sensitivity to passage of oversized heavy duty vehicle in terms of bearing capacity

    Science.gov (United States)

    Dawid, Rys; Piotr, Jaskula

    2018-05-01

    Oversized heavy duty vehicles occur in traffic very rarely but they reach extremely high weights, even up to 800 tonne. The detrimental impact of these vehicles on pavement structure is much higher than in case of commercial vehicles that comprise typical traffic, thus it is necessary to assess the sensitivity of pavement structure to passage of oversized vehicles. The paper presents results of sample calculations of load equivalency factor of a heavy duty oversized vehicle with usage of mechanistic-empirical approach. The effects of pavement thickness, type of distress (cracking or rutting) and pavement condition (new or old with structural damage) were considered in the paper. Analysis revealed that a single pass of an 800 tonne oversized vehicle is equivalent to pass of up to 377 standard 100 kN axles. Load equivalency factor calculated for thin structures is almost 3 times lower than for thick structures, however, the damage effect caused by one pass of an oversized vehicle is higher in the case of thin structure. Bearing capacity of a pavement structure may be qualified as sufficient for passage of an oversized heavy duty vehicle when the measured deflection, for example in an FWD test, does not exceed the maximum deflections derived from mechanistic-empirical analysis. The paper presents sample calculation of maximum deflections which allow to consider passage of an oversized vehicle as safe over different pavement structures. The paper provides road administration with a practical tool which helps to decide whether to issue a permit of passage for a given oversized vehicle.

  8. Particulate matters from diesel heavy duty trucks exhaust versus cigarettes emissions: a new educational antismoking instrument.

    Science.gov (United States)

    De Marco, Cinzia; Ruprecht, Ario Alberto; Pozzi, Paolo; Munarini, Elena; Ogliari, Anna Chiara; Mazza, Roberto; Boffi, Roberto

    2015-01-01

    Indoor smoking in public places and workplaces is forbidden in Italy since 2003, but some health concerns are arising from outdoor secondhand smoke (SHS) exposure for non-smokers. One of the biggest Italian Steel Manufacturer, with several factories in Italy and abroad, the Marcegaglia Group, recently introduced the outdoor smoking ban within the perimeter of all their factories. In order to encourage their smoker employees to quit, the Marcegaglia management decided to set up an educational framework by measuring the PM1, PM2.5 and PM10 emissions from heavy duty trucks and to compare them with the emissions of cigarettes in an indoor controlled environment under the same conditions. The exhaust pipe of two trucks powered by a diesel engine of about 13.000/14.000 cc(3) were connected with a flexible hose to a hole in the window of a container of 36 m(3) volume used as field office. The trucks operated idling for 8 min and then, after adequate office ventilation, a smoker smoked a cigarette. Particulate matter emission was thereafter analyzed. Cigarette pollution was much higher than the heavy duty truck one. Mean of the two tests was: PM1 truck 125.0(47.0), cigarettes 231.7(90.9) p = 0.002; PM2.5 truck 250.8(98.7), cigarettes 591.8(306.1) p = 0.006; PM10 truck 255.8(52.4), cigarettes 624.0(321.6) p = 0.002. Our findings may be important for policies that aim reducing outdoor SHS exposure. They may also help smokers to quit tobacco dependence by giving them an educational perspective that rebuts the common alibi that traffic pollution is more dangerous than cigarettes pollution.

  9. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  10. Efficient EGR technology for future HD diesel engine emission targets

    NARCIS (Netherlands)

    Baert, R.S.G.; Beckman, D.E.; Veen, A.

    1999-01-01

    Different systems for achieving short-route cooled EGR on turbocharged and aftercooled heavy-duty diesel engines have been tested on a 12 litre 315 kW engine with 4 valves per cylinder and an electronically controlled unit pump fuel injection system. In all of these systems the exhaust gas was

  11. Separately removable tubes in heavy duty heat exchanger assemblies

    International Nuclear Information System (INIS)

    Neudeck, G.T.

    1980-01-01

    The invention is directed to removable heat exchanger tube assemblies in heavy duty equipment radiators in which the tubes are each separately removable if they become defective in service. An inwardly facing annular ledge or abutment is molded into the inside diameter of each upper and lower sealing member to receive the respective ends of the tubes and prevent vertical movement of the tubes in service. A flange or shoulder is also provided on the lower portions of each tube and engages the inside of the lower sealing member to further restrain downward movement of the tubes in service. Each tube may be removed by pushing the tube upwardly to overcome the upper ledge abutment and thereby lift the tube free of the lower seal. Each tube may then be removed sidewise from the radiator. Variations of the removable sealing arrangement can be made and are described herein

  12. Oxygenated fuels for clean heavy-duty diesel engines

    NARCIS (Netherlands)

    Frijters, P.J.M.; Baert, R.S.G.

    2006-01-01

    Abstract: For diesel engines, changing the fuel composition is an alternative route towards achieving lower emission levels. The potential of oxygenated fuels to significantly reduce particulate matter emissions has already been demonstrated earlier. In this study, this research has been

  13. Emissions from Medium-Duty Conventional and Diesel-Electric Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Ragatz, A.; Duran, A.; Thornton, M.; Walkowicz, K.

    2014-04-02

    This presentation discusses the results of emissions testing for medium-duty conventional and diesel-electric hybrid vehicles. Testing was based on a field evaluation approach that utilized the Fleet DNA drive cycle database and NREL’s Renewable Fuels and Lubricants (ReFUEL) Laboratory chassis dynamometer. Vehicles tested included parcel delivery (Class 6 step vans), beverage delivery (Class 8 tractors), and parcel delivery (Class 7 box trucks) vehicles, all with intended service class medium/heavy heavy-duty diesel (MHDD).
    Results for fuel economy and tailpipe NOx emissions included: diesel hybrid electric vehicles showed an average fuel economy advantage on identified test cycles: Class 6 Step Vans: 26%; Class 7 Box Trucks: 24.7%; Class 8 Tractors: 17.3%. Vehicle miles traveled is an important factor in determining total petroleum and CO2 displacement. Higher NOx emissions were observed over some test cycles: highly drive cycle dependent; engine-out differences may result from different engine operating point; and selective catalyst reduction temperature may play a role, but does not explain the whole story.

  14. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Science.gov (United States)

    2010-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  15. Heavy Vehicles on Minor Highway Bridges

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Enevoldsen, I.

    of heavier trucks moving at larger speeds, and partly because the authorities want to permit transportation of special heavy goods at a larger part of the road net. These needs will in many cases cause the strengthening of the bridges becomes necessary. In order to keep the expenses of such strengthening...

  16. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Hang, Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Vyas, Anant [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  17. Heavy Lift Launch Capability with a New Hydrocarbon Engine

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.

  18. The Influence of Fuel Sulfur on the Operation of Large Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Faurskov

    The present work focusses on SO3/H2SO4 formation and sulfuric acid (H2SO4) condensation in a large low speed 2-stroke marine diesel engine. SO3 formation is treated theoretically from a formulated multizone engine model described in this work that includes a detailed and validated sulfur reaction...... mechanism. Model results show that for a large marine engine generally about 3 % - 6 % of the fuel sulfur converts to SO3 while the remainder leaves the engine as SO2 from which the SO3 is formed during the expansion stroke. SO3 formation scales with the cylinder pressure and inversely with the engine speed...... as also demonstrated by a number of SO3 experiments described in this work. The experiments are carried out with a heavy duty medium speed 4 stroke diesel engine operating on heavy fuel oil including ≈ 2 wt. % sulfur. SO3 was measured successfully in the exhaust gas with the PENTOL SO3 analyzer...

  19. In-use NOx emissions from model year 2010 and 2011 heavy-duty diesel engines equipped with aftertreatment devices.

    Science.gov (United States)

    Misra, Chandan; Collins, John F; Herner, Jorn D; Sax, Todd; Krishnamurthy, Mohan; Sobieralski, Wayne; Burntizki, Mark; Chernich, Don

    2013-07-16

    The California Air Resources Board (ARB) undertook this study to characterize the in-use emissions of model year (MY) 2010 or newer diesel engines. Emissions from four trucks: one equipped with an exhaust gas recirculation (EGR) and three equipped with EGR and a selective catalytic reduction (SCR) device were measured on two different routes with three different payloads using a portable emissions measurement system (PEMS) in the Sacramento area. Results indicated that brake-specific NOx emissions for the truck equipped only with an EGR were independent of the driving conditions. Results also showed that for typical highway driving conditions, the SCR technology is proving to be effective in controlling NOx emissions. However, under operations where the SCR's do not reach minimum operating temperature, like cold starts and some low load/slow speed driving conditions, NOx emissions are still elevated. The study indicated that strategies used to maintain exhaust temperature above a certain threshold, which are used in some of the newer SCRs, have the potential to control NOx emissions during certain low-load/slow speed driving conditions.

  20. Low cetane number renewable oxy-fuels for premixed combustion concept application : experimental investigation on a light duty diesel engine

    NARCIS (Netherlands)

    Di Blasio, G.; Beatrice, C.; Dijkstra, R.; Boot, M.D.

    2012-01-01

    This paper illustrates the results of an experimental study on the impact of a low cetane number (CN) oxygenated fuel on the combustion process and emissions of a light-duty (LD) single-cylinder research engine. In an earlier study, it was concluded that cyclic oxygenates consistently outperformed

  1. Clerget 100 hp heavy-oil engine

    Science.gov (United States)

    Leglise, Pierre

    1931-01-01

    A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.

  2. 40 CFR 86.1818-12 - Greenhouse gas emission standards for light-duty vehicles, light-duty trucks, and medium-duty...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Greenhouse gas emission standards for... Complete Otto-Cycle Heavy-Duty Vehicles § 86.1818-12 Greenhouse gas emission standards for light-duty... group of six greenhouse gases: Carbon dioxide, nitrous oxide, methane, hydrofluorocarbons...

  3. Designing Optimal LNG Station Network for U.S. Heavy-Duty Freight Trucks using Temporally and Spatially Explicit Supply Chain Optimization

    Science.gov (United States)

    Lee, Allen

    The recent natural gas boom has opened much discussion about the potential of natural gas and specifically Liquefied Natural Gas (LNG) in the United States transportation sector. The switch from diesel to natural gas vehicles would reduce foreign dependence on oil, spur domestic economic growth, and potentially reduce greenhouse gas emissions. LNG provides the most potential for the medium to heavy-duty vehicle market partially due to unstable oil prices and stagnant natural gas prices. As long as the abundance of unconventional gas in the United States remains cheap, fuel switching to natural gas could provide significant cost savings for long haul freight industry. Amid a growing LNG station network and ever increasing demand for freight movement, LNG heavy-duty truck sales are less than anticipated and the industry as a whole is less economic than expected. In spite of much existing and mature natural gas infrastructure, the supply chain for LNG is different and requires explicit and careful planning. This thesis proposes research to explore the claim that the largest obstacle to widespread LNG market penetration is sub-optimal infrastructure planning. No other study we are aware of has explicitly explored the LNG transportation fuel supply chain for heavy-duty freight trucks. This thesis presents a novel methodology that links a network infrastructure optimization model (represents supply side) with a vehicle stock and economic payback model (represents demand side). The model characterizes both a temporal and spatial optimization model of future LNG transportation fuel supply chains in the United States. The principal research goal is to assess the economic feasibility of the current LNG transportation fuel industry and to determine an optimal pathway to achieve ubiquitous commercialization of LNG vehicles in the heavy-duty transport sector. The results indicate that LNG is not economic as a heavy-duty truck fuel until 2030 under current market conditions

  4. Driving an Industry: Medium and Heavy Duty Fuel Cell Electric Truck Component Sizing

    OpenAIRE

    Marcinkoski, J.; Vijayagopal, R.; Kast, J.; Duran, A.

    2016-01-01

    Medium and heavy duty (MD and HD respectively) vehicles are responsible for 26 percent of the total U.S. transportation petroleum consumption [1]. Hydrogen fuel cells have demonstrated value as part of a portfolio of strategies for reducing petroleum use and emissions from MD and HD vehicles [2] [3], but their performance and range capabilities, and associated component sizing remain less clear when compared to other powertrains. This paper examines the suitability of converting a representat...

  5. Scenarios for use of biogas for heavy-duty vehicles in Denmark and related GHG emissions impacts

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Winther, Morten; Jørgensen, Uffe

    2017-01-01

    of biogas is of concern. This study has analysed the potential biomass and biogas production from all Danish organic waste sources under different scenario assumptions for future scenario years. The analysis includes energy demand of the road transportation sector by means of transport and fuel types......, and potential use of the limited biogas resource taking into account alternative fuel options available for transportation (electricity, hydrogen, biofuels). Further, the total differences in fuel consumption and GHG emissions due to the replacement of diesel-powered heavy-duty vehicles by gas-powered heavy...

  6. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Science.gov (United States)

    2010-07-01

    ...-mode or ramped-modal duty cycles? 1045.505 Section 1045.505 Protection of Environment ENVIRONMENTAL...-modal duty cycles? (a) This section describes how to test engines under steady-state conditions. We... Act. Conduct duty-cycle testing as follows: (1) For discrete-mode testing, sample emissions separately...

  7. AMMONIA EMISSIONS FROM THE EPA'S LIGHT DUTY TEST VEHICLE

    Science.gov (United States)

    The paper discusses measurements of ammonia (NH3) emissions from EPA's light duty test vehicle while operated on a dynamometer. The vehicle's (1993 Chevrolet equipped with a three-way catalyst) emissions were measured for three transient (urban driving, highway fuel economy, and ...

  8. 23 CFR 661.49 - Can IRRBP funds be spent on Interstate, State Highway, and Toll Road IRR bridges?

    Science.gov (United States)

    2010-04-01

    ..., and Toll Road IRR bridges? 661.49 Section 661.49 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS INDIAN RESERVATION ROAD BRIDGE PROGRAM § 661.49 Can IRRBP funds be spent on Interstate, State Highway, and Toll Road IRR bridges? Yes. Interstate...

  9. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    R.R. Fessler; G.R. Fenske

    1999-12-13

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency

  10. Statistical description of heavy truck accidents on representative segments of interstate highway

    International Nuclear Information System (INIS)

    Hartman, W.F.; Davidson, C.A.; Foley, J.T.

    1977-01-01

    Any quantitative analysis of the risk of transportation accidents requires the use of many different statistical distributions. Included among these are the types of accidents which occur and the severity of these when they do occur. Several previous studies have derived this type of information for truck traffic over U. S. highways in general; these data are not necessarily applicable for the anticipated LMFBR spent fuel cask routes. This report presents data for highway segments representative of the specific LMFBR cask routes which are anticipated. These data are based upon a detailed record-by-record review of filed reports for accidents which occurred along the specified route segments

  11. 40 CFR 86.340-79 - Gasoline-fueled engine dynamometer test run.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine dynamometer... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.340-79 Gasoline-fueled engine dynamometer test run. (a) This section applies to gasoline...

  12. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Science.gov (United States)

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for an...

  13. Simulation and control of a HD diesel engine equipped with new EGR technology

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    A dynamic model of a Heavy Duty (HD) turbocharged and aftercooled diesel engine was developed. The engine was equipped with high pressure diesel injection, a Variable Geometry Turbine (VGT) and an Exhaust Gas Recirculation (EGR) system. This engine was targeted at meeting EURO4 emission

  14. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles; FINAL

    International Nuclear Information System (INIS)

    R.R. Fessler; G.R. Fenske

    1999-01-01

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 2030, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of$24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency

  15. Improving E-Bike Safety on Urban Highways in China

    Directory of Open Access Journals (Sweden)

    Linjun Lu

    2015-01-01

    Full Text Available This paper aims to examine characteristics of e-bike fatal crashes on urban highways in China. Crash data were retrieved from the three-year crash reports (2010–2012 of Taixing City. Descriptive analysis was conducted to examine characteristics of e-bike riders, drivers, and crashes. The important findings include the following: (1 most fatal crashes were related to e-bike riders’ aberrant driving behaviors, including driving in motorized lanes, red-light running, driving against the direction of traffic, inattentive driving, and drunk driving; (2 e-bike riders with lower educational background tended to perform illegal or inattentive driving behaviors in fatal crashes; (3 most drivers were not found to commit any faults and very few drivers were found to commit drunk driving offences; (4 most nighttime fatal crashes were related to absence of street lightings; (5 heavy good vehicles (HGVs and small passenger cars were the two vehicle types that were mostly involved in the e-bike fatal crashes. This study provides useful information that can help traffic engineers better understand e-bike safety in China and develop safety countermeasures.

  16. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: Assessment of pollutant dispersion and health risk

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, Yara S.; Borillo, Guilherme C.; Godoi, Ana Flávia L.; Cichon, Amanda; Silva, Thiago O.B.; Valebona, Fábio B.; Errera, Marcelo R. [Environmental Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil); Penteado Neto, Renato A.; Rempel, Dennis; Martin, Lucas [Institute of Technology for Development, Lactec–Leme Division, 01 LothárioMeissner Ave., Curitiba, PR, 80210-170 (Brazil); Yamamoto, Carlos I. [Chemical Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil); Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Environmental Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil)

    2014-12-01

    The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NO{sub x}, NO, NO{sub 2}, NH{sub 3} and N{sub 2}O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NO{sub x} and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH{sub 3} and N{sub 2}O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH{sub 3}, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NO{sub x} and NO emissions were the lowest when SCR was used; however, it yielded the highest NH{sub 3} concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions. - Highlights: • Emission, dispersion and risk assessment

  17. Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system

    Science.gov (United States)

    The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate t...

  18. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  19. Deriving fuel-based emission factor thresholds to interpret heavy-duty vehicle roadside plume measurements.

    Science.gov (United States)

    Quiros, David C; Smith, Jeremy D; Ham, Walter A; Robertson, William H; Huai, Tao; Ayala, Alberto; Hu, Shaohua

    2018-04-13

    Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO 2 ), oxides of nitrogen (NO X ), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NO X /bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NO X /kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NO X threshold was derived from measurements where aftertreatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger

  20. Engineering Codes of Ethics and the Duty to Set a Moral Precedent.

    Science.gov (United States)

    Schlossberger, Eugene

    2016-10-01

    Each of the major engineering societies has its own code of ethics. Seven "common core" clauses and several code-specific clauses can be identified. The paper articulates objections to and rationales for two clauses that raise controversy: do engineers have a duty (a) to provide pro bono services and/or speak out on major issues, and (b) to associate only with reputable individuals and organizations? This latter "association clause" can be justified by the "proclamative principle," an alternative to Kant's universalizability requirement. At the heart of engineering codes of ethics, and implicit in what it is to be a moral agent, the "proclamative principle" asserts that one's life should proclaim one's moral stances (one's values, principles, perceptions, etc.). More specifically, it directs engineers to strive to insure that their actions, thoughts, and relationships be fit to offer to their communities as part of the body of moral precedents for how to be an engineer. Understanding codes of ethics as reflections of this principle casts light both on how to apply the codes and on the distinction between private and professional morality.

  1. Using Extractive FTIR to Measure N2O from Medium Heavy Duty Vehicles Powered with Diesel and Biodiesel Fuels

    Science.gov (United States)

    A Fourier Transform Infrared (FTIR) spectrometer was used to measure N2O and other pollutant gases during an evaluation of two medium heavy-duty diesel trucks equipped with a Diesel Particulate Filter (DPF). The emissions of these trucks were characterized under a variety of oper...

  2. New lube oil for stationary heavy fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    An extensively field-tested diesel engine lubricating oil for medium speed, heavy fuel stationary engine applications has been introduced by Caltex Petroleum, in Dallas, Texas. The new oil is similar to a product developed and marketed for marine medium speed heavy fuel propulsion and auxillary engine applications by one of its two parent companies, Chevron. Detailed are results of two field evaluations in Caterpillar 3600 series engines installed at Kimberly Clark (KCPI) and Sime Darby (SDPI), both in the Philippines. Both were one year, 7000-plus hour field evaluations of a new, 40 BN trunk piston engine oil (TPEO), identified as Caltex Delo 3400, SAE 40 engine lube oil. The oil uses the new Phenalate additive technology developed by Chevron Chemical Company`s Oronite Additives Division. This technology is designed to improve engine cleanliness in regard to soft black sludge and piston deposits. The focus of the field evaluations was the performance of the lubricating oil. During controlled tests at Sime Darby, the most noticeable improvement over another technology was in the control of sludge deposits. This improvement was seen in all areas where black sludge forms, such as the rocker cover, crankcase cover and valve assemblies. 4 figs.

  3. A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Detor, Andrew [General Electric Company, Niskayuna, NY (United States). GE Global Research; DiDomizio, Richard [General Electric Company, Niskayuna, NY (United States). GE Global Research; McAllister, Don [The Ohio State Univ., Columbus, OH (United States); Sampson, Erica [General Electric Company, Niskayuna, NY (United States). GE Global Research; Shi, Rongpei [The Ohio State Univ., Columbus, OH (United States); Zhou, Ning [General Electric Company, Niskayuna, NY (United States). GE Global Research

    2017-01-03

    The drive to increase combined cycle turbine efficiency from 62% to 65% for the next-generation advanced cycle requires a new heavy duty gas turbine wheel material capable of operating at 1200°F and above. Current wheel materials are limited by the stability of their major strengthening phase (gamma double prime), which coarsens at temperatures approaching 1200°F, resulting in a substantial reduction in strength. More advanced gamma prime superalloys, such as those used in jet engine turbine disks, are also not suitable due to size constraints; the gamma prime phase overages during the slow cooling rates inherent in processing thick-section turbine wheels. The current program addresses this need by screening two new alloy design concepts. The first concept exploits a gamma prime/gamma double prime coprecipitation reaction. Through manipulation of alloy chemistry, coprecipitation is controlled such that gamma double prime is used only to slow the growth of gamma prime during slow cooling, preventing over-aging, and allowing for subsequent heat treatment to maximize strength. In parallel, phase field modeling provides fundamental understanding of the coprecipitation reaction. The second concept uses oxide dispersion strengthening to improve on two existing alloys that exhibit excellent hold time fatigue crack growth resistance, but have insufficient strength to be considered for gas turbine wheels. Mechanical milling forces the dissolution of starting oxide powders into a metal matrix allowing for solid state precipitation of new, nanometer scale oxides that are effective at dispersion strengthening.

