WorldWideScience

Sample records for heavy-atom derivative screening

  1. A rational approach to heavy-atom derivative screening

    International Nuclear Information System (INIS)

    Joyce, M. Gordon; Radaev, Sergei; Sun, Peter D.

    2010-01-01

    In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom-derivative screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. Despite the development in recent times of a range of techniques for phasing macromolecules, the conventional heavy-atom derivatization method still plays a significant role in protein structure determination. However, this method has become less popular in modern high-throughput oriented crystallography, mostly owing to its trial-and-error nature, which often results in lengthy empirical searches requiring large numbers of well diffracting crystals. In addition, the phasing power of heavy-atom derivatives is often compromised by lack of isomorphism or even loss of diffraction. In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom derivative-screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. The method includes three basic steps: (i) the selection of likely reactive compounds for a given protein and specific crystallization conditions based on pre-defined heavy-atom compound reactivity profiles, (ii) screening of the chosen heavy-atom compounds for their ability to form protein adducts using mass spectrometry and (iii) derivatization of crystals with selected heavy-metal compounds using the quick-soak method to maximize diffraction quality and minimize non-isomorphism. Overall, this system streamlines the process of heavy-atom compound identification and minimizes the problem of non-isomorphism in phasing

  2. A rational approach to heavy-atom derivative screening

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, M. Gordon; Radaev, Sergei; Sun, Peter D., E-mail: psun@nih.gov [Structural Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, Maryland 20852 (United States)

    2010-04-01

    In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom-derivative screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. Despite the development in recent times of a range of techniques for phasing macromolecules, the conventional heavy-atom derivatization method still plays a significant role in protein structure determination. However, this method has become less popular in modern high-throughput oriented crystallography, mostly owing to its trial-and-error nature, which often results in lengthy empirical searches requiring large numbers of well diffracting crystals. In addition, the phasing power of heavy-atom derivatives is often compromised by lack of isomorphism or even loss of diffraction. In order to overcome the difficulties associated with the ‘classical’ heavy-atom derivatization procedure, an attempt has been made to develop a rational crystal-free heavy-atom derivative-screening method and a quick-soak derivatization procedure which allows heavy-atom compound identification. The method includes three basic steps: (i) the selection of likely reactive compounds for a given protein and specific crystallization conditions based on pre-defined heavy-atom compound reactivity profiles, (ii) screening of the chosen heavy-atom compounds for their ability to form protein adducts using mass spectrometry and (iii) derivatization of crystals with selected heavy-metal compounds using the quick-soak method to maximize diffraction quality and minimize non-isomorphism. Overall, this system streamlines the process of heavy-atom compound identification and minimizes the problem of non-isomorphism in phasing.

  3. Towards a rational approach for heavy-atom derivative screening in protein crystallography

    International Nuclear Information System (INIS)

    Agniswamy, Johnson; Joyce, M. Gordon; Hammer, Carl H.; Sun, Peter D.

    2008-01-01

    Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity of more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Heavy-atom derivatization is routinely used in protein structure determination and is thus of critical importance in structural biology. In order to replace the current trial-and-error heavy-atom derivative screening with a knowledge-based rational derivative-selection method, the reactivity of more than 40 heavy-atom compounds over a wide range of buffer and pH values was systematically examined using peptides which contained a single reactive amino-acid residue. Met-, Cys- and His-containing peptides were derivatized against Hg, Au and Pt compounds, while Tyr-, Glu-, Asp-, Asn- and Gln-containing peptides were assessed against Pb compounds. A total of 1668 reactive conditions were examined using mass spectrometry and were compiled into heavy-atom reactivity tables. The results showed that heavy-atom derivatization reactions are highly linked to buffer and pH, with the most accommodating buffer being MES at pH 6. A group of 21 compounds were identified as most successful irrespective of ligand or buffer/pH conditions. To assess the applicability of the peptide heavy-atom reactivity to proteins, lysozyme crystals were derivatized with a list of peptide-reactive compounds that included both known and new compounds for lysozyme derivatization. The results showed highly consistent heavy-atom reactivities between the peptides and lysozyme

  4. Membrane's Eleven: heavy-atom derivatives of membrane-protein crystals

    DEFF Research Database (Denmark)

    Morth, Jens Preben; Sørensen, Thomas Lykke-Møller; Nissen, Poul

    2006-01-01

    A database has been assembled of heavy-atom derivatives used in the structure determination of membrane proteins. The database can serve as a guide to the design of experiments in the search for heavy-atom derivatives of new membrane-protein crystals. The database pinpoints organomercurials...

  5. A rapid and rational approach to generating isomorphous heavy-atom phasing derivatives.

    Science.gov (United States)

    Lu, Jinghua; Sun, Peter D

    2014-09-01

    In attempts to replace the conventional trial-and-error heavy-atom derivative search method with a rational approach, we previously defined heavy metal compound reactivity against peptide ligands. Here, we assembled a composite pH- and buffer-dependent peptide reactivity profile for each heavy metal compound to guide rational heavy-atom derivative search. When knowledge of the best-reacting heavy-atom compound is combined with mass spectrometry assisted derivatization, and with a quick-soak method to optimize phasing, it is likely that the traditional heavy-atom compounds could meet the demand of modern high-throughput X-ray crystallography. As an example, we applied this rational heavy-atom phasing approach to determine a previously unknown mouse serum amyloid A2 crystal structure. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    Science.gov (United States)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  7. Initiating heavy-atom-based phasing by multi-dimensional molecular replacement.

    Science.gov (United States)

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu; Karlsen, Jesper Lykkegaard; Nissen, Poul

    2016-03-01

    To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are available. This is often the case for, for example, membrane proteins. Here, an approach for heavy-atom site identification based on a molecular-replacement parameter matrix (MRPM) is presented. It involves an n-dimensional search to test a wide spectrum of molecular-replacement parameters, such as different data sets and search models with different conformations. Results are scored by the ability to identify heavy-atom positions from anomalous difference Fourier maps. The strategy was successfully applied in the determination of a membrane-protein structure, the copper-transporting P-type ATPase CopA, when other methods had failed to determine the heavy-atom substructure. MRPM is well suited to proteins undergoing large conformational changes where multiple search models should be considered, and it enables the identification of weak but correct molecular-replacement solutions with maximum contrast to prime experimental phasing efforts.

  8. HASSP and HEAVY: Tools for automated heavy atom searches and refinement

    International Nuclear Information System (INIS)

    Terwilliger, T.T.

    1994-06-01

    In this tutorial, a simple example using model data for one derivative with anomalous information will be used to demonstrate the use of HASSP and HEAVY in heavy atom determination and refinement. The data used here will actually be based on model MAD data that has been converted to MIR format using MADMRG, but the treatment is identical to that for any other SIR+anomalous data. The data nd most of the programs discussed here can be obtained by e-mail from ''terwil at sign prov2.lanl.gov'' along with VAX-specific command files to run the data through

  9. Charge degeneracy removal in the screened hydrogen atom

    International Nuclear Information System (INIS)

    Penna, Andre L A; Diniz, Joao B; Oliveira, Fernando A

    2009-01-01

    We derive an analytical model for the states of the screened hydrogen atom by using a new charge degeneracy removal approach. Starting from the nonzero Thomas-Fermi parameter q, we show that screening effect is due to breaks of the charge degeneracy in each quantum level of the hydrogen atom. The charge degeneracy removal reparametrizes the atomic system through the effective nuclear charge α n,l and the appearance of a dual charge γ n,l for each quantum level. In this approach, we show that the screening of a quantum state depends hierarchically on the screening from all previous quantum states with the same angular quantum numbers. The excited state energies E n,l (q) are analytically found taking into account the contribution of this new charge degeneracy for each quantum level. Finally, we also have estimated accurate critical screening parameters q* n,l for the bound-unbound transition.

  10. Initiating Heavy-atom Based Phasing by Multi-Dimensional Molecular Replacement

    DEFF Research Database (Denmark)

    Pedersen, Bjørn Panyella; Gourdon, Pontus; Liu, Xiangyu

    2014-01-01

    -based approaches, which however may fail when only poorly diffracting derivative crystals are available, as often the case for e.g. membrane proteins. Here we present an approach for heavy atom site identification based on a Molecular Replacement Parameter Matrix (MRPM) search. It involves an n-dimensional search...... to test a wide spectrum of molecular replacement parameters, such as clusters of different conformations. The result is scored by the ability to identify heavy-atom positions, from anomalous difference Fourier maps, that allow meaningful phases to be determined. The strategy was successfully applied...... but correct molecular replacement solutions with maximum contrast to prime experimental phasing efforts....

  11. The UKB prescription and the heavy atom effects on the nuclear magnetic shielding of vicinal heavy atoms.

    Science.gov (United States)

    Maldonado, Alejandro F; Aucar, Gustavo A

    2009-07-21

    Fully relativistic calculations of NMR magnetic shielding on XYH3 (X = C, Si, Ge and Sn; Y = Br, I), XHn (n = 1-4) molecular systems and noble gases performed with a fully relativistic polarization propagator formalism at the RPA level of approach are presented. The rate of convergence (size of basis set and time involved) for calculations with both kinetic balance prescriptions, RKB and UKB, were investigated. Calculations with UKB makes it feasible to obtain reliable results for two or more heavy-atom-containing molecules. For such XYH3 systems, the influence of heavy vicinal halogen atoms on sigma(X) is such that heavy atom effects on heavy atoms (vicinal plus their own effects or HAVHA + HAHA effects) amount to 30.50% for X = Sn and Y = I; being the HAHA effect of the order of 25%. So the vicinal effect alone is of the order of 5.5%. The vicinal heavy atom effect on light atoms (HALA effect) is of the order of 28% for X = C and Y = I. A similar behaviour, but of opposite sign, is observed for sigma(Y) for which sigmaR-NR (I; X = C) (HAHA effect) is around 27% and sigmaR-NR(I; X = Sn) (HAVHA + HAHA effects) is close to 21%. Its electronic origin is paramagnetic for halogen atoms but both dia- and paramagnetic for central atoms. The effect on two bond distant hydrogen atoms is such that the largest variation of sigma(H) within the same family of XYH3 molecules appears for X = Si and Y = I: around 20%. In this case sigma(H; X = Sn, Y = I) = 33.45 ppm and sigma(H; X = Sn, Y = H) = 27.82 ppm.

  12. Atomic x-ray production by relativistic heavy ions

    International Nuclear Information System (INIS)

    Ioannou, J.G.

    1977-12-01

    The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protons and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z 1 2 for the cross section of the heavy ion with atomic number Z 1 to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z 2 of the target of the form (Z 1 - αZ 2 ) 2 , instead of Z 1 2 , is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology

  13. Influence of atomic screening on fragmentation of ultrarelativistic lead ions in LHC collimators

    DEFF Research Database (Denmark)

    Baggesen, Jan C.; Sørensen, Allan H.

    2009-01-01

    ) electromagnetic dissociation dominates the fragmentation in medium to heavy target materials. Due to the extended range of the interaction at high energies, atomic screening affects the dissociation in the LHC collimators. We determine the magnitude of the reduction in cross section relative to the unscreened...

  14. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    The utilization of heavy ion reactions in atomic physics is surveyed. The basic collision mechanisms and their consequences in atomic physics are summarized. The atomic and electronic processes during and after heavy ion collisions are reviewed as functions of the projectile energy. The main detection and measuring methods are described. Reviews of new information about the structure of electronic cloud and about fundamental processes based on the analysis of heavy ion reaction data are given. (D.Gy.)

  15. Basic atomic interactions of accelerated heavy ions in matter atomic interactions of heavy ions

    CERN Document Server

    Tolstikhina, Inga; Winckler, Nicolas; Shevelko, Viacheslav

    2018-01-01

    This book provides an overview of the recent experimental and theoretical results on interactions of heavy ions with gaseous, solid and plasma targets from the perspective of atomic physics. The topics discussed comprise stopping power, multiple-electron loss and capture processes, equilibrium and non-equilibrium charge-state fractions in penetration of fast ion beams through matter including relativistic domain. It also addresses mean charge-states and equilibrium target thickness in ion-beam penetrations, isotope effects in low-energy electron capture, lifetimes of heavy ion beams, semi-empirical formulae for effective cross sections. The book is intended for researchers and graduate students working in atomic, plasma and accelerator physics.

  16. From heavy ions to exotic atoms

    OpenAIRE

    Indelicato, Paul; Trassinelli, Martino

    2005-01-01

    We review a number of experiments and theoretical calculations on heavy ions and exotic atoms, which aim at providing informations on fundamental interactions. Among those are propositions of experiments for parity violation measurements in heavy ions and high-precision mesurements of He-like transition energies in highly charged ions. We also describe recent experiments on pionic atoms, that make use of highly-charged ion transitions to obtain accurate measurements of strong interaction shif...

  17. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    Investigations in atomic physics by high-energy heavy ions are discussed. The main attention is paid to collision mechanisms (direct Coulomb interaction, quasi-molecular collision mechanism and other models) and the structure of highly ionized and excited atoms. Some problems of fundamental issues (Lamb shift of H-like heavy ions, the superheavy quasi-atoms and the position production in supercritical fields) are conside-- red in detail

  18. Effective stopping of relativistic structural heavy ions at collisions with atoms

    International Nuclear Information System (INIS)

    Matveev, V.I.

    2002-01-01

    One develops the unperturbed theory of energy losses at collision of atoms with structural high-charged heavy ions moving with relativistic velocity. One derived a simple formula for efficient braking. The structural ions in terms of this paper are considered to mean partially ionized ions of heavy elements compressing ion nucleus and some bound electrons compensating partially for ion nucleus charge. Account of ion charge magnitude is determined to result in essential increase of efficient braking of ion in contrast to braking of point nucleus of Z* charge [ru

  19. Halogenated salicylaldehyde azines: The heavy atom effect on aggregation-induced emission enhancement properties

    International Nuclear Information System (INIS)

    Chen, Xiao-tong; Tong, Ai-jun

    2014-01-01

    This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. For this purpose, a series of halogenated salicylaldehyde azine derivatives, namely, chloro-salicylaldehyde azine (1), bromo-salicylaldehyde azine (2) and iodo-salicylaldehyde azine (3) are synthesized. 1 and 2 display typical AIEE characteristics of salicylaldehyde azine compounds; whereas for the iodo-substituent in 3, is found to be effective “external” heavy atom quenchers to salicylaldehyde azine fluorescence in aggregated state. Based on its weak fluorescence in aggregated state and relative strong fluorescence in dispersed state, 3 can also be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction. -- Highlights: • This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. • Chloro- and bromo-salicylaldehyde display typical AIEE properties of salicylaldehyde azine, whereas the iodo-substitute quenches AIEE in aggregated state. • Iodo-salicylaldehyde can be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction

  20. A novel interaction fingerprint derived from per atom score contributions: exhaustive evaluation of interaction fingerprint performance in docking based virtual screening.

    Science.gov (United States)

    Jasper, Julia B; Humbeck, Lina; Brinkjost, Tobias; Koch, Oliver

    2018-03-16

    Protein ligand interaction fingerprints are a powerful approach for the analysis and assessment of docking poses to improve docking performance in virtual screening. In this study, a novel interaction fingerprint approach (PADIF, protein per atom score contributions derived interaction fingerprint) is presented which was specifically designed for utilising the GOLD scoring functions' atom contributions together with a specific scoring scheme. This allows the incorporation of known protein-ligand complex structures for a target-specific scoring. Unlike many other methods, this approach uses weighting factors reflecting the relative frequency of a specific interaction in the references and penalizes destabilizing interactions. In addition, and for the first time, an exhaustive validation study was performed that assesses the performance of PADIF and two other interaction fingerprints in virtual screening. Here, PADIF shows superior results, and some rules of thumb for a successful use of interaction fingerprints could be identified.

  1. Two-photon decay in heavy atoms and ions

    International Nuclear Information System (INIS)

    Mokler, P.H.; Dunford, R.W

    2003-08-01

    We review the status of and comment on current developments in the field of two-photon decay in atomic physics research. Recent work has focused on two-photon decays in highly-charged ions and two-photon decay of inner-shell vacancies in heavy neutral atoms. We emphasize the importance of measuring the shape of the continuum emission in two-photon decay as a probe of relativistic effects in the strong central fields found in heavy atomic systems. New experimental approaches and their consequences will be discussed. (orig.)

  2. HISTRAP proposal: heavy-ion storage ring for atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D K; Alton, G D; Datz, S; Dittner, P F; Dowling, D T; Haynes, D L; Hudson, E D; Johnson, J W; Lee, I Y; Lord, R S

    1987-04-01

    HISTRAP, Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, decelerate, and store beams of highly charge very-heavy ions at energies appropriate for advanced atomic physics research. The ring is designed to allow studies of electron-ion, photon-ion, ion-atom, and ion-ion interactions. An electron cooling system will provide ion beams with small angular divergence and energy spread for precision spectroscopic studies and also is necessary to allow the deceleration of heavy ions to low energies. HISTRAP will have a maximum bending power of 2.0 T m and will be injected with ions from either the existing Holifield Heavy Ion Research Facility 25-MV tandem accelerator or from a dedicated ECR source and 250 keV/nucleon RFQ linac.

  3. STATISTICAL ANALYSIS OF THE HEAVY NEUTRAL ATOMS MEASURED BY IBEX

    International Nuclear Information System (INIS)

    Park, Jeewoo; Kucharek, Harald; Möbius, Eberhard; Galli, André; Livadiotis, George; Fuselier, Steve A.; McComas, David J.

    2015-01-01

    We investigate the directional distribution of heavy neutral atoms in the heliosphere by using heavy neutral maps generated with the IBEX-Lo instrument over three years from 2009 to 2011. The interstellar neutral (ISN) O and Ne gas flow was found in the first-year heavy neutral map at 601 keV and its flow direction and temperature were studied. However, due to the low counting statistics, researchers have not treated the full sky maps in detail. The main goal of this study is to evaluate the statistical significance of each pixel in the heavy neutral maps to get a better understanding of the directional distribution of heavy neutral atoms in the heliosphere. Here, we examine three statistical analysis methods: the signal-to-noise filter, the confidence limit method, and the cluster analysis method. These methods allow us to exclude background from areas where the heavy neutral signal is statistically significant. These methods also allow the consistent detection of heavy neutral atom structures. The main emission feature expands toward lower longitude and higher latitude from the observational peak of the ISN O and Ne gas flow. We call this emission the extended tail. It may be an imprint of the secondary oxygen atoms generated by charge exchange between ISN hydrogen atoms and oxygen ions in the outer heliosheath

  4. A rapid screening method for heavy metals in biological materials by emission spectroscopy.

    Science.gov (United States)

    Blacklock, E C; Sadler, P A

    1981-06-02

    A semi-quantitative screening method for heavy metals in biological material is described. The metals are complexed with ammonium pyrrolidine dithiocarbamate, sodium diethyl dithiocarbamate and potassium sodium tartrate. The solutions are adjusted to pH 4 and then extracted into chloroform. The chloroform phase is evaporated onto a matrix mixture of lithium fluoride and graphite. The sample is analysed by direct current arc emission spectroscopy using a 3 metre grating spectrograph. The spectra are recorded on a photographic plate. The method is developed on aqueous and spiked samples and then applied to in vivo samples containing toxic levels of heavy metals. Atomic absorption spectroscopy is used to check standard concentrations and to monitor the efficiency of the extraction procedure.

  5. Sub-Angstrom Atomic-Resolution Imaging of Heavy Atoms to Light Atoms

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2003-05-23

    Three decades ago John Cowley and his group at ASU achieved high-resolution electron microscope images showing the crystal unit cell contents at better than 4Angstrom resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with Cs-corrected lenses and monochromated electron beams.

  6. Giant resonance phenomena in the electron impact ionization of heavy atoms and ions

    International Nuclear Information System (INIS)

    Younger, S.M.

    1986-01-01

    Heavy atoms and ions offer an interesting opportunity to study atomic physics in a region where the atomic structure is dominated by the interelectronic interactions. One illustration of this is the profound term dependence of atomic orbitals for certain configurations of heavy atoms and ions. The appearance of giant scattering resonances in the cross sections for ionization of heavy atoms by electron impact is a manifestation of resonance behavior. Such resonant structures arise from the double well nature of the scattering potential and have recently been identified in the cross sections for the electron impact ionization of several xenon-like ions. The results of calculations showing effects for a variety of other ions are summarized. 7 refs., 4 figs

  7. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  8. Electron-impact ionization of heavy atomic ions

    International Nuclear Information System (INIS)

    Pindzola, M.S.; Griffin, D.C.; Bottcher, C.

    1987-01-01

    General theoretical methods for the calculation of direct and indirect processes in the electron-impact ionization of heavy atomic ions are reviewed. Cross section results for Xe 8+ and U 89+ are presented. 12 refs., 4 figs

  9. Lattice design of HISTRAP: Heavy ion storage ring for atomic physics

    International Nuclear Information System (INIS)

    Lee, I.Y.; Martin, J.A.; McGrory, J.B.; Milner, W.T.; Olsen, D.K.; Young, G.R.

    1987-01-01

    HISTRAP, a Heavy-Ion Storage Ring for Atomic Physics, is a proposed 46.8-m-circumference synchrotron-cooling-storage ring optimized to accelerate, cool, decelerate, and store beams of highly charged very-heavy ions at energies appropriate for advanced atomic physics research. This four-fold symmetrical ring has a maximum bending power of 2 Tm. It has achromatic bends and uses quadrupole triplets for focusing

  10. Screening of heavy quarks and hadrons at finite temperature and density

    Energy Technology Data Exchange (ETDEWEB)

    Doering, M.

    2006-09-22

    Heavy quarks and hadrons placed in a strongly interacting thermal and baryon chemical quantum field are screened by the medium. I calculate the free energies of heavy quarks and anti-quarks and hadron correlation functions on a 16{sup 3} x 4 lattice in 2-flavour QCD with a bare quark mass of m/T=0.4. The dependence on the interparticle distance determines the screening masses as a function of temperature and density. The Taylor expansion method is used for the baryon chemical potential. The heavy quark screening masses turn out to be in good agreement with perturbation theory for temperatures T>2T{sub c}. The hadron screening masses are consistent with the free quark propagation in the large temperature regime. (orig.)

  11. Screening of heavy quarks and hadrons at finite temperature and density

    International Nuclear Information System (INIS)

    Doering, M.

    2006-01-01

    Heavy quarks and hadrons placed in a strongly interacting thermal and baryon chemical quantum field are screened by the medium. I calculate the free energies of heavy quarks and anti-quarks and hadron correlation functions on a 16 3 x 4 lattice in 2-flavour QCD with a bare quark mass of m/T=0.4. The dependence on the interparticle distance determines the screening masses as a function of temperature and density. The Taylor expansion method is used for the baryon chemical potential. The heavy quark screening masses turn out to be in good agreement with perturbation theory for temperatures T>2T c . The hadron screening masses are consistent with the free quark propagation in the large temperature regime. (orig.)

  12. Effect of heavy atoms on the thermal stability of α-amylase from Aspergillus oryzae.

    Directory of Open Access Journals (Sweden)

    Michihiro Sugahara

    Full Text Available Currently, there are no versatile and established methods for improving stability of proteins. In an entirely different approach from conventional techniques such as mutagenesis, we attempted to enhance enzyme stability of α-amylase from Aspergillus oryzae using a heavy-atom derivatization technique. We evaluated changes in stability using differential scanning calorimetry (DSC. Candidate heavy atoms were identified using the Heavy-Atom Database System HATODAS, a Web-based tool designed to assist in heavy-atom derivatization of proteins for X-ray crystallography. The denaturation temperature of α-amylase derivatized with gadolinium (Gd or samarium (Sm ions increased by 6.2 or 5.7°C, respectively, compared to that of the native protein (60.6°C. The binding of six Gd ions was confirmed by X-ray crystallography of the enzyme at 1.5 Å resolution. DSC and dynamic light-scattering data revealed a correlation between stability and the aggregation state upon addition of Gd ions. These results show that HATODAS search is an effective tool for selecting heavy atoms for stabilization of this protein.

  13. Direct excitation in heavy atom collisions: A propensity rule for charge cloud orientation

    International Nuclear Information System (INIS)

    Andersen, N.; Aarhus Univ.; Nielsen, S.E.; Royal Danish School of Pharmacy, Copenhagen)

    1985-01-01

    The Massey Criterion prescribes maximum electronic excitation of atoms in heavy particle collisions for collision velocities v where Δε a/ℎv ≅ π. Here Δε is the energy defect and a is the effective interaction length. Experiments with planar symmetry have revealed a preferred way of rotation of the excited charge cloud in this velocity region. We demonstrate by analysis of a simple, yet realistic model why excitation favors states with a specific orientation. A general propensity rule is derived and its validity evaluated for a specific case, the Na-He system. Implications for future experiments are pointed out. In particular, the propensity rule predicts very different collisions behaviors of oppositely oriented atoms, as prepared e.g. by circular polarized laser light. (orig.)

  14. Metal screen retention for thoron daughter free atoms and atoms attached to condensation nuclei

    International Nuclear Information System (INIS)

    Cash, W.; Webb, J.; Fitts, D.; Skrable, K.W.; Chabot, G.E.

    1978-01-01

    Metal support screens available in a 47 mm commercial filter holder (model F3052-4, available from Scientific Products, Bedford, MA) assembly were tested for retention of thoron daughter atoms and atoms attached to condensation nuclei as a function of the flow rate of the carrier air stream. Sources of Pb-212 were generated on the surface of a metal disk by exposing the disk to thoron emanation generated from a special preparation of Th-228. This source of Pb-212, in transient equilibrium with its daughters, was placed in a flow through chamber connected in series to two of the metal screens backed by a glass fiber filter. Most of the recoil product radioactivity emitted from the Pb-212 source and collected on the screens was due to single atoms of Tl-208, which is born by alpha decay of Bi-212 with a recoil energy of 116 keV. Some free atoms of Bi-212 were also observed. Alpha autoradiographs of Filter samples placed on the downstream side of the two metal screens gave proof of the existence of Pb-212 aggregates through their alpha star images. These aggregate recoil particles were found to have a much higher penetration through the screens than free atoms of Tl-208 and Bi-212. Penetration of Tl-208 atoms and ions decreased exponentially as the inverse of the carrier air flow rate. Penetration varied from 0.047 at 0.088 cfm to 0.661 at 2.47 cfm. Atoms of Pb-212 attached to condensation nuclei were obtained by passing thoron into a reaction chamber containing naturally occurring condensation nuclei from the laboratory. The retention for these attached species varied both as a function of the flow rate and the age of the aerosol. The maximum retention varied from 0.525% at 6.38 cfm to 3.5% at 0.636 cfm for respective delay times of 120 and 30 minutes post the introduction of the thoron into the reaction chamber. A system consisting of a single screen backed by a glass fiber filter may be used to obtain the numbers of radon or thoron daughter free atoms and attached

  15. Charge-state-distributions of foil-excited heavy Rydberg atoms

    International Nuclear Information System (INIS)

    Faibis, A.; Kanter, E.P.; Koenig, W.; Zabransky, B.J.

    1985-01-01

    Studies of foil-excited fast (MeV/amu) heavy ions have demonstrated large yields of high Rydberg atoms formed in such beams. Further experiments have suggested a strong target-thickness dependence of the yields of such atoms. These results have been puzzling in view of the supposed short mean free paths of such atoms in solids. In an effort to better understand these results, the authors have measured the yields of Rydberg atoms (napprox.100-200) in foil-excited 32 S ions at an incident energy of 125 MeV

  16. Proceedings of the workshop on atomic physics with fast heavy-ion beams

    International Nuclear Information System (INIS)

    Kanter, E.P.; Minchinton, A.

    1983-01-01

    The Workshop on Atomic Physics with Fast Heavy-Ion Beams was held in the Physics Division, Argonne National Laboratory on January 20 and 21, 1983. The meeting brought together approx. 50 practitioners in the field of accelerator-based atomic physics. The workshop was held to focus attention on possible areas of atomic physics research which would benefit from use of the newest generation of accelerators designed to produce intense high-quality beams of fast heavy ions. Abstracts of individual paper were prepared separately for the data base

  17. Photoelectron spectroscopy of heavy atoms and molecules

    International Nuclear Information System (INIS)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target

  18. Plasma screening effects on the energies of hydrogen atom

    International Nuclear Information System (INIS)

    Soylu, A.

    2012-01-01

    A more general exponential cosine screened Coulomb potential is used for the first time to investigate the screening effects on the hydrogen atom in plasmas. This potential is examined for four different cases that correspond to four different type potentials when the different parameters are used in the potential within the framework of the well-known asymptotic iteration method. By solving the corresponding the radial Schrödinger equation with the screened and exponential cosine screened Coulomb potentials and comparing the obtained energy eigenvalues with the results of other studies, the applicability of the method to this kind of plasma physics problem is shown. The energy values of more general exponential cosine screened Coulomb potential are presented for various parameters in the potential. One of the advantages of the present potential is that it exhibits stronger screening effect than that of the exponential cosine screened Coulomb potential and it is also reduced to screened Coulomb and exponential cosine screened Coulomb as well as Coulomb potentials for special values of parameters. The parameters in the potential would be useful to model screening effects which cause an increase or decrease in the energy values of hydrogen atom in both Debye and quantum plasmas and in this manner this potential would be useful for the investigations of the atomic structure and collisions in plasmas.

  19. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement

    International Nuclear Information System (INIS)

    Dahms, Sven O.; Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E.

    2013-01-01

    A new approach is presented that allows the efficient localization and orientation of heavy-atom cluster compounds used in experimental phasing by a molecular replacement procedure. This permits the calculation of meaningful phases up to the highest resolution of the diffraction data. Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome

  20. HIAF: New opportunities for atomic physics with highly charged heavy ions

    Science.gov (United States)

    Ma, X.; Wen, W. Q.; Zhang, S. F.; Yu, D. Y.; Cheng, R.; Yang, J.; Huang, Z. K.; Wang, H. B.; Zhu, X. L.; Cai, X.; Zhao, Y. T.; Mao, L. J.; Yang, J. C.; Zhou, X. H.; Xu, H. S.; Yuan, Y. J.; Xia, J. W.; Zhao, H. W.; Xiao, G. Q.; Zhan, W. L.

    2017-10-01

    A new project, High Intensity heavy ion Accelerator Facility (HIAF), is currently being under design and construction in China. HIAF will provide beams of stable and unstable heavy ions with high energies, high intensities and high quality. An overview of new opportunities for atomic physics using highly charged ions and radioactive heavy ions at HIAF is given.

  1. Effect of heavy atoms on photochemically induced dynamic nuclear polarization in liquids

    Science.gov (United States)

    Okuno, Yusuke; Cavagnero, Silvia

    2018-01-01

    Given its short hyperpolarization time (∼10-6 s) and mostly non-perturbative nature, photo-chemically induced dynamic nuclear polarization (photo-CIDNP) is a powerful tool for sensitivity enhancement in nuclear magnetic resonance. In this study, we explore the extent of 1H-detected 13C nuclear hyperpolarization that can be gained via photo-CIDNP in the presence of small-molecule additives containing a heavy atom. The underlying rationale for this methodology is the well-known external-heavy-atom (EHA) effect, which leads to significant enhancements in the intersystem-crossing rate of selected photosensitizer dyes from photoexcited singlet to triplet. We exploited the EHA effect upon addition of moderate amounts of halogen-atom-containing cosolutes. The resulting increase in the transient triplet-state population of the photo-CIDNP sensitizer fluorescein resulted in a significant increase in the nuclear hyperpolarization achievable via photo-CIDNP in liquids. We also explored the internal-heavy-atom (IHA) effect, which is mediated by halogen atoms covalently incorporated into the photosensitizer dye. Widely different outcomes were achieved in the case of EHA and IHA, with EHA being largely preferable in terms of net hyperpolarization.

  2. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    International Nuclear Information System (INIS)

    Swaczyna, Paweł; Bzowski, Maciej

    2017-01-01

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10 6 times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.

  3. Modeling Emission of Heavy Energetic Neutral Atoms from the Heliosphere

    Energy Technology Data Exchange (ETDEWEB)

    Swaczyna, Paweł; Bzowski, Maciej, E-mail: pswaczyna@cbk.waw.pl [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Bartycka 18A, 00-716 Warsaw (Poland)

    2017-09-10

    Observations of energetic neutral atoms (ENAs) are a fruitful tool for remote diagnosis of the plasma in the heliosphere and its vicinity. So far, instruments detecting ENAs from the heliosphere were configured for observations of hydrogen atoms. Here, we estimate emissions of ENAs of the heavy chemical elements helium, oxygen, nitrogen, and neon. A large portion of the heliospheric ENAs is created in the inner heliosheath from neutralized interstellar pick-up ions (PUIs). We modeled this process and calculated full-sky intensities of ENAs for energies 0.2–130 keV/nuc. We found that the largest fluxes among considered species are expected for helium, smaller for oxygen and nitrogen, and smallest for neon. The obtained intensities are 50–10{sup 6} times smaller than the hydrogen ENA intensities observed by IBEX . The detection of heavy ENAs will be possible if a future ENA detector is equipped with the capability to measure the masses of observed atoms. Because of different reaction cross-sections among the different species, observations of heavy ENAs can allow for a better understanding of global structure of the heliosphere as well as the transport and energization of PUIs in the heliosphere.

  4. Fast Heavy-Atom Tunneling in Trifluoroacetyl Nitrene.

    Science.gov (United States)

    Wu, Zhuang; Feng, Ruijuan; Li, Hongmin; Xu, Jian; Deng, Guohai; Abe, Manabu; Bégué, Didier; Liu, Kun; Zeng, Xiaoqing

    2017-12-04

    Chemical reactions involving quantum mechanical tunneling (QMT) increasingly attract the attention of scientists. In contrast to the hydrogen-tunneling as frequently observed in chemistry and biology, tunneling solely by heavy atoms is rare. Herein, we report heavy-atom tunneling in trifluoroacetyl nitrene, CF 3 C(O)N. The carbonyl nitrene CF 3 C(O)N in the triplet ground state was generated in cryogenic matrices by laser (193 or 266 nm) photolysis of CF 3 C(O)N 3 and characterized by IR and EPR spectroscopy. In contrast to the theoretically predicted activation barriers (>10 kcal mol -1 ), CF 3 C(O)N undergoes rapid rearrangement into CF 3 NCO with half-life times of less than 10 min and unprecedentedly large 14 N/ 15 N kinetic isotope effects (1.18-1.33) in solid Ar, Ne, and N 2 matrices even at 2.8 K. The tunneling disappearance of CF 3 C(O)N becomes much slower in the chemically active toluene and in 2-methyltetrahydrofuran at 5 K. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Delta-electron emission in fast heavy ion atom collisions

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Ramm, U.; Berg, H.; Kelbch, C.; Feng Jiazhen; Hagmann, S.; Kraft, G.; Ullrich, J.

    1991-01-01

    The δ-electron emission processes occuring in fast heavy ion atom collisons are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed. (orig.)

  6. Heavy metals content in the stem bark of Detarium microcarpum ...

    African Journals Online (AJOL)

    The heavy metal analysis was carried out on the stem bark of D. microcarpum using an atomic absorption spectrophotometer (AAS). The heavy metals screened for include: lead, chromium, manganese, zinc and iron. The levels of manganese, zinc and iron were 13.91, 4.89 and 21.89 mg/L respectively. These heavy metals ...

  7. Screened Coulomb interactions in metallic alloys. I. Universal screening in the atomic-sphere approximation

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt

    2002-01-01

    We have used the locally self-consistent Green's-function (LSGF) method in supercell calculations to establish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic alloys with different compositions and degrees of order. This allows us to determine......-site local interaction zone. We demonstrate that the basic mechanism that governs the charge distribution is the screening of the net charges of the alloy components that makes the direct Coulomb interactions short ranged. In the atomic-sphere approximation, this screening appears to be almost independent...

  8. Localization and orientation of heavy-atom cluster compounds in protein crystals using molecular replacement.

    Science.gov (United States)

    Dahms, Sven O; Kuester, Miriam; Streb, Carsten; Roth, Christian; Sträter, Norbert; Than, Manuel E

    2013-02-01

    Heavy-atom clusters (HA clusters) containing a large number of specifically arranged electron-dense scatterers are especially useful for experimental phase determination of large complex structures, weakly diffracting crystals or structures with large unit cells. Often, the determination of the exact orientation of the HA cluster and hence of the individual heavy-atom positions proves to be the critical step in successful phasing and subsequent structure solution. Here, it is demonstrated that molecular replacement (MR) with either anomalous or isomorphous differences is a useful strategy for the correct placement of HA cluster compounds. The polyoxometallate cluster hexasodium α-metatungstate (HMT) was applied in phasing the structure of death receptor 6. Even though the HA cluster is bound in alternate partially occupied orientations and is located at a special position, its correct localization and orientation could be determined at resolutions as low as 4.9 Å. The broad applicability of this approach was demonstrated for five different derivative crystals that included the compounds tantalum tetradecabromide and trisodium phosphotungstate in addition to HMT. The correct placement of the HA cluster depends on the length of the intramolecular vectors chosen for MR, such that both a larger cluster size and the optimal choice of the wavelength used for anomalous data collection strongly affect the outcome.

  9. Relativistic Spin-Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained.

    Science.gov (United States)

    Vícha, Jan; Komorovsky, Stanislav; Repisky, Michal; Marek, Radek; Straka, Michal

    2018-05-10

    The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1 H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d 2 -5d 8 and 6p 4 HA hydrides and deshielded in 4f 0 , 5d 0 , 6s 0 , and 6p 0 HA hydrides. This general and intuitive concept explains periodic trends in the 1 H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide

  10. Limits on visibility of single heavy atoms in the scanning transmission electron microscope: an experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Wall, J.S.

    1979-01-01

    Theoretical calculations of the visibility of single heavy atoms on thin carbon substrates have predicted higher signal to noise ratios then experimentally observed. Six experimental measurements were performed to determine where the theory is inadequate, five to determine the absolute value of heavy atom scattering cross sections in practical units, and one to determine substrate noise in some practical units. The practical unit of measure was chosen to be the scattering power of one carbon atom as determined by an internal standard, Tobacco Mosaic Virus. Measurements were performed on the following targets on thin carbon substrates: single isolated uranium atoms; silicotungstate clusters; colloidal platinum particles; fd bacteriophage embedded in negative strain; and fd bacteriophage reacted with a known quantity of heavy atom reagent. These measurements suggest that the scattering power of one heavy atom is approximately 9 +- 4 carbon atom equivalents, instead of 15 to 24 predicted by theory. The same techniques were used to measure intensity fluctuations from area to area of a clean substrate. Substrate noise was found to be less than expected for squares of width less than 10A, but up to 2.5 times greater than expected for larger squares. These signal and noise measurements have been combined to give an empirical formula for calculating signal to noise ratios from specimen and microscope parameters.

  11. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.

    2005-01-01

    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  12. THE STUDY OF HEAVY METAL FROM ENVIRONMENTAL SAMPLES BY ATOMIC TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Ion V. POPESCU

    2011-05-01

    Full Text Available Using the Atomic Absorption Spectrometry (AAS and Energy Dispersive X-ray spectrometry (EDXRF techniques we analyzed the contents of heavy metals ( Cd, Cr, Ni, Pb, Ti, Sr, Co, Bi from eight wild mushrooms and soil substrate samples (48 samples of eight fungal species and 32 underlying soil samples, collected from ten forest sites of Dambovița County Romania. It was determined that the elements, especially heavy metals, in soil were characteristic of the acidic soils of the Romanian forest lands and are influenced by industrial pollution. Analytical possibilities of AAS and EDXRF analytical techniques have been compared and the heavy metal transfer from substrate to mushrooms has been studied. The coefficient of accumulation of essential and heavy metals has been calculated as well. Heavy metal contents of all analyzed mushrooms were generally higher than previously reported in literature.

  13. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  14. Retention of Halogenated Solutes on Stationary Phases Containing Heavy Atoms

    Directory of Open Access Journals (Sweden)

    Toshio Miwa

    2013-05-01

    Full Text Available To examine the effects of weak intermolecular interactions on solid-phase extraction (SPE and chromatographic separation, we synthesized some novel stationary phases with a heavy atom effect layer by immobilizing halogenated aromatic rings and hydroxyl groups onto the surface of a hydrophilic base polymer. Using SPE cartridges packed with the functionalized materials, we found that the heavy atom stationary phases could selectively retain halophenols in organic solvents, such as 1-propanol which blocks the hydrogen bonding, or acetonitrile which blocks the p-p interaction. The extraction efficiency of the materials toward the halophenols depended on the dipole moments of phenoxy groups present as functional groups. On the other hand, the extraction efficiency of solutes toward the functional group depended on their molar refractions, i.e., induced dipole moments. The retention of the solutes to the stationary phase ultimately depended on not only strong intermolecular interactions, but also the effects of weak interactions such as the dispersion force.

  15. Electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with many-electron atomic targets

    International Nuclear Information System (INIS)

    Mueller, C.; Gruen, N.; Voitkiv, A.B.

    2002-01-01

    We study single- and double-electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with neutral many-electron target atoms. The simultaneous interaction of the target with two projectile electrons is found to be the dominant process in the double-electron loss provided the atomic number of the projectile, Z p , that of the target, Z t , and the collision velocity, v, satisfy the condition Z p Z t /v>0.4. It is shown that for a wide range of projectile and target atomic numbers the asymptotic double-to-single loss ratio strongly depends on the target atomic number but is nearly independent of the nuclear charge of the projectile. It is also demonstrated that many-photon exchange between the target and each of the projectile electrons considerably influences the double loss in collisions with very heavy targets

  16. Hyperthermal (10-500 eV) collisions of noble gases with Ni(100) surface. Comparison between light and heavy atom collisions

    International Nuclear Information System (INIS)

    Kim, C.

    1995-01-01

    Collisional events between 10-500 eV atomic beams (He, Ne, Ar, Kr, and Xe) and a Ni(100) surface are investigated by the classical trajectory method. The calculation employs a molecular dynamics approach combined with a Langevin method for treating energy dissipation to infinite solid. We find that low energy collisions of heavy atoms (Xe and Kr) are characterized by extensive many-body interactions with top layer surface atoms. On the other hand, light atom (Ne and He) collisions can be approximated as a sequence of binary collisions even at these energies. Such a difference in the collisional nature gives rise to the following consequences. Low energy heavy atoms transfer energy mostly to the surface atoms during 45 angle collision. They scatter from the surface with a narrow angular distribution centered in a supraspecular direction. The ratio of the scattered to incident particle energy rapidly decreases with increasing beam energy of heavy atoms. The sputtering yield for Ni atoms by heavy atom bombardment increases quite linearly with beam energy, which is attributed to a linear proportionality between the beam energy and the energy transfered to a surface. Near the threshold energy sputtering can occur more efficiently by light atom bombardment. The energy transfer ratio to solid continuously increases with beam energy for light atoms. For heavy projectiles, on the other hand, this ratio reaches a maximum at the energy of ca, 100 eV, above which it stays nearly constant but slightly decreases. ((orig.))

  17. Charge transfer to the continuum by heavy ions in atomic hydrogen

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1981-01-01

    Design and installation of an atomic hydrogen target for measurements of charge transfer to the continuum by heavy ions are discussed. The design consists of a tungsten gas cell operated at temperatures of 2500 to 2600 0 K. Initial testing is underway

  18. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    CERN Document Server

    Umarov, F F; Kudryashova, L B; Krylov, N M

    2002-01-01

    In the present work, an experimental study of low-energy (E sub 0 =20-500 eV) heavy Cs sup + ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E sub 0 (E sub 0) for Si (E sub b =4.64 eV/atom) and Ni (E sub b =4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E sub b are approximately equal to each other. It is found that the scattering angles of Cs sup + ions considerably exceed a limiting scattering angle theta sub l sub i sub m in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle inter...

  19. New Fokker-Planck derivation of heavy gas models for neutron thermalization

    International Nuclear Information System (INIS)

    Larsen, E.W.; Williams, M.M.R.

    1990-01-01

    This paper is concerned with the derivation of new generalized heavy gas models for the infinite medium neutron energy spectrum equation. Our approach is general and can be used to derive improved Fokker-Planck approximations for other types of kinetic equations. In this paper we obtain two distinct heavy gas models, together with estimates for the corresponding errors. The models are shown in a special case to reduce to modified heavy gas models proposed earlier by Corngold (1962). The error estimates show that both of the new models should be more accurate than Corngold's modified heavy gas model, and that the first of the two new models should generally be more accurate than the second. (author)

  20. HISTRAP [Heavy Ion Storage Ring for Atomic Physics] prototype hardware studies

    International Nuclear Information System (INIS)

    Olsen, D.K.; Atkins, W.H.; Dowling, D.T.; Johnson, J.W.; Lord, R.S.; McConnell, J.W.; Milner, W.T.; Mosko, S.W.; Tatum, B.A.

    1989-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed 2.67-Tm synchrotron/cooler/storage ring optimized for advanced atomic physics research which will be injected with ions from either the HHIRF 25-MV tandem accelerator or a dedicated ECR source and RFQ linac. Over the last two years, hardware prototypes have been developed for difficult and long lead-time components. A vacuum test stand, the rf cavity, and a prototype dipole magnet have been designed, constructed, and tested. 7 refs., 8 figs., 2 tabs

  1. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    Science.gov (United States)

    Xie, Jianming [San Diego, CA; Wang, Lei [San Diego, CA; Wu, Ning [Boston, MA; Schultz, Peter G [La Jolla, CA

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  2. Heavy Atom Substituents as Molecular Probes for Solvent Effects on the Dynamics of Short-lived Triplet Exciplexes

    OpenAIRE

    Winter, Gerhard; Steiner, Ulrich

    1980-01-01

    The influence of heavy atom substituents (Br, I) in the electron donor aniline on the electron transfer reaction with thiopyronine triplet is investigated by flash spectroscopy in solvents of different viscosity and polarity. Triplet quenching constants and radical yields are determined. The results are analysed in terms of decay constants of an intermediate triplet exciplex where the heavy atom substituents significantly enhance the intersystem crossing process leading to singlet ground stat...

  3. Optically stimulated slowing of polar heavy-atom molecules with a constant beat phase

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Xia, Meng; Xia, Yong; Yin, Jianping

    2018-04-01

    Polar heavy-atom molecules have been well recognized as promising candidates for precision measurements and tests of fundamental physics. A much slower molecular beam to increase the interaction time should lead to a more sensitive measurement. Here we theoretically demonstrate the possibility of the stimulated longitudinal slowing of heavy-atom molecules by the coherent optical bichromatic force with a constant beat phase. Taking the YbF meolecule as an example, we show that a rapid and short-distance deceleration of heavy molecules by a phase-compensation method is feasible with moderate conditions. A molecular beam of YbF with a forward velocity of 120 m/s can be decelerated below 10 m/s within a distance of 3.5 cm and with a laser irradiance for each traveling wave of 107.2 W/cm 2 . Our proposed slowing method could be a promising approach to break through the space constraint or the limited capture efficiency of molecules loadable into a magneto-optical trap in traditional deceleration schemes, opening the possibility for a significant improvement of the precision measurement sensitivity.

  4. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    Energy Technology Data Exchange (ETDEWEB)

    Umarov, F.F. E-mail: farid1945@yahoo.com; Bazarbaev, N.N.; Kudryashova, L.B.; Krylov, N.M

    2002-11-01

    In the present work, an experimental study of low-energy (E{sub 0}=20-500 eV) heavy Cs{sup +} ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E{sub 0} (E{sub 0}) for Si (E{sub b}=4.64 eV/atom) and Ni (E{sub b}=4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E{sub b} are approximately equal to each other. It is found that the scattering angles of Cs{sup +} ions considerably exceed a limiting scattering angle {theta}{sub lim} in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle interactions (simultaneous ion interaction with several target atoms). It has been shown that during the many-particle interactions the structure of energy spectra disappears; high relative energy of scattering ions and their dependence on energy of bombardment is observed. It has been found that the energy of scattered ions depends on binding energy, melting temperature and packing density of target atoms.

  5. Density-matrix-functional calculations for matter in strong magnetic fields: Ground states of heavy atoms

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Yngvason, Jakob

    1996-01-01

    We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes exactly the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge Z...... and the electron number N tend to infinity with N/Z fixed, and the magnetic field B tends to infinity in such a way that B/Z4/3→∞. We have calculated electronic density profiles and ground-state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained...... by other methods. For iron at B=1012 G the ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge...

  6. Modified Moliere's screening parameter and its impact on multiple coulomb scattering

    International Nuclear Information System (INIS)

    Striganov, Sergei

    2015-01-01

    The Moliere approximation of elastic Coulomb scattering cross-sections plays an important role in accurate description of multiple scattering, non-ionisation energy, DPA radiation damage etc. The cross-section depends only on a single parameter that describes the atomic screening. Moliere calculated the screening angle for the Tomas-Fermi distribution of electrons in atoms. In this paper, the screening parameter was recalculated using a more accurate atomic form-factor obtained from the self-consistent Dirac-Hartree-Fock-Slater computations. For relativistic particles, the new screening angle can differ from the Moliere approximation by up to 50%. At the same time, it is rather close to other independent calculations. At low energies, the new screening angle is different for positrons and electrons. The positron screening parameter is much larger than the electron one for heavy nuclei at energies of ∼Z keV. The impact of the screening angle on particle transport and calculated quantities is discussed. (authors)

  7. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review

    International Nuclear Information System (INIS)

    Barton, John; González García, María Begoña; Hernández Santos, David; Fanjul-Bolado, Pablo; Ribotti, Alberto; Magni, Paolo; McCaul, Margaret; Diamond, Dermot

    2016-01-01

    Heavy metals such as lead, mercury, cadmium, zinc and copper are among the most important pollutants because of their non-biodegradability and toxicity above certain thresholds. Here, we review methods for sensing heavy metal ions (HMI) in water samples using screen-printed electrodes (SPEs) as transducers. The review (with 107 refs.) starts with an introduction into the topic, and this is followed by sections on (a) mercury-coated SPEs, (b) bismuth-coated SPEs, (c) gold-coated SPEs (d) chemically modified and non-modified carbon SPEs, (e) enzyme inhibition-based SPEs, and (f) an overview of commercially available electrochemical portable heavy metal analyzers. The review reveals the significance of SPEs in terms of decentralized and of in situ analysis of heavy metal ions in environmental monitoring. (author)

  8. Phosphorescence Tuning through Heavy Atom Placement in Unsymmetrical Difluoroboron β-Diketonate Materials.

    Science.gov (United States)

    Liu, Tiandong; Zhang, Guoqing; Evans, Ruffin E; Trindle, Carl O; Altun, Zikri; DeRosa, Christopher A; Wang, Fang; Zhuang, Meng; Fraser, Cassandra L

    2018-02-06

    Difluoroboron β-diketonates (BF 2 bdks) show both fluorescence (F) and room-temperature phosphorescence (RTP) when confined to a rigid matrix, such as poly(lactic acid). These materials have been utilized as optical oxygen sensors (e.g., in tumors, wounds, and cells). Spectral features include charge transfer (CT) from the major aromatic donor to the dioxaborine acceptor. A series of naphthyl-phenyl dyes (BF 2 nbm) (1-6) were prepared to test heavy-atom placement effects. The BF 2 nbm dye (1) was substituted with Br on naphthyl (2), phenyl (3), or both rings (4) to tailor the fluorescence/phosphorescence ratio and RTP lifetime-important features for designing O 2 sensing dyes by means of the heavy atom effect. Computational studies identify the naphthyl ring as the major donor. Thus, Br substitution on the naphthyl ring produced greater effects on the optical properties, such as increased RTP intensity and decreased RTP lifetime compared to phenyl substitution. However, for electron-donating piperidyl-phenyl dyes (5), the phenyl aromatic is the major donor. As a result, Br substitution on the naphthyl ring (6) did not alter the optical properties significantly. Experimental data and computational modeling show the importance of Br position. The S 1 and T 1 states are described by two singly occupied MOs (SOMOs). When both of these SOMOs have substantial amplitude on the heavy atom, passage from S 1 to T 1 and emission from T 1 to S 0 are both favored. This shortens the excited-state lifetimes and enhances phosphorescence. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The screening length of interatomic potential in atomic collisions

    International Nuclear Information System (INIS)

    Yamamura, Y.; Takeuchi, W.; Kawamura, T.

