WorldWideScience

Sample records for heavy weight meshes

  1. Dynamic Mesh Adaptation for Front Evolution Using Discontinuous Galerkin Based Weighted Condition Number Mesh Relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-21

    A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.

  2. Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation

    International Nuclear Information System (INIS)

    Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert

    2017-01-01

    A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Lastly, dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.

  3. Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice.

    Science.gov (United States)

    Orenstein, Sean B; Saberski, Ean R; Kreutzer, Donald L; Novitsky, Yuri W

    2012-08-01

    While synthetic prosthetics have essentially become mandatory for hernia repair, mesh-induced chronic inflammation and scarring can lead to chronic pain and limited mobility. Mesh propensity to induce such adverse effects is likely related to the prosthetic's material, weight, and/or pore size. We aimed to compare histopathologic responses to various synthetic meshes after short- and long-term implantations in mice. Samples of macroporous polyester (Parietex [PX]), heavyweight microporous polypropylene (Trelex[TX]), midweight microporous polypropylene (ProLite[PL]), lightweight macroporous polypropylene (Ultrapro[UP]), and expanded polytetrafluoroethylene (DualMesh[DM]) were implanted subcutaneously in mice. Four and 12 wk post-implantation, meshes were assessed for inflammation, foreign body reaction (FBR), and fibrosis. All meshes induced varying levels of inflammatory responses. PX induced the greatest inflammatory response and marked FBR. DM induced moderate FBR and a strong fibrotic response with mesh encapsulation at 12 wk. UP and PL had the lowest FBR, however, UP induced a significant chronic inflammatory response. Although inflammation decreased slightly for TX, marked FBR was present throughout the study. Of the three polypropylene meshes, fibrosis was greatest for TX and slightly reduced for PL and UP. For UP and PL, there was limited fibrosis within each mesh pore. Polyester mesh induced the greatest FBR and lasting chronic inflammatory response. Likewise, marked fibrosis and encapsulation was seen surrounding ePTFE. Heavier polypropylene meshes displayed greater early and persistent fibrosis; the reduced-weight polypropylene meshes were associated with the least amount of fibrosis. Mesh pore size was inversely proportional to bridging fibrosis. Moreover, reduced-weight polypropylene meshes demonstrated the smallest FBR throughout the study. Overall, we demonstrated that macroporous, reduced-weight polypropylene mesh exhibited the highest degree of

  4. Cell-centered particle weighting algorithm for PIC simulations in a non-uniform 2D axisymmetric mesh

    Science.gov (United States)

    Araki, Samuel J.; Wirz, Richard E.

    2014-09-01

    Standard area weighting methods for particle-in-cell simulations result in systematic errors on particle densities for a non-uniform mesh in cylindrical coordinates. These errors can be significantly reduced by using weighted cell volumes for density calculations. A detailed description on the corrected volume calculations and cell-centered weighting algorithm in a non-uniform mesh is provided. The simple formulas for the corrected volume can be used for any type of quadrilateral and/or triangular mesh in cylindrical coordinates. Density errors arising from the cell-centered weighting algorithm are computed for radial density profiles of uniform, linearly decreasing, and Bessel function in an adaptive Cartesian mesh and an unstructured mesh. For all the density profiles, it is shown that the weighting algorithm provides a significant improvement for density calculations. However, relatively large density errors may persist at outermost cells for monotonically decreasing density profiles. A further analysis has been performed to investigate the effect of the density errors in potential calculations, and it is shown that the error at the outermost cell does not propagate into the potential solution for the density profiles investigated.

  5. A Heavy Heart: The Association between Weight and Emotional Words.

    Science.gov (United States)

    Zhao, Xueru; He, Xianyou; Zhang, Wei

    2016-01-01

    People often express emotion in language using weight (e.g., a heavy heart, light-hearted, light humor, or heavy-handed), but the question remains whether these expressions of emotion are rooted in the body. Six experiments used a priming paradigm to explore the metaphoric relation between weight perception and emotional words. Experiments 1 and 2 investigated the influence of weight perception on judgments of emotional words and the influence of emotional words on judgments of weight, respectively. A significant difference between the consistent condition (e.g., lightness corresponds to positive words and heaviness corresponds to negative words) and the inconsistent condition (e.g., lightness corresponds to negative words and heaviness corresponds to positive words) was found in Experiment 1 but not in Experiment 2. Experiments 3, 4, and 5 were conducted to exclude potential confounds. Experiment 6 was a repeated-measures study that was conducted to verify the weight-emotion effect. The study confirmed that weight perception affected judgments of emotional words. The results contribute to the growing literature on conceptual metaphor theory and embodied cognition theory.

  6. A Heavy Heart: The Association between Weight and Emotional Words

    OpenAIRE

    Zhao, Xueru; He, Xianyou; Zhang, Wei

    2016-01-01

    People often express emotion in language using weight (e.g., a heavy heart, light-hearted, light humor, or heavy-handed), but the question remains whether these expressions of emotion are rooted in the body. Six experiments used a priming paradigm to explore the metaphoric relation between weight perception and emotional words. Experiments 1 and 2 investigated the influence of weight perception on judgments of emotional words and the influence of emotional words on judgments of weight, respec...

  7. SUPERIMPOSED MESH PLOTTING IN MCNP

    Energy Technology Data Exchange (ETDEWEB)

    J. HENDRICKS

    2001-02-01

    The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.

  8. Mesh size in Lichtenstein repair: a systematic review and meta-analysis to determine the importance of mesh size.

    Science.gov (United States)

    Seker, D; Oztuna, D; Kulacoglu, H; Genc, Y; Akcil, M

    2013-04-01

    Small mesh size has been recognized as one of the factors responsible for recurrence after Lichtenstein hernia repair due to insufficient coverage or mesh shrinkage. The Lichtenstein Hernia Institute recommends a 7 × 15 cm mesh that can be trimmed up to 2 cm from the lateral side. We performed a systematic review to determine surgeons' mesh size preference for the Lichtenstein hernia repair and made a meta-analysis to determine the effect of mesh size, mesh type, and length of follow-up time on recurrence. Two medical databases, PubMed and ISI Web of Science, were systematically searched using the key word "Lichtenstein repair." All full text papers were selected. Publications mentioning mesh size were brought for further analysis. A mesh surface area of 90 cm(2) was accepted as the threshold for defining the mesh as small or large. Also, a subgroup analysis for recurrence pooled proportion according to the mesh size, mesh type, and follow-up period was done. In total, 514 papers were obtained. There were no prospective or retrospective clinical studies comparing mesh size and clinical outcome. A total of 141 papers were duplicated in both databases. As a result, 373 papers were obtained. The full text was available in over 95 % of papers. Only 41 (11.2 %) papers discussed mesh size. In 29 studies, a mesh larger than 90 cm(2) was used. The most frequently preferred commercial mesh size was 7.5 × 15 cm. No papers mentioned the size of the mesh after trimming. There was no information about the relationship between mesh size and patient BMI. The pooled proportion in recurrence for small meshes was 0.0019 (95 % confidence interval: 0.007-0.0036), favoring large meshes to decrease the chance of recurrence. Recurrence becomes more marked when follow-up period is longer than 1 year (p < 0.001). Heavy meshes also decreased recurrence (p = 0.015). This systematic review demonstrates that the size of the mesh used in Lichtenstein hernia repair is rarely

  9. Mesh Refinement for Particle-In-Cell Plasma Simulations: Applications to - and benefits for - Heavy-Ion-Fusion

    International Nuclear Information System (INIS)

    Vay, J.-L.; Colella, P.; McCorquodale, P.; Van Straalen, B.; Friedman, A.; Grote, D.P.

    2002-01-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation of the power plant as a whole, or even of the driver, is not yet possible. Despite the rapid progress in computer power, past and anticipated, one must consider the use of the most advanced numerical techniques, if we are to reach our goal expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g., fluid dynamics simulations) is the mesh refinement technique. They discuss the challenges posed by the implementation of this technique into plasma simulations (due to the presence of particles and electromagnetic waves). They will present the prospects for and projected benefits of its application to heavy ion fusion. In particular to the simulation of the ion source and the final beam propagation in the chamber. A collaboration project is under way at LBNL between the Applied Numerical Algorithms Group (ANAG) and the HIF group to couple the Adaptive Mesh Refinement (AMR) library (CHOMBO) developed by the ANAG group to the Particle-In-Cell accelerator code WARP developed by the HIF-VNL. They describe their progress and present their initial findings

  10. Thermal performance of heavy-weight and light-weight steel frame construction approaches in the central Pretoria climate

    CSIR Research Space (South Africa)

    Kumirai, T

    2013-01-01

    Full Text Available -1 Journal for New Generation Sciences Thermal performance of heavy-weight and light-weight steel frame construction approaches in the central Pretoria climate T Kumirai and DCU Conradie Built Environment, Council for Scientific and Industrial...

  11. Effects of heavy weight waste glass recycled as fine aggregate on the mechanical properties of mortar specimens

    International Nuclear Information System (INIS)

    Choi, So Yeong; Choi, Yoon Suk; Yang, Eun Ik

    2017-01-01

    Highlights: • The properties of mortar used heavy weight waste glass as fine aggregate were compared. • Unit volume weight and shielding performance increased with the content of waste glass. • However, the strength decreased as the waste glass substitution increased. • The waste glass substitution affected on pores ranging from 10–100 nm. - Abstract: The quantities of heavy weight waste glass have increased over time due to rapid industrialization and changes in the quality of life. Moreover, most of this waste is not recycled. Concrete is the most widely used construction material, the huge amounts of natural resources are required to make concrete. Therefore, it is necessary to investigate the possibility of recycling of heavy weight waste glass as an ingredient in the manufacturing of concrete. In this study, the suitability of heavy weight waste glass as a fine aggregate material is considered. The results of flow test, unit volume weight, radiation shielding performance, compressive strength, flexural strength, and micropore and macropore distribution of mortar are compared and evaluated. It was found that when the heavy weight waste glass substitution ratio increases, the fluidity, unit volume weight and radiation shielding performance also increase. However, the compressive and flexural strength of mortar gradually decrease with an increase in the substitution ratio of heavy weight waste glass. Moreover, the micro pore size distribution is significantly affected by the substitution of heavy weight waste glass.

  12. Adaptive mesh generation for image registration and segmentation

    DEFF Research Database (Denmark)

    Fogtmann, Mads; Larsen, Rasmus

    2013-01-01

    measure. The method was tested on a T1 weighted MR volume of an adult brain and showed a 66% reduction in the number of mesh vertices compared to a red-subdivision strategy. The deformation capability of the mesh was tested by registration to five additional T1-weighted MR volumes....

  13. r-Adaptive mesh generation for shell finite element analysis

    International Nuclear Information System (INIS)

    Cho, Maenghyo; Jun, Seongki

    2004-01-01

    An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen

  14. MUSIC: a mesh-unrestricted simulation code

    International Nuclear Information System (INIS)

    Bonalumi, R.A.; Rouben, B.; Dastur, A.R.; Dondale, C.S.; Li, H.Y.H.

    1978-01-01

    A general formalism to solve the G-group neutron diffusion equation is described. The G-group flux is represented by complementing an ''asymptotic'' mode with (G-1) ''transient'' modes. A particular reduction-to-one-group technique gives a high computational efficiency. MUSIC, a 2-group code using the above formalism, is presented. MUSIC is demonstrated on a fine-mesh calculation and on 2 coarse-mesh core calculations: a heavy-water reactor (HWR) problem and the 2-D lightwater reactor (LWR) IAEA benchmark. Comparison is made to finite-difference results

  15. Fixation of Light Weight Polypropylene Mesh with n-Butyl-2-cyanocrylate in Pelvic Floor Surgery: Experimental Design Approach in Sheep for Effectiveness Evaluation

    Directory of Open Access Journals (Sweden)

    Sandra Barbosa

    2015-01-01

    Full Text Available Objective. The aim of this study was to find a proper experimental design and to evaluate n-butyl-2-cyanoacrylate (Histoacryl as a fixation method for a light-weight and large pore PP mesh (Synthetic PP Mesh-1 using the sheep as an animal model. Methods. Posterior vaginal implantation by means of episiotomy was used to implant 8 ewes which were evaluated macroscopically and histologically at 3 months (n=4 and 6 months (n=4 post-surgery. In previous pilot studies anterior vaginal implantation was evaluated, as well as different synthetic mesh materials, sizes and fixation methods (n=1 to 3 during three weeks. In all cases a clinical evaluation of the animal was performed. Results. A reduction in the mesh size (Synthetic PP Mesh-1 together with precise application of the surgical glue Histoacryl to fix the mesh yielded significantly better histocompatibility results (P<0.01 compared to larger size or other fixation methods. Conclusion. The combination of Synthetic PP Mesh-1 with Histoacryl offered a high degree of graft integration without vaginal ulceration and a minimal foreign body reaction, being the sheep a proper animal model to test these types of medical devices.

  16. Constructing C1 Continuous Surface on Irregular Quad Meshes

    Institute of Scientific and Technical Information of China (English)

    HE Jun; GUO Qiang

    2013-01-01

    A new method is proposed for surface construction on irregular quad meshes as extensions to uniform B-spline surfaces. Given a number of control points, which form a regular or irregular quad mesh, a weight function is constructed for each control point. The weight function is defined on a local domain and is C1 continuous. Then the whole surface is constructed by the weighted combination of all the control points. The property of the new method is that the surface is defined by piecewise C1 bi-cubic rational parametric polynomial with each quad face. It is an extension to uniform B-spline surfaces in the sense that its definition is an analogy of the B-spline surface, and it produces a uniform bi-cubic B-spline surface if the control mesh is a regular quad mesh. Examples produced by the new method are also included.

  17. Meshed-Pumpkin Super-Pressure Balloon Design

    Science.gov (United States)

    Jones, Jack; Yavrouian, Andre

    2003-01-01

    An improved, lightweight design has been proposed for super-pressure balloons used to carry scientific instruments at high altitudes in the atmosphere of Earth for times as long as 100 days. [A super-pressure balloon is one in which the pressure of the buoyant gas (typically, helium) is kept somewhat above ambient pressure in order to maintain approximately constant density and thereby regulate the altitude.] The proposed design, called "meshed pumpkin," incorporates the basic concept of the pumpkin design, which is so named because of its appearance. The pumpkin design entails less weight than does a spherical design, and the meshed-pumpkin design would reduce weight further. The basic idea of the meshed-pumpkin design is to reinforce the membrane of a pumpkin balloon by attaching a strong, lightweight fabric mesh to its outer surface. The reinforcement would make it possible to reduce the membrane mass to one-third or less of that of the basic pumpkin design while retaining sufficient strength to enable the balloon to remain at approximately constant altitude for months.

  18. Mesh refinement for particle-in-cell plasma simulations: Applications to - and benefits for HIF (heavy ion fusion)

    International Nuclear Information System (INIS)

    Vay, J.L.; Colella, P.; McCorquodale, P.; Van Straalen, B.; Friedman, A.; Grote, D.P.

    2002-01-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation of the power plant as a whole, or even of the drive,r is not yet possible. Despite the rapid progress in computer power, past and anticipated, one must consider the use of the most advanced numerical techniques, if they are to reach the goal expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g., fluid dynamics simulations) is the mesh refinement technique. They discuss the challenges posed by the implementation of this technique into plasma simulations (due to the presence of particles and electromagnetic waves). They will present the prospects for and projected benefits of its application to heavy ion fusion, in particular to the simulation of the ion source and the final beam propagation in the chamber

  19. Adaptive hybrid mesh refinement for multiphysics applications

    International Nuclear Information System (INIS)

    Khamayseh, Ahmed; Almeida, Valmor de

    2007-01-01

    The accuracy and convergence of computational solutions of mesh-based methods is strongly dependent on the quality of the mesh used. We have developed methods for optimizing meshes that are comprised of elements of arbitrary polygonal and polyhedral type. We present in this research the development of r-h hybrid adaptive meshing technology tailored to application areas relevant to multi-physics modeling and simulation. Solution-based adaptation methods are used to reposition mesh nodes (r-adaptation) or to refine the mesh cells (h-adaptation) to minimize solution error. The numerical methods perform either the r-adaptive mesh optimization or the h-adaptive mesh refinement method on the initial isotropic or anisotropic meshes to equidistribute weighted geometric and/or solution error function. We have successfully introduced r-h adaptivity to a least-squares method with spherical harmonics basis functions for the solution of the spherical shallow atmosphere model used in climate modeling. In addition, application of this technology also covers a wide range of disciplines in computational sciences, most notably, time-dependent multi-physics, multi-scale modeling and simulation

  20. Enriching Triangle Mesh Animations with Physically Based Simulation.

    Science.gov (United States)

    Li, Yijing; Xu, Hongyi; Barbic, Jernej

    2017-10-01

    We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

  1. Heavy weights

    International Nuclear Information System (INIS)

    2001-01-01

    The paper mentions the important thing that it was for the country, exporting the first shipping of crude de Castilla to a company of asphalts in United States. It was not a common sale, as those that it carries out the company with the crude of Cusiana or Cano Limon. The new of this shipping is that it was the first successful test of marketing the Colombian heavy crude in the exterior, since previously it was almost considered a curse to find heavy crude by the difficulties of its transport. Today it can be taken to any refinery of the world and the best test is that, after almost a year of efforts to overcome the barriers of the transport, the company achieved its conduction from the Castilla Field, in proximities to Villavicencio, until the Covenas Port, in the Caribbean Colombian coast

  2. Coarse-mesh rebalancing acceleration for eigenvalue problems

    International Nuclear Information System (INIS)

    Asaoka, T.; Nakahara, Y.; Miyasaka, S.

    1974-01-01

    The coarse-mesh rebalance method is adopted for Monte Carlo schemes for aiming at accelerating the convergence of a source iteration process. At every completion of the Monte Carlo game for one batch of neutron histories, the scaling factor for the neutron flux is calculated to achieve the neutron balance in each coarse-mesh zone into which the total system is divided. This rebalance factor is multiplied to the weight of each fission source neutron in the coarse-mesh zone for playing the next Monte Carlo game. The numerical examples have shown that the coarse-mesh rebalance Monte Carlo calculation gives a good estimate of the eigenvalue already after several batches with a negligible extra computer time compared to the standard Monte Carlo. 5 references. (U.S.)

  3. The effect of low molecular weight multifunctional additives on heavy oil viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, T.B.P.; Yarranton, H.W.; Larter, S.R. [Calgary Univ., AB (Canada)

    2010-07-01

    Crude oils contain many small multifunctional low molecular weight components that act as linking molecules between larger functionalized species. The linkage molecules have a significant impact on the flow properties of hydrocarbon systems. This study investigated the use of a low molecular weight multiheteroatom species (LMWMH) as a molecular Velcro linking high molecular weight components together. LMWMH species were added to Albertan bitumens and heavy oil, and their impact on viscosity was investigated. Results of the experimental studies were then compared with the effects of hydrocarbon solvents on similar samples. The LMWMH species included bifunctional species and analogous alkyl and aryl monoamines that acted as blocking molecules to hinder the association of larger petroleum species. Density and viscosity measurements were conducted. A correlation method was used to predict the viscosity of the solvent-diluted heavy oil and bitumen samples. The study showed that of the tested additives, only aniline demonstrated an additional viscosity-reducing effect. The aniline inhibited asphaltene association and is a promising candidate for enhanced in-situ bitumen viscosity reduction. 23 refs., 4 tabs.