  4. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

    2013-09-30

    The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 – Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 – Conduct a fleet evaluation with selected device combination. Phase 3 – Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 – 7.8% fuel economy with the devices (This does not include tire contribution).

  5. 40 CFR 94.105 - Duty cycles.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Duty cycles. 94.105 Section 94.105... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures § 94.105 Duty cycles. (a) Overview. For....8(e), engines shall be tested using the appropriate duty cycles described in this section. (b...

  6. Education for Engineers in Mitsubishi Heavy Industries

    Science.gov (United States)

    Ohsone, Masanori; Funakoshi, Makoto; Taguchi, Toshio

    In manufacturing companies, the importance of Off the Job Training (OffJT) is increasing, because there are not enough opportunities for On the Job Training (OJT) . Therefore, OffJT is required to further improve quality. Also it is required to enhance the skills of our engineers, as a substitute for OJT. Mitsubishi Heavy Industries has improved OffJT by using the same methods of quality improvement as those employed in our factories. It has also developed exercises to train engineers in complex multiple skills, thus improving their ability. We report the results of these efforts.

  7. Experimental study of fuel composition impact on PCCI combustion in a heavy-duty diesel engine

    NARCIS (Netherlands)

    Leermakers, C.A.J.; Luijten, C.C.M.; Somers, L.M.T.; Kalghatgi, G.T.; Albrecht, B.A.

    2011-01-01

    Premixed Charge Compression Ignition (PCCI) is a combustion concept that holds the promise of combining emission levels of a spark-ignition engine with the efficiency of a compression-ignition engine. In a short term scenario, PCCI would be used in the lower load operating range only, combined with

  8. A study on traffic weaving segment level of service on Malaysia urban highway

    Science.gov (United States)

    Abdullah, Rohaya; Sadullah, Ahmad Farhan Mohd

    2017-07-01

    The objective of this research is to observe weaving problems, analyze the capacity of the weaving segment and to identify the behavior of the Malaysian driver at urban freeway weaving segment. Field data collected during non - peak hours at km. 138.6-138.2 (north bound) Seberang Jaya: Penang Bridge, km.16.8 to km.17.0 Sunway Mentari: Damansara-Puchong Highway and km.21.4 to km.21.9 Puchong Intan: Damansara-Puchong Highway. These segments behave as a bottleneck during peak hour. The data collected are traffic volume, vehicle composition and the road geometry. The drivers behavior pattern at the freeway weaving segment is observed. This research analyses by two different methodologies, the first analysis is by referring to the US Highway Capacity Manual 2010 and the second analysis through a modified method to suit the local traffic composition. The consideration of motorcycle and light heavy vehicle in the analysis lead to a different evaluation of weaving segment capacity. The analysis results show a slight difference between both methods. LOS, weaving speed and density prediction by the modified method is slightly higher than the HCM method. These results, suggest that the numbers of light heavy vehicle and motorcycle contribute to the amount of traffic volume because the value factors of Passenger Car Equivalent (PCE). The adoption of the widely used method without taking consideration of local traffic condition, might lead to improper road planning or design or road operation management.

  9. Heavy truck rollover characterization (phase B).

    Science.gov (United States)

    2009-09-01

    The Heavy Truck Rollover Characterization Study - Phase-B builds on the results of prior phases of research. Phases 1 and 2 (Funded by Federal Highway Administration) involved heavy truck rollover characterization for a tractor and box-trailer; and P...

  10. Chemical and physical characterization of traffic particles in four different highway environments in the Helsinki metropolitan area

    Directory of Open Access Journals (Sweden)

    J. Enroth

    2016-05-01

    Full Text Available Traffic-related pollution is a major concern in urban areas due to its deleterious effects on human health. The characteristics of the traffic emissions on four highway environments in the Helsinki metropolitan area were measured with a mobile laboratory, equipped with state-of-the-art instrumentation. Concentration gradients were observed for all traffic-related pollutants, particle number (CN, particulate mass (PM1, black carbon (BC, organics, and nitrogen oxides (NO and NO2. Flow dynamics in different environments appeared to be an important factor for the dilution of the pollutants. For example, the half-decay distances for the traffic-related CN concentrations varied from 8 to 83 m at different sites. The PM1 emissions from traffic mostly consisted of organics and BC. At the most open site, the ratio of organics to BC increased with distance to the highway, indicating condensation of volatile and semi-volatile organics on BC particles. These condensed organics were shown to be hydrocarbons as the fraction of hydrocarbon fragments in organics increased. Regarding the CN size distributions, particle growth during the dilution was not observed; however the mass size distributions measured with a soot particle aerosol mass spectrometer (SP-AMS, showed a visible shift of the mode, detected at  ∼  100 nm at the roadside, to a larger size when the distance to the roadside increased. The fleet average emission factors appeared to be lower for the CN and higher for the NO2 than ten years ago. The reason is likely to be the increased fraction of light-duty (LD diesel vehicles in the past ten years. The fraction of heavy-duty (HD traffic, although constituting less than 10 % of the total traffic flow, was found to have a large impact on the emissions.

  11. A Taxonomy for Heavy-Duty Telemanipulation Tasks Using Elemental Actions

    Directory of Open Access Journals (Sweden)

    Alexander Owen-Hill

    2013-10-01

    Full Text Available In the maintenance of large scientific facilities, telemanipulation procedures can involve various subprocedures which in turn are made up of a sequence of subtasks. This work presents a taxonomy which describes a set of elemental actions for heavy-duty telemanipulation, along with an example of these actions in a standard maintenance subprocedure. As maintenance tasks are often very different at high-level, this generalized way of deconstructing tasks allows a highly adaptable approach to describe the sequence of any procedure, which can then be used for such applications as task monitoring, automation or detection of incomplete tasks. We describe in detail the properties of each elemental action and apply the taxonomy to an example subprocedure to show how the process can be generalizable. An automatic state-machine creation stage is shown, which would be used at the task scheduling stage to simplify calculations carried out during the moment-by-moment execution of the task.

  12. Robust Emission Management Strategy to Meet Real-World Emission Requirements for HD Diesel Engines

    NARCIS (Netherlands)

    Mentink, P.; Nieuwenhof, R. van den; Kupper, F.; Willems, F.; Kooijman, D.

    2015-01-01

    Heavy-duty diesel engines are used in different application areas, like long-haul, city distribution, dump truck and building and construction industry. For these wide variety of areas, the engine performance needs to comply with the real-world legislation limits and should simultaneously have a low

  13. Robust emission management strategy to meet real-world emission requirements for HD diesel engines

    NARCIS (Netherlands)

    Mentink, P.R.; Nieuwenhof, van den R.; Kupper, F.; Willems, F.P.T.; Kooijman, D.

    2015-01-01

    Heavy-duty diesel engines are used in different application areas, like long-haul, city distribution, dump truck and building and construction industry. For these wide variety of areas, the engine performance needs to comply with the real-world legislation limits and should simultaneously have a low

  14. Development of a heavy duty portable variable power supply (HPVPS)

    Science.gov (United States)

    Musa, Ahmad Zulfadli Bin; Lung, Chong Man; Abidin, Wan'Amirah Basyarah Binti Zainol

    2017-08-01

    This paper covers the innovation of a Heavy Duty Portable Variable Power Supply (HPVPS) in Jabatan Kejuruteraan Elektrik (JKE), Politeknik Mukah, Sarawak (PMU). This project consists of variable power supply which can vary the output from 1.2 V to 11.6V, AC pure wave inverter to convert DC to AC for the operation of low power home appliances and also used Li-on rechargeable batteries to store the electrical energy and additional feature that can be used to jump-start the batteries of the car. The main objective of this project is to make the user can operate the electronic devices anywhere whenever if no electricity while doing their lab activities. Most of the regulated power supply in JKE lab aged 9-10 years old and need periodical maintenance and need cost and also the unit can be used is not enough to support the whole class during lab activities. As a result, the P&P process will be facing the major problem in order to make the lab activities running smoothly. By development of the portable variable power supply, the P&P process is more efficient and very helpful.

  15. Exhaust Emission Characteristics of Heavy Duty Diesel Engine During Cold and Warm Start

    Directory of Open Access Journals (Sweden)

    YANG Rong

    2014-07-01

    Full Text Available Through experiment conducted on a six cylinder direct injection diesel engine with SCR catalyst, effects of coolant temperature on rail pressure, injection quantity, excess air coefficient and emissions characteristics during cold and warm start were investigated. The results showed that, the maximum injection quantity during a starting event was several times higher than idling operation mode, so was the maximal opacity in the cold and warm starting process. When coolant temperature rose up to above 20℃, NOX emissions in the starting process exhibited peculiar rise which was times higher than idling mode. Compared with engine warm start, rail pressure, cycle fuel quantity, opacity, CO and HC emissions during engine cold start were higher in the course from their transient maximal values towards stabilized idling status. NOX in the same transient course, however, were lower in cold start. As coolant temperature rose, the maximal and the idling value of rail pressure and cycle fuel injection quantity during diesel engine starting process decreased gradually, the excess air coefficient increased to a certain degree, and the maximal and idling values of NOX increased gradually.

  16. Robust, cost-optimal and compliant engine and aftertreatment operation using air-path control and tailpipe emission feedback

    NARCIS (Netherlands)

    Ramachandran, S.; Hommen, G.; Mentink, P.; Seykens, X.L.J.; Willems, F.P.T.; Kupper, F.

    2016-01-01

    Heavy-duty diesel engines are used in a wide range of applications. For varying operating environments, the engine and aftertreatment system must comply with the real-world emission legislation limits. Simultaneously, minimal fuel consumption and good drivability are crucial for economic

  17. 40 CFR 86.1850-01 - Denial, suspension or revocation of certificate of conformity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Denial, suspension or revocation of... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND...-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1850-01 Denial...

  18. Performance of lignin derived aromatic oxygenates in a heavy-duty diesel engine

    NARCIS (Netherlands)

    Zhou, L.; Boot, M.D.; Johansson, B.H.; Reijnders, J.J.E.

    2014-01-01

    The possibility to reduce dependence on fossil fuel resources has led to an increasing interest in the use of bio-fuels. This study builds on earlier work on (aromatic) cyclic oxygenates [1] and [2], but a far wider window of engine operation has been investigated in this paper. Two parametric

  19. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  20. Particle emissions from compressed natural gas engines

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D.

    2000-01-01

    This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01-30 μm, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range between 0.5 and 30 μm, measured by the aerodynamic particle sizer (APS), were very low at a level below two particles cm -3 . These concentrations were comparable with average ambient concentration, and were not considered in the succeeding analysis. Both engines produce significant amounts of particles in the size range between 0.015 and 0.7 μm, measured by the scanning mobility particle size (SMPS). Maximum number of concentrations of about 1 x 10 7 particles cm -3 were very similar for both engines. The CMDs were in the range between 0.020 and 0.060 μm. The observed levels of particulate emission are in terms of number of the same order as emissions from heavy duty diesel engines (Morawska et al., Environ. Sci. Tech. 32, 2033-2042). On the other hand, emissions of CO and NO x of 5.53 and 3.33 g k W h -1 , respectively, for one of the tested engines, were considerably lower than set by the standards. According to the specifications for the gas emissions, provided by the US EPA (US EPA, 1997), this engine can be considered as a 'low-emission' engine, although emissions of submicrometer particles are of the same order as heavy-duty vehicles. (Author)

  1. Heavy metal enrichment in roadside soils in the eastern Tibetan Plateau.

    Science.gov (United States)

    Guan, Zhen-Huan; Li, Xiao Gang; Wang, Lin

    2018-03-01

    The effects of human activities on heavy metal pollution in soil have been less investigated on the Tibetan Plateau. The present study was designed to assess the effects of highway traffic on Cu, Zn, Pb, and Cd enrichments in the 0-60-cm soil profile in the eastern Tibetan Plateau. Soils were sampled at four transects (with an altitude range of 2643-2911 m) across the G212 highway and five transects (3163-3563 m) across the G213 highway. Background concentrations of Cu, Zn, Pb, and Cd to the 60-cm soil depth (measured at each transect 400 m away from highways) varied greatly among transects and between highways. However, this spatial variation in the heavy metal concentrations was not related to the altitude of the investigated areas. On each the left and right sides of G212 or G213, Cu, Zn, and Pb concentrations to the 60-cm depth, at 5, 10, 20, and 50 m away from the highway, were all generally greater than the respective metal background concentrations. Cd concentrations to the 20 cm on G212 or 60-cm soil depth on G213 increased prominently within a distance of 20 m away from the highways, compared to background values in different depths. From the curb to 400 m away from highways, concentrations of Cu, Zn, Pb, and Cd were generally higher in the upper than in the lower soil layers. This may suggest that other factors such as atmospheric deposition were also contributable to the accumulation of heavy metals in soil. The contamination factor (C f ) calculation showed that roadside soils to the 60-cm depth, within a distance of 50 m from the curbs of both G212 and G213, were moderately (1 ≤ C f  Tibetan Plateau. For assessment of heavy metal pollutions in soil in mountainous areas, it is necessary to in situ identify the background values.

  2. A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Ronald [Chrysler Group LLC., Auburn Hills, MI (United States)

    2015-05-20

    FCA US LLC (formally known as Chrysler Group LLC, and hereinafter “Chrysler”) was awarded an American Recovery and Reinvestment Act (ARRA) funded project by the Department of Energy (DOE) titled “A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency” (hereinafter “project”). This award was issued after Chrysler submitted a proposal for Funding Opportunity Announcement DE-FOA- 0000079, “Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD).” Chrysler started work on this project on June 01, 2010 and completed testing activities on August 30, 2014. Overall objectives of this project were; Demonstrate a 25% improvement in combined Federal Test Procedure (FTP) City and Highway fuel economy over a 2009 Chrysler minivan; Accelerate the development of highly efficient engine and powertrain systems for light-duty vehicles, while meeting future emissions standards; and Create and retain jobs in accordance with the American Recovery and Reinvestment Act of 2009

  3. Materials colloquium `96: Thermal insulation coatings. Thermally insulating coating systems for heavy-duty structural components in aerospace engineering and energy engineering; Werkstoff-Kolloquium `96: Waermedaemmschichten. Waermeisolierende Schichtsysteme fuer hoechstbelastete Strukturbauteile in der Luft- und Raumfahrt sowie der Energietechnik

    Energy Technology Data Exchange (ETDEWEB)

    Peters, M.; Schulz, U.; Leushake, U.; Kaysser, W.A. [eds.

    1996-12-31

    The 15 contributions in this colloquium report document the current state of research and development in Germany in the field of thermally insulating layer structures for heavy-duty components like gas turbines. Five papers have been recorded separately in the ENERGY database. [Deutsch] Die 15 Beitraege in diesem Kolloquiumband dokumentieren den aktuellen Stand der Forschungs- und Entwicklungsarbeiten in Deutschland auf dem Gebiet der waermeisolierenden Schichtsysteme fuer hoechstbelastete Bauteile wie z.B. Gasturbinen. Fuer die Datenbank ENERGY wurden fuenf Artikel separat aufgenommen.

  4. Engineering systems designs for a recirculating heavy ion induction accelerator

    International Nuclear Information System (INIS)

    Newton, M.A.; Barnard, J.J.; Reginato, L.L.; Yu, S.S.

    1991-05-01

    Recirculating heavy ion induction accelerators are being investigated as possible drivers for heavy ion fusion. Part of this investigation has included the generation of a conceptual design for a recirculator system. This paper will describe the overall engineering conceptual design of this recirculator, including discussions of the dipole magnet system, the superconducting quadrupole system and the beam acceleration system. Major engineering issues, evaluation of feasibility, and cost tradeoffs of the complete recirculator system will be presented and discussed. 5 refs., 4 figs

  5. Low Temperature Combustion in a Heavy Duty Diesel Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ehleskog, Malin

    2012-07-01

    In recent years, there have been major efforts to reduce engine emissions and fuel consumption. The studies described in this thesis were conducted with the aim of identifying methods for reducing harmful engine-out emissions of soot and nitrogen oxides (NOx) under high load without increasing fuel consumption. The first part of the project focused on low temperature combustion using very high levels of EGR. It was found that very low soot and NOx emissions could be achieved at low loads. Unfortunately, these conditions resulted in high fuel consumption as well as high emissions of HC and CO. The increased emissions could be mitigated by optimising the timing of the SOI and increasing the injection pressure, but the high fuel consumption remained problematic. Intermediate levels of EGR can be used to increase the ignition delay and thereby achieve partially premixed combustion. When soot and NOx emissions are plotted against the amount of EGR, there is an intersection point at which the soot emissions are just beginning to increase but the recirculated exhaust gas has greatly reduced the NOx emissions. At this point, the HC and CO emissions and the fuel consumption remain acceptably low. If the onset of the increased soot emissions could be shifted to a higher EGR level or if the peak soot emissions could be reduced in magnitude, the tradeoff between soot and NOx emissions at intermediate EGR levels could be improved. By increasing the charge air pressure, the size of the soot bump is reduced and the point of intersection between the soot and NOx curves is shifted to a higher EGR percentage. The soot-NOx tradeoff can also be improved by increasing the injection pressure to reduce the soot peak while using EGR levels that are high enough to suppress NOx formation. To further investigate the potential of partially premixed combustion, the effects of varying the timing of late inlet valve closure were investigated. The results show that reducing the effective

  6. Operation Duties on the F-15B Research Testbed

    Science.gov (United States)

    Truong, Samson S.

    2010-01-01

    This presentation entails what I have done this past summer for my Co-op tour in the Operations Engineering Branch. Activities included supporting the F-15B Research Testbed, supporting the incoming F-15D models, design work, and other operations engineering duties.

  7. Experimental validation of a combustion kinetics based multi-zone model for natural gas-diesel RCCI engines

    NARCIS (Netherlands)

    Mikulski, M.; Bekdemir, C.; Willems, F.P.T.

    2016-01-01

    This paper presents the validation results of TNO's combustion model designed to support RCCI control development. In-depth validation was performed on a multi-cylinder heavy-duty engine operating in RCCI mode on natural gas and diesel fuel. It was shown that the adopted approach is able to

  8. Heavy metals accumulation in roadside soil and vegetation along a major highway in Libya

    International Nuclear Information System (INIS)

    Voegborlo, R.B.; Chirgawi, M.B.

    2007-01-01

    Levels of some heavy metals in soil and vegetation along a major highway in Libya were determined by Atomic Absorption Spectrophotometry. The concentrations of Pb, Cd, Ni, Zn, Cu, Cr and Mn in soil and vegetation all decreased with distance from the road, indicating their relation to traffic. The concentrations of the metals also decreased with depth in the soil profile indicating that the source of the metals was aerial deposition from motor vehicles. Inter-relationships between metals in the soil were highly significant (p < 0.05) suggesting a common source for these metals. Pb and Zn were found to be deposited more than the other metals. Average values for citrus lemon leaves were generally 30 - 65 % of those for Olea europaea leaves. In most cases, between 20-40% of the metals was removable by simple washing with water, indicating that a significant, but not predominant fraction of the metals is in the form of easily-removed particulate matter. Discussion of the results of this study is based on statistical treatment of the data. (au)

  9. Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck

    Directory of Open Access Journals (Sweden)

    Nicolas Stanzel

    2016-11-01

    Full Text Available A complex simulation model of a heavy duty truck, including an Organic Rankine Cycle (ORC based waste heat recovery system and a vehicle cooling system, was applied to determine the system fuel economy potential in a typical drive cycle. Measures to increase the system performance were investigated and a comparison between two different cooling system designs was derived. The base design, which was realized on a Mercedes-Benz Actros vehicle revealed a fuel efficiency benefit of 2.6%, while a more complicated design would generate 3.1%. Furthermore, fully transient simulation results were performed and are compared to steady state simulation results. It is shown that steady state simulation can produce comparable results if averaged road data are used as boundary conditions.

  10. Some engineering properties of heavy concrete added silica fume

    International Nuclear Information System (INIS)

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    2013-01-01

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated

  11. Ceramic port shields cast in an iron engine head

    Science.gov (United States)

    Hakim, Nabil S.; Groeneweg, Mark A.

    1989-01-01

    Silicon nitride exhaust and intake port shields have been successfully cast into a gray iron cylinder head of a heavy duty diesel single cylinder research engine. Careful design considerations, finite element, and probability of survival analyses indicated viability of the design. Foundry experience, NDE, and failure investigations are reported.

  12. Sliding Mode Control of Diesel Engine Air-path System With Dual-loop EGR and VGT Based on the Reduced-order Model

    Directory of Open Access Journals (Sweden)

    Kim Sooyoung

    2016-01-01

    Full Text Available This paper presents the design of a model-based controller for the diesel engine air-path system. The controller is implemented based on a reduced order model consisting of only pressure and power dynamics with practical concerns. To deal with the model uncertainties effectively, a sliding mode controller, which is robust to model uncertainties, is proposed for the air-path system. The control performance of the proposed control scheme is verified through simulation with the valid plant model of a 6,000cc heavy duty diesel engine.

  13. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    International Nuclear Information System (INIS)

    Askin, Amanda C.; Barter, Garrett E.; West, Todd H.; Manley, Dawn K.

    2015-01-01

    We present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. The model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives. -- Highlights: •We present a parametric analysis of factors U.S. Class 7–8 trucks through 2050. •Conventional diesels will be more than 70% of U.S. heavy-duty vehicles through 2050. •CNG trucks are well suited to large, urban fleets with private refueling. •Ultra-efficient long haul diesel trucks are preferred over LNG at current fuel prices

  14. Treatment of highway runoff : engineered filter media for pollutant removal through enhanced sorption : final report.

    Science.gov (United States)

    2015-07-27

    The work performed in this study focused on the investigation of the use of engineered biofiltration layers to enhance the removal of roadway stormwater runoff contaminants (specifically nutrients, solids, heavy metals, and pH). Six Georgia native gr...