    1998-03-01

    In computer studies on the interaction of charged particle with solids, many authors treat the nuclear collision by the Thomas-Fermi screened Coulomb potential. For better agreement with experiment, the screening length is modified sometimes. We investigate the theoretical background for the correction factor of the screening length in the interatomic potential which can be deduced from two steps. The first step is to select the correction factor of an isolated atom so as to match the average radius of the Thomas-Fermi electron distribution with that of the Hartree-Fock electron distribution, where we use the Clementi and Roetti's table. The second step is to determine the correction factor of the screening length of the interatomic potential by using a combination rule. The correction factors obtained for the screening length are in good agreement with those determined by the computer analysis of the Impact Collision Ion Scattering Spectroscopy (ICISS) data. (author)

  10. Elliptic flow and energy loss of heavy quarks in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Greiner, Carsten; Xu, Zhe

    2011-01-01

    The space-time propagation of heavy quarks in ultrarelativistic heavy ion collisions is studied within the partonic transport model Boltzmann approach of multiparton scatterings (BAMPS). In this model heavy quarks interact with the partonic medium via binary scatterings. The cross sections for these interactions are calculated with leading-order perturbative QCD, but feature a more precise Debye screening derived within the hard thermal loop approximation and obey the running of the coupling. Within this framework the elliptic flow and the nuclear modification factor of heavy quarks are computed for the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) energies and compared to available experimental data. It is found that binary scatterings alone cannot reproduce the data and therefore radiative corrections have to be taken into account.

  11. Discrimination of solvent from protein regions in native Fouriers as a means of evaluating heavy-atom solutions in the MIR and MAD methods

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.; Berendzen, Joel

    1999-01-01

    The presence of distinct regions of high and low density variation in electron-density maps is found to be a good indicator of the correctness of a heavy-atom solution in the MIR and MAD methods. An automated examination of the native Fourier is tested as a means of evaluation of a heavy-atom solution in MAD and MIR methods for macromolecular crystallography. It is found that the presence of distinct regions of high and low density variation in electron-density maps is a good indicator of the correctness of a heavy-atom solution in the MIR and MAD methods. The method can be used to evaluate heavy-atom solutions during MAD and MIR structure solutions and to determine the handedness of the structure if anomalous data have been measured

  12. Heavy nuclide synthesis by neutrons in astrophysics and by screened protons in host metals

    International Nuclear Information System (INIS)

    Hora, H.; Miley, G.H.

    2000-01-01

    The similarity of the abundance of heavy nuclei in the Universe with that of the nuclei produced in the fully reproducible reactions of protons in host metals like palladium, nickel or others is evident and can be described by the same exponential function of the distribution probability N(Z) depending on the proton number Z of the nuclides. This agrees with the earlier derived consequence of a 3 n relation for magic numbers and an alternative foundation of the nuclear shell model. Compared to femtometer-attosecond reactions in the big bang, the low energy nuclear reactions in the host metals have picometer distances and megasecond duration. For this picometer distance, a combination of the swimming electron layer and Debye screening model with a metal-plasma dielectric model is presented. (author)

  13. Tau electron atoms at RHIC

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1985-01-01

    An amusement ancillary to the proposed quark-gluon plasma production hypothesized from a relativistic heavy ion collider (RHIC is a sufficient quantity of tau electrons to potentially admit the study of its exotic atoms. In this paper the given wealth of nuclear phenomena is derived from muonic atoms assume a tau atom is more forthcoming of information due to the lower orbits entirely contained within the nucleus. It is the purpose of this brief note to discuss the production mechanism at a RHIC and to delineate some of the more obvious properties of the tau atom. As in the case of the mu, more exotic phenomena derived from resonance ''accidents'' with nuclear transitions takes place, but it would be presumptions to discuss them at this time. Given the complete containment in nuclear matter of the tau lepton in its innermost atomic orbits. An experiment performed with such an exotic species results in the measurement of its lifetime

  14. Assessment of Sediment Heavy Metals Pollution Using Screening Methods (XRF, TGA/MS, XRPD and Earthworms Bioassay)

    Science.gov (United States)

    Findoráková, Lenka; Šestinová, Ol'ga; Hančul'ák, Jozef; Fedorová, Erika; Zorkovská, Anna

    2016-10-01

    The aim of this study is focused on the use of screening methods (TG/DTA coupled with MS, XRF, AAS, XRPD and earthworm bioassay) for sediments pollution assessing by heavy metals (Cu, Zn, Pb, Hg) coming from the former mining workloads in the central Spis, Eastern Slovakia. The screening methods (XRF, AAS) indicated pollution of studied sediments by Cu, Zn, Pb, Hg. The earthworms Dendrobaena veneta caused in some studied samples decrease of heavy metals concentration after their 7 days’ exposure in sediments. The other screening methods such as thermal analysis and XRPD analysis, does not confirm the specifically changes in physicochemical properties comparing the properties before and after 7 days’ earthworm's exposure.

  15. Probing dark energy with atom interferometry

    International Nuclear Information System (INIS)

    Burrage, Clare; Copeland, Edmund J.; Hinds, E.A.

    2015-01-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry

  16. Probing dark energy with atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, Clare; Copeland, Edmund J. [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Hinds, E.A., E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: Edmund.Copeland@nottingham.ac.uk, E-mail: Ed.Hinds@imperial.ac.uk [Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2015-03-01

    Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

  17. Determination of heavy metals impurities in low and medium atomic weight matrices

    International Nuclear Information System (INIS)

    Paiano, Silvestre; Prado Souza, Rose M.G. do

    1997-01-01

    Heavy materials have a mass attenuation coefficient in the energy interval from 100 to 400 KeV substantially higher than those corresponding to light and medium atomic weight matrices. They also show, in the same energy range, a more pronounced energy variation of this parameter. In a few cases, this property can be used for the determination of the concentration of impurities constituted by heavy metals in a lighter matrix. An Ytterbium gamma-ray source, which has several energy peaks in the considered interval, is used to supply a number of energy pairs from which the density of impurities can be found without the use of reference materials. (author). 1 ref., 4 figs

  18. Spin-selective depopulation of triplet sublevels in rapidly rotating triplet exciplexes detected by a heavy-atom-induced magnetic field effect

    OpenAIRE

    Steiner, Ulrich

    1980-01-01

    A mechanism is presented explaining a reported heavy-atom-induced magnetic field effect as a consequence of non-equilibrium triplet sublevel population in an intermediate exciplex. The triplet exciplex spin polarization is induced by sub-level-selective intersystem crossing from the exciplex triplet to its singlet ground state and is decreased by an external magnetic field. The theory accounts almost quantitatively for the observed influence of magnetic field strength and heavy-atom substitue...

  19. Plasma screening effects on the energies of hydrogen atom under the influence of velocity-dependent potential

    International Nuclear Information System (INIS)

    Bahar, M. K.

    2014-01-01

    In order to examine the plasma screening and velocity-dependent potential effects on the hydrogen atom, the Schrödinger equation including a more general exponential cosine screened Coulomb and velocity-dependent potential is solved numerically in the framework asymptotic iteration method. The more general exponential cosine screened Coulomb potential is used to model Debye and quantum plasma for the specific values of the parameters in its structure. However, in order to examine effects of velocity-dependent potential on energy values of hydrogen atom in Debye and quantum plasma, the isotropic form factor of velocity-dependent potential is given as harmonic oscillator type, ρ(r)=ρ o r 2 . Then, the energies of s and p states are calculated numerically without any approximation. In order to investigate thoroughly plasma screening effects and contribution of velocity-dependent potential on energy values of hydrogen atom, the corresponding calculations are carried out by using different values of parameters of more general exponential cosine screened Coulomb potential and isotropic dependence, results of which are discussed

  20. External heavy atom effect on intersystem crossing reactions of aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Foeldiak, G.

    1988-01-01

    The external heavy atom effect by xenon on the S 1 → T n and T 1 → S o transitions of naphthalene and pyrene was investigated in hydrocarbon solvents by fluorescence or absorption spectroscopy. The quencher forms a short-lived encounter complex (that may be called exciplex as well) with the excited molecules in equilibrium process. This exciplex formation in solutions with naphthalene leads to some deviation from the Stern-Volmer type concentration dependence of the quenching. (author)

  1. The influence of nuclear structure on the Lamb shift in hydrogenlike heavy atoms

    International Nuclear Information System (INIS)

    Beier, T.; Plunien, G.; Soff, G.

    1997-01-01

    We evaluate and list the various contributions to the Lamb shift in hydrogenlike heavy atoms which arise from parameters describing shape, size and structure of the nucleus. We compare these contributions with those obtained from quantum electrodynamics. It is found that in heavy nuclei, nuclear contributions depending on experimental parameters and nuclear models are of the same size as QED contributions of order a 2 . Therefore, in these systems the theoretical predictions for binding energies are limited by the exact knowledge of the nuclear parameters. In addition, we tabulate all corrections contributing to the 1s 1/2 Lamb shift in hydrogenlike Pb and U. (orig.)

  2. Enhanced Electromagnetic and Chemical/Biological Sensing. Properties of Atomic Cluster-Derived Materials

    National Research Council Canada - National Science Library

    Schatz, George

    2003-01-01

    The Center for Atomic Clusters-derived Materials performed a broad range of research concerned with synthesizing, characterizing and utilizing atomic and molecular clusters, nanoparticles and nanomaterial...

  3. Bibliography of atomic and molecular excitation in heavy particle collisions, 1950--1975

    International Nuclear Information System (INIS)

    Hawthorne, S.W.; Thomas, E.W.; Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Kirkpatrick, M.I.; McDaniel, E.W.; Phaneuf, R.A.

    1979-02-01

    This annotated bibliography lists published work on atomic and molecular excitation in heavy particle collisions for the period 1950 to 1975. Sources include scientific journals, abstract compilations, conference proceedings, books, and reports. The bibliography is arranged alphabetically by author. Each entry indicates whether the work was experimental or theoretical, what energy range was covered, and what reactants were investigated. Following the bibliographical listing are indexes of reactions and authors

  4. On the trends of Fukui potential and hardness potential derivatives in isolated atoms vs. atoms in molecules.

    Science.gov (United States)

    Bhattacharjee, Rituparna; Roy, Ram Kinkar

    2014-10-28

    In the present study, trends of electronic contribution to molecular electrostatic potential [Vel(r¯)(r=0)], Fukui potential [v(+)f|(r=0) and v(-)f|(r=0)] and hardness potential derivatives [Δ(+)h(k) and Δ(-)h(k)] for isolated atoms as well as atoms in molecules are investigated. The generated numerical values of these three reactivity descriptors in these two electronically different situations are critically analyzed through the relevant formalism. Values of Vel(r¯) (when r → 0, i.e., on the nucleus) are higher for atoms in molecules than that of isolated atoms. In contrast, higher values of v(+)|(r=0) and v(-)|(r=0) are observed for isolated atoms compared to the values for atoms in a molecule. However, no such regular trend is observed for the Δ(+)h(k) and Δ(-)h(k) values, which is attributed to the uncertainty in the Fukui function values of atoms in molecules. The sum of Fukui potential and the sum of hardness potential derivatives in molecules are also critically analyzed, which shows the efficacy of orbital relaxation effects in quantifying the values of these parameters. The chemical consequence of the observed trends of these descriptors in interpreting electron delocalization, electronic relaxation and non-negativity of atomic Fukui function indices is also touched upon. Several commonly used molecules containing carbon as well as heteroatoms are chosen to make the investigation more insightful.

  5. Extended screened exchange functional derived from transcorrelated density functional theory.

    Science.gov (United States)

    Umezawa, Naoto

    2017-09-14

    We propose a new formulation of the correlation energy functional derived from the transcorrelated method in use in density functional theory (TC-DFT). An effective Hamiltonian, H TC , is introduced by a similarity transformation of a many-body Hamiltonian, H, with respect to a complex function F: H TC =1FHF. It is proved that an expectation value of H TC for a normalized single Slater determinant, D n , corresponds to the total energy: E[n] = ⟨Ψ n |H|Ψ n ⟩/⟨Ψ n |Ψ n ⟩ = ⟨D n |H TC |D n ⟩ under the two assumptions: (1) The electron density nr associated with a trial wave function Ψ n = D n F is v-representable and (2) Ψ n and D n give rise to the same electron density nr. This formulation, therefore, provides an alternative expression of the total energy that is useful for the development of novel correlation energy functionals. By substituting a specific function for F, we successfully derived a model correlation energy functional, which resembles the functional form of the screened exchange method. The proposed functional, named the extended screened exchange (ESX) functional, is described within two-body integrals and is parametrized for a numerically exact correlation energy of the homogeneous electron gas. The ESX functional does not contain any ingredients of (semi-)local functionals and thus is totally free from self-interactions. The computational cost for solving the self-consistent-field equation is comparable to that of the Hartree-Fock method. We apply the ESX functional to electronic structure calculations for a solid silicon, H - ion, and small atoms. The results demonstrate that the TC-DFT formulation is promising for the systematic improvement of the correlation energy functional.

  6. Dose enhancement by synchrotron radiation and heavy atoms for the treatment of gliomas

    International Nuclear Information System (INIS)

    Bobyk, L.

    2010-11-01

    High grade gliomas are brain tumors of bad prognosis. The standard therapeutic treatment combines surgery, radiotherapy and sometimes use of temozolomide (chemotherapy agent). Healthy tissues radio-sensitivity is a major limitation for radiotherapy treatment. The stereotactic radiotherapy by synchrotron radiation is an innovative technique which combines a low energy radiation (lower 100 keV) with the presence of heavy atoms in the tumoral zone. Such an approach is used to increase the differential of dose deposited in the tumor compared to surrounding healthy tissues. In this study, several compounds containing heavy atoms such as chemotherapy agents: cisplatin/carbo-platin, a DNA base analog: 5-iodo-2'-deoxyuridine (IUdR) and gold nano-particles were considered. The dose enhancement factor induced by the presence of these compounds located for some of them in the extracellular medium or inside the cells for others, was determined using in vitro studies. Thereafter, in vivo studies on rats bearing gliomas, were performed to study the toxicity, the kinetic of distribution and the localization of these compounds together with their potential efficacy of treatment combining intracerebral injection with low energy radiation. (author)

  7. Probability of K atomic shell ionization by heavy particles impact, in functions of the scattering angle

    International Nuclear Information System (INIS)

    Oliveira, P.M.C. de.

    1976-12-01

    A method of calculation of the K atomic shell ionization probability by heavy particles impact, in the semi-classical approximation is presented. In this approximation, the projectile has a classical trajectory. The potential energy due to the projectile is taken as perturbation of the Hamiltonian of the neutral atom. We use scaled Thomas-Fermi wave function for the atomic electrons. The method is valid for intermediate atomic number elements and particle energies of some MeV. Probabilities are calculated for the case of Ag (Z = 47) and protons of 1 and 2 MeV. Results are given as function of scattering angle, and agree well known experimental data and also improve older calculations. (Author) [pt

  8. Atomic nuclei decay modes by spontaneous emission of heavy ions

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Ivascu, M.; Sandulescu, A.

    1984-01-01

    The great majority of the known nuclei, including the so-called stable nuclides, are in fact metastable with respect to several modes of spontaneous superasymmetric splitting. If the lifetime against these processes is larger than 10 30 s, the phenomenon is not detectable with available experimental techniques, hence one can admit stability from the practical point of view. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relatively to the alpha decay for these natural radioactivities. From a huge amount of systematical calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained for parent nuclei - heavy clusters leading to a magic ( 208 Pb) or almost daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-life n the 10 10 -10 30 s range. The shell structure and pairing effects are clearly manifested in these new decay modes

  9. The projects for heavy water production of the Argentine National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Garcia Bourg, J.M.; Garcia, E.E.

    1982-01-01

    The bases and scope of the projects for heavy water production that are being currently developed by the Argentine National Atomic Energy Commission (CNEA) are described. As an introduction, the following points are presented: a) the fundamentals of heavy water utilization in a nuclear reactor, with a mention of its properties and uses, b) a review of the physicochemical bases of the principal methods for heavy water production: chemical exchange (monothermal and bithermal processes), distillation and electrolysis, with tables summarizing the fundamental characteristics of the first two ones, and an evaluation of the different production methods from the viewpoint of their application in an industrial scale; and c) a synthetic information, in the form of tables, about the world's heavy water production. The subject of heavy water production in Argentina is treated in the principal section, describing the scope, location, main characteristics and chemical processes corresponding to the projects being developed by CNEA, which currently are the installation of an Industrial Plant in Arroyito (Province of Neuquen), purchased on a turnkey basis and using the NH 3 /H 2 isotopic exchange method; the installation of an Experimental Plant in Atucha (Province of Buenos Aires), for the development of the domestic technology of heavy-water production by the SH 2 /H 2 O isotopic exchange method, and the development of the engineering of an industrial plant (''Module 80''), based on the Experimental Plant's technology. (M.E.L.) [es

  10. Physics in Screening Environments

    Science.gov (United States)

    Certik, Ondrej

    In the current study, we investigated atoms in screening environments like plasmas. It is common practice to extract physical data, such as temperature and electron densities, from plasma experiments. We present results that address inherent computational difficulties that arise when the screening approach is extended to include the interaction between the atomic electrons. We show that there may arise an ambiguity in the interpretation of physical properties, such as temperature and charge density, from experimental data due to the opposing effects of electron-nucleus screening and electron-electron screening. The focus of the work, however, is on the resolution of inherent computational challenges that appear in the computation of two-particle matrix elements. Those enter already at the Hartree-Fock level. Furthermore, as examples of post Hartree-Fock calculations, we show second-order Green's function results and many body perturbation theory results of second order. A self-contained derivation of all necessary equations has been included. The accuracy of the implementation of the method is established by comparing standard unscreened results for various atoms and molecules against literature for Hartree-Fock as well as Green's function and many body perturbation theory. The main results of the thesis are presented in the chapter called Screened Results, where the behavior of several atomic systems depending on electron-electron and electron-nucleus Debye screening was studied. The computer code that we have developed has been made available for anybody to use. Finally, we present and discuss results obtained for screened interactions. We also examine thoroughly the computational details of the calculations and particular implementations of the method.

  11. New experiments on few-electron very heavy atoms

    International Nuclear Information System (INIS)

    Gould, H.

    1985-07-01

    New experiments, to test quantum electrodynamics (QED) in strong Coulomb fields and to study atomic collisions at ultrarelativistic energies, are proposed. A 0.1% measurement of the 2 2 P/sub 1/2/-2 2 S/sub 1/2/ splitting in lithium like uranium (Z=92) and the 2 3 P 0 - 2 3 S 1 splitting in heliumlike uranium is proposed as a sub 1% test of the Lamb shift in a strong Coulomb field. Measurements of the hyperfine splitting of hydrogenlike thallium (Z=81) and the g/sub j/ factor of the ground state of hydrogenlike uranium are propsed as a test of the QED contribution to the magnetic moment of an electron bound in a strong Coulomb field. Measurements of capture cross sections for ultra relativistic very heavy nuclei are proposed to look for the capture of electrons from pair production. 40 refs., 7 figs., 2 tabs

  12. Report on the workshop on atomic and plasma physics requirements for heavy ion fusion, Argonne National Lab., December 13-14, 1979

    International Nuclear Information System (INIS)

    Kin, Y.K.; Magelssen, G.

    1979-01-01

    Atomic, molecular, and plasma physics areas that are relevant to inertial confinement fusion by energetic heavy ions are identified. Discussions are confined to problems related to the design of heavy ion accelerators, accumulation of ions in storage rings, and the beam transport in a reactor vessel

  13. Functionalizing carbon nitride with heavy atom-free spin converters for enhanced 1 O 2 generation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenting; Han, Congcong; Zhang, Qinhua; Zhang, Qinggang; Li, Zhongtao; Gosztola, David J.; Wiederrecht, Gary P.; Wu, Mingbo

    2018-05-01

    advanced photosensitizers for singlet oxygen (1O2) generation. However, the intersystem crossing (ISC) process is quite insufficient in carbon nitride, limiting the 1O2 generation. Here, we report a facile and general strategy to confined benzophenone as a heavy atom-free spin converter dopant in carbon nitride via the facile copolymerization. With proper energy level matching between the heavy atom-free spin converter and various ligands based on carbon nitride precursors, the proper combination can decrease the singlet-triplet energy gap (DEST) and hence generate 1O2 effectively. Due to its significant and selectivity for 1O2 generation, the as-prepared carbon nitride-based photosensitizer shows a high selective photooxidation activity for 1,5-dihydroxy-naphthalene (1,5-DHN). The product yield reached 71.8% after irradiation for 60 min, which was higher than that of cyclometalated PtII complexes (53.6%) in homogeneous photooxidation. This study can broaden the application of carbon nitride in the field of selective heterogeneous photooxidation due to simple operation, low cost, and high efficiency, making it a strong candidate for future industrialization.

  14. Synthesis and Antibacterial Screening of Novel Derivatives of Embelin

    Science.gov (United States)

    Subramanian, L.; Leema, M.; Pradeep, N. S.; Joy, B.; Pillai, Z. S.

    2018-02-01

    Embelin, a naturally occurring compound extracted from Embelia ribes is used in Ayurvedic system of medicine owing to its wide spectrum of biological activities. In the present work, we have aimed at improving the efficacy of Embelin by appropriate structural modifications. A few novel derivatives of Embelin have been prepared. The antibacterial screening of these derivatives were carried out and compared with a well known antibiotic, Streptomycin. The derivatives exhibited better activity than Streptomycin and the lead molecule, Embelin.

  15. Waste Derived Sorbents and Their Potential Roles in Heavy Metal Remediation Applications

    Directory of Open Access Journals (Sweden)

    Chiang Y. W.

    2013-04-01

    Full Text Available Inorganic waste materials that have the suitable inherent characteristics could be used as precursors for the synthesis of micro- and mesoporous materials, which present great potential to be re-utilized as sorbent materials for heavy metal remediation. Three inorganic waste materials were studied in the present work: water treatment residuals (WTRs from an integrated drinking water/wastewater treatment plant, and fly ash and bottom ash samples from a municipal solid waste incinerator (MSWI. These wastes were converted into three sorbent materials: ferrihydrite-like materials derived from drying of WTRs, hydroxyapatite-like material derived from ultrasound assisted synthesis of MSWI fly ash with phosphoric acid solution, and a zeolitic material derived from alkaline hydrothermal conversion of MSWI bottom ash. The performance of these materials, as well as their equivalent commercially available counterparts, was assessed for the adsorption of multiple heavy metals (As, Cd, Co, Ni, Pb, Zn from synthetic solutions, contaminated sediments and surface waters; and satisfactory results were obtained. In addition, it was observed that the combination of sorbents into sorbent mixtures enhanced the performance levels and, where applicable, stabilized inherently mobile contaminants from the waste derived sorbents.

  16. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    KHABIBULLAEV, P. K.

    2014-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  17. δ-electron spectroscopy and the atomic clock effect in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mueller-Nehler, U.

    1993-11-01

    The properties of strongly bound electrons in superheavy quasimolecular systems with combined nuclear charge numbers Z = Z P + Z T ≥ 110 are investigated. The emission of δ-electrons may serve as an atomic clock for nuclear reactions which is associated with the large overlap of the electron probability density with the nuclear interior. Excitation and emission rates of inner-shell electrons in collisions of very heavy ions with beam energies at or above the nuclear Coulomb barrier depend explicitly on details of the nuclear dynamics. Theoretical and experimental results are reviewed. (orig.)

  18. Estimation of atomic masses of heavy and superheavy elements

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masahiro [Ministry of Education, Science and Culture, Tokyo (Japan)

    1997-07-01

    To estimate unknown atomic masses of heavy and superheavy elements, three kinds of formula: FRDM (finite range droplet model by Moeller et al.), TUYY (an empirical formula by Tachibana et al.) and our KUTY are explained. KUTY estimates the crude shell energies of spherical nucleus from sum of single-particle energies. Then, the refined shell energies in due consideration of paring and deformation are obtained by mixing with the functions of the crude shell energies. Experimental values of U and Fm isotopes were compared with estimation mass of KUTY and FRDM. In the field with experimental values of U isotopes, the value of KUTY and FRDM separated the same difference from the experimental value. The behavior of KUTY and FRDM for Fm isotopes were same as that of U, but ETFSI deviated a little from the experimental values. (S.Y.)

  19. Heavy metal stabilization in contaminated road-derived sediments.

    Science.gov (United States)

    Rijkenberg, Micha J A; Depree, Craig V

    2010-02-01

    There is increasing interest in the stabilization of heavy metals in road-derived sediments (RDS), to enable environmentally responsible reuse applications and circumvent the need for costly landfill disposal. To reduce the mobility of heavy metals (i.e. Cu, Pb and Zn) the effectiveness of amendments using phosphate, compost and fly ash addition were investigated using batch leaching experiments. In general, phosphate amendments of RDS were found to be ineffective at stabilizing heavy metals, despite being used successfully in soils. Phosphate amendment resulted in enhanced concentrations of dissolved organic carbon (DOC), which increased the solubilisation of heavy metals via complexation. Amendment with humified organic matter (compost) successfully stabilized Cu and Pb in high DOC leaching RDS with an optimum loading of 15-20% (w/w). Compost, however, was ineffective at stabilizing Zn. Increasing the pH by amending RDS/compost blends with 2.5-15% (w/w) coal fly ash resulted in the stabilization of Zn, Cu and Pb. However, above a pH of approximately 7.5 and 8 enhanced leaching of organic matter resulted in an increase in leached Cu and Pb, respectively. Accordingly, the optimum level of fly ash amendment for the RDS/compost blends was estimated to be ca. 10%. Boosted regression trees analysis (BRT) of the data revealed that DOC accounted for 56% and 65% of the Cu and Pb leaching, respectively, whereas pH only accounted for ca. 18% of Cu and Pb leaching. RDS sample characteristics (i.e. metal concentrations, size fractionation and organic matter content) were more important at reconciling the leaching concentrations of copper Cu (27%) than Pb (16%). The most important parameter explaining Zn leaching was pH. Overall, the choice of a suitable stabilization agent/s depends on the composition of RDS with respect to the amount of organic matter present, and the sorption chemistry of the heavy metal of interest. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Multielement preconcentration of trace heavy metals in seawater with an emulsion containing 8-quinolinol for graphite-furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Matsumiya, Hiroaki; Kageyama, Tomohiro; Hiraide, Masataka

    2004-01-01

    A water-in-oil type emulsion containing 8-quinolinol has been used for the concentration of traces of heavy metals from seawater prior to their determinations by graphite-furnace atomic absorption spectrometry. The emulsion used was prepared by dissolving 40 mg of 8-quinolinol and 60 mg of sorbitan monooleate (Span-80) in 3.0 ml of toluene and vigorously mixing with 0.70 ml of aqueous hydrochloric acid solution (1.5 mol l -1 ) by ultrasonic irradiation. The resulting emulsion was gradually injected into 100 ml of sample solution (pH 8.5) and dispersed by stirring as numerous tiny globules. Four heavy metals (Co, Ni, Cu, and Cd) in the sample solution were quantitatively transported through the organic layer into the acidic aqueous droplets encapsulated in the emulsion. After collecting the dispersed emulsion globules, they were demulsified by heating and the heavy metals in the segregated aqueous phase were determined by atomic absorption spectrometry. Owing to the highly efficient concentration (100-fold), these heavy metals at sub-ng ml -1 levels in seawater were determined with satisfactory accuracy and precision, being confirmed with certified reference samples

  1. New small molecule inhibitors of histone methyl transferase DOT1L with a nitrile as a non-traditional replacement for heavy halogen atoms.

    Science.gov (United States)

    Spurr, Sophie S; Bayle, Elliott D; Yu, Wenyu; Li, Fengling; Tempel, Wolfram; Vedadi, Masoud; Schapira, Matthieu; Fish, Paul V

    2016-09-15

    A number of new nucleoside derivatives are disclosed as inhibitors of DOT1L activity. SARs established that DOT1L inhibition could be achieved through incorporation of polar groups and small heterocycles at the 5-position (5, 6, 12) or by the application of alternative nitrogenous bases (18). Based on these results, CN-SAH (19) was identified as a potent and selective inhibitor of DOT1L activity where the polar 5-nitrile group was shown by crystallography to bind in the hydrophobic pocket of DOT1L. In addition, we show that a polar nitrile group can be used as a non-traditional replacement for heavy halogen atoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Identification of Heavy Metal Pollution Derived From Traffic in Roadside Soil Using Magnetic Susceptibility.

    Science.gov (United States)

    Yang, Pingguo; Ge, Jing; Yang, Miao

    2017-06-01

    The study integrates surface and vertical distribution of magnetic susceptibility and heavy metal contents (Pb, Cu, Zn and Fe) to characterize the signature of vehicle pollutants in roadside soils at Linfen city, China. Sites with reforestation and without vegetation cover were investigated. The results showed that magnetic susceptibility and heavy metal contents were higher at the roadside without trees than in the reforest belt. The variations of magnetic susceptibility and heavy metal contents decreased both with distance and with depth. The maximum value was observed at 5-10 m away from the roadside edge. The vertical distribution in soil revealed accumulation of pollutants in 0-5 cm topsoils. The average contents were higher than the background values and in the order Fe (107.21 g kg -1 ), Zn (99.72 mg kg -1 ), Pb (90.99 mg kg -1 ), Cu (36.14 mg kg -1 ). Coarse multi domain grains were identified as the dominating magnetic particles. Multivariate statistical and SEM/EDX analyses suggested that the heavy metals derived from traffic sources. Trees act as efficient receptors and green barrier, which can reduce vehicle derived pollution.

  3. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  4. Study of heavy metals in the grass-milk product chain by means of neutron activation and atomic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Bruant, C; Bruant, J P; Neuburger, M; Vassal, L; Disant, C; Bittel, R; Fourcy, A

    1974-12-31

    with the heavy metals Hg, Cu, Zn, Pb, and Cd is studied. The first three metals were determined by neutron activation and tae last two by atomic absorption spectrophotometry. The chemical rature of these metals and their biological effect leads to different results from those obtained for tae principal fission products. As a rule the heavy metal concentrations at harvest are much lower than taat of the foods ingested by lactating cows. The cow plays the role of filter. If the concentration of these elements is considered in mu g/g of fresh material there is a reconcentration of these heavy metals in cream and cheese, probably cornected with their physico-chemical affinity for proteins. (JSR)

  5. Atomic inner-shell physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  6. Atomic collision studies at moderate projectile velocities using highly charged, decelerated heavy ions from the GSI-UNILAC

    International Nuclear Information System (INIS)

    Mokler, P.H.; Hoffmann, D.H.H.; Schoenfeldt, W.A.; Maor, D.

    1984-01-01

    Beams of highly ionized, very heavy atoms at moderate velocities have been produced at the UNILAC using the acceleration-stripping-deceleration method. The available ion species range from Kr 33+ to U 66+ in the energy region between 2 and 5 MeV/u. A survey on first experiments at GSI using these moderate velocity, few electron, heavy ion beams is given. The effectiveness of the method is demonstrated for Xesup(q+)-Xe collision experiments with 41 <= q <= 45. Results on vacancy transfer between inner quasimolecular levels for close collisions, and on distant collision electron capture are reported. (orig.)

  7. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  8. Effects of final-state interaction and screening on strange and heavy quark production

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Cheuk-Yin [Oak Ridge National Lab., TN (United States); Chatterjee, L. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States)]|[Jadavpur Univ., Calcutta (India)

    1996-10-01

    Final-state interaction and screening have a great influence on {ital q{anti q}} production cross sections, which are important quantities in many problems in quark-gluon plasma physics. They lead to an enhancement of the cross section for a {ital q{anti q}} color-singlet state and a suppression for a color-octet state. The effects are large near the production threshold. The presence of screening gives rise to resonances for {ital q{anti q}} production just above the threshold at specific plasma temperatures. These resonances, especially {ital c{anti c}} and {ital b{anti b}} resonances, may be utilized to search for the quark-gluon plasma by studying the temperature dependence of heavy-quark pair production just above the threshold.

  9. Screened Coulomb interactions in metallic alloys. II. Screening beyond the single-site and atomic-sphere approximations

    DEFF Research Database (Denmark)

    Ruban, Andrei; Simak, S.I.; Korzhavyi, P.A.

    2002-01-01

    -electron potential and energy. In the case of a random alloy such interactions can be accounted for only by lifting the atomic-sphere and single-site approximations, in order to include the polarization due to local environment effects. Nevertheless, a simple parametrization of the screened Coulomb interactions...... for the ordinary single-site methods, including the generalized perturbation method, is still possible. We obtained such a parametrization for bulk and surface NiPt alloys, which allows one to obtain quantitatively accurate effective interactions in this system....

  10. The MORPHEUS II protein crystallization screen

    Energy Technology Data Exchange (ETDEWEB)

    Gorrec, Fabrice, E-mail: fgorrec@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom)

    2015-06-27

    MORPHEUS II is a 96-condition initial crystallization screen formulated de novo. The screen incorporates reagents selected from the Protein Data Bank to yield crystals that are not observed in traditional conditions. In addition, the formulation facilitates the optimization and cryoprotection of crystals. High-quality macromolecular crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for experimental phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with commercially available conditions.

  11. The MORPHEUS II protein crystallization screen

    International Nuclear Information System (INIS)

    Gorrec, Fabrice

    2015-01-01

    MORPHEUS II is a 96-condition initial crystallization screen formulated de novo. The screen incorporates reagents selected from the Protein Data Bank to yield crystals that are not observed in traditional conditions. In addition, the formulation facilitates the optimization and cryoprotection of crystals. High-quality macromolecular crystals are a prerequisite for the process of protein structure determination by X-ray diffraction. Unfortunately, the relative yield of diffraction-quality crystals from crystallization experiments is often very low. In this context, innovative crystallization screen formulations are continuously being developed. In the past, MORPHEUS, a screen in which each condition integrates a mix of additives selected from the Protein Data Bank, a cryoprotectant and a buffer system, was developed. Here, MORPHEUS II, a follow-up to the original 96-condition initial screen, is described. Reagents were selected to yield crystals when none might be observed in traditional initial screens. Besides, the screen includes heavy atoms for experimental phasing and small polyols to ensure the cryoprotection of crystals. The suitability of the resulting novel conditions is shown by the crystallization of a broad variety of protein samples and their efficiency is compared with commercially available conditions

  12. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    OpenAIRE

    Becker, Emilene M.; Rampazzo, Roger T.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Silva, Márcia M. da; Welz, Bernhard; Katskov, Dmitri A.

    2011-01-01

    Acesso restrito: Texto completo. In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd+0.03% (m/v) Mg+0.05% (v/v) Triton X-...

  13. Investigation of the intermediate LK molecular orbital radiation in heavy ion-atom collisions

    International Nuclear Information System (INIS)

    Frank, W.; Kaun, K.-H.; Manfrass, P.

    1981-01-01

    The continuum consisting of an intensive low-energy and a high-energy components in heavy-ion atom collision systems with atomic numbers Z 1 , Z 2 > 28 is studied. The aim of the study is to prove that the C1 continuum cannot be caused by ridiative electron capture (REC) being molecular orbital (MO) radiation to the 2ptau level. It is shown that the comparison of the C1 yields obtained in Kr+Nb asymmetric collisions in gas and solid targets is associated with the formation of vacancies in the lower-Z collision partner and can be interpreted as quasimolecular radiation to the 2ptau orbital level. The strong suppression of the C2 component in the gas target experimets indicates that the MO radiation to the 1stau orbit is emitted preferentially in the two-collision process in symmetric and near-symmetric systems with Z 1 , Z 2 [ru

  14. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  15. Low-energy heavy-atom impact as a tool for production and classification of doubly excited states

    International Nuclear Information System (INIS)

    Andersen, N.

    1985-01-01

    Low-energy heavy-atom impact may be an efficient way of preferentially populating doubly excited levels. Using neon as an example, this paper discusses why this is so. The similarity of the structure of the energy level diagrams for doubly excited neon and the level scheme for neutral magnesium is pointed out, suggesting that collective quantum numbers may describe the electron pair. (orig.)

  16. Monte Carlo simulation of heavy ion induced kinetic electron emission from an Al surface

    CERN Document Server

    Ohya, K

    2002-01-01

    A Monte Carlo simulation is performed in order to study heavy ion induced kinetic electron emission from an Al surface. In the simulation, excitation of conduction band electrons by the projectile ion and recoiling target atoms is treated on the basis of the partial wave expansion method, and the cascade multiplication process of the excited electrons is simulated as well as collision cascade of the recoiling target atoms. Experimental electron yields near conventional threshold energies of heavy ions are simulated by an assumption of a lowering in the apparent surface barrier for the electrons. The present calculation derives components for electron excitations by the projectile ion, the recoiling target atoms and the electron cascades, from the calculated total electron yield. The component from the recoiling target atoms increases with increasing projectile mass, whereas the component from the electron cascade decreases. Although the components from the projectile ion and the electron cascade increase with...

  17. The energy-deposition model. Electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies

    International Nuclear Information System (INIS)

    Shevelko, V.P.; Litsarev, M.S.; Kato, D.; Tawara, H.

    2010-09-01

    Single- and multiple-electron loss processes in collisions of heavy many-electron ions (positive and negative) in collisions with neutral atoms at low and intermediate energies are considered using the energy-deposition model. The DEPOSIT computer code, created earlier to calculate electron-loss cross sections at high projectile energies, is extended for low and intermediate energies. A description of a new version of DEPOSIT code is given, and the limits of validity for collision velocity in the model are discussed. Calculated electron-loss cross sections for heavy ions and atoms (N + , Ar + , Xe + , U + , U 28+ , W, W + , Ge - , Au - ), colliding with neutral atoms (He, Ne, Ar, W) are compared with available experimental and theoretical data at energies E > 10 keV/u. It is found that in most cases the agreement between experimental data and the present model is within a factor of 2. Combining results obtained by the DEPOSIT code at low and intermediate energies with those by the LOSS-R code at high energies (relativistic Born approximation), recommended electron-loss cross sections in a wide range of collision energy are presented. (author)

  18. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  19. Screening of seaweeds in the East China Sea as potential bio-monitors of heavy metals.

    Science.gov (United States)

    Pan, Yaoru; Wernberg, Thomas; de Bettignies, Thibaut; Holmer, Marianne; Li, Ke; Wu, Jiaping; Lin, Fang; Yu, Yan; Xu, Jiang; Zhou, Chaosheng; Huang, Zhixing; Xiao, Xi

    2018-03-30

    Seaweeds are good bio-monitors of heavy metal pollution and have been included in European coastal monitoring programs. However, data for seaweed species in China are scarce or missing. In this study, we explored the potential of seaweeds as bio-monitor by screening the natural occurring seaweeds in the "Kingdom of seaweed and shellfish" at Dongtou Islands, the East China Sea. Totally, 12 seaweed species were collected from six sites, with richness following the sequence of Rhodophyta > Phaeophyta > Chlorophyta. The concentration of heavy metals (Cu, Cr, Ni, Zn, Pb, Cd, As) in the seaweeds was determined, and the bioaccumulation coefficient was calculated. A combination of four seaweeds, Pachydictyon coriaceum, Gelidium divaricatum, Sargassum thunbergii, and Pterocladiella capillacea, were proposed as bio-monitors due to their high bioaccumulation capabilities of specific heavy metals in the East China Sea and hence hinted the importance of using seaweed community for monitoring of pollution rather than single species. Our results provide first-hand data for the selection of bio-monitor species for heavy metals in the East China Sea and contribute to selection of cosmopolitan bio-monitor communities over geographical large area, which will benefit the establishment of monitoring programs for coastal heavy metal contamination.

  20. Experimental atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The experimental atomic physics program within the physics division is carried out by two groups, whose reports are given in this section. Work of the accelerator atomic physics group is centered around the 6.5-MV EN tandem accelerator; consequently, most of its research is concerned with atomic processes occurring to, or initiated by, few MeV/amu heavy ions. Other activities of this group include higher energy experiments at the Holifield Heavy Ion Research Facility (HHIRF), studies of electron and positron channeling radiation, and collaborative experiments at other institutions. The second experimental group concerns itself with lower energy atomic collision physics in support of the Fusion Energy Program. During the past year, the new Electron Cyclotron Resonance Source has been completed and some of the first data from this facility is presented. In addition to these two activities in experimental atomic physics, other chapters of this report describe progress in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compilation activities

  1. Screening heavy metals levels in hair of sanitation workers by X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Md Khudzari, Jauharah; Wagiran, Husin; Hossain, I.; Ibrahim, Noorddin

    2013-01-01

    This work presents a study of human hair as a bio-indicator for detection of heavy metals as part of environmental health surveillance programs project to develop a subject of interest in the biomedical and environmental sciences. A total of 34 hair samples were analyzed that consisting of 29 samples from sanitation workers and five samples from students. The hair samples were prepared and treated in accordance to the International Atomic Energy Agency (IAEA) recommendations. The concentrations of heavy metals were analyzed using the energy dispersive X-ray fluorescence (EDXRF) technique by X-50 Mobile X-ray Fluorescence (XRF) at Oceanography Institute, Universiti Malaysia Terengganu. The performance of EDXRF analyzer was tested by Standard Reference Material (SRM 2711) Montana Soil which was in good agreement with certified value within 14% deviations except for Hg. While seven heavy metals: Mn, Fe, Ni, Cu, Zn, Se, and Sb were detected in both groups, three additional elements, i.e. As, Hg and Pb, were detected only in sanitation workers group. For sanitation workers group, the mean concentration of six elements, Mn, Fe, Cu, Zn, Se, and Sb, shows elevated concentration as compared to the control samples concentration. Results from both groups were compared and discussed in relation to their respective heavy metals concentrations. - Highlights: ► We determine heavy metals in hair sample of sanitation workers and control group. ► 7 heavy metals, Mn, Fe, Ni, Cu, Zn, Se, and Sb, were detected in both groups. ► Additional elements of As, Hg and Pb were discovered only in sanitation workers. ► Generally, mean concentration of sanitation workers show elevation in comparison. ► We report results in relation to their respective heavy metals concentrations.

  2. Analytical evaluation of atomic form factors: Application to Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Safari, L., E-mail: laleh.safari@ist.ac.at [IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg (Austria); Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Santos, J. P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Amaro, P. [Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Physikalisches Institut, Universität Heidelberg, D-69120 Heidelberg (Germany); Jänkälä, K. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Fratini, F. [Department of Physics, University of Oulu, Box 3000, FI-90014 Oulu (Finland); Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG (Brazil)

    2015-05-15

    Atomic form factors are widely used for the characterization of targets and specimens, from crystallography to biology. By using recent mathematical results, here we derive an analytical expression for the atomic form factor within the independent particle model constructed from nonrelativistic screened hydrogenic wave functions. The range of validity of this analytical expression is checked by comparing the analytically obtained form factors with the ones obtained within the Hartee-Fock method. As an example, we apply our analytical expression for the atomic form factor to evaluate the differential cross section for Rayleigh scattering off neutral atoms.

  3. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  4. Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening

    International Nuclear Information System (INIS)

    Subedi, Amit; Shimizu, Takeshi; Ryo, Akihide; Sanada, Emiko; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-01-01

    Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors based on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.

  5. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    Science.gov (United States)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  6. Investigation of the imaging properties of inorganic scintillation screens using high energetic ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice [TU Darmstadt (Germany); JWG Universitaet Frankfurt/Main (Germany); Forck, Peter; Sieber, Thomas [GSI Darmstadt (Germany); Ensinger, Wolfgang; Lederer, Stephan [TU Darmstadt (Germany); Kester, Oliver [JWG Universitaet Frankfurt/Main (Germany)

    2016-07-01

    Inorganic scintillation screens are a common diagnostics tool in heavy ion accelerators. In order to investigate the imaging properties of various screen materials, four different material compositions were irradiated at GSI, using protons up to Uranium ions as projectiles. Beams were extracted from SIS18 with high energy (300 MeV/u) in slow and fast extraction mode. During irradiation the scintillation response of the screens was simultaneously recorded by two different optical setups to investigate light output, profile characteristics and emission spectra. It was observed, that fast extracted beams induce in general lower light output than slow extracted beams, while the light output per deposited energy decreases with atomic number. The analysis of the spectral emission as well as investigations with classical optical methods showed no significant defect-building in all materials, not even under irradiation with increasing beam intensity or over long time periods. The investigated scintillation screens can be considered as stable under irradiation with high energetic heavy ion pulses and are appropriate for beam diagnostics applications in future accelerator facilities like FAIR. Characteristic properties and application areas of the screens are presented in the poster.

  7. Control of triplet state generation in heavy atom-free BODIPY-anthracene dyads by media polarity and structural factors

    KAUST Repository

    Filatov, Mikhail A.

    2018-02-12

    A family of heavy atom-free BODIPY-anthracene dyads (BADs) exhibiting triplet excited state formation from charge-transfer states is reported. Four types of BODIPY scaffolds, different in the alkyl substitution pattern, and four anthracene derivatives have been used to access BADs. The fluorescence and intersystem crossing (ISC) in these dyads depend on donor-acceptor couplings and can be accurately controlled by the substitution or media polarity. Under conditions that do not allow charge transfer (CT), the dyads exhibit fluorescence with high quantum yields. Formation of charge-transfer states triggers ISC and the formation of long-lived triplet excited states in the dyads. The excited state properties were studied by steady-state techniques and ultrafast pump-probe spectroscopy to determine the parameters of the observed processes. Structural information for various BADs was derived from single crystal X-ray structure determinations alongside DFT molecular geometry optimization, revealing the effects of mutual orientation of subunits on the photophysical properties. The calculations showed that alkyl substituents on the BODIPY destabilize CT states in the dyads, thus controlling the charge transfer between the subunits. The effect of the dyad structure on the ISC efficiency was considered at M06-2X level of theory and a correlation between mutual orientation of the subunits and the energy gap between singlet and triplet CT states was studied using multireference CASSCF method.

  8. Control of triplet state generation in heavy atom-free BODIPY-anthracene dyads by media polarity and structural factors

    KAUST Repository

    Filatov, Mikhail A.; Karuthedath, Safakath; Polestshuk, Pavel M; Callaghan, Susan; Flanagan, Keith; Telitchko, Maxime; Wiesner, Thomas; Laquai, Fré dé ric; Senge, Mathias O

    2018-01-01

    A family of heavy atom-free BODIPY-anthracene dyads (BADs) exhibiting triplet excited state formation from charge-transfer states is reported. Four types of BODIPY scaffolds, different in the alkyl substitution pattern, and four anthracene derivatives have been used to access BADs. The fluorescence and intersystem crossing (ISC) in these dyads depend on donor-acceptor couplings and can be accurately controlled by the substitution or media polarity. Under conditions that do not allow charge transfer (CT), the dyads exhibit fluorescence with high quantum yields. Formation of charge-transfer states triggers ISC and the formation of long-lived triplet excited states in the dyads. The excited state properties were studied by steady-state techniques and ultrafast pump-probe spectroscopy to determine the parameters of the observed processes. Structural information for various BADs was derived from single crystal X-ray structure determinations alongside DFT molecular geometry optimization, revealing the effects of mutual orientation of subunits on the photophysical properties. The calculations showed that alkyl substituents on the BODIPY destabilize CT states in the dyads, thus controlling the charge transfer between the subunits. The effect of the dyad structure on the ISC efficiency was considered at M06-2X level of theory and a correlation between mutual orientation of the subunits and the energy gap between singlet and triplet CT states was studied using multireference CASSCF method.

  9. HISTRAP [Heavy Ion Storage Ring for Atomic Physics] vacuum test stand for pressures of 10-12 Torr

    International Nuclear Information System (INIS)

    Johnson, J.W.; Atkins, W.H.; Dowling, D.T.; McConnell, J.W.; Milner, W.T.; Olsen, D.K.

    1988-01-01

    HISTRAP, Heavy Ion Storage Ring for Atomic Physics, is a proposed synchrotron/cooler/storage ring accelerator optimized for advanced atomic physics research. The ring has a circumference of 46.8 m, a bore diameter of about 15 cm, and requires a vacuum of 10 -12 Torr in order to decelerate highly-charged very-heavy ions down to low energies. To be able to test components and procedures to achieve this pressure, a test stand approximately modeling one-sixteenth of the ring vacuum chamber has been built. The 3.5-m-long test stand has been fabricated from 10-cm-diameter components, with 316LN stainless steel flanges. Prior to assembly, these components were vacuum fired at 950/degree/C at a pressure of 10 -4 Torr. The test stand is bakeable in situ at 300/degree/C. Pumping is achieved with two 750-L/s titanium sublimator pumps and one 60-L/s ion pump. Pressure is measured with two extractor ion gauges and a 10 -14 PP RGA. The roughing for the test stand consists of cryosorption pumps followed by a cryopump. A pressure of 4 x 10 -12 Torr has been achieved. 7 refs., 5 figs

  10. Atomic data for heavy element impurities in fusion reactors. Summary report of first IAEA research co-ordination meeting

    International Nuclear Information System (INIS)

    Clark, R.E.H.

    2006-01-01

    Twelve international experts discussed in detail the properties of heavy elements relevant to fusion energy research participated at the first Research Coordination Meeting (RCM) of the Coordinated Research Project (CRP) on 'Atomic data for heavy element impurities in fusion reactors' at IAEA Headquarters on 14-15 November 2005. The participants summarized all recent relevant developments in their research efforts. Detailed discussions took place to formulate specific objectives for the CRP. From a list of data needs and a review of current research capabilities, a detailed work plan was formulated for the first phase of the CRP. The discussions, conclusions and recommendations of the RCM are briefly described in this report. (author)

  11. Study of inter sub-shell and inter shell electron correlations in 4d open-shell heavy atomic ions

    International Nuclear Information System (INIS)

    Koike, Fumihiro

    2009-01-01

    The effect of correlations between 4p, 4d, and 4f has been studied extensively. The characteristic spectral structures of 4p - 4d and 4d - 4f optical transitions, due to the unique structures of N = 4 open sub-shells in heavy atomic ions, have been studied theoretically. To gain an insight of this effect, a series of careful MCDF calculations for 4d q (q = 0 to 10) atomic ions with atomic numbers Z = 48 to 56 has been carried out. The difference of orbital energy differences between 4p and 4d orbitals and 4d and 4f orbitals coincidently falls within the range of a few % for almost all the atomic ions investigated. The 4p 6 4d4f and 4p 5 4d 3 configurations may mix strongly, and the optical 4p - 4d and 4d - 4f transitions may take place coherently, providing us with quite a peculiar EUV emission spectrum. The effect of spectral narrowing and shift is expected to be quite common to the atomic specieds with the atomic numbers in the range Z = 48 to 56.

  12. Cascade Processes in Muonic Hydrogen Atoms

    International Nuclear Information System (INIS)

    Faifman, M. P.; Men'Shikov, L. I.

    2001-01-01

    The QCMC scheme created earlier for cascade calculations in heavy hadronic atoms of hydrogen isotopes has been modified and applied to the study of cascade processes in the μp muonic hydrogen atoms. The distribution of μp atoms over kinetic energies has been obtained and the yields of K-series X-rays per one stopped muon have been calculated.Comparison with experimental data indicated directly that for muonic and pionic atoms new types of non-radiative transitions are essential, while they are negligible for heavy (kaonic, antiprotonic, etc.) atoms. These processes have been considered and their probabilities have been estimated.

  13. Effect of organic solvents on desorption and atomic absorption determination of heavy metal ions after ion exchange concentration

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Safronova, V.G.; Zakrevskaya, L.V.