  4. A Novel Mesh Quality Improvement Method for Boundary Elements

    Directory of Open Access Journals (Sweden)

    Hou-lin Liu

    2012-01-01

    Full Text Available In order to improve the boundary mesh quality while maintaining the essential characteristics of discrete surfaces, a new approach combining optimization-based smoothing and topology optimization is developed. The smoothing objective function is modified, in which two functions denoting boundary and interior quality, respectively, and a weight coefficient controlling boundary quality are taken into account. In addition, the existing smoothing algorithm can improve the mesh quality only by repositioning vertices of the interior mesh. Without destroying boundary conformity, bad elements with all their vertices on the boundary cannot be eliminated. Then, topology optimization is employed, and those elements are converted into other types of elements whose quality can be improved by smoothing. The practical application shows that the worst elements can be eliminated and, with the increase of weight coefficient, the average quality of boundary mesh can also be improved. Results obtained with the combined approach are compared with some common approach. It is clearly shown that it performs better than the existing approach.

  5. Study of radioactivity and radiation attenuation of a new heavy weight concrete

    International Nuclear Information System (INIS)

    Ramadan, A.B.; Fouda, S.; EL-Mongy, S.; Hodhod, O.; Yousef, M.

    2005-01-01

    The present study is concerned with studying the radioactivity levels and efficiency of proposed heavy weight concrete as a shielding material for low and intermediate level radioactive wastes. Effect of elevated temperatures on radiation attenuation characteristics of proposed materials was also studied. Three types of local natural aggregates (iron ores) namely magnetite, limonite and hematite have been prepared, analyzed for their radioactivity and tested to determine their suitability for the manufacture of heavy weight concrete, which can be used for shielding. Hematite was excluded and two types of concrete have been prepared by using magnetite and limonite. The gamma spectrometry and neutron activation have been used to determine both uranium and thorium contents in the investigated materials. The results obtained by the two methods showed that uranium and thorium were within the acceptable low levels. It was observed that the two types of concrete have good attenuation properties

  6. Moving mesh generation with a sequential approach for solving PDEs

    DEFF Research Database (Denmark)

    In moving mesh methods, physical PDEs and a mesh equation derived from equidistribution of an error metrics (so-called the monitor function) are simultaneously solved and meshes are dynamically concentrated on steep regions (Lim et al., 2001). However, the simultaneous solution procedure...... a simple and robust moving mesh algorithm in one or multidimension. In this study, we propose a sequential solution procedure including two separate parts: prediction step to obtain an approximate solution to a next time level (integration of physical PDEs) and regriding step at the next time level (mesh...... generation and solution interpolation). Convection terms, which appear in physical PDEs and a mesh equation, are discretized by a WENO (Weighted Essentially Non-Oscillatory) scheme under the consrvative form. This sequential approach is to keep the advantages of robustness and simplicity for the static...

  7. Opfront: mesh

    DEFF Research Database (Denmark)

    2015-01-01

    Mesh generation and visualization software based on the CGAL library. Folder content: drawmesh Visualize slices of the mesh (surface/volumetric) as wireframe on top of an image (3D). drawsurf Visualize surfaces of the mesh (surface/volumetric). img2mesh Convert isosurface in image to volumetric m...... mesh (medit format). img2off Convert isosurface in image to surface mesh (off format). off2mesh Convert surface mesh (off format) to volumetric mesh (medit format). reduce Crop and resize 3D and stacks of images. data Example data to test the library on...

  8. Comparison of a lightweight polypropylene mesh (Optilene® LP) and a large-pore knitted PTFE mesh (GORE® INFINIT® mesh)--Biocompatibility in a standardized endoscopic extraperitoneal hernia model.

    Science.gov (United States)

    Jacob, Dietmar A; Schug-Pass, Christine; Sommerer, Florian; Tannapfel, Andrea; Lippert, Hans; Köckerling, Ferdinand

    2012-02-01

    The use of a mesh with good biocompatibility properties is of decisive importance for the avoidance of recurrences and chronic pain in endoscopic hernia repair surgery. As we know from numerous experiments and clinical experience, large-pore, lightweight polypropylene meshes possess the best biocompatibility. However, large-pore meshes of different polymers may be used as well and might be an alternative solution. Utilizing a totally extraperitoneal technique in an established animal model, 20 domestic pigs were implanted with either a lightweight large-pore polypropylene (PP) mesh (Optilene® LP) or a medium-weight large-pore knitted polytetrafluorethylene (PTFE) mesh (GORE® INFINIT® mesh). After 94 days, the pigs were sacrificed and postmortem diagnostic laparoscopy was performed, followed by explantation of the specimens for macroscopic, histological and immunohistochemical evaluation. The mean mesh shrinkage rate was 14.2% for Optilene® LP vs. 24.7% for INFINIT® mesh (p = 0.017). The partial volume of the inflammatory cells was 11.2% for Optilene® LP vs. 13.9% for INFINIT (n.s.). CD68 was significantly higher for INFINIT (11.8% vs. 5.6%, p = 0.007). The markers of cell turnover, namely Ki67 and the apoptotic index, were comparable at 6.4% vs. 12.4% (n.s.) and 1.6% vs. 2.0% (n.s.). In the extracellular matrix, TGF-β was 35.4% for Optilene® LP and 31.0% for INFINIT® (n.s.). Collagen I (pos/300 μm) deposits were 117.8 and 114.9, respectively. In our experimental examinations, Optilene® LP and INFINIT® showed a comparable biocompatibility in terms of chronic inflammatory reaction; however, the shrinkage rate was significantly higher for INFINIT® after 3 months. The higher shrinkage rate of INFINIT® should be taken into account when choosing the mesh size for an adequate hernia overlap.

  9. Automatic mesh adaptivity for CADIS and FW-CADIS neutronics modeling of difficult shielding problems

    International Nuclear Information System (INIS)

    Ibrahim, A. M.; Peplow, D. E.; Mosher, S. W.; Wagner, J. C.; Evans, T. M.; Wilson, P. P.; Sawan, M. E.

    2013-01-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macro-material approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm de-couples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, obviating the need for a world-class super computer. (authors)

  10. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

    2015-01-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer

  11. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.

  12. Energy dependent mesh adaptivity of discontinuous isogeometric discrete ordinate methods with dual weighted residual error estimators

    Science.gov (United States)

    Owens, A. R.; Kópházi, J.; Welch, J. A.; Eaton, M. D.

    2017-04-01

    In this paper a hanging-node, discontinuous Galerkin, isogeometric discretisation of the multigroup, discrete ordinates (SN) equations is presented in which each energy group has its own mesh. The equations are discretised using Non-Uniform Rational B-Splines (NURBS), which allows the coarsest mesh to exactly represent the geometry for a wide range of engineering problems of interest; this would not be the case using straight-sided finite elements. Information is transferred between meshes via the construction of a supermesh. This is a non-trivial task for two arbitrary meshes, but is significantly simplified here by deriving every mesh from a common coarsest initial mesh. In order to take full advantage of this flexible discretisation, goal-based error estimators are derived for the multigroup, discrete ordinates equations with both fixed (extraneous) and fission sources, and these estimators are used to drive an adaptive mesh refinement (AMR) procedure. The method is applied to a variety of test cases for both fixed and fission source problems. The error estimators are found to be extremely accurate for linear NURBS discretisations, with degraded performance for quadratic discretisations owing to a reduction in relative accuracy of the "exact" adjoint solution required to calculate the estimators. Nevertheless, the method seems to produce optimal meshes in the AMR process for both linear and quadratic discretisations, and is ≈×100 more accurate than uniform refinement for the same amount of computational effort for a 67 group deep penetration shielding problem.

  13. Mesh Excision: Is Total Mesh Excision Necessary?

    Science.gov (United States)

    Wolff, Gillian F; Winters, J Christian; Krlin, Ryan M

    2016-04-01

    Nearly 29% of women will undergo a secondary, repeat operation for pelvic organ prolapse (POP) symptom recurrence following a primary repair, as reported by Abbott et al. (Am J Obstet Gynecol 210:163.e1-163.e1, 2014). In efforts to decrease the rates of failure, graft materials have been utilized to augment transvaginal repairs. Following the success of using polypropylene mesh (PPM) for stress urinary incontinence (SUI), the use of PPM in the transvaginal repair of POP increased. However, in recent years, significant concerns have been raised about the safety of PPM mesh. Complications, some specific to mesh, such as exposures, erosion, dyspareunia, and pelvic pain, have been reported with increased frequency. In the current literature, there is not substantive evidence to suggest that PPM has intrinsic properties that warrant total mesh removal in the absence of complications. There are a number of complications that can occur after transvaginal mesh placement that do warrant surgical intervention after failure of conservative therapy. In aggregate, there are no high-quality controlled studies that clearly demonstrate that total mesh removal is consistently more likely to achieve pain reduction. In the cases of obstruction and erosion, it seems clear that definitive removal of the offending mesh is associated with resolution of symptoms in the majority of cases and reasonable practice. There are a number of complications that can occur with removal of mesh, and patients should be informed of this as they formulate a choice of treatment. We will review these considerations as we examine the clinical question of whether total versus partial removal of mesh is necessary for the resolution of complications following transvaginal mesh placement.

  14. Determination of heavy metals impurities in low and medium atomic weight matrices

    International Nuclear Information System (INIS)

    Paiano, Silvestre; Prado Souza, Rose M.G. do

    1997-01-01

    Heavy materials have a mass attenuation coefficient in the energy interval from 100 to 400 KeV substantially higher than those corresponding to light and medium atomic weight matrices. They also show, in the same energy range, a more pronounced energy variation of this parameter. In a few cases, this property can be used for the determination of the concentration of impurities constituted by heavy metals in a lighter matrix. An Ytterbium gamma-ray source, which has several energy peaks in the considered interval, is used to supply a number of energy pairs from which the density of impurities can be found without the use of reference materials. (author). 1 ref., 4 figs

  15. Heterogeneous Wireless Mesh Network Technology Evaluation for Space Proximity and Surface Applications

    Science.gov (United States)

    DeCristofaro, Michael A.; Lansdowne, Chatwin A.; Schlesinger, Adam M.

    2014-01-01

    NASA has identified standardized wireless mesh networking as a key technology for future human and robotic space exploration. Wireless mesh networks enable rapid deployment, provide coverage in undeveloped regions. Mesh networks are also self-healing, resilient, and extensible, qualities not found in traditional infrastructure-based networks. Mesh networks can offer lower size, weight, and power (SWaP) than overlapped infrastructure-perapplication. To better understand the maturity, characteristics and capability of the technology, we developed an 802.11 mesh network consisting of a combination of heterogeneous commercial off-the-shelf devices and opensource firmware and software packages. Various streaming applications were operated over the mesh network, including voice and video, and performance measurements were made under different operating scenarios. During the testing several issues with the currently implemented mesh network technology were identified and outlined for future work.

  16. Assessment of fusion facility dose rate map using mesh adaptivity enhancements of hybrid Monte Carlo/deterministic techniques

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Wilson, Paul P.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Grove, Robert E.

    2014-01-01

    Highlights: •Calculate the prompt dose rate everywhere throughout the entire fusion energy facility. •Utilize FW-CADIS to accurately perform difficult neutronics calculations for fusion energy systems. •Develop three mesh adaptivity algorithms to enhance FW-CADIS efficiency in fusion-neutronics calculations. -- Abstract: Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer

  17. Distributions of heavy metals in maternal and cord blood and the association with infant birth weight in China.

    Science.gov (United States)

    Hu, Xiaobin; Zheng, Tongzhang; Cheng, Yibin; Holford, Theodore; Lin, Shaobin; Leaderer, Brian; Qiu, Jie; Bassig, Bryan A; Shi, Kunchong; Zhang, Yawei; Niu, Jianjun; Zhu, Yong; Li, Yonghong; Guo, Huan; Chen, Qiong; Zhang, Jianqing; Xu, Shunqing; Jin, Yinlong

    2015-01-01

    To measure serum levels of heavy metals in Chinese pregnant women and their newborns, and to evaluate the association of these metals with infant birth weight. We measured serum concentrations of lead (Pb), thallium (Tl), cadmium (Cd), selenium (Se), arsenic (As), nickle (Ni), vanadium (V), cobalt (Co), and mercury (Hg) in 81 mother-infant pairs using an inductively coupled plasma mass spectrometry method. Multiple linear regression analyses were used to evaluate the associations of these heavy metals with infant birth weight. Se, Pb, As, and Cd showed the highest detection rates (98.8%) in both the maternal and cord blood, followed by Tl, which was detected in 79.0% and 71.6% of the maternal and cord blood samples, respectively. Pb had the highest concentrations in both the maternal and cord blood samples of all toxic metals detected, with concentrations of 23.1 ng/g and 22.0 ng/g, respectively. No significant associations were observed between any heavy metals and birth weight. However, Tl in the maternal and cord blood was most notably inversely associated with birth weight. Se intake was low in Chinese women and their newborns, whereas Pb had the highest concentrations in both the maternal and cord blood samples of all toxic metals detected. Tl was a unique pollution source in this population, and Tl levels were shown to have the largest effect on decreasing infant birth weight in this pilot study. Further research incorporating larger sample sizes is needed to investigate the effects of prenatal exposure to heavy metals--especially Tl and Pb--on birth outcome in Chinese infants.

  18. Parallel adaptation of general three-dimensional hybrid meshes

    International Nuclear Information System (INIS)

    Kavouklis, Christos; Kallinderis, Yannis

    2010-01-01

    A new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid grids has been developed. The meshes considered in this work are composed of four kinds of elements; tetrahedra, prisms, hexahedra and pyramids, which poses a challenge to parallel mesh adaptation. Additional complexity imposed by the presence of multiple types of elements affects especially data migration, updates of local data structures and interpartition data structures. Efficient partition of hybrid meshes has been accomplished by transforming them to suitable graphs and using serial graph partitioning algorithms. Communication among processors is based on the faces of the interpartition boundary and the termination detection algorithm of Dijkstra is employed to ensure proper flagging of edges for refinement. An inexpensive dynamic load balancing strategy is introduced to redistribute work load among processors after adaptation. In particular, only the initial coarse mesh, with proper weighting, is balanced which yields savings in computation time and relatively simple implementation of mesh quality preservation rules, while facilitating coarsening of refined elements. Special algorithms are employed for (i) data migration and dynamic updates of the local data structures, (ii) determination of the resulting interpartition boundary and (iii) identification of the communication pattern of processors. Several representative applications are included to evaluate the method.

  19. Notes on the Mesh Handler and Mesh Data Conversion

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok

    2009-01-01

    At the outset of the development of the thermal-hydraulic code (THC), efforts have been made to utilize the recent technology of the computational fluid dynamics. Among many of them, the unstructured mesh approach was adopted to alleviate the restriction of the grid handling system. As a natural consequence, a mesh handler (MH) has been developed to manipulate the complex mesh data from the mesh generator. The mesh generator, Gambit, was chosen at the beginning of the development of the code. But a new mesh generator, Pointwise, was introduced to get more flexible mesh generation capability. An open source code, Paraview, was chosen as a post processor, which can handle unstructured as well as structured mesh data. Overall data processing system for THC is shown in Figure-1. There are various file formats to save the mesh data in the permanent storage media. A couple of dozen of file formats are found even in the above mentioned programs. A competent mesh handler should have the capability to import or export mesh data as many as possible formats. But, in reality, there are two aspects that make it difficult to achieve the competence. The first aspect to consider is the time and efforts to program the interface code. And the second aspect, which is even more difficult one, is the fact that many mesh data file formats are proprietary information. In this paper, some experience of the development of the format conversion programs will be presented. File formats involved are Gambit neutral format, Ansys-CFX grid file format, VTK legacy file format, Nastran format and CGNS

  20. Towards a real time computation of the dose in a phantom segmented into homogeneous meshes

    International Nuclear Information System (INIS)

    Blanpain, B.

    2009-10-01

    Automatic radiation therapy treatment planning necessitates a very fast computation of the dose delivered to the patient. We propose to compute the dose by segmenting the patient's phantom into homogeneous meshes, and by associating, to the meshes, projections to dose distributions pre-computed in homogeneous phantoms, along with weights managing heterogeneities. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh. This method is very fast, in particular when there are few points of interest (several hundreds). In this case, results are obtained in less than one second. With such performances, practical realization of automatic treatment planning becomes practically feasible. (author)

  1. Advanced Variance Reduction Strategies for Optimizing Mesh Tallies in MAVRIC

    International Nuclear Information System (INIS)

    Peplow, Douglas E.; Blakeman, Edward D; Wagner, John C

    2007-01-01

    More often than in the past, Monte Carlo methods are being used to compute fluxes or doses over large areas using mesh tallies (a set of region tallies defined on a mesh that overlays the geometry). For problems that demand that the uncertainty in each mesh cell be less than some set maximum, computation time is controlled by the cell with the largest uncertainty. This issue becomes quite troublesome in deep-penetration problems, and advanced variance reduction techniques are required to obtain reasonable uncertainties over large areas. The CADIS (Consistent Adjoint Driven Importance Sampling) methodology has been shown to very efficiently optimize the calculation of a response (flux or dose) for a single point or a small region using weight windows and a biased source based on the adjoint of that response. This has been incorporated into codes such as ADVANTG (based on MCNP) and the new sequence MAVRIC, which will be available in the next release of SCALE. In an effort to compute lower uncertainties everywhere in the problem, Larsen's group has also developed several methods to help distribute particles more evenly, based on forward estimates of flux. This paper focuses on the use of a forward estimate to weight the placement of the source in the adjoint calculation used by CADIS, which we refer to as a forward-weighted CADIS (FW-CADIS)

  2. An optimization-based framework for anisotropic simplex mesh adaptation

    Science.gov (United States)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  3. Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes

    Science.gov (United States)

    Zhu, Jun; Zhong, Xinghui; Shu, Chi-Wang; Qiu, Jianxian

    2013-09-01

    In this paper we generalize a new type of limiters based on the weighted essentially non-oscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [32] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the entire polynomials of the DG solutions from the troubled cell and its immediate neighboring cells, and then apply the classical WENO procedure to form a convex combination of these polynomials based on smoothness indicators and nonlinear weights, with suitable adjustments to guarantee conservation. The main advantage of this new limiter is its simplicity in implementation, especially for the unstructured meshes considered in this paper, as only information from immediate neighbors is needed and the usage of complicated geometric information of the meshes is largely avoided. Numerical results for both scalar equations and Euler systems of compressible gas dynamics are provided to illustrate the good performance of this procedure.

  4. Comparative Study of Different Gill Net Mesh Sizes in the ...

    African Journals Online (AJOL)

    Bioline

    component weighting) in the catch, which were favoured by the bigger mesh sizes (70mm). ... METHODS ... fishes from each ice chest were identified using the ..... feeding habits), and population (abundance) (RPI ... biomass per unit effort.

  5. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

    Science.gov (United States)

    Tanawade, A. G.; Modhera, C. D.

    2017-08-01

    Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

  6. Seeking new surgical predictors of mesh exposure after transvaginal mesh repair.

    Science.gov (United States)

    Wu, Pei-Ying; Chang, Chih-Hung; Shen, Meng-Ru; Chou, Cheng-Yang; Yang, Yi-Ching; Huang, Yu-Fang

    2016-10-01

    The purpose of this study was to explore new preventable risk factors for mesh exposure. A retrospective review of 92 consecutive patients treated with transvaginal mesh (TVM) in the urogynecological unit of our university hospital. An analysis of perioperative predictors was conducted in patients after vaginal repairs using a type 1 mesh. Mesh complications were recorded according to International Urogynecological Association (IUGA) definitions. Mesh-exposure-free durations were calculated by using the Kaplan-Meier method and compared between different closure techniques using log-rank test. Hazard ratios (HR) of predictors for mesh exposure were estimated by univariate and multivariate analyses using Cox proportional hazards regression models. The median surveillance interval was 24.1 months. Two late occurrences were found beyond 1 year post operation. No statistically significant correlation was observed between mesh exposure and concomitant hysterectomy. Exposure risks were significantly higher in patients with interrupted whole-layer closure in univariate analysis. In the multivariate analysis, hematoma [HR 5.42, 95 % confidence interval (CI) 1.26-23.35, P = 0.024), Prolift mesh (HR 5.52, 95 % CI 1.15-26.53, P = 0.033), and interrupted whole-layer closure (HR 7.02, 95 % CI 1.62-30.53, P = 0.009) were the strongest predictors of mesh exposure. Findings indicate the risks of mesh exposure and reoperation may be prevented by avoiding hematoma, large amount of mesh, or interrupted whole-layer closure in TVM surgeries. If these risk factors are prevented, hysterectomy may not be a relative contraindication for TVM use. We also provide evidence regarding mesh exposure and the necessity for more than 1 year of follow-up and preoperative counselling.