  15. Review and analysis of potential safety impacts of and regulatory barriers to fuel efficiency technologies and alternative fuels in medium- and heavy-duty vehicles

    Science.gov (United States)

    2015-06-01

    This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...

  16. Interdisciplinary Integrated Engineering Development Course in HITACHI

    Science.gov (United States)

    Ojima, Masahiro

    As an example of interdisciplinary education for engineers in private companies, IED (Integrated Engineering Development) course at HITACHI Ltd. is presented. To help 30 years old or so promising engineers create a new product based on a new technology, one year term course is designed for four types of engineers; mechanical, electric & electronic, information software, and digital systems. Each course has core basic technologies plus related supplementary subjects to promote an interdisciplinary integrated engineer. Not only lectures given by university professors but heavy duty home work is also given by senior engineers of HITACHI to make them apply basic theory to practical problems. Furthermore, self development planning, leadership development program and technology-marketing project are introduced to promote human skills and business sense needed for technology leaders in company.

  17. Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1999-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  18. Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies

    International Nuclear Information System (INIS)

    Gurpreet Singh; Ronald L. Graves; John M. Storey; William P. Partridge; John F. Thomas; Bernie M. Penetrante; Raymond M. Brusasco; Bernard T. Merritt; George E. Vogtlin; Christopher L. Aardahl; Craig F. Habeger; M.L. Balmer

    2000-01-01

    The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (after-treatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R and D efforts, with examples of key findings and developments

  19. Regional Risk Evaluation of Flood Disasters for the Trunk-Highway in Shaanxi, China

    Directory of Open Access Journals (Sweden)

    Hong-Liang Qi

    2015-10-01

    Full Text Available Due to the complicated environment there are various types of highway disasters in Shaanxi Province (China. The damages caused are severe, losses are heavy, and have rapidly increased over the years, especially those caused by flood disasters along the rivers in mountainous areas. Therefore, research on risk evaluations, which play important roles in the prevention and mitigation of highway disasters are very important. An evaluation model was established based on the superposition theory of regional influencing factors to highway flood disasters. Based on the formation mechanism and influencing factors of highway flood disasters, the main influencing factors were selected. These factors include rainstorms, terrain slopes, soil types, vegetation coverage and regional river density, which are based on evaluation indexes from climate conditions and underlying surface of the basin. A regional risk evaluation of highway flood disasters in Shaanxi was established using GIS. The risk index was divided into five levels using statistical methods, in accordance with the regional characteristics of highway flood disasters. Considering the difference in upfront investments, road grade, etc, between expressways and trunk-highways in China, a regional risk evaluation of trunk-highway flood disasters was completed. The evaluation results indicate that the risk evaluation is consistent with the actual situation.

  20. Regional Risk Evaluation of Flood Disasters for the Trunk-Highway in Shaanxi, China.

    Science.gov (United States)

    Qi, Hong-Liang; Tian, Wei-Ping; Li, Jia-Chun

    2015-10-29

    Due to the complicated environment there are various types of highway disasters in Shaanxi Province (China). The damages caused are severe, losses are heavy, and have rapidly increased over the years, especially those caused by flood disasters along the rivers in mountainous areas. Therefore, research on risk evaluations, which play important roles in the prevention and mitigation of highway disasters are very important. An evaluation model was established based on the superposition theory of regional influencing factors to highway flood disasters. Based on the formation mechanism and influencing factors of highway flood disasters, the main influencing factors were selected. These factors include rainstorms, terrain slopes, soil types, vegetation coverage and regional river density, which are based on evaluation indexes from climate conditions and underlying surface of the basin. A regional risk evaluation of highway flood disasters in Shaanxi was established using GIS. The risk index was divided into five levels using statistical methods, in accordance with the regional characteristics of highway flood disasters. Considering the difference in upfront investments, road grade, etc, between expressways and trunk-highways in China, a regional risk evaluation of trunk-highway flood disasters was completed. The evaluation results indicate that the risk evaluation is consistent with the actual situation.

  1. Marginal overweight operating scenario for DOE's initiative I highway casks

    International Nuclear Information System (INIS)

    Hill, C.V.; Loud, G.C.; Heitzman, A.C.

    1993-01-01

    This paper assesses the potential transport of high-capacity Initiative I highway casks under development by the Office of Civilian Radioactive Waste Management (OCRWM) as permitted marginal overweight shipments that: exceed a gross vehicle weight (gvw) limit of 80,000, but weight less than 96,000 pounds; follow axle and axle group weight limits adopted by the Surface Transportation Assistance Act (STAA) of 1982; conform to dimensional restrictions to operate on most major highways; and comply with the Federal Bridge Formula. The marginal overweight tractor-trailer would operate in normal open-quotes over-the-roadclose quotes mode and comply with all laws and regulations. The vehicle would have a sleeper berth and two drivers - one to drive while the other provides escort and communications services and accumulates required off-duty time

  2. Simulation of speed control in acceleration mode of a heavy duty vehicle; Ogatasha no kasokuji ni okeru shasoku seigyo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Endo, S; Ukawa, H [Isuzu Advanced Engineering Center, Ltd., Tokyo (Japan); Sanada, K; Kitagawa, A [Tokyo Institute of Technology, Tokyo (Japan)

    1997-10-01

    A control law of speed of a heavy duty vehicle in acceleration mode is presented, which is an extended version of a control law in deceleration mode proposed by the authors. The control law is based on constant acceleration strategy. Using the control law, target velocity and target distance can be performed. Both control laws for acceleration and deceleration mode can be represented by a unified mathematical formulae. Some simulation results are shown to demonstrate the control performance. 7 refs., 9 figs., 2 tabs.

  3. Experimental investigations on a cascaded steam-/organic-Rankine-cycle (RC/ORC) system for waste heat recovery (WHR) from diesel engine

    International Nuclear Information System (INIS)

    Yu, Guopeng; Shu, Gequn; Tian, Hua; Huo, Yongzhan; Zhu, Weijie

    2016-01-01

    Highlights: • A novel cascaded RC/ORC system was constructed for WHR of a heavy-duty diesel engine. • The RC/ORC system was experimentally investigated under engine operating conditions. • Good system stability and satisfying thermal states of working fluids were observed. • The power increment can reach up to 5.6% by equipping the novel cascaded RC/ORC system. - Abstract: A novel cascaded RC/ORC system that comprises a steam Rankine cycle as the high-temperature loop (H-RC) and an organic Rankine cycle as the low-temperature loop (L-ORC) was constructed and experimentally investigated to recover waste heat from exhaust gas of a heavy-duty diesel engine (DE). By monitoring key parameters of the RC/ORC system against time, good system stability and satisfying thermal states of working fluids were observed. Impacts that the engine operations have on this proposed waste-heat-recovery (WHR) system were studied, indicating that waste heat recovered from the gas increases gradually and greatly as the engine load increases, yet decreases slightly as the speed grows. At full loads at speeds lower than 2050 rpm, up to 101.5 kW of waste heat can be abstracted from the gas source, showing a promising heat transfer potential. Besides, observations of key exergy states as well as estimations and comparisons of potential output power were carried out stepwise. Results indicated that up to 12.7 kW of output power could be obtained by the novel RC/ORC system under practical estimations. Comparing to the basic diesel engine, the power increment reaches up to 5.6% by equipping the cascaded RC/ORC system.

  4. 40 CFR 86.1102-87 - Definitions.

    Science.gov (United States)

    2010-07-01

    ..., governed speed, injector size, engine calibration, or other parameters which may be designated by the... for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks...-, diesel-, and methanol-fueled), vehicle usage, engine horsepower or additional criteria that the...

  5. Technical and economic study of Stirling and Rankine cycle bottoming systems for heavy truck diesel engines

    Science.gov (United States)

    Kubo, I.

    1987-01-01

    Bottoming cycle concepts for heavy duty transport engine applications were studied. In particular, the following tasks were performed: (1) conceptual design and cost data development for Stirling systems; (2) life-cycle cost evaluation of three bottoming systems - organic Rankine, steam Rankine, and Stirling cycles; and (3) assessment of future directions in waste heat utilization research. Variables considered for the second task were initial capital investments, fuel savings, depreciation tax benefits, salvage values, and service/maintenance costs. The study shows that none of the three bottoming systems studied are even marginally attractive. Manufacturing costs have to be reduced by at least 65%. As a new approach, an integrated Rankine/Diesel system was proposed. It utilizes one of the diesel cylinders as an expander and capitalizes on the in-cylinder heat energy. The concept eliminates the need for the power transmission device and a sophisticated control system, and reduces the size of the exhaust evaporator. Results of an economic evaluation indicate that the system has the potential to become an attractive package for end users.

  6. Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Anand R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sharpe, Ben [International Council on Clean Transportation (United States); Delgado, Oscar [International Council on Clean Transportation (United States); Bandivadekar, Anup [International Council on Clean Transportation (United States); Garg, Mehul [International Council on Clean Transportation (United States)

    2017-06-14

    The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data and vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the

  7. 40 CFR Appendix Viii to Part 85 - Vehicle and Engine Parameters and Specifications

    Science.gov (United States)

    2010-07-01

    .... Operating pressure(s). h. Injector timing calibrations. V. Injection System. 1. Control parameters and.... Operating pressure(s). h. Injector timing calibration. IV. Ignition System. 1. Control parameters and... calibrations. 2. Component calibrations. c. heavy duty diesel engine parameters and specifications I. Basic...

  8. Heavy vehicle propulsion system materials program semi-annual progress report for October 1997 through March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1998-06-01

    The purpose of the Heavy Vehicle Propulsion System materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  9. Assessment of impact of mass movements on the upper Tayyah valley's bridge along Shear escarpment highway, Asir region (Saudi Arabia) using remote sensing data and field investigation

    Science.gov (United States)

    Youssef, A. M.; Al-Kathery, M.; Pradhan, B.

    2015-01-01

    Escarpment highways, roads and mountainous areas in Saudi Arabia are facing landslide hazards that are frequently occurring from time to time causing considerable damage to these areas. Shear escarpment highway is located in the north of the Abha city. It is the most important escarpment highway in the area, where all the light and heavy trucks and vehicle used it as the only corridor that connects the coastal areas in the western part of the Saudi Arabia with the Asir and Najran Regions. More than 10 000 heavy trucks and vehicles use this highway every day. In the upper portion of Tayyah valley of Shear escarpment highway, there are several landslide and erosion potential zones that affect the bridges between tunnel 7 and 8 along the Shear escarpment Highway. In this study, different types of landslides and erosion problems were considered to access their impacts on the upper Tayyah valley's bridge along Shear escarpment highway using remote sensing data and field investigation. These landslides and erosion problems have a negative impact on this section of the highway. Results indicate that the areas above the highway and bridge level between bridge 7 and 8 have different landslides including planar, circular, rockfall failures and debris flows. In addition, running water through the gullies cause different erosional (scour) features between and surrounding the bridge piles and culverts. A detailed landslides and erosion features map was created based on intensive field investigation (geological, geomorphological, and structural analysis), and interpretation of Landsat image 15 m and high resolution satellite image (QuickBird 0.61 m), shuttle radar topography mission (SRTM 90 m), geological and topographic maps. The landslides and erosion problems could exhibit serious problems that affect the stability of the bridge. Different mitigation and remediation strategies have been suggested to these critical sites to minimize and/or avoid these problems in the future.

  10. Battery Dimensioning and Life Cycle Costs Analysis for a Heavy-Duty Truck Considering the Requirements of Long-Haul Transportation

    OpenAIRE

    Mareev, Ivan; Becker, Jan Nicolas; Sauer, Dirk Uwe

    2018-01-01

    The use of heavy-duty battery electric trucks for long-haul transportation is challenging because of the required high energy amounts and thus the high capacity of traction batteries. Furthermore a high capacity battery implies high initial costs for the electric vehicle. This study investigates the required battery capacity for battery electric trucks considering the requirements of long-haul transportation in Germany and compares the life cycle costs of battery electric trucks and conventio...

  11. Heavy truck modeling for fuel consumption. Simulations and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, T.

    2001-12-01

    Fuel consumption for heavy trucks depends on many factors like roads, weather, and driver behavior that are hard for a manufacturer to influence. However, one design possibility is the power train configuration. Here a new simulation program for heavy trucks is created to find the configuration of the power train that gives the lowest fuel consumption for each transport task. For efficient simulations the model uses production code for speed and gear control, and it uses exchangeable data sets to allow simulation of the whole production range of engine types, on recorded road profiles from all over the world. Combined with a graphical user interface this application is called STARS (Scania Truck And Road Simulation). The forces of rolling resistance and air resistance in the model are validated through an experiment where the propeller shaft torque of a heavy truck is measured. It is found that the coefficient of rolling resistance is strongly dependent on tire temperature, not only on vehicle speed as expected. This led to the development of a new model for rolling resistance. The model includes the dynamic behavior of the tires and relates rolling resistance to tire temperature and vehicle speed. In another experiment the fuel consumption of a test truck in highway driving is measured. The altitude of the road is recorded with a barometer and used in the corresponding simulations. Despite of the limited accuracy of this equipment the simulation program manage to predict a level of fuel consumption only 2% lower than the real measurements. It is concluded that STARS is a good tool for predicting fuel consumption for trucks in highway driving and for comparing different power train configurations.

  12. Nationwide desert highway assessment: a case study in China.

    Science.gov (United States)

    Mao, Xuesong; Wang, Fuchun; Wang, Binggang

    2011-07-01

    The natural environment affects the construction of desert highways. Conversely, highway construction affects the natural environment and puts the ecological environment at a disadvantage. To satisfy the variety and hierarchy of desert highway construction and discover the spatio-temporal distribution of the natural environment and its effect on highway construction engineering, an assessment of the natural regional divisions of desert highways in China is carried out for the first time. Based on the general principles and method for the natural region division, the principles, method and index system for desert highway assessment is put forward by combining the desert highway construction features and the azonal differentiation law. The index system combines the dominant indicator and four auxiliary indicators. The dominant indicator is defined by the desert's comprehensive state index and the auxiliary indicators include the sand dune height, the blown sand strength, the vegetation coverage ratio and the annual average temperature difference. First the region is divided according to the dominant indicator. Then the region boundaries are amended according to the four auxiliary indicators. Finally the natural region division map for desert highway assessment is presented. The Chinese desert highways can be divided into three sections: the east medium effect region, the middle medium-severe effect region, and the west slight-medium effect region. The natural region division map effectively paves the way for the route planning, design, construction, maintenance and ongoing management of desert highways, and further helps environmental protection.

  13. 75 FR 3723 - Agency Information Collection Activities; Proposed Collections; Comment Requests; Information...

    Science.gov (United States)

    2010-01-22

    ... Certification Program, EPA ICR No. 116.09, OMB Control No. 2060-0060; and Motor Vehicle and Engine Compliance... the Next Step in the Process for These ICRs? EPA will consider the comments received and amend the ICR... Independent Commercial Importers) of light duty vehicles or engines, light duty trucks or engines, and highway...

  14. Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering and Electrical Propulsion

    Science.gov (United States)

    2014-09-10

    Studies At the macroscale, the surface of a Taylor cone just before ion emission is an equipotential with a normal electric field strength found from...AFRL-OSR-VA-TR-2014-0246 Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering M Gamero-Castano UNIVERSITY OF CALIFORNIA IRVINE Final...298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 1 Electrosprayed Heavy Ion and Nanodrop Beams for Surface Engineering and Electrical Propulsion

  15. Electric drive choices for light, medium, and heavy duty vehicles to reduce their climate change impact in Canada

    International Nuclear Information System (INIS)

    Fitzpatrick, N.P.

    2009-01-01

    The evolution of electric drive technologies from 1988, at the 9 th International Electric Vehicle Symposium (EVS 9) in Toronto, to 2007 at EVS 23 in Anaheim, is described. Total hybridization of Canada's fleet of light, medium and heavy duty vehicles would result in greenhouse reductions savings of 30 Mt of CO 2 E per year, similar to the saving from a 25% reduction in vehicle weight. Further savings in greenhouse reductions from plug-in hybrids require a battery cost similar to that needed for electric vehicles. Further development of both ultracapacitors and batteries is needed as is work on other parts of the electric drive supply chain. (author)

  16. Disturbance rejection in diesel engines for low emissions and high fuel efficiency

    NARCIS (Netherlands)

    Criens, C. H. A.; Willems, F. P. T.; Van Keulen, T. A. C.; Steinbuch, M.

    2015-01-01

    This brief presents a novel and time-efficient control design for modern heavy-duty diesel engines using a variable geometry turbine and an exhaust gas recirculation valve. The goal is to simultaneously and robustly achieve low fuel consumption and low emissions of nitrogen oxides (NOx) and

  17. 40 CFR 1039.510 - Which duty cycles do I use for transient testing?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Which duty cycles do I use for... ENGINES Test Procedures § 1039.510 Which duty cycles do I use for transient testing? (a) Measure emissions by testing the engine on a dynamometer with one of the following transient duty cycles to determine...

  18. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    Science.gov (United States)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  19. Intelligent Lane Reservation System for Highway(s)

    OpenAIRE

    Dobre, Ciprian

    2012-01-01

    Highways tend to get congested because of the increase in the number of cars travelling on them. There are two solutions to this. The first one, which is also expensive, consists in building new highways to support the traffic. A much cheaper alternative consists in the introduction of advanced intelligent traffic control systems to manage traffic and increase the efficiency of the already existing highways. Intelligent lane reservation system for highways (ILRSH) is such a software control s...

  20. Assessment of highway pavements using GPR

    Science.gov (United States)

    Plati, Christina; Loizos, Andreas

    2015-04-01

    Highway infrastructure is a prerequisite for a functioning economy and social life. Highways, often prone to congestion and disruption, are one of the aspects of a modern transport network that require maximum efficiency if an integrated transport network, and sustainable mobility, is to be achieved. Assessing the condition of highway structures, to plan subsequent maintenance, is essential to allow the long-term functioning of a road network. Optimizing the methods used for such assessment will lead to better information being obtained about the road and underlying ground conditions. The condition of highway structures will be affected by a number of factors, including the properties of the highway pavement, the supporting sub-base and the subgrade (natural ground), and the ability to obtain good information about the entire road structure, from pavement to subgrade, allows appropriate maintenance programs to be planned. The maintenance of highway pavements causes considerable cost and in many cases obstruction to traffic flow. In this situation, methods that provide information on the present condition of pavement structure non-destructively and economically are of great interest. It has been shown that Ground-Penetrating-Radar (GPR), which is a Non Destructive Technique (NDT), can deliver information that is useful for the planning of pavement maintenance activities. More specifically GPR is used by pavement engineers in order to determine physical properties and characteristics of the pavement structure, information that is valuable for the assessment of pavement condition. This work gives an overview on the practical application of GPR using examples from highway asphalt pavements monitoring. The presented individual applications of GPR pavement diagnostics concern structure homogeneity, thickness of pavement layers, dielectric properties of asphalt materials etc. It is worthwhile mentioning that a number of applications are standard procedures, either

  1. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  2. Highway runoff quality models for the protection of environmentally sensitive areas

    Science.gov (United States)

    Trenouth, William R.; Gharabaghi, Bahram

    2016-11-01

    This paper presents novel highway runoff quality models using artificial neural networks (ANN) which take into account site-specific highway traffic and seasonal storm event meteorological factors to predict the event mean concentration (EMC) statistics and mean daily unit area load (MDUAL) statistics of common highway pollutants for the design of roadside ditch treatment systems (RDTS) to protect sensitive receiving environs. A dataset of 940 monitored highway runoff events from fourteen sites located in five countries (Canada, USA, Australia, New Zealand, and China) was compiled and used to develop ANN models for the prediction of highway runoff suspended solids (TSS) seasonal EMC statistical distribution parameters, as well as the MDUAL statistics for four different heavy metal species (Cu, Zn, Cr and Pb). TSS EMCs are needed to estimate the minimum required removal efficiency of the RDTS needed in order to improve highway runoff quality to meet applicable standards and MDUALs are needed to calculate the minimum required capacity of the RDTS to ensure performance longevity.

  3. 23 CFR 645.109 - Preliminary engineering.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Preliminary engineering. 645.109 Section 645.109 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS UTILITIES Utility Relocations, Adjustments, and Reimbursement § 645.109 Preliminary engineering. (a) As...

  4. Study on Dynamic Characteristics of Heavy Machine Tool-Composite Pile Foundation-Soil

    Directory of Open Access Journals (Sweden)

    CAI Li-Gang

    2014-09-01

    Full Text Available Heavy duty computer numerical control machine tools have characteristics of large self-weight, load and. The insufficiency of foundation bearing capacity leads to deformation of lathe bed, which effects machining accuracy. A combined-layer foundation model is created to describe the pile group foundation of multi-soil layer in this paper. Considering piles and soil in pile group as transversely isotropic material, equivalent constitutive relationship of composite foundation is constructed. A mathematical model is established by the introduction of boundary conditions, which is based on heavy duty computer numerical control machine tools-composite pile foundation-soil interaction system. And then, the response of different soil and pile depth is studied by a case. The model improves motion accuracy of machine tools.

  5. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...

  6. 75 FR 28820 - Notice of Public Meeting by Teleconference Concerning Heavy Duty Diesel Engine Consent Decrees

    Science.gov (United States)

    2010-05-24

    ... implementation of the provisions of the seven consent decrees signed by the United States and diesel engine..., or anticipates receiving, requests from the diesel engine manufacturers for termination of their respective decrees. This meeting notice is also available on EPA's Diesel Engine Settlement Web site at http...

  7. Cyclic oxygenates : a new class of second-generation biofuels for diesel engines?

    NARCIS (Netherlands)

    Boot, M.D.; Frijters, P.J.M.; Luijten, C.C.M.; Somers, L.M.T.; Baert, R.S.G.; Donkerbroek, A.J.; Klein-Douwel, R.J.H.; Dam, N.J.

    2009-01-01

    Combustion behavior of various oxygenated fuels has been studied in a DAF heavy-duty (HD) direct-injection (DI) diesel engine. From these fuels, it is well-known that they lead to lower particle (PM) emissions; however, for a given fuel oxygen mass fraction, there are significant differences in PM

  8. Cyclic oxygenates: a new class of second-generation biofuels for diesel engines?

    NARCIS (Netherlands)

    Boot, M.; Frijters, P.; Luijten, C.; Somers, B.; Baert, R.S.G.; Donkerbroek, A.; Klein-Douwel, R.J.H.; Dam, N.