    1986-01-01

    The effect of organic solvents (acetone, methylethylketone, dioxane, ethanol) on desorption of Cu, Mn, Co, Cd, Zn, Pb, Ni from cationite KU-23 ion exchange resin and on the detection limits of their atomic absorption determination has been examined. Cobalt and cadmium can be separated quantitatively using desorption by a mixture of HCl and acetone. Addition of an organic solvent results in a higher absorbance, mainly due to a high rate and efficiency of atomization. Acetone has proved to be the best solvent: addition of 60 vol. % of this solvent to the concentrate provides 2 times lower detection limits for the heavy metas in water

  14. Standardization of digestion procedure for the determination of heavy metals in biological materials by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Khalid, N.; Chaudhri, S.A.

    1999-01-01

    Proper decomposition of the sample is one of the basic requirements of the atomic absorption spectroscopic analysis. In the present studies, heavy metals (Cu, Fe, Mn and Zn) were determined in biological samples by designating them in a mixture of nitric acid and perchloric acid. The quantification was made with atomic absorption spectrometry using an air-acetylene flame. The reliability of the procedure used was checked by analysing standard reference materials from NBS and IAEA, such as Rice flour (NBS-SRM-1568), Horse Kidney (IAEA H-8), Mixed Human diet(IAEA H-9), Copepod (IAEA MA-A-1) and fish flesh (IAEA MA-A-2) under identical conditions. A good agreement was observed between determined and the certified values reported by NBS and IAEA. (author)

  15. Local functional derivative of the total energy and the shell structure in atoms and molecules

    NARCIS (Netherlands)

    Pino, R.; Markvoort, Albert. J.; Santen, van R.A.; Hilbers, P.A.J.

    2003-01-01

    The full and local Thomas–Fermi–Dirac energy functional derivatives are evaluated at Hartree–Fock densities for several atoms and molecules. These functions are interpreted as local chemical potentials and related mainly to kinetic energy functional derivatives. They are able to reveal the shell

  16. Refined Dummy Atom Model of Mg(2+) by Simple Parameter Screening Strategy with Revised Experimental Solvation Free Energy.

    Science.gov (United States)

    Jiang, Yang; Zhang, Haiyang; Feng, Wei; Tan, Tianwei

    2015-12-28

    Metal ions play an important role in the catalysis of metalloenzymes. To investigate metalloenzymes via molecular modeling, a set of accurate force field parameters for metal ions is highly imperative. To extend its application range and improve the performance, the dummy atom model of metal ions was refined through a simple parameter screening strategy using the Mg(2+) ion as an example. Using the AMBER ff03 force field with the TIP3P model, the refined model accurately reproduced the experimental geometric and thermodynamic properties of Mg(2+). Compared with point charge models and previous dummy atom models, the refined dummy atom model yields an enhanced performance for producing reliable ATP/GTP-Mg(2+)-protein conformations in three metalloenzyme systems with single or double metal centers. Similar to other unbounded models, the refined model failed to reproduce the Mg-Mg distance and favored a monodentate binding of carboxylate groups, and these drawbacks needed to be considered with care. The outperformance of the refined model is mainly attributed to the use of a revised (more accurate) experimental solvation free energy and a suitable free energy correction protocol. This work provides a parameter screening strategy that can be readily applied to refine the dummy atom models for metal ions.

  17. Hartree--Slater calculation of the cross section for L-shell ionization of argon by simple heavy charged particles

    International Nuclear Information System (INIS)

    Choi, B.

    1975-01-01

    The cross sections for L-shell and subshell ionization by direct Coulomb excitation of argon by incident heavy charged particles are evaluated. Incident particles are described in the plane-wave Born approximation, and nonrelativistic Hartree-Slater (HS) wave functions are used for the atomic electrons. Form factors, energy distributions, and ionization cross sections are compared with those obtained from screened hydrogenic wave functions. At most incident energies, the HS results for the total ionization cross section are only slightly smaller than those obtained with screened hydrogenic wave functions, but considerable discrepancies are found for form factors and energy distributions near the ionization threshold

  18. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    Science.gov (United States)

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  19. Atomic displacement distributions for light energetic atoms incident on heavy atom targets

    International Nuclear Information System (INIS)

    Brice, D.K.

    1975-01-01

    The depth distributions of atomic displacements produced by 4 to 100 keV H, D, and He ions incident on Cr, Mo, and W targets have been calculated using a sharp displacement threshold, E/sub d/ = 35 eV, and a previously described calculational procedure. These displacement depth distributions have been compared with the depth distributions of energy deposited into atomic processes to determine if a proportionality (modified Kinchin--Pease relationship) can be established. Such a relationship does exist for He ions and D ions incident on these metals at energies above 4 keV and 20 keV, respectively. For H ions the two distributions have significantly different shapes at all incident energies considered

  20. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  1. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    CERN Document Server

    Oganessian, Yu T; Dmitriev, S N; Itkis, M G; Gulbekyan, G G; Khabarov, M V; Bekhterev, V V; Bogomolov, S L; Efremov, A A; Pashenko, S V; Stepantsov, S V; Yeremin, A V; Yavor, M I; Kalimov, A G

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 sup - sup 3. The set up can work in the wide mass range from A approx 20 to A approx 500, its mass acceptance is as large as +-2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considere...

  2. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    Science.gov (United States)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  3. Different levels of brain-derived neurotrophic factor and cortisol in healthy heavy smokers.

    Science.gov (United States)

    Neves, C D C; Lacerda, A C R; Lima, L P; Lage, V K S; Balthazar, C H; Leite, H R; Mendonça, V A

    2017-10-19

    Studies suggest that brain-derived neurotrophic factor (BDNF) and the hypothalamic-pituitary-adrenal (HPA) axis modulate dopaminergic activity in response to nicotine and that the concentrations of BDNF and cortisol seem to be dependent on the amount and duration of smoking. Therefore, we investigated BDNF and cortisol levels in smokers ranked by daily cigarette consumption. Twenty-seven adult males (13 non-smokers and 14 smokers) participated in the study. The smokers were divided in two groups: light (n=7) and heavy smokers (n=7). Anthropometric parameters and age were paired between the groups, and plasma BDNF and salivary cortisol levels were measured. Saliva samples were collected on awakening, 30 min after awakening, at 10:00 and 12:00 am, 5:00 and 10:00 pm. Additionally, cotinine serum levels were measured in smokers. Heavy smokers had higher mean values of BDNF compared to the control group (P=0.01), whereas no difference was observed in light smokers. Moreover, heavy smokers presented lower cortisol levels in the last collection (10:00 pm) than the control group (P=0.02) and presented statically higher values of cotinine than the light smokers (P=0.002). In conclusion, changes in BDNF and cortisol levels (10:00 pm) appear to be dependent on heavy cigarette smoking and can be involved in activation and in the relationship between the mesolimbic system and the HPA axis.

  4. Electron - atom bremsstrahlung

    International Nuclear Information System (INIS)

    Kim, L.

    1986-01-01

    Features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas are studied. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point-Coulomb potential and screened potentials are obtained using a classical numerical method. Results agree with exact quantum-mechanical partial-wave results for low incident electron energies in both the point-Coulomb and screened potentials. In the screened potential, the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. The scaling properties of bremsstrahlung spectra and energy losses were also studied. It was found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T 1 /Z 2 . This scaling is exact in the case of the point-Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. Bremsstrahlung from atoms in hot dense plasmas were also studied describing the atomic potentials by the temperature-and-density dependent Thomas-Fermi mode. Gaunt factors were obtained with the relativistic partial-wave method for atoms in plasmas of various densities and temperatures

  5. Charge states of fast heavy ions in solids; target atomic number dependence

    International Nuclear Information System (INIS)

    Shima, Kunihiro

    1985-01-01

    Discussions were carried out on the origin of Z 2 (atomic number) dependent charge states with respect to projectile electron loss and capture process, and on relationship between the Z 2 dependence and that of mean charge states for heavy ions of 1 MeV/u energy region. Present and previously reported results were examined on the equilibrium charge distributions, 9-bar, of 120 MeV 63 Cu, 25 and 40 MeV 35 Cl, 109 MeV Si and 59 MeV F ions. It was clarified that 9-bar became generally higher for lower Z 2 depending on increasing energy, and osillatory behavior with energy-depending amplitude was seen in 9-bar vs Z 2 . Discussions were carrid out on these phenomena and related matters. Z 2 oscillations of 9-bar of fast heavy ions might be due to those of electron capture cross section into projectile K and L vacancies for high and intermediate charge states, respectively. A quantitative interpretation of the Z 2 -dependent 9-bar values is in progress based on collision process and observation of projectile x-ray. The 9-bar value dependency on Z 2 in ion passing foils and decrease of Z 2 oscillation amplitude with increasing collision energy were quite similar to the Z 2 dependence in stopping powers or in effective charge states estimated from stopping powers. But there was some discrepancies in the Z 2 oscillation of 9-bar and that of stopping powers. (Takagi, S.)

  6. Heavy-ion dosimetry

    International Nuclear Information System (INIS)

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained

  7. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  8. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints.

    Science.gov (United States)

    Awale, Mahendra; Jin, Xian; Reymond, Jean-Louis

    2015-01-01

    Tools to explore large compound databases in search for analogs of query molecules provide a strategically important support in drug discovery to help identify available analogs of any given reference or hit compound by ligand based virtual screening (LBVS). We recently showed that large databases can be formatted for very fast searching with various 2D-fingerprints using the city-block distance as similarity measure, in particular a 2D-atom pair fingerprint (APfp) and the related category extended atom pair fingerprint (Xfp) which efficiently encode molecular shape and pharmacophores, but do not perceive stereochemistry. Here we investigated related 3D-atom pair fingerprints to enable rapid stereoselective searches in the ZINC database (23.2 million 3D structures). Molecular fingerprints counting atom pairs at increasing through-space distance intervals were designed using either all atoms (16-bit 3DAPfp) or different atom categories (80-bit 3DXfp). These 3D-fingerprints retrieved molecular shape and pharmacophore analogs (defined by OpenEye ROCS scoring functions) of 110,000 compounds from the Cambridge Structural Database with equal or better accuracy than the 2D-fingerprints APfp and Xfp, and showed comparable performance in recovering actives from decoys in the DUD database. LBVS by 3DXfp or 3DAPfp similarity was stereoselective and gave very different analogs when starting from different diastereomers of the same chiral drug. Results were also different from LBVS with the parent 2D-fingerprints Xfp or APfp. 3D- and 2D-fingerprints also gave very different results in LBVS of folded molecules where through-space distances between atom pairs are much shorter than topological distances. 3DAPfp and 3DXfp are suitable for stereoselective searches for shape and pharmacophore analogs of query molecules in large databases. Web-browsers for searching ZINC by 3DAPfp and 3DXfp similarity are accessible at www.gdb.unibe.ch and should provide useful assistance to drug

  9. Binding properties of oxacalix[4]arenes derivatives toward metal cations; Interactions entre cations metalliques et derives des oxacalix[4]arenes

    Energy Technology Data Exchange (ETDEWEB)

    Mellah, B

    2006-11-15

    The objective of this work was to establish the binding properties of oxacalix[4]arene derivatives with different numbers of the oxa bridges, functional groups (ketones, pyridine, ester, amide and methoxy) and conformations. Their interactions with alkali and alkaline-earth, heavy and transition metal cations have been evaluated according to different approaches: (i) extraction of corresponding picrates from an aqueous phase into dichloromethane; (ii) determination of the thermodynamic parameters of complexation in methanol and/or acetonitrile by UV-spectrophotometry and micro-calorimetry; (iii) determination of the stoichiometry of the complexes by ESI-MS; (iv) {sup 1}H-NMR titrations allowing to localize the metal ions in the ligand cavity. In a first part dealing on homo-oxacalix[4]arenes, selectivities for Na{sup +}, K{sup +}, Ca{sup 2+}, Pb{sup 2+} and Mn{sup 2+} of ketones derivatives was shown. The presence of oxa bridge in these derivatives increases their efficiency while decreasing their selectivity with respect to related calixarenes. The pyridine derivative prefers transition and heavy metal cations, in agreement with the presence of the soft nitrogen atoms. In the second part, di-oxacalix[4]arene ester and secondary amide derivatives were shown to be less effective than tertiary amide counterparts but to present high selectivities for Li{sup +}, Ba{sup 2+}, Zn{sup 2+} and Hg{sup 2+}. A third part devoted to the octa-homo-tetra-oxacalix[4]arene tetra-methoxy shows that the 1:1 metal complexes formed are generally more stable than those of calixarenes, suggesting the participation of the oxygen atoms of the bridge in the complexation. Selectivity for Cs{sup +}, Ba{sup 2+}, Cu{sup 2+} and Hg{sup 2+} were noted. (author)

  10. Derivation of a configuration space Hamiltonian for heavy atoms: three body potentials

    International Nuclear Information System (INIS)

    Mittleman, M.H.

    1981-01-01

    A brief history of the difficulties associated with the derivation of a configuration space Hamiltonian is presented. One of the problems encountered is the definition of the projection operators which must occur. A variational definition is obtained and, with simplifying assumptions, the optimum projection operators are those which project onto Hartree-Fock orbitals. This puts many previously performed numerical calculations on a firm footing. The form of the two body interactions is discussed in the context of the gauge freedom. The Coulomb gauge is the favored one but it is pointed out that it has never been proven to be the best one. Finally a form for the relativistic three election potential is given and the possibility of its observation is discussed

  11. Environmental Toxin Screening Using Human-Derived 3D Bioengineered Liver and Cardiac Organoids

    Directory of Open Access Journals (Sweden)

    Steven D. Forsythe

    2018-04-01

    Full Text Available IntroductionEnvironmental toxins, such as lead and other heavy metals, pesticides, and other compounds, represent a significant health concern within the USA and around the world. Even in the twenty-first century, a plethora of cities and towns in the U.S. have suffered from exposures to lead in drinking water or other heavy metals in food or the earth, while there is a high possibility of further places to suffer such exposures in the near future.MethodsWe employed bioengineered 3D human liver and cardiac organoids to screen a panel of environmental toxins (lead, mercury, thallium, and glyphosate, and charted the response of the organoids to these compounds. Liver and cardiac organoids were exposed to lead (10 µM–10 mM, mercury (200 nM–200 µM, thallium (10 nM–10 µM, or glyphosate (25 µM–25 mM for a duration of 48 h. The impacts of toxin exposure were then assessed by LIVE/DEAD viability and cytotoxicity staining, measuring ATP activity and determining IC50 values, and determining changes in cardiac organoid beating activity.ResultsAs expected, all of the toxins induced toxicity in the organoids. Both ATP and LIVE/DEAD assays showed toxicity in both liver and cardiac organoids. In particular, thallium was the most toxic, with IC50 values of 13.5 and 1.35 µM in liver and cardiac organoids, respectively. Conversely, glyphosate was the least toxic of the four compounds, with IC50 values of 10.53 and 10.85 mM in liver and cardiac organoids, respectively. Additionally, toxins had a negative influence on cardiac organoid beating activity as well. Thallium resulting in the most significant decreases in beating rate, followed by mercury, then glyphosate, and finally, lead. These results suggest that the 3D organoids have significant utility to be deployed in additional toxicity screening applications, and future development of treatments to mitigate exposures.Conclusion3D organoids have significant utility to be

  12. Collisional Cooling of Light Ions by Cotrapped Heavy Atoms.

    Science.gov (United States)

    Dutta, Sourav; Sawant, Rahul; Rangwala, S A

    2017-03-17

    We experimentally demonstrate cooling of trapped ions by collisions with cotrapped, higher-mass neutral atoms. It is shown that the lighter ^{39}K^{+} ions, created by ionizing ^{39}K atoms in a magneto-optical trap (MOT), when trapped in an ion trap and subsequently allowed to cool by collisions with ultracold, heavier ^{85}Rb atoms in a MOT, exhibit a longer trap lifetime than without the localized ^{85}Rb MOT atoms. A similar cooling of trapped ^{85}Rb^{+} ions by ultracold ^{133}Cs atoms in a MOT is also demonstrated in a different experimental configuration to validate this mechanism of ion cooling by localized and centered ultracold neutral atoms. Our results suggest that the cooling of ions by localized cold atoms holds for any mass ratio, thereby enabling studies on a wider class of atom-ion systems irrespective of their masses.

  13. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  14. Different levels of brain-derived neurotrophic factor and cortisol in healthy heavy smokers

    Directory of Open Access Journals (Sweden)

    C.D.C. Neves

    2017-10-01

    Full Text Available Studies suggest that brain-derived neurotrophic factor (BDNF and the hypothalamic-pituitary-adrenal (HPA axis modulate dopaminergic activity in response to nicotine and that the concentrations of BDNF and cortisol seem to be dependent on the amount and duration of smoking. Therefore, we investigated BDNF and cortisol levels in smokers ranked by daily cigarette consumption. Twenty-seven adult males (13 non-smokers and 14 smokers participated in the study. The smokers were divided in two groups: light (n=7 and heavy smokers (n=7. Anthropometric parameters and age were paired between the groups, and plasma BDNF and salivary cortisol levels were measured. Saliva samples were collected on awakening, 30 min after awakening, at 10:00 and 12:00 am, 5:00 and 10:00 pm. Additionally, cotinine serum levels were measured in smokers. Heavy smokers had higher mean values of BDNF compared to the control group (P=0.01, whereas no difference was observed in light smokers. Moreover, heavy smokers presented lower cortisol levels in the last collection (10:00 pm than the control group (P=0.02 and presented statically higher values of cotinine than the light smokers (P=0.002. In conclusion, changes in BDNF and cortisol levels (10:00 pm appear to be dependent on heavy cigarette smoking and can be involved in activation and in the relationship between the mesolimbic system and the HPA axis.

  15. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  16. Biological screening of chitosan derivatives using Artemia spp. (brine shrimp test)

    International Nuclear Information System (INIS)

    Rozaini Mohd Zohdi; Norimah Yusof; Asnah Hassan

    2006-01-01

    The present study reported on the screening of six selected chitosan derivatives using the brine shrimp lethality bioassay. In addition, the irradiation effects towards the compounds at 25 kGy were also studied. Chitosan is a natural polysaccharide derived from chitin, extracted from the exoskeletons of crustaceans and insects as well as walls of some bacteria and fungi. Brine shrimp test is employed for the screening of toxicity of chitosan derivatives. Toxicity test was carried out by adding different concentrations of tested samples to approximately 5 to 15 Artemia salina larvae. Biological activity using the brine shrimp bioassay was recorded as LC 50 i.e. lethal concentration that kills 50% of the larvae within 24 hours of contact with the samples. Compounds are considered toxic when the LC 50 value is lower than 1 mg/ml by brine shrimp bioassay and practically non-toxic when the value is larger. Of the samples tested, none were toxic to the brine shrimp (LC 50 > 1 mg/ml). The LC 50 values of all chitosan derivatives tested, control and irradiated at 25 kGy were above 1 mg/ml thus all tested samples are considered non-toxic. This study demonstrated that irradiation at 25 kGy showed no significant effects towards the toxicity of the chitosan derivatives. After irradiation, only NO-CMC exhibited marked decrease in LC 50 value, reduced by 3-fold from 34.96 mg/ml to 11.07 mg/ml while O-CMC (5.45 mg/ml to 5 mg/ml) showed no clear differences based on rough estimation. This study suggested that brine shrimp bioassay is a simple, reliable and convenient method that could provide useful clues of the relative toxic potential of the sample tested. (Author)

  17. Immobilization of Thiadiazole Derivatives on Magnetite Mesoporous Silica Shell Nanoparticles in Application to Heavy Metal Removal from Biological Samples

    International Nuclear Information System (INIS)

    Emadi, Masoomeh; Shams, Esmaeil

    2010-01-01

    In this report magnetite was synthesized by a coprecipitation method, then coated with a layer of silica. Another layer of mesoporous silica was added by a sol-gel method, then 5-amino-1,3,4-thiadiazole-thiol (ATT) was immobilized onto the synthesized nanoparticles with a simple procedure. This was followed by a series of characterizations, including transmission electron microscopy (TEM), FT-IR spectrum, elemental analysis and XRD. Heavy metal uptake of the modified nanoparticles was examined by atomic absorption spectroscopy. For further investigation we chose Cu 2+ as the preferred heavy metal to evaluate the amount of adsorption, as well as the kinetics and mechanism of adsorption. Finally, the capacity of our nanoparticles for the heavy metal removal from blood was shown. We found that the kinetic rate of Cu 2+ adsorption was 0.05 g/mg/min, and the best binding model was the Freundlich isotherm.

  18. Physico-Chemical and Structural Interpretation of Discrete Derivative Indices on N-Tuples Atoms

    Science.gov (United States)

    Martínez-Santiago, Oscar; Marrero-Ponce, Yovani; Barigye, Stephen J.; Le Thi Thu, Huong; Torres, F. Javier; Zambrano, Cesar H.; Muñiz Olite, Jorge L.; Cruz-Monteagudo, Maykel; Vivas-Reyes, Ricardo; Vázquez Infante, Liliana; Artiles Martínez, Luis M.

    2016-01-01

    This report examines the interpretation of the Graph Derivative Indices (GDIs) from three different perspectives (i.e., in structural, steric and electronic terms). It is found that the individual vertex frequencies may be expressed in terms of the geometrical and electronic reactivity of the atoms and bonds, respectively. On the other hand, it is demonstrated that the GDIs are sensitive to progressive structural modifications in terms of: size, ramifications, electronic richness, conjugation effects and molecular symmetry. Moreover, it is observed that the GDIs quantify the interaction capacity among molecules and codify information on the activation entropy. A structure property relationship study reveals that there exists a direct correspondence between the individual frequencies of atoms and Hückel’s Free Valence, as well as between the atomic GDIs and the chemical shift in NMR, which collectively validates the theory that these indices codify steric and electronic information of the atoms in a molecule. Taking in consideration the regularity and coherence found in experiments performed with the GDIs, it is possible to say that GDIs possess plausible interpretation in structural and physicochemical terms. PMID:27240357

  19. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Science.gov (United States)

    Oganessian, Yu. Ts.; Shchepunov, V. A.; Dmitriev, S. N.; Itkis, M. G.; Gulbekyan, G. G.; Khabarov, M. V.; Bekhterev, V. V.; Bogomolov, S. L.; Efremov, A. A.; Pashenko, S. V.; Stepantsov, S. V.; Yeremin, A. V.; Yavor, M. I.; Kalimov, A. G.

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  20. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Oganessian, Yu.Ts.; Shchepunov, V.A.; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G.

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3 . The set up can work in the wide mass range from A∼20 to A∼500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given

  1. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts.; Shchepunov, V.A. E-mail: shchepun@sunhe.jinr.rushchepun@cv.jinr.ru; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10{sup -3}. The set up can work in the wide mass range from A{approx}20 to A{approx}500, its mass acceptance is as large as {+-}2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  2. 4D Flexible Atom-Pairs: An efficient probabilistic conformational space comparison for ligand-based virtual screening

    Science.gov (United States)

    2011-01-01

    Background The performance of 3D-based virtual screening similarity functions is affected by the applied conformations of compounds. Therefore, the results of 3D approaches are often less robust than 2D approaches. The application of 3D methods on multiple conformer data sets normally reduces this weakness, but entails a significant computational overhead. Therefore, we developed a special conformational space encoding by means of Gaussian mixture models and a similarity function that operates on these models. The application of a model-based encoding allows an efficient comparison of the conformational space of compounds. Results Comparisons of our 4D flexible atom-pair approach with over 15 state-of-the-art 2D- and 3D-based virtual screening similarity functions on the 40 data sets of the Directory of Useful Decoys show a robust performance of our approach. Even 3D-based approaches that operate on multiple conformers yield inferior results. The 4D flexible atom-pair method achieves an averaged AUC value of 0.78 on the filtered Directory of Useful Decoys data sets. The best 2D- and 3D-based approaches of this study yield an AUC value of 0.74 and 0.72, respectively. As a result, the 4D flexible atom-pair approach achieves an average rank of 1.25 with respect to 15 other state-of-the-art similarity functions and four different evaluation metrics. Conclusions Our 4D method yields a robust performance on 40 pharmaceutically relevant targets. The conformational space encoding enables an efficient comparison of the conformational space. Therefore, the weakness of the 3D-based approaches on single conformations is circumvented. With over 100,000 similarity calculations on a single desktop CPU, the utilization of the 4D flexible atom-pair in real-world applications is feasible. PMID:21733172

  3. Forward electron production in heavy ion-atom and ion-solid collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table

  4. 1,3Do and 1,3Pe states of two electron atoms under Debye plasma screening

    International Nuclear Information System (INIS)

    Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T.K.; Mukherjee, P.K.

    2010-01-01

    Extensive non-relativistic variational calculations for estimating the energy values of 2pnd( 1,3 D o ) states [n=3-6] of two electron atoms (He, Li + ,Be 2+ ) and 2pnp( 1 P e )[n=3-8] and 2pnp( 3 P e ) states [n=2-7] of Be 2+ under weakly coupled plasma screening have been performed using explicitly correlated Hylleraas type basis. The modified energy eigenvalues of 1,3 P e states arising from two p electrons of Be 2+ ion and 1,3 D o states due to 2pnd configuration of Li + and Be 2+ ion in the Debye plasma environment are being reported for the first time. The effect of plasma has been incorporated through the Debye screening model. The system tends towards gradual instability and the number of bound states reduces with increasing plasma coupling strength. The wavelengths for 2pn ' p( 1 P e )[n ' =3-8]→2pnd( 1 D o )[n=3-6] and 2pn ' p( 3 P e )[n ' =2-8]→2pnd( 3 D o )[n=3-6] transitions in plasma embedded two electron atoms have also been reported.

  5. Binding properties of oxacalix[4]arenes derivatives toward metal cations

    International Nuclear Information System (INIS)

    Mellah, B.

    2006-11-01

    The objective of this work was to establish the binding properties of oxacalix[4]arene derivatives with different numbers of the oxa bridges, functional groups (ketones, pyridine, ester, amide and methoxy) and conformations. Their interactions with alkali and alkaline-earth, heavy and transition metal cations have been evaluated according to different approaches: (i) extraction of corresponding picrates from an aqueous phase into dichloromethane; (ii) determination of the thermodynamic parameters of complexation in methanol and/or acetonitrile by UV-spectrophotometry and micro-calorimetry; (iii) determination of the stoichiometry of the complexes by ESI-MS; (iv) 1 H-NMR titrations allowing to localize the metal ions in the ligand cavity. In a first part dealing on homo-oxacalix[4]arenes, selectivities for Na + , K + , Ca 2+ , Pb 2+ and Mn 2+ of ketones derivatives was shown. The presence of oxa bridge in these derivatives increases their efficiency while decreasing their selectivity with respect to related calixarenes. The pyridine derivative prefers transition and heavy metal cations, in agreement with the presence of the soft nitrogen atoms. In the second part, di-oxacalix[4]arene ester and secondary amide derivatives were shown to be less effective than tertiary amide counterparts but to present high selectivities for Li + , Ba 2+ , Zn 2+ and Hg 2+ . A third part devoted to the octa-homo-tetra-oxacalix[4]arene tetra-methoxy shows that the 1:1 metal complexes formed are generally more stable than those of calixarenes, suggesting the participation of the oxygen atoms of the bridge in the complexation. Selectivity for Cs + , Ba 2+ , Cu 2+ and Hg 2+ were noted. (author)

  6. Nutrient intake and nutrient patterns and risk of lung cancer among heavy smokers: results from the COSMOS screening study with annual low-dose CT

    International Nuclear Information System (INIS)

    Gnagnarella, Patrizia; Maisonneuve, Patrick; Bellomi, Massimo; Rampinelli, Cristiano; Bertolotti, Raffaella; Spaggiari, Lorenzo; Palli, Domenico; Veronesi, Giulia

    2013-01-01

    The role of nutrients in lung cancer aetiology remains controversial and has never been evaluated in the context of screening. Our aim was to investigate the role of single nutrients and nutrient patterns in the aetiology of lung cancer in heavy smokers. Asymptomatic heavy smokers (≥20 pack-years) were invited to undergo annual low-dose computed tomography. We assessed diet using a self-administered food frequency questionnaire and collected information on multivitamin supplement use. We performed principal component analysis identifying four nutrient patterns and used Cox proportional Hazards regression to assess the association between nutrients and nutrients patterns and lung cancer risk. During a mean follow-up of 5.7 years, 178 of 4,336 participants were diagnosed with lung cancer by screening. We found a significant risk reduction of lung cancer with increasing vegetable fat consumption (HR for highest vs. lowest quartile = 0.50, 95 % CI = 0.31–0.80; P-trend = 0.02). Participants classified in the high “vitamins and fiber” pattern score had a significant risk reduction of lung cancer (HR = 0.57; 95 % CI = 0.36–0.90, P-trend = 0.01). Among heavy smokers enrolled in a screening trial, high vegetable fat intake and adherence to the “vitamin and fiber” nutrient pattern were associated with reduced lung cancer incidence.

  7. Complex-scaling of screened Coulomb potentials for resonance calculations utilizing the modified Bessel functions

    Science.gov (United States)

    Jiao, Li-Guang; Ho, Yew Kam

    2014-05-01

    The screened Coulomb potential (SCP) has been extensively used in atomic physics, nuclear physics, quantum chemistry and plasma physics. However, an accurate calculation for atomic resonances under SCP is still a challenging task for various methods. Within the complex-scaling computational scheme, we have developed a method utilizing the modified Bessel functions to calculate doubly-excited resonances in two-electron atomic systems with configuration interaction-type basis. To test the validity of our method, we have calculated S- and P-wave resonance states of the helium atom with various screening strengths, and have found good agreement with earlier calculations using different methods. Our present method can be applied to calculate high-lying resonances associated with high excitation thresholds of the He+ ion, and with high-angular-momentum states. The derivation and calculation details of our present investigation together with new results of high-angular-momentum states will be presented at the meeting. Supported by NSC of Taiwan.

  8. Multi-pole orders and Kondo screening: Implications for quantum phase transitions in multipolar heavy-fermion systems

    Science.gov (United States)

    Lai, Hsin-Hua; Nica, Emilian; Si, Qimiao

    Motivated by the properties of the heavy-fermion Ce3Pd20Si6 compound which exhibits both antiferro-magnetic (AFM) and antiferro-quadrupolar (AFQ) orders, we study a simplified quantum non-linear sigma model for spin-1 systems, with generalized multi-pole Kondo couplings to conduction electrons. We first consider the case when an SU(3) symmetry relates the spin and quadrupolar channels. We then analyze the effect of breaking the SU(3) symmetry, so that the interaction parameters in the spin and quadrupolar sectors are no longer equivalent, and different stages of Kondo screenings are allowed. A renormalization group analysis is used to analyze the interplay between the Kondo effect and the AFM/AFQ orders. Our work paves the way for understanding the global phase diagram in settings beyond the prototypical spin-1/2 cases. We also discuss similar considerations in the non-Kramers systems such as the heavy fermion compound PrV2Al20

  9. Transformation of heavy gas oils derived from oil sands to petrochemical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, D.; Laureshen, C. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2006-07-01

    Alberta's petrochemical industry is primarily based on ethane. However, ethane could potentially impede future growth of Alberta's petrochemical industry because of increasing cost and diminishing supplies. Alternately, the rapidly growing oil sands production could provide abundant new feedstocks. Different integration schemes and technologies were evaluated in this study. Research on converting bitumen-derived heavy gas oil into petrochemical feedstock has resulted in the development of two novel technologies and process integration schemes, notably the NOVA heavy oil laboratory catalyst (NHC) process and the aromatic ring cleavage (ARORINCLE) process. This paper described progress to date on these two projects. The paper presented the experimental results for each scheme. For the ARORINCLE process, results were discussed in terms of the effect of process parameters on the hydrogenation step; effect of process parameters on the ring cleavage step; and integrating the upgrading and petrochemical complex. Early laboratory stage results of these two technologies were found to be encouraging. The authors recommended that work should progress to larger scale demonstration of the NHC and ARORINCLE technologies., 13 refs., 2 tabs., 5 figs.

  10. NATO Advanced Study Institute on Atoms in Unusual Situations

    CERN Document Server

    1986-01-01

    Atomic Physics is certainly the oldest field in which Quantum Mechanics has been used and has provided the most significant proofs of this new theory. Most of the basic concepts, except those more recently developed in field quantization, have been understood for quite a time. Atomic Physics began to serve as a basis for other fields such as molecu­ lar, solid state or nuclear physics. A renewal of interest in Atomic Physics began in the sixties, after the discovery of Quantum Electro­ dynamics, and later when it provided some basic tests of fundamental questions like parity violation, time reversal or Dirac theory. More recently the development of new technologies led to the ex­ ploration of very extreme cases in which the most secrete aspects of atoms have been observed. - Rydberg states where the atoms are so big that they can be described by classical theories; - Heavy or super-heavy ions or exotic atoms where unknown QED or relativistic effects can be observed (very heavy hydrogenlike or heliu...

  11. Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46.

    Science.gov (United States)

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Wilkins, John A; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-07-01

    Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.

  12. Parity nonconservation in Zeeman atomic transitions

    International Nuclear Information System (INIS)

    Kraftmakher, A.Ya.

    1990-01-01

    The abilities to observe the parity violation at the radiofrequency transitions between the hyperfine and Zeeman terms of the atomic levels are considered. The E-1 amplitudes fo the Zeeman transitions of heavy atoms in weak magnetic fields are larger, than for the light atoms hyperfine transitions at the same wavelength. 9 refs

  13. Accelerated ions as a tool in atomic physics

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Some of the aspects of atomic physics which are being brought into focus by the construction and completion of a new generation of heavy-ion accelerators are dealt with. Various types of processes occurring in the overlapping electron clouds are visualised in an elementary way, using among others, some recent observations on the formation of quasi-molecules and quasi-atoms. Phenomena connected with the inner electron shells in superheavy atoms are touched upon, in particular those processes possibly leading to the production of positrons. In such cases the crucial importance of an atomic Coulomb excitation mechanism is stressed. In conclusion the view is emphasized that inner shell ionization phenomena in heavy ion collisions form a bridge between processes originating respectively from nuclear and atomic physics. (Auth.)

  14. Heavy-Atom Tunneling Calculations in Thirteen Organic Reactions: Tunneling Contributions are Substantial, and Bell's Formula Closely Approximates Multidimensional Tunneling at ≥250 K.

    Science.gov (United States)

    Doubleday, Charles; Armas, Randy; Walker, Dana; Cosgriff, Christopher V; Greer, Edyta M

    2017-10-09

    Multidimensional tunneling calculations are carried out for 13 reactions, to test the scope of heavy-atom tunneling in organic chemistry, and to check the accuracy of one-dimensional tunneling models. The reactions include pericyclic, cycloaromatization, radical cyclization and ring opening, and S N 2. When compared at the temperatures that give the same effective rate constant of 3×10 -5  s -1 , tunneling accounts for 25-95 % of the rate in 8 of the 13 reactions. Values of transmission coefficients predicted by Bell's formula, κ Bell  , agree well with multidimensional tunneling (canonical variational transition state theory with small curvature tunneling), κ SCT . Mean unsigned deviations of κ Bell vs. κ SCT are 0.08, 0.04, 0.02 at 250, 300 and 400 K. This suggests that κ Bell is a useful first choice for predicting transmission coefficients in heavy-atom tunnelling. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Wavefunction effects in inner shell ionization of light atoms by protons

    International Nuclear Information System (INIS)

    Aashamar, K.; Amundsen, P.A.

    An efficient computer code for calculating the impact parameter distribution of atomic ionization probabilities caused by charged particle impact, has been developed. The programme is based on the semiclassical approximation, and it allows the use of an arbitrary atomic central potential for deriving the one-electron orbitals that form the basis for the description of the atomic states. Extensive calculations are reported for proton induced K-shell ionization in carbon and neon, covering energies in the range 0.1-10 MeV. Some calculations on proton-argon L-shell ionization are also reported. Comparison of the results obtained using (screened) hydrogenic potentials and the recently reported energy- optimized effective atomic central potentials, respectively demonstrates that wavefunction effects are generally important for inner-shell ionization of light atoms. The agreement between theory and experiment in the K-shell case is improved for fast collisions upon using better wavefunctions. (Auth.)

  16. L X-ray emission induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Braziewicz, J.; Majewska, U.; Semaniak, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Fijał-Kirejczyk, I. [The Institute of Atomic Energy, 05-400 Otwock-Świerk (Poland); Jaskóła, M.; Czarnacki, W.; Korman, A. [The National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kretschmer, W. [Physikalisches Institut, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Mukoyama, T. [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen (Hungary); Trautmann, D. [Institut für Physik, Universität Basel, Basel (Switzerland)

    2015-11-15

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster–Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L{sub 2}-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  17. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    Energy Technology Data Exchange (ETDEWEB)

    Hu Longfei [China Academy of Aerospace Aerodynamics, Beijing 100074 (China); Li Meishuan, E-mail: mshli@imr.ac.cn [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Xu Caihong; Luo Yongming [Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-11-30

    By using surface sol-gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO{sub 2} without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  18. Perhydropolysilazane derived silica coating protecting Kapton from atomic oxygen attack

    International Nuclear Information System (INIS)

    Hu Longfei; Li Meishuan; Xu Caihong; Luo Yongming

    2011-01-01

    By using surface sol–gel method with perhydropolysilazane (PHPS) as a precursor, a silica coating was prepared on a Kapton substrate as an atomic oxygen (AO) protective coating. The AO exposure tests were conducted in a ground-based simulator. It is found that the erosion yield of Kapton decreases by about three orders of magnitude after the superficial application of the coating. After AO exposure, the surface of the coating is smooth and uniform, no surface shrinkage induced cracks or undercutting erosion are observed. This is because that during AO exposure the PHPS is oxidized directly to form SiO 2 without through intermediate reaction processes, the surface shrinkage and cracking tendency are prohibited. Meanwhile, this PHPS derived silica coating also presents self-healing effect due to the oxidation of free Si. Compared with other kinds of silica or organic polymer coatings, this PHPS derived silica coating exhibits a superior AO erosion resistance.

  19. Quantum delayed-choice experiment with a single neutral atom.

    Science.gov (United States)

    Li, Gang; Zhang, Pengfei; Zhang, Tiancai

    2017-10-01

    We present a proposal to implement a quantum delayed-choice (QDC) experiment with a single neutral atom, such as a rubidium or cesium atom. In our proposal, a Ramsey interferometer is adopted to observe the wave-like or particle-like behaviors of a single atom depending on the existence or absence of the second π/2-rotation. A quantum-controlled π/2-rotation on target atom is realized through a Rydberg-Rydberg interaction by another ancilla atom. It shows that a heavy neutral atom can also have a morphing behavior between the particle and the wave. The realization of the QDC experiment with such heavy neutral atoms not only is significant to understand the Bohr's complementarity principle in matter-wave and matter-particle domains but also has great potential on the quantum information process with neutral atoms.

  20. Physico-Chemical and Structural Interpretation of Discrete Derivative Indices on N-Tuples Atoms

    Directory of Open Access Journals (Sweden)

    Oscar Martínez-Santiago

    2016-05-01

    Full Text Available This report examines the interpretation of the Graph Derivative Indices (GDIs from three different perspectives (i.e., in structural, steric and electronic terms. It is found that the individual vertex frequencies may be expressed in terms of the geometrical and electronic reactivity of the atoms and bonds, respectively. On the other hand, it is demonstrated that the GDIs are sensitive to progressive structural modifications in terms of: size, ramifications, electronic richness, conjugation effects and molecular symmetry. Moreover, it is observed that the GDIs quantify the interaction capacity among molecules and codify information on the activation entropy. A structure property relationship study reveals that there exists a direct correspondence between the individual frequencies of atoms and Hückel’s Free Valence, as well as between the atomic GDIs and the chemical shift in NMR, which collectively validates the theory that these indices codify steric and electronic information of the atoms in a molecule. Taking in consideration the regularity and coherence found in experiments performed with the GDIs, it is possible to say that GDIs possess plausible interpretation in structural and physicochemical terms.

  1. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks

    DEFF Research Database (Denmark)

    Belmonte, Louise Josefine; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2016-01-01

    In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid...... waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different...... brick discs obtained satisfactory densities (1669-2007 kg/m3) and open porosities (27.9-39.9%). In contrast, the fly ash brick discs had low densities (1313-1578 kg/m3) and high open porosities (42.1-51. %). However, leaching tests on crushed brick discs revealed that heavy metals generally became more...

  2. Scaling behaviour of leptonic decay constants for heavy quarkonia and heavy mesons

    International Nuclear Information System (INIS)

    Kiselev, V.V.

    1994-01-01

    In the framework of QCD sum rules one uses a scheme, allowing one to apply the conditions of both nonrelativistic heavy quark motion inside mesons and the heavy quark flavour independence of nonsplitting nS-state density. In the leading order an analitic expression is derived for leptonic constants of both heavy quarkonia and heavy mesons with a single heavy quark. The expression allows one explicitly to determine scaling properties of the constants. 24 refs., 2 tabs

  3. Collective vs atomic models of the hadrons

    International Nuclear Information System (INIS)

    Stokar, S.

    1983-02-01

    We examine the relationship between heavy and light quark systems. Using a Bogoliubov-Valatin transformation we show how to interpolate continuously between heavy quark atomic models and light quark collective models of the hadrons. (author)

  4. On the resonant coherent excitation of relativistic heavy ions

    International Nuclear Information System (INIS)

    Pivovarov, Y.L.; Geissel, H.; Filimonov, Yu.M.; Krivosheev, O.E.; Scheidenberger, C.

    1995-07-01

    New accelerator facilities open up an interesting new field of experiments on basic channeling as well as on atomic and nuclear resonant coherent exitation (RCE) of heavy ions penetrating through aligned crystals at relativistic energies. Results of computer simulations are presented to characterize the resonant coherent excitation of atomic levels of relativistic hydrogen-like heavy ions. Nuclear resonant coherent excitation reveals interesting different characteristics compared to the corresponding atomic excitation inside crystals. An important result of our model calculations is that poorly-channeled ions have a higher nuclear excitation probability than well-channeled ions. (orig.)

  5. Production of heavy water in India

    International Nuclear Information System (INIS)

    Deshpande, P.G.; Bimbhat, K.S.; Bhargava, R.K.

    India's first heavy water plant, using electrolysis of water followed by liquid hydrogen distillation, has been operating in association with a fertilizer plant at Nangal since 1962. A dual-temperature process plant at Kota uses heat from the Rajasthan Atomic Power Station. The heavy water plants at Baroda and Tuticorin use ammonia-hydrogen exchange and are integrated with fertilizer ammonia plants. Choice of a particular process for heavy water production depends upon local conditions as well as the extent of the heavy water requirement

  6. High content screening of defined chemical libraries using normal and glioma-derived neural stem cell lines.

    Science.gov (United States)

    Danovi, Davide; Folarin, Amos A; Baranowski, Bart; Pollard, Steven M

    2012-01-01

    Small molecules with potent biological effects on the fate of normal and cancer-derived stem cells represent both useful research tools and new drug leads for regenerative medicine and oncology. Long-term expansion of mouse and human neural stem cells is possible using adherent monolayer culture. These cultures represent a useful cellular resource to carry out image-based high content screening of small chemical libraries. Improvements in automated microscopy, desktop computational power, and freely available image processing tools, now means that such chemical screens are realistic to undertake in individual academic laboratories. Here we outline a cost effective and versatile time lapse imaging strategy suitable for chemical screening. Protocols are described for the handling and screening of human fetal Neural Stem (NS) cell lines and their malignant counterparts, Glioblastoma-derived neural stem cells (GNS). We focus on identification of cytostatic and cytotoxic "hits" and discuss future possibilities and challenges for extending this approach to assay lineage commitment and differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Annual progress report for atomic and nuclear research with accelerators and fusion related atomic physics. Reporting period, October 1, 1974--September 30, 1975

    International Nuclear Information System (INIS)

    1975-10-01

    Topics covered include: laboratory operation and development; atomic collision cross sections in gases; ionization cross sections in thin solid materials; experimental impact-parameter dependent probabilities for k-shell vacancy production by fast heavy-ion projectiles; x-ray spectroscopy with high energy ions; atomic lifetime measurements; polarization studies of ion-induced x rays; theoretical spectra in ion-induced reactions; theoretical atomic cross section calculations; search for heavy-ion resonances; lifetimes of low energy states in 21 Ne; nuclear scattering and reactions; and trace element analysis

  8. Heavy atoms as molecular probes in studying the solvent dependence of the dynamics of triplet exciplexes

    International Nuclear Information System (INIS)

    Steiner, U.; Winter, G.

    1981-01-01

    Electron transfer reactions between thiopyronine triplet (acceptor 3 A + ) and the electron donors (D), aniline, p-Br-aniline and p-I-aniline, are investigated by flash spectroscopy in solvents of different viscosity and polarity. Due to the heavy-atom effect the radical yield becomes very sensitive to the solvent influence, which can be explained by the dynamic properties of a triplet exciplex ( 3 (AD + )) formed as a primary product in the reaction between acceptor triplet and donor. Whereas on variation of solvent viscosity the solvent cage effect on the dissociation of 3 (AD + ) is observed, a change in solvent polarity is suggested to affect the radiationless deactivation of 3 (AD + ) to the ground state of the components. (author)

  9. Polythiophenes and fullerene derivatives based donor-acceptor system: topography by atomic force microscopy

    International Nuclear Information System (INIS)

    Marcakova, M. L.; Repovsky, D.; Cik, G.; Velic, D.

    2017-01-01

    The goal of this work is to examine the surface of a polythiophene/fullerene film in order to understand the structure. In this work polythiophene is used as electron donor and fullerene-derivative is used as electron acceptor. Atomic force microscopy (AFM), is an ideal method to study surfaces and nanostructures. Surfaces of fullerene C60 , fullerene-derivates PCBM, polythiophene P12 and a mixture of P12 and PCBM are characterized. In all samples, the average roughness, the arithmetical value of divergence from the high of the surface, is determined concluding that P12 and PCBM mix together well and form a film with specific topography. (authors)

  10. Experimental atomic and molecular physics research

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Atomic Physics research in the Physics Division consists of five ongoing experimental programs: dissociation and other interactions of energetic molecular ions in solid and gaseous targets; beam-foil research and collision dynamics of heavy ions; photoionization-photoelectron research; spectroscopy of free atoms and molecules, high precision laser-rf double-resonance spectroscopy with atomic and molecular beams; and Moessbauer effect research

  11. Positron production in heavy ion-atom collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1985-08-01

    Following an introduction into the concept of an atom with an overcritical field, established by a nucleus with a charge larger than 173, the spontaneous positron emission from such an atom with an 1s binding energy exceeding 2mc 2 is presented. Such a process, in which an electron is bound and a monoenergetic positron emitted turns the neutral into a charged vacuum. In a U-U di-nuclear system (Z=184) the spontaneous positron emission proceeds with an energy of about 300 keV corresponding to a decay time of 3x10 -19 sec. (orig./WL)

  12. Semiclassical derivation of a local optical potential for heavy-ion elastic scattering. [Coupling to other processes

    Energy Technology Data Exchange (ETDEWEB)

    Donangelo, R; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Hussein, M S [Sao Paulo Univ. (Brazil). Inst. de Fisica

    1979-05-21

    A semiclassical method to determine the contribution to the optical potential in the elastic channel due to the coupling to other processes taking place in heavy-ion collisions is developed. An application is made to the case of Coulomb excitation. The lowest-order term of the potential used is shown to be identical to the potential derived by Baltz et al.

  13. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  14. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    Science.gov (United States)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  15. Asymptotics for Two-dimensional Atoms

    DEFF Research Database (Denmark)

    Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip

    2012-01-01

    We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....

  16. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event.

    Science.gov (United States)

    Kasen, Daniel; Metzger, Brian; Barnes, Jennifer; Quataert, Eliot; Ramirez-Ruiz, Enrico

    2017-11-02

    The cosmic origin of elements heavier than iron has long been uncertain. Theoretical modelling shows that the matter that is expelled in the violent merger of two neutron stars can assemble into heavy elements such as gold and platinum in a process known as rapid neutron capture (r-process) nucleosynthesis. The radioactive decay of isotopes of the heavy elements is predicted to power a distinctive thermal glow (a 'kilonova'). The discovery of an electromagnetic counterpart to the gravitational-wave source GW170817 represents the first opportunity to detect and scrutinize a sample of freshly synthesized r-process elements. Here we report models that predict the electromagnetic emission of kilonovae in detail and enable the mass, velocity and composition of ejecta to be derived from observations. We compare the models to the optical and infrared radiation associated with the GW170817 event to argue that the observed source is a kilonova. We infer the presence of two distinct components of ejecta, one composed primarily of light (atomic mass number less than 140) and one of heavy (atomic mass number greater than 140) r-process elements. The ejected mass and a merger rate inferred from GW170817 imply that such mergers are a dominant mode of r-process production in the Universe.

  17. Propargyl organometallic compounds. II. Alkylation of sodium derivatives of 1-alkyl-1-aryl-2-alkynes in liquid ammonia

    International Nuclear Information System (INIS)

    Libman, N.M.; Sevryukov, Yu.P.

    1987-01-01

    In most cases the alkylation of the sodium derivatives of 1-phenyl-1-alkyl-2-alkynes by methyl, ethyl, isopropyl, and tert-butyl bromides in liquid ammonia takes place preferentially at the sp 2 -hybridized carbon atom, and this leads to the formation of the corresponding acetylenes, The regioselectivity of the reaction is explained by the greater softness of the trigonal atom of the ambient propargyl anion and its smaller screening by the solvate shell compared with the diagonal atom

  18. Deriving fuel-based emission factor thresholds to interpret heavy-duty vehicle roadside plume measurements.

    Science.gov (United States)

    Quiros, David C; Smith, Jeremy D; Ham, Walter A; Robertson, William H; Huai, Tao; Ayala, Alberto; Hu, Shaohua

    2018-04-13

    Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO 2 ), oxides of nitrogen (NO X ), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NO X /bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NO X /kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NO X threshold was derived from measurements where aftertreatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger

  19. ADAS: Atomic data, modelling and analysis for fusion

    International Nuclear Information System (INIS)

    Summers, H. P.; O'Mullane, M. G.; Whiteford, A. D.; Badnell, N. R.; Loch, S. D.

    2007-01-01

    The Atomic Data and Analysis Structure, ADAS, comprises extensive fundamental and derived atomic data collections, interactive codes for the manipulation and generation of collisional-radiative data and models, off-line codes for large scale fundamental atomic data production and codes for diagnostic analysis in the fusion and astrophysical environments. ADAS data are organized according to precise specifications, tuned to application and are assigned to numbered ADAS data formats. Some of these formats contain very large quantities of data and some have achieved wide-scale adoption in the fusion community.The paper focuses on recent extensions of ADAS designed to orient ADAS to the needs of ITER. The issue of heavy atomic species, expected to be present as ITER wall and divertor materials, dopants or control species, will be addressed with a view to the economized handling of the emission and ionisation state data needed for diagnostic spectral analysis. Charge exchange and beam emission spectroscopic capabilities and developments in ADAS will be reviewed from an ITER perspective and in the context of a shared analysis between fusion laboratories. Finally an overview and summary of current large scale fundamental data production in the framework of the ADAS project will be given and its intended availability in both fusion and astrophysics noted

  20. Proceedings of the 2nd joint seminar on atomic collisions and heavy ion induced nuclear reactions

    International Nuclear Information System (INIS)

    Harada, Kichinosuke; Ozawa, Kunio; Kamitsubo, H.; Nomura, T.; Awaya, Y.; Watanabe, T.