  7. Polymer microfiber meshes facilitate cardiac differentiation of c-kit{sup +} human cardiac stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Lijuan [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Thayer, Patrick [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Fan, Huimin [Research Institute of Heart Failure, Shanghai East Hospital of Tongji University, Shanghai (China); Ledford, Benjamin; Chen, Miao [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States); Goldstein, Aaron [Department of Chemical Engineering, School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); Cao, Guohua [School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA (United States); He, Jia-Qiang, E-mail: jiahe@vt.edu [Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (United States)

    2016-09-10

    Electrospun microfiber meshes have been shown to support the proliferation and differentiation of many types of stem cells, but the phenotypic fate of c-kit{sup +} human cardiac stem cells (hCSCs) have not been explored. To this end, we utilized thin (~5 µm) elastomeric meshes consisting of aligned 1.7 µm diameter poly (ester-urethane urea) microfibers as substrates to examine their effect on hCSC viability, morphology, proliferation, and differentiation relative to cells cultured on tissue culture polystyrene (TCPS). The results showed that cells on microfiber meshes displayed an elongated morphology aligned in the direction of fiber orientation, lower proliferation rates, but increased expressions of genes and proteins majorly associated with cardiomyocyte phenotype. The early (NK2 homeobox 5, Nkx2.5) and late (cardiac troponin I, cTnI) cardiomyocyte genes were significantly increased on meshes (Nkx=2.5 56.2±13.0, cTnl=2.9±0.56,) over TCPS (Nkx2.5=4.2±0.9, cTnl=1.6±0.5, n=9, p<0.05 for both groups) after differentiation. In contrast, expressions of smooth muscle markers, Gata6 and myosin heavy chain (SM-MHC), were decreased on meshes. Immunocytochemical analysis with cardiac antibody exhibited the similar pattern of above cardiac differentiation. We conclude that aligned microfiber meshes are suitable for guiding cardiac differentiation of hCSCs and may facilitate stem cell-based therapies for treatment of cardiac diseases. - Highlights: • First study to characterize c-kit{sup +} human cardiac stem cells on microfiber meshes. • Microfiber meshes seem reducing cell proliferation, but no effect on cell viability. • Microfiber meshes facilitate the elongation of human cardiac stem cells in culture. • Cardiac but not smooth muscle differentiation were enhanced on microfiber meshes. • Microfiber meshes may be used as cardiac patches in cell-based cardiac therapy.

  8. The use of mesh implants in vaginal prolapse surgery: Position ...

    African Journals Online (AJOL)

    sponsored training have also played a role in the adoption of these new techniques. .... surface area and weight of type 1 polypropylene mesh used in different kits, make ... such as bladder and rectal injury, and further recurrence. Realistic.

  9. The Role of Chronic Mesh Infection in Delayed-Onset Vaginal Mesh Complications or Recurrent Urinary Tract Infections: Results From Explanted Mesh Cultures.

    Science.gov (United States)

    Mellano, Erin M; Nakamura, Leah Y; Choi, Judy M; Kang, Diana C; Grisales, Tamara; Raz, Shlomo; Rodriguez, Larissa V

    2016-01-01

    Vaginal mesh complications necessitating excision are increasingly prevalent. We aim to study whether subclinical chronically infected mesh contributes to the development of delayed-onset mesh complications or recurrent urinary tract infections (UTIs). Women undergoing mesh removal from August 2013 through May 2014 were identified by surgical code for vaginal mesh removal. Only women undergoing removal of anti-incontinence mesh were included. Exclusion criteria included any women undergoing simultaneous prolapse mesh removal. We abstracted preoperative and postoperative information from the medical record and compared mesh culture results from patients with and without mesh extrusion, de novo recurrent UTIs, and delayed-onset pain. One hundred seven women with only anti-incontinence mesh removed were included in the analysis. Onset of complications after mesh placement was within the first 6 months in 70 (65%) of 107 and delayed (≥6 months) in 37 (35%) of 107. A positive culture from the explanted mesh was obtained from 82 (77%) of 107 patients, and 40 (37%) of 107 were positive with potential pathogens. There were no significant differences in culture results when comparing patients with delayed-onset versus immediate pain, extrusion with no extrusion, and de novo recurrent UTIs with no infections. In this large cohort of patients with mesh removed for a diverse array of complications, cultures of the explanted vaginal mesh demonstrate frequent low-density bacterial colonization. We found no differences in culture results from women with delayed-onset pain versus acute pain, vaginal mesh extrusions versus no extrusions, or recurrent UTIs using standard culture methods. Chronic prosthetic infections in other areas of medicine are associated with bacterial biofilms, which are resistant to typical culture techniques. Further studies using culture-independent methods are needed to investigate the potential role of chronic bacterial infections in delayed vaginal mesh

  10. Evaluation on Bending Properties of Biomaterial GUM Metal Meshed Plates for Bone Graft Applications

    Science.gov (United States)

    Suzuki, Hiromichi; He, Jianmei

    2017-11-01

    There are three bone graft methods for bone defects caused by diseases such as cancer and accident injuries: Autogenous bone grafts, Allografts and Artificial bone grafts. In this study, meshed GUM Metal plates with lower elasticity, high strength and high biocompatibility are introduced to solve the over stiffness & weight problems of ready-used metal implants. Basic mesh shapes are designed and applied to GUM Metal plates using 3D CAD modeling tools. Bending properties of prototype meshed GUM Metal plates are evaluated experimentally and analytically. Meshed plate specimens with 180°, 120° and 60° axis-symmetrical types were fabricated for 3-point bending tests. The pseudo bending elastic moduli of meshed plate specimens obtained from 3-point bending test are ranged from 4.22 GPa to 16.07 GPa, within the elasticity range of natural cortical bones from 2.0 GPa to 30.0 GPa. Analytical approach method is validated by comparison with experimental and analytical results for evaluation on bending property of meshed plates.

  11. Urogynecologic Surgical Mesh Implants

    Science.gov (United States)

    ... procedures performed to treat pelvic floor disorders with surgical mesh: Transvaginal mesh to treat POP Transabdominal mesh to treat ... address safety risks Final Order for Reclassification of Surgical Mesh for Transvaginal Pelvic Organ Prolapse Repair Final Order for Effective ...

  12. Tension free monofilament macropore polypropylene mesh (Gynemesh PS in female genital prolapse repair

    Directory of Open Access Journals (Sweden)

    Vicente Sola

    2006-08-01

    Full Text Available OBJECTIVES: To review intraoperative and postoperative complications associated to the correction of cystocele and rectocele with polypropylene mesh macropore monofilament (Gynemesh PS using transvaginal free tension technique. MATERIALS AND METHODS: Prospective study of patients that have been submitted to correction of cystocele and/or rectocele between November 2004 and August 2005 in the Urogynecology and Vaginal Surgery Unit of Gynecology and Obstetrics Department, Las Condes Clinic. Mesh was used in 31 patients: 9 for cystocele, 11 for rectocele, and 11 for concomitant meshes. Total mesh used 42. Media age 55 years old, weight 64 kilograms. In 7 patients we used a third mesh for correction of urinary incontinence by TVT-O technique. RESULTS: They did not present intraoperative complications, neither in immediate or delayed postoperative time. We did not observe hematoma, infection, erosion or exposition mesh. Healing of cystocele and rectocele was obtained in 100% of patients, with a pursuit between 1 and 8 months. DISCUSSION: The use of prosthetic polypropylene monofilament macropore mesh in the correction of cystocele and/or rectocele, by transvaginal route with tension free technique seems to be a safe and effective surgery procedure.

  13. Intravesical midurethral sling mesh erosion secondary to transvaginal mesh reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Sukanda Bin Jaili

    2015-05-01

    Conclusion: Repeated vaginal reconstructive surgery may jeopardize a primary mesh or sling, and pose a high risk of mesh erosion, which may be delayed for several years. Removal of the mesh erosion and bladder repair are feasible pervaginally with good outcome.

  14. Mesh versus non-mesh repair of ventral abdominal hernias

    International Nuclear Information System (INIS)

    Jawaid, M.A.; Talpur, A.H.

    2008-01-01

    To investigate the relative effectiveness of mesh and suture repair of ventral abdominal hernias in terms of clinical outcome, quality of life and rate of recurrence in both the techniques. This is a retrospective descriptive analysis of 236 patients with mesh and non-mesh repair of primary ventral hernias performed between January 2000 to December 2004 at Surgery Department, Liaquat University of Medical and Health Sciences, Jamshoro. The record sheets of the patients were analyzed and data retrieved to compare the results of both techniques for short-term and long-term results. The data retrieved is statistically analyzed on SPSS version 11. There were 43 (18.22%) males and 193 (81.77%) females with a mean age of 51.79 years and a range of 59 (81-22). Para-umbilical hernia was the commonest of ventral hernia and accounted for 49.8% (n=118) of the total study population followed by incisional hernia comprising 24% (n=57) of the total number. There was a significant difference in the recurrent rate at 3 years interval with 23/101 (22.77%) recurrences in suture-repaired subjects compared to 10/135 (7.40%) in mesh repair group. Chronic pain lasting up to 1-2 years was noted in 14 patients with suture repair. Wound infection is comparatively more common (8.14%) in mesh group. The other variables such as operative and postoperative complications, total hospital stay and quality of life is also discussed. Mesh repair of ventral hernia is much superior to non-mesh suture repair in terms of recurrence and overall outcome. (author)

  15. Root-cause analysis of the better performance of the coarse-mesh finite-difference method for CANDU-type reactors

    International Nuclear Information System (INIS)

    Shen, W.

    2012-01-01

    Recent assessment results indicate that the coarse-mesh finite-difference method (FDM) gives consistently smaller percent differences in channel powers than the fine-mesh FDM when compared to the reference MCNP solution for CANDU-type reactors. However, there is an impression that the fine-mesh FDM should always give more accurate results than the coarse-mesh FDM in theory. To answer the question if the better performance of the coarse-mesh FDM for CANDU-type reactors was just a coincidence (cancellation of errors) or caused by the use of heavy water or the use of lattice-homogenized cross sections for the cluster fuel geometry in the diffusion calculation, three benchmark problems were set up with three different fuel lattices: CANDU, HWR and PWR. These benchmark problems were then used to analyze the root cause of the better performance of the coarse-mesh FDM for CANDU-type reactors. The analyses confirm that the better performance of the coarse-mesh FDM for CANDU-type reactors is mainly caused by the use of lattice-homogenized cross sections for the sub-meshes of the cluster fuel geometry in the diffusion calculation. Based on the analyses, it is recommended to use 2 x 2 coarse-mesh FDM to analyze CANDU-type reactors when lattice-homogenized cross sections are used in the core analysis. (authors)

  16. Root-cause analysis of the better performance of the coarse-mesh finite-difference method for CANDU-type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W. [Candu Energy Inc., 2285 Speakman Dr., Mississauga, ON L5B 1K (Canada)

    2012-07-01

    Recent assessment results indicate that the coarse-mesh finite-difference method (FDM) gives consistently smaller percent differences in channel powers than the fine-mesh FDM when compared to the reference MCNP solution for CANDU-type reactors. However, there is an impression that the fine-mesh FDM should always give more accurate results than the coarse-mesh FDM in theory. To answer the question if the better performance of the coarse-mesh FDM for CANDU-type reactors was just a coincidence (cancellation of errors) or caused by the use of heavy water or the use of lattice-homogenized cross sections for the cluster fuel geometry in the diffusion calculation, three benchmark problems were set up with three different fuel lattices: CANDU, HWR and PWR. These benchmark problems were then used to analyze the root cause of the better performance of the coarse-mesh FDM for CANDU-type reactors. The analyses confirm that the better performance of the coarse-mesh FDM for CANDU-type reactors is mainly caused by the use of lattice-homogenized cross sections for the sub-meshes of the cluster fuel geometry in the diffusion calculation. Based on the analyses, it is recommended to use 2 x 2 coarse-mesh FDM to analyze CANDU-type reactors when lattice-homogenized cross sections are used in the core analysis. (authors)

  17. Mesh removal following transvaginal mesh placement: a case series of 104 operations.

    Science.gov (United States)

    Marcus-Braun, Naama; von Theobald, Peter

    2010-04-01

    The objective of the study was to reveal the way we treat vaginal mesh complications in a trained referral center. This is a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 5-year period. Eighty-three patients underwent 104 operations including 61 complete mesh removal, 14 partial excision, 15 section of sub-urethral sling, and five laparoscopies. Main indications were erosion, infection, granuloma, incomplete voiding, and pain. Fifty-eight removals occurred more than 2 years after the primary mesh placement. Mean operation time was 21 min, and there were two intraoperative and ten minor postoperative complications. Stress urinary incontinence (SUI) recurred in 38% and cystocele in 19% of patients. In a trained center, mesh removal was found to be a quick and safe procedure. Mesh-related complications may frequently occur more than 2 years after the primary operation. Recurrence was mostly associated with SUI and less with genital prolapse.

  18. Polygonal Prism Mesh in the Viscous Layers for the Polyhedral Mesh Generator, PolyGen

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan

    2015-01-01

    Polyhedral mesh has been known to have some benefits over the tetrahedral mesh. Efforts have been made to set up a polyhedral mesh generation system with open source programs SALOME and TetGen. The evaluation has shown that the polyhedral mesh generation system is promising. But it is necessary to extend the capability of the system to handle the viscous layers to be a generalized mesh generator. A brief review to the previous works on the mesh generation for the viscous layers will be made in section 2. Several challenging issues for the polygonal prism mesh generation will be discussed as well. The procedure to generate a polygonal prism mesh will be discussed in detail in section 3. Conclusion will be followed in section 4. A procedure to generate meshes in the viscous layers with PolyGen has been successfully designed. But more efforts have to be exercised to find the best way for the generating meshes for viscous layers. Using the extrusion direction of the STL data will the first of the trials in the near future

  19. Toward An Unstructured Mesh Database

    Science.gov (United States)

    Rezaei Mahdiraji, Alireza; Baumann, Peter Peter

    2014-05-01

    Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi

  20. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang

    2011-02-01

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.

  1. Numerical form-finding method for large mesh reflectors with elastic rim trusses

    Science.gov (United States)

    Yang, Dongwu; Zhang, Yiqun; Li, Peng; Du, Jingli

    2018-06-01

    Traditional methods for designing a mesh reflector usually treat the rim truss as rigid. Due to large aperture, light weight and high accuracy requirements on spaceborne reflectors, the rim truss deformation is indeed not negligible. In order to design a cable net with asymmetric boundaries for the front and rear nets, a cable-net form-finding method is firstly introduced. Then, the form-finding method is embedded into an iterative approach for designing a mesh reflector considering the elasticity of the supporting rim truss. By iterations on form-findings of the cable-net based on the updated boundary conditions due to the rim truss deformation, a mesh reflector with a fairly uniform tension distribution in its equilibrium state could be finally designed. Applications on offset mesh reflectors with both circular and elliptical rim trusses are illustrated. The numerical results show the effectiveness of the proposed approach and that a circular rim truss is more stable than an elliptical rim truss.

  2. MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank.

    Science.gov (United States)

    Mao, Yuqing; Lu, Zhiyong

    2017-04-17

    MeSH indexing is the task of assigning relevant MeSH terms based on a manual reading of scholarly publications by human indexers. The task is highly important for improving literature retrieval and many other scientific investigations in biomedical research. Unfortunately, given its manual nature, the process of MeSH indexing is both time-consuming (new articles are not immediately indexed until 2 or 3 months later) and costly (approximately ten dollars per article). In response, automatic indexing by computers has been previously proposed and attempted but remains challenging. In order to advance the state of the art in automatic MeSH indexing, a community-wide shared task called BioASQ was recently organized. We propose MeSH Now, an integrated approach that first uses multiple strategies to generate a combined list of candidate MeSH terms for a target article. Through a novel learning-to-rank framework, MeSH Now then ranks the list of candidate terms based on their relevance to the target article. Finally, MeSH Now selects the highest-ranked MeSH terms via a post-processing module. We assessed MeSH Now on two separate benchmarking datasets using traditional precision, recall and F 1 -score metrics. In both evaluations, MeSH Now consistently achieved over 0.60 in F-score, ranging from 0.610 to 0.612. Furthermore, additional experiments show that MeSH Now can be optimized by parallel computing in order to process MEDLINE documents on a large scale. We conclude that MeSH Now is a robust approach with state-of-the-art performance for automatic MeSH indexing and that MeSH Now is capable of processing PubMed scale documents within a reasonable time frame. http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/MeSHNow/ .

  3. Progress in the study of mesh refinement for particle-in-cell plasma simulations and its application to heavy ion fusion

    International Nuclear Information System (INIS)

    Vay, J.-L.; Friedman, A.; Grote, D.P.

    2002-01-01

    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and, despite rapid progress in computer power, one must consider the use of the most advanced numerical techniques. One of the difficulties of these simulations resides in the disparity of scales in time and in space which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g. fluid dynamics simulations) is the Adaptive-Mesh-Refinement (AMR) technique. We follow in this article the progress accomplished in the last few months in the merging of the AMR technique with Particle-In-Cell (PIC) method. This includes a detailed modeling of the Lampel-Tiefenback solution for the one-dimensional diode using novel techniques to suppress undesirable numerical oscillations and an AMR patch to follow the head of the particle distribution. We also report new results concerning the modeling of ion sources using the axisymmetric WARPRZ-AMR prototype showing the utility of an AMR patch resolving the emitter vicinity and the beam edge

  4. Laparoscopic appendicectomy for suspected mesh-induced appendicitis after laparoscopic transabdominal preperitoneal polypropylene mesh inguinal herniorraphy

    Directory of Open Access Journals (Sweden)

    Jennings Jason

    2010-01-01

    Full Text Available Laparoscopic inguinal herniorraphy via a transabdominal preperitoneal (TAPP approach using Polypropylene Mesh (Mesh and staples is an accepted technique. Mesh induces a localised inflammatory response that may extend to, and involve, adjacent abdominal and pelvic viscera such as the appendix. We present an interesting case of suspected Mesh-induced appendicitis treated successfully with laparoscopic appendicectomy, without Mesh removal, in an elderly gentleman who presented with symptoms and signs of acute appendicitis 18 months after laparoscopic inguinal hernia repair. Possible mechanisms for Mesh-induced appendicitis are briefly discussed.

  5. Persistent pelvic pain following transvaginal mesh surgery: a cause for mesh removal.

    Science.gov (United States)

    Marcus-Braun, Naama; Bourret, Antoine; von Theobald, Peter

    2012-06-01

    Persistent pelvic pain after vaginal mesh surgery is an uncommon but serious complication that greatly affects women's quality of life. Our aim was to evaluate various procedures for mesh removal performed at a tertiary referral center in cases of persistent pelvic pain, and to evaluate the ensuing complications and outcomes. A retrospective study was conducted at the University Hospital of Caen, France, including all patients treated for removal or section of vaginal mesh due to pelvic pain as a primary cause, between January 2004 and September 2009. Ten patients met the inclusion criteria. Patients were diagnosed between 10 months and 3 years after their primary operation. Eight cases followed suburethral sling procedures and two followed mesh surgery for pelvic organ prolapse. Patients presented with obturator neuralgia (6), pudendal neuralgia (2), dyspareunia (1), and non-specific pain (1). The surgical treatment to release the mesh included: three cases of extra-peritoneal laparoscopy, four cases of complete vaginal mesh removal, one case of partial mesh removal and two cases of section of the suburethral sling. In all patients with obturator neuralgia, symptoms were resolved or improved, whereas in both cases of pudendal neuralgia the symptoms continued. There were no intra-operative complications. Post-operative Retzius hematoma was observed in one patient after laparoscopy. Mesh removal in a tertiary center is a safe procedure, necessary in some cases of persistent pelvic pain. Obturator neuralgia seems to be easier to treat than pudendal neuralgia. Early diagnosis is the key to success in prevention of chronic disease. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Discretization of the Joule heating term for plasma discharge fluid models in unstructured meshes

    International Nuclear Information System (INIS)

    Deconinck, T.; Mahadevan, S.; Raja, L.L.