    2009-01-01

    Combustion behavior of various oxygenated fuels has been studied in a DAF heavy-duty (HD) directinjection (DI) diesel engine. From these fuels, it is well-known that they lead to lower particle (PM) emissions; however, for a given fuel oxygen mass fraction, there are significant differences in PM

  9. Effective technical service in the life cycle of heavy dumpers

    Directory of Open Access Journals (Sweden)

    Михайло Валерійович Помазков

    2016-11-01

    Full Text Available A comparative analysis of the known systems of technical reliability of heavy dumpers functionality has been made. It has been stated that the previously proposed methods to determine the optimal service life of heavy-duty dumpers are not effective enough and do not take into account the whole range of factors specific to the operation of heavy dumpers in the current economic realities of industrial enterprises. Based on the analysis results, a mechanism of determining the optimal service life of heavy-duty dumpers and their constituent technical systems ensuring the operational reliability of heavy-duty dumpers has been offered. The article takes into account the analysis of resource factors, general description of system logistic tasks, the main provisions of serviceability, the resource forming in route charts at ore mining and metallurgical enterprises, the use of theoretical developments in practice. Heavy dumpers generalized description modelling shown in the article, the principle of resource use by using interchangable work at different intensity routes has received confirmation in the dumpers’ work schedule

  10. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    Science.gov (United States)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy-duty

  11. Emission performance of lignin-derived cyclic oxygenates in a heavy-duty diesel engine

    NARCIS (Netherlands)

    Zhou, L.; Boot, M.D.; Luijten, C.C.M.; Leermakers, C.A.J.; Dam, N.J.; Goey, de L.P.H.

    2012-01-01

    In earlier research, a new class of bio-fuels, so-called cyclic oxygenates, was reported to have a favorable impact on the soot-NOx trade-off experience in diesel engines. In this paper, the soot-NOx trade-off is compared for two types of cyclic oxygenates. 2-phenyl ethanol has an aromatic and

  12. Role of knowledge based engineering in Heavy Water Plants and its relevance to chemical industry

    International Nuclear Information System (INIS)

    Sonde, R.R.

    2002-01-01

    The development of heavy water technology under the Department of Atomic Energy in India is carried out based on a mission oriented programme and this was backed up by a committed and highly trained manpower with a single minded pursuit to achieve the goal of making India self-sufficient in this challenging area. The paper gives step by step methodology followed in completion of the above mission which has become a benchmark in the chemical industry. A large sized chemical industry (Heavy Water plant being once such industry) has many features which are similar. The process design typically includes design of reactors, distillation columns, heat exchange networks, fluid transfer machinery, support utility systems etc. Besides, there are other issues like safety engineering, selection of materials, commissioning strategies and operating philosophies which are quite common to almost all chemical industries. Heavy water board has engineered and set up large scale heavy water plants and the technology for production of heavy water is completely assimilated in India and this paper tries to bring about some of the strategies which were instrumental in achieving this. The story of success in this technology can most certainly be followed in development of any other process technology. The important factors in the development of this technology is based on integration of R and D, process design, engineering backup, safety features, role of good construction and project management and good operating practices. One more important fact in this technology development is continuous improvement in operation and use of knowledge based engineering for debottlenecking. (author)

  13. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    Science.gov (United States)

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation

  14. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, A.I.; Som, S.; Aggarwal, Suresh K. [University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL (United States); Kastengren, A.L.; El-Hannouny, E.M.; Longman, D.E.; Powell, C.F. [Argonne National Laboratory, Energy Systems Division, Argonne, IL (United States)

    2009-07-15

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software

  15. Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector

    Science.gov (United States)

    Ramírez, A. I.; Som, S.; Aggarwal, Suresh K.; Kastengren, A. L.; El-Hannouny, E. M.; Longman, D. E.; Powell, C. F.

    2009-07-01

    A quantitative and time-resolved X-ray radiography technique has been used for detailed measurements of high-pressure fuel sprays in the near-nozzle region of a diesel engine injector. The technique provides high spatial and temporal resolution, especially in the relatively dense core region. A single spray plume from a hydraulically actuated electronically controlled unit injector model 315B injector with a 6-hole nozzle was isolated and studied at engine-like densities for two different injection pressures. Optical spray imaging was also employed to evaluate the effectiveness of the shield used to isolate a single spray plume. The steady state fuel distributions for both injection pressures are similar and show a dense spray region along the axis of the spray, with the on-axis spray density decreasing as the spray progresses downstream. The higher injection pressure case exhibits a larger cone angle and spray broadening at the exit of the nozzle. For some time periods, the near-nozzle penetration speed is lower for the high injection pressure case than the low injection pressure case, which is unexpected, but can be attributed to the needle and flow dynamics inside the injector causing slower pressure build-up for the former case. Rate of injection testing was performed to further understand near-nozzle behavior. Mass distribution data were obtained and used to find mass-averaged velocity of the spray. Comparisons of the radiography data with that from a common rail single-hole light duty injectors under similar injection conditions show several significant differences. The current data show a larger cone angle and lower penetration speed than that from the light-duty injector. Moreover, these data display a Gaussian mass distribution across the spray near the injector, whereas in previous light-duty injector measurements, the mass distribution had steeper sides and a flatter peak. Measurements are also used to examine the spray models in the STAR-CD software.

  16. 78 FR 2868 - Draft Environmental Assessment for Rulemaking To Establish Minimum Sound Requirements for Hybrid...

    Science.gov (United States)

    2013-01-14

    ... require hybrid and electric passenger cars, light trucks, medium and heavy duty trucks and buses, low... Sound Requirements for Hybrid and Electric Vehicles AGENCY: National Highway Traffic Safety... minimum sound requirements for hybrid and electric vehicles. DATES: Comments must be received on or before...

  17. Control of a waste heat recovery system with decoupled expander for improved diesel engine efficiency

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Jager, de A.G.; Steinbuch, M.

    2015-01-01

    In this paper, a switching Model Predictive Control strategy is proposed for a Waste Heat Recovery system in heavy-duty automotive application. The objective is to maximize the WHR system output power while satisfying the output constraints under highly dynamic engine variations. For control design,

  18. Lithium-Ion Battery Cell Cycling and Usage Analysis in a Heavy-Duty Truck Field Study

    Directory of Open Access Journals (Sweden)

    Pontus Svens

    2015-05-01

    Full Text Available This paper presents results from a field test performed on commercial power-optimized lithium-ion battery cells cycled on three heavy-duty trucks. The goal with this study was to age battery cells in a hybrid electric vehicle (HEV environment and find suitable methods for identifying cell ageing. The battery cells were cycled on in-house developed equipment intended for testing on conventional vehicles by emulating an HEV environment. A hybrid strategy that allows battery usage to vary within certain limits depending on driving patterns was used. This concept allows unobtrusive and low-cost testing of battery cells under realistic conditions. Each truck was equipped with one cell cycling equipment and two battery cells. One cell per vehicle was cycled during the test period while a reference cell on each vehicle experienced the same environmental conditions without being cycled. Differential voltage analysis and electrochemical impedance spectroscopy were used to identify ageing of the tested battery cells. Analysis of driving patterns and battery usage was performed from collected vehicle data and battery cell data.

  19. 46 CFR 111.25-15 - Duty cycle.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Duty cycle. 111.25-15 Section 111.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Motors § 111.25-15 Duty cycle. Each motor must be rated for continuous duty, except a motor for an...

  20. Piezo-based motion stages for heavy duty operation in clean environments

    Science.gov (United States)

    Karasikov, Nir; Peled, Gal; Yasinov, Roman; Gissin, Michael; Feinstein, Alan

    2018-02-01

    A range of heavy duty, ultra-precise motion stages had been developed for precise positioning in semiconductor manufacturing and metrology, for use in a clean room and high vacuum (HV and UHV) environments, to meet the precision requirements for 7, 5 nm nodes and beyond. These stages are powered by L1B2 direct drive ultrasonic motors, which allows combining long motion range, sub-nanometer positioning accuracy, high stiffness (in the direction of motion), low power consumption and active compensation of thermal and structural drift while holding position. The mechanical design, material selection for clean room and high vacuum preparation techniques are reviewed. Test results in a clean room are reported for a two-axis (X-Y) stage, having a load capacity of 30 kg, a motion range of 450 mm, a positioning accuracy of 200 mm/s and a profile has a trapezoidal shape with an acceleration of 1m/s2 and a constant velocity of 100 mm/s. The operational parameters (average absolute position error during constant velocity, motor force, dead zone level) remain stable over more than 370000 passes (experiment duration).

  1. Load-Dependent Emission Factors and Chemical Characteristics of IVOCs from a Medium-Duty Diesel Engine.

    Science.gov (United States)

    Cross, Eben S; Sappok, Alexander G; Wong, Victor W; Kroll, Jesse H

    2015-11-17

    A detailed understanding of the climate and air quality impacts of mobile-source emissions requires the characterization of intermediate-volatility organic compounds (IVOCs), relatively-low-vapor-pressure gas-phase species that may generate secondary organic aerosol with high yields. Due to challenges associated with IVOC detection and quantification, IVOC emissions remain poorly understood at present. Here, we describe measurements of the magnitude and composition of IVOC emissions from a medium-duty diesel engine. Measurements are made on an engine dynamometer and utilize a new mass-spectrometric instrument to characterize the load dependence of the emissions in near-real-time. Results from steady-state engine operation indicate that IVOC emissions are highly dependent on engine power, with highest emissions at engine idle and low-load operation (≤25% maximum rated power) with a chemical composition dominated by saturated hydrocarbon species. Results suggest that unburned fuel components are the dominant IVOCs emitted at low loads. As engine load increases, IVOC emissions decline rapidly and become increasingly characterized by unsaturated hydrocarbons and oxygenated organics, newly formed from incomplete combustion processes at elevated engine temperatures and pressures. Engine transients, including a cold-start ignition and engine acceleration, show IVOC emission profiles that are different in amount or composition compared to steady-state combustion, underscoring the utility of characterizing IVOC emissions with high time resolution across realistic engine operating conditions. We find possible evidence for IVOC losses on unheated dilution and sampling surfaces, which need to be carefully accounted for in IVOC emission studies.

  2. Modeling the selective catalytic reduction of NOx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases

    International Nuclear Information System (INIS)

    Yun, Byoung Kyu; Kim, Man Young

    2013-01-01

    A numerical simulation for prediction of NO X conversion over a commercial V 2 O 5 catalyst with NH 3 as a reductant was performed for a heavy duty diesel engine applications. The chemical behaviors of the SCR reactor are described by using the global NO X kinetics including standard, fast, and NH 3 oxidation reactions with the Langmuir–Hinshelwood (LH) mechanism incorporated into the commercial Boost code. After introducing mathematical models for the SCR reaction with specific reaction parameters, the effects of various parameters such as space velocities, the O 2 , H 2 O, NO 2 , and NH 3 concentrations on the NOx conversion are thoroughly studied and validated by comparing with the experimental data available in the literature. It is found that NO X conversion increases with decreasing space velocity, H 2 O concentration, and NH 3 /NO X ratio, and increasing O 2 concentration and NO 2 /NO X ratio. The study shows that not only is the present approach adopted is flexible in treating performance of the commercial V 2 O 5 based SCR catalyst, it is also accurate and efficient for the prediction of NO X conversion in diesel exhaust environments. - Highlights: ► To find the reaction parameters for LH mechanism over a commercial V2O5 catalyst. ► To investigate the effects of various parameters on the SCR NO X conversion. ► To present benchmark solutions on SCR behavior with diesel exhaust environments.

  3. Research on Fuel Consumption of Hybrid Bulldozer under Typical Duty Cycle

    Science.gov (United States)

    Song, Qiang; Wang, Wen-Jun; Jia, Chao; Yao, You-Liang; Wang, Sheng-Bo

    The hybrid drive bulldozer adopts a dual-motor independent drive system with engine-generator assembly as its power source. The mathematical model of the whole system is constructed on the software platform of MATLAB/Simulink. And then according to the velocity data gained from a real test experiment, a typical duty cycle is build up. Finally the fuel consumption of the bulldozer is calculated under this duty-cycle. Simulation results show that, compared with the traditional mechanical one, the hybrid electric drive system can save fuel up to 16% and therefore indicates great potential for lifting up fuel economy.

  4. Proceedings of the 1996 Windsor workshop on alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  5. The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine.

    Science.gov (United States)

    Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée

    2017-11-01

    Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy

    2015-01-01

     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  7. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Jager, de A.G.; Willems, F.P.T.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  8. Fleet average NOx emission performance of 2004 model year light-duty vehicles, light-duty trucks and medium-duty passenger vehicles

    International Nuclear Information System (INIS)

    2006-05-01

    The On-Road Vehicle and Engine Emission Regulations came into effect on January 1, 2004. The regulations introduced more stringent national emission standards for on-road vehicles and engines, and also required that companies submit reports containing information concerning the company's fleets. This report presented a summary of the regulatory requirements relating to nitric oxide (NO x ) fleet average emissions for light-duty vehicles, light-duty trucks, and medium-duty passenger vehicles under the new regulations. The effectiveness of the Canadian fleet average NO x emission program at achieving environmental performance objectives was also evaluated. A summary of the fleet average NO x emission performance of individual companies was presented, as well as the overall Canadian fleet average of the 2004 model year based on data submitted by companies in their end of model year reports. A total of 21 companies submitted reports covering 2004 model year vehicles in 10 test groups, comprising 1,350,719 vehicles of the 2004 model year manufactured or imported for the purpose of sale in Canada. The average NO x value for the entire Canadian LDV/LDT fleet was 0.2016463 grams per mile. The average NO x values for the entire Canadian HLDT/MDPV fleet was 0.321976 grams per mile. It was concluded that the NO x values for both fleets were consistent with the environmental performance objectives of the regulations for the 2004 model year. 9 tabs

  9. A RCCI operational limits assessment in a medium duty compression ignition engine using an adapted compression ratio

    International Nuclear Information System (INIS)

    Benajes, Jesús; Pastor, José V.; García, Antonio; Boronat, Vicente

    2016-01-01

    Highlights: • RCCI with CR 12.75 reaches up to 80% load fulfilling mechanical limits. • Ultra-low levels in NOx and soot emissions are obtained in the whole engine map. • Ultra-high levels of CO and uHC have been measured overall at low load. • RCCI improves fuel consumption from 25% to 80% engine loads comparing with CDC. - Abstract: Reactivity Controlled Compression Ignition concept offers an ultra-low nitrogen oxide and soot emissions with a high thermal efficiency. This work investigates the capabilities of this low temperature combustion concept to work on the whole map of a medium duty engine proposing strategies to solve its main challenges. In this sense, an extension to high loads of the concept without exceeding mechanical stress as well as a mitigation of carbon oxide and unburned hydrocarbons emissions at low load together with a fuel consumption penalty have been identified as main Reactivity Controlled Compression Ignition drawbacks. For this purpose, a single cylinder engine derived from commercial four cylinders medium-duty engine with an adapted compression ratio of 12.75 is used. Commercial 95 octane gasoline was used as a low reactivity fuel and commercial diesel as a high reactivity fuel. Thus, the study consists of two different parts. Firstly, the work is focused on the development and evaluation of an engine map trying to achieve the maximum possible load without exceeding a pressure rise rate of 15 bar/CAD. The second part holds on improving fuel consumption and carbon oxide and unburned hydrocarbons emissions at low load. Results suggest that it is possible to achieve up to 80% of nominal conventional diesel combustion engine load without overpassing the constraints of pressure rise rate (below 15 bar/CAD) and maximum pressure peak (below 190 bar) while obtaining ultra-low levels of nitrogen oxide and soot emissions. Regarding low load challenges, it has developed a particular methodology sweeping the gasoline-diesel blend together

  10. Oxygenated palm biodiesel: Ignition, combustion and emissions quantification in a light-duty diesel engine

    International Nuclear Information System (INIS)

    Chong, Cheng Tung; Ng, Jo-Han; Ahmad, Solehin; Rajoo, Srithar

    2015-01-01

    Highlights: • Diesel engine test using palm biodiesel and diesel at varying speed and load. • Palm biodiesel shows better performance at late stage of cycle evolution. • Oxygen in palm biodiesel fuel improves local combustion at late stage of combustion. • Emissions of NO are lower at low and medium operating speed for palm biodiesel. • Formulation of trend guide for performance and emissions characteristics for light-duty diesel engines. - Abstract: This paper presents an investigation of oxygenated neat palm biodiesel in a direct injection single cylinder diesel engine in terms of ignition, combustion and emissions characteristics. Conventional non-oxygenated diesel fuel is compared as baseline. The engine testing is performed between the operating speed of 2000–3000 rpm and load of up to 3 bar of brake mean effective pressure. From it, a total of 50 experiment cases are tested to form a comprehensive operational speed-load contour map for ignition and combustion; while various engine-out emissions such as NO, CO, UHCs and CO 2 are compared based on fuel type-speed combinations. The ignition and combustion evolution contour maps quantify the absolute ignition delay period and elucidate the difference between that of palm biodiesel and fossil diesel. Although diesel has shorter ignition delay period by up to 0.6 CAD at 3000 rpm and burns more rapidly at the start of combustion, combustion of palm biodiesel accelerates during the mid-combustion phase and overtakes diesel in the cumulative heat release rates (HRR) prior to the 90% cumulative HRR. This can be attributed to the oxygen contained in palm biodiesel assisting in localized regions of combustion. In terms of performance, the oxygenated nature of palm biodiesel provided mixed performances with improved thermal efficiency and increased brake specific fuel consumption, due to the improved combustion and lower calorific values, respectively. Emission measurements show that NO for palm biodiesel is

  11. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.

  12. Ventajas del uso de la inyección electrónica para vehículos diesel pesados en las condiciones de Cuba. // Advantages of electronic injection for diesel engines in heavy duty equipment.

    Directory of Open Access Journals (Sweden)

    J. Luis Reyes González

    2002-09-01

    Full Text Available Tomando en cuenta la importancia que tiene para Cuba el obtener una eficiencia energética elevada en los motores decombustión interna, al igual que el control de las emanaciones de gases tóxicos en los mismos, se realizó este trabajo dondese demuestran las ventajas tanto en el orden económico como ecológico de los motores diesel con mando electrónico paraequipos pesados empleados en la transportación de carga por camiones en la empresa Cubalse.Por medio de métodos experimentales y estadísticos, se obtuvo el consumo de combustible y la humosidad en motores coninyección electrónica (Detroit y en motores que utilizan los métodos tradicionales (Cummins. Los rresultadosdemostraron la superioridad en ambos aspectos de los motores con inyección electrónica.Se realizó una valoración del tiempo de amortización de la inversión inicial necesaria para utilizar en el parque existenteesta novedosa técnica de la inyección electrónica.Palabras claves: Eficiencia energética, inyección electrónica, consumo de combustible, motores de combustióninterna.__________________________________________________________________Abstract.Taking into consideration the importance of achieving a high efficiency in the internal combustion engines and emissioncontrol of the exhaust gases, this paper deals with economical and environmental advantages of the electronic controlleddiesel engines in heavy-duty trucks, which are used by Cubalse in the transportation. The fuel consumption and the sootemission in Detroit motors (with electronic injection system and Cummins (with traditional system, were studied usingstatistic and experimental methods, and the Detroit proved to be superior in both parameters. The pay back time for theinvestment needed to change the systems of all the existent trucks were calculatedKey words: Energetic efficiency, electronic injection, fuel consumption, internal combustion engine.

  13. Natural gas application in light- and heavy-duty vehicles in Brazil: panorama, technological routes and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos, Cordeiro de Melo, Tadeu Cavalcante; Leao, Raphael Riemke de Campos Cesar; Iaccarino, Fernando Aniello; Figueiredo Moreira, Marcia

    2007-07-01

    The Brazilian CNG light-duty vehicle fleet has currently reached more than 1,300,000 units. This growth increased in the late 1990's, when CNG was approved for use in passenger cars. In 2001, the IBAMA (Brazilian Institute for Environment and Natural Renewable Resources), concerned with this uncontrolled growth, published CONAMA (National Environmental Council, controlled by IBAMA) resolution 291, which establishes rules for CNG conversion kit environmental certification.This paper discusses the technological challenges for CNG-converted vehicles to comply with PROCONVE (Brazilian Program for Automotive Air Pollution Control) emission limits. In the 1980's, because of the oil crisis, Natural Gas (NG) emerged as a fuel with great potential to replace Diesel in heavy-duty vehicles. Some experiences were conducted for partial conversions from Diesel to NG (Diesel-gas). Other experiences using NG Otto Cycle buses were conducted in some cities, but have not expanded. Another technological route called 'Ottolization' (Diesel to Otto cycle convertion) appeared recently. Population increase and the great growth in vehicle fleet promote a constant concern with automotive emissions. More restrictive emission limits, high international oil prices, and the strategic interest in replacing Diesel imports, altogether form an interesting scenario for CNG propagation to public transportation in the main Brazilian metropolises.

  14. Occurrence of lead and zinc in soils and plants at the margins of a highway with heavy traffic

    Directory of Open Access Journals (Sweden)

    Luis Celso da Silva

    2013-12-01

    Full Text Available The occurrences of lead (Pb and zinc (Zn were determined in soil and grasses collected at three points on stretch of 143 km of the Presidente Dutra highway between the states of São Paulo and Rio de Janeiro. The soil and plant samples were collected by sampling transections perpendicular to the highway at distances of 0, 10, 20, 35 and 50 m from the highway edge. Concentrations of Pb and Zn were higher in samples closest to the highway edge, decreasing with increasing distance from the road. There were positive correlation coefficients between the metal concentration in the soil and the metal concentration in the plant. Concentrations of Pb found in soil samples were below the reference value established for the soil quality in the state of São Paulo, while for Zn, up to 10 m away from the highway edge, the concentration was higher than the reference value.