    1982-11-01

    The meeting of the 2nd joint seminar on atomic collisions and heavy ion induced nuclear reactions was held at the University of Tokyo, May 13 and 14, 1982. The aim of this seminar has been not only to recognize the common problems lying between above two research fields, but also to obtain an overview of the theoretical and experimental approaches to clear the current problems. In the seminar, more than 50 participants gathered and presented 16 papers. These are two general reviews and fourteen comprehensive surveys on topical subjects which have been developed very intensively in recent years. The editors would like to thank all participants for their assistance and cooperation in making possible a publication of these proceedings. (author)

  1. Spherical harmonic expansion of short-range screened Coulomb interactions

    Energy Technology Data Exchange (ETDEWEB)

    Angyan, Janos G [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Gerber, Iann [Laboratoire de Cristallographie et de Modelisation des Materiaux Mineraux et Biologiques, UMR 7036, CNRS-Universite Henri Poincare, BP 239, F-54506 Vandoeuvre-les-Nancy (France); Marsman, Martijn [Institut fuer Materialphysik and Center for Computational Materials Science, Universitaet Wien, Sensengasse 8, A-1090, Vienna (Austria)

    2006-07-07

    Spherical harmonic expansions of the screened Coulomb interaction kernel involving the complementary error function are required in various problems in atomic, molecular and solid state physics, like for the evaluation of Ewald-type lattice sums or for range-separated hybrid density functionals. A general analytical expression is derived for the kernel, which is non-separable in the radial variables. With the help of series expansions a separable approximate form is proposed, which is in close analogy with the conventional multipole expansion of the Coulomb kernel in spherical harmonics. The convergence behaviour of these expansions is studied and illustrated by the electrostatic potential of an elementary charge distribution formed by products of Slater-type atomic orbitals.

  2. Fluorescence quenching of derivatives of anthracene by organic electron donors and acceptors in acetonitrile. Electron and proton transfer mechanism

    Science.gov (United States)

    Mac, Marek; Najbar, Jan; Wirz, Jakob

    1995-03-01

    Fluorescence quenching of anthracene derivatives by organic electron donors (amines) and acceptors was investigated using stationary fluorescence measurements. The dependence of log( kq) on Δ Get shows Rehm-Weller-type behavior. The formation of anion radicals of anthracene, bianthryl, and 9-cyanoanthracene was detected by flash photolysis in systems containing aromatic amines (aniline, 2-bromoaniline, 4-bromoaniline, N,N-dimethylaniline, 4-bromo-N,N-dimethylaniline, N,N-diethylaniline, and 1,4-diazabicyclo[2.2.2]octane). The radical yields decreased and triplet yields increased when bromo derivatives of amines were used as donor quenchers, indicating the heavy-atom effect on spin conversion within radical pairs. The importance of the heavy-atom effect decreased when the energy gap between the charge transfer and molecular triplet states was small. The formation of separated radicals decreased when primary amines were used as quenchers which indicated the existence of an additional path of deactivation of the radical pair. The behavior of amines as quenchers of bianthryl and anthracene is compared with that of inorganic anion quenchers.

  3. Pion correlations as a function of atomic mass in heavy ion collisions

    International Nuclear Information System (INIS)

    Chacon, A.D.

    1989-01-01

    The method of two pion interferometry was used to obtain source-size and lifetime parameters for the pions produced in heavy ion collisions. The systems used were 1.70 · A GeV 56 Fe + Fe, 1.82 · A GeV 40 Ar + KCl and 1.54 · A GeV 93 Nb + Nb, allowing for a search for dependences on the atomic number. Two acceptances (centered, in the lab., at ∼ 0 degrees and 45 degrees) were used for each system, allowing a search for dependences on the viewing angle. The correlation functions were calculated by comparing the data samples to background (or reference) samples made using the method of event mixing, where pions from different events are combined to produce a data sample in which the Bose-Einstein correlation effect is absent. The effect of the correlation function on the background samples is calculated, and a method for weighting the events to remove the residual correlation effect is presented. The effect of the spectrometer design on the measured correlation functions is discussed, as are methods for correcting for these effects during the data analysis. 58 refs., 39 figs., 18 tabs

  4. Energy distribution of projectile fragment particles in heavy ion therapeutic beam

    Energy Technology Data Exchange (ETDEWEB)

    Matsufuji, Naruhiro; Tomura, Hiromi; Futami, Yasuyuki [National Inst. of Radiological Sciences, Chiba (Japan)] [and others

    1998-03-01

    Production of fragment particles in a patient`s body is one of important problems for heavy charged particle therapy. It is required to know the yield and the energy spectrum for each fragment element - so called `beam quality` to understand the effect of therapeutic beam precisely. In this study, fragment particles produced by practical therapeutic beam of HIMAC were investigated with using tissue-equivalent material and a detector complex. From the results, fragment particles were well identified by difference of their atomic numbers and the beam quality was derived. Responses of the detectors in this energy region were also researched. (author)

  5. Electron population uncertainty and atomic covalency

    International Nuclear Information System (INIS)

    Chesnut, D.B.

    2006-01-01

    The atoms-in-molecules (AIM) index of atomic covalency is directly related to the AIM atomic population uncertainty. The covalent bond order, delocalization index, and, therefore, the atomic covalency are maximal when electron pairs are equally shared by the atoms involved. When polarization effects are present, these measures of covalent bond character decrease. We present atomic covalences for the single- and double-heavy atom hydrides of elements of the first and second low rows of the periodic table to illustrate these effects. Some usual behavior is seen in hydrogen-bridged species due in some cases to stronger than expected multicenter bonds and in other cases to many atoms contributing to the covalency index

  6. Experimental atomic physics

    International Nuclear Information System (INIS)

    Sellin, I.A.; Elston, S.B.; Forester, J.P.; Liao, K.H.; Pegg, D.J.; Peterson, R.S.; Thoe, R.S.; Hayden, H.C.; Griffin, P.M.

    1976-01-01

    The atomic structure and collision phenomena of highly stripped ions in the range Z = 6 to 35 were studied. Charge-transfer and multiple-electron-loss cross sections were determined. Absolute x-ray-production cross sections for incident heavy ions were measured. 10 figures, 1 table

  7. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening.

    Science.gov (United States)

    Smith, Alec S T; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A; Kim, Deok-Ho

    Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. Published by Elsevier Inc.

  8. Estimated H-atom anisotropic displacement parameters: a comparison between different methods and with neutron diffraction results

    DEFF Research Database (Denmark)

    Munshi, Parthapratim; Madsen, Anders Ø; Spackman, Mark A

    2008-01-01

    systems and identify systematic discrepancies for several atom types. A revised and extended library of internal H-atom mean-square displacements is presented for use with Madsen's SHADE web server [J. Appl. Cryst. (2006), 39, 757-758; http://shade.ki.ku.dk], and the improvement over the original SHADE...... in the agreement with neutron results. The SHADE2 library, now incorporated in the SHADE web server, is recommended as a routine procedure for deriving estimates of H-atom ADPs suitable for use in charge-density studies on molecular crystals, and its widespread use should reveal remaining deficiencies and perhaps...... results is substantial, suggesting that this is now the most readily and widely applicable of the three approximate procedures. Using this new library--SHADE2--it is shown that, in line with expectations, a segmented rigid-body description of the heavy atoms yields only a small improvement...

  9. Highly charged atomic physics at HIRFL-CSR

    International Nuclear Information System (INIS)

    Ma Xinwen; Wang Youde; Hou Mingdong; Jin Gengmin

    1996-01-01

    HIRFL-CSR is a proposed electron cooling storage ring optimized to accelerate and store beams of highly charged heavy ions. Several possibilities for advanced atomic physics studies are discussed, such as studies of electron-ion, ion-atoms, photon-ion-electron interactions and high resolution spectroscopy

  10. Electron spectroscopy with fast heavy ions

    International Nuclear Information System (INIS)

    Schneider, D.

    1983-01-01

    Since about 1970 the spectroscopy of Auger-electrons and characteristic x-rays following energetic ion-atom collisions has received a great deal of attention. An increasing number of accelerators, capable of providing a large number of projectile ion species over a wide range of projectile energies, became available for studying ion-atom collision phenomena. Many charged particles from protons up to heavy ions like uranium can be accelerated to energies ranging over six orders of magnitude. This allows us to study systematically a great variety of effects accompanied by dynamic excitation processes of the atomic shells in either the projectile- or target-atoms. The studies yield fundamental information regarding the excitation mechanism (e.g., Coulomb and quasi-molecular excitation) and allow sensitive tests of atomic structure theories. This information in turn is valuable to other fields in physics like plasma-, astro-, or solid-state (surface) physics. It is a characteristic feature of fast heavy-ion accelerators that they can produce highly stripped ion species which have in turn the capability to highly ionize neutral target atoms or molecules in a single collision. The ionization process, mainly due to the strong electrical fields that are involved, allows us to study few-electron atoms with high atomic numbers Z. High resolution spectroscopy performed with these atoms allows a particularly good test of relativistic and QED effects. The probability of producing these few electron systems is determined by the charge state and the velocity of the projectile ions. In this contribution the possibilities of using electron spectroscopy as a tool to investigate fast ion-atom collisions is discussed and demonstrated with a few examples. 30 references

  11. assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    userpc

    guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit of WHO. Keywords: Atomic Absorption Spectrophotometers, Heavy Metals, Water, Kauru Local. Government Area.

  12. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards.

    Science.gov (United States)

    Mordwinkin, Nicholas M; Burridge, Paul W; Wu, Joseph C

    2013-02-01

    Drug attrition rates have increased in past years, resulting in growing costs for the pharmaceutical industry and consumers. The reasons for this include the lack of in vitro models that correlate with clinical results and poor preclinical toxicity screening assays. The in vitro production of human cardiac progenitor cells and cardiomyocytes from human pluripotent stem cells provides an amenable source of cells for applications in drug discovery, disease modeling, regenerative medicine, and cardiotoxicity screening. In addition, the ability to derive human-induced pluripotent stem cells from somatic tissues, combined with current high-throughput screening and pharmacogenomics, may help realize the use of these cells to fulfill the potential of personalized medicine. In this review, we discuss the use of pluripotent stem cell-derived cardiomyocytes for drug discovery and cardiotoxicity screening, as well as current hurdles that must be overcome for wider clinical applications of this promising approach.

  13. Synthesis and photophysical properties of indium(III) phthalocyanine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Özceşmeci, İbrahim, E-mail: ozcesmecii@itu.edu.tr [Department of Chemistry, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey); Gelir, Ali [Department of Physics, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey); Gül, Ahmet [Department of Chemistry, Technical University of Istanbul, Maslak 34469, Istanbul (Turkey)

    2014-03-15

    Three chloroindium(III) phthalocyanine derivatives bearing four aromatic (naphthalene or pyrene) or aliphatic (hexylthio) groups were prepared from corresponding phthalonitrile compounds. The indium(III) phthalocyanine derivatives were characterized with elemental analyses, mass, proton nuclear magnetic resonance ({sup 1}H NMR), Fourier transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopy (UV–vis) techniques. Quantum yields and the energy transfer from the substituents to phthalocyanine core were examined. No energy transfer was observed for 5. The energy transfer efficiency from pyrene units to indium phthalocyanine core was calculated as 0.27 for 6. Quantum yields of all samples were very small due to heavy atom effect of indium atom in the core. It was also observed that upon binding of pyrene and naphthalene units to indium phthalocyanine as substituents, the quantum yields of indium phthalocyanine parts of 5 and 6 decreased. -- Highlights: • Three chloroindium(III) phthalocyanines were prepared and characterized. • Aggregation properties of these compounds were investigated. • The energy transfer efficiency was examined. • Quantum yield of these systems were calculated.

  14. The heavy ion injection scheme for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1989-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven has a multi-component injection system. The Collider requires very heavy ions such as 79 197 Au to be injected fully stripped of atomic electrons, at a kinetic energy of approximately 10 GeV/nucleon. However, the heavy ions are produced initially at a negative ion source and accelerated first in a 15 MV Tandem. These partially stripped ions have a kinetic energy of approximately 1 MeV/nucleon on leaving the Tandem. In order to achieve the injection requirements for RHIC, the partially stripped ions are accelerated in the Booster (currently under construction) and pass through a stripping foil on their way to the Alternating Gradient Synchrotron (AGS), where they are further accelerated before injection into RHIC. Recent theoretical calculations have shown quite convincingly that very heavy ions with 2 electrons in the filled K-shell may be accelerated with negligible loss in the AGS. 13 refs., 3 figs., 3 tabs

  15. An investigation of one- versus two-dimensional semiclassical transition state theory for H atom abstraction and exchange reactions.

    Science.gov (United States)

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-02-28

    We investigate which terms in Reduced-Dimensionality Semiclassical Transition State Theory (RD SCTST) contribute most significantly in rate constant calculations of hydrogen extraction and exchange reactions of hydrocarbons. We also investigate the importance of deep tunneling corrections to the theory. In addition, we introduce a novel formulation of the theory in Jacobi coordinates. For the reactions of H atoms with methane, ethane, and cyclopropane, we find that a one-dimensional (1-D) version of the theory without deep tunneling corrections compares well with 2-D SCTST results and accurate quantum scattering results. For the "heavy-light-heavy" H atom exchange reaction between CH3 and CH4, deep tunneling corrections are needed to yield 1-D results that compare well with 2-D results. The finding that accurate rate constants can be obtained from derivatives of the potential along only one dimension further validates RD SCTST as a computationally efficient yet accurate rate constant theory.

  16. KX radiation of quasi-molecules in heavy ion interaction

    International Nuclear Information System (INIS)

    Kaun, K.G.

    1976-01-01

    The object of investigation is the KX radiation of quasimolecules produced at collision of heavy ions with atoms. In collision, electron may change their states adiabatically and form, at sufficiently small distances R between nuclei, quasimolecular states, which transform, in the limiting case of R → 0, to the states of a quasiatom with an atomic number of Z = Z 1 + Z 2 , where Z 1 and Z 2 are the atomic numbers of the heavy ion and atom. The discussion is restricted to collision experiments of Z = Z 1 + Z 2 > 50. The obtained and published data on the systems Ni+Ni, Nb+Nb, Zr+Nb, La+La, La+Xe, Pb+Pb, and Bi+Bi are analyzed. At a sufficiently high ion energy, one observes an asymmetry of a quasimolecular spectrum, the asymmetry having maximum in the range of the characteristic KX energy of a quasiatom. Data on the absolute yield Y(Ksub(α)) of individual high-energy components of X-rays excited on collision of heavy ions are presented. A considerable drop in yield Y(Ksub(α)) with increasing Z is noted

  17. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China

    International Nuclear Information System (INIS)

    Lu Xinwei; Wang Lijun; Li, Loretta Y.; Lei Kai; Huang Li; Kang Dan

    2010-01-01

    The concentrations of Pb, Cu, Zn, Mn, Ni, Co and Cr in street dust samples from Baoji in north-west China were measured by wavelength dispersive X-ray fluorescence spectrometry, while As and Hg in street dust samples were determined by atomic fluorescence spectrometry. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, were used to analyze the data and to identify possible sources of these heavy metals. The results indicate that street dust in Baoji has elevated heavy metal concentrations, especially Hg, Pb, Zn and Cu, which are 16-77, 7-92, 6-26 and 4-12 times the background levels in Shaanxi soil, respectively. The mean heavy metal concentrations in street dust divided by the corresponding background values of Shaanxi soil decrease in the order of Hg > Pb > Zn > Cu > Cr > As > Ni > Co > Mn > V. Three main sources of these heavy metals were identified. As, V, Pb and Co originated from nature and traffic. Cu, Zn, Hg and Mn, especially the former two, mainly derive from industry sources, as well as traffic. Cr and Ni mainly originate from soil.

  18. High-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei by pion-transfer reactions of inverse kinematics using the GSI cooler ring ESR

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1991-02-01

    Many studies published in the past are reviewed first in relation to high-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei. The report then describes a procedure for applying the method of inverse kinematics to the case of (d, 3 He) reactions. The (d, 3 He) reaction in inverse kinematics is feasible from practical viewpoints. Thus a discussion is made of the inverse kinematics in which a heavy-ion beam ( 208 Pb for instance) with a projectile kinetic energy hits a deuteron target and ejected recoil 3 He nuclei are measured in the forward direction. The recoil momentum is calculated as a function of the Q value. Analysis shows that the recoil spectroscopy with inverse kinematics can be applied to the case of (d, 3 He) reaction, which will yield a very high mass resolution. The experimental setup for use in the first stage is then outlined, and a simple detector configuration free of magnetic field is discussed. These investigations demonstrate that the (d, 3 He) reaction in inverse kinematics provides a promising tool for obtaining high-resolution spectra of deeply-bound pionic atoms. (N.K.)

  19. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  20. Atomic effects in tritium beta-decay. II. Muon to electron conversion in atoms

    International Nuclear Information System (INIS)

    Wampler, K.D.

    1989-01-01

    I. The final-state, atomic effects in the low energy end of the tritium beta decay spectrum are studied in detail. The author treats the instantaneous, two-electron repulsion in the final state, effectively to all orders in perturbation theory, by solving the eigenvalue problem with a discretized and truncated form of the Hamiltonian. He finds that these effects fail to explain the distortion in the spectrum observed by Simpson (Phys. Rev. Lett. 54, 649 (1985)). Simpson attributed this distortion to the admixture of a heavy mass antineutrino in the outgoing electron antineutrino state. In fact, the final-state Coulomb effects enhance the distortion. This calculation clears up some of the ambiguities of other theoretical analyses based on considerations of screening functions and perturbation theory. II. He presents a phenomenological study of separate lepton number violating muon to electron conversion in atoms. Previous work on this process has concentrated on elastic transitions where the nucleus characteristics have the gate on the substrate and the source-drain contacts on the top of the sample. The first use as an FET dielectric is reported of hydrogenated amorphous silicon-carbon (prepared from silane and propane mixture), photo-oxidised by UV lamp or laser. These FETs have similar characteristics to those with silicon nitride gate insulator but without the difficulties of preparing good insulator/semiconductor interfaces. Using the same materials attempts have been made to produce charge coupled devices

  1. Semiclassical treatment of inelastic collisions between electrons and highly ionized atoms

    International Nuclear Information System (INIS)

    Frasier, S.M.

    1984-01-01

    The thesis is concerned with the calculation of excitation cross sections of ions by electron impact at intermediate energies in the limit of Z >> N/sub b/, where Z is the atomic number and N/sub b/ is the number of bound electrons. A semiclassical procedure is developed for calculating total cross sections using analytic bound states and averaged free electron wave functions derived in the second eikonal approximation. The analytic bound states are derived assuming a screened Coulomb potential and using orbital energies obtained from Hartree-Fock calculations. The functional form of the bound states reduces naturally to the hydrogen atom functions in the limit Z → infinity. The free electron functions used are semiclassical solutions to the free electron Schroedinger equation with a screened Coulomb potential. An exact solution is obtained in the second eikonal approximation, including all classical path contributions. This solution is averaged to extract the focusing and acceleration effects resulting from the long range Coulomb potential of the ion. The results are presented in the form of Born-like cross section formulae and demonstrate the appropriate correction of the Born cross section which arises from the acceleration and focusing of the free electrons by the long range Coulomb potential. Comparison is made with the Coulomb-Born results; the results agree to within 10% in most cases

  2. Some possible atomic physics experiments with 15 UD pelletron machine

    International Nuclear Information System (INIS)

    Mandal, A.

    1995-01-01

    Some possible experiments in atomic physics using medium energy heavy ion beam from the Pelletron are discussed. Main discussions is on x-ray spectroscopy using heavy ion beam. Different excitation mechanisms of inner atomic shells, experimental results and comparison with different theoretical models are presented. Effects of multiple vacancies in outer shells on K-shell ionisation, projectile charge state and target thickness effects are discussed. High resolution x-ray spectroscopy using curved crystal spectrometer is useful for studying these effects. Special emphasis is given to the study of quasi-molecular orbit (MO) formation during adiabatic collision of heavy ion with atom. Different aspects of MO x-ray study are presented. Other continuum x-rays e.g. radiative electron capture (REC), secondary electron Bremsstrahlung (SEB) nucleus-nucleus Bremsstrahlung (NNB) etc are also discussed. (author). 16 refs., 5 figs

  3. Slowing down of relativistic heavy ions and new applications

    International Nuclear Information System (INIS)

    Geissel, H.; Scheidenberger, C.

    1997-10-01

    New precision experiments using powerful accelerator facilities and high-resolution spectrometers have contributed to a better understanding of the atomic and nuclear interactions of relativistic heavy ions with matter. Experimental results on stopping power and energy-loss straggling of bare heavy projectiles demonstrate large systematic deviations from theories based on first order perturbation. The energy-loss straggling is more than a factor of two enhanced for the heaviest projectiles compared to the relativistic Bohr formula. The interaction of cooled relativistic heavy ions with crystals opens up new fields for basic research and applications, i. e., for the first time resonant coherent excitations of both atomic and nuclear levels can be measured at the first harmonic. The spatial monoisotopic separation of exotic nuclei with in-flight separators and the tumor therapy with heavy ions are new applications based on a precise knowledge of slowing down. (orig.)

  4. X-ray holography with an atomic scatterer

    Energy Technology Data Exchange (ETDEWEB)

    Mityureva, A.A.; Smirnov, V.V., E-mail: valery_smirnov@mail.ru

    2016-08-15

    X-ray holography scheme with reference scatterer consisting of heavy atom as reference center and its link to an object consisting of several light atoms and using controlled variation of the alignment is represented. The scheme can reproduce an object in three dimensions with atomic resolution. The distorting factors of reconstruction are considered. - Highlights: • X-ray holography scheme with a reference wave formed by atomic scatterer. • 3D object reconstruction with atomic resolution from the set of holograms. • Simple formula for the distorting factor in reconstruction.

  5. Hydrotreating of heavy distillate derived from Wandoan coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y. [National Institute for Resources and Environment, Osaka (Japan). Hydrocarbon Research Lab.

    1997-12-03

    The paper reports how the hydrotreatment of coal-derived heavy distillate, obtained from the liquefaction of Wandoan coal using a 1 t/day bench unit, was performed to clarify the effects of catalyst species, reaction temperature and hydrogen pressure on the chemical composition of the product. Experimental runs were carried out over alumina-supported Go-Mo and Ni-Mo catalysts in a fixed bed reactor of 20 ml in volume at 350-390{degree}C under hydrogen pressure of 50-150 kg/cm{sup 2}G with liquid hourly space velocity (LHSV) of 0.5-2 h{sup -1}. The product, as analyzed by gas chromatography, indicated that larger amounts of alkylbenzenes such as toluene or xylenes were produced at the elevated temperature of 390{degree}C, but the concentrations of condensed aromatics such as naphthalene, biphenyl, fluorene and phenanthrene decreased with the severity of reaction conditions. Pyrene and methylpyrene decreased in amount with a shorter LHSV and higher hydrogen pressure, but increased at higher temperature of 390{degree}C. Shorter LHSV and higher hydrogen pressure are much more effective in hydrogenation, hydrodnitrogenation and hydrodeoxygenation than the higher reaction temperature up to 390{degree}C.

  6. The physics of highly charged heavy ions revealed by storage/cooler rings

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.

    1996-01-01

    With the successful commissioning of storage and cooler rings for bright beams of very heavy ions near the threshold of the last decade of this century, not only did a prosperous development in heavy ion accelerator technology come to its present summit, but also fundamental fields in heavy ion physics were opened widely for exciting explorations. Now, essential aspects in this area are accessible, aspects one only dared to dream of another decade ago. In the meantime, great progress already has been made in the fundamental physics in this field. This is particularly true for achievements in the atomic physics of highly charged heavy ions. In this chapter, we present a review of the current advances in this rapidly developing field. There are two general domains to be considered in the atomic physics of highly charged heavy ions: the fields of collisions and of atomic structure. Both aspects have to be explored equally, as they are strongly interconnected. One has to investigate the interaction processes to know, for instance, the population of excited states to help answer questions on the atomic structure; and conversely, one has to know the structure to understand the interactions. In both the fields, fundamental principles can be studied uniquely. This is in particular true for the heaviest ion species with only a few- or even zero-electrons left. 140 refs., 39 figs

  7. Probing Efimov discrete scaling in an atom-molecule collision

    Science.gov (United States)

    Shalchi, M. A.; Yamashita, M. T.; Hadizadeh, M. R.; Garrido, E.; Tomio, Lauro; Frederico, T.

    2018-01-01

    The discrete Efimov scaling behavior, well known in the low-energy spectrum of three-body bound systems for large scattering lengths (unitary limit), is identified in the energy dependence of an atom-molecule elastic cross section in mass-imbalanced systems. That happens in the collision of a heavy atom with mass mH with a weakly bound dimer formed by the heavy atom and a lighter one with mass mL≪mH . Approaching the heavy-light unitary limit, the s -wave elastic cross section σ will present a sequence of zeros or minima at collision energies following closely the Efimov geometrical law. Our results, obtained with Faddeev calculations and supplemented by a Born-Oppenheimer analysis, open a perspective to detecting the discrete scaling behavior from low-energy scattering data, which is timely in view of the ongoing experiments with ultracold binary mixtures having strong mass asymmetries, such as lithium and cesium or lithium and ytterbium.

  8. Determination of liquid's molecular interference function based on X-ray diffraction and dual-energy CT in security screening

    International Nuclear Information System (INIS)

    Zhang, Li; YangDai, Tianyi

    2016-01-01

    A method for deriving the molecular interference function (MIF) of an unknown liquid for security screening is presented. Based on the effective atomic number reconstructed from dual-energy computed tomography (CT), equivalent molecular formula of the liquid is estimated. After a series of optimizations, the MIF and a new effective atomic number are finally obtained from the X-ray diffraction (XRD) profile. The proposed method generates more accurate results with less sensitivity to the noise and data deficiency of the XRD profile. - Highlights: • EDXRD combined with dual-energy CT has been utilized for deriving the molecular interference function of an unknown liquid. • The liquid's equivalent molecular formula is estimated based on the effective atomic number reconstructed from dual-energy CT. • The proposed method provides two ways to estimate the molecular interference function: the simplified way and accurate way. • A new effective atomic number of the liquid could be obtained.

  9. Stopping powers and ranges for the heaviest atoms

    International Nuclear Information System (INIS)

    Sagaidak, Roman N.; Utyonkov, Vladimir K.; Dmitriev, Sergey N.

    2015-01-01

    Slowing down and stopping of the heaviest atoms, products of the fusion–evaporation nuclear reactions, during their passage through the Dubna gas-filled recoil separator has been studied using TRIM simulations. The study is important for experiments on the synthesis of super-heavy elements (SHEs) with atomic numbers around Z_P = 114 produced with accelerated heavy ion (HI) beams and extracted with a separator for their detection. The average Mylar stopping power (SP) values obtained with the simulations for HIs with 82 ⩽ Z_P ⩽ 92 reveal almost the same magnitudes, allowing extrapolation to the region of Z_P > 92. Similar extrapolation of the ranges in an He + Ar gas mixture leads to rather small values for the heaviest atoms (Z_P ⩾ 102) as compared to the range for U. The extrapolated values have large uncertainties and should be verified with different approaches. Available SP data obtained for HIs with 18 ⩽ Z_P ⩽ 92 at energies E < 20 MeV/u have been analysed within various semi-empirical approaches. The analysis has shown that existing parameterizations give Mylar SP values for Z_P ⩾ 82 that are very different from each other at energies of interest (around 0.1 MeV/u). We propose to use a general approach based on the HI effective charge parameterization obtained with available SP data for HIs and the hydrogen SP and effective charge corresponding to the same velocity and stopping medium as those for HIs. In this manner, the SPs of the gases H_2, He, C_4H_1_0, and Ar as well as those of the solids Mylar, C, Al, and Ti have been obtained for any atoms with Z_P ⩾ 18 (including the heaviest ones) at their reduced velocities 0.03 ⩽ V_r_e_d ⩽ 5.0. The SP values derived in such a way seem to be more reliable compared to the existing semi-empirical calculations and can be used in the conditioning of experiments on the synthesis of SHEs.

  10. Photoexcitation and ionization of hydrogen atom confined in Debye environment

    International Nuclear Information System (INIS)

    Lumb, S.; Lumb, S.; Nautiyal, V.

    2015-01-01

    The dynamics of a hydrogen atom confined in an impenetrable spherical box and under the effect of Debye screening, in the presence of intense short laser pulses of few femtosecond is studied in detail. The energy spectra and wave functions have been calculated using Bernstein polynomial (B-polynomial) method. Variation of transition probabilities for various transitions due to changes in Debye screening length, confinement radius as well as the parameters characterizing applied laser pulse is studied and explained. The results are found to be in good agreement with the results obtained by others. The photoexcitation and ionization of the atom strongly depend on confinement radius and screening parameter. For small confinement radii and for some values of screening parameter the atom is found to be ionized easily. The dynamics of the atom can be easily controlled by varying pulse parameters

  11. IR analyzer spots heavy water leaks

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    A correlation spectrometer developed by Barringer Research Ltd. (in collaboration with Atomic Energy of Canada and Ontario Hydro) is used to measure HDO concentrations in DTO in the final (distillation) stage of heavy-water production. A unit has been installed at Bruce Heavy Water Plant. Previously, such spectrometers had been installed to detect heavy-water leaks in CANDU reactors. The principle on which the instrument works is explained, with illustrations. It works by comparing the absorption at 2.9 μm, due to HDO, with that at 2.6 μm, due to both HDO and D 2 O. (N.D.H.)

  12. Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions

    International Nuclear Information System (INIS)

    Niu, Pengfei; Gich, Martí; Roig, Anna; Fernández-Sánchez, César; Navarro- Hernández, Carla; Fanjul-Bolado, Pablo

    2016-01-01

    This work reports on the simplified fabrication and on the characterization of bismuth-based screen-printed electrodes (SPEs) for use in heavy metal detection. A nanocomposite consisting of bismuth nanoparticles and amorphous carbon was synthesized by a combined one-step sol-gel and pyrolysis process and milled down to a specific particle size distribution as required for the preparation of an ink formulation to be used in screen printing. The resulting electrochemical devices were applied to the detection of Pb(II) and Cd(II) ions in water samples. The porous structure of carbon and the high surface area of the bismuth nanoparticles allow for the detection of Pb(II) and Cd(II) at concentration levels below 4 ppb. The application of the SPEs was demonstrated by quantifying these ions in tap drinking water and wastewater collected from an influent of an urban wastewater treatment plant. (author)

  13. Exotic phenomena in collisions of heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Schramm, S.; Reus, T. de; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.; Mueller, U.

    1985-08-01

    To exemplify current theoretical investigations we discuss three different topics. After a presentation of the underlying theoretical framework for ionization processes we will sketch the possibility to employ delta-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 -10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that we investigate the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework. Finally we very briefly consider some phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms. (orig./HSI)

  14. Leaching of heavy metals from contaminated soils using inductively coupled plasma optical emission spectrometer (ICP-OES) and atomic absorption spectrometer (AAS)

    International Nuclear Information System (INIS)

    Hussain, Z.; Islam, M.

    2010-01-01

    The clean-up of soils contaminated with heavy metals is one of the most difficult tasks for environmental engineering. Heavy metals are highly persistent in soil and a number of techniques have been developed that aim to remove heavy metals from contaminated soil. A method has been adopted to evaluate dynamic leaching of metal contaminants from industrial soil samples obtained from textile industrial sites in Lahore, Pakistan. In the extraction procedures employed five different leaching liquors were used: 0.01 M CaCl/sub 2/, 1 M HNO/sub 3/, a 1:1 mixture of 0.1M HCl and 0.1M NaCl, 0.01 M EDTA and pH controlled 0.5 M acetic acid. The qualitative and quantitative analyses were carried out by Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). The results indicate that Cu, Zn, Cd, Ni, Pb, Fe and As were extracted in the soil samples in varying concentration when using the different leach liquors. The predominant metals which were leached were As 78.7 ng/ml in 0.01 M EDTA; Zn 1.81 mu g/ml and Fe 898.96 macro g/ml in HNO/sub 3/. (author)

  15. Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Emilene; Rampazzo, Roger T.; Dessuy, Morgana B. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R., E-mail: mgrvale@ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Silva, Marcia M. da [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil); Welz, Bernhard [Instituto Nacional de Ciencia e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Katskov, Dmitri A. [Tshwane University of Technology (TUT), Faculty of Science, Chemistry Department, Pretoria 0001 (South Africa)

    2011-05-15

    In the present work a direct method for the determination of arsenic in petroleum derivatives has been developed, comparing the performance of a commercial transversely heated platform atomizer (THPA) with that of a transversely heated filter atomizer (THFA). The THFA results in a reduction of background absorption and an improved sensitivity as has been reported earlier for this atomizer. The mixture of 0.1% (m/v) Pd + 0.03% (m/v) Mg + 0.05% (v/v) Triton X-100 was used as the chemical modifier for both atomizers. The samples (naphtha, gasoline and petroleum condensate) were stabilized in the form of a three-component solution (detergentless microemulsion) with the sample, propan-1-ol and 0.1% (v/v) HNO{sub 3} in a ratio of 3.0:6.4:0.6. The characteristic mass of 13 pg found in the THFA was about a factor of two better than that of 28 pg obtained with the THPA; however, the limits of detection (LOD) and quantification (LOQ) were essentially the same for both atomizers (1.9 and 6.2 {mu}g L{sup -1}, respectively, for THPA, and 1.8 and 5.9 {mu}g L{sup -1}, respectively, for THFA) due to the increased noise observed with the THFA. A possible explanation for that is a partial blockage of the radiation from the hollow cathode lamp by the narrow inner diameter of this tube and the associated loss of radiation energy. Due to the lack of an appropriate certified reference material, recovery tests were carried out with inorganic and organic arsenic standards and the results were between 89% and 111%. The only advantage of the THFA found in this work was a reduction of the total analysis time by about 20% due to the 'hot injection' that could be realized with this furnace. The arsenic concentrations varied from < LOQ to 43.3 {mu}g L{sup -1} in the samples analyzed in this work.

  16. Prediction of Phase Behavior of Spray-Dried Amorphous Solid Dispersions: Assessment of Thermodynamic Models, Standard Screening Methods and a Novel Atomization Screening Device with Regard to Prediction Accuracy

    Directory of Open Access Journals (Sweden)

    Aymeric Ousset

    2018-03-01

    Full Text Available The evaluation of drug–polymer miscibility in the early phase of drug development is essential to ensure successful amorphous solid dispersion (ASD manufacturing. This work investigates the comparison of thermodynamic models, conventional experimental screening methods (solvent casting, quench cooling, and a novel atomization screening device based on their ability to predict drug–polymer miscibility, solid state properties (Tg value and width, and adequate polymer selection during the development of spray-dried amorphous solid dispersions (SDASDs. Binary ASDs of four drugs and seven polymers were produced at 20:80, 40:60, 60:40, and 80:20 (w/w. Samples were systematically analyzed using modulated differential scanning calorimetry (mDSC and X-ray powder diffraction (XRPD. Principal component analysis (PCA was used to qualitatively assess the predictability of screening methods with regards to SDASD development. Poor correlation was found between theoretical models and experimentally-obtained results. Additionally, the limited ability of usual screening methods to predict the miscibility of SDASDs did not guarantee the appropriate selection of lead excipient for the manufacturing of robust SDASDs. Contrary to standard approaches, our novel screening device allowed the selection of optimal polymer and drug loading and established insight into the final properties and performance of SDASDs at an early stage, therefore enabling the optimization of the scaled-up late-stage development.

  17. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  18. Materials selection for long life in LEO: a critical evaluation of atomic oxygen testing with thermal atom systems

    International Nuclear Information System (INIS)

    Koontz, S.L.; Kuminecz, J.; Leger, L.; Nordine, P.

    1988-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material

  19. Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples

    International Nuclear Information System (INIS)

    Zarzycki, Pawel K.; Slaczka, Magdalena M.; Zarzycka, Magdalena B.; Wlodarczyk, Elzbieta; Baran, Michal J.

    2011-01-01

    The main goal of present paper is to demonstrate the separation and detection capability of micro-TLC technique involving simple one step liquid extraction protocols of complex materials without multi-steps sample pre-purification. In the present studies target components (cyanobacteria pigments, lipids and fullerenes) were isolated from heavy loading complex matrices including spirulina dried cells, birds' feathers and fatty oils as well as soot samples derived from biomass fuel and fossils-fired home heating systems. In each case isocratic separation protocol involving less that 1 mL of one component or binary mixture mobile phases can be completed within time of 5-8 min. Sensitive detection of components of interest was performed via fluorescence or staining techniques using iodine or phosphomolybdic acid. Described methodology can be applied for fast fractionation or screening of whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in raw biological or environmental samples.

  20. Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Zarzycki, Pawel K., E-mail: pawel_k_z@hotmail.com [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland); Slaczka, Magdalena M.; Zarzycka, Magdalena B.; Wlodarczyk, Elzbieta; Baran, Michal J. [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland)

    2011-03-04

    The main goal of present paper is to demonstrate the separation and detection capability of micro-TLC technique involving simple one step liquid extraction protocols of complex materials without multi-steps sample pre-purification. In the present studies target components (cyanobacteria pigments, lipids and fullerenes) were isolated from heavy loading complex matrices including spirulina dried cells, birds' feathers and fatty oils as well as soot samples derived from biomass fuel and fossils-fired home heating systems. In each case isocratic separation protocol involving less that 1 mL of one component or binary mixture mobile phases can be completed within time of 5-8 min. Sensitive detection of components of interest was performed via fluorescence or staining techniques using iodine or phosphomolybdic acid. Described methodology can be applied for fast fractionation or screening of whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in raw biological or environmental samples.

  1. Physical aspects of heavy charged particle beams for radiotherapy

    International Nuclear Information System (INIS)

    Kawashima, Katsuhiro

    1989-01-01

    Physical properties of heavy ion beams are discussed to improve the physical dose distributions in view of radiotherapy. Preservation of the structural and functional integrity of adjacent normal tissue is required to achieve great probability of tumor control. This will be accomplished with the reduction of irradiated volume of normal tissues and with greater relative biological effectiveness (RBE) on tumor cells than that on surrounding normal cells. This suggests the use of heavy ion beams as new source of radiation that increases the therapeutic ratio. The basis of the improvement in the physical dose distribution by use of heavy charged particles is due to the finite range of the beams and to the less multiple coulomb scattering of the particles having a heavier atomic mass than proton. The depth dose distributions and dose profiles of heavy particle beams are discussed in this article. The lateral sharpness of heavy charged particles is comparable to the penumbra of high energy photon and electron beams and is not of clinical concern due to less coulomb scattering of heavy ions to lateral direction in traversing a medium. The dose gradient at the end of range of primary beam is dependent upon the energy spread and range straggling of the particles. The magnitude of range straggling is nearly proportional to the range and inversely proportional to the inverse square root of the particle mass. Heavy ion beams also undergo nuclear interactions, in which the primary beam may produce lower atomic number particles. Therefore, the dose beyond the Bragg peak is due to those fragments. Fragmentation increases as a function of the atomic mass to the 2/3 power and with the energy of the particles. Thus, the production of fragments diminishes the depth dose advantages of heavy ions. The choice of ion for radiotherapy may depend on evaluation of important parameter for tumor control. (J.P.N.)

  2. Screening for the next generation heavy metal hyperaccumulators for dryland decontamination

    NARCIS (Netherlands)

    Ravanbakhsh, Mohammadhossein; Ronaghi, Abdol Majid; Taghavi, Seyed Mohsen; Jousset, Alexandre

    2016-01-01

    Heavy metal removal by plants bears a great potential to decontaminate soils. A major challenge remains to find plant species that accumulate heavy metal, harbor a sufficient biomass and grow in the desired environmental conditions. Here we present candidate plants for phytoremediation in arid

  3. Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes

    International Nuclear Information System (INIS)

    Injang, Uthaitip; Noyrod, Peeyanun; Siangproh, Weena; Dungchai, Wijitar; Motomizu, Shoji; Chailapakul, Orawon

    2010-01-01

    A method for the simultaneous determination of Pb(II), Cd(II), and Zn(II) at low μg L -1 concentration levels by sequential injection analysis-anodic stripping voltammetry (SIA-ASV) using screen-printed carbon nanotubes electrodes (SPCNTE) was developed. A bismuth film was prepared by in situ plating of bismuth on the screen-printed carbon nanotubes electrode. Operational parameters such as ratio of carbon nanotubes to carbon ink, bismuth concentration, deposition time and flow rate during preconcentration step were optimized. Under the optimal conditions, the linear ranges were found to be 2-100 μg L -1 for Pb(II) and Cd(II), and 12-100 μg L -1 for Zn(II). The limits of detection (S bl /S = 3) were 0.2 μg L -1 for Pb(II), 0.8 μg L -1 for Cd(II) and 11 μg L -1 for Zn(II). The measurement frequency was found to be 10-15 stripping cycle h -1 . The present method offers high sensitivity and high throughput for on-line monitoring of trace heavy metals. The practical utility of our method was also demonstrated with the determination of Pb(II), Cd(II), and Zn(II) by spiking procedure in herb samples. Our methodology produced results that were correlated with ICP-AES data. Therefore, we propose a method that can be used for the automatic and sensitive evaluation of heavy metals contaminated in herb items.

  4. Accelerator-based atomic physics experiments with photon and ion beams

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Meron, M.

    1984-01-01

    Accelerator-based atomic physics experiments at Brookhaven presently use heavy-ion beams from the Dual MP Tandem Van de Graaff Accelerator Facility for atomic physics experiments of several types. Work is presently in progress to develop experiments which will use the intense photon beams which will be available in the near future from the ultraviolet (uv) and x-ray rings of the National Synchrotron Light Source (NSLS). Plans are described for experiments at the NSLS and an exciting development in instrumentation for heavy-ion experiments is summarized

  5. Atomic ionization at positron-electron annihilation at β+-decay

    International Nuclear Information System (INIS)

    Fedotkin, S.N.

    2012-01-01

    The role of the nuclear charge screening and corrections to the Born approximation for the flying from atom electron in a process of atomic ionization at annihilation of positron with another electron of daughter's atom at β + - decay is studied. It was considered the processes of ionization of different atomic shells (n = 1, 2, 3, 4) at annihilation of positron, emitted at β'+ - decay with K- electron of daughter's atom. It is shown that the screening effect is important only for shell with n = 4. While corrections to the Born approximation plays the essential role for all shells. It is shown that the most probable process is related with emission of the another K- electron

  6. Lung Cancer Screening (PDQ®)—Health Professional Version

    Science.gov (United States)

    Lung cancer screening with low-dose spiral CT scans has been shown to decrease the risk of dying from lung cancer in heavy smokers. Screening with chest x-ray or sputum cytology does not reduce lung cancer mortality. Get detailed information about lung cancer screening in this clinician summary.

  7. Safety Evaluation of Osun River Water Containing Heavy Metals and ...

    African Journals Online (AJOL)

    Summary: This study evaluated the pH, heavy metals and volatile organic compounds (VOCs) in Osun river water. It also evaluated its safety in rats. Heavy metals were determined by atomic absorption spectrophotometry (AAS) while VOCs were determined by gas chromatography coupled with flame ionization detector ...

  8. Aryl nitrene rearrangements: spectroscopic observation of a benzazirine and its ring expansion to a ketenimine by heavy-atom tunneling.

    Science.gov (United States)

    Inui, Hiroshi; Sawada, Kazuhiro; Oishi, Shigero; Ushida, Kiminori; McMahon, Robert J

    2013-07-17

    In the photodecompositions of 4-methoxyphenyl azide (1) and 4-methylthiophenyl azide (5) in argon matrixes at cryogenic temperatures, benzazirine intermediates were identified on the basis of IR spectra. As expected, the benzazirines photochemically rearranged to the corresponding ketenimines and triplet nitrenes. Interestingly, with the methylthio substituent, the rearrangement of benzazirine 8 to ketenimine 7 occurred at 1.49 × 10(-5) s(-1) even in the dark at 10 K, despite a computed activation barrier of 3.4 kcal mol(-1). Because this rate is 10(57) times higher than that calculated for passing over the barrier and because it shows no temperature dependence, the rearrangement mechanism is interpreted in terms of heavy-atom tunneling.

  9. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    Science.gov (United States)

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-10-19

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dynamic plasma screening effects on atomic collisions in dense plasmas

    International Nuclear Information System (INIS)

    Young-Dae Jung

    1999-01-01

    Dynamic plasma screening effects are investigated on electron-ion collisional excitation and Coulomb Bremsstrahlung processes in dense plasmas. The electron-ion interaction potential is considered by introduction of the plasma dielectric function. The straight-ling trajectory method is applied to the path of the projectile electron. The transition probability including the dynamic plasma screening effect is found to be always greater than that including the static plasma screening effects. It is found that the differential Bremsstrahlung radiation cross section including the dynamic plasma screening effect is also greater than that including the static plasma screening effect. When the projectile velocity is smaller than the electron thermal velocity, the dynamic polarization screening effect becomes the static plasma screening effect. However, when the projectile velocity is greater than the electron thermal velocity, the interaction potential is almost unshielded

  11. Single photon transport by a moving atom

    International Nuclear Information System (INIS)

    Afanasiev, A E; Melentiev, P N; Kuzin, A A; Yu Kalatskiy, A; Balykin, V I

    2017-01-01

    The results of investigation of photon transport through the subwavelength hole in the opaque screen by using single neutral atom are represented. The basis of the proposed and implemented method is the absorption of a photon by a neutral atom immediately before the subwavelength aperture, traveling of the atoms through the hole and emission of a photon on the other side of the screen. Realized method is the alternative approach to existing for photon transport through a subwavelength aperture: 1) self-sustained transmittance of a photon through the aperture according to the Bethe’s model; 2) extra ordinary transmission because of surface-plasmon excitation. (paper)

  12. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    International Nuclear Information System (INIS)

    Stuyver, T.; Fias, S.; De Proft, F.; Geerlings, P.; Fowler, P. W.

    2015-01-01

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability

  13. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.; Geerlings, P. [ALGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Fowler, P. W. [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom)

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  14. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    Science.gov (United States)

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  15. Determination of concentration of heavy metals (Pb, Cd, Fe) in animal tissues using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    RAZAFINTSALAMA, V.T.

    2009-01-01

    Heavy metals are classified among the inorganic compounds. The latter type of metal is found in rocks, fertilizers, urban mud but may also originate from the atmospheric pollution. A particular characteristic of heavy metals is their bioaccumulation in the food chain. Therefore, lead and cadmium, which are classified as heavy metals may be easily found in animal products and can lead to food poisoning if their concentrations are higher than the maximum permissible values as requested by international agencies such as the c odex alimentarius . The values are set down and differ according to types of food for human consuption and the trading companies take action accordingly. Therefore, it is necessary to set up a quality control system through analytical laboratory measurements and testings. This study underlies the method of determination of lead, cadmium and iron in animal tissues by atomic absorption spectrometry. The results showed that the method is sensitive and reliable. For each analyte, the Z-score lies between -2 and 2, indicating that the method is working properly. The analytical results showed that: (i) only beef and chicken meats and beef liver contain lead [0,09μg.g - 1; 0,29μg.g - 1]. The limit value of 0,1μg.g - 1 is almost reached in beef and chicken meats, (ii) as far as cadmium is concerned, the five studied samples contain this analyte [0,02μg.g - 1; 0,9μg.g - 1]. Except the chicken liver of which the concentration (0,15μg.g - 1) exceeds the maximum permissible value (0,1μg.g - 1), the others are in conformity with the standards and appropriate to be consumed,(iii) iron is higher in the liver and kidney samples: beef liver 282mg.g - 1, chicken liver 250 mg.g - 1, pork kidney 247mg.g - 1. The study also showed that the calcium concentration in animal tissues is low and they can be classified as poor-calcium food. [fr

  16. Heavy metals burden of Keenjhar Lake, District Thatta, Sindh, Pakistan

    African Journals Online (AJOL)

    Detection of heavy metals (HMs) content from Keenjhar Lake water was carried out monthly from January to December, 2003. Zinc, chromium, copper, iron, manganese, nickel and cadmium were analyzed by dual mode of analytical methods flame atomic absorption spectrometry and electrothermal atomic absorption ...

  17. Atomic physics of strongly correlated systems

    International Nuclear Information System (INIS)

    Lin, C.D.

    1986-01-01

    This abstract summarizes the progress made in the last year and the future plans of our research in the study of strongly correlated atomic systems. In atomic structure and atomic spectroscopy we are investigating the classification and supermultiplet structure of doubly excited states. We are also beginning the systematic study of triply excited states. In ion-atom collisions, we are exploring an AO-MO matching method for treating multi-electron collision systems to extract detailed information such as subshell cross sections, alignment and orientation parameters, etc. We are also beginning ab initio calculations on the angular distributions for electron transfer processes in low-energy (about 10-100eV/amu) ion-atom collisions in a full quantum mechanical treatment of the motion of heavy particles

  18. Study of the heavy water regeneration processes

    International Nuclear Information System (INIS)

    Cavcic, E.

    1965-11-01

    Experience derived from heavy water reactor operation showed degradation and dilution of heavy water to be inevitable and depends on the type of reactor. Dilution of heavy water during operation of the RA and the RB reactors is shown in this report. Principles and procedures of heavy water regeneration by electrolysis, fractional distillation, cleaning, prevention of tritium contamination are described as well as separation columns

  19. Spectrophotometric Determination Of Heavy Metals In Cosmetics

    African Journals Online (AJOL)

    ISSN 1597-6343. Spectrophotometric Determination Of Heavy Metals In Cosmetics ... analysed using atomic absorption spectrophotometer – coupled with a hydride ... presence of arsenic (As), mercury (Hg), cadmium (Cd) and lead. (Pb) in ...

  20. Uncertainty estimates for theoretical atomic and molecular data

    International Nuclear Information System (INIS)

    Chung, H-K; Braams, B J; Bartschat, K; Császár, A G; Drake, G W F; Kirchner, T; Kokoouline, V; Tennyson, J

    2016-01-01

    Sources of uncertainty are reviewed for calculated atomic and molecular data that are important for plasma modeling: atomic and molecular structures and cross sections for electron-atom, electron-molecule, and heavy particle collisions. We concentrate on model uncertainties due to approximations to the fundamental many-body quantum mechanical equations and we aim to provide guidelines to estimate uncertainties as a routine part of computations of data for structure and scattering. (topical review)

  1. [Resistance to heavy metals in ruminal staphylococci].

    Science.gov (United States)

    Lauková, A

    1994-01-01

    Ruminal, coagulase-negative, urease and bacteriocin-like substances producing staphylococci were screened for their heavy metal ions and antibiotics resistance. All strains tested were resistant to disodium arsenate at a minimal inhibition concentration (MIC > 5 g/l) and cadmium sulphate (MIC > 4 g/l). MIC = 50-60 mg/l was determined in eight staphylococci screened in mercury chloride resistance test (Tab. I). Silver nitrate resistance was detected in seven of the bacteria used (MIC = 40-50 mg/l). All strains were novobiocin resistant. Staphylococcus cohnii subsp. urealyticum SCU 40 was found as a strain with resistance to all heavy metal ions and 5 antibiotics (Tab. II). In addition, this strain produced bacteriocin-like substance which inhibited growth of six indicators of different origin (Tab. II). The most of staphylococci were detected as heavy metal ion polyresistant strains and antibiotic polyresistant strains producing antimicrobial substances with inhibition effects against at least one indicator of different origin. These results represent the first information on heavy metal ion resistance in ruminal bacteria. They also show relation or coresistance between heavy metal ions and antibiotics. Resulting from this study, staphylococci can be used as a bioindicator model for animal environmental studies. In addition, it can be used for specific interactions studies within the framework of ruminal bacterial ecosystem and also mainly with regard to molecular genetic studies.

  2. Physicochemical determinations of petroleum, heavy fuel derivative and combustion nanoparticles

    International Nuclear Information System (INIS)

    Frias Bullain, Jorge; Padron Rodriguez, M.; Perez Barcala, B.; Lopez Guerra, S.