    2009-01-01

    The fluid (continuum) approach is commonly used for simulation of plasma phenomena in electrical discharges at moderate to high pressures (>10's mTorr). The description comprises governing equations for charged and neutral species transport and energy equations for electrons and the heavy species, coupled to equations for the electromagnetic fields. The coupling of energy from the electrostatic field to the plasma species is modeled by the Joule heating term which appears in the electron and heavy species (ion) energy equations. Proper numerical discretization of this term is necessary for accurate description of discharge energetics; however, discretization of this term poses a special problem in the case of unstructured meshes owing to the arbitrary orientation of the faces enclosing each cell. We propose a method for the numerical discretization of the Joule heating term using a cell-centered finite volume approach on unstructured meshes with closed convex cells. The Joule heating term is computed by evaluating both the electric field and the species flux at the cell center. The dot product of these two vector quantities is computed to obtain the Joule heating source term. We compare two methods to evaluate the species flux at the cell center. One is based on reconstructing the fluxes at the cell centers from the fluxes at the face centers. The other recomputes the flux at the cell center using the common drift-diffusion approximation. The reconstructed flux scheme is the most stable method and yields reasonably accurate results on coarse meshes.

  7. Early experience with mesh excision for adverse outcomes after transvaginal mesh placement using prolapse kits.

    Science.gov (United States)

    Ridgeway, Beri; Walters, Mark D; Paraiso, Marie Fidela R; Barber, Matthew D; McAchran, Sarah E; Goldman, Howard B; Jelovsek, J Eric

    2008-12-01

    The purpose of this study was to determine the complications, treatments, and outcomes in patients choosing to undergo removal of mesh previously placed with a mesh procedural kit. This was a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 3-year period at Cleveland Clinic. At last follow-up, patients reported degree of pain, level of improvement, sexual activity, and continued symptoms. Nineteen patients underwent removal of mesh during the study period. Indications for removal included chronic pain (6/19), dyspareunia (6/19), recurrent pelvic organ prolapse (8/19), mesh erosion (12/19), and vesicovaginal fistula (3/19), with most patients (16/19) citing more than 1 reason. There were few complications related to the mesh removal. Most patients reported significant relief of symptoms. Mesh removal can be technically difficult but appears to be safe with few complications and high relief of symptoms, although some symptoms can persist.

  8. Mesh erosion after abdominal sacrocolpopexy.

    Science.gov (United States)

    Kohli, N; Walsh, P M; Roat, T W; Karram, M M

    1998-12-01

    To report our experience with erosion of permanent suture or mesh material after abdominal sacrocolpopexy. A retrospective chart review was performed to identify patients who underwent sacrocolpopexy by the same surgeon over 8 years. Demographic data, operative notes, hospital records, and office charts were reviewed after sacrocolpopexy. Patients with erosion of either suture or mesh were treated initially with conservative therapy followed by surgical intervention as required. Fifty-seven patients underwent sacrocolpopexy using synthetic mesh during the study period. The mean (range) postoperative follow-up was 19.9 (1.3-50) months. Seven patients (12%) had erosions after abdominal sacrocolpopexy with two suture erosions and five mesh erosions. Patients with suture erosion were asymptomatic compared with patients with mesh erosion, who presented with vaginal bleeding or discharge. The mean (+/-standard deviation) time to erosion was 14.0+/-7.7 (range 4-24) months. Both patients with suture erosion were treated conservatively with estrogen cream. All five patients with mesh erosion required transvaginal removal of the mesh. Mesh erosion can follow abdominal sacrocolpopexy over a long time, and usually presents as vaginal bleeding or discharge. Although patients with suture erosion can be managed successfully with conservative treatment, patients with mesh erosion require surgical intervention. Transvaginal removal of the mesh with vaginal advancement appears to be an effective treatment in patients failing conservative management.

  9. Surgical management of lower urinary mesh perforation after mid-urethral polypropylene mesh sling: mesh excision, urinary tract reconstruction and concomitant pubovaginal sling with autologous rectus fascia.

    Science.gov (United States)

    Shah, Ketul; Nikolavsky, Dmitriy; Gilsdorf, Daniel; Flynn, Brian J

    2013-12-01

    We present our management of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling using a novel combination of surgical techniques including total or near total mesh excision, urinary tract reconstruction, and concomitant pubovaginal sling with autologous rectus fascia in a single operation. We retrospectively reviewed the medical records of 189 patients undergoing transvaginal removal of polypropylene mesh from the lower urinary tract or vagina. The focus of this study is 21 patients with LUT mesh perforation after mid-urethral polypropylene mesh sling. We excluded patients with LUT mesh perforation from prolapse kits (n = 4) or sutures (n = 11), or mesh that was removed because of isolated vaginal wall exposure without concomitant LUT perforation (n = 164). Twenty-one patients underwent surgical removal of mesh through a transvaginal approach or combined transvaginal/abdominal approaches. The location of the perforation was the urethra in 14 and the bladder in 7. The mean follow-up was 22 months. There were no major intraoperative complications. All patients had complete resolution of the mesh complication and the primary symptom. Of the patients with urethral perforation, continence was achieved in 10 out of 14 (71.5 %). Of the patients with bladder perforation, continence was achieved in all 7. Total or near total removal of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling can completely resolve LUT mesh perforation in a single operation. A concomitant pubovaginal sling can be safely performed in efforts to treat existing SUI or avoid future surgery for SUI.

  10. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid

    2014-01-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  11. Surface meshing with curvature convergence

    KAUST Repository

    Li, Huibin

    2014-06-01

    Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.

  12. Heavy weight vehicle traffic and its relationship with antimony content in human blood.

    Science.gov (United States)

    Quiroz, Waldo; De Gregori, Ida; Basilio, Paola; Bravo, Manuel; Pinto, Marcela; Lobos, Maria Gabriela

    2009-05-01

    Brake pads systems are nowadays considered as one of the most important sources of antimony in airborne particulate matter. One way that antimony can enter the body is through the lungs and specially by the interaction of antimony with -SH groups present in erythrocyte membrane cells. In spite of that, there are no studies about antimony enrichment in blood of workers exposed to high vehicle traffic. Port workers are generally exposed to heavy weight vehicle traffic. In Chile the biggest marine port is found in Valparaíso City. In this study antimony in whole blood and its fractions (erythrocytes-plasma and erythrocytes membranes-cytoplasm) of 45 volunteers were determined. The volunteers were port workers from Valparaíso city, and two control groups, one from Valparaíso and another from Quebrada Alvarado, the latter being a rural area located about 100 Km away from Valparaíso. The results demonstrate that port workers are highly impacted by antimony emissions from heavy weight vehicle traffic showing an average concentration of 27 +/- 9 ng Sb kg(-1), 5-10 times higher than the concentration of antimony in the blood of control groups. These are the highest antimony levels in blood ever reported in the literature. The highest antimony percentages (>60%) were always found in the erythrocyte fractions. However, the exposure degree to vehicle traffic is significant over antimony distribution in plasma, erythrocytes and cytoplasm. This results shows that the antimony mass in the erythrocyte membranes, was approximately constant at 1.0 +/- 0.1 ng Sb g(-1) of whole blood in all blood samples analyzed.

  13. Voltammetry at micro-mesh electrodes

    Directory of Open Access Journals (Sweden)

    Wadhawan Jay D.

    2003-01-01

    Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.

  14. Transversely Excited Atmospheric CO2 Laser-Induced Plasma Spectroscopy for the Detection of Heavy Metals in Soil

    Science.gov (United States)

    Khumaeni, A.; Sugito, H.; Setia Budi, W.; Yoyo Wardaya, A.

    2018-01-01

    A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.

  15. Streaming simplification of tetrahedral meshes.

    Science.gov (United States)

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  16. MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.

    2013-09-30

    Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.

  17. A process for reducing rocks and concentrating heavy minerals

    Science.gov (United States)

    Strong, Thomas R.; Driscoll, Rhonda L.

    2016-03-30

    To obtain minerals suitable for age-dating and other analyses, it is necessary to first reduce the mineral-bearing rock to a fine, sand-like consistency. Reducing whole rock requires crushing, grinding, and sieving. Ideally, the reduced material should range in size from 80- to 270-mesh (an opening between wires in a sieve). The openings in an 80-mesh sieve are equal to 0.007 inches, 0.177 millimeters, or 177 micrometers. This size range ensures that compound grains are mostly disaggregated and that grains, in general, are dimensionally similar. This range also improves the segregation rate of conspicuous to extremely small individual heavy mineral grains.

  18. Laparoscopic mesh explantation and drainage of sacral abscess remote from transvaginal excision of exposed sacral colpopexy mesh.

    Science.gov (United States)

    Roth, Ted M; Reight, Ian

    2012-07-01

    Sacral colpopexy may be complicated by mesh exposure, and the surgical treatment of mesh exposure typically results in minor postoperative morbidity and few delayed complications. A 75-year-old woman presented 7 years after a laparoscopic sacral colpopexy, with Mersilene mesh, with an apical mesh exposure. She underwent an uncomplicated transvaginal excision and was asymptomatic until 8 months later when she presented with vaginal drainage and a sacral abscess. This was successfully treated with laparoscopic enterolysis, drainage of the abscess, and explantation of the remaining mesh. Incomplete excision of exposed colpopexy mesh can lead to ascending infection and sacral abscess. Laparoscopic drainage and mesh removal may be considered in these patients.

  19. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.

    2011-01-01

    that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid

  20. Mechanical response of the herniated human abdomen to the placement of different prostheses.

    Science.gov (United States)

    Hernández-Gascón, Belén; Peña, Estefanía; Grasa, Jorge; Pascual, Gemma; Bellón, Juan M; Calvo, Begoña

    2013-05-01

    This paper describes a method designed to model the repaired herniated human abdomen just after surgery and examine its static mechanical response to the maximum intra-abdominal pressure provoked by a physiological movement (standing cough). The model is based on the real geometry of the human abdomen bearing a large incisional hernia with several anatomical structures differentiated by MRI. To analyze the outcome of hernia repair, the surgical procedure was simulated by modeling a prosthesis placed over the hernia. Three surgical meshes with different mechanical properties were considered: an isotropic heavy-weight mesh (Surgipro®), a slightly anisotropic light-weight mesh (Optilene®), and a highly anisotropic medium-weight mesh (Infinit®). Our findings confirm that anisotropic implants need to be positioned such that the most compliant axis of the mesh coincides with the craneo-caudal direction of the body.

  1. Cache-Oblivious Mesh Layouts

    International Nuclear Information System (INIS)

    Yoon, S; Lindstrom, P; Pascucci, V; Manocha, D

    2005-01-01

    We present a novel method for computing cache-oblivious layouts of large meshes that improve the performance of interactive visualization and geometric processing algorithms. Given that the mesh is accessed in a reasonably coherent manner, we assume no particular data access patterns or cache parameters of the memory hierarchy involved in the computation. Furthermore, our formulation extends directly to computing layouts of multi-resolution and bounding volume hierarchies of large meshes. We develop a simple and practical cache-oblivious metric for estimating cache misses. Computing a coherent mesh layout is reduced to a combinatorial optimization problem. We designed and implemented an out-of-core multilevel minimization algorithm and tested its performance on unstructured meshes composed of tens to hundreds of millions of triangles. Our layouts can significantly reduce the number of cache misses. We have observed 2-20 times speedups in view-dependent rendering, collision detection, and isocontour extraction without any modification of the algorithms or runtime applications

  2. User Manual for the PROTEUS Mesh Tools

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-06-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.

  3. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  4. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

    Directory of Open Access Journals (Sweden)

    Dällenbach P

    2015-04-01

    Full Text Available Patrick Dällenbach Department of Gynecology and Obstetrics, Division of Gynecology, Urogynecology Unit, Geneva University Hospitals, Geneva, Switzerland Abstract: Pelvic organ prolapse (POP is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to

  5. International Conference on Heavy Vehicles HVParis 2008 : Heavy Vehicle Transport Technology (HVTT 10)

    OpenAIRE

    JACOB, Bernard; NORDENGEN, Paul; O'CONNOR, Alan; BOUTELDJA, Mohamed

    2008-01-01

    Sommaire : Heavy vehicles and WIM technology, testing and standards. Interactions between heavy vehicles or trains and the infrastructure, environment and other system users. Heavy vehicle and road management information: measurements, data quality, data management. Freight mobility and safety. Vehicle classification, size and weight evaluation, regulations and enforcement. Traffic and road safety. WIM of road vehicles, trains and aeroplanes.

  6. 6th International Meshing Roundtable '97

    Energy Technology Data Exchange (ETDEWEB)

    White, D.

    1997-09-01

    The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.

  7. User Manual for the PROTEUS Mesh Tools

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-19

    PROTEUS is built around a finite element representation of the geometry for visualization. In addition, the PROTEUS-SN solver was built to solve the even-parity transport equation on a finite element mesh provided as input. Similarly, PROTEUS-MOC and PROTEUS-NEMO were built to apply the method of characteristics on unstructured finite element meshes. Given the complexity of real world problems, experience has shown that using commercial mesh generator to create rather simple input geometries is overly complex and slow. As a consequence, significant effort has been put into place to create multiple codes that help assist in the mesh generation and manipulation. There are three input means to create a mesh in PROTEUS: UFMESH, GRID, and NEMESH. At present, the UFMESH is a simple way to generate two-dimensional Cartesian and hexagonal fuel assembly geometries. The UFmesh input allows for simple assembly mesh generation while the GRID input allows the generation of Cartesian, hexagonal, and regular triangular structured grid geometry options. The NEMESH is a way for the user to create their own mesh or convert another mesh file format into a PROTEUS input format. Given that one has an input mesh format acceptable for PROTEUS, we have constructed several tools which allow further mesh and geometry construction (i.e. mesh extrusion and merging). This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial

  8. Management of complications of mesh surgery.

    Science.gov (United States)

    Lee, Dominic; Zimmern, Philippe E

    2015-07-01

    Transvaginal placements of synthetic mid-urethral slings and vaginal meshes have largely superseded traditional tissue repairs in the current era because of presumed efficacy and ease of implant with device 'kits'. The use of synthetic material has generated novel complications including mesh extrusion, pelvic and vaginal pain and mesh contraction. In this review, our aim is to discuss the management, surgical techniques and outcomes associated with mesh removal. Recent publications have seen an increase in presentation of these mesh-related complications, and reports from multiple tertiary centers have suggested that not all patients benefit from surgical intervention. Although the true incidence of mesh complications is unknown, recent publications can serve to guide physicians and inform patients of the surgical outcomes from mesh-related complications. In addition, the literature highlights the growing need for a registry to account for a more accurate reporting of these events and to counsel patients on the risk and benefits before proceeding with mesh surgeries.

  9. User Manual for the PROTEUS Mesh Tools

    International Nuclear Information System (INIS)

    Smith, Micheal A.; Shemon, Emily R.

    2015-01-01

    This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT M eshToMesh.x and the MT R adialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as ''mesh'' input for any of the mesh tools discussed in this manual.

  10. To mesh or not to mesh: a review of pelvic organ reconstructive surgery

    Science.gov (United States)

    Dällenbach, Patrick

    2015-01-01

    Pelvic organ prolapse (POP) is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to clarify the risks, benefits, and the recognized indications for its use. PMID:25848324

  11. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  12. RGG: Reactor geometry (and mesh) generator

    International Nuclear Information System (INIS)

    Jain, R.; Tautges, T.

    2012-01-01

    The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)

  13. Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes.

    Science.gov (United States)

    Ibrahim, Ahmed M S; Vargas, Christina R; Colakoglu, Salih; Nguyen, John T; Lin, Samuel J; Lee, Bernard T

    2015-02-01

    Data on the mechanical properties of the adult human abdominal wall have been difficult to obtain rendering manufacture of the ideal mesh for ventral hernia repair a challenge. An ideal mesh would need to exhibit greater biomechanical strength and elasticity than that of the abdominal wall. The aim of this study is to quantitatively compare the biomechanical properties of the most commonly used synthetic and biologic meshes in ventral hernia repair and presents a comprehensive literature review. A narrative review of the literature was performed using the PubMed database spanning articles from 1982 to 2012 including a review of company Web sites to identify all available information relating to the biomechanical properties of various synthetic and biologic meshes used in ventral hernia repair. There exist differences in the mechanical properties and the chemical nature of different meshes. In general, most synthetic materials have greater stiffness and elasticity than what is required for abdominal wall reconstruction; however, each exhibits unique properties that may be beneficial for clinical use. On the contrary, biologic meshes are more elastic but less stiff and with a lower tensile strength than their synthetic counterparts. The current standard of practice for the treatment of ventral hernias is the use of permanent synthetic mesh material. Recently, biologic meshes have become more frequently used. Most meshes exhibit biomechanical properties over the known abdominal wall thresholds. Augmenting strength requires increasing amounts of material contributing to more stiffness and foreign body reaction, which is not necessarily an advantage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Preparation and Characterization of Antibacterial Polypropylene Meshes with Covalently Incorporated β-Cyclodextrins and Captured Antimicrobial Agent for Hernia Repair

    Directory of Open Access Journals (Sweden)

    Noor Sanbhal

    2018-01-01

    Full Text Available Polypropylene (PP light weight meshes are commonly used as hernioplasty implants. Nevertheless, the growth of bacteria within textile knitted mesh intersections can occur after surgical mesh implantation, causing infections. Thus, bacterial reproduction has to be stopped in the very early stage of mesh implantation. Herein, novel antimicrobial PP meshes grafted with β-CD and complexes with triclosan were prepared for mesh infection prevention. Initially, PP mesh surfaces were functionalized with suitable cold oxygen plasma. Then, hexamethylene diisocyanate (HDI was successfully grafted on the plasma-activated PP surfaces. Afterwards, β-CD was connected with the already HDI reacted PP meshes and triclosan, serving as a model antimicrobial agent, was loaded into the cyclodextrin (CD cavity for desired antibacterial functions. The hydrophobic interior and hydrophilic exterior of β-CD are well suited to form complexes with hydrophobic host guest molecules. Thus, the prepared PP mesh samples, CD-TCL-2 and CD-TCL-6 demonstrated excellent antibacterial properties against Staphylococcus aureus and Escherichia coli that were sustained up to 11 and 13 days, respectively. The surfaces of chemically modified PP meshes showed dramatically reduced water contact angles. Moreover, X-ray diffractometer (XRD, differential scanning calorimeter (DSC, and Thermogravimetric (TGA evidenced that there was no significant effect of grafted hexamethylene diisocyanate (HDI and CD on the structural and thermal properties of the PP meshes.