  15. Understanding the role of low reactivity fuel stratification in a dual fuel RCCI engine – A simulation study

    NARCIS (Netherlands)

    Mikulski, M.; Bekdemir, C.

    2017-01-01

    Natural gas - diesel, Reactivity Controlled Compression Ignition (RCCI) is currently one of the most promising combustion strategies for the next generation heavy-duty engines. A major issue to be addressed for this dual fuel concept to become practically applicable is its low combustion efficiency

  16. Highway Safety Program Manual: Volume 8: Alcohol in Relation to Highway Safety.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    Volume 8 of the 19-volume Highway Safety Program Manual (which provides guidance to State and local governments on preferred highway safety practices) concentrates on alcohol in relation to highway safety. The purpose and objectives of the alcohol program are outlined. Federal authority in the area of highway safety and general policies regarding…

  17. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust

    International Nuclear Information System (INIS)

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I.; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-01

    Highlights: ► The effects of waste cooking oil biodiesel, engine load and DOC + DPF on nonvolatile particle size distributions in HDDE exhaust. ► Increasing biodiesel blends cause slight decreases in the total particle number concentrations and negligible changes in size distributions. ► Increasing load results in modest increases in both the total particle number concentrations and sizes. ► The effects of semivolatile materials are strongest at idle, during which nonvolatile cores TOT ) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N TOT and mode diameters increase modestly with increasing load of above 25%. The N TOT at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC + DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N TOT post the DOC + DPF are comparable to typical ambient levels of ∼10 4 cm −3 . This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the aftertreatment is highly favored.

  18. Bioindication of the heavy metals environmental pollution (on the example of highway «Kyiv-Warsaw»

    Directory of Open Access Journals (Sweden)

    S. S. Voloschynska

    2008-04-01

    Full Text Available The state of pollution of natural environment along the highway «Kyiv – Warsaw» is analysed. It is indicated on the variety of plants’ species and on the basic pollutant of the environment. The peculiarities of Pb distribution in the soil and Pb concentration in the vegetative organs of predominant vegetation are lighted up. Dynamics of the toxicant distribution in crops is presented. The comparative analysis of pigments’ contents in the plants’ laminas was carried out.

  19. Effect of biodiesel on the performance and combustion parameters of a turbocharged compression ignition engine

    International Nuclear Information System (INIS)

    Shah, A.N.; Baluch, A.H.; Chao, H.

    2009-01-01

    Direct injection compression ignition engines have proved to be the best option in heavy duty applications like transportation and power generation ,but rapid depleting sources of conventional fossil fuels, their rising prices and ever increasing environmental issues are the major concerns. Alternative fuels, particularly bio fuels are receiving increasing attention during the last few years. Biodiesel has already been commercialized in the transport sector. In the present work, a turbocharged intercooled and DI diesel engine has been alternatively fuelled with biodiesel and its 20% blend with commercial diesel. The experimental results show that BSFC, maximum combustion pressure and start of injection angle increase; on the other hand BSEC, maximum rate of pressure rise, ignition lag and premixed combustion amount decrease however HRR duration remains almost unaffected in the case of biodiesel as compared to commercial diesel. (author)

  20. 40 CFR Appendix II to Part 1054 - Duty Cycles for Laboratory Testing

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Duty Cycles for Laboratory Testing II.... 1054, App. II Appendix II to Part 1054—Duty Cycles for Laboratory Testing (a) Test handheld engines with the following steady-state duty cycle: G3 mode No. Engine speed a Torque(percent) b Weighting...

  1. Diesel retrofit assessment for NYS DOT to retrofit its existing engine fleet.

    Science.gov (United States)

    2010-08-01

    The NYS DEC has required the use of retrofit technologies for various state agency, state public authority, and regional public authority heavy duty vehicles, as well as heavy duty vehicles used on behalf of such agencies and authorities. This report...

  2. Experimental study on filtration and continuous regeneration of a particulate filter system for heavy-duty diesel engines.

    Science.gov (United States)

    Tang, Tao; Zhang, Jun; Cao, Dongxiao; Shuai, Shijin; Zhao, Yanguang

    2014-12-01

    This study investigated the filtration and continuous regeneration of a particulate filter system on an engine test bench, consisting of a diesel oxidation catalyst (DOC) and a catalyzed diesel particulate filter (CDPF). Both the DOC and the CDPF led to a high conversion of NO to NO2 for continuous regeneration. The filtration efficiency on solid particle number (SPN) was close to 100%. The post-CDPF particles were mainly in accumulation mode. The downstream SPN was sensitively influenced by the variation of the soot loading. This phenomenon provides a method for determining the balance point temperature by measuring the trend of SPN concentration. Copyright © 2014. Published by Elsevier B.V.

  3. EDRXF measurements of heavy elements in soil samples from some potentially polluted sites in zambia

    International Nuclear Information System (INIS)

    Hayumbu, P.; Phiri, L.K.; Mambo, A.; Sokotela, S.B.

    2001-01-01

    A survey of heavy element levels in top soils collected around four industrial plants and along four highway stretches demonstrated that there was significant pollution only around an abandoned Pb/Zn mine. Sample collection in a rectangular grid encompassing each source sought to depict the spatial extent of pollution. Ascertaining levels of heavy elements in potentially polluted soils in urban areas of Zambia and along major highways was deemed desirable because it is common practice to grow maize and vegetables in lots adjacent to accessible industrial sites and highways. Pb is a heavy element of interest for all sampled sites whose distribution at the abandoned mine ranged from 13 to 2028 ppm

  4. Development and analysis of a variable position thermostat for smart cooling system of a light duty diesel vehicles and engine emissions assessment during NEDC

    International Nuclear Information System (INIS)

    Mohamed, Eid S.

    2016-01-01

    Highlights: • A new concept of the variable position electromagnetic thermostat in MCS is proposed. • A series of experiments were conducted on a light duty diesel vehicle operated over the NEDC test. • A comparative study was done on emission characteristics of the MCS and the conventional cooling system. • Engine cold start and steady-state coolant flow rate and emissions are presented. • The effect of MCS on engine accumulation FC and emissions over NEDC are evaluated. - Graphical Abstract: Display Omitted - Abstract: Smart cooling control systems for IC engines can better regulate the combustion process and heat, a variable position thermostat and electric coolant pumps (EWP) for IC engines are under development by a number of researchers. However, the aim of this study is to assess the performance of a variable position electromagnetic thermostat (VPEMT) to provide more flexible control of the engine temperature and coolant mass flow rate of modification cooling system (MCS). The measurement procedure was applied to two phases under new European drive cycle (NEDC) on a chassis dynamometer, with conventional cooling system (baseline engine) and MCS of a light duty diesel engine. The experimental results revealed that MCS using a VPEMT and EWP contributed to a reduction of engine warm-up period. As a consequence, important reduces in coolant flow rate and most exhaust emission compounds (THC, CO_2, CO and smoke opacity) were obtained. In contrast, NOx emission was observed to increase in these conditions. Comparative results are given for various engine speeds during a cold start and engine fully warm-up tests when the engine was equipped by conventional cooling system and MCS operation under NEDC, revealing the effect of MCS on engine fuel consumption and exhaust emissions.

  5. 40 CFR 1048.510 - What transient duty cycles apply for laboratory testing?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What transient duty cycles apply for... Procedures § 1048.510 What transient duty cycles apply for laboratory testing? (a) Starting with the 2007 model year, measure emissions by testing the engine on a dynamometer with the duty cycle described in...

  6. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  7. 78 FR 23630 - Notice of Final Federal Agency Actions on State Highway 99 (Segment C) in Texas

    Science.gov (United States)

    2013-04-19

    ... INFORMATION CONTACT: Mr. Gregory Punske, P.E., District Engineer, District B (South), Federal Highway...)]; Archeological and Historic Preservation Act [16 U.S.C. 469-469(c)]. 6. Social and Economic: Civil Rights Act of... Engineer. [FR Doc. 2013-08853 Filed 4-18-13; 8:45 am] BILLING CODE 4910-RY-P ...

  8. Highway traffic simulation on multi-processor computers

    Energy Technology Data Exchange (ETDEWEB)

    Hanebutte, U.R.; Doss, E.; Tentner, A.M.

    1997-04-01

    A computer model has been developed to simulate highway traffic for various degrees of automation with a high level of fidelity in regard to driver control and vehicle characteristics. The model simulates vehicle maneuvering in a multi-lane highway traffic system and allows for the use of Intelligent Transportation System (ITS) technologies such as an Automated Intelligent Cruise Control (AICC). The structure of the computer model facilitates the use of parallel computers for the highway traffic simulation, since domain decomposition techniques can be applied in a straight forward fashion. In this model, the highway system (i.e. a network of road links) is divided into multiple regions; each region is controlled by a separate link manager residing on an individual processor. A graphical user interface augments the computer model kv allowing for real-time interactive simulation control and interaction with each individual vehicle and road side infrastructure element on each link. Average speed and traffic volume data is collected at user-specified loop detector locations. Further, as a measure of safety the so- called Time To Collision (TTC) parameter is being recorded.

  9. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory.

    Science.gov (United States)

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C

    2011-01-01

    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

  10. LP compressor blade vibration characteristics at starting conditions of a 100 MW heavy-duty gas turbine

    International Nuclear Information System (INIS)

    Lee, An Sung; Vedichtchev, Alexandre F.

    2004-01-01

    In this paper are presented the blade vibration characteristics at the starting conditions of the low pressure multistage axial compressor of heavy-duty 100 MW gas turbine. Vibration data have been collected through strain gauges during aerodynamic tests of the model compressor. The influences of operating modes at the starting conditions are investigated upon the compressor blade vibrations. The exciting mechanisms and features of blade vibrations are investigated at the surge, rotating stall, and buffeting flutter. The influences of operating modes upon blade dynamic stresses are investigated for the first and second stages. It is shown that a high dynamic stress peak of 120 MPa can occur in the first stage blades due to resonances with stall cell excitations or with inlet strut wake excitations at the stalled conditions

  11. Multiple logistic regression model of signalling practices of drivers on urban highways

    Science.gov (United States)

    Puan, Othman Che; Ibrahim, Muttaka Na'iya; Zakaria, Rozana

    2015-05-01

    Giving signal is a way of informing other road users, especially to the conflicting drivers, the intention of a driver to change his/her movement course. Other users are exposed to hazard situation and risks of accident if the driver who changes his/her course failed to give signal as required. This paper describes the application of logistic regression model for the analysis of driver's signalling practices on multilane highways based on possible factors affecting driver's decision such as driver's gender, vehicle's type, vehicle's speed and traffic flow intensity. Data pertaining to the analysis of such factors were collected manually. More than 2000 drivers who have performed a lane changing manoeuvre while driving on two sections of multilane highways were observed. Finding from the study shows that relatively a large proportion of drivers failed to give any signals when changing lane. The result of the analysis indicates that although the proportion of the drivers who failed to provide signal prior to lane changing manoeuvre is high, the degree of compliances of the female drivers is better than the male drivers. A binary logistic model was developed to represent the probability of a driver to provide signal indication prior to lane changing manoeuvre. The model indicates that driver's gender, type of vehicle's driven, speed of vehicle and traffic volume influence the driver's decision to provide a signal indication prior to a lane changing manoeuvre on a multilane urban highway. In terms of types of vehicles driven, about 97% of motorcyclists failed to comply with the signal indication requirement. The proportion of non-compliance drivers under stable traffic flow conditions is much higher than when the flow is relatively heavy. This is consistent with the data which indicates a high degree of non-compliances when the average speed of the traffic stream is relatively high.

  12. Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2017-02-01

    Full Text Available Given that power-split transmission (PST is considered to be a major powertrain technology for hybrid heavy-duty vehicles (HDVs, the development and application of PST in the HDVs make mode shift control an essential aspect of powertrain system design. This paper presents a shift schedule design and torque control strategy for a hybrid HDV with PST during mode shift, intended to reduce the output torque variation and improve the shift quality (SQ. Firstly, detailed dynamic models of the hybrid HDV are developed to analyze the mode shift characteristics. Then, a gear shift schedule calculation method including a dynamic shift schedule and an economic shift schedule is provided. Based on the dynamic models and the designed shift schedule, a mode shift performance simulator is built using MATLAB/Simulink, and simulations are carried out. Through analysis of the dynamic equations, it is seen that the inertia torques of the motor–generator lead to the occurrence of transition torque. To avoid the unwanted transition torque, we use a mode shift control strategy that coordinates the motor–generator torque to compensate for the transition torque. The simulation and experimental results demonstrate that the output torque variation during mode shift is effectively reduced by the proposed control strategy, thereby improving the SQ.

  13. 40 CFR 86.090-2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... methanol-fueled diesel light-duty vehicle production for those engine families being included in the... 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... standard, for a manufacturer which elects to average light-duty vehicles and light-duty trucks together in...

  14. Experimental demonstration of RCCI in heavy-duty engines using diesel and natural gas

    NARCIS (Netherlands)

    Doosje, E.; Willems, F.P.T.; Baert, R.S.G.

    2014-01-01

    Premixed combustion concepts like PCCI and RCCI have attracted much attention, since these concepts offer possibilities to reduce engine out emissions to a low level, while still achieving good efficiency. Most RCCI studies use a combination of a high-cetane fuel like diesel, and gasoline as

  15. Experimental Demonstration of RCCI in Heavy-Duty Engines using Diesel and Natural Gas

    NARCIS (Netherlands)

    Doosje, E.; Willems, F.P.T.; Baert, R.S.G.

    2014-01-01

    Premixed combustion concepts like PCCI and RCCI have attracted much attention, since these concepts offer possibilities to reduce engine out emissions to a low level, while still achieving good efficiency. Most RCCI studies use a combination of a high-cetane fuel like diesel, and gasoline as

  16. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    Directory of Open Access Journals (Sweden)

    Jennifer L. Wood

    2016-06-01

    Full Text Available The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediation strategy investigated for remediating heavy-metal-contaminated soils. Although the efficiency of phytoextraction remains a limiting feature of the technology, there are numerous reports that soil microorganisms can improve rates of heavy metal extraction.This review highlights the unique challenges faced when remediating heavy-metal-contaminated soils as compared to static aquatic systems and suggests new strategies for using microorganisms to improve phytoextraction. We compare how microorganisms are used in soil bioremediation (i.e. phytoextraction and water bioremediation processes, discussing how the engineering of microbial communities, used in water remediation, could be applied to phytoextraction. We briefly outline possible approaches for the engineering of soil communities to improve phytoextraction either by mobilizing metals in the rhizosphere of the plant or by promoting plant growth to increase the root-surface area available for uptake of heavy metals. We highlight the technological advances that make this research direction possible and how these technologies could be employed in future research.

  17. Retrospective Benefit-Cost Evaluation of U.S. DOE Vehicle Combustion Engine R&D Investments: Impacts of a Cluster of Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Link, Albert N. [Univ. of North Carolina, Greensboro, NC (United States)

    2010-05-01

    Advanced Combustion Engine R&D (ACE R&D) is one of the subprograms within DOE's Vehicle Technologies Office. The ACE subprogram's R&D is conducted in cooperation with the DOE Combustion Research Facility (CRF). This report summarizes the findings from a retrospective study of the net benefits to society from investments by DOE (both EERE and cooperative CRF efforts) in laser diagnostic and optical engine technologies and combustion modeling for heavy-duty diesel engines.

  18. 40 CFR 86.1432 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle preparation. 86.1432 Section...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty...

  19. Highway three-dimensional modeling based on Vehicle-borne laser data

    International Nuclear Information System (INIS)

    Weili, Sun; Ruofei, Zhong; Jiangxia, Wei; Fanyang, Zeng

    2014-01-01

    The of Vehicle-borne LiDAR (Light Detection And Ranging) scanning technology is an efficiently practical approach on the acquisition and application of 3D information and its geographic elements of highway(including road surface, rails, attached facilities, slopes, ditches, etc.). The acquired information is significant on many aspects such as road maintenance, reconstruction, survey, landscape design, visualized modelling and highway hazard supervision and prevention. The initial laser data cannot be directly used to construct highway 3D model, operations of pre-processing are necessary. This paper presented a set of procedure about pre-processing laser data and constructing TIN (Triangle Irregular Net) model of highway

  20. Crash prediction model for two-lane rural highways in the Ashanti region of Ghana

    Directory of Open Access Journals (Sweden)

    Williams Ackaah

    2011-07-01

    Full Text Available Crash Prediction Models (CPMs have been used elsewhere as a useful tool by road Engineers and Planners. There is however no study on the prediction of road traffic crashes on rural highways in Ghana. The main objective of the study was to develop a prediction model for road traffic crashes occurring on the rural sections of the highways in the Ashanti Region of Ghana. The model was developed for all injury crashes occurring on selected rural highways in the Region over the three (3 year period 2005–2007. Data was collected from 76 rural highway sections and each section varied between 0.8 km and 6.7 km. Data collected for each section comprised injury crash data, traffic flow and speed data, and roadway characteristics and road geometry data. The Generalised Linear Model (GLM with Negative Binomial (NB error structure was used to estimate the model parameters. Two types of models, the ‘core’ model which included key exposure variables only and the ‘full’ model which included a wider range of variables were developed. The results show that traffic flow, highway segment length, junction density, terrain type and presence of a village settlement within road segments were found to be statistically significant explanatory variables (p<0.05 for crash involvement. Adding one junction to a 1 km section of road segment was found to increase injury crashes by 32.0% and sections which had a village settlement within them were found to increase injury crashes by 60.3% compared with segments with no settlements. The model explained 61.2% of the systematic variation in the data. Road and Traffic Engineers and Planners can apply the crash prediction model as a tool in safety improvement works and in the design of safer roads. It is recommended that to improve safety, highways should be designed to by-pass village settlements and that the number of junctions on a highway should be limited to carefully designed ones.

  1. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  2. Energy harvesting on highway bridges.

    Science.gov (United States)

    2011-01-01

    A concept for harvesting energy from the traffic-induced loadings on a highway bridge using piezoelectric : materials to generate electricity was explored through the prototype stage. A total of sixteen lead-zirconate : titanate (PZT) Type 5A piezoel...

  3. Can we close the long term mass balanceequation for pollutants in highway ponds?

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2006-01-01

    The paper discusses the prospects of finding the long term mass balance on basis of short term simulations. A step in this process is to see to which degree the mass balance equation can be closed by measurements. Accordingly the total accumulation of heavy metals and PAH's in 8 Danish detention...... ponds only receiving runoff from highways have been measured. The result shows that the incoming mass of heavy metals from short term runoff events is accumulated. This is not observable in the same magnitude for the toxic organic compounds. The results also show that the accumulation rates...

  4. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

    International Nuclear Information System (INIS)

    Godoi, Ricardo H.M.; Polezer, Gabriela; Borillo, Guilherme C.; Brown, Andrew; Valebona, Fabio B.; Silva, Thiago O.B.; Ingberman, Aline B.G.; Nalin, Marcelo; Yamamoto, Carlos I.; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A.; Marchi, Mary Rosa R. de; Saldiva, Paulo H.N.; Pauliquevis, Theotonio; Godoi, Ana Flavia L.

    2016-01-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP"E"S"R) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP"E"S"R results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm"−"1 and 1600 cm"−"1 indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. - Highlights: • PM emission from biodiesel burning may be more harmful to human health than diesel. • Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer • Electron Spin Resonance (ESR) to access the oxidative potential of PM emission

  5. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

    Energy Technology Data Exchange (ETDEWEB)

    Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Polezer, Gabriela; Borillo, Guilherme C. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Brown, Andrew [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Valebona, Fabio B.; Silva, Thiago O.B.; Ingberman, Aline B.G. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Nalin, Marcelo [LAVIE - Institute of Chemistry, São Paulo State University - UNESP, Araraquara (Brazil); Yamamoto, Carlos I. [Chemical Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Potgieter-Vermaak, Sanja [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Penteado Neto, Renato A. [Vehicle Emissions Laboratory, Institute of Technology for Development (LACTEC), Curitiba, PR (Brazil); Marchi, Mary Rosa R. de [Analytical Chemistry Department, Institute of Chemistry, São Paulo State University - UNESP, Araraquara (Brazil); Saldiva, Paulo H.N. [Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo (Brazil); Pauliquevis, Theotonio [Department of Natural and Earth Sciences, Federal University of São Paulo, Diadema (Brazil); Godoi, Ana Flavia L. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil)

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP{sup ESR}) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP{sup ESR} results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm{sup −1} and 1600 cm{sup −1} indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. - Highlights: • PM emission from biodiesel burning may be more harmful to human health than diesel. • Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer • Electron Spin Resonance (ESR) to access the oxidative potential of

  6. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend.

    Science.gov (United States)

    Godoi, Ricardo H M; Polezer, Gabriela; Borillo, Guilherme C; Brown, Andrew; Valebona, Fabio B; Silva, Thiago O B; Ingberman, Aline B G; Nalin, Marcelo; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A; de Marchi, Mary Rosa R; Saldiva, Paulo H N; Pauliquevis, Theotonio; Godoi, Ana Flavia L

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP(ESR)) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP(ESR) results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100cm(-1) and 1600cm(-1) indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. 40 CFR 86.085-2 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for... standard. PRODLDT represents the manufacturer's total diesel light-duty truck production for those engine... special purpose vehicles such as small dump trucks, and trash compactor trucks. Typical applications would...

  8. Review of smoothing methods for enhancement of noisy data from heavy-duty LHD mining machines

    Science.gov (United States)

    Wodecki, Jacek; Michalak, Anna; Stefaniak, Paweł

    2018-01-01

    Appropriate analysis of data measured on heavy-duty mining machines is essential for processes monitoring, management and optimization. Some particular classes of machines, for example LHD (load-haul-dump) machines, hauling trucks, drilling/bolting machines etc. are characterized with cyclicity of operations. In those cases, identification of cycles and their segments or in other words - simply data segmentation is a key to evaluate their performance, which may be very useful from the management point of view, for example leading to introducing optimization to the process. However, in many cases such raw signals are contaminated with various artifacts, and in general are expected to be very noisy, which makes the segmentation task very difficult or even impossible. To deal with that problem, there is a need for efficient smoothing methods that will allow to retain informative trends in the signals while disregarding noises and other undesired non-deterministic components. In this paper authors present a review of various approaches to diagnostic data smoothing. Described methods can be used in a fast and efficient way, effectively cleaning the signals while preserving informative deterministic behaviour, that is a crucial to precise segmentation and other approaches to industrial data analysis.