    2016-01-01

    In the investigation, a crude from Cuban Northern Heavy Oil Belt and its fuel oil fraction was characterized by chemical and physical techniques. Subsequent to the characterization of the derivative, MSI gas analyzer was performed, to identify and quantify concentrations of chemical species, in correspondence with EPA (2007) for external sources. Total suspended particles collected in filter holder were identified using the gravimetric method (ISO 9096). With the intention of knowing the magnitude of polycyclic aromatic hydrocarbons reported in literature were chosen the higher and lower molecular mass and measured on the basis of its polar covalent radii. Total aromatic hydrocarbons were identified using activated charcoal with subsequent elution with nhexane for analysis by ultraviolet spectroscopy in a Genesys 10 UV spectrophotometer. Environmental pollution control in the oil sector, is evaluated in three states. The particles in the states mentioned above, whose dimensions are between (1-100) x10-9 meters are called nanoparticles. Nanotechnology currently offers firm steps in the development of different nanoparticles, which are applied directly to the mineralogical industry. Contributions stand out sharply operations: exploration, drilling and refining oil. (Author)

  3. Heavy atom induced room temperature fluorescence quenching of PAH from a glucose glass

    Energy Technology Data Exchange (ETDEWEB)

    Marlow, Matt, E-mail: matthew.marlow@nicholls.edu

    2017-06-15

    Sugar glasses are a relatively new matrix for solid-matrix luminescence. Molecular interactions within the sugar glass are not well understood. Fluorescence quenching was used to investigate molecular interactions within the sugar glass matrix. The room temperature fluorescence quenching of pyrene and naphthalene was observed from a glucose glass. The heavy atom salt NaI was the quencher. Two solvent compositions 50/50 and 60/40 MeOH/water, used for glass preparation, were examined for their effect on glass rigidity and molecular interactions. A complex static mechanism was observed for glasses prepared with 50/50 MeOH/water. This data was fit to the sphere of action model and associations constants determined. A Stern-Volmer static mechanism of quenching was observed for glasses prepared with 60/40 MeOH/water. This data fit the Stern-Volmer equation and association constants were determined. A larger association constant was observed for pyrene compared to naphthalene for both solvent systems used. Pyrene had a larger association constant with a sugar glass prepared with 60/40 MeOH/water compared to 50/50 MeOH/water implying a greater association between pyrene and iodide. The greater association is a reflection of a more rigid internal environment for the sugar glass prepared with 60/40 MeOH/water.

  4. Exotic phenomena in collisions of very heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Mueller, U.; Schramm, S.; de Reus, T.; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.

    1987-01-01

    Over the last decade their knowledge on atomic structure of superheavy quasimolecules in the range 110 ≤ Z/sub tot/ ≤ 188 has increased considerably. Heavy ion collisions, in which superheavy quasimolecules are formed for a short period of time, offer them a unique tool to investigate the electronic structure of ultra-high Z-systems, which are not otherwise accessible to experiment. Comparison of K-vacancy formation, δ-electron and positron emission with available experimental data suggests the validity of the quasimolecular picture, which will be taken as the theoretical framework of these calculations. To exemplify current theoretical investigations three different topics will be discussed. After a presentation of the underlying theoretical framework for ionization processes the possibility to employ δ-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions will be sketched. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 - 10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework is investigated. Finally phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms is briefly considered. 42 references, 5 figures

  5. Lung cancer risk in welders and foundry workers with a history of heavy smoking in the USA: The National Lung Screening Trial.

    Science.gov (United States)

    Wong, Jason Y Y; Bassig, Bryan A; Seow, Wei Jie; Hu, Wei; Ji, Bu-Tian; Blair, Aaron; Silverman, Debra T; Lan, Qing

    2017-06-01

    Foundry work is a risk factor for lung cancer; however, the association with welding is unclear, as smoking is common among metalworkers and may mask the relationship. We evaluated whether history of welding and foundry work, independently and jointly, and employment duration were associated with lung cancer risk in heavy smokers. We analysed data from the National Lung Screening Trial, a prospective randomised trial of 53 454 heavy smokers (>30 pack-years) in the USA. Cox regression models were used to estimate the HRs and 95% CIs of medically/histologically confirmed incident lung cancer during the follow-up period (2002-2009) in relation to history and duration of welding and foundry work assessed via questionnaires, adjusted for screening arm, component study, sex, age, race/ethnicity, education, smoking status and pack-years, body mass index and personal/family medical history. There were 2034 incident lung cancer cases throughout the follow-up. Increasing years of employment in welding (p-trend =0.039) and foundry work (p-trend =0.005) were related to increased lung cancer risk among heavy smokers. Having ever been employed (≥1 yr) as either a welder or foundry worker alone was associated with non-significant increased risks of lung cancer (HR=1.12 (95% CI 0.91 to 1.37) and HR=1.09 (95% CI 0.85 to 1.39), respectively). Further, there was a joint-effect in that those who were ever employed in both occupations had significantly increased risks (HR=1.48 (95% CI 1.08 to 2.04)). Our findings provide further evidence that exposure to welding/metal fumes may be associated with elevated lung cancer risk. NCT00047385. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  6. Synthesis of pyrido[1,2-a]benzimidazoles and other fused imidazole derivatives with a bridgehead nitrogen atom

    Science.gov (United States)

    Begunov, Roman S.; Ryzvanovich, Galina A.

    2013-01-01

    Main methods for the synthesis of fused imidazole derivatives with a bridgehead nitrogen atom are systematically considered and summarized. The reaction mechanisms that underlie the methods for the synthesis of pyrido[1,2-a]benzimidazoles and related compounds are described. Biological properties and mechanisms of the biological activity of fused azaheterocycles are discussed. The bibliography includes 152 references.

  7. APIPIS: the Atomic Physics Ion-Photon Interaction System

    International Nuclear Information System (INIS)

    Johnson, B.M.; Jones, K.W.; Meron, M.; Kostroun, V.O.

    1985-01-01

    A proposed new facility for the study of highly charged heavy ions is described. The basic elements of APIPIS, the Atomic Physics Ion-Photon Interaction System, are: (1) a source of multiply-charged ions; (2) a linear accelerator; (3) a synchrotron storage ring; and (4) a source of high brightness x rays. The placement of a heavy ion storage ring at the x-ray ring of the National Synchrotron Light Source will provide unique opportunities for the study of photo-excitation of heavy ions

  8. Very heavy iron-punching concretes

    International Nuclear Information System (INIS)

    Dubois, F.

    1966-01-01

    The present report deals with all the heavy iron-punching concretes, metallic wastes produced by the transformation industry. After a detailed description of the physical properties of metallic aggregates, a classification of heavy mortars is given, into three main categories: steel-shot grouts d = 5,3 - 6; steel-shot grouts mixed with a mineral d = 3,7 - 4,2; injection heavy grouts d = 3,5 - 4. The following chapter describes iron-punching concretes the most used in the atomic industry: iron-punching concretes mixed with cast-iron - iron-punching concretes mixed with magnetite; iron-punching concretes mixed with barite; iron-punching concretes mixed with limonite; iron-punching concretes mixed with boron. The compositions of these concretes are given together with their physical and mechanical characteristics. Numerous diagrams make it possible to find rapidly the proportions of the constituents of these concretes as a function of the required density. Technical advice and specifications are given in an appendix together with a bibliography of these heavy concretes. (author) [fr

  9. SIS: an accelerator installation for heavy ions of high energy

    International Nuclear Information System (INIS)

    The two major sections of the report cover the scientific experimental program and the accelerator installation. Topics covered in the first include: heavy ion physics in the medium energy region; nuclear physics at relativistic energies; atomic physics loss and capture cross sections for electrons; spectroscopy of few-electron systems; atomic collision processes; biological experiments; nuclear track techniques in biology; and experiments with protons and secondary radiation. The second includes: concept for the total installation; technical description of the SIS 12; technical description of the SIS 100; status of the UNILAC injector; development options for the SIS installations; properties of the heavy ion beam; and structural work and technical supply provisions. In this SIS project proposal, an accelerator installation based on two synchrotrons is described with which atomic nuclei up to uranium can be accelerated to energies of more than 10 GeV/μ. With the SIS 12, which is the name of the first stage, heavy ion physics at intermediate energies can be pursued up to 500 MeV/μ. The second stage, a larger synchrotron, the SIS 100, has a diameter of 250 m. With this device, it is proposed to open up the domain of relativistic heavy ion physics up to 14 GeV/μ (for intermediate mass particles) and 10 GeV/μ (for uranium)

  10. 5. International workshop on autoionization phenomena in atoms. Abstracts

    International Nuclear Information System (INIS)

    Balashov, V.V.

    1995-01-01

    Summaries of the reports presented at the 5 International Workshop on Autoionization Phenomena in Atoms (Dubna, 12-14 December 1995). The main topics of these 53 reports are the following ones: photoexcitation of autoionizing states in atoms and ions, autoionization in electron-atom collisions, autoionization in heavy particle collisions, coincidence experiments in autoionization studies, investigations of autoionizing states with lasers and wave functions and decay characteristics of autoionizing states

  11. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example.

    Science.gov (United States)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Zhang, Xue-Song; Ding, Hong-Sheng; Yu, Han-Qing

    2012-07-17

    Heavy-metal-polluted biomass derived from phytoremediation or biosorption is widespread and difficult to be disposed of. In this work, simultaneous conversion of the waste woody biomass into bio-oil and recovery of Cu in a fast pyrolysis reactor were investigated. The results show that Cu can effectively catalyze the thermo-decomposition of biomass. Both the yield and high heating value (HHV) of the Cu-polluted fir sawdust biomass (Cu-FSD) derived bio-oil are significantly improved compared with those of the fir sawdust (FSD) derived bio-oil. The results of UV-vis and (1)H NMR spectra of bio-oil indicate pyrolytic lignin is further decomposed into small-molecular aromatic compounds by the catalysis of Cu, which is in agreement with the GC-MS results that the fractions of C7-C10 compounds in the bio-oil significantly increase. Inductively coupled plasma-atomic emission spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy analyses of the migration and transformation of Cu in the fast pyrolysis process show that more than 91% of the total Cu in the Cu-FSD is enriched in the char in the form of zerovalent Cu with a face-centered cubic crystalline phase. This study gives insight into catalytic fast pyrolysis of heavy metals, and demonstrates the technical feasibility of an eco-friendly process for disposal of heavy-metal-polluted biomass.

  12. Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils

    International Nuclear Information System (INIS)

    Vandecasteele, Bart; Samyn, Jurgen; Quataert, Paul; Muys, Bart; Tack, Filip M.G.

    2004-01-01

    The important role of earthworms in the biomagnification of heavy metals in terrestrial ecosystems is widely recognised. Differences in earthworm biomass between sites is mostly not accounted for in ecological risk assessment. These differences may be large depending on soil properties and pollution status. A survey of earthworm biomass and colonisation rate was carried out on dredged sediment-derived soils (DSDS). Results were compared with observations for the surrounding alluvial plains. Mainly grain size distribution and time since disposal determined earthworm biomass on DSDS, while soil pollution status of the DSDS was of lesser importance. Highest earthworm biomass was observed on sandy loam DSDS disposed at least 40 years ago. - Polluted clayey dredged sediment-derived soils have a relatively low risk for heavy metal biomagnification due to slow earthworm colonisation

  13. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  14. Screening for deformed teeth; Screening for saere taender

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, A.; Dall, P.C.; Hansen, F.G.

    1996-04-01

    Water pollution by pesticides and heavy metals causes sublethal effects in larvae of the Chironomidae midges. These effects are particularly noticeable in the deformities of the oral parts and antennae. Possibilities of using these deformities for the purpose of water/sediment biomonitoring are very promising. Here the first results of screening in a Danish stream are presented. (EG) 9 refs.

  15. Reprint of: Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples

    International Nuclear Information System (INIS)

    Zarzycki, Paweł K.; Ślączka, Magdalena M.; Zarzycka, Magdalena B.; Włodarczyk, Elżbieta; Baran, Michał J.

    2012-01-01

    The main goal of present paper is to demonstrate the separation and detection capability of micro-TLC technique involving simple one step liquid extraction protocols of complex materials without multi-steps sample pre-purification. In the present studies target components (cyanobacteria pigments, lipids and fullerenes) were isolated from heavy loading complex matrices including spirulina dried cells, birds’ feathers and fatty oils as well as soot samples derived from biomass fuel and fossils-fired home heating systems. In each case isocratic separation protocol involving less that 1 mL of one component or binary mixture mobile phases can be completed within time of 5–8 min. Sensitive detection of components of interest was performed via fluorescence or staining techniques using iodine or phosphomolybdic acid. Described methodology can be applied for fast fractionation or screening of whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in raw biological or environmental samples.

  16. Reprint of: Application of micro-thin-layer chromatography as a simple fractionation tool for fast screening of raw extracts derived from complex biological, pharmaceutical and environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Zarzycki, Pawel K., E-mail: pawel_k_z@hotmail.com [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland); Slaczka, Magdalena M.; Zarzycka, Magdalena B.; Wlodarczyk, Elzbieta; Baran, Michal J. [Section of Toxicology and Bioanalytics, Department of Civil and Environmental Engineering, Koszalin University of Technology, Sniadeckich 2, 75-453 Koszalin (Poland)

    2012-02-24

    The main goal of present paper is to demonstrate the separation and detection capability of micro-TLC technique involving simple one step liquid extraction protocols of complex materials without multi-steps sample pre-purification. In the present studies target components (cyanobacteria pigments, lipids and fullerenes) were isolated from heavy loading complex matrices including spirulina dried cells, birds' feathers and fatty oils as well as soot samples derived from biomass fuel and fossils-fired home heating systems. In each case isocratic separation protocol involving less that 1 mL of one component or binary mixture mobile phases can be completed within time of 5-8 min. Sensitive detection of components of interest was performed via fluorescence or staining techniques using iodine or phosphomolybdic acid. Described methodology can be applied for fast fractionation or screening of whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in raw biological or environmental samples.

  17. Atomic physics in the Tandar Laboratory

    International Nuclear Information System (INIS)

    Nemirovsky, I.B.

    1987-01-01

    The research activities carried out in the Tandar Laboratory of Physics Department of Argentine National Atomic Energy Comission are presented. The processes of heavy ion collisions with solids as thin lamellae investigated in the Laboratory are described. (M.C.K.) [pt

  18. Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD

    Directory of Open Access Journals (Sweden)

    Ironside James W

    2007-08-01

    Full Text Available Abstract Background Sub-clinical variant Creutzfeldt-Jakob disease (vCJD infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrPSc, although achieving required sensitivity is a challenge. Methods We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS, which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples. Results Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system. Conclusion ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems.

  19. Application of Atomic Dielectric Resonance Spectroscopy for the screening of blood samples from patients with clinical variant and sporadic CJD

    Science.gov (United States)

    Fagge, Timothy J; Barclay, G Robin; Stove, G Colin; Stove, Gordon; Robinson, Michael J; Head, Mark W; Ironside, James W; Turner, Marc L

    2007-01-01

    Background Sub-clinical variant Creutzfeldt-Jakob disease (vCJD) infection and reports of vCJD transmission through blood transfusion emphasise the need for blood screening assays to ensure the safety of blood and transplanted tissues. Most assays aim to detect abnormal prion protein (PrPSc), although achieving required sensitivity is a challenge. Methods We have used innovative Atomic Dielectric Resonance Spectroscopy (ADRS), which determines dielectric properties of materials which are established by reflectivity and penetration of radio/micro waves, to analyse blood samples from patients and controls to identify characteristic ADR signatures unique to blood from vCJD and to sCJD patients. Initial sets of blood samples from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) were screened as training samples to determine group-specific ADR characteristics, and provided a basis for classification of blinded sets of samples. Results Blood sample groups from vCJD, sCJD, non-CJD neurological diseases and normal healthy adults (blood donors) screened by ADRS were classified with 100% specificity and sensitivity, discriminating these by a co-variance expert analysis system. Conclusion ADRS appears capable of recognising and discriminating serum samples from vCJD, sCJD, non-CJD neurological diseases, and normal healthy adults, and might be developed to provide a system for primary screening or confirmatory assay complementary to other screening systems. PMID:17760958

  20. Multiloop atom interferometer measurements of chameleon dark energy in microgravity

    Science.gov (United States)

    Chiow, Sheng-wey; Yu, Nan

    2018-02-01

    Chameleon field is one of the promising candidates of dark energy scalar fields. As in all viable candidate field theories, a screening mechanism is implemented to be consistent with all existing tests of general relativity. The screening effect in the chameleon theory manifests its influence limited only to the thin outer layer of a bulk object, thus producing extra forces orders of magnitude weaker than that of the gravitational force of the bulk. For pointlike particles such as atoms, the depth of screening is larger than the size of the particle, such that the screening mechanism is ineffective and the chameleon force is fully expressed on the atomic test particles. Extra force measurements using atom interferometry are thus much more sensitive than bulk mass based measurements, and indeed have placed the most stringent constraints on the parameters characterizing chameleon field. In this paper, we present a conceptual measurement approach for chameleon force detection using atom interferometry in microgravity, in which multiloop atom interferometers exploit specially designed periodic modulation of chameleon fields. We show that major systematics of the dark energy force measurements, i.e., effects of gravitational forces and their gradients, can be suppressed below all hypothetical chameleon signals in the parameter space of interest.

  1. Scintillating screens study for LEIR/LHC heavy ion beams

    CERN Document Server

    Bal, C; Lefèvre, T; Scrivens, R; Taborelli, M

    2005-01-01

    It has been observed on different machines that scintillating ceramic screens (like chromium doped alumina) are quickly damaged by low energy ion beams. These particles are completely stopped on the surface of the screens, inducing both a high local temperature increase and the electrical charging of the material. A study has been initiated to understand the limiting factors and the damage mechanisms. Several materials, ZrO2, BN and Al2O3, have been tested at CERN on LINAC3 with 4.2MeV/u lead ions. Alumina (Al2O3) is used as the reference material as it is extensively used in beam imaging systems. Boron nitride (BN) has better thermal properties than Alumina and Zirconium oxide (ZrO2). BN has in fact the advantage of increasing its electrical conductivity when heated. This contribution presents the results of the beam tests, including the post-mortem analysis of the screens and the outlook for further measurements. The strategy for the choice of the screens for the Low Energy Ion Ring (LEIR), currently under ...

  2. Atomic nucleus and elementary particles

    International Nuclear Information System (INIS)

    Zakrzewski, J.

    1976-01-01

    Negatively charged leptons and hadrons can be incorporated into atomic shells forming exotic atoms. Nucleon resonances and Λ hyperons can be considered as constituents of atomic nuclei. Information derived from studies of such exotic systems enriches our knowledge of both the interactions of elementary particles and of the structure of atomic nuclei. (author)

  3. Nuclear and atomic physics at one gigaflop

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, J.B.

    1989-01-01

    A three-day workshop on problems in atomic and nuclear physics which depend on and are, at present, severely limited by access to supercomputing at effective rates of one gigaflop or more, was held at Oak Ridge, Tennessee, April 14-16, 1988. The participants comprised researchers from universities, industries and laboratories in the United States and Europe. In this volume are presented talks from that meeting on atomic and nuclear physics topics and on modern parallel processing concepts and hardware. The physics topics included strong fields in atomic and nuclear physics, the role of quarks in nuclear physics, the nuclear few-body problem, relativistic descriptions of heavy-ion collisions, nuclear hydrodynamics, Monte Carlo techniques for many-body problems, precision calculation of atomic QED effects, classical simulation of atomic processes, atomic structure, atomic many-body perturbation theory, quantal studies of small and large molecular systems, and multi-photon atomic and molecular problems

  4. Heavy particle scattering by atomic and nuclear systems

    International Nuclear Information System (INIS)

    Lazauskas, R.

    2003-10-01

    In this thesis quantum mechanical non-relativistic few-body problem is discussed. Basing on fundamentals ideas from Faddeev and Yakubovski three and four body equations are formulated and solved for fermionic atomic and nuclear systems. Former equations are modified to include long range interactions. Original results for nuclear and molecular physics were obtained: -) positively charged particle scattering on hydrogen atoms was considered; predictions for π + → H, μ + → H and p + → H scattering lengths were given. Existence of an unknown, very weakly bound H + 2 bound state was predicted. -) Motivated by the possible observation of bound four neutron structure at GANIL we have studied compatibility of such an existence within the current nuclear interaction models. -) 4 nucleon scattering at low energies was investigated. Results for n → 3 H, p → 3 H and p → 3 He systems were compared with the experimental data. Validity of realistic nucleon-nucleon interaction models is questioned. (author)

  5. Electrons with continuous energy distribution from energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Berenyi, D.

    1984-01-01

    The properties and origin of continuous electron spectrum emitted in high energy heavy ion collisions are reviewed. The basic processes causing the characteristic regions of the continuous spectrum are described. The contribution of electrons ejected from the target and from the projectile are investigated in detail in the cases of light and heavy projectiles. The recently recognized mechanisms, electron-capture-to-continuum (ECC) and electron-loss-to-continuum (ELC), leading to a cusp in forward direction, and their theoretical interpretations are discussed. The importance of data from ion-atom collisions in the field of atomic physics and in applications are briefly summarized. (D.Gy)

  6. Collisional alignment and orientation of atomic outer shells. Pt. 1

    International Nuclear Information System (INIS)

    Andersen, N.; Gallagher, J.W.; Hertel, I.V.

    1988-01-01

    The study of polarization of atomic radiation emitted after impact excitation has yielded an enormous wealth of detailed information on the mechanism and dynamics of collisional excitation and energy transfer, both in electron and heavy particle impact studies. In these studies, the beam of electrons, ions or fast atoms used to excite the target atoms provides a suitable quantization axis with respect to which the polarization of the fluorescent light of the excited atoms is detected. From these data information on the cross sections for the different magnetic substates of the excited atom is extracted, imparting a great deal of insight into impact mechanisms for both outer and inner shell excitation. It is our aim to provide a comprehensive review including all data available in the literature presented in a standardized and easily accessible fashion. In this review we include only alignment and orientation studies, which have a well-defined planar symmetry, i.e., in which the initial and final relative momentum of the interacting particles are well defined by differential scattering techniques. We do not make a major distinction between heavy-particle and electron impact excitation: In fact, one of our aims is to demonstrate similarities between the two fields from a technical as well as from a conceptual point of view. The review is divided into three parts: This first part (I) deals with direct excitation of atoms by electrons and fast atoms or ions. Section 2 gives an introduction to the general concepts and ideas behind this kind of study and a description of typical experimental setups. Section 3 deals with electron impact excitation of atoms, starting with the simplest case of electron-helium collisions which may be fully described by two parameters, followed by more complex cases such as electron impact excitation of hydrogen and the heavy rare gases. Section 4 describes the results for direct excitation by atomic impact. (orig./AH)

  7. Recoil ion spectroscopy with heavy ions

    International Nuclear Information System (INIS)

    Beyer, H.F.; Mann, R.

    1984-01-01

    This chapter examines the production of very high charge state ions in single ion-atom collisions. Topics considered include some aspects of highly ionized atoms, experimental approaches, the production of highly charged target ions (monoatomic targets, recoil energy distribution, molecular fragmentation, outer-shell rearrangement, lifetime measurements, a comparison of projectile-, target-, and plasma-ion stripping), and secondary collision experiments (selective electron capture, potential applications). The heavy-ion beams for the described experiments were provided by accelerators such as tandem Van de Graaff facility and the UNILAC

  8. Atomic mirrors for a Λ-type three-level atom

    International Nuclear Information System (INIS)

    Felemban, Nuha; Aldossary, Omar M; Lembessis, Vassilis E

    2014-01-01

    We propose atom mirror schemes for a three-level atom of Λ-type interacting with two evanescent fields, which are generated as a result of the total internal reflection of two coherent Gaussian laser beams at the interface of a dielectric prism with vacuum. The forces acting on the atom are derived by means of optical Bloch equations, based on the atomic density matrix elements. The theory is illustrated by setting up the equations of motion for 23 Na atom. Two types of excited schemes are examined, namely the cases in which the evanescent fields have polarization types of σ + −σ − and σ + −π. The equations are solved numerically and we get results for atomic trajectories for different parameters. The performance of the mirror for the two types of polarization schemes is quantified and discussed. The possibility of reflecting atoms at pre-determined directions is also discussed. (paper)

  9. Investigations on imaging properties of inorganic scintillation screens under irradiation with high energetic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice

    2016-09-15

    This work represents the investigations in imagine properties of inorganic scintillation screens as diagnostic elements in heavy ion accelerator facilities, that were performed at GSI Helmholtz Centre for Heavy Ion Research (Darmstadt, Germany) and TU Darmstadt. The screen materials can be classified in groups of phosphor screens (P43 and P46 phosphor), single crystals (cerium-doped Y{sub 3}Al{sub 5}O{sub 12}) and polycrystalline aluminum oxides (pure and chromium-doped Al{sub 2}O{sub 3}). Out of these groups, a selection of seven screens were irradiated by five different projectiles (proton, nitrogen, nickel, xenon and uranium), that were extracted from SIS18 in fast (1 μs) and slow (300-400 ms) extraction mode at a specific energy of E{sub spec}=300 MeV/u. The number of irradiating particles per pulse was varied between 10{sup 7} and 2.10{sup 10} ppp and the scintillation response was recorded by a complex optical system. The records served on the one hand for investigations in the two-dimensional response to the irradiating beam, namely the light output L, the light yield Y and the characteristics of the beam profiles in horizontal and vertical direction. On the other hand the wavelength spectrum of the scintillation was recorded for investigations in variations of the material structure. A data analysis was performed based on a dedicated Python script. Additionally three conventional methods (UV/Vis transmission spectroscopy, X-Ray diffraction, Raman fluorescence spectroscopy) were performed after the beam times for investigations in the material structure. Nevertheless, neither structural variations nor material defects, induced by the ion irradiation, were proven within the accuracy range of the used instrumentation and the given ion fluences. Besides the irradiation under varying beam intensity, radiation hardness tests with fast and slow extracted Nickel pulses at 2.10{sup 9} ppp and a specific energy around E{sub spec}∼300 MeV/u were performed and the

  10. Heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel and its application to a flow analytical system using flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mori, Masanobu; Suzuki, Toshinobu; Sugita, Tsuyoshi; Nagai, Daisuke; Hirayama, Kazuo; Onozato, Makoto; Itabashi, Hideyuki

    2014-01-01

    Highlights: • Calcium-alginate-modified dien-silica gel adsorbed multivalent metal ions. • Metal ions adsorbed on CaAD were eluted using low acidic concentrations. • Flow system with CaAD-packed column enriched metal concentrations up to 50-fold. - Abstract: This study aimed to evaluate the heavy metal adsorptivity of calcium-alginate-modified diethylenetriamine-silica gel (CaAD) and incorporate this biosorbent into a flow analytical system for heavy metal ions using flame atomic absorption spectrometry (FAAS). The biosorbent was synthesized by electrostatically coating calcium alginate onto diethylenetriamine (dien)-silica gel. Copper ion adsorption tests by a batch method showed that CaAD exhibited a higher adsorption rate compared with other biosorbents despite its low maximum adsorption capacity. Next, CaAD was packed into a 1 mL microcolumn, which was connected to a flow analytical system equipped with an FAAS instrument. The flow system quantitatively adsorbed heavy metals and enriched their concentrations. This quantitative adsorption was achieved for pH 3–4 solutions containing 1.0 × 10 −6 M of heavy metal ions at a flow rate of 5.0 mL min −1 . Furthermore, the metal ions were successfully desorbed from CaAD at low nitric acid concentrations (0.05–0.15 M) than from the polyaminecarboxylic acid chelating resin (Chelex 100). Therefore, CaAD may be considered as a biosorbent that quickly adsorbs and easily desorbs analyte metal ions. In addition, the flow system enhanced the concentrations of heavy metals such as Cu 2+ , Zn 2+ , and Pb 2+ by 50-fold. This new enrichment system successfully performed the separation and determination of Cu 2+ (5.0 × 10 −8 M) and Zn 2+ (5.7 × 10 −8 M) in a river water sample and Pb 2+ (3.8 × 10 −9 M) in a ground water sample

  11. Partition coefficients of methylated DNA bases obtained from free energy calculations with molecular electron density derived atomic charges.

    Science.gov (United States)

    Lara, A; Riquelme, M; Vöhringer-Martinez, E

    2018-05-11

    Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model

  12. Heavy ion accelerator GANIL

    International Nuclear Information System (INIS)

    1975-04-01

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream [fr

  13. Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium

    OpenAIRE

    Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.

    2008-01-01

    The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar--pseudo-scalar (S-PS) electron-nucleus interactions. The electron EDM and the S-PS EDM contribution to atomic EDM scales as Z^3. Thus, the heavy paramagnetic atomic systems will exhibit large enhancement factors. However, the nature of the coupling is so small that it becomes an interest of high precision atomic experiments. In this work, we...

  14. Many-body Hamiltonian with screening parameter and ionization ...

    Indian Academy of Sciences (India)

    In this work however, we will define the screening parameter, σ, as a function that ... to tackle screening effect namely, renormalization group [8], 1/N expansion [9], ..... Helium atom: Here, we will first find the expectation value for the screened.

  15. Study of elementary transfer mechanisms during a collision between a swift multi-charged heavy ion and a neutral atom

    International Nuclear Information System (INIS)

    Jardin, P.

    1995-01-01

    This work is dedicated to the study of the energy transfer mechanisms which occur during a collision between a swift multicharged heavy ion and a neutral atom. The elementary energy energy transfer mechanisms (scattering, excitation, ionization, capture) and their consequences on the target velocity after the collision (recoil velocity) are recalled in the first chapter. In the case of small projectile diffusion angles, we show that the recoil velocity component, transverse to the incident projectile direction, results principally from the diffusion mechanism, while the longitudinal component is due essentially to the mass transfer and the inelastic energy transfer mechanisms. Since the target recoil velocities are very small, we have built an experimental set-up which reduces the impreciseness on their measurement due to the target thermal spread using, as targets, cooled atoms of a supersonic jet (temperature 44+ (6.7 MeV/A) + Ar => Xe 44 + Ar q+ +qe - (q ranging from 1 to 7); Xe 44+ (6.7 MeV/A) + He => Xe 44+ He 1+,2+ +1e - ,2e - . We show that it is possible to interpret the recoil velocity in terms of kinetic energy transferred to the target and to the electrons ejected from the target. (author)

  16. Bound states of a light atom and two heavy dipoles in two dimensions

    DEFF Research Database (Denmark)

    Rosa, D. S.; Bellotti, F. F.; Jensen, Aksel Stenholm

    2016-01-01

    We study a three-body system, formed by a light particle and two identical heavy dipoles, in two dimensions in the Born-Oppenheimer approximation. We present the analytic light-particle wave function resulting from an attractive zero-range potential between the light and each of the heavy particles...

  17. Respectives of heavy ion physics in JINR

    International Nuclear Information System (INIS)

    Flerov, G.N.

    1983-01-01

    Perspectives of heavy ion physics in JINR are discussed. The main attention is paid to directions that are connected with the application of intensive beams of U-400 cyclotron. Experiments into studying stability limits of heavy atomic nuclei are considered. The possibility of using beams of heavy ions in applied fields, particularly for the production of very thin nuclear filters is noted. Prospects of synthesis of superheavy elements (SHE) and SHE search in nature are also considered. The data on the events of spontaneous fission found in meteorite and hydrotherms and the data on lengths of tracks in olivines from meteorite prove the possibility of obtaining evidences of SHE existence in nature

  18. Proton exchange in acid–base complexes induced by reaction coordinates with heavy atom motions

    International Nuclear Information System (INIS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-01-01

    Highlights: ► Proton exchange in acid–base complexes is studied. ► The structures, binding energies, and normal mode vibrations are calculated. ► Transition state structures of proton exchange mechanism are determined. ► In the complexes studied, the reaction coordinate involves heavy atom rocking. ► The reaction coordinate is not simply localized in the proton movements. - Abstract: We extend previous work on nitric acid–ammonia and nitric acid–alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid–strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are −1 . This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm −1 . Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  19. HEAVY METALS AS UNWANTED COMPONENTS OF BACKWASH WATER DERIVED FROM GROUNDWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-06-01

    Full Text Available The paper presents some aspects of the problem of heavy metals presence in wastewater and sewage sludge from water treatment. In the first part, issues on quality of wastewaters and sludge produced during water treatment along with actions aimed at the neutralization of such wastes, were discussed. Subsequent parts of the work present the example of 12 groundwater treatment stations in a particular municipality, and the problem of backwash water quality, in particular, heavy metals contents. The analysis covered a period of three years: 2013, 2014, and 2015. The authors, using the discussed examples, have shown that besides hydrated iron and manganese oxides, also other toxic contaminants can be present in backwash water from groundwater treatment. In particular, the qualitative analysis of the backwash water revealed the presence of heavy metals, mainly zinc. The test results for backwash water were compared with those of filtrate qualitative assessment, wherein the heavy metals were not found. This fact indicated the metal retention in the filter bed and their unsustainable immobilization resulting in penetration of heavy metals from deposit to the backwash water along with other impurities, mainly iron and manganese oxides. The main conclusion from the study is to demonstrate the need for constant monitoring of the backwash water quality, including the presence of toxic heavy metals. This is also important because of the requirement to minimize the negative environmental impact of wastes generated during the water treatment process.

  20. Inner shell coulomb ionization by heavy charged particles studied by the SCA model

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1976-06-01

    An outline is given of the development of and some achievements hitherto gained from the semi-classical approximation (SCA) model of atomic Coulomb excitation by heavy charged particles. A few very recent results (1975-1976) are incorporated in the discussion. The SCA model has by now reached a mature state. Hence it seems reasonable to regard the atomic Coulomb excitation phenomenon as part of the extremely complicated excitation mechanism operative in the general ion-atom collision. A clear understanding of the complicated X-ray producing mechanisms in heavy-ion-atom collisions is lacking at present. Despite these facts, the conceptually simple SCA model has furthered our understanding far beyond initial expectations. Moreover, this model has at the same time provided a well-founded starting point for continued researches in this rapidly expanding field of physics. (JIW)

  1. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  2. Dual Binding Site and Selective Acetylcholinesterase Inhibitors Derived from Integrated Pharmacophore Models and Sequential Virtual Screening

    Directory of Open Access Journals (Sweden)

    Shikhar Gupta

    2014-01-01

    Full Text Available In this study, we have employed in silico methodology combining double pharmacophore based screening, molecular docking, and ADME/T filtering to identify dual binding site acetylcholinesterase inhibitors that can preferentially inhibit acetylcholinesterase and simultaneously inhibit the butyrylcholinesterase also but in the lesser extent than acetylcholinesterase. 3D-pharmacophore models of AChE and BuChE enzyme inhibitors have been developed from xanthostigmine derivatives through HypoGen and validated using test set, Fischer’s randomization technique. The best acetylcholinesterase and butyrylcholinesterase inhibitors pharmacophore hypotheses Hypo1_A and Hypo1_B, with high correlation coefficient of 0.96 and 0.94, respectively, were used as 3D query for screening the Zinc database. The screened hits were then subjected to the ADME/T and molecular docking study to prioritise the compounds. Finally, 18 compounds were identified as potential leads against AChE enzyme, showing good predicted activities and promising ADME/T properties.

  3. Electron screening in molecular fusion reactions

    International Nuclear Information System (INIS)

    Shoppa, T.D.

    1996-01-01

    Recent laboratory experiments have measured fusion cross sections at center-of-mass energies low enough for the effects of atomic and molecular electrons to be important. To extract the cross section for bare nuclei from these data (as required for astrophysical applications), it is necessary to understand these screening effects. We study electron screening effects in the low-energy collisions of Z=1 nuclei with hydrogen molecules. Our model is based on a dynamical evolution of the electron wave functions within the TDHF scheme, while the motion of the nuclei is treated classically. We find that at the currently accessible energies the screening effects depend strongly on the molecular orientation. The screening is found to be larger for molecular targets than for atomic targets, due to the reflection symmetry in the latter. The results agree fairly well with data measured for deuteron collisions on molecular deuterium and tritium targets. (orig.)

  4. Aspects of Landau condensation in atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1980-01-01

    Some aspects of Landau condensation in atomic physics are reviewed both as regards current work on Rydberg states under laboratory conditions and from the viewpoint of the prospects of spontaneous decay of neutral vacuum with superheavy elements. The characteristics of the hydrogen-atom spectrum in a strong magnetic field are presented and discussed using essentially semiclassical arguments. Some schematic attempt at a global interpretation of the Rydberg spectrum near the ionization limit is also given. Then the action of an electric field on the quasi-Landau spectrum is discussed. The conditions for spontaneous production of positrons from neutral vacuum decay with superheavy elements are reconsidered for the case when the system experiences ultrastrong magnetic fields, as in pulsars and white dwarfs. It is shown that spontaneous decay of neutral vacuum may occur at lower Z values than 169. The possible importance of such effects during heavy-ion collisions is briefly discussed. We deal with some qualitative trends of the problem of an atom in a magnetic field with particular emphasis on diamagnetic effects. In the last few years, we have had the capability of making accurate experimental investigations of Rydberg atoms, and perhaps in the future we will develop fundamentally new means of studying heavy-ion collisions. Accordingly it seems of interest to make qualitative remarks regarding the present state of the problem and the possible importance of Landau condensation in various domains of atomic physics now under active development. (author)

  5. Shorter Exciton Lifetimes via an External Heavy-Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Light-Emitting Diodes.

    Science.gov (United States)

    Einzinger, Markus; Zhu, Tianyu; de Silva, Piotr; Belger, Christian; Swager, Timothy M; Van Voorhis, Troy; Baldo, Marc A

    2017-10-01

    Multiexcited-state phenomena are believed to be the root cause of two exigent challenges in organic light-emitting diodes; namely, efficiency roll-off and degradation. The development of novel strategies to reduce exciton densities under heavy load is therefore highly desirable. Here, it is shown that triplet exciton lifetimes of thermally activated delayed-fluorescence-emitter molecules can be manipulated in the solid state by exploiting intermolecular interactions. The external heavy-atom effect of brominated host molecules leads to increased spin-orbit coupling, which in turn enhances intersystem crossing rates in the guest molecule. Wave function overlap between the host and the guest is confirmed by combined molecular dynamics and density functional theory calculations. Shorter triplet exciton lifetimes are observed, while high photoluminescence quantum yields and essentially unaltered emission spectra are maintained. A change in the intersystem crossing rate ratio due to increased dielectric constants leads to almost 50% lower triplet exciton densities in the emissive layer in the steady state and results in an improved onset of the photoluminescence quantum yield roll-off at high excitation densities. Efficient organic light-emitting diodes with better roll-off behavior based on these novel hosts are fabricated, demonstrating the suitability of this concept for real-world applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Atomic data for controlled fusion research

    International Nuclear Information System (INIS)

    Barnett, C.F.; Ray, J.A.; Ricci, E.; Wilker, M.I.; McDaniel, E.W.; Thomas, E.W.; Gilbody, H.B.

    1977-02-01

    Presented is an evaluated graphical and tabular compilation of atomic and molecular cross sections of interest to controlled thermonuclear research. The cross sections are tabulated and graphed as a function of energy for collision processes involving heavy particles, electrons, and photons with atoms and ions. Also included are sections on data for particle penetration through macroscopic matter, particle transport properties, particle interactions with surfaces, and pertinent charged particle nuclear cross sections and reaction rates. In most cases estimates have been made of the data accuracy

  7. Progress of highly charged atomic physics at IMP

    International Nuclear Information System (INIS)

    Ma, X; Zhu, X L; Liu, H P; Li, B; Wei, B R; Sha, S; Cao, S P; Chen, L F; Zhang, S F; Feng, W T; Zhang, D C; Qian, D B

    2007-01-01

    The progress of atomic physics researches at the Institute of Modern Physics (IMP) is reviewed, covering the studies on ion-atom/molecule collisions, ion-cluster interaction, negative ion formation, state-selective electron capture studied by COLTRIMS, as well as the progress of a new experimental area dedicated for atomic researches at moderate energies, and the advances of the cooler storage rings at the Heavy Ion Research Facility in Lanzhou (HIRFL). New opportunities to study collision dynamics from femto-second to atto-second regime are opened based on the present facilities and the on-going projects

  8. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  9. Heavy-quark free energies, internal-energy and entropy contributions

    International Nuclear Information System (INIS)

    Kaczmarek, O.

    2009-01-01

    We present lattice QCD results on heavy-quark free energies, extract from its temperature dependence the entropy and internal-energy contributions, and discuss the onset of medium effects that lead to screening of static quark-antiquark sources in a thermal medium. The detailed analysis of the temperature and distance dependence of the different contributions indicate the complex non-perturbative nature of strongly interacting matter. We shall discuss the necessity to include those effects in studies on the behavior of heavy quarks, heavy-quark bound states and their dissociation in the quark-gluon plasma phase. (orig.)

  10. Effective atomic number, energy loss and radiation damage studies in some materials commonly used in nuclear applications for heavy charged particles such as H, C, Mg, Fe, Te, Pb and U

    Science.gov (United States)

    Kurudirek, Murat

    2016-05-01

    Commonly used nuclear physics materials such as water, concrete, Pb-glass, paraffin, freon and P 10 gases, some alloys such as brass, bronze, stainless-steel and some scintillators such as anthracene, stilbene and toluene have been investigated with respect to the heavy charged particle interaction as means of projected range and effective atomic number (Zeff) in the energy region 10 keV to 10 MeV. Calculations were performed for heavy ions such as H, C, Mg, Fe, Te, Pb and U. Also, the energy loss and radiation damage were studied using SRIM Monte Carlo code for anthracene for different heavy ions of 100 keV kinetic energy. It has been observed that the variation in Zeff becomes less when the atomic number of the ions increase. Glass-Pb, bronze, brass, stainless-steel and Freon gas were found to vary less than 10% in the energy region 10 keV to 10 MeV. For total proton interaction, discrepancies up to 10% and 18% between two databases namely PSTAR and SRIM were noted in mass stopping power and Zeff of water, respectively. The range calculations resulted with a conclusion that the metal alloys and glass-Pb have lowest values of ranges confirming best shielding against energetic heavy ions whereas freon and P 10 gases have the highest values of ranges in the entire energy region. The simulation results showed that the energy loss (%) to target electrons decreases as the Z of the incident ion increases. Also, it was observed that the radiation damage first increases with Z of the ion and then keeps almost constant for ions with Z≥52.

  11. Atomic and solid state physics with the 14UD

    International Nuclear Information System (INIS)

    Newton, C.S.

    1975-02-01

    The use of energetic heavy ions in atomic and solid state physics is discussed. Topics that are discussed include: 1) Properties of excited ions, 2) radiation damage studies by channeling, 3) energy loss of ions and range measurements, 4) oscillating effects in channeling, 5) x-ray production in solids, 6) coherence effects in channeling and 7) formation of united atoms. (author)

  12. X-ray spectroscopy of highly ionized heavy ions as an advanced research for controlled nuclear fusion power

    International Nuclear Information System (INIS)

    Zschornack, G.; Musiol, G.

    1988-01-01

    Diagnostics and modelling of nuclear fusion plasmas require a detailed knowledge of atomic and molecular data for highly ionized heavy ions. Experimental verification of atomic data is made on the basis of IAEA recommendations using the method of high-resolution wavelength-dispersive X-ray spectroscopy in order to obtain contributions extensioning the available atomic data lists. Basic facilities for producing highly charged heavy ions are the electron-ion rings of the heavy ion collective accelerator and the electron beam ion source KRYON-2 at the Joint Institute for Nuclear Research at Dubna. For high-resolution X-ray spectroscopy with these sources a computer-aided crystal diffraction spectrometer has been developed the precision of which is achieved by using advanced principles of measurement and control. Relativistic atomic structure calculations have been carried out for a great number of elements and configurations to obtain data in ionization regions heavily accessible to the experiment. (author)

  13. Alchemical derivatives of reaction energetics

    Science.gov (United States)

    Sheppard, Daniel; Henkelman, Graeme; von Lilienfeld, O. Anatole

    2010-08-01

    Based on molecular grand canonical ensemble density functional theory, we present a theoretical description of how reaction barriers and enthalpies change as atoms in the system are subjected to alchemical transformations, from one element into another. The change in the energy barrier for the umbrella inversion of ammonia is calculated along an alchemical path in which the molecule is transformed into water, and the change in the enthalpy of protonation for methane is calculated as the molecule is transformed into a neon atom via ammonia, water, and hydrogen fluoride. Alchemical derivatives are calculated analytically from the electrostatic potential in the unperturbed system, and compared to numerical derivatives calculated with finite difference interpolation of the pseudopotentials for the atoms being transformed. Good agreement is found between the analytical and numerical derivatives. Alchemical derivatives are also shown to be predictive for integer changes in atomic numbers for oxygen binding to a 79 atom palladium nanoparticle, illustrating their potential use in gradient-based optimization algorithms for the rational design of catalysts.

  14. Heavy metal extraction from produced water in the petroleum industry utilizing vegetal oil derivatives as the extractant; Extracao de metais pesados a partir de aguas produzidas na industria do petroleo utilizando derivados de oleo vegetal como extratante

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Dulcineia de Castro [Centro Federal de Educacao Tecnologica de Goias (CEFET/GO), Goiania (Brazil). Coordenacao de Mineracao], e-mail: dcs@cefetgo.br, e-mail: dcs@eq.ufrn.br; Paulo, Joao Bosco de Araujo [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Centro de Tecnologia. Dept. de Engenharia Quimica], e-mail: jbosco@eq.ufrn.br; Lima, Raquel Franco de Souza [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Centro de Ciencias Exatas e da Terra. Dept. de Geologia], e-mail: raquel@geologia.ufrn.br; Brandao, Paulo Roberto Gomes [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia], e-mail: pbrandao@demin.ufmg.br; Fernandes Junior, Wilaci Eutropio [PETROBRAS, RN/CE (Brazil). Unidade de Negocio de Exploracao e Producao do Rio Grande do Norte e Ceara. Gerencia de Desenvolvimento da Producao], e-mail: wilaci@petrobras.com.br

    2007-12-15

    It is well known today that, although being a renewable resource, potable water could also be finite. In the environmental context, very often due to operational costs, the development of new water recycling techniques become significant when faced with the simple adaptation of effluent treatment before final disposal. Produced water comes from exploration operations and/or the production of oil and gas and is generally treated. Following the treatment, part of the produced water is recycled in secondary re-injection operations or steam generation. The remainder, which is the biggest amount, is expelled into the sea through underwater outlets. Millions of liters of water are expelled per day, containing heavy metals such as lead (Pb), cadmium (Cd) and nickel (Ni) in low concentrations. Some of this volume could be recycled for use in the irrigation of oleaginous cultures after this water has been given a suitable post-treatment. This treatment being specified in agreement with Class 3, of CONAMA Resolution No 357 (Brazil, 2005), which establishes the contents as <0,033 mg/L for Pb, <0,01 mg/L for Cd and <0,025 mg/L for Ni. Liquid-liquid extraction is a well known technology for the recovery of metals in aqueous mediums. This work studies the extraction of Pb, Cd, and Ni from a synthetic solution, using QAV solvent (aviation kerosene); and vegetal oil derivatives as the extractant. It is well known that vegetal oil derivatives have a strong complexation power on metals. A bench test basic investigation was made with the objective of studying the selectivity of coconut oil derivatives in the extraction of metals from synthetic solutions. The determination of the heavy metal concentrations in a complex matrix was made by using the atomic absorption spectrometry technique (AAS). The results of the preliminary experiments were promising. (author)

  15. Relativistic total energy and chemical potential of heavy atoms and positive ions

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1984-01-01

    The relativistic Thomas-Fermi theory, with a finite nucleus, is used to study the variation of the chemical potential μ with atomic number Z and number of electrons N (N <= Z). The difference between the total energy of positive ions and that of the corresponding neutral atom has been obtained. The scaling predictions are confirmed by numerical calculations. The first principles calculation of the relativistic Thomas-Fermi total energy of neutral atoms is also studied. (author)

  16. High energy heavy ions: techniques and applications

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1985-04-01

    Pioneering work at the Bevalac has given significant insight into the field of relativistic heavy ions, both in the development of techniques for acceleration and delivery of these beams as well as in many novel areas of applications. This paper will outline our experiences at the Bevalac; ion sources, low velocity acceleration, matching to the synchrotron booster, and beam delivery. Applications discussed will include the observation of new effects in central nuclear collisions, production of beams of exotic short-lived (down to 1 μsec) isotopes through peripheral nuclear collisions, atomic physics with hydrogen-like uranium ions, effects of heavy ''cosmic rays'' on satellite equipment, and an ongoing cancer radiotherapy program with heavy ions. 39 refs., 6 figs., 1 tab

  17. Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Derya, E-mail: dkara@balikesir.edu.tr [Department of Chemistry, Art and Science Faculty, Balikesir University, 10100 Balikesir (Turkey); Fisher, Andrew; Hill, Steve J. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom)

    2009-06-15

    A matrix separation and analyte preconcentration system using Amberlite XAD copolymer resins functionalized by Schiff base reactions coupled with atomic spectrometry has been developed. Three different functionalized Amberlite XAD resins were synthesized using 4-phenylthiosemicarbazide, 2,3-dihydroxybenzaldehyde and 2-thiophenecarboxaldehyde as reagents. These resins could be used to preconcentrate transition and other trace heavy metal analytes from nitric acid digests of soil and sediment samples. Analyte retention was shown to work well at pH 6.0. After treatment of the digests with sodium fluoride and buffering to pH 6, samples that contain extremely large concentrations of iron were analysed for trace analytes without the excess iron overloading the capacity of the resin. The analytes Cd, Co, Cu, Ni and Pb were preconcentrated from acid extracts of certified soil/sediment samples and then eluted with 0.1 M HNO{sub 3} directly to the detection system. Flame atomic absorption spectrometry was used as a means of detection during the studies. The efficiency of the chelating resin and the accuracy of the proposed method were evaluated by the analysis of soil (SO-2) and sediment (LGC 6157 and MESS-3) certified reference materials.

  18. V L Ginzburg and the Atomic Project

    Science.gov (United States)

    Ritus, V. I.

    2017-04-01

    This paper is an expanded version of the author's talk presented at a session of the Physical Sciences Division of the Russian Academy of Sciences celebrating the 100th anniversary of V L Ginzburg's birth. Tamm's Special group was organized in June 1948 with the task to clarify the feasibility of constructing a hydrogen bomb. Having verified and confirmed the calculated results by Ya B Zel'dovich's group, the Tamm group proposed an original hydrogen bomb design, which, following A D Sakharov's idea, consisted of an atomic bomb surrounded spherically by nested uranium and heavy water layers: the heavy water, on V L Ginzburg's suggestion, was replaced by higher-calorie solid lithium-6 deuteride. The ionization implosion of deuterium by uranium, both heated by the atomic bomb's explosion, greatly accelerates nuclear reactions in deuterium and uranium and increases the total energy release. Upon their approval by the KB-11 top researchers, the Atomic project leadership, and the government, the proposals were implemented in the RDS-6s bomb, which was successfully tested on 12 August 1953. Lithium-6 deuteride turned out to be a convenient multipurpose nuclear fuel. The paper highlights the recognition by the leaders of the country and of the Atomic project that fundamental science plays a crucial role in promoting scientists' ideas and proposals.

  19. Data-Driven Derivation of an "Informer Compound Set" for Improved Selection of Active Compounds in High-Throughput Screening.