  15. Mesh-based weight window approach for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Liu, L.; Gardner, R.P.

    1997-01-01

    The Monte Carlo method has been increasingly used to solve particle transport problems. Statistical fluctuation from random sampling is the major limiting factor of its application. To obtain the desired precision, variance reduction techniques are indispensable for most practical problems. Among various variance reduction techniques, the weight window method proves to be one of the most general, powerful, and robust. The method is implemented in the current MCNP code. An importance map is estimated during a regular Monte Carlo run, and then the map is used in the subsequent run for splitting and Russian roulette games. The major drawback of this weight window method is lack of user-friendliness. It normally requires that users divide the large geometric cells into smaller ones by introducing additional surfaces to ensure an acceptable spatial resolution of the importance map. In this paper, we present a new weight window approach to overcome this drawback

  16. Sierra toolkit computational mesh conceptual model

    International Nuclear Information System (INIS)

    Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.

    2010-01-01

    The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.

  17. Surface modification of polypropylene mesh devices with cyclodextrin via cold plasma for hernia repair: Characterization and antibacterial properties

    Science.gov (United States)

    Sanbhal, Noor; Mao, Ying; Sun, Gang; Xu, Rui Fang; Zhang, Qian; Wang, Lu

    2018-05-01

    Light weight polypropylene (PP) mesh is the most widely used implant among all other synthetic meshes for hernia repair. However, infection is the complication associated to all synthetic meshes after hernia repair. Thus, to manage mesh related infection; antibacterial drug is generally loaded to surgical implants to supply drug locally in mesh implanted site. Nevertheless, PP mesh restricts the loading of antibacterial drug at operated area due to its low wettability. The aim of this study was to introduce a novel antimicrobial PP mesh modified with β-cyclodextrine (CD) and loaded with antimicrobial agent for infection prevention. A cold oxygen plasma treatment was able to activate the surfaces of polypropylene fibers, and then CD was incorporated onto the surfaces of PP fibers. Afterward, triclosan, as a model antibacterial agent, was loaded into CD cavity to provide desired antibacterial functions. The modified polypropylene mesh samples CD-Tric-1, CD-Tric-3 exhibited excellent inhibition zone and continuous antibacterial efficacy against E. coli and S. aureus up to 6 and 7 days respectively. Results of AFM, SEM, FTIR and antibacterial tests evidenced that oxygen plasma process is necessary to increase chemical connection between CD molecules and PP fibers. The samples were also characterized by using EDX, XRD, TGA, DSC and water contact angle.

  18. On Reducing Delay in Mesh-Based P2P Streaming: A Mesh-Push Approach

    Science.gov (United States)

    Liu, Zheng; Xue, Kaiping; Hong, Peilin

    The peer-assisted streaming paradigm has been widely employed to distribute live video data on the internet recently. In general, the mesh-based pull approach is more robust and efficient than the tree-based push approach. However, pull protocol brings about longer streaming delay, which is caused by the handshaking process of advertising buffer map message, sending request message and scheduling of the data block. In this paper, we propose a new approach, mesh-push, to address this issue. Different from the traditional pull approach, mesh-push implements block scheduling algorithm at sender side, where the block transmission is initiated by the sender rather than by the receiver. We first formulate the optimal upload bandwidth utilization problem, then present the mesh-push approach, in which a token protocol is designed to avoid block redundancy; a min-cost flow model is employed to derive the optimal scheduling for the push peer; and a push peer selection algorithm is introduced to reduce control overhead. Finally, we evaluate mesh-push through simulation, the results of which show mesh-push outperforms the pull scheduling in streaming delay, and achieves comparable delivery ratio at the same time.

  19. Transrectal Mesh Erosion Requiring Bowel Resection.

    Science.gov (United States)

    Kemp, Marta Maria; Slim, Karem; Rabischong, Benoît; Bourdel, Nicolas; Canis, Michel; Botchorishvili, Revaz

    To report a case of a transrectal mesh erosion as complication of laparoscopic promontofixation with mesh repair, necessitating bowel resection and subsequent surgical interventions. Sacrocolpopexy has become a standard procedure for vaginal vault prolapse [1], and the laparoscopic approach has gained popularity owing to more rapid recovery and less morbidity [2,3]. Mesh erosion is a well-known complication of surgical treatment for prolapse as reported in several negative evaluations, including a report from the US Food and Drug Administration in 2011 [4]. Mesh complications are more common after surgeries via the vaginal approach [5]; nonetheless, the incidence of vaginal mesh erosion after laparoscopic procedures is as high as 9% [6]. The incidence of transrectal mesh exposure after laparoscopic ventral rectopexy is roughly 1% [7]. The diagnosis may be delayed because of its rarity and variable presentation. In addition, polyester meshes, such as the mesh used in this case, carry a higher risk of exposure [8]. A 57-year-old woman experiencing genital prolapse, with the cervix classified as +3 according to the Pelvic Organ Prolapse Quantification system, underwent laparoscopic standard sacrocolpopexy using polyester mesh. Subtotal hysterectomy and bilateral adnexectomy were performed concomitantly. A 3-year follow-up consultation demonstrated no signs or symptoms of erosion of any type. At 7 years after the surgery, however, the patient presented with rectal discharge, diagnosed as infectious rectocolitis with the isolation of Clostridium difficile. She underwent a total of 5 repair surgeries in a period of 4 months, including transrectal resection of exposed mesh, laparoscopic ablation of mesh with digestive resection, exploratory laparoscopy with abscess drainage, and exploratory laparoscopy with ablation of residual mesh and transverse colostomy. She recovered well after the last intervention, exhibiting no signs of vaginal or rectal fistula and no recurrence

  20. Simulating control rod and fuel assembly motion using moving meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, D. [Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada)], E-mail: gilbertdw1@gmail.com; Roman, J.E. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Garland, Wm. J. [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada); Poehlman, W.F.S. [Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada)

    2008-02-15

    A prerequisite for designing a transient simulation experiment which includes the motion of control and fuel assemblies is the careful verification of a steady state model which computes k{sub eff} versus assembly insertion distance. Previous studies in nuclear engineering have usually approached the problem of the motion of control rods with the use of nonlinear nodal models. Nodal methods employ special approximations for the leading and trailing cells of the moving assemblies to avoid the rod cusping problem which results from the naive volume weighted cell cross-section approximation. A prototype framework called the MOOSE has been developed for modeling moving components in the presence of diffusion phenomena. A linear finite difference model is constructed, solutions for which are computed by SLEPc, a high performance parallel eigenvalue solver. Design techniques for the implementation of a patched non-conformal mesh which links groups of sub-meshes that can move relative to one another are presented. The generation of matrices which represent moving meshes which conserve neutron current at their boundaries, and the performance of the framework when applied to model reactivity insertion experiments is also discussed.

  1. Split-Cell Exponential Characteristic Transport Method for Unstructured Tetrahedral Meshes

    International Nuclear Information System (INIS)

    Brennan, Charles R.; Miller, Rodney L.; Mathews, Kirk A.

    2001-01-01

    The nonlinear, exponential characteristic (EC) method is extended to unstructured meshes of tetrahedral cells in three-dimensional Cartesian coordinates. The split-cell approach developed for the linear characteristic (LC) method on such meshes is used. Exponential distributions of the source within a cell and of the inflow flux on upstream faces of the cell are assumed. The coefficients of these distributions are determined by nonlinear root solving so as to match the zeroth and first moments of the source or entering flux. Good conditioning is achieved by casting the formulas for the moments of the source, inflow flux, and solution flux as sums of positive functions and by using accurate and robust algorithms for evaluation of those functions. Various test problems are used to compare the performance of the EC and LC methods. The EC method is somewhat less accurate than the LC method in regions of net out leakage but is strictly positive and retains good accuracy with optically thick cells, as in shielding problems, unlike the LC method. The computational cost per cell is greater for the EC method, but the use of substantially coarser meshes can make the EC method less expensive in total cost. The EC method, unlike the LC method, may fail if negative cross sections or angular quadrature weights are used. It is concluded that the EC and LC methods should be practical, reliable, and complimentary schemes for these meshes

  2. Coarse mesh code development

    Energy Technology Data Exchange (ETDEWEB)

    Lieberoth, J.

    1975-06-15

    The numerical solution of the neutron diffusion equation plays a very important role in the analysis of nuclear reactors. A wide variety of numerical procedures has been proposed, at which most of the frequently used numerical methods are fundamentally based on the finite- difference approximation where the partial derivatives are approximated by the finite difference. For complex geometries, typical of the practical reactor problems, the computational accuracy of the finite-difference method is seriously affected by the size of the mesh width relative to the neutron diffusion length and by the heterogeneity of the medium. Thus, a very large number of mesh points are generally required to obtain a reasonably accurate approximate solution of the multi-dimensional diffusion equation. Since the computation time is approximately proportional to the number of mesh points, a detailed multidimensional analysis, based on the conventional finite-difference method, is still expensive even with modern large-scale computers. Accordingly, there is a strong incentive to develop alternatives that can reduce the number of mesh-points and still retain accuracy. One of the promising alternatives is the finite element method, which consists of the expansion of the neutron flux by piecewise polynomials. One of the advantages of this procedure is its flexibility in selecting the locations of the mesh points and the degree of the expansion polynomial. The small number of mesh points of the coarse grid enables to store the results of several of the least outer iterations and to calculate well extrapolated values of them by comfortable formalisms. This holds especially if only one energy distribution of fission neutrons is assumed for all fission processes in the reactor, because the whole information of an outer iteration is contained in a field of fission rates which has the size of all mesh points of the coarse grid.

  3. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations

    Science.gov (United States)

    Loseille, A.; Dervieux, A.; Alauzet, F.

    2010-04-01

    This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.

  4. 3D active shape models of human brain structures: application to patient-specific mesh generation

    Science.gov (United States)

    Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.

    2015-03-01

    The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.

  5. Improving MeSH classification of biomedical articles using citation contexts.

    Science.gov (United States)

    Aljaber, Bader; Martinez, David; Stokes, Nicola; Bailey, James

    2011-10-01

    Medical Subject Headings (MeSH) are used to index the majority of databases generated by the National Library of Medicine. Essentially, MeSH terms are designed to make information, such as scientific articles, more retrievable and assessable to users of systems such as PubMed. This paper proposes a novel method for automating the assignment of biomedical publications with MeSH terms that takes advantage of citation references to these publications. Our findings show that analysing the citation references that point to a document can provide a useful source of terms that are not present in the document. The use of these citation contexts, as they are known, can thus help to provide a richer document feature representation, which in turn can help improve text mining and information retrieval applications, in our case MeSH term classification. In this paper, we also explore new methods of selecting and utilising citation contexts. In particular, we assess the effect of weighting the importance of citation terms (found in the citation contexts) according to two aspects: (i) the section of the paper they appear in and (ii) their distance to the citation marker. We conduct intrinsic and extrinsic evaluations of citation term quality. For the intrinsic evaluation, we rely on the UMLS Metathesaurus conceptual database to explore the semantic characteristics of the mined citation terms. We also analyse the "informativeness" of these terms using a class-entropy measure. For the extrinsic evaluation, we run a series of automatic document classification experiments over MeSH terms. Our experimental evaluation shows that citation contexts contain terms that are related to the original document, and that the integration of this knowledge results in better classification performance compared to two state-of-the-art MeSH classification systems: MeSHUP and MTI. Our experiments also demonstrate that the consideration of Section and Distance factors can lead to statistically

  6. Effect of High Temperature or fire on heavy weight concrete properties used in nuclear facilities

    International Nuclear Information System (INIS)

    Sakr, K.

    2003-01-01

    In the present work the effect of different duration (1, 2 and 3 hours) of high temperatures (250 degree C, 500 degree C, 750 degree C and 950 degree C) on the physical and mechanical properties of heavy concrete shields were studied. The effect of fire fitting systems on ordinary concrete was investigated. The work was extended to determine the effect of high temperature or accidental fire on the radiation properties of heavy weight concrete. Results showed that ilmenite concrete had the highest density, absorption, and modulus of elasticity when compared to the other types of studied concrete and it had also higher values of compressive, tensile, bending and bonding strength than ordinary or baryte concrete. Ilmenite concrete had the highest attenuation of transmitted gamma rays in comparing to gravel concrete and baryte concrete. Ilmenite concrete was more resistant to elevated temperature than gravel concrete and baryte concrete. Foam or air as a fire fitting system in concrete structure that exposed to high temperature or accidental fire proved that better than water

  7. Method and system for mesh network embedded devices

    Science.gov (United States)

    Wang, Ray (Inventor)

    2009-01-01

    A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.

  8. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  9. Meshes optimized for discrete exterior calculus (DEC).

    Energy Technology Data Exchange (ETDEWEB)

    Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.

  10. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan

    2011-12-12

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  11. Connectivity editing for quadrilateral meshes

    KAUST Repository

    Peng, Chihan; Zhang, Eugene; Kobayashi, Yoshihiro; Wonka, Peter

    2011-01-01

    We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.

  12. Leveraging the power of mesh

    Energy Technology Data Exchange (ETDEWEB)

    Glass, H. [Cellnet, Alpharetta, GA (United States)

    2006-07-01

    Mesh network applications are used by utilities for metering, demand response, and mobile workforce management. This presentation provided an overview of a multi-dimensional mesh application designed to offer improved scalability and higher throughput in advanced metering infrastructure (AMI) systems. Mesh applications can be used in AMI for load balancing and forecasting, as well as for distribution and transmission planning. New revenue opportunities can be realized through the application's ability to improve notification and monitoring services, and customer service communications. Mesh network security features include data encryption, data fragmentation and the automatic re-routing of data. In order to use mesh network applications, networks must have sufficient bandwidth and provide flexibility at the endpoint layer to support multiple devices from multiple vendors, as well as support multiple protocols. It was concluded that smart meters will not enable energy response solutions without an underlying AMI that is reliable, scalable and self-healing. .refs., tabs., figs.

  13. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    OpenAIRE

    Olgierd Janusz Goroch; Zbigniew Gulbinowicz

    2017-01-01

    The results of studies concerning friction welding of Weight Heavy Alloy (WHA) with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum i...

  14. Hernia Surgical Mesh Implants

    Science.gov (United States)

    ... knitted mesh or non-knitted sheet forms. The synthetic materials used can be absorbable, non-absorbable or a combination of absorbable and non-absorbable materials. Animal-derived mesh are made of animal tissue, such as intestine or skin, that has been processed and disinfected to be ...

  15. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    Science.gov (United States)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  16. A THREE-YEAR EXPERIENCE WITH ANTERIOR TRANSOBTURATOR MESH (ATOM AND POSTERIOR ISCHIORECTAL MESH (PIRM

    Directory of Open Access Journals (Sweden)

    Marijan Lužnik

    2018-02-01

    Full Text Available Background. Use of alloplastic mesh implantates allow a new urogynecologycal surgical techniques achieve a marked improvement in pelvic organ static and pelvic floor function with minimally invasive needle transvaginal intervention like an anterior transobturator mesh (ATOM and a posterior ischiorectal mesh (PIRM procedures. Methods. In three years, between April 2006 and May 2009, we performed one hundred and eightyfour operative corrections of female pelvic organ prolapse (POP and pelvic floor dysfunction (PFD with mesh implantates. The eighty-three patients with surgical procedure TVT-O or Monarc as solo intervention indicated by stress urinary incontinence without POP, are not included in this number. In 97 % of mesh operations, Gynemesh 10 × 15 cm was used. For correction of anterior vaginal prolapse with ATOM procedure, Gynemesh was individually trimmed in mesh with 6 free arms for tension-free transobturator application and tension-free apical collar. IVS (Intravaginal sling 04 Tunneller (Tyco needle system was used for transobturator application of 6 arms through 4 dermal incisions (2 on right and 2 on left. Minimal anterior median colpotomy was made in two separate parts. For correction of posterior vaginal prolapse with PIRM procedure Gynemesh was trimmed in mesh with 4 free arms and tension-free collar. Two ischiorectal long arms for tension-free application through fossa ischiorectale – right and left, and two short arms for perineal body also on both sides. IVS 02 Tunneller (Tyco needle system was used for tension-free application of 4 arms through 4 dermal incisions (2 on right and 2 on left in PIRM. Results. All 184 procedures were performed relatively safely. In 9 cases of ATOM we had perforation of bladder, in 5 by application of anterior needle, in 3 by application of posterior needle and in one case with pincette when collar was inserted in lateral vesico – vaginal space. In 2 cases of PIRM we had perforation of rectum

  17. Effect of soil sieving on respiration induced by low-molecular-weight substrates

    Science.gov (United States)

    Datta, Rahul; Vranová, Valerie; Pavelka, Marian; Rejšek, Klement; Formánek, Pavel

    2014-03-01

    The mesh size of sieves has a significant impact upon soil disturbance, affecting pore structure, fungal hyphae, proportion of fungi to bacteria, and organic matter fractions. The effects are dependent upon soil type and plant coverage. Sieving through a 2 mm mesh increases mineralization of exogenously supplied carbohydrates and phenolics compared to a 5 mm mesh and the effect is significant (p<0.05), especially in organic horizons, due to increased microbial metabolism and alteration of other soil properties. Finer mesh size particularly increases arabinose, mannose, galactose, ferulic and pthalic acid metabolism, whereas maltose mineralization is less affected. Sieving through a 5 mm mesh size is suggested for all type of experiments where enhanced mineralization of low-molecular-weight organic compounds needs to be minimalized.

  18. Modified Weighted Kaplan-Meier Estimator

    Directory of Open Access Journals (Sweden)

    Mohammad Shafiq

    2007-01-01

    Full Text Available In many medical studies majority of the study subjects do not reach to the event of interest during the study period. In such situations survival probabilities can be estimated for censored observation by Kaplan Meier estimator. However in case of heavy censoring these estimates are biased and over estimate the survival probabilities. For heavy censoring a new method was proposed (Bahrawar Jan, 2005 to estimate the survival probabilities by weighting the censored observations by non-censoring rate. But the main defect in this weighted method is that it gives zero weight to the last censored observation. To over come this difficulty a new weight is proposed which also gives a non-zero weight to the last censored observation.

  19. Fog water collection effectiveness: Mesh intercomparisons

    Science.gov (United States)

    Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew

    2018-01-01

    To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.

  20. Mesh fixation in laparoscopic incisional hernia repair: glue fixation provides attachment strength similar to absorbable tacks but differs substantially in different meshes.

    Science.gov (United States)

    Rieder, Erwin; Stoiber, Martin; Scheikl, Verena; Poglitsch, Marcus; Dal Borgo, Andrea; Prager, Gerhard; Schima, Heinrich

    2011-01-01

    Laparoscopic ventral hernia repair has gained popularity among minimally invasive surgeons. However, mesh fixation remains a matter of discussion. This study was designed to compare noninvasive fibrin-glue attachment with tack fixation of meshes developed primarily for intra-abdominal use. It was hypothesized that particular mesh structures would substantially influence detachment force. For initial evaluation, specimens of laminated polypropylene/polydioxanone meshes were anchored to porcine abdominal walls by either helical titanium tacks or absorbable tacks in vitro. A universal tensile-testing machine was used to measure tangential detachment forces (TF). For subsequent experiments of glue fixation, polypropylene/polydioxanone mesh and 4 additional meshes with diverse particular mesh structure, ie, polyvinylidene fluoride/polypropylene mesh, a titanium-coated polypropylene mesh, a polyester mesh bonded with a resorbable collagen, and a macroporous condensed PTFE mesh were evaluated. TF tests revealed that fibrin-glue attachment was not substantially different from that achieved with absorbable tacks (median TF 7.8 Newton [N], range 1.3 to 15.8 N), but only when certain open porous meshes (polyvinylidene fluoride/polypropylene mesh: median 6.2 N, range 3.4 to 10.3 N; titanium-coated polypropylene mesh: median 5.2 N, range 2.1 to 11.7 N) were used. Meshes coated by an anti-adhesive barrier (polypropylene/polydioxanone mesh: median 3.1 N, range 1.7 to 5.8 N; polyester mesh bonded with a resorbable collagen: median 1.3 N, range 0.5 to 1.9 N), or the condensed PTFE mesh (median 3.1 N, range 2.1 to 7.0 N) provided a significantly lower TF (p < 0.01). Fibrin glue appears to be an appealing noninvasive option for mesh fixation in laparoscopic ventral hernia repair, but only if appropriate meshes are used. Glue can also serve as an adjunct to mechanical fixation to reduce the number of invasive tacks. Copyright © 2010 American College of Surgeons. Published by Elsevier

  1. Weight isn't selling: The insidious effects of weight stigmatization in retail settings.

    Science.gov (United States)

    Ruggs, Enrica N; Hebl, Michelle R; Williams, Amber

    2015-09-01

    In recent years, the literature on the stigma of obesity has grown but there still remains a paucity of research examining specific issues associated with its impact in the workplace. In the current study, we examine 3 such issues related to the influence of weight-based stigmatization in retail settings. First, we highlight research on the impact of obesity in men often is minimized or altogether excluded, and we examine whether weight-based stigmatization influences men in authentic retail settings (Study 1). Across retail contexts, Study 1 reveals that heavy (vs. nonheavy) men do experience significantly more interpersonal (subtle) discrimination. Second, we examine the "why" of weight-based stigmatization and find that weight-related negative stereotypes compound to produce indirect but strong effects of stigmatization in retail settings (Study 2). Third and finally, we examine whether weight-based stigmatization against men and women in retail also influences ratings of associated products and the organizations for which heavy individuals work (also Study 2). Results from Study 2 show that stereotypes work similarly for men and women and that a stigma-by-association effect occurs in which evaluators rate products and organizations associated with heavy (vs. nonheavy) retail personnel more negatively. Finally, we discuss the importance of these findings in gaining a more holistic look at the influence of weight stigmatization in the workplace. (c) 2015 APA, all rights reserved).