  9. Threshold Research on Highway Length under Typical Landscape Patterns Based on Drivers’ Physiological Performance

    Directory of Open Access Journals (Sweden)

    Xia Zhao

    2015-01-01

    Full Text Available The appropriately landscaped highway scenes may not only help improve road safety and comfort but also help protect ecological environment. Yet there is very little research data on highway length threshold with consideration of distinctive landscape patterns. Against this backdrop, the paper aims to quantitatively analyze highway landscape’s effect on driving behavior based on drivers’ physiological performance and quantify highway length thresholds under three typical landscape patterns, namely, “open,” “semiopen,” and “vertical” ones. The statistical analysis was based on data collected in a driving simulator and electrocardiograph. Specifically, vehicle-related data, ECG data, and supplemental subjective stress perception were collected. The study extracted two characteristic indices, lane deviation and LF/HF, and extrapolated the drivers’ U-shaped physiological response to landscape patterns. Models on highway length were built based on LF/HF’s variation trend with highway length. The results revealed that the theoretical highway length threshold tended to increase when the landscape pattern was switched to open, semiopen, and vertical ones. And the reliability and accuracy of the results were validated by questionnaires and field operational tests. Findings from this research will assist practitioners in taking active environmental countermeasures pertaining to different roadside landscape patterns.

  10. 40 CFR 86.152-98 - Vehicle preparation; refueling test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation; refueling test... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle...

  11. 40 CFR 86.1807-01 - Vehicle labeling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle labeling. 86.1807-01 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  12. 40 CFR 86.1807-07 - Vehicle labeling.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Vehicle labeling. 86.1807-07 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks...

  13. 40 CFR 86.232-94 - Vehicle preconditioning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preconditioning. 86.232-94... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...

  14. Residential satisfaction close to highways : The impact of accessibility, nuisances and highway adjustment projects

    NARCIS (Netherlands)

    Hamersma, Marije; Tillema, Taede; Sussman, Joseph; Arts, Jos

    In this paper we focus on gaining insight into the residential satisfaction of households near highways, based on survey data collected among 1225 respondents in the Netherlands living within 1000 m from a highway. Ordinal regression was used to study the impact of highway externalities on

  15. 76 FR 45741 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Diesel-Powered Motor...

    Science.gov (United States)

    2011-08-01

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Diesel-Powered Motor Vehicle Idling Act AGENCY... the Commonwealth's Diesel-Powered Motor Vehicle Idling Act (Act 124 of 2008, or simply Act 124) into... allowable time that heavy-duty, commercial highway diesel vehicles of over 10,000 pounds gross vehicle...

  16. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  17. Alaska Highway bibliography, 3rd edition

    DEFF Research Database (Denmark)

    Prange, Laurie

    Since the early 20th century various schemes were considered for the construction of roads, trails or railways 71 to link the Yukon, northern British Columbia and Alaska to the “outside.” These schemes were motivated by economic interests, including mining, lumber and tourism concerns. During...... the 1920s and 1930s a small but vocal group of “builders” began to campaign for a highway, either a coastal or inland route, to improve the northwest’s economic base. With the impending threat of war in the late 1930s, there was an increasing awareness by the American and Canadian governments...... increasing military needs. The unexpected bombing of Pearl Harbour in December 1941 stimulated interest in the construction of the Alaska Highway by the American government. The U.S. Army Corps of Engineers selected a route based on the location of the NWSR airfields and the military needs for an alternative...

  18. Mobile Source Emissions Regulatory Compliance Data Inventory

    Science.gov (United States)

    The Mobile Source Emissions Regulatory Compliance Data Inventory data asset contains measured summary compliance information on light-duty, heavy-duty, and non-road engine manufacturers by model, as well as fee payment data required by Title II of the 1990 Amendments to the Clean Air Act, to certify engines for sale in the U.S. and collect compliance certification fees. Data submitted by manufacturers falls into 12 industries: Heavy Duty Compression Ignition, Marine Spark Ignition, Heavy Duty Spark Ignition, Marine Compression Ignition, Snowmobile, Motorcycle & ATV, Non-Road Compression Ignition, Non-Road Small Spark Ignition, Light-Duty, Evaporative Components, Non-Road Large Spark Ignition, and Locomotive. Title II also requires the collection of fees from manufacturers submitting for compliance certification. Manufacturers submit data on an annual basis, to document engine model changes for certification. Manufacturers also submit compliance information on already certified in-use vehicles randomly selected by the EPA (1) year into their life and (4) years into their life to ensure that emissions systems continue to function appropriately over time.The EPA performs targeted confirmatory tests on approximately 15% of vehicles submitted for certification. Confirmatory data on engines is associated with its corresponding submission data to verify the accuracy of manufacturer submission beyond standard business rules.Section 209 of the 1990 Amendments to the Clea

  19. The study for installing noise barrier on highway route no.9

    Directory of Open Access Journals (Sweden)

    Jiradecha Chaddanai

    2018-01-01

    Full Text Available Highway Route No. 9 is a Bangkok bypass motorway that aims to alleviate traffic congestion in greater Bangkok areas. Presently, it is found a rapid expansion of new communities residing along both side of Highway No. 9. To lessen the noise level, Department of Highways installed the noise barrier on the sensitive locations. However, people from communities living on both sides of highway still demand some additional noise pollution improvement. To improve the efficiency of using noise barriers and to promote environmental and social quality for the people on the sensitive communities along the highway route, the Department of Highways, therefore, designs a new technique for installing noise barrier on the sensitive areas, i.e. education institutions, temple, residential area. In addition, the mathematic model is applied to 12 selected locations of sensitive areas for monitoring the effectiveness of the new installation technique. The mathematic model is used for predict the future noise level after installation of noise barrier in year 2037. The results confirm that the appropriate height and width of noise barrier can improve the comfortable of the people on the sensitive area.

  20. MTU series 2000-06. The next generation of diesel engines for off-highway-applications with emission standard EPA-Tier 4i; MTU Baureihe 2000-06. Die naechste Generation von Dieselmotoren fuer Off-Highway Anwendungen in der Emissionsstufe EPA-Tier 4i

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, Werner; Wingart, Heiko [MTU Friedrichshafen GmbH, Friedrichshafen (Germany)

    2011-07-01

    The more stringent emission limits specified by EPA Tier 4 interim - 3.5 g/kWh NOx and 0.1 g/kWh particulate - have applied to engines for off-highway applications with a rated power of more than 560 kW since January 2011. In order to comply with this emission standard, the previous Series 2000 PLN (Pump Line Nozzle) engines for C and I and O and G applications have been superseded by a new design. Features of this new series, consisting of 12V and 16V engines, include common-rail injection, an EGR combustion system based on the dispensing-cylinder concept, and compact, 2-stage, regulated turbocharging. The newly developed, map-controlled wastegate and the new Series ZR125 exhaust turbocharger are being used here for the first time. Specific customer requirements for industrial engines - such as robust design, application options and engine performance map width - have been met rigorously. Despite the more stringent emission limits, the new engine has a wider application range and lower fuel consumption than its predecessor. (orig.)

  1. Proceedings of the 1991 Windsor workshop on alternative fuels

    International Nuclear Information System (INIS)

    1991-01-01

    A workshop was held to exchange information among engine and vehicle manufacturers, fuel suppliers, research organizations, and academic and regulatory bodies on various aspects of alternative transportation fuels development. Papers were presented on alternative fuels policies and programs, zero-emission vehicles, emission control technologies, field evaluations of alternative fuel systems, and heavy duty alternate-fuel engines. Separate abstracts have been prepared for nine papers from this workshop

  2. An experimental study for the effects of boost pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Canakci [Kocaeli University, Izmit (Turkey). Department of Mechanical Education

    2008-07-15

    As an alternative combustion mode, the HCCI combustion has some benefits compared to conventional SI and CI engines, such as low NOx emission and high thermal efficiency. However, this combustion mode can produce higher UHC and CO emissions than those of conventional engines. In the naturally aspirated HCCI engines, the low engine output power limits its use in the current engine technologies. Intake air pressure boosting is a common way to improve the engine output power which is widely used in high performance SI and CI engine applications. Therefore, in this study, the effect of inlet air pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine has been investigated after converting a heavy-duty diesel engine to a HCCI direct-injection gasoline engine. The experiments were performed at three different inlet air pressures while operating the engine at the same equivalence ratio and intake air temperature as in normally aspirated HCCI engine condition at different engine speeds. The SOI timing was set dependently to achieve the maximum engine torque at each test condition. The effects of inlet air pressure both on the emissions such as CO, UHC and NOx and on the performance parameters such as BSFC, torque, thermal and combustion efficiencies have been discussed. The relationships between the emissions are also provided. 34 refs., 19 figs., 4 tabs.

  3. Demonstration of Air-Power-Assist Engine Technology for Clean Combustion and Direct Energy Recovery in Heavy Duty Application

    Energy Technology Data Exchange (ETDEWEB)

    Hyungsuk Kang; Chun Tai

    2010-05-01

    The first phase of the project consists of four months of applied research, starting from September 1, 2005 and was completed by December 31, 2005. During this time, the project team heavily relied on highly detailed numerical modeling techniques to evaluate the feasibility of the APA technology. Specifically, (i) A GT-Power{sup TM}engine simulation model was constructed to predict engine efficiency at various operating conditions. Efficiency was defined based on the second-law thermodynamic availability. (ii) The engine efficiency map generated by the engine simulation was then fed into a simplified vehicle model, which was constructed in the Matlab/Simulink environment, to predict fuel consumption of a refuse truck on a simple collection cycle. (iii) Design and analysis work supporting the concept of retrofitting an existing Sturman Industries Hydraulic Valve Actuation (HVA) system with the modifications that are required to run the HVA system with Air Power Assist functionality. A Matlab/Simulink model was used to calculate the dynamic response of the HVA system. Computer aided design (CAD) was done in Solidworks for mechanical design and hydraulic layout. At the end of Phase I, 11% fuel economy improvement was predicted. During Phase II, the engine simulation group completed the engine mapping work. The air handling group made substantial progress in identifying suppliers and conducting 3D modelling design. Sturman Industries completed design modification of the HVA system, which was reviewed and accepted by Volvo Powertrain. In Phase II, the possibility of 15% fuel economy improvement was shown with new EGR cooler design by reducing EGR cooler outlet temperature with APA engine technology from Air Handling Group. In addition, Vehicle Simulation with APA technology estimated 4 -21% fuel economy improvement over a wide range of driving cycles. During Phase III, the engine experimental setup was initiated at VPTNA, Hagerstown, MD. Air Handling system and HVA

  4. 40 CFR 86.131-00 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation. 86.131-00 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  5. 40 CFR 86.131-96 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation. 86.131-96 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  6. 40 CFR 86.132-00 - Vehicle preconditioning.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preconditioning. 86.132-00... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete...

  7. 40 CFR 86.231-94 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Vehicle preparation. 86.231-94 Section... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...

  8. Can we close the long term mass balance equation for pollutants in highway ponds?

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Rasmussen, Michael R.

    2007-01-01

    The paper discusses the prospects of finding the long term mass balance on basis of short term simulations. A step in this process is to see to which degree the mass balance equation can be closed by measurements. Accordingly the total accumulation of heavy metals and PAH's in 8 Danish detention...... ponds only receiving runoff from highways have been measured. The result shows that the incoming mass of heavy metals from short term runoff events is accumulated. This is not observable in the same magnitude for the toxic organic compounds. The results also show that the accumulation rates...

  9. Analyses of Lattice Traffic Flow Model on a Gradient Highway

    International Nuclear Information System (INIS)

    Gupta Arvind Kumar; Redhu Poonam; Sharma Sapna

    2014-01-01

    The optimal current difference lattice hydrodynamic model is extended to investigate the traffic flow dynamics on a unidirectional single lane gradient highway. The effect of slope on uphill/downhill highway is examined through linear stability analysis and shown that the slope significantly affects the stability region on the phase diagram. Using nonlinear stability analysis, the Burgers, Korteweg-deVries (KdV) and modified Korteweg-deVries (mKdV) equations are derived in stable, metastable and unstable region, respectively. The effect of reaction coefficient is examined and concluded that it plays an important role in suppressing the traffic jams on a gradient highway. The theoretical findings have been verified through numerical simulation which confirm that the slope on a gradient highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the optimal current difference effect in the new lattice model. (nuclear physics)

  10. Investigation of high duty factor ISR RFQ-1000

    International Nuclear Information System (INIS)

    Lu, Y.R.; Chen, C.E.; Fang, J.X.; Gao, S.L.; Guo, J. F.; Guo, Z.Y.; Li, D.S.; Li, W.G.; Pan, O.J.; Ren, X.T.; Wu, Y.; Yan, X.Q.; Yu, J.X.; Yu, M.L.; Ratzinger, U.; Deitinghoff, H.; Klein, H.; Schempp, A.

    2003-01-01

    Two Integral Split Ring (ISR) RFQs with high duty factor of 16.7% have been designed for the application of heavy ion implantation and built in the past several years at Institute of Heavy Ion Physics (IHIP) in Peking University. Two kinds of PIG ion sources with permanent magnets and LEBT were installed and optimized for the injection into these two RFQs. The positive O + and negative O - ions were extracted and accelerated separately as well as simultaneously. The output macro pulse O - beam current reached 660 μA at a transmission efficiency of more than 82%. The N + beam was also accelerated with similar transmission efficiency, but the output current intensity for positive ions were lower than the negative ions because of the extracted current limitation of ion sources. The improvements, especially for high duty factor and experimental results with the 1 MeV ISR RFQ will be presented in this paper

  11. Investigation of high duty factor ISR RFQ-1000

    Science.gov (United States)

    Lu, Y. R.; Chen, C. E.; Fang, J. X.; Gao, S. L.; Guo, J. F.; Guo, Z. Y.; Li, D. S.; Li, W. G.; Pan, O. J.; Ren, X. T.; Wu, Y.; Yan, X. Q.; Yu, J. X.; Yu, M. L.; Ratzinger, U.; Deitinghoff, H.; Klein, H.; Schempp, A.

    2003-12-01

    Two Integral Split Ring (ISR) RFQs with high duty factor of 16.7% have been designed for the application of heavy ion implantation and built in the past several years at Institute of Heavy Ion Physics (IHIP) in Peking University. Two kinds of PIG ion sources with permanent magnets and LEBT were installed and optimized for the injection into these two RFQs. The positive O+ and negative O- ions were extracted and accelerated separately as well as simultaneously. The output macro pulse O- beam current reached 660 μA at a transmission efficiency of more than 82%. The N+ beam was also accelerated with similar transmission efficiency, but the output current intensity for positive ions were lower than the negative ions because of the extracted current limitation of ion sources. The improvements, especially for high duty factor and experimental results with the 1 MeV ISR RFQ will be presented in this paper.

  12. Investigation of high duty factor ISR RFQ-1000

    CERN Document Server

    Lu, Y R; Fang, J X; Gao, S L; Guo, J F; Guo, Z Y; Li, D S; Li, W G; Pan, O J; Ren, X T; Wu, Y; Yan, X Q; Yu Jin Xiang; Yu, M L; Ratzinger, U; Deitinghoff, H; Klein, H; Schempp, A

    2003-01-01

    Two Integral Split Ring (ISR) RFQs with high duty factor of 16.7% have been designed for the application of heavy ion implantation and built in the past several years at Institute of Heavy Ion Physics (IHIP) in Peking University. Two kinds of PIG ion sources with permanent magnets and LEBT were installed and optimized for the injection into these two RFQs. The positive O**+ and negative O**- ions were extracted and accelerated separately as well as simultaneously. The output macro pulse O**- beam current reached 660muA at a transmission efficiency of more than 82%. The N**+ beam was also accelerated with similar transmission efficiency, but the output current intensity for positive ions were lower than the negative ions because of the extracted current limitation of ion sources. The improvements, especially for high duty factor and experimental results with the 1MeV ISR RFQ will be presented in this paper.

  13. Effect of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under CI engine condition

    International Nuclear Information System (INIS)

    Munsin, R.; Laoonual, Y.; Jugjai, S.; Matsuki, M.; Kosaka, H.

    2015-01-01

    Highlights: • Glycerol ethoxylate (GE) shows the similar results as the commercial additive. • GE decreases injection rate, but increases injection delay and duration of ethanol. • GE shortens ignition delay and decreases heat released in premixed burn of ethanol. • GE has a minor effect on flame temperature of ethanol. • KL factor and soot of ethanol are sensitive to both GE and the commercial additive. - Abstract: This paper investigates the effects of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under a CI engine condition. Injection characteristics were investigated by an in-house injection rate measurement device based on the Zeuch method, while spray combustion has been performed in the rapid compression and expansion machine (RCEM). The CI engine condition indicated as density, pressure and temperature of compressed synthetic gas, consisting of 80% argon and 20% oxygen, at fuel injection timing in RCEM of 21 kg/m 3 , 4.4 MPa and 900 K, respectively. This condition is equivalent to the isentropic compression of air of the actual CI engine with compression ratio of 22. Hydrous ethanol without ignition improver (Eh95) and the ethanol dedicated for heavy duty vehicles (ED95: composed of hydrous ethanol with the commercial additive for ED95) are reference fuels representing low and high quality ethanol fuel for CI engines, respectively. All test fuels are injected at constant heat input. The results indicate that the additional ignition improvers change injection characteristics, i.e. injection delay, injection rate and discharge coefficient of hydrous ethanol. The maximum injection rates at fully opened needle for the ethanol dedicated for heavy duty vehicles (ED95) and hydrous ethanol with 5% glycerol ethoxylate (5%GE) are lower than that of hydrous ethanol without ignition improver (Eh95) by approximately 10%. Additional injection duration is required for ED95 and 5%GE to maintain a

  14. Organizational Learning, Knowledge Management Practices and Firm's Performance: An Empirical Study of a Heavy Engineering Firm in India

    Science.gov (United States)

    Jain, Ajay K.; Moreno, Ana

    2015-01-01

    Purpose: The study aims at investigating the impact of organizational learning (OL) on the firm's performance and knowledge management (KM) practices in a heavy engineering organization in India. Design/Methodology/Approach: The data were collected from 205 middle and senior executives working in the project engineering management division of a…

  15. Integrated Energy & Emission Management for Heavy-Duty Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  16. Soil Heavy Metal Concentration Patterns at Two Speed Zones along ...

    African Journals Online (AJOL)

    Soil Heavy Metal Concentration Patterns at Two Speed Zones along the Gaborone- Tlokweng Border Post Highway, Southeast Botswana. ... Since 1988 Botswana has been experiencing an unprecedented increase in vehicular traffic which is suspected to be having contamination effects on soils along heavily used roads ...

  17. 77 FR 15250 - Value Engineering

    Science.gov (United States)

    2012-03-15

    ...-2011-0046] RIN 2125-AF40 Value Engineering AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Final rule. SUMMARY: This rule updates regulations to enhance the integration of value engineering (VE... Office of Management and Budget (OMB) Circular A-131 on Value Engineering. These revisions also will...

  18. 76 FR 36410 - Value Engineering

    Science.gov (United States)

    2011-06-22

    ...-2011-0046] RIN 2125-AF40 Value Engineering AGENCY: Federal Highway Administration (FHWA), DOT. ACTION... regulations to enhance the integration of value engineering (VE) analysis in the planning and development of...-131 on Value Engineering. These revisions will also address certain findings contained in a 2007...

  19. 19 CFR 151.22 - Estimated duties on raw sugar.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Estimated duties on raw sugar. 151.22 Section 151... THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.22 Estimated duties on raw sugar. Estimated duties shall be taken on raw sugar, as defined...

  20. Speed Distribution on Two-Lane Rural Highways with Mixed Traffic: A Case Study in North East India

    Science.gov (United States)

    Saha, Pritam; Roy, Nabanita; Sarkar, Ashoke Kumar; Pal, Manish

    2017-06-01

    This work focuses on minimising inaccuracies in distributional assumptions of speed data on two-lane roads with heterogeneous traffic to improve accuracy in capacity and level of service analysis. Accordingly, field study was conducted on a two-lane highway in India that exhibits heterogeneity in its traffic composition. Two distribution functions, namely, normal and logistic were examined for the observed speed data. The appropriate function was chosen using a methodology based on K-S test and field validation. Logistic distribution function was found to exhibit its aptness in describing speed under such traffic and was, thereby, considered in estimating the limiting speed of slower vehicles that tends to obstruct the flow of traffic. Vehicles that move at or below this speed cause delay to the faster ones resulting in formation of platoons at moderate and heavy flow when passing is restricted. Since the percent time-spent-following, a performance measure to assess level-of-service of two-lane highways, considers proportion of vehicles that are trapped inside platoons, it is imperative to estimate the limiting speed of slower vehicles correctly to approximate the delayed vehicles.

  1. Equivalent noise level response to number of vehicles: a comparison between a high traffic flow and low traffic flow highway in Klang Valley, Malaysia

    OpenAIRE

    Halim, Herni; Abdullah, Ramdzani

    2014-01-01

    HIGHLIGHTS Highway traffic noise is a serious problem in Malaysia Heavy traffic flow highway recorded higher noise level compared to low traffic flow Noise level stabilized at certain number of vehicles on the road i.e above 500 vehicles. Although much research on road traffic noise has found that noise level increase are influenced by driver behavior and source-receiver distance, little attention has been paid to the relationship between noise level and total number of vehicles...

  2. Co-Optimization of Fuels and Engines (Co-Optima) -- Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wagner, Robert [Oak Ridge National Laboratory; Holladay, John [Pacific Northwest National Laboratory

    2017-08-11

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a U.S. Department of Energy (DOE) effort funded by both the Vehicle and Bioenergy Technology Offices. The overall goal of the effort is to identify the combinations of fuel properties and engine characteristics that maximize efficiency, independent of production pathway or fuel composition, and accelerate commercialization of these technologies. Multiple research efforts are underway focused on both spark-ignition and compression-ignition strategies applicable across the entire light, medium, and heavy-duty fleet. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, and provide refiners with increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. In addition to fuels and engines R&D, the initiative is guided by analyses assessing the near-term commercial feasibility of new blendstocks based on economics, environmental performance, compatibility, and large-scale production viability. This talk will provide an overview of the Co-Optima effort.