    Science.gov (United States)

    Paricharak, Shardul; IJzerman, Adriaan P; Jenkins, Jeremy L; Bender, Andreas; Nigsch, Florian

    2016-09-26

    Despite the usefulness of high-throughput screening (HTS) in drug discovery, for some systems, low assay throughput or high screening cost can prohibit the screening of large numbers of compounds. In such cases, iterative cycles of screening involving active learning (AL) are employed, creating the need for smaller "informer sets" that can be routinely screened to build predictive models for selecting compounds from the screening collection for follow-up screens. Here, we present a data-driven derivation of an informer compound set with improved predictivity of active compounds in HTS, and we validate its benefit over randomly selected training sets on 46 PubChem assays comprising at least 300,000 compounds and covering a wide range of assay biology. The informer compound set showed improvement in BEDROC(α = 100), PRAUC, and ROCAUC values averaged over all assays of 0.024, 0.014, and 0.016, respectively, compared to randomly selected training sets, all with paired t-test p-values agnostic fashion. This approach led to a consistent improvement in hit rates in follow-up screens without compromising scaffold retrieval. The informer set is adjustable in size depending on the number of compounds one intends to screen, as performance gains are realized for sets with more than 3,000 compounds, and this set is therefore applicable to a variety of situations. Finally, our results indicate that random sampling may not adequately cover descriptor space, drawing attention to the importance of the composition of the training set for predicting actives.

  20. Pretreatment Hepatoprotective Effect of the Marine Fungus Derived from Sponge on Hepatic Toxicity Induced by Heavy Metals in Rats

    Directory of Open Access Journals (Sweden)

    Nehad M. Abdel-Monem

    2013-01-01

    Full Text Available The aim of this study was to evaluate the pretreatment hepatoprotective effect of the extract of marine-derived fungus Trichurus spiralis Hasselbr (TS isolated from Hippospongia communis sponge on hepatotoxicity. Twenty-eight male Sprague-Dawley rats were divided into four groups (n=7. Group I served as −ve control, group II served as the induced group receiving subcutaneously for seven days 0.25 mg heavy metal mixtures, group III received (i.p. TS extract of dose 40 mg for seven days, and group IV served as the protected group pretreated with TS extract for seven days as a protection dose, and then treated with the heavy metal-mixture. The main pathological changes within the liver after heavy-metal mixtures administrations marked hepatic damage evidenced by foci of lobular necrosis with neutrophilic infiltration, adjacent to dysplastic hepatocytes. ALT and AST measurements show a significant increase in group II by 46.20% and 45.12%, respectively. Total protein, elevated by about 38.9% in induction group compared to the −ve control group, in contrast to albumin, decreased as a consequence of metal administration with significant elevation on bilirubin level. The results prove that TS extract possesses a hepatoprotective property due to its proven antioxidant and free-radical scavenging properties.

  1. Derivation of Elastic Stress Concentration Factor Equations for Debris Fretting Flaws in Pressure Tubes of Pressurized Heavy Water Reactors

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Oh, Young Jin

    2014-01-01

    If volumetric flaws such as bearing pad fretting flaws and debris fretting flaws are detected in the pressure tubes of pressurized heavy water reactors during in-service inspection, the initiation of fatigue cracks and delayed hydrogen cracking from the detected volumetric flaws shall be assessed by using elastic stress concentration factors in accordance with CSA N285.8-05. The CSA N285.8-05 presents only an approximate formula based on linear elastic fracture mechanics for the debris fretting flaw. In this study, an engineering formula considering the geometric characteristics of the debris fretting flaw in detail was derived using two-dimensional finite element analysis and Kinectrics, Inc.'s engineering procedure with slight modifications. Comparing the application results obtained using the derived formula with the three-dimensional finite element analysis results, it is found that the results obtained using the derived formula agree well with the results of the finite element analysis

  2. Two-photon decay of K-shell vacancy states in heavy atoms

    International Nuclear Information System (INIS)

    Ilakovac, K.; Uroic, M.; Majer, M.; Pasic, S.; Vukovic, B.

    2006-01-01

    Two-photon decay has been extensively studied in atomic, nuclear and particle physics since the 1930s when the problem of stability of the 2s state of the hydrogen atom emerged. Since then, many theoretical and experimental investigations have been made on hydrogen and one-electron (H-like) ions and on helium and two-electron (He-like) ions. The work on two-photon decay in many-electron systems involving inner shells started about 30 years ago and, in the meantime, two-photon decay of the K-shell vacancy state has been the subject of many theoretical and experimental studies. Experimental results have been obtained for 2s->1s and higher-state electron ->1s two-photon transitions in molybdenum, and for 2s -> 1s, 3s -> 1s, 3d -> 1s and 4sd -> 1s two-photon transitions in silver, xenon, hafnium and mercury. Nonrelativistic and relativistic calculations of the processes have been made. The relativistic calculations for transitions in molybdenum, silver and xenon atoms are in a reasonable agreement with the experimental results, but some problems remain to be solved. A review of investigations of two-photon transitions in atomic systems is presented

  3. Relativistic calculations of screening parameters and atomic radii of neutral atoms

    Science.gov (United States)

    Guerra, M.; Amaro, P.; Santos, J. P.; Indelicato, P.

    2017-09-01

    Calculations of the effective nuclear charge for elements with 1 ≤ Z ≤ 118 have been performed in a Dirac-Fock approach including all relativistic effects as well as contributions from quantum electrodynamics. Maximum charge density for every subshell of every element in the periodic table was also computed in the same framework as well as atomic radii based on the total charge density. Results were compared with the extensively cited works of Clementi et al., obtained in the 1960s with Roothan's self-consistent-field method.

  4. A function of mutagenesis on rhodotorula RY strain irradiated by heavy ion

    International Nuclear Information System (INIS)

    Li Hongyu; Li Chenghua; Ding Xinchun; Wang Jufang; Zhou Guangming; Xie Hongmei; Li Qiang; Dang bingrong; Wen Xiaoqiong; Li Wenjian; Wei Zengquan

    2004-01-01

    In this paper, red yeast (Rhodotorula RY Strain) that produces carotene is irradiated by 50 MeV/u 12 C 6+ heavy ion from Heavy Ion Accelerator in IMP. Fermentation tests show that 50 MeV/u 12 C 6+ heavy ion has a mutagenesis effect on the red yeast. Some strains of red yeast with changed production of carotene were found by screening. Meanwhile, by RFLP and RAPD analysis, authors have a further evidence that heavy ion can cause mutagenesis in Rhodotorula RY Strain. This presents a new prospect for the mutagenesis breeding by heavy ion in industry

  5. From Atomic Resolution to Molecular Giants: an Overview of Crystallographic Studies of Biological Macromolecules with Synchrotron Radiation

    International Nuclear Information System (INIS)

    Jaskolski, M.

    2010-01-01

    Protein crystals have huge unit cells ( ≅100 A) filled not only with ordered protein molecules but also in about 50% with liquid water. The phase problem in protein crystallography can be solved by molecular replacement (using a suitable model molecule), by isomorphous replacement (using heavy atom derivatives), or by multiwavelength anomalous diffraction (using resonant scattering of synchrotron-generated X-rays by anomalous atoms, such as Se). X-ray diffraction by protein crystals produces thousands of reflections but since the models are very complex (many thousands of atoms), paucity of data is a serious problem and stereochemical restraints are necessary. In consequence, the highest possible resolution (minimum d-spacing in Bragg's Equation) should always be the experimental goal. Protein structures determined by crystallography are deposited in protein data bank, which currently holds more than 62000 entries. Recent methodological advancements, stimulated by a wide-spread use of powerful synchrotron sources and by structural genomics, have resulted in rapid acceleration of the structure elucidation process, and in addition help to obtain a better data. Protein crystallography has produced atomic models of gigantic macromolecular assemblies, including the ribosome. It is also providing accurate targets for structure-guided development of drugs. (author)

  6. From atomic resolution to molecular giants: an overview of crystallographic studies of biological macromolecules with synchrotron radiation

    International Nuclear Information System (INIS)

    Jaskolski, M.

    2010-01-01

    Protein crystals have huge unit cells (∼ 100 A) filled not only with ordered protein molecules but also in about 50% with liquid water. The phase problem in protein crystallography can be solved by molecular replacement (using a suitable model molecule), by isomorphous replacement (using heavy atom derivatives), or by multiwavelength anomalous diffraction (using resonant scattering of synchrotron-generated X-rays by anomalous atoms, such as Se). X-ray diffraction by protein crystals produces thousands of reflections but since the models are very complex (many thousands of atoms), paucity of data is a serious problem and stereochemical restraints are necessary. In consequence, the highest possible resolution (minimum d-spacing in Bragg's Equation) should always be the experimental goal. Protein structures determined by crystallography are deposited in Protein Data Bank, which currently holds more than 65 000 entries. Recent methodological advancements, stimulated by a wide-spread use of powerful synchrotron sources and by structural genomics, have resulted in rapid acceleration of the structure elucidation process, and in addition help to obtain better data. Protein crystallography has produced atomic models of gigantic macromolecular assemblies, including the ribosome. It is also providing accurate targets for structure-guided development of drugs. (author)

  7. Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Zellmer, S.D.; Schneider, J.F.

    1993-05-01

    Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm and soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.

  8. Heavy particle atomic collisions in astrophysics: Beyond H and He targets

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, P.C.; Krstic, P.S.; Schultz, D.R.

    1998-06-01

    The physical conditions relating to the emission of x-rays from Jovian and cometary atmospheres and to supernova ejecta are briefly described. Emphasis is placed on elucidating the relevance and importance of atomic collision processes, the availability of data, and the outstanding data needs for modeling these environments. Some preliminary theoretical studies of electron capture for important collisions systems, involving molecular and atomic metal targets, are presented.

  9. Screening Antibacterial Agent from Crude Extract of Marine-Derived Fungi Associated with Soft Corals against MDR-Staphylococcus haemolyticus

    Science.gov (United States)

    Sabdaningsih, A.; Cristianawati, O.; Sibero, M. T.; Nuryadi, H.; Radjasa, O. K.; Sabdono, A.; Trianto, A.

    2017-02-01

    Multidrug resistant Staphylococcus haemolyticus is a Gram-positive bacteria and member of coagulase negative staphylococci (CoNS) which has the highest level of antimicrobial resistance. This nosocomial pathogen due to skin or soft tissue infections, bacteremia, septicemia, peritonitis, otitis media, meningitis and urinary tract infections. The ability to produce enterotoxins, hemolysins, biofilm, and cytotoxins could be an important characteristic for the successful of infection. Marine-derived fungi have potency as a continuous supply of bioactive compound. The aim of this research was screening antibacterial agent from crude extracts of marine-derived fungi associated with soft corals against MDR-S. haemolyticus. Among 23 isolates of marine-derived fungi isolated from 7 soft corals, there were 4 isolates active against MDR-S. haemolyticus. The screening was conducted by using agar plug diffusion method. Isolate PPSC-27-A4 had the highest antibacterial activity with diameter 23±9,6 mm. The crude extract from this isolate had been confirmed to antibacterial susceptibility test and it had the highest antibacterial activity in 12.2 mm with concentration of 300μg/ml from mycelia extract. PPSC-27-A4 had been characterized in molecular, based on the sequence analysis of 18S rRNA, PPSC-27-A4 isolate was identified as Trichoderma longibrachiatum.

  10. Heavy-Load Lifting

    DEFF Research Database (Denmark)

    Bloomquist, Kira; Oturai, Peter; Steele, Megan L

    2018-01-01

    of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal....... repetition maximum (RM), two sets of 15-20 repetitions) and heavy-load (85-90% 1RM, three sets of 5-8 repetition) upper-extremity resistance exercise separated by a one-week wash-out period. Swelling was determined by bioimpedance spectroscopy and dual energy x-ray absorptiometry, with breast cancer......-related lymphedema symptoms (heaviness, swelling, pain, tightness) reported using a numeric rating scale (0-10). Order of low- versus heavy-load was randomized. All outcomes were assessed pre-, immediately post-, and 24- and 72-hours post-exercise. Generalized estimating equations were used to evaluate changes over...

  11. Assessment of Heavy Metal Content of Branded Pakistani Herbal ...

    African Journals Online (AJOL)

    Erah

    analyzed using a flame atomic absorption spectrometer. Results: Most of the products exceeded the permissible limits for lead (100 %), cadmium (68 %), .... absorption spectrometry. M e ta l n a m ..... Determination of Heavy Metals in Medicinal.

  12. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening.

    Science.gov (United States)

    Sharma, Arun; Wu, Joseph C; Wu, Sean M

    2013-12-24

    Human induced pluripotent stem cells (hiPSCs) have emerged as a novel tool for drug discovery and therapy in cardiovascular medicine. hiPSCs are functionally similar to human embryonic stem cells (hESCs) and can be derived autologously without the ethical challenges associated with hESCs. Given the limited regenerative capacity of the human heart following myocardial injury, cardiomyocytes derived from hiPSCs (hiPSC-CMs) have garnered significant attention from basic and translational scientists as a promising cell source for replacement therapy. However, ongoing issues such as cell immaturity, scale of production, inter-line variability, and cell purity will need to be resolved before human clinical trials can begin. Meanwhile, the use of hiPSCs to explore cellular mechanisms of cardiovascular diseases in vitro has proven to be extremely valuable. For example, hiPSC-CMs have been shown to recapitulate disease phenotypes from patients with monogenic cardiovascular disorders. Furthermore, patient-derived hiPSC-CMs are now providing new insights regarding drug efficacy and toxicity. This review will highlight recent advances in utilizing hiPSC-CMs for cardiac disease modeling in vitro and as a platform for drug validation. The advantages and disadvantages of using hiPSC-CMs for drug screening purposes will be explored as well.

  13. Improvement in fuel utilization in pressurized heavy water reactors due to increased heavy water purity

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    This paper reports that in a pressurized heavy water reactor (PHWR), the reactivity of the reactor and, consequently, the discharge burnup of the fuel depend on the isotopic purity of the heavy water used in the reactor. The optimal purity of heavy water used in PHWRs, in turn, depends on the cost of fabricated uranium fuel and on the incremental cost incurred in improving the heavy water purity. The physics and economics aspects of the desirability of increasing the heavy water purity in PHWRs in India were first examined in 1978. With the cost data available at that time, it was found that improving the heavy water purity from 99.80% to 99.95% was economically attractive. The same problem is reinvestigated with current cost data. Even now, there is sufficient incentive to improve the isotopic purity of heavy water used in PHWRs. Admittedly, the economic advantage that can be derived depends on the cost of the fabricated fuel. Nevertheless, irrespective of the economics, there is also a fairly substantial saving in natural uranium. That the increase in the heavy water purity is to be maintained only in the low-pressure moderator system, and not in the high-pressure coolant system, makes the option of achieving higher fuel burnup with higher heavy water purity feasible

  14. Direction of Heavy Water Projects

    International Nuclear Information System (INIS)

    1984-07-01

    Summary of the activities performed by the Heavy Water Projects Direction of the Argentine Atomic Energy Commission from 1950 to 1983. It covers: historical data; industrial plant (based on ammonia-hydrogen isotopic exchange); experimental plant (utilizing hydrogen sulfides-water process); Module-80 plant (2-3 tons per year experimental plant with national technology) and other related tasks on research and development (E.A.C.) [es

  15. Automation in trace-element chemistry - Development of a fully automated on-line preconcentration device for trace analysis of heavy metals with atomic spectroscopy

    International Nuclear Information System (INIS)

    Michaelis, M.R.A.

    1990-01-01

    Scope of this work was the development of an automated system for trace element preconcentration to be used and integrated to analytic atomic spectroscopic methods like flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS) or atomic emission spectroscopy with inductively coupled plasma (ICP-AES). Based on the newly developed cellulose-based chelating cation exchangers ethylene-diamin-triacetic acid cellulose (EDTrA-Cellulose) and sulfonated-oxine cellulose a flexible, computer-controlled instrument for automation of preconcentration and/or of matrix separation of heavy metals is described. The most important properties of these materials are fast exchange kinetics, good selectivity against alkaline and alkaline earth elements, good flow characteristics and good stability of the material and the chelating functions against changes in pH-values of reagents necessary in the process. The combination of the preconcentration device for on-line determinations of Zn, Cd, Pb, Ni, Fe, Co, Mn, V, Cu, La, U, Th is described for FAAS and for ICP-AES with a simultaneous spectrometer. Signal enhancement factors of 70 are achieved from preconcentration of 10 ml and on-line determination with FAAS due to signal quantification in peak-height mode. For GFAAS and for sequential ICP methods for off-line preconcentration are given. The optimization and adaption of the interface to the different characteristics of the analytical instrumentation is emphasized. For evaluation and future developments with respect to determination and/or preconcentration of anionic species like As, Se, Sb etc. instrument modifications are proposed and a development software is described. (Author)

  16. Comparison of twin-fluid atomizers using a phase Doppler analyser

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, Matouš, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz; Malý, Milan, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz; Jedelský, Jan, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz; Jícha, Miroslav, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz [Brno University of technology, Technická 2896/2, 616 69 Brno (Czech Republic)

    2014-08-06

    The quality of atomization is crucial in combustion processes, especially in cases of highly viscous fuels. Twin-fluid atomizers have been developed for atomizing heavy and waste fuels and they have undergone significant development in the last decades. Nevertheless, in order to design an atomizer for a given industrial application, a comparison of different atomizers at similar operating conditions is required. This paper focuses on the description and comparison of two internally mixed twin-fluid atomizers at the same operating regime. The Y-jet and the Inverse-effervescent atomizers were examined. The phase-Doppler analyzer was used to measure the velocity and size of droplets in a radial profile in the spray. Data were sorted out into classes with respect to the droplet size and the motion analysis was done for both atomizers.

  17. Kinetic-energy density functional: Atoms and shell structure

    International Nuclear Information System (INIS)

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E.

    1996-01-01

    We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. copyright 1996 The American Physical Society

  18. Modified-surface-energy methods for deriving heavy-ion potentials

    International Nuclear Information System (INIS)

    Sierk, A.J.

    1977-01-01

    The use of a modified-surface-energy approach for the calculation of heavy-ion interaction potentials is discussed. It is not possible to simultaneously fit elastic scattering, ion interaction barriers, and fission barriers with the same set of constants in this model. Possible explanations of this deficiency are discussed

  19. Evaluation of Physicochemical Properties and Heavy Metals ...

    African Journals Online (AJOL)

    Physicochemical properties of municipal dumpsite compost in Kano metropolis and concentration of heavy metals were investigated. Analysis was carried out by atomic absorption spectrometry (Buck Scientific VPG 210). The results shows that the compost pH (6.63-8.19), electric conductivity of compost (638-933μs/cm), ...

  20. Using heavy atom rare gas matrix to control the reactivity of 4-methoxybenzaldehyde: A comparison with benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Nihal [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Department of Physics, Anadolu University, 26470 Eskisehir (Turkey); Sharma, Archna; Reva, Igor; Fausto, Rui [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Lapinski, Leszek [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    2012-04-14

    Different patterns of photochemical behavior were observed for 4-methoxybenzaldehyde (p-anisaldehyde) isolated in xenon and in argon matrices. Monomers of the compound isolated in solid Xe decarbonylate upon middle ultraviolet irradiation, yielding methoxybenzene (anisole), and CO. On the other hand, p-anisaldehyde isolated in an Ar matrix and subjected to identical irradiation, predominantly isomerizes to the closed-ring isomeric ketene (4-methoxycyclohexa-2,4-dien-1-ylidene) methanone. Experimental detection of a closed-ring ketene photoproduct, generated from an aromatic aldehyde, constitutes a rare observation. The difference between the patterns of photochemical transformations of p-anisaldehyde isolated in argon and xenon environments can be attributed to the external heavy-atom effect, where xenon enhances the rate of intersystem crossing from the singlet to the triplet manifold in which decarbonylation (via p-methoxybenzoyl radical) takes place. The parent compound, benzaldehyde, decarbonylates (to benzene + CO) when subjected to middle ultraviolet irradiation in both argon and xenon matrices. This demonstrates the role of the methoxy p-anisaldehyde substituent in activation of the reaction channel leading to the formation of the ketene photoproduct.

  1. Electronic structure of fractionally nuclear charged atoms

    International Nuclear Information System (INIS)

    Pavao, Antonio C.; Bastos, Cristiano C.; Ferreira, Joacy V.

    2008-01-01

    Different properties of quark chemistry are studied by performing accurate ab initio Hartree- Fock calculations on fractionally nuclear charged atoms. Ground and first excited states of sodium atoms with quarks attached to the nucleus are obtained using CI calculations. It is suggested that the sodium 2 P -> 2 S electronic transition can be used as a guide in searching for unconfined quarks. Also, the variation of the binding electronic energy with nuclear charge in the isoelectronic series of fractionally nuclear charged atoms A ±2/3 and A ±1/3 (A = H, Li, Na, P and Ca) is analyzed. The present calculations suggest that unconfined colored particles have large appetite for heavy nuclei and that quark-antiquark pairs could be stabilized in presence of the atomic matter. (author)

  2. Heavy water cycle in the CANDU reactor

    International Nuclear Information System (INIS)

    Nanis, R.

    2000-01-01

    Hydrogen atom has two isotopes: deuterium 1 H 2 and tritium 1 H 3 . The deuterium oxide D 2 O is called heavy water due to its density of 1105.2 Kg/m 3 . Another important physical property of the heavy water is the low neutron capture section, suitable to moderate the neutrons into natural uranium fission reactor as CANDU. Due to the fact that into this reactor the fuel is cooled into the pressure tubes surrounded by a moderator, the usage of D 2 O as primary heat transport (PHT) agent is mandatory. Therefore a large amount of heavy water (approx. 500 tons) is used in a CANDU reactor. Being a costly resource - it represents 20% of the initial plant capital cost, D 2 O management is required to preserve it. (author)

  3. Determination of Heavy Metals and Radioactive Elements in Alluvial Soil using Atomic Absorption and Gamma Spectroscopy

    International Nuclear Information System (INIS)

    Hamed, S.S.; Walley EI Dine, N.; Soliman, S.I.; Moussa, W.M.

    2008-01-01

    The paper describes some methods dealing with measurements of some heavy and radioactive elements (U, Th and K) in Egyptian cultivated soil samples. Samples were collected from Toshka area. Also, soil and plant samples were collected from Kalube and EI - Gabal EI - Asfar to compare the obtained results from both region. Flame atomic absorption spectrometry (FAAS),Neutron activation analysis (INAA) and Natural radioactivity techniques were followed. FAAS and INAA techniques agreed fairly well for the compared elements Co,Zn and Fe which determined by the two techniques. Also for K which was determined by FAAS and natural radioactivity. It was found that the concentration range in soil samples for Co, Fe, K and Zn lies between 4.18 and 29.2 μg/g, 3.0 and 3.8 mg/g, 3.49 and 13.28 mg/g and 120 and 663 μg/g respectively while in plant samples the concentration of Co was from 3.02 to 4.02 μg/g, Fe from 1.18 to 1.35 mg/g and Zn from 29.63 to 73.02 μg/g

  4. Seismic analysis of two 1050 mm diameter heavy water upgrading towers for 235 MWe Kaiga Atomic Power Plant Site

    International Nuclear Information System (INIS)

    Soni, R.S.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.; Narwaria, Suresh; Vardarajan, T.G.; Sadhukhan, H.K.

    1992-01-01

    This report deals with the analysis carried out for the evaluation of earthquake induced stresses and deflections in two 1050 mm diameter heavy water upgrading towers for Kaiga Atomic Power Plant Site. The analysis of upgrading tower has been carried out for two mutually perpendicular horizontal excitations and one vertical excitation applied simultaneously. The upgrading towers have been analysed using beam model taking into account soil-structure interaction. Response spectrum analysis has been carried out using site spectra for 235 MWe Kaiga reactor site. The seismic analysis has been performed for both the towers with supporting structure along with concrete pedestals and raft foundation. The towers have been checked for its stability due to compressive stresses to avoid buckling so that the nearby safety related structures are not geopardised in the event of safe shutdown earthquake (SSE) loading. (author). 14 refs., 12 figs., 18 tabs

  5. Accelerator based atomic physics experiments: an overview

    International Nuclear Information System (INIS)

    Moak, C.D.

    1976-01-01

    Atomic Physics research with beams from accelerators has continued to expand and the number of papers and articles at meetings and in journals reflects a steadily increasing interest and an increasing support from various funding agencies. An attempt will be made to point out where interdisciplinary benefits have occurred, and where applications of the new results to engineering problems are expected. Drawing from material which will be discussed in the conference, a list of the most active areas of research is presented. Accelerator based atomic physics brings together techniques from many areas, including chemistry, astronomy and astrophysics, nuclear physics, solid state physics and engineering. An example is the use of crystal channeling to sort some of the phenomena of ordinary heavy ion stopping powers. This tool has helped us to reach a better understanding of stopping mechanisms with the result that now we have established a better base for predicting energy losses of heavy ions in various materials

  6. Implications of heavy-ion induced satellite x-ray emission. I. Introduction

    International Nuclear Information System (INIS)

    Raman, S.; Vane, C.R.

    1983-01-01

    Regardless of how they are induced, x-ray spectra are sensitive to the chemical environment of the emitting atom and can yield information on the atomic and electronic structure of host materials. Those spectra resulting from light ion and heavy ion excitations are the main topics covered in this series of papers. Highly energetic heavy ions are capable of producing multiple innershell ionization. The resulting spectrum of x-rays from a particular target atom is composed of a complex series of satellite lines. Environmental effects give rise to the redistribution of intensity from one satellite group to another. These changes can be correlated with one satellite group to another. These changes can be correlated with bulk chemical properties (valence electron densities, effective charges, covalencies, etc.). The possibility of obtaining new chemical information (for example, in implanted materials and in metal alloys) exists but requires greater experimental and theoretical understanding of both parametric variations and the fine structure of satellite lines

  7. Amorphization of complex ceramics by heavy-particle irradiations

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1994-11-01

    Complex ceramics, for the purpose of this paper, include materials that are generally strongly bonded (mixed ionic and covalent), refractory and frequently good insulators. They are distinguished from simple, compact ceramics (e.g., MgO and UO 2 ) by structural features which include: (1) open network structures, best characterized by a consideration of the shape, size and connectivity of coordination polyhedra; (2) complex compositions which characteristically lead to multiple cation sites and lower symmetry; (3) directional bonding; (4) bond-type variations within the structure. The heavy particle irradiations include ion-beam irradiations and recoil-nucleus damage resulting from a-decay events from constituent actinides. The latter effects are responsible for the radiation-induced transformation to the metamict state in minerals. The responses of these materials to irradiation are complex, as energy may be dissipated ballistically by transfer of kinetic energy from an incident projectile or radiolytically by conversion of radiation-induced electronic excitations into atomic motion. This results in isolated Frenkel defect pairs, defect aggregates, isolated collision cascades or bulk amorphization. Thus, the amorphization process is heterogeneous. Only recently have there been systematic studies of heavy particle irradiations of complex ceramics on a wide variety of structure-types and compositions as a function of dose and temperature. In this paper, we review the conditions for amorphization for the tetragonal orthosilicate, zircon [ZrSiO 4 ]; the hexagonal orthosilicate/phosphate apatite structure-type [X 10 (ZO 4 ) 6 (F,Cl,O) 2 ]; the isometric pyrochlores [A 1-2 B 2 O 6 (O,OH,F) 0-1p H 2 O] and its monoclinic derivative zirconotite [CaZrTi 2 O 7 ]; the olivine (derivative - hcp) structure types, α- VI A 2 IV BO 4 , and spinel (ccp), γ- VI A 2 IV BO 4

  8. Electron induced atomic inner-shell ionization

    International Nuclear Information System (INIS)

    Quarles, C.A.

    1974-01-01

    The current status of cross section measurements for atomic inner-shell ionization by electron bombardment is reviewed. Inner shell ionization studies using electrons as projectiles compliment the similar studies being done with heavy particles, and in addition can provide tests of the theory in those cases when relativistic effects and exchange effects are expected to be important. Both total cross sections and recently measured differential cross sections will be discussed and compared with existing theories where possible. Prospects for further experimental and theoretical work in this area of atomic physics using small electron accelerators will also be discussed

  9. The Battle for Heavy Water Three physicists' heroic exploits

    CERN Multimedia

    2002-01-01

    Up until the end of the 1970s you could still catch a glimpse of his massive silhouette in the corridors of CERN. Lew Kowarksi, one of the pioneers of the Laboratory, was not only a great physicist; he was also a genuine hero of World War II. In 1940, along with Frédéric Joliot and Hans von Halban, Lew Kowarski managed to get the entire world supply of heavy water away to safety from the Nazis after a fantastic escape from occupied France. At the end of the war, the three physicists played themselves in a film about their adventures entitled 'la Bataille de l'eau lourde'. This film, which has been loaned to us by the French National Film Library, will be shown at CERN for the first time next Thursday. At the beginning of the war, heavy water (D20, two atoms of deuterium and one oxygen atom) was of strategic importance. In 1939 Frédéric Joliot, aided by Hans von Halban and Lew Kowarski, demonstrated the nuclear chain reaction and the moderator role that heavy water plays in it. A few weeks before the inv...

  10. In vitro antimicrobial and antiprotozoal activities, phytochemical screening and heavy metals toxicity of different parts of Ballota nigra.

    Science.gov (United States)

    Ullah, Najeeb; Ahmad, Ijaz; Ayaz, Sultan

    2014-01-01

    The study was done to assess the phytochemicals (flavonoids, terpenoids, saponins, tannin, alkaloids, and phenol) in different parts (root, stem, and leaves) of Ballota nigra and correlated it to inhibition of microbes (bacteria and fungi), protozoan (Leishmania), and heavy metals toxicity evaluation. In root and stem flavonoids, terpenes and phenols were present in ethanol, chloroform, and ethyl acetate soluble fraction; these were found to be the most active inhibiting fractions against all the tested strains of bacteria, fungi, and leishmania. While in leaves flavonoids, terpenes, and phenols were present in ethanol, chloroform, and n-butanol fractions which were the most active fractions against both types of microbes and protozoan (leishmania) in in vitro study. Ethanol and chloroform fractions show maximum inhibition against Escherichia coli (17 mm). The phytochemical and biological screenings were correlated with the presence of heavy metals in selected plant Ballota nigra. Cr was found above permissible value (above 1.5 mg/kg) in all parts of the plant. Ni was above WHO limit in B. nigra root and leaves (3.35 ± 1.20 mg/kg and 5.09 ± 0.47 mg/kg, respectively). Fe was above permissible value in all parts of B. nigra (above 20 mg/kg). Cd was above permissible value in all parts of the plant (above 0.3 mg/kg). Pb was above WHO limit (above 2 mg/kg) in all parts of Ballota nigra.

  11. Content Heavy Metal Pb, Cd In Perna viridis And Sediments In Semarang Bay

    Science.gov (United States)

    Suprapto, D.; Suryanti, S.; Latifah, N.

    2018-02-01

    Waste disposal from human activities, generally contain heavy metals such as Pb and Cd which derived from industrial activities. The aims of the study were to know the concentration of Pb and Cd heavy metals contained in Perna viridis tissue, sediment and water at Semarang Bay. This study was conducted in May 2017 at Semarang Bay. - Samples were collected using purposive sampling method. The heavy metal content in the water and clam was observed using- APHA method and was analyzed using AAS (Atomic Absorption Spectrophotometer). The results showed that concentration of heavy metal of Pb in the water was 0.00-50.5mg/L and the Cd content was of 26.9-51.7 mg/L, whereas the concentration of Pb in the sediment is 445.5-2.053.0mg/L and Cd 963.3-2,150.0 mg/L. Pb content in soft tissue of Perna viridis - is 67.1-1.933.9 mg/L and the concentration of Cd was 203.5-5.787.3 mg/L. The analysis of Pb and Cd in seawater, sediment and soft tissue of Perna viridis according to Enviroment Ministerial decree (KepMenLH ) number 51 of 2004 and applied by NOAA 1999 does not exceed the quality standard, that meant that the Perna viridis has been contaminated by metal Pb it is controversial with the above sentence and Cd. It concluded that the metal content of Pb and Cd in Perna viridis tissue exceeds the quality standard, so it is not suitable to be consumed, especially in high quantity

  12. Simulation of multiple scattering background in heavy ion backscattering spectrometry

    International Nuclear Information System (INIS)

    Li, M.M.; O'Connor, D.J.

    1999-01-01

    With the development of heavy ion backscattering spectrometry (HIBS) for the detection of trace quantities of heavy-atom impurities on Si surfaces, it is necessary to quantify the multiple scattering contribution to the spectral background. In the present work, the Monte Carlo computer simulation program TRIM has been used to study the backscattering spectrum and the multiple scattering background features for heavy ions C, Ne, Si, Ar and Kr impinging on four types of targets: (1) a single ultra-thin (free standing) Au film of 10 A thickness, (2) a 10 A Au film on a 50 A Si surface, (3) a 10 A Au film on an Si substrate (10 000 A), and (4) a thick target (10 000 A) of pure Si. The ratio of the signal from the Au thin layer to the background due to multiple scattering has been derived by fitting the simulation results. From the simulation results, it is found that the Au film contributes to the background which the Si plays a role in developing due to the ion's multiple scattering in the substrate. Such a background is generated neither by only the Au thin layer nor by the pure Si substrate independently. The corresponding mechanism of multiple scattering in the target can be explained as one large-angle scattering in the Au layer and subsequently several small angle scatterings in the substrate. This study allows an appropriate choice of incident beam species and energy range when the HIBS is utilized to analyse low level impurities in Si wafers

  13. Electronic structure of super heavy atoms revisited

    International Nuclear Information System (INIS)

    Gitman, D M; Levin, A D; Tyutin, I V; Voronov, B L

    2013-01-01

    The electronic structure of an atom with Z ⩽ Z c = 137 can be described by the Dirac equation with the Coulomb field of a point charge Ze. It was believed that the Dirac equation with Z > Z c poses difficulties because the formula for the lower energy level of the Dirac Hamiltonian formally gives imaginary eigenvalues. But a strict mathematical consideration shows that difficulties with the electronic spectrum for Z > Z c do not arise if the Dirac Hamiltonian is correctly defined as a self-adjoint operator. In this paper, we briefly summarize the main physical results of that consideration in a form suitable for physicists with some additional new details and numerical calculations of the electronic spectra. (comment)

  14. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jian, E-mail: zhaojian0209@aliyun.com [Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088 (China); State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China); He, Man-Chao [State Key Laboratory of Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083 (China)

    2014-10-30

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail.

  15. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(0 0 1) surface

    International Nuclear Information System (INIS)

    Zhao, Jian; He, Man-Chao

    2014-01-01

    Highlights: • We investigated the adsorption of Cd, Cu, Hg, and Ni(II) on kaolinite(0 0 1) surface. • The adsorption capabilities of the kaolinite for HM atoms were Ni > Cu > Cd > Hg(II). • The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms. • The adsorption energy decreases with the coverage for Ni(II) atoms. - Abstract: Heavy metal pollution is currently of great concern because it has been recognized as a potential threat to air, water, and soil. Adsorption was one of the most popular methods for the removal of heavy metal. The adsorption of heavy metal Cd, Cu, Hg, and Ni(II) atoms on the hydroxylated (0 0 1) surface of kaolinite was investigated using density-functional theory within the generalized gradient approximation and a supercell approach. The coverage dependence of the adsorption structures and energetics were systematically studied for a wide range of coverage Θ [from 0.11 to 1.0 monolayers (ML)] and adsorption sites. The most stable among all possible adsorption sites for Cd(II) atom was the two-fold bridge site followed by the one-fold top site, and the top site was the most favorite adsorption site for Cu and Ni(II) atoms, while the three-fold hollow site was the most stable adsorption site for Hg(II) atom followed by the two-fold bridge site. The adsorption energy increases with the coverage for Cd, Cu, and Hg(II) atoms, thus indicating the higher stability of surface adsorption and a tendency to the formation of adsorbate islands (clusters) with increasing the coverage. However, the adsorption energy of Ni(II) atoms decreases when increasing the coverage. The adsorption capabilities of the kaolinite clay for the heavy metal atoms were in the order of Ni > Cu > Cd > Hg(II). The other properties of the Cd, Cu, Hg, and Ni(II)/kaolinite(0 0 1) system including the different charge distribution, the lattice relaxation, and the electronic density of states were also studied and discussed in detail

  16. Atomic and molecular physics of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Joachain, C.J.; Post, D.E.

    1983-01-01

    This book attempts to provide a comprehensive introduction to the atomic and molecular physics of controlled thermonuclear fusion, and also a self-contained source from which to start a systematic study of the field. Presents an overview of fusion energy research, general principles of magnetic confinement, and general principles of inertial confinement. Discusses the calculation and measurement of atomic and molecular processes relevant to fusion, and the atomic and molecular physics of controlled thermonuclear research devices. Topics include recent progress in theoretical methods for atomic collisions; current theoretical techniques for electron-atom and electronion scattering; experimental aspects of electron impact ionization and excitation of positive ions; the theory of charge exchange and ionization by heavy particles; experiments on electron capture and ionization by multiply charged ions; Rydberg states; atomic and molecular processes in high temperature, low-density magnetically confined plasmas; atomic processes in high-density plasmas; the plasma boundary region and the role of atomic and molecular processes; neutral particle beam production and injection; spectroscopic plasma diagnostics; and particle diagnostics for magnetic fusion experiments

  17. Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution.

    Science.gov (United States)

    Poo, Kyung-Min; Son, Eun-Bi; Chang, Jae-Soo; Ren, Xianghao; Choi, Yun-Jung; Chae, Kyu-Jung

    2018-01-15

    For the purpose of reusing wasted marine macro-algae generated during cultivation, harvesting, processing and selling processes, biochars derived from Saccharina japonica (known as kelp) and Sargassum fusiforme (known as hijikia) were characterized and their removal capacities for Cu, Cd, and Zn in aqueous solution were assessed. Feedstocks, S. japonica, S. fusiforme, and also pinewood sawdust as a control, were pyrolyzed at 250, 400, 500, 600 and 700 °C. In evaluating heavy metal removal capacities, SJB (S. japonica biochar) showed the best performance, with removal efficiencies of more than 98% for the three heavy metals when pyrolyzed at over 400 °C. SFB (S. fusiforme biochar) also showed good potential as an adsorbent, with removal efficiencies for the three heavy metals of more than 86% when pyrolyzed at over 500 °C. On the contrary, the maximum removal efficiencies of PSB (pinewood sawdust biochar) were 81%, 46%, and 47% for Cu, Cd, and Zn, respectively, even at 700 °C, the highest pyrolysis temperature. This demonstrates that marine macro-algae were advantageous in terms of production energy for removing heavy metals even at relatively low pyrolysis temperatures, compared with PSB. The excellent heavy metal adsorption capacities of marine macro-algae biochars were considered due to their higher pH and more oxygen-containing functional groups, although the specific surface areas of SJB and SFB were significantly lower than that of PSB. This research confirmed that the use of marine macro-algae as a heavy metal adsorbent was suitable not only in the removal of heavy metals, but also in terms of resource recycling and energy efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Heavy chain only antibodies

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moein; Rahbarizadeh, Fatemeh; Ahmadvand, Davoud

    2013-01-01

    Unlike conventional antibodies, heavy chain only antibodies derived from camel contain a single variable domain (VHH) and two constant domains (CH2 and CH3). Cloned and isolated VHHs possess unique properties that enable them to excel conventional therapeutic antibodies and their smaller antigen...

  19. Future Perspectives for the Application of Low Temperature Detectors in Heavy Ion Physics

    International Nuclear Information System (INIS)

    Egelhof, P.; Kraft-Bermuth, S.

    2009-01-01

    Calorimetric low temperature detectors have the potential to become powerful tools for applications in many fields of heavy ion physics. A brief overview of heavy ion physics is given, and the next generation heavy ion facility FAIR is described with a special emphasis on the potential advantage of Low Temperature Detectors (LTDs) for applications in heavy ion physics. For prototype LTDs for the energy sensitive detection of heavy ions excellent results with respect to energy resolution down to δE/E = 1-2x10 -3 for a wide range of incident energies, and with respect to other detector properties, such as energy linearity with no indication of pulse height defects even for the heaviest ions, have been obtained. In addition, prototype detectors for hard X-rays have shown energy resolutions down to δE = 30-40eV at 60 keV. Consequently, both detector schemes have already been successfully used for first experiments. At present, the design and setup of large solid angle detector arrays is in progress. With the already achieved performance, LTDs promise a large potential for applications in atomic and nuclear heavy ion physics. A brief overview of prominent examples, including high-resolution nuclear spectroscopy, nuclear structure studies with radioactive beams, superheavy element research, as well as high-resolution atomic spectroscopy on highly charged ions and tests of QED in strong electromagnetic fields is presented.

  20. Deformation effects in the heavy ion quarter-point angle

    International Nuclear Information System (INIS)

    Almeida, F.I.A. de; Hussein, M.S.

    1984-01-01

    The effects of static and dynamic deformation on the heavy-ion elastic scattering quarter-point angle are discussed and analyzed in the sudden approximation. Simple expressions are derived within the Fresnel model and applications to several heavy-ion systems are presented. (Author) [pt

  1. Single photon transport by a moving atom through sub-wavelength hole

    International Nuclear Information System (INIS)

    Afanasiev, A.E.; Melentiev, P.N.; Kuzin, A.A.; Kalatskiy, A.Yu.; Balykin, V.I.

    2017-01-01

    The results of investigation of photon transport through the subwavelength hole in the opaque screen by using single neutral atom are represented. The basis of the proposed and implemented method is the absorption of a photon by a neutral atom immediately before the subwavelength aperture, traveling of the atoms through the hole and emission of a photon on the other side of the screen. Realized method is the alternative approach to existing for photon transport through a subwavelength aperture: 1) self-sustained transmittance of a photon through the aperture according to the Bethe’s model; 2) extra ordinary transmission because of surface-plasmon excitation.

  2. Correlation effects in high-Tc superconductors and heavy fermion compounds

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.

    1993-10-01

    This paper describes certain aspects of Highly Correlated Systems (HCS) such as high Tc superconductors (HTSC) and some new class of Heavy Fermion (HF) systems which have been studied recently. The problem is discussed on how the charge and spin degrees of freedom participate in the specific character of superconductivity in the copper oxides and competition of the magnetism and Kondo screening in heavy fermions. The electronic structure and possible superconducting mechanisms of HTSC compounds are discussed. The similarity and dissimilarity with HF compounds is pointed out. It is shown that the spins and carriers in the copper oxides are coupled in a very nontrivial way in order to introduce the discussion and the comparison of the Emery model, the t - J-model and the Kondo-Heisenberg model. It concerns attempts to derive from fundamental multi-band Hamiltonian the reduced effective Hamiltonians to extract and separate the relevant low-energy physics. A short review of the arguments which seem to support the spin-polaron pairing mechanism in HTSC are presented. Many other topics like the idea of mixed valence states in oxides, the role of charge transfer (CT) excitations, phase separation, self-consistent nonperturbative technique, etc. are also discussed. (author). 161 refs

  3. Atomic Parity Violation Overview and Perspectives

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Optical experiments have demonstrated cases in which mirror symmetry in stable atoms is broken during absorption or emission of light. Such results are in conflict with standard electromagnetic (EM) theory, but can be explained within the unified electroweak theory. Their interpretation is based on exchanges of virtual weak neutral Z_0 bosons between the electrons and the atomic nucleus. These effects were predicted to increase in heavy atoms a little faster than the cube of the atomic number. Moreover, in a highly forbidden transition, like the 6S-7S transition in cesium, the EM interaction is suppressed, leaving the Z_0 exchange a chance to show up. For achieving the determination of the Cs nucleus weak charge, Q_W(Cs), the basic experimental parameter playing in Z_0, exchange the same role as the nuclear charge in the Coulomb interaction, both experimental and theoretical hurdles had to be overcome: first, the excitation and detection of an atomic line with a transition rate about 10^{14} times less than a...

  4. Department of Atomic Energy: Annual report, 1983-84

    International Nuclear Information System (INIS)

    1984-01-01

    The annual report of the Department of Atomic Energy for the financial year 1983-84 describes its activities under the headings: Nuclear Power, Research and Development, Public Sector Undertakings, and Other Activities. The report surveys: (1) the performance of nuclear power plants at Tarapur, Kota and Kalpakkam, heavy water plants, fuel fabrication and reprocessing plants, and waste management facilities, (2) the research and development activities of Bhabha Atomic Research Centre at Bombay and its constituent units at various locations in the country, Reactor Research Centre at Kalpakkam, the aided institutes, namely, Tata Institute of Fundamental Research and Tata Memorial Centre, both at Bombay, and Saha Institute of Nuclear Physics at Calcutta, (3) performance of public sector undertakings: Indian Rare Earths Ltd., Uranium Corporation of India Ltd., and Electronics Corporation of India Ltd., (4) progress of nuclear power projects at Narora and Kakrapar, Orissa Sand Complex Project, MHD project at Tiruchirapalli, DHRUVA (formerly known as R-5) project at Bombay, Fast Breeder Test Reactor and 500 MW Prototype Fast Breeder Reactor projects at Kalpakkam, and heavy water projects at Thal-Vaishet and Manuguru, and (5) other activities including technology transfer; training; service to industry, agriculture and medicine in use of radioisotopes and radiation, export of radioisotopes, allied products and nuclear instruments; international relations; countrywide radiation safety programme, exploration of atomic minerals; information and publicity etc. An Atomic Energy Regulatory Board was established during the report year for the special purpose of carrying out regulatory and safety functions specified in the Atomic Energy Act of the Government of India. (M.G.B.)

  5. Ionization of heavy targets by impact of relativistic projectiles

    International Nuclear Information System (INIS)

    Deco, G.R.; Fainstein, P.D.; Comision Nacional de Energia Atomica, San Carlos de Bariloche; Rivarola, R.D.

    1988-01-01

    Electron ejection from atomic targets by impact of bare heavy projectiles at relativistic collision energies is studied theoretically. First-order Born calculations are presented by using initial Darwin and final Sommerfeld-Maue wavefunctions. Comparisons with other calculations and experimental data are given. (orig.)

  6. Heavy metal hazards of Nigerian herbal remedies

    International Nuclear Information System (INIS)

    Obi, E.; Akunyili, Dora N.; Ekpo, B.; Orisakwe, Orish E.

    2006-01-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO 3 .The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies

  7. Heavy metal hazards of Nigerian herbal remedies

    Energy Technology Data Exchange (ETDEWEB)

    Obi, E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria); Akunyili, Dora N. [National Agency of Food and Drug Administration and Control (NAFDAC), Lagos (Nigeria); Ekpo, B. [Department of Biochemistry, College of Medical Sciences, Abia State University, Uturu (Nigeria); Orisakwe, Orish E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria)]. E-mail: eorish@yahoo.com

    2006-10-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO{sub 3}.The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies.

  8. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.

    Science.gov (United States)

    Meers, E; Ruttens, A; Hopgood, M; Lesage, E; Tack, F M G

    2005-10-01

    Remediation of soil pollution is one of the many current environmental challenges. Anthropogenic activity has resulted in the contamination of extended areas of land, the remediation of which is both invasive and expensive by conventional means. Phytoextraction of heavy metals from contaminated soils has the prospect of being a more economic in situ alternative. In addition, phytoextraction targets ecotoxicologically the most relevant soil fraction of these metals, i.e. the bioavailable fraction. Greenhouse experiments were carried out to evaluate the potential of four high biomass crop species in their potential for phytoextraction of heavy metals, with or without with the use of soil amendments (EDTA or EDDS). A calcareous dredged sediment derived surface soil, with high organic matter and clay content and moderate levels of heavy metal pollution, was used in the experiments. No growth depression was observed in EDTA or EDDS treated pots in comparison to untreated controls. Metal accumulation was considered to be low for phytoextraction purposes, despite the use of chelating agents. The low observed shoot concentrations of heavy metals were attributed to the low phytoavailability of heavy metals in this particular soil substrate. The mobilising effects induced by EDTA in the soil were found to be too long-lived for application as a soil amendment in phytoextraction. Although EDDS was found to be more biodegradable, higher effect half lives were observed than reported in literature or observed in previous experiments. These findings caution against the use of any amendment, biodegradable or otherwise, without proper investigation of its effects and the longevity thereof.

  9. Laser cooling of neutral atoms

    International Nuclear Information System (INIS)

    1993-01-01

    A qualitative description of laser cooling of neutral atoms is given. Two of the most important mechanisms utilized in laser cooling, the so-called Doppler Cooling and Sisyphus Cooling, are reviewed. The minimum temperature reached by the atoms is derived using simple arguments. (Author) 7 refs

  10. Novel thiosalicylate-based ionic liquids for heavy metal extractions

    Energy Technology Data Exchange (ETDEWEB)

    Leyma, Raphlin; Platzer, Sonja [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria); Jirsa, Franz [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria); Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg (South Africa); Kandioller, Wolfgang, E-mail: wolfgang.kandioller@univie.ac.at [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria); Krachler, Regina; Keppler, Bernhard K. [Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 42, A-1090 Vienna (Austria)

    2016-08-15

    Highlights: • Six thiosalicylate-based ammonium and phosphonium ionic liquids (ILs) were newly synthesized. • ILs showed good extraction of cadmium, copper, and zinc. • Phosphonium ILs showed better extraction efficiencies than their ammonium counterparts. - Abstract: This study aims to develop novel ammonium and phosphonium ionic liquids (ILs) with thiosalicylate (TS) derivatives as anions and evaluate their extracting efficiencies towards heavy metals in aqueous solutions. Six ILs were synthesized, characterized, and investigated for their extracting efficacies for cadmium, copper, and zinc. Liquid-liquid extractions of Cu, Zn, or Cd with ILs after 1–24 h using model solutions (pH 7; 0.1 M CaCl{sub 2}) were assessed using flame atomic absorption spectroscopy (F-AAS). Phosphonium-based ILs trihexyltetradecylphosphonium 2-(propylthio)benzoate [P{sub 66614}][PTB] and 2-(benzylthio)benzoate [P{sub 66614}][BTB] showed best extraction efficiency for copper and cadmium, respectively and zinc was extracted to a high degree by [P{sub 66614}][BTB] exclusively.

  11. Electrodialytic Separation of Phosphorus and Heavy Metals from Two Types of Sewage Sludge Ash

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2014-01-01

    of P and heavy metals is required. The present work is an experimental screening of a new combination of acid extraction and electrodialysis–electrodialytic separation (EDS) for simultaneous P recovery and removal of heavy metals. Experiments were conducted with two different ashes; rich in Fe or Al...

  12. Atoms, radiation, and radiation protection

    International Nuclear Information System (INIS)

    Turner, J.E.

    1986-01-01

    This book describes basic atomic and nuclear structure, the physical processes that result in the emission of ionizing radiations, and external and internal radiation protection criteria, standards, and practices from the standpoint of their underlying physical and biological basis. The sources and properties of ionizing radiation-charged particles, photons, and neutrons-and their interactions with matter are discussed in detail. The underlying physical principles of radiation detection and systems for radiation dosimetry are presented. Topics considered include atomic physics and radiation; atomic structure and radiation; the nucleus and nuclear radiation; interaction of heavy charged particles with matter; interaction of beta particles with matter; phenomena associated with charged-particle tracks; interaction of photons with matter; neutrons, fission and criticality; methods of radiation detection; radiation dosimetry; chemical and biological effects of radiation; radiation protection criteria and standards; external radiation protection; and internal dosimetry and radiation protection

  13. Comparison of atomic-level and coarse-grained models for liquid hydrocarbons from molecular dynamics configurational entropy estimates

    NARCIS (Netherlands)

    Baron, R; de Vries, AH; Hunenberger, PH; van Gunsteren, WF

    2006-01-01

    Molecular liquids can be modeled at different levels of spatial resolution. In atomic-level (AL) models, all (heavy) atoms can be explicitly simulated. In coarse-grained (CG) models, particles (beads) that represent groups of covalently bound atoms are used as elementary units. Ideally, a CG model

  14. Heavy metals in sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, S.A. (Millersville State College, PA); Frazier, J.G.