  2. Parallel adaptive simulations on unstructured meshes

    International Nuclear Information System (INIS)

    Shephard, M S; Jansen, K E; Sahni, O; Diachin, L A

    2007-01-01

    This paper discusses methods being developed by the ITAPS center to support the execution of parallel adaptive simulations on unstructured meshes. The paper first outlines the ITAPS approach to the development of interoperable mesh, geometry and field services to support the needs of SciDAC application in these areas. The paper then demonstrates the ability of unstructured adaptive meshing methods built on such interoperable services to effectively solve important physics problems. Attention is then focused on ITAPs' developing ability to solve adaptive unstructured mesh problems on massively parallel computers

  3. Prolapse Recurrence after Transvaginal Mesh Removal.

    Science.gov (United States)

    Rawlings, Tanner; Lavelle, Rebecca S; Coskun, Burhan; Alhalabi, Feras; Zimmern, Philippe E

    2015-11-01

    We determined the rate of pelvic organ prolapse recurrence after transvaginal mesh removal. Following institutional review board approval a longitudinally collected database of women undergoing transvaginal mesh removal for complications after transvaginal mesh placement with at least 1 year minimum followup was queried for pelvic organ prolapse recurrence. Recurrent prolapse was defined as greater than stage 1 on examination or the need for reoperation at the site of transvaginal mesh removal. Outcome measures were based on POP-Q (Pelvic Organ Prolapse Quantification System) at the last visit. Patients were grouped into 3 groups, including group 1--recurrent prolapse in the same compartment as transvaginal mesh removal, 2--persistent prolapse and 3--prolapse in a compartment different than transvaginal mesh removal. Of 73 women 52 met study inclusion criteria from 2007 to 2013, including 73% who presented with multiple indications for transvaginal mesh removal. The mean interval between insertion and removal was 45 months (range 10 to 165). Overall mean followup after transvaginal mesh removal was 30 months (range 12 to 84). In group 1 (recurrent prolapse) the rate was 15% (6 of 40 patients). Four women underwent surgery for recurrent prolapse at a mean 7 of months (range 5 to 10). Two patients elected observation. The rate of persistent prolapse (group 2) was 23% (12 of 52 patients). Three women underwent prolapse reoperation at a mean of 10 months (range 8 to 12). In group 3 (de novo/different compartment prolapse) the rate was 6% (3 of 52 patients). One woman underwent surgical repair at 52 months. At a mean 2.5-year followup 62% of patients (32 of 52) did not have recurrent or persistent prolapse after transvaginal mesh removal and 85% (44 of 52) did not undergo any further procedure for prolapse. Specifically for pelvic organ prolapse in the same compartment as transvaginal mesh removal 12% of patients had recurrence, of whom 8% underwent prolapse repair

  4. Automatic mesh generation with QMESH program

    International Nuclear Information System (INIS)

    Ise, Takeharu; Tsutsui, Tsuneo

    1977-05-01

    Usage of the two-dimensional self-organizing mesh generation program, QMESH, is presented together with the descriptions and the experience, as it has recently been converted and reconstructed from the NEACPL version to the FACOM. The program package consists of the QMESH code to generate quadrilaterial meshes with smoothing techniques, the QPLOT code to plot the data obtained from the QMESH on the graphic COM, and the RENUM code to renumber the meshes by using a bandwidth minimization procedure. The technique of mesh reconstructuring coupled with smoothing techniques is especially useful when one generates the meshes for computer codes based on the finite element method. Several typical examples are given for easy access to the QMESH program, which is registered in the R.B-disks of JAERI for users. (auth.)

  5. Concurrent Mesh Repair of a Morgagni and Umbilical Hernia during a Laparoscopic Sleeve Gastrectomy in a Morbidly Obese Individual

    Directory of Open Access Journals (Sweden)

    N.R Kosai

    2016-10-01

    Full Text Available Morgagni Hernia is a rare form of diaphragmatic hernia. It is mainly asymptomatic and often identified incidentally during surgery. Tension-free synthetic mesh repair is the preferred treatment modality. However, the use of synthetic mesh concurrently during a clean-contaminated surgery such as sleeve gastrectomy remains controversial due to the remote possibility of mesh infection. A middle-aged female 2 with BMI of 47 Kg/m was admitted electively for laparoscopic sleeve gastrectomy with concurrent umbilical hernia repair. Intra-operatively, a left Morgagni Hernia containing omentum and a segment of transverse colon was noted. She underwent a laparoscopic sleeve gastrectomy and simultaneous laparoscopic tension-free composite mesh repair of both Morgagni and umbilical hernia. Outpatient review three months later revealed excess weight loss of almost 30% with no recurrence of either hernia. In conclusion, the advantages of concurrent hernia repair during bariatric surgery outweigh the risk of mesh infection and should be performed to prevent future risk of visceral herniation and strangulation. Laparoscopic mesh repair of a Morgagni Hernia and umbilical hernia in the setting of an electively planned sleeve gastrectomy is feasible, effective and safe in the hands of a trained laparoscopic surgeon.

  6. In-vitro examination of the biocompatibility of fibroblast cell lines on alloplastic meshes and sterilized polyester mosquito mesh.

    Science.gov (United States)

    Wiessner, R; Kleber, T; Ekwelle, N; Ludwig, K; Richter, D-U

    2017-06-01

    The use of alloplastic implants for tissue strengthening when treating hernias is an established therapy worldwide. Despite the high incidence of hernias in Africa and Asia, the implantation of costly mesh netting is not financially feasible. Because of that various investigative groups have examined the use of sterilized mosquito netting. The animal experiments as well as the clinical trials have both shown equivalent short- and long-term results. The goal of this paper is the comparison of biocompatibility of human fibroblasts on the established commercially available nets and on sterilized polyester mosquito mesh over a period of 12 weeks. Three commercially available plastic mesh types and a gas-sterilized mosquito polyethylenterephtalate (polyester) mesh were examined. Human fibroblasts from subcutaneous healthy tissue were used. Various tests for evaluating the growth behavior and the cell morphology of human fibroblasts were conducted. The semi-quantitative (light microscopy) and qualitative (scanning electron microscopy) analyses were performed after 1 week and then again after 12 weeks. The cell proliferation and cytotoxicity of the implants were investigated with the help of the 5'-bromo-2'-deoxyuridine (BrdU)-cell proliferation test and the LDH-cytotoxicity test. The number of live cells per ml was determined with the Bürker counting chamber. In addition, analyses were made of the cell metabolism (oxidative stress) by measuring the pH value, hydrogen peroxide, and glycolysis. After 12 weeks, a proliferation of fibroblasts on all mesh is documented. No mesh showed a complete apoptosis of the cells. This qualitative observation could be confirmed quantitatively in a biochemical assay by marking the proliferating cells with BrdU. The biochemical analysis brought the proof that the materials used, including the polyester of the mosquito mesh, are not cytotoxic for the fibroblasts. The vitality of the cells was between 94 and 98%. The glucose metabolism

  7. An Implicit Weighted Degree Condition For Heavy Cycles

    Directory of Open Access Journals (Sweden)

    Cai Junqing

    2014-11-01

    Full Text Available For a vertex v in a weighted graph G, idw(v denotes the implicit weighted degree of v. In this paper, we obtain the following result: Let G be a 2-connected weighted graph which satisfies the following conditions: (a The implicit weighted degree sum of any three independent vertices is at least t; (b w(xz = w(yz for every vertex z ∈ N(x ∩ N(y with xy /∈ E(G; (c In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight. Then G contains either a hamiltonian cycle or a cycle of weight at least 2t/3. This generalizes the result of Zhang et al. [9].

  8. Prostheses size dependency of the mechanical response of the herniated human abdomen.

    Science.gov (United States)

    Simón-Allué, R; Hernández-Gascón, B; Lèoty, L; Bellón, J M; Peña, E; Calvo, B

    2016-12-01

    Hernia repairs still exhibit clinical complications, i.e. recurrence, discomfort and pain and mesh features are thought to be highly influent. The aim of this study is to evaluate the impact of the defect size and mesh type in an herniated abdominal wall using numerical models. To do so, we have started from a FE model based on a real human abdomen geometry obtained by MRI, where we have provoked an incisional hernia of three different sizes. The surgical procedure was simulated by covering the hernia with a prostheses, and three surgical meshes with distinct mechanical properties were used for the hernia repair: an isotropic heavy-weight mesh (Surgipro @ ), a slightly anisotropic light-weight mesh (Optilene @ ) and a highly anisotropic medium-weight mesh (Infinit @ ). The mechanical response of the wall to a high intraabdominal pressure (corresponding to a coughing motion) was analyzed here. Our findings suggest that the anisotropy of the mesh becomes more relevant with the increase of the defect size. Additionally, according to our results Optilene @ showed the closest deformation to the natural distensibility of the abdomen while Infinit @ should be carefully used due to its excessive compliance.

  9. Rotary Friction Welding of Weight Heavy Alloy with Wrought AlMg3 Alloy for Subcaliber Ammunition

    Directory of Open Access Journals (Sweden)

    Olgierd Janusz Goroch

    2017-12-01

    Full Text Available The results of studies concerning friction welding of Weight Heavy Alloy (WHA with AlMg3 alloy are presented. The friction welding of density 17,5 Mg/m3 with aluminum alloy showed that it is possible to reach the joints with the strength exceeding the yield strength of wrought AlMg3 alloy. This strength looks to be promising from point of view of condition which have to be fulfilled in case of armor subcaliber ammunition, where WHA rods play the role Kinetic Energy Penetrators and aluminum is used for projectile ballistic cup.

  10. Gradient Weight in Phonology

    Science.gov (United States)

    Ryan, Kevin Michael

    2011-01-01

    Research on syllable weight in generative phonology has focused almost exclusively on systems in which weight is treated as an ordinal hierarchy of clearly delineated categories (e.g. light and heavy). As I discuss, canonical weight-sensitive phenomena in phonology, including quantitative meter and quantity-sensitive stress, can also treat weight…

  11. Refficientlib: an efficient load-rebalanced adaptive mesh refinement algorithm for high-performance computational physics meshes

    OpenAIRE

    Baiges Aznar, Joan; Bayona Roa, Camilo Andrés

    2017-01-01

    No separate or additional fees are collected for access to or distribution of the work. In this paper we present a novel algorithm for adaptive mesh refinement in computational physics meshes in a distributed memory parallel setting. The proposed method is developed for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor, whereas the elements can belong to multiple processors. Some of the main features of the algorithm presented in this paper a...

  12. Outcomes of Autologous Fascia Pubovaginal Sling for Patients with Transvaginal Mesh Related Complications Requiring Mesh Removal.

    Science.gov (United States)

    McCoy, Olugbemisola; Vaughan, Taylor; Nickles, S Walker; Ashley, Matt; MacLachlan, Lara S; Ginsberg, David; Rovner, Eric

    2016-08-01

    We reviewed the outcomes of the autologous fascial pubovaginal sling as a salvage procedure for recurrent stress incontinence after intervention for polypropylene mesh erosion/exposure and/or bladder outlet obstruction in patients treated with prior transvaginal synthetic mesh for stress urinary incontinence. In a review of surgical databases at 2 institutions between January 2007 and June 2013 we identified 46 patients who underwent autologous fascial pubovaginal sling following removal of transvaginal synthetic mesh in simultaneous or staged fashion. This cohort of patients was evaluated for outcomes, including subjective and objective success, change in quality of life and complications between those who underwent staged vs concomitant synthetic mesh removal with autologous fascial pubovaginal sling placement. All 46 patients had received at least 1 prior mesh sling for incontinence and 8 (17%) had received prior transvaginal polypropylene mesh for pelvic organ prolapse repair. A total of 30 patients underwent concomitant mesh incision with or without partial excision and autologous sling placement while 16 underwent staged autologous sling placement. Mean followup was 16 months. Of the patients 22% required a mean of 1.8 subsequent interventions an average of 6.5 months after autologous sling placement with no difference in median quality of life at final followup. At last followup 42 of 46 patients (91%) and 35 of 46 (76%) had achieved objective and subjective success, respectively. There was no difference in subjective success between patients treated with a staged vs a concomitant approach (69% vs 80%, p = 0.48). Autologous fascial pubovaginal sling placement after synthetic mesh removal can be performed successfully in patients with stress urinary incontinence as a single or staged procedure. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Mersiline mesh in premaxillary augmentation.

    Science.gov (United States)

    Foda, Hossam M T

    2005-01-01

    Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant.

  14. Unstructured mesh adaptivity for urban flooding modelling

    Science.gov (United States)

    Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.

    2018-05-01

    Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.

  15. Use of a dynamic grid adaptation in the asymmetric weighted residual method

    International Nuclear Information System (INIS)

    Graf, V.; Romstedt, P.; Werner, W.

    1986-01-01

    A dynamic grid adaptive method has been developed for use with the asymmetric weighted residual method. The method automatically adapts the number and position of the spatial mesh points as the solution of hyperbolic or parabolic vector partial differential equations progresses in time. The mesh selection algorithm is based on the minimization of the L 2 norm of the spatial discretization error. The method permits the accurate calculation of the evolution of inhomogeneities, like wave fronts, shock layers, and other sharp transitions, while generally using a coarse computational grid. The number of required mesh points is significantly reduced, relative to a fixed Eulerian grid. Since the mesh selection algorithm is computationally inexpensive, a corresponding reduction of computing time results

  16. SEAFLOOR SEDIMENT CHARACTERISTICS AND HEAVY MINERAL OCCURENCES AT BETUMPAK CAPE AND ADJACENT AREA, BANGKA STRAIT, BANGKA BELITUNG PROVINCE

    Directory of Open Access Journals (Sweden)

    Rohendi Rohendi

    2017-07-01

    Full Text Available Thirty seafloor of sediment samples have been taken by using gravity corer and grab sampler at Betumpak Cape, and adjacent area of Bangka Belitung. The result of grain size analyses show that there are four sediment units: gravelly sand, gravelly muddy sand, silt and silty sand. Identification of Scanning Electron Microscope (SEM image on several samples shows the presence of clay mineral such as smectite, alunite, chlorite etc., may resulted from plagioclase weathering of granite. Based on heavy mineral analyses, its highest content is found at MTK-27 (northwest of Betumpak Cape. High content of apatite (0.94% wt and 1.07% wt is found on coarse sand fractions (115-170 mesh at MTK-29 (northeast Ular Cape and MTK-30 (north of Ular Cape. Generally, the heavy mineral accumulation is occurred on medium sand fraction (60-80 mesh as magnetite (7.86% wt, ilmenite (4.9% wt and zircon (1.32% wt. Based on these data, it shows that heavy mineral is accumulated on medium to coarse sand.

  17. Monitoring and evaluation of wire mesh forming life

    Science.gov (United States)

    Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec

    2018-03-01

    Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.

  18. The mesh controversy [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joshua A. Cohn

    2016-09-01

    Full Text Available Pelvic organ prolapse and stress urinary incontinence are common conditions for which approximately 11% of women will undergo surgical intervention in their lifetime. The use of vaginal mesh for pelvic organ prolapse and stress urinary incontinence rose rapidly in the early 2000s as over 100 mesh products were introduced into the clinical armamentarium with little regulatory oversight for their use. US Food and Drug Administration Public Health Notifications in 2008 and 2011, as well as reclassification of transvaginal mesh for prolapse to class III in early 2016, were a response to debilitating complications associated with transvaginal mesh placement in many women. The midurethral sling has not been subject to the same reclassification and continues to be endorsed as the “gold standard” for surgical management of stress urinary incontinence by subspecialty societies. However, litigators have not differentiated between mesh for prolapse and mesh for incontinence. As such, all mesh, including that placed for stress urinary incontinence, faces continued controversy amidst an uncertain future. In this article, we review the background of the mesh controversy, recent developments, and the anticipated role of mesh in surgery for prolapse and stress urinary incontinence going forward.

  19. Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality

    OpenAIRE

    Wang, Jun; Yu, Zeyun

    2012-01-01

    Tetrahedral meshes are being extensively used in finite element methods (FEM). This paper proposes an algorithm to generate feature-sensitive and high-quality tetrahedral meshes from an arbitrary surface mesh model. A top-down octree subdivision is conducted on the surface mesh and a set of tetrahedra are constructed using adaptive body-centered cubic (BCC) lattices. Special treatments are given to the tetrahedra near the surface such that the quality of the resulting tetrahedral mesh is prov...

  20. Performance of the hybrid wireless mesh protocol for wireless mesh networks

    DEFF Research Database (Denmark)

    Boye, Magnus; Staalhagen, Lars

    2010-01-01

    Wireless mesh networks offer a new way of providing end-user access and deploying network infrastructure. Though mesh networks offer a price competitive solution to wired networks, they also come with a set of new challenges such as optimal path selection, channel utilization, and load balancing....... and proactive. Two scenarios of different node density are considered for both path selection modes. The results presented in this paper are based on a simulation model of the HWMP specification in the IEEE 802.11s draft 4.0 implemented in OPNET Modeler....

  1. Data-Parallel Mesh Connected Components Labeling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Cyrus; Childs, Hank; Gaither, Kelly

    2011-04-10

    We present a data-parallel algorithm for identifying and labeling the connected sub-meshes within a domain-decomposed 3D mesh. The identification task is challenging in a distributed-memory parallel setting because connectivity is transitive and the cells composing each sub-mesh may span many or all processors. Our algorithm employs a multi-stage application of the Union-find algorithm and a spatial partitioning scheme to efficiently merge information across processors and produce a global labeling of connected sub-meshes. Marking each vertex with its corresponding sub-mesh label allows us to isolate mesh features based on topology, enabling new analysis capabilities. We briefly discuss two specific applications of the algorithm and present results from a weak scaling study. We demonstrate the algorithm at concurrency levels up to 2197 cores and analyze meshes containing up to 68 billion cells.

  2. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

    2011-01-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  3. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  4. A coarse-mesh nodal method-diffusive-mesh finite difference method

    International Nuclear Information System (INIS)

    Joo, H.; Nichols, W.R.

    1994-01-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper

  5. Image-Based Geometric Modeling and Mesh Generation

    CERN Document Server

    2013-01-01

    As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...