  3. A first implementation of an efficient combustion strategy in a multi cylinder two-stage turbo CI-engine producing low emissions while consuming a gasoline/EHN blend

    NARCIS (Netherlands)

    Doornbos, G.; Somhorst, J.; Boot, M.D.

    2013-01-01

    A Gasoline Compression Ignition combustion strategy was developed and showed its capabilities in the heavy duty single cylinder test-cell, resulting in indicated efficiencies up to 50% and low engine out emissions applying to EU VI and US 10 legislations while the soot remained at a controllable 1.5

  4. 75 FR 65706 - Notice of Final Federal Agency Actions on Proposed Highway in Washington State

    Science.gov (United States)

    2010-10-26

    ... actions taken by the FHWA and other Federal agencies that are final within the meaning of 23 U.S.C. 139(l... notice, the FHWA is advising the public of final agency actions subject to 23 U.S.C. 139(l)(1). A claim... still applies. FOR FURTHER INFORMATION CONTACT: For FHWA: Ms. Liana Liu, Area Engineer, Federal Highway...

  5. Computer simulation of a turbocharged direct injection diesel engine

    International Nuclear Information System (INIS)

    Bannikiv, M.G.; Saeed, M.

    2005-01-01

    Engine model described in this paper was developed to investigate the working process and overall performance of a heavy-duty turbocharged direct injection diesel engine. The primary focus was made on exploring the methods of engine power boosting, study of engine behaviour after their implementation and optimization of all engine parameters. Engine model is classified as on zone, zero dimensional and phenomenological and includes submodels for in cylinder heat transfer, heat release and valve flow processes. Turbocharger model is developed using the available maps of turbine and compressor. The whole engine system is zero dimensional and the different system components are liked by means of mean values for mass flow, temperatures, pressures and gas composition. NASA polynomials are used for computing thermal properties of mixture of gasses. Model is flexible and easy to accommodate additional submodels of various physical phenomena such as emission formation, fuel injection, ignition delay period calculation etc. The software is developed in MATLAB. Software was used to analyse an evaporative cooling of boost air as a method of an increase of engine power. Results of simulation are provided in the paper. For the augmented engine, mechanical and thermal loads required for the strength analyses were obtained. (author)

  6. A Generalized Mathematical Model for the Fracture Problem of the Suspended Highway

    Directory of Open Access Journals (Sweden)

    Zhao Ying

    2017-01-01

    Full Text Available In order to answer dangling fracture problems of highway, the suspended pavement equivalent for non - suspended pavement, through the special boundary conditions has been suspended highway stress field of expression, in accordance with the 3D fracture model of crack formation, and establish a vacant, a general mathematics model for fracture problems of highway and analysis in highway suspended segment weight and vehicle load limit of highway capacity of Pu For overturning road inPu is less than the force of carrying more than compared to the work and fruit Bridge Hydropower Station Road engineering examples to verify suspended highway should force field expressions for the correctness and applicability. The results show that: when the hanging ratio R 0. 243177 limits of Pu design axle load 100kN. When the vertical crack in the vacant in the direction of length greater than 0. 1, the ultimate bearing capacity is less than the design axle load 100kN; when the hanging ratio R is less than 0. 5, the road to local fracture, the ultimate bearing capacity of suspended stress field expressions in solution; when the hanging ratio is greater than or equal to 0. 5, the road does not reach the limit bearing capacity of the whole body; torque shear surface of the effect is far less than the bending moments on shear planes.

  7. A high efficiency 10 kWe microcogenerator based on an Atkinson cycle internal combustion engine

    International Nuclear Information System (INIS)

    Capaldi, Pietro

    2014-01-01

    The paper focuses on the design and the overall performance of a 10 kW electric power microcogeneration plant suitable for local energy production, based on an Atkinson-cycle internal combustion engine prototype and entirely set by Istituto Motori of the Italian National Research Council. The engine was originally a wide-spread Diesel automotive unit, then converted into a methane spark ignition system and finally modified to perform an Atkinson/Miller cycle with an extended expansion, capable of a higher global efficiency and low gaseous emissions. The paper starts by defining the ratio which leaded to this specific choice among many other automotive and industrial engines, in order to obtain a reliable, long endurance, cost effective, high efficiency base, suitable for microcogeneration in residential or commercial applications. The new engine has been coupled with a liquid cooled induction generator, a set of heat exchangers and finally placed in a sealed containing case, to reduce both noise emission and heat losses. Then the plant has been tested as an electricity and heat production system, ready for grid connection thanks to a new designed management/control system. During endurance test a complete description of its functioning behaviour has been given. - Highlights: • A new high efficiency microcogenerator based on an Atkinson/Miller cycle engine. • Atkinson cycle together with stoichiometric operation deliver better performance. • A cost-effective microcogenerator based on widespread elements (automotive engine). • The chosen automotive engine has heavy duty characteristics (Diesel derived). • A conversion criteria from a Diesel to an Atkinson cycle engine was individuated

  8. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  9. Highway Electrification And Automation

    OpenAIRE

    Shladover, Steven E.

    1992-01-01

    This report addresses how the California Department of Transportation and the California PATH Program have made efforts to evaluate the feasibility and applicability of highway electrification and automation technologies. In addition to describing how the work was conducted, the report also describes the findings on highway electrification and highway automation, with experimental results, design study results, and a region-wide application impacts study for Los Angeles.

  10. Journal of transportation engineering

    National Research Council Canada - National Science Library

    1983-01-01

    The Journal of Transportation Engineering contains technical and professional articles on the planning, design, construction, maintenance, and operation of air, highway, rail, and urban transportation...

  11. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    Science.gov (United States)

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  12. Dollars for lives: the effect of highway capital investments on traffic fatalities.

    Science.gov (United States)

    Nguyen-Hoang, Phuong; Yeung, Ryan

    2014-12-01

    This study examines the effect of highway capital investments on highway fatalities. We used state-level data from the 48 contiguous states in the United States from 1968 through 2010 to estimate the effects on highway fatalities of capital expenditures and highway capital stock. We estimated these effects by controlling for a set of control variables together with state and year dummy variables and state-specific linear time trends. We found that capital expenditures and capital stock had significant and negative effects on highway fatalities. States faced with declines in gas tax revenues have already cut back drastically on spending on roads including on maintenance and capital outlay. If this trend continues, it may undermine traffic safety. While states and local governments are currently fiscally strained, it is important for them to continue investments in roadways to enhance traffic safety and, more significantly, to save lives. Copyright © 2014 National Safety Council and Elsevier Ltd. All rights reserved.

  13. Gasoline port fuel injection on a heavy-duty diesel engine

    NARCIS (Netherlands)

    van den Berge, B.; Leermakers, C.A.J.; Luijten, C.C.M.; Somers, L.M.T.; Albrecht, B.A.; Goey, de L.P.H.; Cracknell, Roger F.

    2011-01-01

    Arrays of silicon honeycombs are evaluated as a negative electrode material for lithium-ion microbatteries. The morphological changes of the structure are investigated by means of scanning electron microscopy (SEM) and it is revealed that the honeycomb structure can reversibly withstand huge

  14. Civil engineering challenge with nuclear waste

    International Nuclear Information System (INIS)

    Day, D.

    1985-01-01

    The civil engineer can help to solve the problems in disposing of nuclear waste in a deep geologic formation. The site for a nuclear waste repository must be carefully selected so that the geology provides the natural barrier between the waste and the accessible environment specified by the NRC and the EPA. This engineer is familiar with the needed structure and conditions of the host and surrounding rocks, and also the hydraulic mechanisms for limiting the migration of water in the rocks. To dispose of the nuclear waste underground requires stable and long-lasting shafts and tunnels such as civil engineers have designed and constructed for many other uses. The planning, design and construction of the ground surface facilities for a nuclear waste repository involves civil engineering in many ways. The transporation of heavy, metal shielded casks requires special attention to the system of highways and railroads accessing the repository. Structures for handling the shipping casks and transferring the waste onsite and into the deep geologic formation need special considerations. The structures must provide the NRC required containment, including hot cells for remote handling. Therefore, structural design strives for buildings, ventilation structures, shaft headframes, etc., to be earthquake and tornado-proof. These important design bases and considerations for the civil engineer working on a nuclear waste repository are discussed in this paper

  15. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  16. OHVT technology roadmap [2000

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.A.

    2000-02-01

    The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones.

  17. OHVT technology roadmap[2000]; TOPICAL

    International Nuclear Information System (INIS)

    Bradley, R.A.

    2000-01-01

    The OHVT Technology Roadmap for 2000 presents the multiyear program plan of the U.S. DOE's Office of Heavy Vehicle Technologies (OHVT). It is an update of the 1997 plan, reflecting changes in regulations and ongoing discussions with DOE's heavy vehicle customers. The technical plan covers three classes of trucks: (1) class 7-8 (large, on-highway trucks); (2) class 3-6 (medium duty trucks); (3) class 1-2 (pickups, vans, and sport utility vehicles) as well as enabling and supporting technologies. The Roadmap documents program goals, schedules, and milestones

  18. The dieselization of America: An integrated strategy for future transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, J.J. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    The Diesel Cycle engine has already established itself as the engine-of-choice for the heavy duty transport industry because of its fuel efficiency, durability, and reliability. In addition, it has also been shown to be capable of using alternative fuels, albeit at efficiencies lower than that achieved with petroleum-derived diesel fuel. Alternative fuel dedicated engines have not made significant penetration of the heavy duty truck market because truck fleet operators need a cost-competitive fuel and reliable supply and fueling infrastructure. In lieu of forcing diverse fuels from many diverse domestic feedstocks onto the end-users, the Office of Heavy Vehicle Technologies envisions that a future fuels strategy for the heavy duty transport sector is one where the diverse feedstocks are utilized to provide a single fuel specification (dispensed from the existing fueling infrastructure) that would run efficiently in a single high efficiency energy conversion device, the Diesel Cycle engine. In so doing, the US Commercial transport industry may gain a measure of security from the rapid fuel price increases by relying less on a single feedstock source to meet its increasing fuel requirements.

  19. Slope mass rating and kinematic analysis of slopes along the national highway-58 near Jonk, Rishikesh, India

    Directory of Open Access Journals (Sweden)

    Tariq Siddique

    2015-10-01

    Full Text Available The road network in the Himalayan terrain, connecting remote areas either in the valleys or on the hill slopes, plays a pivotal role in socio-economic development of India. The planning, development and even maintenance of road and rail networks in such precarious terrains are always a challenging task because of complexities posed by topography, geological structures, varied lithology and neotectonics. Increasing population and construction of roads have led to destabilisation of slopes, thus leading to mass wasting and movement, further aggravation due to recent events of cloud bursts and unprecedented flash floods. Vulnerability analysis of slopes is an important component for the “Landslide Hazard Assessment” and “Slope Mass Characterisation” guide planners to predict and choose suitable ways for construction of roads and other engineering structures. The problem of landslides along the national highway-58 (NH-58 from Rishikesh to Devprayag is a common scene. The slopes along the NH-58 between Jonk and Rishikesh were investigated, which experienced very heavy traffic especially from March to August due to pilgrimage to Kedarnath shrine. On the basis of slope mass rating (SMR investigation, the area falls in stable class, and landslide susceptibility score (LSS values also indicate that the slopes under investigation fall in low to moderate vulnerability to landslide. More attentions should be paid to the slopes to achieve greater safe and economic benefits along the highway.

  20. Raley's LNG Truck Site Final Data Report

    Energy Technology Data Exchange (ETDEWEB)

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  1. Numerical parametric investigations of a gasoline fuelled partially-premixed compression-ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Nemati, Arash [Islamic Azad University, Miyaneh Branch, Miyaneh (Iran, Islamic Republic of); Khalilarya, Shahram; Jafarmadar, Samad; Khatamenjhad, Hassan [Department of Mechanical Engineering, Urmia University, Urmia (Iran, Islamic Republic of); Fathi, Vahid [Islamic Azad University, Ajagshir Branch, Ajabshir (Iran, Islamic Republic of)

    2011-07-01

    Parametric studies of a heavy duty direct injection (DI) gasoline fueled compression ignition (CI) engine combustion are presented. Gasoline because of its higher ignition delay has much lower soot emission in comparison with diesel fuel. Using double injection strategy reduces the maximum heat release rate that leads to nitrogen oxides (NOx) emission reduction. A three dimensional computational fluid dynamics (CFD) code was employed and compared with experimental data. The model results show a good agreement with experimental data. The effect of injection characteristics such as, injection duration, main SOI timing, and nozzle hole size investigated on combustion and emissions.

  2. Effect of chronic nonmalignant pain on highway driving performance.

    Science.gov (United States)

    Veldhuijzen, D S; van Wijck, A J M; Wille, F; Verster, J C; Kenemans, J L; Kalkman, C J; Olivier, B; Volkerts, E R

    2006-05-01

    Most pain patients are treated in an outpatient setting and are engaged in daily activities including driving. Since several studies showed that cognitive functioning may be impaired in chronic nonmalignant pain, the question arises whether or not chronic nonmalignant pain affects driving performance. Therefore, the objective of the present study was to determine the effects of chronic nonmalignant pain on actual highway driving performance during normal traffic. Fourteen patients with chronic nonmalignant pain and 14 healthy controls, matched on age, educational level, and driving experience, participated in the study. Participants performed a standardized on-the-road driving test during normal traffic, on a primary highway. The primary parameter of the driving test is the Standard Deviation of Lateral Position (SDLP). In addition, driving-related skills (tracking, divided attention, and memory) were examined in the laboratory. Subjective assessments, such as pain intensity, and subjective driving quality, were rated on visual analogue scales. The results demonstrated that a subset of chronic nonmalignant pain patients had SDLPs that were higher than the matched healthy controls, indicating worse highway driving performance. Overall, there was a statistically significant difference in highway driving performance between the groups. Further, chronic nonmalignant pain patients rated their subjective driving quality to be normal, although their ratings were significantly lower than those of the healthy controls. No significant effects were found on the laboratory tests.

  3. HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy

    OpenAIRE

    Dolz Ruiz, Vicente; Novella Rosa, Ricardo; García Martínez, Antonio; Sánchez Serrano, Jaime

    2012-01-01

    This paper describes the study of different bottoming Rankine cycles with water-steam and/or ORC configurations in classical and innovative setups such as a waste heat recovery system in a Heavy Duty Diesel (HDD) Engine. This work has been divided in two parts. This first part describes the model of the studied HDD engine and the available waste energy sources in this HDD Engine. The waste energy sources are studied from the standpoint of energy analysis to determine which are the most approp...

  4. [Effect of highway driving on the health of factory workers].

    Science.gov (United States)

    Uramoto, Hidetaka

    2008-06-01

    Commuting transportation is one of the important factors in the administration of safety management in industries. Most workers commute to work by car and are certain to make use of highways, mainly because of the special condition of factory locations. In this study, we investigated the effect of communicating by car on the health of factory workers. The proportion of males was significantly higher in the highway (HW) group than in the non-highway (NHW) group, and the former was younger than the latter. BMI, systolic blood pressure, diastolic blood pressure, and total cholesterol deteriorated significantly in the NHW group after 5-year periodic medical checkups. However, in the HW group, those factors did not change except for systolic blood pressure and significant improvements in triglyceride. The percentage of those who follow a good lifestyle regarding excise and nutrition, and have a solution for stress, was lower in the HW group than in the NHW group. Nevertheless, the percentage of those who did not feel stress was significantly higher in the HW group than in the NHW group, suggesting a stress-relieving effect of highway driving. Highway driving might have an unexpectedly good impact on the health of factory workers.

  5. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    Science.gov (United States)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low

  6. The engineering contribution to viability

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J W

    1988-05-01

    In 1986/87, British Coal's Western Area produced over 10 Mt of coal at an operating profit of 13M UKL, overall productivity rose by 23% and coalface productivity by 28%. Despite these achievements, the Area still faces a challenge to break even, after capital charges of 40M UKL. Engineering and related costs accounted for 29% of the total costs and so must be managed in a more effective manner. This will call not only for improved technical skill but also for engineers to accept a greater degree of managerial responsibility. Face equipment design must be optimized, machine operators trained to achieve maximum utilization and potential, mineral transport systems uprated and component parts designed for minimum maintenance. Electrical engineers must ensure that the most cost effective tariff is chosen for each colliery. Manpower planning will be a vital part of the engineer's managerial effectiveness, as will increased financial awareness. Cost comparisons between collieries have already produced financial benefits. Heavy duty machinery must be fully utilized. The 'team approach' to machine reliability, using delay analysis techniques, has produced significant improvements in production and productivity. Finally, engineering managers must develop talent among their junior colleagues and eliminate their own weaknesses.

  7. 77 FR 34129 - Heavy-Duty Highway Program: Revisions for Emergency Vehicles

    Science.gov (United States)

    2012-06-08

    ... and letters we have received, as well as our own outreach and data- gathering efforts, we have learned... are no longer in production. As manufacturers become aware of the need for upgrades or enhancements... and professionally cleaned with a special machine. Fortunately, there is very little ash formation...

  8. Application of a Detailed Emission Model for Heavy Duty Diesel Engine Simulations Application d'un modèle détaillé d'émissions pour la simulation de gros moteurs diesel

    Directory of Open Access Journals (Sweden)

    Magnusson I.

    2006-12-01

    Full Text Available A detailed chemical model describing the formation of soot and NO is applied to simulate emission formation in a heavy duty diesel engine. Cylinder flow and spray development is simulated using an engine CFD code - Speedstar. Combustion is described using a simple eddy break-up model. Modeling of the emission-chemistry/turbulent-flow interaction is based on a flamelet approach. Contrary to a typical flamelet concept, transport equations are solved for mass fractions of soot and NO. The reason being that these major emission constituencies are assumed to change slowly in comparison to typical time scales for chemical processes or transport processes important for combustion. Chemical reactions leading to production and destruction of soot and NO are, however, assumed to be fast. Soot and NO source terms are therefore evaluated from a flamelet library using a presumed probability density function and integrating over mixture fraction space. Results from simulations are compared to engine measurements inform of exhaust emission data and cylinder pressure. Un modèle avec chimie détaillée décrivant la formation des suies et du NO est appliqué à la simulation de la formation des polluants dans un gros moteur Diesel. L'écoulement et le spray sont modélisés avec le code de calcul Speedstar. La combustion est représentée par le modèle eddy break-up . La modélisation de l'interaction entre l'écoulement turbulent et la chimie des polluants est basée sur une approche de type flamelet . Cependant, à la différence d'autres travaux, des équations de transport pour les fractions massiques de suies et de NO sont résolues. Cela est justifié par la supposition que les temps caractéristiques de formation de ces composés sont longs comparés à ceux associés aux phénomènes de transport et aux réactions chimiques associées à la combustion. Cependant, les vitesses de réaction se rapportant aux suies et au NO sont supposées rapides. Cela

  9. A Noise-Insensitive Semi-Active Air Suspension for Heavy-Duty Vehicles with an Integrated Fuzzy-Wheelbase Preview Control

    Directory of Open Access Journals (Sweden)

    Zhengchao Xie

    2013-01-01

    Full Text Available Semi-active air suspension is increasingly used on heavy-duty vehicles due to its capabilities of consuming less power and low cost and providing better ride quality. In this study, a new low cost but effective approach, fuzzy-wheelbase preview controller with wavelet denoising filter (FPW, is developed for semi-active air suspension system. A semi-active suspension system with a rolling lobe air spring is firstly modeled and a novel front axle vertical acceleration-based road prediction model is constructed. By adopting a sensor on the front axle, the road prediction model can predict more reliable road information for the rear wheel. After filtering useless signal noise, the proposed FPW can generate a noise-insensitive control damping force. Simulation results show that the ride quality, the road holding, the handling capability, the road friendliness, and the comprehensive performance of the semi-active air suspension with FPW outperform those with the traditional active suspension with PID-wheelbase preview controller (APP. It can also be seen that, with the addition of the wavelet filter, the impact of sensor noise on the suspension performance can be minimized.

  10. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    Science.gov (United States)

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use

  11. 76 FR 1664 - Notice of Final Federal Agency Actions on State Highway 99 (Segment G)

    Science.gov (United States)

    2011-01-11

    ... on State Highway 99 (Segment G) AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of.... 139(l)(1). The actions relate to a proposed highway project, Grand Parkway (State Highway 99) Segment... (State Highway 99) Segment G from I- 45 to US 59 in Harris and Montgomery Counties; FHWA Project...

  12. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  13. Medium Truck Duty Cycle Data from Real-World Driving Environments: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lascurain, Mary Beth [ORNL; Franzese, Oscar [ORNL; Capps, Gary J [ORNL; Siekmann, Adam [ORNL; Thomas, Neil [ORNL; LaClair, Tim J [ORNL; Barker, Alan M [ORNL; Knee, Helmut E [ORNL

    2012-11-01

    Since the early part of the 20th century, the US trucking industry has provided a safe and economical means of moving commodities across the country. At present, nearly 80% of US domestic freight movement involves the use of trucks. The US Department of Energy (DOE) is spearheading a number of research efforts to improve heavy vehicle fuel efficiencies. This includes research in engine technologies (including hybrid and fuel cell technologies), lightweight materials, advanced fuels, and parasitic loss reductions. In addition, DOE is developing advanced tools and models to support heavy vehicle research and is leading the 21st Century Truck Partnership and the SuperTruck development effort. Both of these efforts have the common goal of decreasing the fuel consumption of heavy vehicles. In the case of SuperTruck, a goal of improving the overall freight efficiency of a combination tractor-trailer has been established. This Medium Truck Duty Cycle (MTDC) project is a critical element in DOE s vision for improved heavy vehicle energy efficiency; it is unique in that there is no other existing national database of characteristic duty cycles for medium trucks based on collecting data from Class 6 and 7 vehicles. It involves the collection of real-world data on medium trucks for various situational characteristics (e.g., rural/urban, freeway/arterial, congested/free-flowing, good/bad weather) and looks at the unique nature of medium trucks drive cycles (stop-and-go delivery, power takeoff, idle time, short-radius trips). This research provides a rich source of data that can contribute to the development of new tools for FE and modeling, provide DOE a sound basis upon which to make technology investment decisions, and provide a national archive of real-world-based medium-truck operational data to support energy efficiency research. The MTDC project involved a two-part field operational test (FOT). For the Part-1 FOT, three vehicles each from two vocations (urban transit and

  14. 78 FR 9771 - Federal Highway Administration

    Science.gov (United States)

    2013-02-11

    ... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Notice of Final Federal Agency Action on Proposed Transportation Project in Illinois and Indiana AGENCY: Federal Highway Administration...., Acting Division Administrator, Federal Highway Administration, 3250 Executive Park Drive, Springfield...