    1982-07-01

    Bone and barnacle samples from sea turtles (Hepidochelys olivacea) in Ecuador were analyzed for manganese, iron, copper, zinc and lead. Analysis was performed by flame atomic absorption spectroscopy. Results show that zinc and iron levels in bone and barnacles were greater than copper, manganese and lead levels. The significance of the findings is difficult to interpret because so little is known about baseline levels and physiological effects of heavy metals in the animals. (JMT)

  15. The effect of various quantum mechanically derived partial atomic charges on the bulk properties of chloride-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Zolghadr, Amin Reza, E-mail: arzolghadr@shirazu.ac.ir [Department of Chemistry, Shiraz University, Shiraz 71946-84795 (Iran, Islamic Republic of); Ghatee, Mohammad Hadi [Department of Chemistry, Shiraz University, Shiraz 71946-84795 (Iran, Islamic Republic of); Moosavi, Fatemeh [Department of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779 (Iran, Islamic Republic of)

    2016-08-22

    Partial atomic charges using various quantum mechanical calculations for [C{sub n}mim]Cl (n = 1, 4) ionic liquids (ILs) are obtained and used for development of molecular dynamics simulation (MD) force fields. The isolated ion pairs are optimized using HF, B3LYP, and MP2 methods for electronic structure with 6-311++G(d,p) basis set. Partial atomic charges are assigned to the atomic center with CHELPG and NBO methods. The effect of these sets of partial charges on the static and dynamic properties of ILs is evaluated by performing a series of MD simulations and comparing the essential thermodynamic properties with the available experimental data and available molecular dynamics simulation results. In contrast to the general trends reported for ionic liquids with BF{sub 4}, PF{sub 6}, and iodide anions (in which restrained electrostatic potential (RESP) charges are preferred), partial charges derived by B3LYP-NBO method are relatively good in prediction of the structural, dynamical, and thermodynamic energetic properties of the chloride based ILs.

  16. Results of lung cancer screening in atomic bomb survivors

    International Nuclear Information System (INIS)

    Yamashita, Masayo; Kato, Hironari; Inoue, Noriko; Naito, Kumiko; Kawanishi, Masahiro; Kira, Sakurako; Sasaki, Hideo; Ishida, Hajime; Maeda, Ryo

    2012-01-01

    Risk of lung cancer in A-bomb survivors is reportedly increased. The screening in the title has been conducted since 1988 and this report summarizes its results of the latest 6-year term (2004-2009). The total number of subjects who visited authors' facility for the screening in the period was 39,147 men (average age 70.6 y) and 45,351 women (71.8 y), of the age range of 60-89 y. The screening results of the cancer were examined concerning with sex, age and exposure situation. As well, the relationship between the found cancer incidence and exposure in never, formerly and currently smoking subjects were also examined. Exposure situation was divided in 3 groups of the exposure by entrance in the city/by other reasons, within 2 km close (Close, C) to, and out of 2.1 km afar (Distant, D) from, the city. Statistic analysis was performed by Chi-squire and/or Fisher's exact test. The index of positive finding in the screening of the lung cancer per 1,000 subjects was the highest in C men of ages 70s, 2.88 subjects, which was statistically significant from 0.85 in D men of the same generation. In current smokers, the index 5.40 in C men of ages 70s was significantly higher than 0.90 in D men of the same generation. Overall, positive results tended to be high in survivors of C regardless to sex and smoking, and was significantly high in current smokers of C as above, both implying the particular necessity of promotion to stop smoking in survivors. (T.T.)

  17. Effective-field theories for heavy quarkonium

    International Nuclear Information System (INIS)

    Brambilla, Nora; Pineda, Antonio; Soto, Joan; Vairo, Antonio

    2005-01-01

    This article reviews recent theoretical developments in heavy-quarkonium physics from the point of view of effective-field theories of QCD. We discuss nonrelativistic QCD and concentrate on potential nonrelativistic QCD. The main goal will be to derive Schroedinger equations based on QCD that govern heavy-quarkonium physics in the weak- and strong-coupling regimes. Finally, the review discusses a selected set of applications, which include spectroscopy, inclusive decays, and electromagnetic threshold production

  18. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Cohen, D.D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P.; Walker, S. [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H.; Hult, M. [Lund Univ. (Sweden); Oestling, M.; Zaring, C. [Royal Inst. of Tech., Stockholm (Sweden)

    1993-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  19. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N; Cohen, D D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P; Walker, S [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H; Hult, M [Lund Univ. (Sweden); Oestling, M; Zaring, C [Royal Inst. of Tech., Stockholm (Sweden)

    1994-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  20. The electron screening puzzle and nuclear clustering

    International Nuclear Information System (INIS)

    Spitaleri, C.; Bertulani, C.A.; Fortunato, L.; Vitturi, A.

    2016-01-01

    Accurate measurements of nuclear reactions of astrophysical interest within, or close to, the Gamow peak show evidence of an unexpected effect attributed to the presence of atomic electrons in the target. The experiments need to include an effective “screening” potential to explain the enhancement of the cross sections at the lowest measurable energies. Despite various theoretical studies conducted over the past 20 years and numerous experimental measurements, a theory has not yet been found that can explain the cause of the exceedingly high values of the screening potential needed to explain the data. In this letter we show that instead of an atomic physics solution of the “electron screening puzzle”, the reason for the large screening potential values is in fact due to clusterization effects in nuclear reactions, in particular for reaction involving light nuclei.

  1. The electron screening puzzle and nuclear clustering

    Energy Technology Data Exchange (ETDEWEB)

    Spitaleri, C., E-mail: spitaleri@lns.infn.it [Department of Physics and Astronomy, University of Catania, Catania (Italy); INFN-Laboratori Nazionali del Sud, Catania (Italy); Bertulani, C.A. [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429 (United States); Department of Physics and Astronomy, Texas A& M University, College Station, TX 77843 (United States); Fortunato, L.; Vitturi, A. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, via Marzolo, 8, I-35131 Padova (Italy); INFN, Sezione di Padova, via Marzolo, 8, I-35131 Padova (Italy)

    2016-04-10

    Accurate measurements of nuclear reactions of astrophysical interest within, or close to, the Gamow peak show evidence of an unexpected effect attributed to the presence of atomic electrons in the target. The experiments need to include an effective “screening” potential to explain the enhancement of the cross sections at the lowest measurable energies. Despite various theoretical studies conducted over the past 20 years and numerous experimental measurements, a theory has not yet been found that can explain the cause of the exceedingly high values of the screening potential needed to explain the data. In this letter we show that instead of an atomic physics solution of the “electron screening puzzle”, the reason for the large screening potential values is in fact due to clusterization effects in nuclear reactions, in particular for reaction involving light nuclei.

  2. Coulomb ionization of inner shells by heavy charged particles

    International Nuclear Information System (INIS)

    Lapicki, G.

    1975-01-01

    The theory of inner-shell Coulomb ionization by heavy charged particles, of atomic number small compared to the target atomic number, is developed through the extension of work by Brandt and his coworkers for K shells to L shells. In slow collisions relative to the characteristic times of the inner shell electrons, the quantum-mechanical predictions in the plane-wave Born approximation (PWBA) can exceed experimental cross sections by orders of magnitude. The effects of the perturbation of the atom by and the Coulomb deflection of the particle during collisions are included in the theory. The perturbed atomic states amount to a binding of the inner-shell electrons to the moving particle in slow collisions, and to a polarization of the inner shells by the particle passing at large impact parameters during nonadiabatic collisions. These effects, not contained in the PWBA, are treated in the framework of the perturbed stationary state (PSS) theory for slow collisions and in terms of the harmonic oscillator model of Ashley, Brandt, and Ritchie for stopping powers in fast collisions. The effect of the Coulomb deflection of the particle in the field of the target nucleus on the cross sections is incorporated in the semiclassical approximation of Bang and Hansteen. Except for the lightest target atoms, the contribution of electron capture by the particles to inner-shell ionizations is shown to be negligible. The theory as developed earlier for the K shell, and here for L shells, agrees well with the vast body of experimental data on inner-shell Coulomb ionization by heavy charged particles

  3. Determination of some soft drink constituents and contamination by some heavy metals in Nigeria

    Directory of Open Access Journals (Sweden)

    Engwa Azeh Godwill

    2015-01-01

    Full Text Available Soft drinks are consumed daily in Nigeria due to its affordability, characteristic taste, and thirst quenching potential. However, the high demand may compromise the quality of production with possible contamination of heavy metals which have shown to cause intoxication and death in humans. This study evaluated some constituents of twenty-six soft drinks in Nigeria and investigated the presence of some heavy metal contaminants. The soft drinks were screened for the presence of sugar, carbon dioxide, phosphate and alcohol as well as the pH and acidity determined. The level of cadmium, mercury and lead were determined using atomic absorption spectrophotometer. The study showed the presence of sugar, carbon dioxide, phosphate, and alcohol in the soft drinks. The soft drinks were acidic in nature, pH ranging from 3 to 5 with a mean of 3.6 and the acid concentration was relatively low between 3 and 12 g/L with a mean of 8.1 g/L. Lead was present in all the samples ranging from 0.17 to 3.39 mg/L with a mean of 0.8, mercury was present in 22 samples ranging from 0.29 to 11.32 mg/L with a mean of 2.08 mg/L while cadmium was present only in one sample (0.149 mg/L. When compared to EPA, WHO and NIS standards, the levels of the heavy metal contaminants were above the tolerated limits for good quality drinking water in most samples. These results suggest that soft drinks in Nigeria may be contaminated with heavy metals which constitute a major public health problem. Thus, quality control is recommended during the production process especially at the stages of sterilization and purification.

  4. ELECTRON-CAPTURE IN HIGHLY-CHARGED ION-ATOM COLLISIONS

    NARCIS (Netherlands)

    MORGENSTERN, R

    1993-01-01

    An attempt is made to identify the most important mechanisms responsible for the rearrangement of electrons during collisions between multiply charged ions and atoms at keV energies. It is discussed to which extent the influence of binding energy, angular momentum of heavy particles and electrons,

  5. [Mixed valent and heavy ferimons and related systems

    International Nuclear Information System (INIS)

    Schlottmann, P.

    1991-01-01

    The main objective of the project is to gain a better understanding of highly correlated fermion systems. High correlations appear in a variety of solid state phenomena: mixed-valence and heavy-fermions or Kondo systems, superfluid and normal He 3 , high-temperature superconductors, magnetism in low dimensions, quantum Hall effect, spin-fluctuations in transition metals, giant magnetic moments, tunneling of an atom interacting with a degenerate electron gas, quantum dissipative systems, organic superconductors, etc. The primary focus of the work is on valence mixing and heavy fermions, but elated highly correlated systems are also studied. In this paper a brief summary of the achievements grouped under four headings, namely (1) heavy fermions-mixed valence-Kondo, (2) magnetism in low dimensions, (3) narrow band phenomena/Hubbard model and (4) collaborations with experimentalists

  6. Threshold law for electron-atom impact ionization

    International Nuclear Information System (INIS)

    Temkin, A.

    1982-01-01

    The threshold law for electron-atom ionization is derived on the basis of the Coulomb-dipole theory. The result is a modulated quasilinear law for the yield: QproportionalE(lnE) -2 [1+C sin(αlnE+μ)]. The derivation depends on a more accurate description of the dipole moment seen by the outer electron as the distance of the inner electron from the nucleus. The derivation also implies Capprox. =α -1 , and it also suggests that α is large. The same law also applies to positron-atom impact ionization

  7. Designing coarse grained-and atom based-potentials for protein-protein docking

    Directory of Open Access Journals (Sweden)

    Tobi Dror

    2010-11-01

    Full Text Available Abstract Background Protein-protein docking is a challenging computational problem in functional genomics, particularly when one or both proteins undergo conformational change(s upon binding. The major challenge is to define a scoring function soft enough to tolerate these changes and specific enough to distinguish between near-native and "misdocked" conformations. Results Using a linear programming (LP technique, we developed two types of potentials: (i Side chain-based and (ii Heavy atom-based. To achieve this we considered a set of 161 transient complexes and generated a large set of putative docked structures (decoys, based on a shape complementarity criterion, for each complex. The demand on the potentials was to yield, for the native (correctly docked structure, a potential energy lower than those of any of the non-native (misdocked structures. We show that the heavy atom-based potentials were able to comply with this requirement but not the side chain-based one. Thus, despite the smaller number of parameters, the capability of heavy atom-based potentials to discriminate between native and "misdocked" conformations is improved relative to those of the side chain-based potentials. The performance of the atom-based potentials was evaluated by a jackknife test on a set of 50 complexes taken from the Zdock2.3 decoys set. Conclusions Our results show that, using the LP approach, we were able to train our potentials using a dataset of transient complexes only the newly developed potentials outperform three other known potentials in this test.

  8. Proposal of a simple screening method for a rapid preliminary evaluation of ''heavy metals'' mobility in soils of contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Valentina; Chiusolo, Francesca; Cremisini, Carlo [ENEA - Italian Agency for New Technologies, Energy and Environment, Rome (Italy). Section PROTCHIM

    2010-09-15

    Risks associated to ''heavy metals'' (HM) soil contamination depend not only on their total content but, mostly, on their mobility. Many extraction procedures have been developed to evaluate HM mobility in contaminated soils, but they are generally time consuming (especially the sequential extraction procedures (SEPs)) and consequently applicable on a limited number of samples. For this reason, a simple screening method, applicable even ''in field'', has been proposed in order to obtain a rapid evaluation of HM mobility in polluted soils, mainly focused on the fraction associated to Fe and Mn oxide/hydroxides. A buffer solution of trisodium citrate and hydroxylamine hydrochloride was used as extractant for a single-step leaching test. The choice of this buffered solution was strictly related to the possibility of directly determining, via titration with dithizone (DZ), the content of Zn, Cu, Pb and Cd, which are among the most representative contaminants in highly mineralised soils. Moreover, the extraction solution is similar, aside from for the pH value, which is the one used in the BCR SEP second step. The analysis of bivalents ions through DZ titration was exploited in order to further simplify and quicken the whole procedure. The proposed method generically measures, in few minutes, the concentration of total extractable ''heavy metals'' expressed as molL{sup -1} without distinguishing between elements. The proposed screening method has been developed and applied on soil samples collected from rural, urban and mining areas, representing different situation of soil contamination. Results were compared with data obtained from the BCR procedure. The screening method demonstrated to be a reliable tool for a rapid evaluation of metals mobility. Therefore, it could be very useful, even ''in field'', both to guide the sampling activity on site and to monitor the efficacy of the subsequent

  9. Experiments in atomic and applied physics using synchrotron radiation

    International Nuclear Information System (INIS)

    Jones, K.W.

    1987-01-01

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs

  10. International bulletin on atomic and molecular data for fusion. No. 52

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, J A [ed.

    1997-08-01

    This bulletin is published by the International Atomic Energy Agency to provide atomic and molecular data relevant to fusion research and technology. In part 1 the indexed papers are listed separately for (i) structure and spectra (energy levels, wavelengths, transition probabilities, oscillator strengths, interatomic potentials); (ii) atomic and molecular collisions (photon collisions, electron collisions, heavy-particle collisions); and (iii) surface interactions (sputtering, chemical reactions, trapping and detrapping, adsorption, desorption, reflection, and secondary electron emission). Part 2 contains the bibliographic data, essentially for the above listed topics.

  11. International bulletin on atomic and molecular data for fusion. No. 52

    International Nuclear Information System (INIS)

    Stephens, J.A.

    1997-08-01

    This bulletin is published by the International Atomic Energy Agency to provide atomic and molecular data relevant to fusion research and technology. In part 1 the indexed papers are listed separately for (i) structure and spectra (energy levels, wavelengths, transition probabilities, oscillator strengths, interatomic potentials); (ii) atomic and molecular collisions (photon collisions, electron collisions, heavy-particle collisions); and (iii) surface interactions (sputtering, chemical reactions, trapping and detrapping, adsorption, desorption, reflection, and secondary electron emission). Part 2 contains the bibliographic data, essentially for the above listed topics

  12. Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan

    2013-01-01

    In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of the running coupling is small and their interactions should be describable within perturbative QCD (pQCD). This work focuses on open heavy flavor, but also addresses the suppression of light parton jets, in particular to highlight differences due to the mass. For light partons, radiative processes are the dominant contribution to their energy loss. For heavy quarks, we show that also binary interactions with a running coupling and an improved Debye screening matched to hard-thermal-loop calculations play an important role. Furthermore, the impact of the mass in radiative interactions, prominently named the dead cone effect, and the interplay with the Landau-Pomeranchuk-Migdal (LPM) effect are studied in great detail. Since the transport model BAMPS has access to all medium properties and the space time information of heavy quarks, it is the ideal tool to study the dissociation and regeneration of J/ψ mesons, which is also investigated in this thesis.

  13. Fragmentation functions of polarized heavy quarkonium

    International Nuclear Information System (INIS)

    Ma, Yan-Qing; Qiu, Jian-Wei; Zhang, Hong

    2015-01-01

    Investigating the production of polarized heavy quarkonia in terms of recently proposed QCD factorization formalism requires the knowledge of a large number of input fragmentation functions (FFs) from a single parton or a heavy quark-antiquark pair to a polarized heavy quarkonium. We study these universal FFs at the input factorization scale μ 0 ≳2m Q , with heavy quark mass m Q , in the framework of nonrelativistic QCD (NRQCD) factorization. We express these FFs in terms of perturbatively calculable coefficients for producing a heavy quark-antiquark pair in all possible NRQCD states, multiplied by corresponding NRQCD long-distance matrix elements for the pair to transmute into a polarized heavy quarkonium. We derive all relevant NRQCD operators for the long-distance matrix elements based on symmetries, and introduce a self-consistent scheme to define them in arbitrary d-dimensions. We compute, up to the first non-trivial order in α s , the perturbative coefficients for producing a heavy quark pair in all possible S-wave and P-wave NRQCD states. We also discuss the role of the polarized FFs in generating QCD predictions for the polarization of J/ψ produced at collider energies.

  14. Cascade processes in kaonic and muonic atoms

    International Nuclear Information System (INIS)

    Faifman, M.P.; Men'shikov, L.I.

    2003-01-01

    Cascade processes in exotic (kaonic and muonic) hydrogen/deuterium have been studied with the quantum-classical Monte Carlo code (QCMC) developed for 'ab initio' - calculations. It has been shown that the majority of kaonic hydrogen atoms during cascade are accelerated to high energies E ∼ 100 eV, which leads to a much lower value for the calculated yields Y of x-rays than predicted by the 'standard cascade model'. The modified QCMC scheme has been applied to the study of the cascade in μp and μd muonic atoms. A comparison of the calculated yields for K-series x-rays with experimental data directly indicates that the molecular structure of the hydrogen target and new types of non-radiative transitions are essential for the light muonic atoms, while they are negligible for heavy (kaonic) atoms. These processes have been considered and estimates of their probabilities are presented. (author)

  15. The relationship between vacuum and atomic collisions in solids

    International Nuclear Information System (INIS)

    Carter, G.; Armour, D.G.

    1980-01-01

    Atomic collision events in solids are frequently stimulated by external irradiation with energetic heavy ions. This requires production, acceleration and manipulation of ion beams in vacuum system with ensuing problems arising in perturbations to ion beam quality from gas phase collisions. In addition the dynamic interaction between the gas phase and any surfaces at which atomic collisions are under investigation can lead to perturbation to the collision events by adsorbed contaminant. This review discusses both gas phase requirements for ion accelerators to minimize deleterious effects and outlines some of the processes which occur in atomic collisions due to the presence of adsorbed impurities. Finally it is shown how certain atomic collision processes involving elastic scattering may be employed to investigate surface adsorption and related effects. (author)

  16. Rate-controlling two-proton transfer coupled with heavy-atom motion in the 2-pyridinone-catalyzed mutarotation of tetramethylglucose. Experimental and calculated deuterium isotope effects

    International Nuclear Information System (INIS)

    Engdahl, K.A.; Bivehed, H.; Ahlberg, P.; Saunders, W.H. Jr.

    1983-01-01

    Primary and secondary deuterium isotope effects have been measured by polarimetry, and primary isotope effects have been calculated for the classical bifunctional catalysis: 2-pyridinone-catalyzed mutarotation of 2,3,4,6-tetra-O-methyl-α-D-glucopyranose (α-TMG) in benzene. From the positively curved plot of the specific rate of epimerization vs. the mole fraction of 2 H in the ''pool'' of OH and NH hydrogens, the isotope effects k/sub HH//k/sub DD/ = 3.66 +/- 0.09, k/sub HH//k/sub DH/ = 1.5, and k/sub HH//k/sub HD/ = 2.4 have been calculated. A secondary isotope effect of 1.14 +/- 0.02 has been measured by using α-TMG and (1- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(l- 2 H)-α-TMG], the synthesis of which is described in detail, together with those for (N- 2 H)-2-pyridinone and (1-O- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(1-O- 2 H)-α-TMG]. The rate data obtained have also been analyzed by fractionation theory, yielding approximately equal fractionation factors (0.5). The interpretation of the results has been assisted by calculations of the primary deuterium isotope effects using the BEBOVIB IV program. Two models involving small and considerable coupling, respectively, of the transferring protons to heavy-atom motion have been considered. In the favored structure for the transition state of the rate-limiting step, two protons are in transit, and their motion is governed either by a potential with a barrier or by one without. Their motion is considerably coupled to the heavy-atom motion (i.e., the breakage of the ring C-O bond), and tunnel corrections to the isotope effects are found to be negligible

  17. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines.

    Science.gov (United States)

    Zhang, Yanfeng; Han, Yuwei; Yang, Jinxi; Zhu, Lingyan; Zhong, Wenjue

    2017-12-01

    The occurrence, toxicities, and ecological risks of five heavy metals (Pb, Cu, Cd, Zn and Ni) in the sediment of Taihu Lake were investigated in this study. To evaluate the toxicities caused by the heavy metals, the toxicities induced by organic contaminants and ammonia in the sediments were screened out with activated carbon and zeolite. The toxicities of heavy metals in sediments were tested with benthic invertebrates (tubificid and chironomid). The correlations between toxicity of sediment and the sediment quality guidelines (SQGs) derived previously were evaluated. There were significant correlations (pheavy metals based on SQGs, indicating that threshold effect level (TEL) and probable effect level (PEL) were reliable to predict the toxicities of heavy metals in the sediments of Taihu Lake. By contrast, the method based on acid volatile sulfides (AVS) and simultaneously extracted metals (SEM), such as ∑SEM/AVS and ∑SEM-AVS, did not show correlations with the toxicities. Moreover, the predictive ability of SQGs was confirmed by a total predicting accuracy of 77%. Ecological risk assessment based on TELs and PELs showed that the contaminations of Pb, Cu, Cd and Zn in the sediments of Taihu Lake were at relatively low or medium levels. The risks caused by heavy metals in the sediments of northern bay of the lake, which received more wastewater discharge from upper stream, were higher than other area of the lake. Copyright © 2017. Published by Elsevier B.V.

  18. Actinide targets for the synthesis of super-heavy elements

    International Nuclear Information System (INIS)

    Roberto, J.B.; Alexander, C.W.; Boll, R.A.; Burns, J.D.; Ezold, J.G.; Felker, L.K.; Hogle, S.L.; Rykaczewski, K.P.

    2015-01-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of "4"8Ca beams on actinide targets. These target materials, including "2"4"2Pu, "2"4"4Pu, "2"4"3Am, "2"4"5Cm, "2"4"8Cm, "2"4"9Cf, and "2"4"9Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including "2"4"9Bk, "2"5"1Cf, and "2"5"4Es are described.

  19. Investigation of polymer derived ceramics cantilevers for application of high speed atomic force microscopy

    Science.gov (United States)

    Wu, Chia-Yun

    High speed Atomic Force Microscopy (AFM) has a wide variety of applications ranging from nanomanufacturing to biophysics. In order to have higher scanning speed of certain AFM modes, high resonant frequency cantilevers are needed; therefore, the goal of this research is to investigate using polymer derived ceramics for possible applications in making high resonant frequency AFM cantilevers using complex cross sections. The polymer derived ceramic that will be studied, is silicon carbide. Polymer derived ceramics offer a potentially more economic fabrication approach for MEMS due to their relatively low processing temperatures and ease of complex shape design. Photolithography was used to make the desired cantilever shapes with micron scale size followed by a wet etching process to release the cantilevers from the substrates. The whole manufacturing process we use borrow well-developed techniques from the semiconducting industry, and as such this project also could offer the opportunity to reduce the fabrication cost of AFM cantilevers and MEMS in general. The characteristics of silicon carbide made from the precursor polymer, SMP-10 (Starfire Systems), were studied. In order to produce high qualities of silicon carbide cantilevers, where the major concern is defects, proper process parameters needed to be determined. Films of polymer derived ceramics often have defects due to shrinkage during the conversion process. Thus control of defects was a central issue in this study. A second, related concern was preventing oxidation; the polymer derived ceramics we chose is easily oxidized during processing. Establishing an environment without oxygen in the whole process was a significant challenge in the project. The optimization of the parameters for using photolithography and wet etching process was the final and central goal of the project; well established techniques used in microfabrication were modified for use in making the cantilever in the project. The techniques

  20. Symplectic Tracking of Multi-Isotopic Heavy-Ion Beams in SixTrack

    CERN Document Server

    Hermes, Pascal; De Maria, Riccardo

    2016-01-01

    The software SixTrack provides symplectic proton tracking over a large number of turns. The code is used for the tracking of beam halo particles and the simulation of their interaction with the collimators to study the efficiency of the LHC collimation system. Tracking simulations for heavy-ion beams require taking into account the mass to charge ratio of each particle because heavy ions can be subject to fragmentation at their passage through the collimators. In this paper we present the derivation of a Hamiltonian for multi-isotopic heavy-ion beams and symplectic tracking maps derived from it. The resulting tracking maps were implemented in the tracking software SixTrack. With this modification, SixTrack can be used to natively track heavy-ion beams of multiple isotopes through a magnetic accelerator lattice.

  1. Screening specifications for Gulf Coast salt domes

    International Nuclear Information System (INIS)

    Brunton, G.D.; Laughon, R.B.; McClain, W.C.

    1978-01-01

    A reconnaissance survey of the salt domes of Mississippi, Louisiana, and east Texas is being planned to identify study areas for potential sites for radioactive waste disposal. Preliminary screening specifications were derived for each of the geological evaluation criteria by application of the significant factors that will have an impact on the reconnaissance survey. The procedure for the derivation of each screening specification is discussed. The screening specifications are the official OWI values to be used for the first-cut acceptance for salt dome study areas along the Gulf Coast. The derivation of the screening specifications is illustrated by (1) a statement of the geological evaluation criterion, (2) a discussion of the pertinent factors affecting the criterion, and (3) the evaluation of the value of the specification

  2. Opto-chemical response of Makrofol-KG to swift heavy ion irradiation

    Indian Academy of Sciences (India)

    transform infrared spectroscopy; atomic force spectroscopy. PACS Nos ... [8–10], electron beam [11], neutrons [12] and heavy ions [13]. The present .... Makrofol detector with proton and Xe ions, respectively and reported that at higher doses.

  3. Total cross section for relativistic positronium interaction with atom

    International Nuclear Information System (INIS)

    Pak, A.S.; Tarasov, A.V.

    1985-01-01

    Total cross sections of interaction of positronium relativistic atoms with atoms are calculated. Calculations are conducted within the framework of potential theory in Born approximaton. Contributions in total cross section of coherent (σsub(coh)) and incoherent (σsub(inc)) parts are analyzed. It is shown that for light elements σsub(inc) value is comparable with σsub(coh), and for heavy ones the ratio σsub(inc)/σsub(coh) sufficiently exceeds Zsup(-1) (Z-charge of the atomic nucleus. Numerical calculation results are presented. A conclusion is made on importance of the coherent part account during the calculation of total cross sections

  4. High-accuracy coupled cluster calculations of atomic properties

    Energy Technology Data Exchange (ETDEWEB)

    Borschevsky, A. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv, Israel and Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0745 Auckland (New Zealand); Yakobi, H.; Eliav, E.; Kaldor, U. [School of Chemistry, Tel Aviv University, 69978 Tel Aviv (Israel)

    2015-01-22

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm{sup −1}, the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues.

  5. High-accuracy coupled cluster calculations of atomic properties

    International Nuclear Information System (INIS)

    Borschevsky, A.; Yakobi, H.; Eliav, E.; Kaldor, U.

    2015-01-01

    The four-component Fock-space coupled cluster and intermediate Hamiltonian methods are implemented to evaluate atomic properties. The latter include the spectra of nobelium and lawrencium (elements 102 and 103) in the range 20000-30000 cm −1 , the polarizabilities of elements 112-114 and 118, required for estimating their adsorption enthalpies on surfaces used to separate them in accelerators, and the nuclear quadrupole moments of some heavy atoms. The calculations on superheavy elements are supported by the very good agreement with experiment obtained for the lighter homologues

  6. Hydrogen atoms can be located accurately and precisely by x-ray crystallography.

    Science.gov (United States)

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-05-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.

  7. Advanced electrolytic cascade process for tritium recovery from irradiated heavy water moderator (Preprint No. PD-15)

    International Nuclear Information System (INIS)

    Ragunathan, P.; Mitra, S.K.; Jain, D.K.; Nayar, M.G.; Ramani, M.P.S.

    1989-04-01

    The paper briefly describes a design study of an electrolytic cascade process plant for enrichment and recovery of tritium from irradiated heavy water moderators from Rajasthan Atomic Power Station Reactors. In direct multistage electrolysis process, tritiated heavy water from the reactor units is fed to the electrolytic cell modules arranged in the form of a cascade where it is enriched and decomposed into O 2 gas stream and D 2 /DT gas stream. The direct electrolysis of tritiated heavy water allows tritium to be concentrated in the aqueous phase. Several stages are used to achieve the necessary enrichment. The cascade plant incorporates the advanced electrolyser technology developed in Bhabha Atomic Research Centre (Bombay) using porous nickel electrodes, capable o f high current density operation at reduced energy consumption for electrolysis. (author). 3 tabs

  8. Electrostatic energy and screened charge interaction near the surface of metals with different Fermi surface shape

    Science.gov (United States)

    Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.

    1980-04-01

    Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.

  9. Heavy metals' data in soils for agricultural activities

    Directory of Open Access Journals (Sweden)

    T.A. Adagunodo

    2018-06-01

    Full Text Available In this article, the heavy metals in soils for agricultural activities were analyzed statistically. Ten (10 soil samples were randomly taken across the agricultural zones in Odo-Oba, southwestern Nigeria. Ten (10 metals; namely: copper (Cu, lead (Pb, chromium (Cr, arsenic (As, zinc (Zn, cadmium (Cd, nickel (Ni, antimony (Sb, cobalt (Co and vanadium (V were determined and compared with the guideline values. When the values were compared with the international standard, none of the heavy metals in the study area exceeded the threshold limit. However, the maximum range of the samples showed that Cr and V exceeded the permissible limit which could be associated with ecological risk. The data can reveal the distributions of heavy metals in the agricultural topsoil of Odo-Oba, and can be used to estimate the risks associated with the consumption of crops grown on such soils. Keywords: Agricultural soils, Heavy metals, Contamination, Environment, Soil screening, Geostatistics

  10. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru.

    Science.gov (United States)

    Arévalo-Gardini, Enrique; Arévalo-Hernández, Cesar O; Baligar, Virupax C; He, Zhenli L

    2017-12-15

    Peru is one of the leading exporters of organic cacao beans in the world. However, the accumulation of heavy metals in cacao beans represents a problem for cocoa bean export and chocolate quality. The aim of this study was to investigate the distribution and accumulation of heavy metals in cacao leaves and cocoa beans in three major cacao growing regions of Peru. The study was conducted in cacao plantations of 10 to 15years old in three regions of Peru: North (Regions of Tumbes, Piura, Cajamarca, and Amazonas); Center (Regions of Huánuco and San Martin) and South (Junin and Cuzco). Samples of leaf and cacao beans were collected from 70 cacao plantations, and the nature of cacao clone or genotype sampled was recorded. The concentrations of heavy metals such as Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn in leaves and beans were determined using atomic absorption spectrophotometer. Overall, concentrations of heavy metals were below the critical limits; however, the presence of high levels of Cd in cacao grown in Amazonas, Piura, and Tumbes regions is of primary concern. Plantations of cacao with different cacao clones show differences in Cd accumulation both in leaves and cocoa beans. Therefore, it is promising to screen low Cd accumulator cacao genotypes for safe production of cacao on lightly to moderately Cd contaminated soils. Also, synergism between Zn and Cd present both in plant and soil suggests that Zn has a direct effect on Cd accumulation in cacao. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Comparison of universal potentials for atomic collisions in solids

    International Nuclear Information System (INIS)

    Cupini, E.; Ventura, A.

    1984-01-01

    Elastic collisions in solid of ions having kinetic energy greater than about ten eV are fairly well described by the binary collision approximation, where screened coulomb potentials are often used. The aim of the present work is to compare calculations based on the Moliere potential and on the more realistic Biersack-Ziegler potential for atomic collisions in solids having an atomic number between Z=6 and Z=79 with experimental data. A reasonable agreement with data can be obtained, in general, by means of both potentials provided that the screening lenght is suitably modified in the Moliere case, while no parameter adjustment is needed in the Biersack-Ziegler potential

  12. Recent heavy-ion results from the LHC and future perspectives

    CERN Document Server

    Mischke, Andre

    2016-01-01

    Strongly interacting matter at high densities and temperatures can be created in high-energy collisions of heavy atomic nuclei. Since 2010, the Large Hadron Collider at CERN provides proton-proton, proton-lead and lead-lead collisions at an unprecedented energy to study the so-called quark-gluon plasma (QGP) state. Several experimental probes have been proposed to determine the properties of the QGP. In this contribution, a selection of recent results from the heavy-ion programme at RHIC and the LHC are reviewed and discussed.

  13. Structure of very heavy few-electron ions - new results from the heavy ion storage ring, ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.; Stoehlker, T.; Kozhuharov, C.; Moshammer, R.; Rymuza, P.; Bosch, F.; Kandler, T.

    1993-08-01

    The heavy ion synchrotron/storage ring facility at GSI, SIS/ESR, provides intense beams of cooled, highly-charged ions up to naked uranium (U 92+ ). By electron capture during ion-atom collisions in the gas target of the ESR or by recombination at ion-electron encounters in the ''electron cooler'' excited states are populated. The detailed structure of very heavy one-, two- and three-electron ions is studied. The different mechanisms leading to the excited states are described, as well as the new experimental tools now available for a detailed spectroscopy of these interesting systems. Special emphasis is given to X-ray transitions to the groundstates in H- and He-like systems. For the heaviest species the groundstate Lambshift can now be probed on an accuracy level of better than 10% using solid-state X-ray detectors. Applying dispersive X-ray analyzing techniques, this accuracy will certainly be improved in future. However, utilizing the dielectronic resonances for a spectroscopy, the structure in Li-like heavy ions can already be probed now on the sub eV level. (orig.)

  14. Liposomal solubilization of new 3-hydroxy-quinolinone derivatives with promising anticancer activity: a screening method to identify maximum incorporation capacity

    DEFF Research Database (Denmark)

    Di Cagno, Massimiliano; Styskala, Jakub; Hlaváč, Jan

    2011-01-01

    Four new 3-hydroxy-quinolinone derivatives with promising anticancer activity could be solubilized using liposomes as vehicle to an extent that allows their in vitro and in vivo testing without use of toxic solvent(s). A screening method to identify the maximum incorporation capacity of hydrophobic......, resulting in a 200-500-fold increase in apparent solubility. Drug-to-lipid ratios in the range of 2-5 µg/mg were obtained. Interestingly, the four quinolinone derivatives have shown different association tendencies with liposomes, probably due to the physicochemical properties of the different group bonded...

  15. Heavy ion storage rings

    International Nuclear Information System (INIS)

    Schuch, R.

    1987-01-01

    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented. 35 refs

  16. Critical evaluation of heavy water project at Thal (Preprint No. PM-5)

    International Nuclear Information System (INIS)

    Jayakumar, N.S.

    1989-04-01

    The project known as Thal Ammonia Extension was a heavy water project successfully completed by Rashtriya Chemicals and Fertilizers (RCF) Ltd. The project consisted of erecting a heavy water plant of 110 tons/year capacity at Thal. The process Know-how and engineering of the plant was supplied by the Heavy Water Projects Division of the Department of Atomic Energy. Salient features of the project, management features which resulted in fast completion of erection, bottlenecks faced and engineering innovations adopted for efficient operation of the plant are described. Some modifications which can lead to smoother operation are listed. (M.G.B.)

  17. Interaction of heavy ions with matter. Progress report and summary report

    International Nuclear Information System (INIS)

    Boring, J.W.; Johnson, R.E.

    1976-07-01

    The processes that occur when a heavy atomic particle (ion, atom, etc.) interacts with matter, particularly the effects produced on biological systems, were investigated. Results of the investigations over a three year period are reviewed. Areas covered include: energy loss, straggling and stopping; projected ranges and first-order moments; damage cross section for inactivation of RNase; and spatial distribution of damage in RNase. History and objectives of the research program are included

  18. Long-distance behavior of the quark-antiquark static potential. Application to light-quark mesons and heavy quarkonia

    International Nuclear Information System (INIS)

    Gonzalez, P.

    2009-01-01

    Screening effects from sea pairs on the quark-antiquark static potential are analyzed phenomenologically from the light-quark to the heavy-quark meson spectra. From the high excited light-quark meson spectrum, a universal form for the screened static potential is proposed. This potential is then successfully applied to heavy quarkonia. Our results suggest the assignment of X(4260) to the 4s state of charmonium and the possible existence of a 5s bottomonium resonance around 10748 MeV.

  19. Energy dependence of the ionization of highly excited atoms by collisions with excited atoms

    International Nuclear Information System (INIS)

    Shirai, T.; Nakai, Y.; Nakamura, H.

    1979-01-01

    Approximate analytical expressions are derived for the ionization cross sections in the high- and low-collision-energy limits using the improved impulse approximation based on the assumption that the electron-atom inelastic-scattering amplitude is a function only of the momentum transfer. Both cases of simultaneous excitation and de-excitation of one of the atoms are discussed. The formulas are applied to the collisions between two excited hydrogen atoms and are found very useful for estimating the cross sections in the wide range of collisions energies

  20. Nuclear-bound quarkonia and heavy-flavor hadrons

    Science.gov (United States)

    Krein, G.; Thomas, A. W.; Tsushima, K.

    2018-05-01

    In our quest to win a deeper understanding of how QCD actually works, the study of the binding of heavy quarkonia and heavy-flavor hadrons to atomic nuclei offers enormous promise. Modern experimental facilities such as FAIR, Jefferson Lab at 12 GeV and J-PARC offer exciting new experimental opportunities to study such systems. These experimental advances are complemented by new theoretical approaches and predictions, which will both guide these experimental efforts and be informed and improved by them. This review will outline the main theoretical approaches, beginning with QCD itself, summarize recent theoretical predictions and relate them both to past experiments and those from which we may expect results in the near future.

  1. Lung Cancer Screening (PDQ®)—Patient Version

    Science.gov (United States)

    Lung cancer screening with low-dose spiral CT scans has been shown to decrease the risk of dying from lung cancer in heavy smokers. Learn more about tests to detect lung cancer and their potential benefits and harms in this expert-reviewed summary.

  2. Protein dynamics and stability: The distribution of atomic fluctuations in thermophilic and mesophilic dihydrofolate reductase derived using elastic incoherent neutron scattering

    International Nuclear Information System (INIS)

    Meinhold, Lars; Clement, David; Tehei, M.; Daniel, R.M.; Finney, J.L.; Smith, Jeremy C.

    2008-01-01

    The temperature dependence of the dynamics of mesophilic and thermophilic dihydrofolate reductase is examined using elastic incoherent neutron scattering. It is demonstrated that the distribution of atomic displacement amplitudes can be derived from the elastic scattering data by assuming a (Weibull) functional form that resembles distributions seen in molecular dynamics simulations. The thermophilic enzyme has a significantly broader distribution than its mesophilic counterpart. Furthermore, although the rate of increase with temperature of the atomic mean-square displacements extracted from the dynamic structure factor is found to be comparable for both enzymes, the amplitudes are found to be slightly larger for the thermophilic enzyme. Therefore, these results imply that the thermophilic enzyme is the more flexible of the two

  3. Screening of Coulomb interaction and many-body perturbation theory in atoms

    International Nuclear Information System (INIS)

    Dzyuba, V.A.; Flambaum, V.V.; Sil'vestrov, P.G.; Sushkov, O.P.

    1988-01-01

    Taking into account the electron Coulomb interaction screening considerably improves the convergence of perturbation theory in residual interaction. The developed technique allows to take into account screening diagrams in all orders of perturbation theory. Calculation of the correlation corrections to the thallium energy levels is carried out as an example

  4. Ultrarelativistic heavy ion collisions: the first billion seconds

    Energy Technology Data Exchange (ETDEWEB)

    Baym, Gordon

    2016-12-15

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter – the quark-gluon plasma primarily – and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  5. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Bjoern [BNL Physics Department

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with each other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.

  6. On-line atomic data access

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, D.R. [Oak Ridge National Lab., TN (United States); Nash, J.K. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The need for atomic data is one which continues to expand in a wide variety of applications including fusion energy, astrophysics, laser- produced plasma research, and plasma processing. Modern computer database and communications technology nables this data to be placed on-line and obtained by users of the Internet. Presented here is a summary of the observations and conclusions regarding such on-line atomic data access derived from a forum held at the Tenth APS Topical Conference on Atomic Processes in Plasmas.

  7. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  8. Momentum diffusion for coupled atom-cavity oscillators

    International Nuclear Information System (INIS)

    Murr, K.; Maunz, P.; Pinkse, P. W. H.; Puppe, T.; Schuster, I.; Rempe, G.; Vitali, D.

    2006-01-01

    It is shown that the momentum diffusion of free-space laser cooling has a natural correspondence in optical cavities when the internal state of the atom is treated as a harmonic oscillator. We derive a general expression for the momentum diffusion, which is valid for most configurations of interest: The atom or the cavity or both can be probed by lasers, with or without the presence of traps inducing local atomic frequency shifts. It is shown that, albeit the (possibly strong) coupling between atom and cavity, it is sufficient for deriving the momentum diffusion to consider that the atom couples to a mean cavity field, which gives a first contribution, and that the cavity mode couples to a mean atomic dipole, giving a second contribution. Both contributions have an intuitive form and present a clear symmetry. The total diffusion is the sum of these two contributions plus the diffusion originating from the fluctuations of the forces due to the coupling to the vacuum modes other than the cavity mode (the so-called spontaneous emission term). Examples are given that help to evaluate the heating rates induced by an optical cavity for experiments operating at low atomic saturation. We also point out intriguing situations where the atom is heated although it cannot scatter light

  9. Cluster radioactivity of Z=125 super heavy nuclei

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Seenappa, L.

    2015-01-01

    For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8 Be, 10 Be, 12 C, 14 C, 16 C, 18 O, 20 O, 22 Ne, 24 Ne, 25 Ne, 26 Ne, 28 Mg, 30 Mg, 32 Si, 34 Si, 36 Si, 40 S, 48 Ca, 50 Ca and 52 Ti from the super heavy nuclei Z=125

  10. Atomic force microscope observation of branching in single transcript molecules derived from human cardiac muscle

    International Nuclear Information System (INIS)

    Reed, Jason; Hsueh, Carlin; Gimzewski, James K; Mishra, Bud

    2008-01-01

    We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing

  11. Positronium collisions with atoms and molecules

    Science.gov (United States)

    Fabrikant, I. I.; Gribakin, G. F.; Wilde, R. S.

    2017-11-01

    We review recent theoretical efforts to explain observed similarities between electron-atom and positronium(Ps)-atom scattering which also extends to molecular targets. In the range of the projectile velocities above the threshold for Ps ionization (break-up) this similarity can be explained in terms of quasi-free electron scattering and impulse approximation. However, for lower Ps velocities more sophisticated methods should be developed. Our calculations of Ps scattering by heavy noble-gas atoms agree well with experiments at Ps velocities above the Ps ionization threshold. However, in contrast to electron scattering cross sections, at lower velocities they exhibit maxima whereas the experimental cross sections tend to decrease toward lower velocities indicating the same similarity with electron scattering cross section observed above the threshold. Our preliminary results for Ps-N2 scattering confirm experimental observation of a resonance similar to the ∏ g resonance in electron-N2 scattering.

  12. Comprehensive screening for immunodeficiency-associated vaccine-derived poliovirus: an essential oral poliovirus vaccine cessation risk management strategy.

    Science.gov (United States)

    Duintjer Tebbens, R J; Thompson, K M

    2017-01-01

    If the world can successfully control all outbreaks of circulating vaccine-derived poliovirus that may occur soon after global oral poliovirus vaccine (OPV) cessation, then immunodeficiency-associated vaccine-derived polioviruses (iVDPVs) from rare and mostly asymptomatic long-term excretors (defined as ⩾6 months of excretion) will become the main source of potential poliovirus outbreaks for as long as iVDPV excretion continues. Using existing models of global iVDPV prevalence and global long-term poliovirus risk management, we explore the implications of uncertainties related to iVDPV risks, including the ability to identify asymptomatic iVDPV excretors to treat with polio antiviral drugs (PAVDs) and the transmissibility of iVDPVs. The expected benefits of expanded screening to identify and treat long-term iVDPV excretors with PAVDs range from US$0.7 to 1.5 billion with the identification of 25-90% of asymptomatic long-term iVDPV excretors, respectively. However, these estimates depend strongly on assumptions about the transmissibility of iVDPVs and model inputs affecting the global iVDPV prevalence. For example, the expected benefits may decrease to as low as US$260 million with the identification of 90% of asymptomatic iVDPV excretors if iVDPVs behave and transmit like partially reverted viruses instead of fully reverted viruses. Comprehensive screening for iVDPVs will reduce uncertainties and maximize the expected benefits of PAVD use.

  13. Nuclear clustering and the electron screening puzzle

    Science.gov (United States)

    Bertulani, C. A.; Spitaleri, C.

    2018-01-01

    Electron screening changes appreciably the magnitude of astrophysical nuclear reactions within stars. This effect is also observed in laboratory experiments on Earth, where atomic electrons are present in the nuclear targets. Theoretical models were developed over the past 30 years and experimental measurements have been carried out to study electron screening in thermonuclear reactions. None of the theoretical models were able to explain the high values of the experimentally determined screening potentials. We explore the possibility that the "electron screening puzzle" is due to nuclear clusterization and polarization e_ects in the fusion reactions. We will discuss the supporting arguments for this scenario.

  14. Enhancing atom densities in solid hydrogen by isotopic substitution

    International Nuclear Information System (INIS)

    Collins, G.W.; Souers, P.C.; Mapoles, E.R.; Magnotta, F.

    1991-01-01

    Atomic hydrogen inside solid H 2 increases the energy density by 200 MegaJoules/m 3 , for each percent mole fraction stored. How many atoms can be stored in solid hydrogen? To answer this, we need to know: (1) how to produce and trap hydrogen atoms in solid hydrogen, (2) how to keep the atoms from recombining into the ground molecular state, and (3) how to measure the atom density in solid hydrogen. Each of these topics will be addressed in this paper. Hydrogen atoms can be trapped in solid hydrogen by co-condensing atoms and molecules, external irradiation of solid H 2 , or introducing a radioactive impurity inside the hydrogen lattice. Tritium, a heavy isotope of hydrogen, is easily condensed as a radioactive isotopic impurity in solid H 2 . Although tritium will probably not be used in future rockets, it provides a way of applying a large, homogenious dose to solid hydrogen. In all of the data presented here, the atoms are produced by the decay of tritium and thus knowing how many atoms are produced from the tritium decay in the solid phase is important. 6 refs., 6 figs

  15. Relativity, nuclear polarizability, and screening in sub-Coulomb elastic scattering

    International Nuclear Information System (INIS)

    Lynch, W.G.; Tsang, M.B.; Bhang, H.C.; Cramer, J.G.; Puigh, R.J.

    Elastic scattering of p-shell nuclear projectiles from 208 Pb has been examined for deviations from Rutherford scattering. Four effects can be important: atomic screening, vacuum polarization, nuclear polarizability and a relativistic effect of dynamical origin. The presence of atomic screening, nuclear polarizability and the relativistic effect was observed thus constituting the first measurement of this relativistic effect using complex nuclei and the first measurement of this relativistic effect using complex nuclei and the first measurement of nuclear polarizability in an external Coulomb field

  16. Study on accumulation of heavy metals in Mangrove sediments, Gabrik Creek (Jask)

    International Nuclear Information System (INIS)

    Zarezadeh, R.; Rezaee, P.

    2016-01-01

    Gabrik in the East of Hormozgan province is Mangrove habitat and one of the important Mangrove protected area. This area is located in Oman coasts. This zone because of building Jagin dam on Gabrick River and existence of sand barrier and exposure of pollution, it is possible to destroy or to be important threats of this planet. Base on importance of this sea inhabitation some of sedimentology parameters and geochemical Mangrove's sediments have been analyzed. In this study for sieve used Hydrometric method and for Identification of organic matter used electronic furnace heat 500 degree centigrade for 6 hours. Quantity of calcium carbonate analyzed by titration and for condenses of heavy metal Zn, Pb and Ni chemical decomposition atomic absorption by Thermo-solaar (±1µg/g). Results showed that mean content of carbonate and organic matter in the sediments is 27 percent and 3.36 percent respectively. Contamination heavy metals Pb, Zn and Ni in the sediments of this mangrove, were studied throughout Gabrik creek. Metal concentration analyses were performed using atomic absorption spectrometry (AAS). Mean concentration of the heavy metals Pb, Zn and Ni in sediments was measured 67.63, 69.63 and 76.53 µg/g dry weights respectively. According to determine geoaccumulation index (Igeo), contamination factor (CF), the degree of contamination correction (mCd) and compared the heavy metal concentrations with to the mean concentrations of heavy metals in sedimentary rock (shales) and China and American standards. The results in this study showed that there is no pollution from Zn metal but there are pollutions from Ni and Pb metals and concentration this heavy metals aren't critical. The origin of these heavy metals can be a result of maintenance of fishing vessels in Gabrik Creek, activities or fuel smuggling and perhaps oil compounds spill into the water and human refuse in the region.

  17. High-Throughput Screening Using iPSC-Derived Neuronal Progenitors to Identify Compounds Counteracting Epigenetic Gene Silencing in Fragile X Syndrome.

    Science.gov (United States)

    Kaufmann, Markus; Schuffenhauer, Ansgar; Fruh, Isabelle; Klein, Jessica; Thiemeyer, Anke; Rigo, Pierre; Gomez-Mancilla, Baltazar; Heidinger-Millot, Valerie; Bouwmeester, Tewis; Schopfer, Ulrich; Mueller, Matthias; Fodor, Barna D; Cobos-Correa, Amanda

    2015-10-01

    Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused in most of cases by epigenetic silencing of the Fmr1 gene. Today, no specific therapy exists for FXS, and current treatments are only directed to improve behavioral symptoms. Neuronal progenitors derived from FXS patient induced pluripotent stem cells (iPSCs) represent a unique model to study the disease and develop assays for large-scale drug discovery screens since they conserve the Fmr1 gene silenced within the disease context. We have established a high-content imaging assay to run a large-scale phenotypic screen aimed to identify compounds that reactivate the silenced Fmr1 gene. A set of 50,000 compounds was tested, including modulators of several epigenetic targets. We describe an integrated drug discovery model comprising iPSC generation, culture scale-up, and quality control and screening with a very sensitive high-content imaging assay assisted by single-cell image analysis and multiparametric data analysis based on machine learning algorithms. The screening identified several compounds that induced a weak expression of fragile X mental retardation protein (FMRP) and thus sets the basis for further large-scale screens to find candidate drugs or targets tackling the underlying mechanism of FXS with potential for therapeutic intervention. © 2015 Society for Laboratory Automation and Screening.