  6. Drude weight and optical conductivity of a two-dimensional heavy-hole gas with k-cubic spin-orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mawrie, Alestin; Ghosh, Tarun Kanti [Department of Physics, Indian Institute of Technology-Kanpur, Kanpur 208 016 (India)

    2016-01-28

    We present a detailed theoretical study on zero-frequency Drude weight and optical conductivity of a two-dimensional heavy-hole gas (2DHG) with k-cubic Rashba and Dresselhaus spin-orbit interactions. The presence of k-cubic spin-orbit couplings strongly modifies the Drude weight in comparison to the electron gas with k-linear spin-orbit couplings. For large hole density and strong k-cubic spin-orbit couplings, the density dependence of Drude weight deviates from the linear behavior. We establish a relation between optical conductivity and the Berry connection. Unlike two-dimensional electron gas with k-linear spin-orbit couplings, we explicitly show that the optical conductivity does not vanish even for equal strength of the two spin-orbit couplings. We attribute this fact to the non-zero Berry phase for equal strength of k-cubic spin-orbit couplings. The least photon energy needed to set in the optical transition in hole gas is one order of magnitude smaller than that of electron gas. Types of two van Hove singularities appear in the optical spectrum are also discussed.

  7. [CLINICAL EVALUATION OF THE NEW ANTISEPTIC MESHES].

    Science.gov (United States)

    Gogoladze, M; Kiladze, M; Chkhikvadze, T; Jiqia, D

    2016-12-01

    Improving the results of hernia treatment and prevention of complications became a goal of our research which included two parts - experimental and clinical. Histomorphological and bacteriological researches showed that the best result out of the 3 control groups was received in case of covering implant "Coladerm"+ with chlorhexidine. Based on the experiment results working process continued in clinics in order to test and introduce new "coladerm"+ chlorhexidine covered poliprophilene meshes into practice. For clinical illustration there were 60 patients introduced to the research who had hernioplasty procedures by different nets: I group - standard meshes+"coladerm"+chlorhexidine, 35 patients; II group - standard meshes +"coladerm", 15 patients; III group - standard meshes, 10 patients. Assessment of the wound and echo-control was done post-surgery on the 8th, 30th and 90th days. This clinical research based on the experimental results once again showed the best anti-microbe features of new antiseptic polymeric biocomposite meshes (standard meshes+"coladerm"+chlorhexidine); timely termination of regeneration and reparation processes without any post-surgery suppurative complications. We hope that new antiseptic polymeric biocomposite meshes presented by us will be successfully used in surgical practice of hernia treatment based on and supported by expermental-clinical research.

  8. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  9. Multi-phase Volume Segmentation with Tetrahedral Mesh

    DEFF Research Database (Denmark)

    Nguyen Trung, Tuan; Dahl, Vedrana Andersen; Bærentzen, Jakob Andreas

    Volume segmentation is efficient for reconstructing material structure, which is important for several analyses, e.g. simulation with finite element method, measurement of quantitative information like surface area, surface curvature, volume, etc. We are concerned about the representations of the 3......D volumes, which can be categorized into two groups: fixed voxel grids [1] and unstructured meshes [2]. Among these two representations, the voxel grids are more popular since manipulating a fixed grid is easier than an unstructured mesh, but they are less efficient for quantitative measurements....... In many cases, the voxel grids are converted to explicit meshes, however the conversion may reduce the accuracy of the segmentations, and the effort for meshing is also not trivial. On the other side, methods using unstructured meshes have difficulty in handling topology changes. To reduce the complexity...

  10. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.

    1996-01-01

    We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right

  11. Mesh Optimization for Ground Vehicle Aerodynamics

    OpenAIRE

    Adrian Gaylard; Essam F Abo-Serie; Nor Elyana Ahmad

    2010-01-01

    Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters.  The optimized mesh parameters were selected using design of experiment (DOE) method to be able to work in a...

  12. Postoperative pain outcomes after transvaginal mesh revision.

    Science.gov (United States)

    Danford, Jill M; Osborn, David J; Reynolds, W Stuart; Biller, Daniel H; Dmochowski, Roger R

    2015-01-01

    Although the current literature discusses mesh complications including pain, as well as suggesting different techniques for removing mesh, there is little literature regarding pain outcomes after surgical removal or revision. The purpose of this study is to determine if surgical removal or revision of vaginal mesh improves patient's subjective complaints of pelvic pain associated with original placement of mesh. After obtaining approval from the Vanderbilt University Medical Center Institutional Review Board, a retrospective review of female patients with pain secondary to previous mesh placement who underwent excision or revision of vaginal mesh from January 2000 to August 2012 was performed. Patient age, relevant medical history including menopause status, previous hysterectomy, smoking status, and presence of diabetes, fibromyalgia, interstitial cystitis, and chronic pelvic pain, was obtained. Patients' postoperative pain complaints were assessed. Of the 481 patients who underwent surgery for mesh revision, removal or urethrolysis, 233 patients met our inclusion criteria. One hundred and sixty-nine patients (73 %) reported that their pain improved, 19 (8 %) reported that their pain worsened, and 45 (19 %) reported that their pain remained unchanged after surgery. Prior history of chronic pelvic pain was associated with increased risk of failure of the procedure to relieve pain (OR 0.28, 95 % CI 0.12-0.64, p = 0.003). Excision or revision of vaginal mesh appears to be effective in improving patients' pain symptoms most of the time. Patients with a history of chronic pelvic pain are at an increased risk of no improvement or of worsening pain.

  13. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  14. Field-aligned mesh joinery

    OpenAIRE

    Cignoni, Paolo; Pietroni, Nico; Malomo, Luigi

    2014-01-01

    Mesh joinery is an innovative method to produce illustrative shape approximations suitable for fabrication. Mesh joinery is capable of producing complex fabricable structures in an efficient and visually pleasing manner. We represent an input geometry as a set of planar pieces arranged to compose a rigid structure, by exploiting an efficient slit mechanism. Since slices are planar, to fabricate them a standard 2D cutting system is enough. We automatically arrange slices according to a smooth ...

  15. Pure transvaginal excision of mesh erosion involving the bladder.

    Science.gov (United States)

    Firoozi, Farzeen; Goldman, Howard B

    2013-06-01

    We present a pure transvaginal approach to the removal of eroded mesh involving the bladder secondary to placement of transvaginal mesh for management of pelvic organ prolapse (POP) using a mesh kit. Although technically challenging, we demonstrate the feasibility of a purely transvaginal approach, avoiding a potentially more morbid transabdominal approach. The video presents the surgical technique of pure transvaginal excision of mesh erosion involving the bladder after mesh placement using a prolapse kit was performed. This video shows that purely transvaginal removal of mesh erosion involving the bladder can be done safely and is feasible.

  16. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    Science.gov (United States)

    Schwing, Alan Michael

    comparisons across a range of regimes. Unsteady and steady applications are considered in both subsonic and supersonic flows. Inviscid and viscous simulations achieve similar results at a much reduced cost when employing dynamic mesh adaptation. Several techniques for guiding adaptation are compared. Detailed analysis of statistics from the instrumented solver enable understanding of the costs associated with adaptation. Adaptive mesh refinement shows promise for the test cases presented here. It can be considerably faster than using conventional grids and provides accurate results. The procedures for adapting the grid are light-weight enough to not require significant computational time and yield significant reductions in grid size.

  17. Sensorimotor memory biases weight perception during object lifting

    Directory of Open Access Journals (Sweden)

    Vonne evan Polanen

    2015-12-01

    Full Text Available When lifting an object, the brain uses visual cues and an internal object representation to predict its weight and scale fingertip forces accordingly. Once available, tactile information is rapidly integrated to update the weight prediction and refine the internal object representation. If visual cues cannot be used to predict weight, force planning relies on implicit knowledge acquired from recent lifting experience, termed sensorimotor memory. Here, we investigated whether perception of weight is similarly biased according to previous lifting experience and how this is related to force scaling. Participants grasped and lifted series of light or heavy objects in a semi-randomized order and estimated their weights. As expected, we found that forces were scaled based on previous lifts (sensorimotor memory and these effects increased depending on the length of recent lifting experience. Importantly, perceptual weight estimates were also influenced by the preceding lift, resulting in lower estimations after a heavy lift compared to a light one. In addition, the weight estimations were negatively correlated with the magnitude of planned force parameters. This perceptual bias was only found if the current lift was light, but not heavy since the magnitude of sensorimotor memory effects had, according to Weber’s law, relatively less impact on heavy compared to light objects. A control experiment tested the importance of active lifting in mediating these perceptual changes and showed that when weights are passively applied on the hand, no effect of previous sensory experience is found on perception. These results highlight how fast learning of novel object lifting dynamics can shape weight perception and demonstrate a tight link between action planning and perception control. If predictive force scaling and actual object weight do not match, the online motor corrections, rapidly implemented to downscale forces, will also downscale weight estimation in

  18. Highly Symmetric and Congruently Tiled Meshes for Shells and Domes

    Science.gov (United States)

    Rasheed, Muhibur; Bajaj, Chandrajit

    2016-01-01

    We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368

  19. How to model wireless mesh networks topology

    International Nuclear Information System (INIS)

    Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M

    2013-01-01

    The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches

  20. Challenges in Second-Generation Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Pescapé Antonio

    2008-01-01

    Full Text Available Wireless mesh networks have the potential to provide ubiquitous high-speed Internet access at low costs. The good news is that initial deployments of WiFi meshes show the feasibility of providing ubiquitous Internet connectivity. However, their performance is far below the necessary and achievable limit. Moreover, users' subscription in the existing meshes is dismal even though the technical challenges to get connectivity are low. This paper provides an overview of the current status of mesh networks' deployment, and highlights the technical, economical, and social challenges that need to be addressed in the next years. As a proof-of-principle study, we discuss the above-mentioned challenges with reference to three real networks: (i MagNets, an operator-driven planned two-tier mesh network; (ii Berlin Freifunk network as a pure community-driven single-tier network; (iii Weimar Freifunk network, also a community-driven but two-tier network.

  1. SALOME PLATFORM and TetGen for Polyhedral Mesh Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan [KEPCO E and C Company, Inc., Daejeon (Korea, Republic of)

    2014-05-15

    SPACE and CUPID use the unstructured mesh and they also require reliable mesh generation system. The combination of CAD system and mesh generation system is necessary to cope with a large number of cells and the complex fluid system with structural materials inside. In the past, a CAD system Pro/Engineer and mesh generator Pointwise were evaluated for this application. But, the cost of those commercial CAD and mesh generator is sometimes a great burden. Therefore, efforts have been made to set up a mesh generation system with open source programs. The evaluation of the TetGen has been made in focusing the application for the polyhedral mesh generation. In this paper, SALOME will be evaluated for the efforts in conjunction with TetGen. In section 2, review will be made on the CAD and mesh generation capability of SALOME. SALOME and TetGen codes are being integrated to construct robust polyhedral mesh generator. Edge removal on the flat surface and vertex reattachment to the solid are two challenging tasks. It is worthwhile to point out that the Python script capability of the SALOME should be fully utilized for the future investigation.

  2. Mesh requirements for neutron transport calculations

    International Nuclear Information System (INIS)

    Askew, J.R.

    1967-07-01

    Fine-structure calculations are reported for a cylindrical natural uranium-graphite cell using different solution methods (discrete ordinate and collision probability codes) and varying the spatial mesh. It is suggested that of formulations assuming the source constant in a mesh interval the differential approach is generally to be preferred. Due to cancellation between approximations made in the derivation of the finite difference equations and the errors in neglecting source variation, the discrete ordinate code gave a more accurate estimate of fine structure for a given mesh even for unusually coarse representations. (author)

  3. Error estimation for goal-oriented spatial adaptivity for the SN equations on triangular meshes

    International Nuclear Information System (INIS)

    Lathouwers, D.

    2011-01-01

    In this paper we investigate different error estimation procedures for use within a goal oriented adaptive algorithm for the S N equations on unstructured meshes. The method is based on a dual-weighted residual approach where an appropriate adjoint problem is formulated and solved in order to obtain the importance of residual errors in the forward problem on the specific goal of interest. The forward residuals and the adjoint function are combined to obtain both economical finite element meshes tailored to the solution of the target functional as well as providing error estimates. Various approximations made to make the calculation of the adjoint angular flux more economically attractive are evaluated by comparing the performance of the resulting adaptive algorithm and the quality of the error estimators when applied to two shielding-type test problems. (author)

  4. Improved mesh generator for the POISSON Group Codes

    International Nuclear Information System (INIS)

    Gupta, R.C.

    1987-01-01

    This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries

  5. Transvaginal mesh procedures for pelvic organ prolapse.

    Science.gov (United States)

    Walter, Jens-Erik

    2011-02-01

    To provide an update on transvaginal mesh procedures, newly available minimally invasive surgical techniques for pelvic floor repair. The discussion is limited to minimally invasive transvaginal mesh procedures. PubMed and Medline were searched for articles published in English, using the key words "pelvic organ prolapse," transvaginal mesh," and "minimally invasive surgery." Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. Searches were updated on a regular basis, and articles were incorporated in the guideline to May 2010. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on the Preventive Health Care. Recommendations for practice were ranked according to the method described in that report (Table 1). Counselling for the surgical treatment of pelvic organ prolapse should consider all benefits, harms, and costs of the surgical procedure, with particular emphasis on the use of mesh. 1. Patients should be counselled that transvaginal mesh procedures are considered novel techniques for pelvic floor repair that demonstrate high rates of anatomical cure in uncontrolled short-term case series. (II-2B) 2. Patients should be informed of the range of success rates until stronger evidence of superiority is published. (II-2B) 3. Training specific to transvaginal mesh procedures should be undertaken before procedures are performed. (III-C) 4. Patients should undergo thorough preoperative counselling regarding (a) the potential serious adverse sequelae of transvaginal mesh repairs, including mesh exposure, pain, and dyspareunia; and (b) the limited data available

  6. Predicting mesh density for adaptive modelling of the global atmosphere.

    Science.gov (United States)

    Weller, Hilary

    2009-11-28

    The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.

  7. Mesh Adaptation and Shape Optimization on Unstructured Meshes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR CRM proposes to implement the entropy adjoint method for solution adaptive mesh refinement into the Loci/CHEM unstructured flow solver. The scheme will...

  8. Mesh networks: an optimum solution for AMR

    Energy Technology Data Exchange (ETDEWEB)

    Mimno, G.

    2003-12-01

    Characteristics of mesh networks and the advantage of using them in automatic meter reading equipment (AMR) are discussed. Mesh networks are defined as being similar to a fishing net made of knots and links. In mesh networks the knots represent meter sites and the links are the radio paths between the meter sites and the neighbourhood concentrator. In mesh networks any knot in the communications chain can link to any other and the optimum path is calculated by the network by hopping from meter to meter until the radio message reaches a concentrator. This mesh communications architecture is said to be vastly superior to many older types of radio-based meter reading technologies; its main advantage is that it not only significantly improves the economics of fixed network deployment, but also supports time-of-use metering, remote disconnect services and advanced features, such as real-time pricing, demand response, and other efficiency measures, providing a better return on investment and reliability.

  9. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang; Yang, Yijun; Pottmann, Helmut; Mitra, Niloy J.

    2011-01-01

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  10. Shape space exploration of constrained meshes

    KAUST Repository

    Yang, Yongliang

    2011-12-12

    We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.

  11. Major nutrients, heavy metals and PBDEs in soils after long-term sewage sludge application

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Longhua; Li, Zhu; Ren, Jing; Shen, Libo; Wang, Songfeng; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Cheng, Miaomiao [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Chinese Academy of Sciences, Beijing (China). Graduate School; Christie, Peter [Agri-Food and Biosciences Institute, Belfast (United Kingdom). Agri-Environment Branch

    2012-04-15

    Purpose: Two contrasting soils receiving long-term application of commercial sewage sludge fertilizers in China were investigated to determine the concentrations of selected nutrients, heavy metals (HMs) and polybrominated diphenyl ethers (PBDEs) present to evaluate the impact of sewage sludge fertilizer on soil fertility and environmental risk. Materials and methods: Soil samples were collected from Tangshan City, Hebei province and Ningbo City, Zhejiang province and divided into two portions, one of which was air-dried and sieved through 2-, 0.25- and 0.149-mm nylon mesh for determination of nutrients and heavy metals. The other portion was frozen at -20 C, freeze-dried and sieved through 2-mm nylon mesh for PBDE analysis. The concentrations of nutrients, heavy metals and PBDEs were determined in all samples. Results and discussion: Concentrations of nutrients and heavy metals in soils amended with low rates of sewage sludge fertilizer (SSF) and conventional fertilizer were compared. After long-term excessive amendment with SSF from Ningbo City (SSF-N), the concentrations of soil total N, P, aqua regia-extractable HMs and DTPA extractable HMs were higher than the control, especially in the arable layer. Moreover, the concentration of aqua regia-extractable Zn (457 mg kg{sup -1}) exceeded the recommended China Environmental Quality Standard for soils (GB15618-1995). All 8 target PBDE congeners were found in fertilizer SSF-N and soil with excessive amendment with SSF-N for 12 years, but the concentrations of 8 different PBDEs in SSF-N-amended soil were not significantly different from control soil. Conclusions: Both economic and environmental benefits can be obtained by careful application of sewage sludge fertilizer to recycle plant nutrients. Repeated and excessive application rates of sewage sludge fertilizer may pose environmental risk, especially in respect of soil heavy metal and PBDE contamination, and high concentrations of phosphorus may also be

  12. Relationship between weight, age and hatching success and the concentration of heavy metals in nestling blue macaw (Anodorhynchus hyacinthinus Latham, 1790 in the Pantanal,Mato Grosso do Sul

    Directory of Open Access Journals (Sweden)

    Marina Drago Marchesi

    2015-06-01

    Full Text Available Abstract: The concentration of heavy metals (Cr, Fe, Al, As, Cd, Cu, Pb, Mo, Ni, Se and Zn was evaluated in the blood of nestling blue macaws (Anodorhynchus hyacinthinus captured in the Pantanal, Mato Grosso do Sul (n=26 in 2012; this was based on the hypothesis that these birds exhibit levels of these heavy metals in their organism and that these interfere in hatching success, weight and age of the chicks. Blood samples were digested with nitric acid and hydrochloric acid and the quantification of metals was performed by ICP-OES (Optical Emission Spectroscopy and Inductively Coupled Plasma. Blood samples of nestlings showed concentrations of Cr (0.10μg/g Fe (3.06μg/g Al (3.46μg/g, Cd (0.25μg/g Cu (0.74μg/g, Mo (0.33μg/g, Ni (0.61μg/g, Se (0.98μg/g, and Zn (2.08μg/g. The levels of heavy metals found were not associated with weight, age and hatching success of the chicks.

  13. Wireless mesh networks.

    Science.gov (United States)

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.

  14. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

    Directory of Open Access Journals (Sweden)

    Al Saadi Hamza Salim Mohammed

    2017-01-01

    Full Text Available One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP. For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

  15. Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing.

    Science.gov (United States)

    Elmoataz, Abderrahim; Lezoray, Olivier; Bougleux, Sébastien

    2008-07-01

    We introduce a nonlocal discrete regularization framework on weighted graphs of the arbitrary topologies for image and manifold processing. The approach considers the problem as a variational one, which consists of minimizing a weighted sum of two energy terms: a regularization one that uses a discrete weighted p-Dirichlet energy and an approximation one. This is the discrete analogue of recent continuous Euclidean nonlocal regularization functionals. The proposed formulation leads to a family of simple and fast nonlinear processing methods based on the weighted p-Laplace operator, parameterized by the degree p of regularity, the graph structure and the graph weight function. These discrete processing methods provide a graph-based version of recently proposed semi-local or nonlocal processing methods used in image and mesh processing, such as the bilateral filter, the TV digital filter or the nonlocal means filter. It works with equal ease on regular 2-D and 3-D images, manifolds or any data. We illustrate the abilities of the approach by applying it to various types of images, meshes, manifolds, and data represented as graphs.