  15. Influences of high-flow events on a stream channel altered by construction of a highway bridge: A case study

    Science.gov (United States)

    Hedrick, Lara B.; Welsh, Stuart A.; Anderson, James T.

    2009-01-01

    Impacts of highway construction on streams in the central Appalachians are a growing concern as new roads are created to promote tourism and economic development in the area. Alterations to the streambed of a first-order stream, Sauerkraut Run, Hardy County, WV, during construction of a highway overpass included placement and removal of a temporary culvert, straightening and regrading of a section of stream channel, and armourment of a bank with a reinforced gravel berm. We surveyed longitudinal profiles and cross sections in a reference reach and the altered reach of Sauerkraut Run from 2003 through 2007 to measure physical changes in the streambed. During the four-year period, three high-flow events changed the streambed downstream of construction including channel widening and aggradation and then degradation of the streambed. Upstream of construction, at a reinforced gravel berm, bank erosion was documented. The reference section remained relatively unchanged. Knowledge gained by documenting channel changes in response to natural and anthropogenic variables can be useful for managers and engineers involved in highway construction projects.

  16. A Vector Approach to Regression Analysis and Its Implications to Heavy-Duty Diesel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, H.T.

    2001-02-14

    An alternative approach is presented for the regression of response data on predictor variables that are not logically or physically separable. The methodology is demonstrated by its application to a data set of heavy-duty diesel emissions. Because of the covariance of fuel properties, it is found advantageous to redefine the predictor variables as vectors, in which the original fuel properties are components, rather than as scalars each involving only a single fuel property. The fuel property vectors are defined in such a way that they are mathematically independent and statistically uncorrelated. Because the available data set does not allow definitive separation of vehicle and fuel effects, and because test fuels used in several of the studies may be unrealistically contrived to break the association of fuel variables, the data set is not considered adequate for development of a full-fledged emission model. Nevertheless, the data clearly show that only a few basic patterns of fuel-property variation affect emissions and that the number of these patterns is considerably less than the number of variables initially thought to be involved. These basic patterns, referred to as ''eigenfuels,'' may reflect blending practice in accordance with their relative weighting in specific circumstances. The methodology is believed to be widely applicable in a variety of contexts. It promises an end to the threat of collinearity and the frustration of attempting, often unrealistically, to separate variables that are inseparable.

  17. Integrated waste hydrogen utilization project

    International Nuclear Information System (INIS)

    Armstrong, C.

    2004-01-01

    'Full text:' The BC Hydrogen Highway's, Integrated Waste Hydrogen Utilization Project (IWHUP) is a multi-faceted, synergistic collaboration that will capture waste hydrogen and promote its use through the demonstration of 'Hydrogen Economy' enabling technologies developed by Canadian companies. IWHUP involves capturing and purifying a small portion of the 600 kg/hr of by-product hydrogen vented to the atmosphere at the ERCO's electrochemical sodium chlorate plant in North Vancouver, BC. The captured hydrogen will then be compressed so it is suitable for transportation on roadways and can be used as a fuel in transportation and stationary fuel cell demonstrations. In summary, IWHUP invests in the following; Facilities to produce up to 20kg/hr of 99.999% pure 6250psig hydrogen using QuestAir's leading edge Pressure Swing Absorption technology; Ultra high-pressure transportable hydrogen storage systems developed by Dynetek Industries, Powertech Labs and Sacre-Davey Engineering; A Mobile Hydrogen Fuelling Station to create Instant Hydrogen Infrastructure for light-duty vehicles; Natural gas and hydrogen (H-CNG) blending and compression facilities by Clean Energy for fueling heavy-duty vehicles; Ten hydrogen, internal combustion engine (H-ICE), powered light duty pick-up vehicles and a specialized vehicle training, maintenance, and emissions monitoring program with BC Hydro, GVRD and the District of North Vancouver; The demonstration of Westport's H-CNG technology for heavy-duty vehicles in conjunction with local transit properties and a specialized vehicle training, maintenance, and emissions monitoring program; The demonstration of stationary fuel cell systems that will provide clean power for reducing peak-load power demands (peak shaving), grid independence and water heating; A comprehensive communications and outreach program designed to educate stakeholders, the public, regulatory bodies and emergency response teams in the local community, Supported by industry

  18. Co-Optimization of Fuels & Engines: Fuel Blendstocks with the Potential to Optimize Future Gasoline Engine Performance; Identification of Five Chemical Families for Detailed Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holladay, John [Pacific Northwest National Laboratory; Wagner, Robert [Oak Ridge National Laboratory

    2018-04-18

    The U.S. Department of Energy's (DOE's) Co-Optimization of Fuels & Engines (Co-Optima) initiative is conducting the early-stage research needed to accelerate the market introduction of advanced fuel and engine technologies. The research includes both spark-ignition (SI) and compression-ignition (CI) combustion approaches, targeting applications that impact the entire on-road fleet (light-, medium-, and heavy-duty vehicles). The initiative's major goals include significant improvements in vehicle fuel economy, lower-cost pathways to reduce emissions, and leveraging diverse U.S. fuel resources. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, and provide refiners with increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. This report identifies eight representative blendstocks from five chemical families that have demonstrated the potential to increase boosted SI engine efficiency, meet key fuel quality requirements, and be viable for production at commercial scale by 2025-2030.

  19. 76 FR 24856 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Science.gov (United States)

    2011-05-03

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-803] Heavy Forged Hand Tools (i.e... Administration, International Trade Administration, Department of Commerce. SUMMARY: On January 3, 2011, the Department of Commerce (``Department'') initiated a sunset review of the antidumping duty orders on heavy...

  20. 2014 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Diegel, Susan W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  1. Estimation of Engine Intake Air Mass Flow using a generic Speed-Density method

    Directory of Open Access Journals (Sweden)

    Vojtíšek Michal

    2014-10-01

    Full Text Available Measurement of real driving emissions (RDE from internal combustion engines under real-world operation using portable, onboard monitoring systems (PEMS is becoming an increasingly important tool aiding the assessment of the effects of new fuels and technologies on environment and human health. The knowledge of exhaust flow is one of the prerequisites for successful RDE measurement with PEMS. One of the simplest approaches for estimating the exhaust flow from virtually any engine is its computation from the intake air flow, which is calculated from measured engine rpm and intake manifold charge pressure and temperature using a generic speed-density algorithm, applicable to most contemporary four-cycle engines. In this work, a generic speed-density algorithm was compared against several reference methods on representative European production engines - a gasoline port-injected automobile engine, two turbocharged diesel automobile engines, and a heavy-duty turbocharged diesel engine. The overall results suggest that the uncertainty of the generic speed-density method is on the order of 10% throughout most of the engine operating range, but increasing to tens of percent where high-volume exhaust gas recirculation is used. For non-EGR engines, such uncertainty is acceptable for many simpler and screening measurements, and may be, where desired, reduced by engine-specific calibration.

  2. PERBEDAAN RISK PRIORITY NUMBER DALAM FAILURE MODE AND EFFECTS ANALYSIS FMEA SISTEM ALAT BERAT HEAVY DUTY TRUCK HD 785-7

    Directory of Open Access Journals (Sweden)

    M. Syafwansyah Effendi

    2015-04-01

    Full Text Available Failure Mode and Efect Analysis (FMEA adalah jenis desain dan teknologi untuk menganalisis keandalan pencegahan, yang merupakan formula yang sistematis terstruktur untuk mengidentifikasi modus kerusakan yang potensial dalam desain atau manufaktur, kemudian mempelajari pengaruh kerusakan pada sistem, kemudian mengambil langkah-langkah yang diperlukan untuk mengkoreksi dan sebagai metode pencegahan sementara yang mengarah pada masalah dalam sistam keandalan. Secara tradisional, menggunakan teknologi dari FMEA adalah untuk memperbaiki keputusan dalam urutan dari besar Risk Priority Number (RPN ke yang lebih kecil State of art permasalahan yang mendasar dari RPN Failure and Efect Analysis adalah bagaimana menerapkannya dalam cakupan cukup luas dalam berbagai bidang sebagai alat atau metode yang bermanfaat untuk membantu menjustifikasi pengambilan suatu keputusan dalam menentukan keandalan suatu sistem. Dari penelitian-penelitian yang sudah dilakukan penerapan Model ini banyak dilakukan di lingkungan industri, dan belum ada yang mengapilikasikannya dalam menganalisa mode kegagalan sistem pada peralatan Berat terutama yang dioperasikan disektor pertambangan. Sehingga pada penelitian ini, adalah perlu untuk menguji apakah ada Perbedaan Dalam Risk Priority Number Failure Mode and Effects Analysis Pada Unit Sistem Alat Berat Heavy Duty Truck HD 785-7. Data diambil dari data History Preventive Maintanance pada sebuah perusahaan tambang di Kalimantan Selatan, selama periode 5 tahun. Unit yang diuji nilai RPN dan sistem adalah Mine Truck Heavy Duty Truck HD 785-7 sebagai sampel diambil 10 unit. Dari data tersebut nilai RPN dihitung masing-masing sistem. Selanjutnya data olahan tersebut di uji dengan uji ANOVA, dengan menggunakan uji F selanjutnya ilakukan analisis untuk setiap kelompok rata-rata atau pasangan rata-rata. Pengujian data dengan menggunakan uji Posteriori (Post Hoc uji Tukey HSD dan Duncan untuk melihat sistem yang mana dari 15 sistem yang rata

  3. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  4. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  5. Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system

    NARCIS (Netherlands)

    Feru, E.; Murgovski, N.; de Jager, A.G.; Willems, F.P.T.

    This paper presents an integrated energy and emission management strategy, called Integrated Powertrain Control (IPC), for an Euro-VI diesel engine with an electrified waste heat recovery system. This strategy optimizes the CO2–NOxCO2–NOx trade-off by minimizing the operational costs associated with

  6. Geospatial analyses in support of heavy metal contamination ...

    African Journals Online (AJOL)

    This paper presents an exploratory assessment of heavy metal contamination along the main highways in Mafikeng, and illustrates how spatial analyses of the contamination for environmental management purposes can be supported by GIS and Remote Sensing. Roadside soil and grass (Stenotaphrum sp.) samples were ...

  7. Dynamic Estimation on Output Elasticity of Highway Capital Stock in China

    Science.gov (United States)

    Li, W. J.; Zuo, Q. L.; Bai, Y. F.

    2017-12-01

    By using the Perpetual Inventory Method to calculate the capital stock of highway in China from 1988 to 2016, the paper builds the State Space Model based on Translog Production Function, according to the Ridge Regression and Kalman Filter Method, the dynamic estimation results of output elasticity are measured continuously and analyzed. The conclusions show that: Firstly, China’s growth speed on highway industry capital stock are divided into three stages which are respectively from 1988 to 2000, from 2001 to 2009 and from 2010 to 2016, during which shows steady growth, between which reflect rapid growth; Secondly, the output elasticity of highway capital stock, being between 0.154 and 0.248, is slightly larger than the output elasticity of human input factor, lower than the output elasticity of the technical level, shows positive effect on transport economy and rises steadily, but the output efficiency is low on the whole; Thirdly, around the year of 2010, the scale pay on highway industry begins to highlight the characteristic of increase.

  8. Diesel engine development in view of reduced emission standards

    International Nuclear Information System (INIS)

    Knecht, Walter

    2008-01-01

    Diesel engine development for use in light-, medium- and heavy-duty road vehicles is mainly driven by more and more stringent emission standards. Apart from air quality related emissions such as nitrogen oxides and particulates, also greenhouse gas (GHG) emissions are likely to become of more and more importance. Furthermore, oil-based fuel availability might become a problem due to limited reserves or due to political influences which leads to significantly increased fuel costs. Based on the above aspects, advanced engine technologies become essential and are discussed. Fuel injection with rate shaping capability and elevated injection pressures, air handling systems to increase the brake mean effective pressures (BMEPs) and specific power with a downsizing approach, while retaining a good dynamic response using possibly two-stage turbocharging. Heterogeneous and near-homogeneous combustion processes where the latter could possibly reduce the requirements on the exhaust gas aftertreatment system. Improvement and further development of engine management and control systems, exhaust gas aftertreatment for a reduction of nitrogen oxides and especially particulates and last but not least, energy recovery from the exhaust gas. Furthermore, alternative fuel usage in road vehicles is becoming important and their application in internal combustion engines is discussed

  9. 40 CFR 86.094-21 - Application for certification.

    Science.gov (United States)

    2010-07-01

    ... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.094-21 Application for... manufacturer shall specify a maximum nominal fuel tank capacity for each evaporative emission family...

  10. Numerical Investigation on Effects of Assigned EGR Stratification on a Heavy Duty Diesel Engine with Two-Stage Fuel Injection

    Directory of Open Access Journals (Sweden)

    Zhaojie Shen

    2018-02-01

    Full Text Available External exhaust gas recirculation (EGR stratification in diesel engines contributes to reduction of toxic emissions. Weak EGR stratification lies in that strong turbulence and mixing between EGR and intake air by current introduction strategies of EGR. For understanding of ideal EGR stratification combustion, EGR was assigned radically at −30 °CA after top dead center (ATDC to organize strong EGR stratification using computational fluid dynamics (CFD. The effects of assigned EGR stratification on diesel performance and emissions are discussed in this paper. Although nitric oxides (NOx and soot emissions are both reduced by means of EGR stratification compared to uniform EGR, the trade-off between NOx and soot still exists under the condition of arranged EGR stratification with different fuel injection strategies. A deterioration of soot emissions was observed when the interval between main and post fuel injection increased, while NO emissions increased first then reduced. The case with a 4 °CA interval between main and post fuel injection is suitable for acceptable NO and soot emissions. Starting the main fuel injection too early and too late is not acceptable, which results in high NO emissions and high soot emissions respectively. The start of the main fuel injection −10 °CA ATDC is suitable.

  11. Utilizing the energy from induced wind produce by highway vehicle motion

    International Nuclear Information System (INIS)

    Abas Abd Wahab; Tong, C.W.

    2000-01-01

    A research work has been conducted at the Faculty of mechanical Engineering, Universiti Teknologi Malaysia to utilize energy from airflow induced by moving vehicles along the highway for advertising and signboard lighting. Series of data collections have been made at Km 20 Johor Bahru - Kuala Lumpur Plus Highway. Wind anemometer equipped with data recorder has been placed at the highway divider to measure the wind speed induced by the vehicles moving from Johor Bahru to Kuala Lumpur and vice versa. From the data analysis it has been found that the to and from Kuala Lumpur motion of the vehicles induced a stable and continuous source of airflow (wind) ranges from 2 to 4 m/s. The energy in this induced wind has been estimated and has the potential to be used for the above said purpose. Five design models have been tested in the Faculty of mechanical Engineering Low Speed Wind Tunnel and the twisted vertical blades with circular end covers has proven to be the most efficient and suitable. The optimum sizing of the vertical axis wind turbine has also been determined. The details of the collection of wind induced data and analysis, estimation of energy content, the vertical axis wind turbine models testing and results are presented in this paper. (Author)

  12. Advanced Materials Development Program: Ceramic Technology for Advanced Heat Engines program plan, 1983--1993

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The purpose of the Ceramic Technology for Advanced Heat Engines (CTAHE) Project is the development of an industrial technology base capable of providing reliable and cost-effective high temperature ceramic components for application in advanced heat engines. There is a deliberate emphasis on industrial'' in the purpose statement. The project is intended to support the US ceramic and engine industries by providing the needed ceramic materials technology. The heat engine programs have goals of component development and proof-of-concept. The CTAHE Project is aimed at developing generic basic ceramic technology and does not involve specific engine designs and components. The materials research and development efforts in the CTAHE Project are focused on the needs and general requirements of the advanced gas turbine and low heat rejection diesel engines. The CTAHE Project supports the DOE Office of Transportation Systems' heat engine programs, Advanced Turbine Technology Applications (ATTAP) and Heavy Duty Transport (HDT) by providing the basic technology required for development of reliable and cost-effective ceramic components. The heat engine programs provide the iterative component design, fabrication, and test development logic. 103 refs., 18 figs., 11 tabs.

  13. Spatial Planning for Transit Tourism on The Highway: A Case Study of Highway Е-75 Through Vojvodina (Horgoš – Belgrade Section

    Directory of Open Access Journals (Sweden)

    Vuk GARAČA

    2015-02-01

    Full Text Available The quality and extent of traffc infrastructure has an immense infuence on the development of tourist destinations and on tourism in gener-al. Transit tourism is a unique form of movement and represents a link between generating zones and destinations. The subject of this study is the planning and spatial organization along the route of Highway Е-75 thorough northern Serbian province of Vojvodina. The goal of the study is to scientifcally assert that the route of highway is inadequately equipped as it lacks adequate hospitality services considering its signifcance and the needs of passengers in transit. The pa-per intends to analyze the growing tourists’ de-mands perceived in passenger numbers and the passenger vehicles turnover with existing tourist products.The spatial extent of the research comprises the section of Highway Е-75 through Vojvodina (Horgoš – Subotica – Bačka Topola – Vrbas – Novi Sad – Beška – Indjija – Stara Pazova. The study utilizes mixed quantitative and qual-itative methods, and employs preliminary desk research, feld work, comparative analysis, and a description to establish a critical synthetic narrative. The statistical method of Pearson cor-relation was used for quantitative data analysis and to assess the relationship between overnight stays in places along the highway and the num-ber of passengers travelling the highway. The results of the research pointed out that the initial hypothesis which refers to the lack of specialized accommodation capacity in the highway zone is valid.

  14. 23 CFR Appendix B to Subpart B of... - Required Contract Provisions, Appalachian Development Highway System and Local Access Roads...

    Science.gov (United States)

    2010-04-01

    ... Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS... washrooms, restaurants and other eating areas, timeclocks, locker rooms and other storage or dressing areas... his basic rate of pay for all hours worked in excess of eight hours in any calendar day or in excess...

  15. Vehicle safety telemetry for automated highways

    Science.gov (United States)

    Hansen, G. R.

    1977-01-01

    The emphasis in current, automatic vehicle testing and diagnosis is primarily centered on the proper operation of the engine. Lateral and longitudinal guidance technologies, including speed control and headway sensing for collision avoidance, are reviewed. The principal guidance technique remains the buried wire. Speed control and headway sensing, even though they show the same basic elements in braking and fuel systems, are proceeding independently. The applications of on-board electronic and microprocessor techniques were investigated; each application (emission control, spark advance, or anti-slip braking) is being treated as an independent problem is proposed. A unified bus system of distributed processors for accomplishing the various functions and testing required for vehicles equipped to use automated highways.

  16. Influence of an Enforcement Campaign on Seat-Belt and Helmet Wearing, Karachi-Hala Highway, Pakistan

    Science.gov (United States)

    Bhatti, Junaid A.; Ejaz, Kiran; Razzak, Junaid A.; Tunio, Israr Ali; Sodhar, Irshad

    2011-01-01

    This study assessed to what extent an enforcement campaign influenced seat-belt and helmet wearing on a Pakistani highway. The study setting was the Karachi-Hala highway where a traffic enforcement campaign was conducted from Dec 2009 to Feb 2010. Seat-belt and helmet wearing were observed in Nov 2009 and Apr 2010 at Karachi toll plaza. Differences in wearing rates as a function of occupants’ age, sex, and vehicle type were compared between the two periods. On average, 9 119 (Standard deviation=1 896) traffic citations were issued per month from Aug 2009 to Feb 2010; 4.2% of which were for not wearing helmet. A 22.5% increase in citations was observed for Dec 2009 to Feb 2010 periods compared with Aug 2009 to Oct 2009 periods. Nearly six thousand four-wheeled and four hundred two-wheeled motorized vehicle occupants were observed in Nov 2009 and Apr 2010. Overall, two of the five drivers and one of the five front seat occupants wore seat belts. This proportion was significantly higher in drivers and front-seat occupants of cars than those of heavier vehicles. Similarly, one of two motorcyclists used a helmet but this proportion was 5.8% for pillion riders in Nov 2009. The increased enforcement had a limited influence on belt wearing in drivers (+4.0%; 95% Confidence Interval [95%CI]=1.8–6.1) and occupants (+6.2%; 95%CI=4.2–8.2). A higher increase was observed for motorcyclists (+9.8%; 95%CI=2.6–16.8) and pillion riders (+12.8%; 95%CI=5.4, 20.5). These results suggested that serious efforts are required to increase seat-belt and helmet use on Pakistani highways. Improving enforcement resources, increased fines, not allowing such vehicles on roads, and awareness campaigns targeting drivers of heavy vehicles might increase wearing rates in Pakistan. PMID:22105384

  17. 40 CFR 86.004-21 - Application for certification.

    Science.gov (United States)

    2010-07-01

    ... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.004-21 Application for...% of fuel tank volume. (6) Participation in averaging programs—(i) Particulate averaging. (A) If the...

  18. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  19. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Comprehensive highway corridor planning with sustainability indicators.

    Science.gov (United States)

    2011-10-01

    "The Maryland State Highway Administration (SHA) has initiated major planning efforts to improve transportation : efficiency, safety, and sustainability on critical highway corridors through its Comprehensive Highway Corridor : (CHC) program. This pr...