  18. Effects of metal-contaminated soils on the accumulation of heavy metals in gotu kola (Centella asiatica) and the potential health risks: a study in Peninsular Malaysia.

    Science.gov (United States)

    Ong, Ghim Hock; Wong, Ling Shing; Tan, Ai Li; Yap, Chee Kong

    2016-01-01

    Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended.

  19. Evaluation of biochars from different stock materials as carriers of bacterial strain for remediation of heavy metal-contaminated soil.

    Science.gov (United States)

    Wang, Ting; Sun, Hongwen; Ren, Xinhao; Li, Bing; Mao, Hongjun

    2017-09-21

    Two kinds of biochars, one derived from corn straw and one from pig manure, were studied as carriers of a mutant genotype from Bacillus subtilis (B38) for heavy metal contaminated soil remediation. After amendment with biochar, the heavy metal bioavailability decreased. Moreover, the heavy metal immobilization ability of the biochar was enhanced by combining it with B38. The simultaneous application of B38 and pig manure-derived biochar exhibited a superior effect on the promotion of plant growth and the immobilization of heavy metals in soil. The plant biomass increased by 37.9% and heavy metal concentrations in the edible part of lettuce decreased by 69.9-96.1%. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles revealed that pig manure-derived biochar could enhance the proliferation of both exotic B38 and native microbes. These results suggest that B38 carried by pig manure-derived biochar may be a promising candidate for the remediation of soils contaminated by multiple heavy metals.

  20. Distribution of heavy metals (Cu, Zn and Cr in groundwater from the area of a future radioactive waste repository Saligny – Romania

    Directory of Open Access Journals (Sweden)

    Tudorache A.

    2013-04-01

    Full Text Available A study of some heavy metals (Cu, Zn and Cr concentrations in natural groundwater has been conducted, by considering samples collected from the area located in the neighbourhood of Saligny village (Cernavodă, Romania. Atomic absorption spectrometry methods with thermal and electrothermal atomization has been developed, tested and used for some heavy metals content determination. The results show various concentrations of Cu, Zn and Cr in groundwater samples.

  1. Heavy accelerated nuclei in biomedical research

    International Nuclear Information System (INIS)

    Tobias, C.A.

    1987-01-01

    Accelerated atomic nuclei in physics accelerators have been used in basic biological research and in applied medical diagnostic and therapeutic studies for the past 50 years. The passage of single heavy particles through the cell nucleus is capable of producing multiple DNA double-strand scission and chromatin breaks. According to the Repair-Misrepair model, the high biological effectiveness of high-LET particles is due to misrepair and misrejoining of the breaks. The Bragg depth ionization effect allows heavy particles to deposit considerably more energy deep in tissue than at the surface, and this property has been used for great improvements in the radiation therapy of localized tumors. Recent advances in producing radioactive beams will allow verification of therapeutic administration of such beams. The radioactive beams also open a new field of Nuclear Medicine. There is increasing interest in building special biomedical light and heavy-ion accelerators. These will be used not only for therapy but also for diagnosis, for the study of radiation hazards in space flight, and for basic molecular and cellular understanding of the mechanisms of radiation effect

  2. Physics of atoms and molecules

    International Nuclear Information System (INIS)

    Bransden, B.H.; Joachain, C.J.

    1983-01-01

    This book presents a unified account of the physics of atoms and molecules at a level suitable for second- and third-year undergraduate students of physics and physical chemistry. Following a brief historical introduction to the subject the authors outline the ideas and approximation methods of quantum mechanics to be used later in the book. Six chapters look at the structure of atoms and the interactions between atoms and electromagnetic radiation. The authors then move on to describe the structure of molecules and molecular spectra. Three chapters deal with atomic collisions, the scattering of electrons by atoms and the scattering of atoms by atoms. The concluding chapter considers a few of the many important applications of atomic physics within astrophysics, laser technology, and nuclear fusion. Problems are given at the end of each chapter, with hints at the solutions in an appendix. Other appendices include various special topics and derivations together with useful tables of units. (author)

  3. Obtaining the electrostatic screening from first principles

    International Nuclear Information System (INIS)

    Shaviv, N.J.; Shaviv, G.

    2003-01-01

    We derive the electrostatic screening effect from first principles and show the basic properties of the screening process. We in particular show that under the conditions prevailing in the Sun the number of particles in the Debye sphere is of the order of unity. Consequently; fluctuations play a dominant role in the screening process. The fluctuations lead to an effective time dependent potential. Particles with low kinetic energy lose on the average energy to the plasma and vice versa with high energy particles. We derive general conditions on the screening energy and show under what conditions the Salpeter approximation is obtained. The connection between the screening and relaxation processes in the plasma is exposed

  4. Searching for Heavy Photons with Detached Verices in the Heavy Photon Search Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Szumila-Vance, Holly [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-08-01

    The Jefferson Lab Heavy Photon Search (HPS) experiment is searching for a hypothetical massive particle called the heavy photon which could mediate a dark electromagnetic-type force. If heavy photons kinetically mix with Standard Model photons, they may be radiated by electrons scattering from a heavy nucleus and then decay to e+e- pairs. HPS uniquely searches for heavy photons that either decay at the target or a measurable distance after. The experiment utilizes a silicon vertex tracker (SVT) for momentum and vertex reconstruction, together with an electromagnetic calorimeter for measuring particle energies and triggering events. The HPS experiment took its first data during the spring 2015 engineering run using a 1 GeV electron beam incident on a tungsten target and its second data in the spring of 2016 at a beam energy of 2.3 GeV. The 2015 run obtained two days of production data that was used for the first physics results. The analysis of the data was conducted as a blinded analysis by tuning cuts on 10% of the data. This dissertation discusses the displaced vertex search for heavy photons in the 2015 engineering run. It describes the theoretical motivation for looking for heavy photons and provides an overview of the HPS experimental design and performance. The performance details of the experiment are primarily derived from the 2015 engineering run with some discussion from the higher energy running in 2016. This dissertation further discusses the cuts used to optimize the displaced vertex search and the results of the search. The displaced vertex search did not set a limit on the heavy photon but did validate the methodology for conducting the search. Finally, we used the full data set to make projections and guide future analyses.

  5. Heavy water at Aswan

    International Nuclear Information System (INIS)

    1959-01-01

    A fertilizer factory is being built by Egyptian Chemical Industries (Kima) at Aswan on the upper Nile; it will produce a mixture of ammonium nitrate and calcium carbonate adjusted to contain 20.5% nitrogen. It is also proposed to construct a heavy water plant to be located at and integrated with the fertilizer factory. At the request of the Government of the United Arab Republic, the International Atomic Energy Agency sent an expert to carry out investigation of the technical, economic and other related aspects of the proposed production of heavy water. A report was submitted to the IAEA Director General. Its main conclusions can be summarized as follows: (1) Production of heavy water as a by-product of fertilizer manufacture at Aswan is technically feasible. Separation of deuterium from industrial hydrogen for this purpose could be done either by catalytic exchange or by liquefaction and distillation; the choice should depend on economic considerations. (2) The heavy water produced at Aswan should be competitive in cost with that produced elsewhere; this, however, would depend on whether firm contracts are obtained for the delivery of equipment at guaranteed prices and with guaranteed performance, and whether such prices are in reasonable agreement with preliminary estimates. (3) The future market for heavy water is difficult to predict. For one thing, there is a very large production capacity in the USA, most of which is idle due to lack of demand. Secondly, there is a relatively small production outside the USA that is sold at prices higher than that charged by the US Government. The future of the market is necessarily contingent upon the possibility of future free sale by the US Government. At the end of his report, the expert has also given his comments on possible further assistance to the project by IAEA

  6. Spatial distribution and risk assessment of heavy metals in sediments of Shuangtaizi estuary, China

    International Nuclear Information System (INIS)

    Li, Chen; Song, Chengwen; Yin, Yanyan; Sun, Menghan; Tao, Ping; Shao, Mihua

    2015-01-01

    Highlights: • Five heavy metals are analyzed in the sediments from Shuangtaizi estuary. • Particle size of the sediment effects the concentration of heavy metals. • Pb, Cu, Zn and Hg pose low ecological risks in the Shuangtaizi estuary. • Heavy metal pollution in Shuangtaizi estuary is mainly dominated by Cd. - Abstract: In order to evaluate the spatial distribution and potential ecological risk of Pb, Cu, Zn, Cd, and Hg, the surface sediments were collected from 18 sites in the Shuangtaizi estuary. The concentrations of Pb, Cu, Zn, Cd, and Hg were analyzed by atomic absorption spectrophotometry and atomic fluorescence spectrometry after digestion. The particle sizes of the sediments were analyzed using a laser diffraction particle size analyzer. The results show that the heavy metal contents in the sediments are observed in the following order: Zn (18.25–126.75 mg/kg) > Pb (4.38–9.65 mg/kg) > Cu (1.80–17.68 mg/kg) > Cd (0.241–0.764 mg/kg) > Hg (0.007–0.021 mg/kg). In comparison with the concentrations of heavy metals in other regions, the concentrations of Pb, Cu, and Zn in the Shuangtaizi estuary are generally low, and the Cd concentrations are close to those reported in other regions. Both the potential ecological risk index and the geoaccumulation index reveal that the heavy metal pollution in Shuangtaizi estuary is mainly dominated by Cd

  7. More than lung cancer: Automated analysis of low-dose screening CT scans

    NARCIS (Netherlands)

    Mets, O.M.

    2012-01-01

    Smoking is a major health care problem and is projected to cause over 8 million deaths per year worldwide in the coming decades. To reduce lung cancer mortality in heavy smokers, several randomized screening trials were initiated in the past years using screening with low-dose Computed Tomography

  8. Benefits of E-Cigarettes Among Heavy Smokers Undergoing a Lung Cancer Screening Program: Randomized Controlled Trial Protocol.

    Science.gov (United States)

    Lucchiari, Claudio; Masiero, Marianna; Veronesi, Giulia; Maisonneuve, Patrick; Spina, Stefania; Jemos, Costantino; Omodeo Salè, Emanuela; Pravettoni, Gabriella

    2016-02-03

    nicotine e-cigarettes group, a nicotine-free e-cigarettes group, and a control group. The study is nested in a screening program for early lung cancer detection in heavy smokers. The study is open and is still recruiting. Stopping or reducing tobacco consumption should be a main goal of any health organization. However, traditional antismoking programs are expensive and not always effective. Therefore, favoring a partial or complete shift to e-cigarettes in heavy smokers (eg, persons at high risk for a number of diseases) could be considered a moral imperative. However, before following this path, sound and reliable data on large samples and in a variety of contexts are required. Clinicaltrials.gov NCT02422914; https://clinicaltrials.gov/ct2/show/NCT02422914 (Archived by WebCite at http://www.webcitation.org/6etwz1bPL).

  9. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  10. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside

    Directory of Open Access Journals (Sweden)

    Roman Sommer

    2016-12-01

    Full Text Available Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O-methylated selenoglycoside, specifically methyl 2-O-methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor. The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2-O-methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.

  11. O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside.

    Science.gov (United States)

    Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus; Titz, Alexander

    2016-01-01

    Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O -methylated selenoglycoside, specifically methyl 2- O -methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor . The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2- O -methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.

  12. Future atomic physics researches at HIRFL-CSR

    International Nuclear Information System (INIS)

    Cai Xiaohong; Xia Jiawen; Zhan Wenlong

    1999-01-01

    A new storage ring system, HIRFL-CSR, is now in construction in the National Laboratory of Heavy Ion Research Facility of Lanzhou, China. The new facility consists of a main ring (CSRm) and an experimental ring (CSRe). With the flexibility of the production and the investigation of highly charged ions and radioactive ion beams the new HIRFL-CSR facility will make many frontier atomic physics researches possible in near future. The future physics researches at the HIRFL-CSR are now under consideration. In this paper an overview of the HIRFL-CSR project is given, and the main atomic physics programs to be carried at the HIRFL-CSR are presented. (orig.)

  13. Survey of atomic and molecular data needs for fusion

    International Nuclear Information System (INIS)

    Lorenz, A.; Phillips, J.; Schmidt, J.J.; Lemley, J.R.

    1976-01-01

    Atomic and molecular data needs in five areas of plasma research and fusion technology are considered: Injection Systems (plasma heating by neutral particle beam injection and particle cluster beam injection); Plasma-Surface Interaction (sputtering, absorption, adsorption, reflection, evaporation, surface electron emission, interactions of atomic hydrogen isotopes, synchrotron radiation); Plasma Impurities and Cooling (electron impact ionization and excitation, recombination processes, charge exchange, reflection of H from wall surfaces); Plasma Diagnostics (atomic structure and transition probabilities, X-ray wave-length shift for highly ionized metals, electron capture collisions with H + and D + , heavy-ion collision ionization probe, photon scattering, emission spectroscopy); Laser-fusion Compression (microexplosion physics, diagnostics, microtarget design, laser systems requirements, laser development, reactor design needs)

  14. Nuclear polarization contribution to the Lamb-shift in heavy atoms

    International Nuclear Information System (INIS)

    Plunien, G.; Mueller, B.; Greiner, W.

    1988-08-01

    The energy shift of the 1s 1/2 -state in 238 92 U due to virtual excitation of nuclear rotational modes is shown to be considerable correction for atomic high precision experiments. In contrast to this nuclear polarization effects are of minor importance for Lamb-shift studies in 208 82 Pb. (orig.)

  15. Materials science symposium 'heavy ion science in tandem energy region'

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Yoshida, Tadashi; Takeuchi, Suehiro

    2001-11-01

    The facility of the JAERI tandem accelerator and its booster has been contributing to obtain plenty of fruitful results in the fields of nuclear physics, nuclear chemistry, atomic and solid state physics and materials science, taking an advantage of its prominent performances of heavy ion acceleration. The previous meeting held in 1999 also offered an opportunity to scientists from all over the heavy ion science fields, including nuclear physics, solid state physics and cross-field physics to have active discussions. This meeting included oral presentations with a new plan and with a new scope of fields expected from now on, as an occasion for opening the 21st century in heavy ion science. The 50 of the presented papers are indexed individually. (J.P.N.)

  16. Applications to particle and atomic physics of a ''theorem'' on the order of energy levels

    International Nuclear Information System (INIS)

    Grosse, H.; Pflug, A.; Martin, A.

    1984-01-01

    The sign of the Laplacian of the potential, in the Schroedinger equation, indicates in which way Coulomb degeneracy is lifted. We propose three applications of this property. The first one concerns the order of levels in heavy quark systems, the second the effects of the finite size of nuclei in mesic atoms, and the third the filling of atomic shells and the order of levels in alkaline atoms [fr

  17. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    atomic mass and hence, increasing positive charge of the nuclei, the electric repulsion between the nuclei becomes stronger and stronger. In fact, the fusion process only works up to a certain mass limit, corresponding to the element Iron [2]. All elements that are heavier than Iron cannot be produced via this path. But then, how were those heavy elements we now find on the Earth produced in the first place? From where comes the Zirconium in artificial diamonds, the Barium that colours fireworks, the Tungsten in the filaments in electric bulbs? Which process made the Lead in your car battery? Beyond iron The production of elements heavier than Iron takes place by adding neutrons to the atomic nuclei . These neutral particles do not feel any electrical repulsion from the charged nuclei. They can therefore easily approach them and thereby create heavier nuclei. This is indeed the way the heaviest chemical elements are built up. There are actually two different stellar environments where this process of "neutron capture" can happen. One place where this process occurs is inside very massive stars when they explode as supernovae . In such a dramatic event, the build-up proceeds very rapidly, via the so-called "r-process" ( "r" for rapid ). The AGB stars But not all heavy elements are created in such an explosive way. A second possibility follows a more "peaceful" road. It takes place in rather normal stars, when they burn their Helium towards the end of their lives. In the so-called "s-process" ( "s" for slow ), heavier elements are then produced by a rather gentle addition of neutral neutrons to atomic nuclei. In fact, roughly half of all the elements heavier than Iron are believed to be synthesized by this process during the late evolutionary phases of stars. This process takes place during a specific stage of stellar evolution, known as the "AGB" phase [3]. It occurs just before an old star expels its gaseous envelope into the surrounding interstellar space and sometime

  18. Study of heavy metals bioaccumulation in the process of ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... The bioaccumulation of heavy metals (Cd, Zn, Ni, Pb and Cr) and the relationship between them was investigated on ... this elements in 14 days) exposure, the metal accumulation was measured using atomic absorption spectroscopy. ... sed to the point that it endangers human life in some areas, and the ...

  19. Influence of the nuclear autocorrelation function on the positron production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Tomoda, T.; Weidenmueller, H.A.

    1983-01-01

    The influence of a nuclear reaction on atomic positron production in heavy-ion collisions is investigated. Using statistical concepts, we describe the nuclear S matrix for a heavy-ion induced reaction as a statistically fluctuating function of energy. The positron production rate is then dependent on the autocorrelation function of this S matrix, and on the ratio of the ''direct'' versus the ''fluctuating'' part of the nuclear cross section. Numerical calculations show that in this way, current experimental results on positron production in heavy-ion collisions can be reproduced in a semiquantitative fashion

  20. Auger transitions in singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Mehlhorn, W.

    1978-01-01

    Some recent progress in Auger and autoionizing electron spectrometry of free metal atoms and of multiply ionized atoms is reviewed. The differences which arise between the spectra of atoms in the gaseous and the solid state are due to solid state effects. This will be shown for Cd as an example. The super Coster-Kronig transitions 3p-3d 2 (hole notation) and Coster-Kronig transitions 3p-3d 4s have been measured and compared with free-atom calculations for free Zn atoms. The experimental width GAMMA(3p)=(2.1+-0.2)eV found for the free atom agrees with the value obtained for solid Zn but is considerably smaller than the theoretical value for the free atom. Autoionizing spectra of Na following an L-shell excitation or ionization by different particles are compared and discussed. The nonisotropic angular distribution of electrons from the transition 2p 5 3s 2 2 Psub(3/2)→2p 6 +e - is compared with theoretical calculations. Two examples for Auger spectrometry of multiply ionized atoms are given: (1) excitation of neon target atoms by light and heavy ions, and (2) excitation of projectile ions Be + and B + in single gas collisions with CH 4 . A strong alignment of the excited atoms has also been found here

  1. Atom diffraction with a 'natural' metastable atom nozzle beam

    International Nuclear Information System (INIS)

    Karam, J-C; Wipf, N; Grucker, J; Perales, F; Boustimi, M; Vassilev, G; Bocvarski, V; Mainos, C; Baudon, J; Robert, J

    2005-01-01

    The resonant metastability-exchange process is used to obtain a metastable atom beam with intrinsic properties close to those of a ground-state atom nozzle beam (small angular aperture, narrow velocity distribution). The estimated effective source diameter (15 μm) is small enough to provide at a distance of 597 mm a transverse coherence radius of about 873 nm for argon, 1236 nm for neon and 1660 nm for helium. It is demonstrated both by experiment and numerical calculations with He*, Ne* and Ar* metastable atoms, that this beam gives rise to diffraction effects on the transmitted angular pattern of a silicon-nitride nano-slit grating (period 100 nm). Observed patterns are in good agreement with previous measurements with He* and Ne* metastable atoms. For argon, a calculation taking into account the angular aperture of the beam (0.35 mrad) and the effect of the van der Waals interaction-the van der Waals constant C 3 1.83 +0.1 -0.15 au being derived from spectroscopic data-leads to a good agreement with experiment

  2. In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening.

    Science.gov (United States)

    Mazzocchi, Andrea R; Rajan, Shiny A P; Votanopoulos, Konstantinos I; Hall, Adam R; Skardal, Aleksander

    2018-02-13

    Variability in patient response to anti-cancer drugs is currently addressed by relating genetic mutations to chemotherapy through precision medicine. However, practical benefits of precision medicine to therapy design are less clear. Even after identification of mutations, oncologists are often left with several drug options, and for some patients there is no definitive treatment solution. There is a need for model systems to help predict personalized responses to chemotherapeutics. We have microengineered 3D tumor organoids directly from fresh tumor biopsies to provide patient-specific models with which treatment optimization can be performed before initiation of therapy. We demonstrate the initial implementation of this platform using tumor biospecimens surgically removed from two mesothelioma patients. First, we show the ability to biofabricate and maintain viable 3D tumor constructs within a tumor-on-a-chip microfluidic device. Second, we demonstrate that results of on-chip chemotherapy screening mimic those observed in subjects themselves. Finally, we demonstrate mutation-specific drug testing by considering the results of precision medicine genetic screening and confirming the effectiveness of the non-standard compound 3-deazaneplanocin A for an identified mutation. This patient-derived tumor organoid strategy is adaptable to a wide variety of cancers and may provide a framework with which to improve efforts in precision medicine oncology.

  3. Photoelectrochemical detection of toxic heavy metals

    CSIR Research Space (South Africa)

    Chamier, J

    2010-09-01

    Full Text Available on various substrates introduced the possibility for portable and on-site instant verification of heavy metal pollutants. In this work, the favorable properties of the mercury-sensitive fluorescent molecule, Rhodamine 6G hydrozone derivative (RS), were...

  4. International bulletin on atomic and molecular data for fusion. Nos. 50-51

    International Nuclear Information System (INIS)

    Botero, J.; Stephens, J.A.

    1996-10-01

    This bulletin is published by the International Atomic Energy Agency to provide atomic and molecular data relevant to fusion research and technology. In part 1 the indexed papers are listed separately for (i) structure and spectra (energy levels, wavelengths, transition probabilities, oscillator strengths, polarizabilities, electric moments, interatomic potentials); (ii) atomic and molecular collisions (photon collisions, electron collisions, heavy-particle collisions); and (iii) surface interactions (sputtering, chemical reactions, trapping and detrapping, adsorption, desorption, reflection, and secondary electron emission). Part 2 contains the bibliographic data, essentially for the above listed topics

  5. Mitigation of heavy metals in different vegetables through biological washing techniques

    Directory of Open Access Journals (Sweden)

    Muhammad Umair Sattar

    2015-12-01

    Full Text Available Availability of nutritious and healthy food is the foremost challenging issue in all over the word. Vegetables are essential part in human diet and considered as natural reserves of nutrients gifted by Almighty Allah to human beings. Heavy metals are among the most toxic food pollutants and their intake through diet leads to several disorders. The sources of heavy metal contamination include waste water irrigation, industrial emissions, transportation and application of metal-based pesticides. In Pakistan this situation is more alarming as vegetables grown in peri-urban areas have shown high incidence of heavy metals accumulation. In this study effort was made to mitigate different heavy metals (Ar, Cd, Cr and Pb in cauliflower, spinach, okra and brinjal collected from peri-urban areas through washing with different biological solutions. Heavy metals contents were determined by using Atomic Absorption Spectrophotometry (AAS. Vegetable showed high load of heavy metals in unwashed form that reduced significantly by washing with different biological solutions. Among the different biological solutions, washing of vegetables with 8% ginger solution was found to be more effective.

  6. Simultaneous K plus L shell ionized atoms during heavy-ion ...

    Indian Academy of Sciences (India)

    The fraction of simultaneous K plus L shell ionized atoms is estimated in Fe, Co and Cu elements using carbon ions at different projectile energies. The present results indicate that the fraction of simultaneous K plus L shell ionization probability decreases with increase in projectile energy as well as with increase in the ...

  7. International bulletin on atomic and molecular data for fusion. No. 54-55

    International Nuclear Information System (INIS)

    Stephens, J.A.

    1998-12-01

    This bulletin is published by the International Atomic Energy Agency to provide atomic and molecular data relevant to fusion research and technology. In the first part the indexed papers are listed separately for (i) structure and spectra (energy levels, wavelengths, transition probabilities, oscillator strengths, polarizabilities, electric moments, interatomic potentials), (ii) atomic and molecular collisions (photon collisions, electron collisions, heavy-particle collisions), and (iii) surface interactions (sputtering, chemical reactions, trapping and detrapping, adsorption, desorption, reflection, and secondary electron emission). There are also chapters with beam-matter interactions and data on interactions of atomic particles with fields. In the second Part contains the bibliographic data, essentially for the above listed topics

  8. Prospective Assessment of Virtual Screening Heuristics Derived Using a Novel Fusion Score.

    Science.gov (United States)

    Pertusi, Dante A; O'Donnell, Gregory; Homsher, Michelle F; Solly, Kelli; Patel, Amita; Stahler, Shannon L; Riley, Daniel; Finley, Michael F; Finger, Eleftheria N; Adam, Gregory C; Meng, Juncai; Bell, David J; Zuck, Paul D; Hudak, Edward M; Weber, Michael J; Nothstein, Jennifer E; Locco, Louis; Quinn, Carissa; Amoss, Adam; Squadroni, Brian; Hartnett, Michelle; Heo, Mee Ra; White, Tara; May, S Alex; Boots, Evelyn; Roberts, Kenneth; Cocchiarella, Patrick; Wolicki, Alex; Kreamer, Anthony; Kutchukian, Peter S; Wassermann, Anne Mai; Uebele, Victor N; Glick, Meir; Rusinko, Andrew; Culberson, J Christopher

    2017-09-01

    High-throughput screening (HTS) is a widespread method in early drug discovery for identifying promising chemical matter that modulates a target or phenotype of interest. Because HTS campaigns involve screening millions of compounds, it is often desirable to initiate screening with a subset of the full collection. Subsequently, virtual screening methods prioritize likely active compounds in the remaining collection in an iterative process. With this approach, orthogonal virtual screening methods are often applied, necessitating the prioritization of hits from different approaches. Here, we introduce a novel method of fusing these prioritizations and benchmark it prospectively on 17 screening campaigns using virtual screening methods in three descriptor spaces. We found that the fusion approach retrieves 15% to 65% more active chemical series than any single machine-learning method and that appropriately weighting contributions of similarity and machine-learning scoring techniques can increase enrichment by 1% to 19%. We also use fusion scoring to evaluate the tradeoff between screening more chemical matter initially in lieu of replicate samples to prevent false-positives and find that the former option leads to the retrieval of more active chemical series. These results represent guidelines that can increase the rate of identification of promising active compounds in future iterative screens.

  9. Atomic structure of highly-charged ions. Final report

    International Nuclear Information System (INIS)

    Livingston, A. Eugene

    2002-01-01

    Atomic properties of multiply charged ions have been investigated using excitation of energetic heavy ion beams. Spectroscopy of excited atomic transitions has been applied from the visible to the extreme ultraviolet wavelength regions to provide accurate atomic structure and transition rate data in selected highly ionized atoms. High-resolution position-sensitive photon detection has been introduced for measurements in the ultraviolet region. The detailed structures of Rydberg states in highly charged beryllium-like ions have been measured as a test of long-range electron-ion interactions. The measurements are supported by multiconfiguration Dirac-Fock calculations and by many-body perturbation theory. The high-angular-momentum Rydberg transitions may be used to establish reference wavelengths and improve the accuracy of ionization energies in highly charged systems. Precision wavelength measurements in highly charged few-electron ions have been performed to test the most accurate relativistic atomic structure calculations for prominent low-lying excited states. Lifetime measurements for allowed and forbidden transitions in highly charged few-electron ions have been made to test theoretical transition matrix elements for simple atomic systems. Precision lifetime measurements in laser-excited alkali atoms have been initiated to establish the accuracy of relativistic atomic many-body theory in many-electron systems

  10. Perturbative effect of heavy particles in an effective-Lagrangian approach

    International Nuclear Information System (INIS)

    Hagiwara, T.; Nakazawa, N.

    1981-01-01

    An effective-Lagrangian approach is summarized to estimate the perturbative effect of heavy-mass particles in the leading-logarithmic approximation: the logarithmic corrections to mass-suppressed amplitudes are given in a concise form. We apply the formalism to a simplified model with two scalar fields where one is heavy and the other is light. We derive an effective Lagrangian by calculating heavy-particle one-loop diagrams. Solving renormalization-group equations derived from the effective Lagrangian by light-particle one-loop corrections, we obtain logarithmic corrections to the mass-suppressed amplitudes. The results are confirmed by explicit two-loop calculation in the full theory, up to order O((1/M 2 )1nM 2 ), where M is a heavy scalar mass. It is found that the boundary condition for solving the renormalization-group equations must be specified by the renormalization at the heavy-particle mass. It must also be emphasized that in an effective-Lagrangian approach minimal subtraction is not a proper method of renormalization. The necessity to adopt the conventional momentum-shell subtraction is stressed. Several applications of this formalism are also mentioned

  11. Study of the heavy water regeneration processes; Studija procesa za regeneraciju teske vode

    Energy Technology Data Exchange (ETDEWEB)

    Cavcic, E [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    Experience derived from heavy water reactor operation showed degradation and dilution of heavy water to be inevitable depends on the type of reactor. Dilution of heavy water during operation of the RA and the RB reactors is shown in this report. Principles and procedures of heavy water regeneration by electrolysis, fractional distillation, cleaning, prevention of tritium contamination are described as well as separation columns.

  12. Investigation of novel composite material based on extra-heavy concrete and basalt fiber for gamma radiation protection properties

    International Nuclear Information System (INIS)

    Romanenko, Yi.M.; Nosovs'kij, A.V.; Gulyik, V.Yi.; Golyuk, M.Yi.

    2018-01-01

    The paper presents a new composite material for radiation protection based on extra-heavy concrete reinforced by basalt fiber. Basalt fiber is a new material for concrete reinforcement, which provides improved mechanical characteristics of concrete, reduces the level of microcracks and increases the durability of concrete. Within the scope of present work, the gamma-ray radiation protection properties of concrete reinforced with basalt fiber was modeled. Two types of extra-heavy concrete were used for this paper. The main gamma-ray attenuation coefficients such as mean atomic number, mean atomic mass, mean electron density, effective atomic number, effective electron density, Murty effective atomic number were analyzed with help of WinXCom software. It has been shown that the addition of basalt fiber to concrete does not impair its gamma-ray radiation shielding properties. With increasing the basalt fiber dosage in concrete, the radiation properties against gamma radiation are improved.

  13. Dynamical screening of the van der Waals interaction between graphene layers

    International Nuclear Information System (INIS)

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-01-01

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp 3 d 5 basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  14. Dynamical screening of the van der Waals interaction between graphene layers.

    Science.gov (United States)

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  15. International bulletin on atomic and molecular data for fusion. No. 48

    International Nuclear Information System (INIS)

    1994-10-01

    This bulletin provides atomic and molecular data references relevant to thermonuclear fusion research and technology. In part I the indexing of the papers is given separately for (i) structure and spectra (energy levels, wavelengths; transition probabilities, oscillator strengths; interatomic potentials), (ii) atomic and molecular collisions (photon collisions, electron collisions, heavy particle collisions), and (iii) surface interactions (sputtering, surface damage, blistering, flaking, arcing, chemical reactions). Part II contains the bibliographic data for the above listed topics and for plasma composition and impurities, plasma heating, cooling and fuelling, high energy laser- and beam- matter interaction, bibliographic and numerical data collections, and on interaction of atomic particles with fields. Also included are sections on atomic and molecular data needs for fusion research and on news about ALADDIN (A Labelled Atomic Data Interface) and evaluated-data bases

  16. Soil-plant transfer models for metals to improve soil screening value guidelines valid for São Paulo, Brazil.

    Science.gov (United States)

    Dos Santos-Araujo, Sabrina N; Swartjes, Frank A; Versluijs, Kees W; Moreno, Fabio Netto; Alleoni, Luís R F

    2017-11-07

    In Brazil, there is a lack of combined soil-plant data attempting to explain the influence of specific climate, soil conditions, and crop management on heavy metal uptake and accumulation by plants. As a consequence, soil-plant relationships to be used in risk assessments or for derivation of soil screening values are not available. Our objective in this study was to develop empirical soil-plant models for Cd, Cu, Pb, Ni, and Zn, in order to derive appropriate soil screening values representative of humid tropical regions such as the state of São Paulo (SP), Brazil. Soil and plant samples from 25 vegetable species in the production areas of SP were collected. The concentrations of metals found in these soil samples were relatively low. Therefore, data from temperate regions were included in our study. The soil-plant relations derived had a good performance for SP conditions for 8 out of 10 combinations of metal and vegetable species. The bioconcentration factor (BCF) values for Cd, Cu, Ni, Pb, and Zn in lettuce and for Cd, Cu, Pb, and Zn in carrot were determined under three exposure scenarios at pH 5 and 6. The application of soil-plant models and the BCFs proposed in this study can be an important tool to derive national soil quality criteria. However, this methodological approach includes data assessed under different climatic conditions and soil types and need to be carefully considered.

  17. Analysis Of Non-Volatile Toxic Heavy Metals (Cd, Pb, Cu,Cr And Zn) In ALLIUM SATIVUM (Garlic) And Soil Samples ,Collected From Different Locations Of Punjab, Pakistan By Atomic Absorption Spectroscopy

    OpenAIRE

    Ata S.; Tayyab S.; Rasool A.

    2013-01-01

    Garlic is one of the most widely used medicinal plants. The monitoring of toxic metals such as lead, Cadmium, Chromium, Copper and Zinc in garlic and the soil of garlic fields collected from ten different cities of Punjab is critical for preventing public health against the hazards of metal toxicity. The levels of toxic heavy metals in garlic and soil samples were investigated using Atomic absorption spectrometer. The metal content in garlic samples was found to be in increasing order as Cr> ...

  18. Department of Atomic Energy [India]: Annual report 1979-1980

    International Nuclear Information System (INIS)

    1980-01-01

    The work of the research establishments, projects undertaken and public sector undertakings of the Department of Atomic Energy during the financial year 1979-80 is surveyed. The research and development activities of the Bhabha Atomic Research Centre at Bombay, the Reactor Research Centre at Kalpakkam, the Tata Institute of Fundamental Research at Bombay, the Saha Institute of Nuclear Physics at Calcutta and the Tata Memorial Centre at Bombay are described. An account of the progress of heavy water production plant projects, the Madras and Narora Atomic Power Projects, the MHD project and the 100 MW thermal research reactor R-5 Project at Trombay is given. Performance of the Tarapur and Rajasthan Atomic Power Stations, Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED (the radiation sterilisation plant for medical products) at Bombay, the Indian Rare Earths Ltd., the Uranium Corporation of India Ltd., and the Electronics Corporation of India Ltd., Hyderabad is reported. (M.G.B.)

  19. Through-barrier electromagnetic imaging with an atomic magnetometer.

    Science.gov (United States)

    Deans, Cameron; Marmugi, Luca; Renzoni, Ferruccio

    2017-07-24

    We demonstrate the penetration of thick metallic and ferromagnetic barriers for imaging of conductive targets underneath. Our system is based on an 85 Rb radio-frequency atomic magnetometer operating in electromagnetic induction imaging modality in an unshielded environment. Detrimental effects, including unpredictable magnetic signatures from ferromagnetic screens and variations in the magnetic background, are automatically compensated by active compensation coils controlled by servo loops. We exploit the tunability and low-frequency sensitivity of the atomic magnetometer to directly image multiple conductive targets concealed by a 2.5 mm ferromagnetic steel shield and/or a 2.0 mm aluminium shield, in a single scan. The performance of the atomic magnetometer allows imaging without any prior knowledge of the barriers or the targets, and without the need of background subtraction. A dedicated edge detection algorithm allows automatic estimation of the targets' size within 3.3 mm and of their position within 2.4 mm. Our results prove the feasibility of a compact, sensitive and automated sensing platform for imaging of concealed objects in a range of applications, from security screening to search and rescue.

  20. Derivative interactions and perturbative UV contributions in N Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Yohei [KEK Theory Center, KEK, Tsukuba (Japan); The Graduate University for Advanced Studies, Department of Particle and Nuclear Physics, Tsukuba (Japan); Yamamoto, Yasuhiro [Universidad de Granada, Deportamento de Fisica Teorica y del Cosmos, Facultad de Ciencias and CAFPE, Granada (Spain)

    2016-05-15

    We study the Higgs derivative interactions on models including arbitrary number of the Higgs doublets. These interactions are generated by two ways. One is higher order corrections of composite Higgs models, and the other is integration of heavy scalars and vectors. In the latter case, three point couplings between the Higgs doublets and these heavy states are the sources of the derivative interactions. Their representations are constrained to couple with the doublets. We explicitly calculate all derivative interactions generated by integrating out. Their degrees of freedom and conditions to impose the custodial symmetry are discussed. We also study the vector boson scattering processes with a couple of two Higgs doublet models to see experimental signals of the derivative interactions. They are differently affected by each heavy field. (orig.)

  1. Assessment of heavy metal contents of green leafy vegetables

    Directory of Open Access Journals (Sweden)

    V. Jena

    2013-01-01

    Full Text Available Vegetables are rich sources of vitamins, minerals, and fibers, and have beneficial antioxidative effects. Ingestion of vegetables containing heavy metals is one of the main routes through which these elements enter the human body. Slowly released into the body, however, heavy metals can cause an array of diseases. In this study we investigated the concentrations of copper, chromium, zinc, and lead in the most frequently consumed vegetables including Pimpinella anisum, Spinacia oleracea, Amaranthus viridis, Coriandrum sativum, and Trigonella foenum graecum in various sites in Raipur city, India. Atomic absorption spectrophotometry was used to estimate the levels of these metals in vegetables. The mean concentration for each heavy metal in the samples was calculated and compared with the permissible levels set by the Food and Agriculture Organization and World Health Organization. The intake of heavy metals in the human diet was also calculated to estimate the risk to human health. Our findings indicated the presence of heavy metals in vegetables in the order of Cr > Zn > Cu > Pb. Based on these findings, we conclude that the vegetables grown in this region are a health hazard for human consumption.

  2. Atomic energy: agreement between Canada and the Socialist Republic of Romania

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The governments of Canada and Romania agreed to cooperate in the development and application of atomic energy for peaceful purposes, including joint research and development projects, the application of atomic energy for electricity generation and other peaceful purposes, industrial enterprises; the supply of information, material, nuclear material, equipment and facilities; licensing arrangements; access to equipment and facilities; technical assistance; scientific visits; and training. Reprocessing, enrichment, and heavy water technology are excluded. Safeguards measures are spelled out. (LL)

  3. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  4. Distribution of heavy metals in Lumbricus terrestris, Aporrectodea longa and A. rosea measured by atomic absorption and X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Andersen, C.; Laursen, J.

    1982-01-01

    Distribution of Ca, Pb, Cd, Zn, Fe and Mn has been investigated in the earthworm species Lumbricus terrestris, Aporectodea longa and A. rosea by atomic absorption and X-ray fluorescence spectrometry measurements. The material of L. terrestris originated from the garden of the Royal Veterinary and Agricultural University in central Copenhagen. Material of the other two species was sampled in sewage sludge treated plots. It was found that lead and cadmium are accumulated in the gut wall and from here transferred to waste nodules (brown bodies). In L. terrestris more lead was transferred to waste nodules than cadmium. Also large amounts of zinc were accumulated in the gut wall. Analyses of L. terrestris calciferous glands showed that these take part in regulation and excretion of a number of heavy metals. Lead and cadmium content was low in the ventral nerve chord and seminal vesicles. A. longa with poorly developed calciferous glands seems to rely more on waste nodule formation in the ultimate immobilization of lead. (author)

  5. Imaging Lithium Atoms at Sub-Angstrom Resolution

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2005-01-03

    John Cowley and his group at ASU were pioneers in the use of transmission electron microscopy (TEM) for high-resolution imaging. Three decades ago they achieved images showing the crystal unit cell content at better than 4A resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with CS-corrected lenses and monochromated electron beams.

  6. levels of heavy metals in drinking water, cosmetics and fruit juices ...

    African Journals Online (AJOL)

    Dr John A. M. Mahugija

    Heavy metals were determined in samples of drinking water, cosmetics (nail polish, lip glosses ... The samples were analyzed using Atomic. Absorption Spectrometry (AAS) after digestion with concentrated acids, filtration and dilution. Lead, zinc ... concentrations of lead in cosmetics exceeded the EU/US permissible limits.

  7. Derivation of soil screening thresholds to protect chisel-toothed kangaroo rat from uranium mine waste in northern Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.

    2013-01-01

    Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.

  8. Thermal Width for Heavy Quarkonium in the Static Limit

    International Nuclear Information System (INIS)

    Shi Chao-Yi; Zhu Jia-Qing; Ma Zhi-Lei; Li Yun-De

    2015-01-01

    The thermal widths for heavy quarkonia are calculated for both Coulomb gauge (CG) and Feynman gauge (FG), and the comparisons between these results with the hard thermal loop (HTL) approximation ones are illustrated. The dissociation temperatures of heavy quarkonia in thermal medium are also discussed for CG, FG and HTL cases. It is shown that the thermal widths, derived from the HTL approximation and used in many research studies, cause some errors in the practical calculations at the temperature range accessible in the present experiment, and the problem of gauge dependence cannot be avoided when the complete self energy is used in the derivation of potential. (paper)

  9. A rapid and simple screening method for methamphetamine in urine by radioimmunoassay using a 125I-labeled metahmphetamine derivative

    International Nuclear Information System (INIS)

    Inayama, Seiichi; Tokunaga, Yukiko; Hosoya, Eikichi; Nakadate, Teruo; Niwaguchi, Tetsukichi.

    1980-01-01

    N-Carboxymethylmethamphetamine, a derivative of methamphetamine, was prepared through a new synthetic pathway from ephedrine. Specific antiserum was obtained by immunization of rabbits with the conjugate of N-carboxymethylmethamphetamine with bovine serum albumin. A radioimmunoassay procedure was established using this antibody (specific for methamphetamine) and a 125 I-methamphetamine derivative. A high degree of specificity of the antibody was confirmed by testing for cross-reaction with several methamphetamine analogs, and the sensitivity was found to be 1 ng/tube. The present micro method using radioimmunoassay is highly sensitive, rapid, simple and may be useful as a micro-scale primary screening test for methamphetamine excreted in human urine, for forensic and medical purposes. (author)

  10. Fundamental symmetries studies with cold trapped francium atoms at ISAC

    International Nuclear Information System (INIS)

    Gwinner, G.; Gomez, E.; Orozco, L. A.; Perez Galvan, A.; Sheng, D.; Zhao, Y.; Sprouse, G. D.; Behr, J. A.; Jackson, K. P.; Pearson, M. R.; Aubin, S.; Flambaum, V. V.

    2006-01-01

    Francium combines a heavy nucleus (Z = 87) with the simple atomic structure of alkalis and is a very promising candidate for precision tests of fundamental symmetries such as atomic parity non-conservation measurements. Fr has no stable isotopes, and the ISAC radioactive beam facility at TRIUMF, equipped with an actinide target, promises to provide record quantities of Fr atoms, up to 10 10 /s for some isotopes. We discuss our plans for a Fr on-line laser trapping facility at ISAC and experiments with samples of cold Fr atoms. We outline our plans for a measurement of the nuclear anapole moment - a parity non-conserving, time-reversal conserving moment that arises from weak interactions between nucleons - in a chain of Fr isotopes. Its measurement is a unique probe for neutral weak interactions inside the nucleus.

  11. Evaluation of screening for oral cancer and precancer in a company headquarters.

    Science.gov (United States)

    Downer, M C; Evans, A W; Hughes Hallet, C M; Jullien, J A; Speight, P M; Zakrzewska, J M

    1995-04-01

    Oral cancer and precancer appear to fulfil many of the criteria for a disease suitable for mass screening. Several commercial organisations in the UK have introduced screening for their employees. One program has been formally evaluated over the course of 1 yr. Of 553 company headquarters staff aged > or = 40 yr, 292 (53%) responded to the well-publicised screening invitation and received a simple clinical examination of the oral mucosa from one of two company dentists. In addition, 17 staff were screened from a separate company work-site. After screening, subjects were examined independently by an oral medicine specialist with access to the relevant diagnostic aids. The dentists' screening decisions were validated against the specialist's definitive diagnoses (the 'gold standard'). The true prevalence of subjects with lesions diagnosed as positive (white patch, red patch or ulcer of greater than 2 weeks' duration) was 17 (5.5%). Overall, sensitivity was 0.71 and specificity, 0.99. The compliance rate to screening among headquarters subjects in seven occupational categories did not differ significantly from the occupational profile for all headquarters personnel. Estimates of relative risk of a positive diagnosis were calculated by logistic regression for five independent variables; gender, age, moderate smoking, heavy smoking, and smoking combined with greater than low risk alcohol consumption. Only heavy smoking (> or = 20 cigarettes per day) produced a significant odds ratio (3.43, P < 0.05).

  12. Experiments with highly-charged heavy-ions performed at the storage ring ESR

    International Nuclear Information System (INIS)

    Mokler, P.H.

    1992-01-01

    The new heavy ion accelerator facility SIS/ESR was inaugurated in April 1990. During 1991 the experimental storage ring, ESR, has been commissioned. Highly-charged heavy ions from O 8+ up to Bi 82+ were successfully accumulated, cooled, and stored in the ring. Now all highly-charged, heavy ions can be provided for experiments at comfortable storage times and at energies roughly between 100 and 500 MeV/u. A report on the achievements and on the first experimental results will be given. For the experiments, special emphasis is put on capture processes in the electron cooler, i.e. on radiative and dielectronic recombination processes as well as on capture events of bound target electrons from a gas jet. In this case, the capture leads either directly (REC) or by cascading to X-ray emission, which is also exploited for a precision spectroscopy of the structure of the heaviest ions. Another exciting topic is the radioactive decay of highly charged ions: For instance the β-decay into bound atomic states, which is not possible for neutral atoms, was studied for stored naked Dy ions. (orig.)

  13. Determination of Levels of Essential and Toxic Heavy Metals in ...

    African Journals Online (AJOL)

    The concentrations of trace essential metals (Co, Cu, Fe, Mn, Ni and Zn) and toxic heavy metals (Cd and Pb) in lentil samples collected from Dejen (East Gojjam), Boset (East Shewa) and Molale (North Shewa), Ethiopia, were determined by flame atomic absorption spectrometry. A wet digestion procedure, using mixtures of ...

  14. Heavy metals and inorganic constituents in medicinal plants of ...

    African Journals Online (AJOL)

    Heavy metals such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd, and inorganic ions like HCO3-, CO32-, Ca2+, Mg2+, Cl-, Na+, SO42-, NO3-, Fe2+ and F- were investigated in medicinally important plants: Taraxacam officinale, Cichorium intybus and Figonia critica, applying atomic absorption spectrophotometer techniques. In the ...

  15. Heavy metal concentrations in, and human health risk assessment ...

    African Journals Online (AJOL)

    Water, sediment and fish samples were collected for six months and heavy metals were determined using an Atomic Absorption Spectrometer. Fe ranked highest in water and sediment, with concentrations of 2.74 mg l−1 and 61.60 mg kg−1, respectively. Metals followed the magnitude of Fe > Mn > Ni > V > Pb in the water ...

  16. [Application of precursor ion scanning method in rapid screening of illegally added phosphodiesterase-5 inhibitors and their unknown derivatives in Chinese traditional patent medicines and health foods].

    Science.gov (United States)

    Sun, Jing; Cao, Ling; Feng, Youlong; Tan, Li

    2014-11-01

    The compounds with similar structure often have similar pharmacological activities. So it is a trend for illegal addition that new derivatives of effective drugs are synthesized to avoid the statutory test. This bring challenges to crack down on illegal addition behavior, however, modified derivatives usually have similar product ions, which allow for precursor ion scanning. In this work, precursor ion scanning mode of a triple quadrupole mass spectrometer was first applied to screen illegally added drugs in complex matrix such as Chinese traditional patent medicines and healthy foods. Phosphodiesterase-5 inhibitors were used as experimental examples. Through the analysis of the structure and mass spectrum characteristics of the compounds, phosphodiesterase-5 inhibitors were classified, and their common product ions were screened by full scan of product ions of typical compounds. Then high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method with precursor ion scanning mode was established based on the optimization of MS parameters. The effect of mass parameters and the choice of fragment ions were also studied. The method was applied to determine actual samples and further refined. The results demonstrated that this method can meet the need of rapid screening of unknown derivatives of phosphodiesterase-5 inhibitors in complex matrix, and prevent unknown derivatives undetected. This method shows advantages in sensitivity, specificity and efficiency, and is worth to be further investigated.

  17. Coulomb correction to the screening angle of the Moliere multiple scattering theory

    International Nuclear Information System (INIS)

    Kuraev, E.A.; Voskresenskaya, O.O.; Tarasov, A.V.

    2012-01-01

    Coulomb correction to the screening angular parameter of the Moliere multiple scattering theory is found. Numerical calculations are presented in the range of nuclear charge 4 ≤ Z ≤ 82. Comparison with the Moliere result for the screening angle reveals up to 30% deviation from it for sufficiently heavy elements of the target material

  18. Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials.

    Science.gov (United States)

    Wang, Ting; Sun, Hongwen; Ren, Xinhao; Li, Bing; Mao, Hongjun

    2018-02-01

    Two kinds of biochars, one derived from corn straw (CBC) and one from pig manure (PBC), were used as the carriers of a bacterium (B38) to adsorb heavy metals in solution. CBC exhibited high affinity to Hg(II), while PBC showed large adsorption capacity of Pb(II). After loading with B38, the sorption capacity of the co-sorbents were enhanced for Pb(II), but weakened for Hg(II). In a binary system, the overall adsorption capacity to Hg-Pb (CBC+B38, 136.7mg/g; PBC+B38, 181.3mg/g) on co-sorbents was equal to the sum of the single-component values for Hg(II) and Pb(II). Electrostatic interactions and precipitation are the major mechanisms in the adsorption of Hg(II). In contrast, cation-π interactions and precipitation were involved in the sorption process of Pb(II). Moreover, the sorption sites of Hg(II) and Pb(II) partially overlapped on the biochar surface, but were different on co-sorbents. Hence, the co-sorbents have an advantage over the biochar alone in the removal of heavy metal mixtures. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Quantum mechanical theory of positron production in heavy ion collisions with nuclear contact

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    The interplay between atomic and nuclear interactions in heavy ion collisions with nuclear contact is studied. The general theoretical description is outlined and analyzed in a number of different limits (semiclassical approximation, DWBA, fully quantal description). The two most important physical mechanisms for generating atomic-nuclear interference, i.e., energy conservation and the introduction of additional phase shifts by nuclear reactions, are extracted. The resulting typical coupling matrix elements are analyzed for their relative importance in atomic and nuclear excitations. The description of nuclear influence on atomic excitations in terms of a classical time delay caused by nuclear reactions is reviewed, and its relationship to the underlying quantal character of the nuclear reaction is discussed. The theory is applied to spontaneous positron emission in supercritical heavy-ion collisions (Z/sub tot/ ≥ 173). It is shown that nuclear contact can lead to line structures in the positron energy spectra if the probability distribution for nuclear delay times caused by the contact has contributions for T ≥ 10 -19 sec. We explicitly evaluate a model where a pocket in the internuclear potential near the touching configuration leads to formation of nuclear molecules, and predict a resonance-like excitation function for the positron peak. 25 refs., 7 figs

  20. Heavy-Quark Symmetry Implies Stable Heavy Tetraquark Mesons Q_{i}Q_{j}q[over ¯]_{k}q[over ¯]_{l}.

    Science.gov (United States)

    Eichten, Estia J; Quigg, Chris

    2017-11-17

    For very heavy quarks Q, relations derived from heavy-quark symmetry predict the existence of novel narrow doubly heavy tetraquark states of the form Q_{i}Q_{j}q[over ¯]_{k}q[over ¯]_{l} (subscripts label flavors), where q designates a light quark. By evaluating finite-mass corrections, we predict that double-beauty states composed of bbu[over ¯]d[over ¯], bbu[over ¯]s[over ¯], and bbd[over ¯]s[over ¯] will be stable against strong decays, whereas the double-charm states ccq[over ¯]_{k}q[over ¯]_{l}, mixed beauty+charm states bcq[over ¯]_{k}q[over ¯]_{l}, and heavier bbq[over ¯]_{k}q[over ¯]_{l} states will dissociate into pairs of heavy-light mesons. Observation of a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.