  16. 21 CFR 870.3650 - Pacemaker polymeric mesh bag.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...

  17. Surgeon Experience and Complications of Transvaginal Prolapse Mesh.

    Science.gov (United States)

    Kelly, Erin C; Winick-Ng, Jennifer; Welk, Blayne

    2016-07-01

    To measure the proportion of women with transvaginal prolapse mesh complications and their association with surgeon volume. We conducted a retrospective, population-based cohort study of all women who underwent a mesh-based prolapse procedure using administrative data (hospital procedure and physician billing records) between 2002 and 2013 in Ontario, Canada. The primary outcome was surgical revision of the mesh. Primary exposure was surgeon volume: high (greater than the 75th percentile, requiring a median of five [interquartile range 5-6] procedures per year) and very high (greater than the 90th percentile, requiring a median of 13 [interquartile range 11-14] procedures per year) volume mesh implanters were identified each year. Primary analysis was an adjusted Cox proportional hazards model. A total of 5,488 women underwent mesh implantation by 1 of 368 unique surgeons. Median follow-up time was 5.4 (interquartile range 3.0-8.0) years. We found that 218 women (4.0%) underwent mesh reoperation a median of 1.17 (interquartile range 0.58-2.90) years after implantation. The hazard of reoperation for complications was only lower for patients of very high-volume surgeons (3.0% [145/3,001] compared with 4.8% [73/2,447], adjusted hazards ratio 0.59, 95% confidence interval 0.40-0.86). In multivariable modeling, younger age, concomitant hysterectomy, blood transfusion, and increased medical comorbidity were all associated with vaginal mesh reoperation. Approximately 5% of women who underwent mesh-based prolapse surgery required reoperation for a mesh complication within 10 years. The risk of reoperation was lowest for surgeons performing 14 or more procedures per year.

  18. Analysis and modification of a single-mesh gear fatigue rig for use in diagnostic studies

    Science.gov (United States)

    Zakrajsek, James J.; Townsend, Dennis P.; Oswald, Fred B.; Decker, Harry J.

    1992-01-01

    A single-mesh gear fatigue rig was analyzed and modified for use in gear mesh diagnostic research. The fatigue rig allowed unwanted vibration to mask the test-gear vibration signal, making it difficult to perform diagnostic studies. Several possible sources and factors contributing to the unwanted components of the vibration signal were investigated. Sensor mounting location was found to have a major effect on the content of the vibration signal. In the presence of unwanted vibration sources, modal amplification made unwanted components strong. A sensor location was found that provided a flatter frequency response. This resulted in a more useful vibration signal. A major network was performed on the fatigue rig to reduce the influence of the most probable sources of the noise in the vibration signal. The slave gears were machined to reduce weight and increase tooth loading. The housing and the shafts were modified to reduce imbalance, looseness, and misalignment in the rotating components. These changes resulted in an improved vibration signal, with the test-gear mesh frequency now the dominant component in the signal. Also, with the unwanted sources eliminated, the sensor mounting location giving the most robust representation of the test-gear meshing energy was found to be at a point close to the test gears in the load zone of the bearings.

  19. Application of coarse-mesh methods to fluid dynamics equations

    International Nuclear Information System (INIS)

    Romstedt, P.; Werner, W.

    1977-01-01

    An Asymmetric Weighted Residual (ASWR) method for fluid dynamics equations is described. It leads to local operators with a 7-point Finite Difference (FD) structure, which is independent of the degree of the approximating polynomials. An 1-dimensional problem was solved by both this ASWR-method and a commonly used FD-method. The numerical results demonstrate that the ASWR-method combines high accuracy on a coarse computational mesh with short computing time per space point. The posibility of using fewer space points consequently brings about a considerable reduction in total running time for the ASWR-method as compared with conventional FD-methods. (orig.) [de

  20. Energy mesh optimization for multi-level calculation schemes

    International Nuclear Information System (INIS)

    Mosca, P.; Taofiki, A.; Bellier, P.; Prevost, A.

    2011-01-01

    The industrial calculations of third generation nuclear reactors are based on sophisticated strategies of homogenization and collapsing at different spatial and energetic levels. An important issue to ensure the quality of these calculation models is the choice of the collapsing energy mesh. In this work, we show a new approach to generate optimized energy meshes starting from the SHEM 281-group library. The optimization model is applied on 1D cylindrical cells and consists of finding an energy mesh which minimizes the errors between two successive collision probability calculations. The former is realized over the fine SHEM mesh with Livolant-Jeanpierre self-shielded cross sections and the latter is performed with collapsed cross sections over the energy mesh being optimized. The optimization is done by the particle swarm algorithm implemented in the code AEMC and multigroup flux solutions are obtained from standard APOLLO2 solvers. By this new approach, a set of new optimized meshes which encompass from 10 to 50 groups has been defined for PWR and BWR calculations. This set will allow users to adapt the energy detail of the solution to the complexity of the calculation (assembly, multi-assembly, two-dimensional whole core). Some preliminary verifications, in which the accuracy of the new meshes is measured compared to a direct 281-group calculation, show that the 30-group optimized mesh offers a good compromise between simulation time and accuracy for a standard 17 x 17 UO 2 assembly with and without control rods. (author)

  1. Oral, intestinal, and skin bacteria in ventral hernia mesh implants

    Directory of Open Access Journals (Sweden)

    Odd Langbach

    2016-07-01

    Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also

  2. Reconfigurable lattice mesh designs for programmable photonic processors.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

    2016-05-30

    We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

  3. Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation

    Energy Technology Data Exchange (ETDEWEB)

    GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.

    1999-09-27

    Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.

  4. Selective laser vaporization of polypropylene sutures and mesh

    Science.gov (United States)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  5. A Reconfigurable Mesh-Ring Topology for Bluetooth Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ben-Yi Wang

    2018-05-01

    Full Text Available In this paper, a Reconfigurable Mesh-Ring (RMR algorithm is proposed for Bluetooth sensor networks. The algorithm is designed in three stages to determine the optimal configuration of the mesh-ring network. Firstly, a designated root advertises and discovers its neighboring nodes. Secondly, a scatternet criterion is built to compute the minimum number of piconets and distributes the connection information for piconet and scatternet. Finally, a peak-search method is designed to determine the optimal mesh-ring configuration for various sizes of networks. To maximize the network capacity, the research problem is formulated by determining the best connectivity of available mesh links. During the formation and maintenance phases, three possible configurations (including piconet, scatternet, and hybrid are examined to determine the optimal placement of mesh links. The peak-search method is a systematic approach, and is implemented by three functional blocks: the topology formation block generates the mesh-ring topology, the routing efficiency block computes the routing performance, and the optimum decision block introduces a decision-making criterion to determine the optimum number of mesh links. Simulation results demonstrate that the optimal mesh-ring configuration can be determined and that the scatternet case achieves better overall performance than the other two configurations. The RMR topology also outperforms the conventional ring-based and cluster-based mesh methods in terms of throughput performance for Bluetooth configurable networks.

  6. LR: Compact connectivity representation for triangle meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gurung, T; Luffel, M; Lindstrom, P; Rossignac, J

    2011-01-28

    We propose LR (Laced Ring) - a simple data structure for representing the connectivity of manifold triangle meshes. LR provides the option to store on average either 1.08 references per triangle or 26.2 bits per triangle. Its construction, from an input mesh that supports constant-time adjacency queries, has linear space and time complexity, and involves ordering most vertices along a nearly-Hamiltonian cycle. LR is best suited for applications that process meshes with fixed connectivity, as any changes to the connectivity require the data structure to be rebuilt. We provide an implementation of the set of standard random-access, constant-time operators for traversing a mesh, and show that LR often saves both space and traversal time over competing representations.

  7. Mesh-graft urethroplasty: a case report

    OpenAIRE

    田中, 敏博; 滝川, 浩; 香川, 征; 長江, 浩朗

    1987-01-01

    We used a meshed free-foreskin transplant in a two-stage procedure for reconstruction of the extended stricture of urethra after direct vision urethrotomy. The results were excellent. Mesh-graft urethroplasty is a useful method for patients with extended strictures of the urethra or recurrent strictures after several operations.

  8. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N N

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  9. Adaptive mesh refinement for shocks and material interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, William Wenlong [Los Alamos National Laboratory

    2010-01-01

    There are three kinds of adaptive mesh refinement (AMR) in structured meshes. Block-based AMR sometimes over refines meshes. Cell-based AMR treats cells cell by cell and thus loses the advantage of the nature of structured meshes. Patch-based AMR is intended to combine advantages of block- and cell-based AMR, i.e., the nature of structured meshes and sharp regions of refinement. But, patch-based AMR has its own difficulties. For example, patch-based AMR typically cannot preserve symmetries of physics problems. In this paper, we will present an approach for a patch-based AMR for hydrodynamics simulations. The approach consists of clustering, symmetry preserving, mesh continuity, flux correction, communications, management of patches, and load balance. The special features of this patch-based AMR include symmetry preserving, efficiency of refinement across shock fronts and material interfaces, special implementation of flux correction, and patch management in parallel computing environments. To demonstrate the capability of the AMR framework, we will show both two- and three-dimensional hydrodynamics simulations with many levels of refinement.

  10. Selectivity of commercial, larger mesh and square mesh trawl codends for deep water rose shrimp Parapenaeus longirostris (Lucas, 1846 in the Aegean Sea

    Directory of Open Access Journals (Sweden)

    Hakan Kaykaç

    2009-09-01

    Full Text Available We investigated the differences between size selectivity of a commercial codend (40 mm diamond mesh – 40D, a larger mesh codend (48 mm diamond mesh – 48D, and a square mesh codend (40 mm square mesh – 40S for Parapenaeus longirostris in international waters of the Aegean Sea. Selectivity data were collected by using a covered codend method and analysed taking between-haul variation into account. The results indicate significant increases in L50 values in relation to an increase in mesh size and when the square mesh is used in the commercial trawl codend. The results demonstrate that the commercially used codend (40D is not selective enough for P. longirostris in terms of length at first maturity. Changing from a 40D to a 48D codend significantly improves selection, with an increase of about 15% in the L50 values (carapace length 14.5 mm for 40D and 16.6 mm for 48D. Similarly, 40 mm square mesh, which has recently been legislated for EU Mediterranean waters, showed a 12.4% higher mean L50 value (16.3 mm than 40 mm diamond mesh for this species. However, despite these improvements, the 48D and 40S codends still need further improvements to obtain higher selectivity closer to the length at first maturity (20 mm carapace length.

  11. Connectivity editing for quad-dominant meshes

    KAUST Repository

    Peng, Chihan

    2013-08-01

    We propose a connectivity editing framework for quad-dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non-quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  12. High-fidelity meshes from tissue samples for diffusion MRI simulations.

    Science.gov (United States)

    Panagiotaki, Eleftheria; Hall, Matt G; Zhang, Hui; Siow, Bernard; Lythgoe, Mark F; Alexander, Daniel C

    2010-01-01

    This paper presents a method for constructing detailed geometric models of tissue microstructure for synthesizing realistic diffusion MRI data. We construct three-dimensional mesh models from confocal microscopy image stacks using the marching cubes algorithm. Random-walk simulations within the resulting meshes provide synthetic diffusion MRI measurements. Experiments optimise simulation parameters and complexity of the meshes to achieve accuracy and reproducibility while minimizing computation time. Finally we assess the quality of the synthesized data from the mesh models by comparison with scanner data as well as synthetic data from simple geometric models and simplified meshes that vary only in two dimensions. The results support the extra complexity of the three-dimensional mesh compared to simpler models although sensitivity to the mesh resolution is quite robust.

  13. [Implants for genital prolapse : Contra mesh surgery].

    Science.gov (United States)

    Hampel, C

    2017-12-01

    Alloplastic transvaginal meshes have become very popular in the surgery of pelvic organ prolapse (POP) as did alloplastic suburethral slings in female stress incontinence surgery, but without adequate supporting data. The simplicity of the mesh procedure facilitates its propagation with acceptance of higher revision and complication rates. Since attending physicians do more and more prolapse surgeries without practicing or teaching alternative techniques, expertise in these alternatives, which might be very useful in cases of recurrence, persistence or complications, is permanently lost. It is doubtful that proper and detailed information about alternatives, risks, and benefits of transvaginal alloplastic meshes is provided to every single prolapse patient according to the recommendations of the German POP guidelines, since the number of implanted meshes exceeds the number of properly indicated mesh candidates by far. Although there is no dissent internationally about the available mesh data, thousands of lawsuits in the USA, insolvency of companies due to claims for compensation and unambiguous warnings from foreign urological societies leave German urogynecologists still unimpressed. The existing literature in pelvic organ prolapse exclusively focusses on POP stage and improvement of that stage with surgical therapy. Instead, typical prolapse symptoms should trigger therapy and improvement of these symptoms should be the utmost treatment goal. It is strongly recommended for liability reasons to obtain specific written informed consent.

  14. Ventral hernia repair with poly-4-hydroxybutyrate mesh.

    Science.gov (United States)

    Plymale, Margaret A; Davenport, Daniel L; Dugan, Adam; Zachem, Amanda; Roth, John Scott

    2018-04-01

    Biomaterial research has made available a biologically derived fully resorbable poly-4-hydroxybutyrate (P4HB) mesh for use in ventral and incisional hernia repair (VIHR). This study evaluates outcomes of patients undergoing VIHR with P4HB mesh. An IRB-approved prospective pilot study was conducted to assess clinical and quality of life (QOL) outcomes for patients undergoing VIHR with P4HB mesh. Perioperative characteristics were defined. Clinical outcomes, employment status, QOL using 12-item short form survey (SF-12), and pain assessments were followed for 24 months postoperatively. 31 patients underwent VIHR with bioresorbable mesh via a Rives-Stoppa approach with retrorectus mesh placement. The median patient age was 52 years, median body mass index was 33 kg/m 2 , and just over half of the patients were female. Surgical site occurrences occurred in 19% of patients, most of which were seroma. Hernia recurrence rate was 0% (median follow-up = 414 days). Patients had significantly improved QOL at 24 months compared to baseline for SF-12 physical component summary and role emotional (p < 0.05). Ventral hernia repair with P4HB bioresorbable mesh results in favorable outcomes. Early hernia recurrence was not identified among the patient cohort. Quality of life improvements were noted at 24 months versus baseline for this cohort of patients with bioresorbable mesh. Use of P4HB mesh for ventral hernia repair was found to be feasible in this patient population. (ClinicalTrials.gov Identifier: NCT01863030).

  15. Texturing of continuous LOD meshes with the hierarchical texture atlas

    Science.gov (United States)

    Birkholz, Hermann

    2006-02-01

    For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.

  16. Adaptive-mesh zoning by the equipotential method

    Energy Technology Data Exchange (ETDEWEB)

    Winslow, A.M.

    1981-04-01

    An adaptive mesh method is proposed for the numerical solution of differential equations which causes the mesh lines to move closer together in regions where higher resolution in some physical quantity T is desired. A coefficient D > 0 is introduced into the equipotential zoning equations, where D depends on the gradient of T . The equations are inverted, leading to nonlinear elliptic equations for the mesh coordinates with source terms which depend on the gradient of D. A functional form of D is proposed.

  17. Fire performance of basalt FRP mesh reinforced HPC thin plates

    DEFF Research Database (Denmark)

    Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup

    2013-01-01

    An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...

  18. Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution

    Energy Technology Data Exchange (ETDEWEB)

    Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory

    2009-01-01

    Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.

  19. Current situation of transvaginal mesh repair for pelvic organ prolapse.

    Science.gov (United States)

    Zhu, Lan; Zhang, Lei

    2014-09-01

    Surgical mesh is a metallic or polymeric screen intended to be implanted to reinforce soft tissue or bone where weakness exists. Surgical mesh has been used since the 1950s to repair abdominal hernias. In the 1970s, gynecologists began using surgical mesh products to indicate the repair of pelvic organ prolapse (POP), and in the 1990s, gynecologists began using surgical mesh for POP. Then the U.S. Food and Drug Administration (FDA) approved the first surgical mesh product specifically for use in POP. Surgical mesh materials can be divided into several categories. Most surgical mesh devices cleared for POP procedures are composed of non-absorbable synthetic polypropylene. Mesh can be placed in the anterior vaginal wall to aid in the correction of cystocele (anterior repair), in the posterior vaginal wall to aid in correction of rectocele (posterior repair), or attached to the top of the vagina to correct uterine prolapse or vaginal apical prolapse (apical repair). Over the past decades, surgical mesh products for transvaginal POP repair became incorporated into "kits" that included tools to aid in the delivery and insertion of the mesh. Surgical mesh kits continue to evolve, adding new insertion tools, tissue fixation anchors, surgical techniques, and ab- sorbable and biological materials. This procedure has been performed popularly. It was also performed increased in China. But this new technique met some trouble recently and let shake in urogynecology.

  20. An enhanced geometry-independent mesh weight window generator for MCNP

    International Nuclear Information System (INIS)

    Evans, T.M.; Hendricks, J.S.

    1997-01-01

    A new, enhanced, weight window generator suite has been developed for MCNP trademark. The new generator correctly estimates importances in either an user-specified, geometry-independent orthogonal grid or in MCNP geometric cells. The geometry-independent option alleviates the need to subdivide the MCNP cell geometry for variance reduction purposes. In addition, the new suite corrects several pathologies in the existing MCNP weight window generator. To verify the correctness of the new implementation, comparisons are performed with the analytical solution for the cell importance. Using the new generator, differences between Monte Carlo generated and analytical importances are less than 0.1%. Also, assumptions implicit in the original MCNP generator are shown to be poor in problems with high scattering media. The new generator is fully compatible with MCNP's AVATAR trademark automatic variance reduction method. The new generator applications, together with AVATAR, gives MCNP an enhanced suite of variance reduction methods. The flexibility and efficacy of this suite is demonstrated in a neutron porosity tool well-logging problem

  1. Convergence study of global meshing on enamel-cement-bracket finite element model

    Science.gov (United States)

    Samshuri, S. F.; Daud, R.; Rojan, M. A.; Basaruddin, K. S.; Abdullah, A. B.; Ariffin, A. K.

    2017-09-01

    This paper presents on meshing convergence analysis of finite element (FE) model to simulate enamel-cement-bracket fracture. Three different materials used in this study involving interface fracture are concerned. Complex behavior ofinterface fracture due to stress concentration is the reason to have a well-constructed meshing strategy. In FE analysis, meshing size is a critical factor that influenced the accuracy and computational time of analysis. The convergence study meshing scheme involving critical area (CA) and non-critical area (NCA) to ensure an optimum meshing sizes are acquired for this FE model. For NCA meshing, the area of interest are at the back of enamel, bracket ligature groove and bracket wing. For CA meshing, area of interest are enamel area close to cement layer, the cement layer and bracket base. The value of constant NCA meshing tested are meshing size 1 and 0.4. The value constant CA meshing tested are 0.4 and 0.1. Manipulative variables are randomly selected and must abide the rule of NCA must be higher than CA. This study employed first principle stresses due to brittle failure nature of the materials used. Best meshing size are selected according to convergence error analysis. Results show that, constant CA are more stable compare to constant NCA meshing. Then, 0.05 constant CA meshing are tested to test the accuracy of smaller meshing. However, unpromising result obtained as the errors are increasing. Thus, constant CA 0.1 with NCA mesh of 0.15 until 0.3 are the most stable meshing as the error in this region are lowest. Convergence test was conducted on three selected coarse, medium and fine meshes at the range of NCA mesh of 0.15 until 3 and CA mesh area stay constant at 0.1. The result shows that, at coarse mesh 0.3, the error are 0.0003% compare to 3% acceptable error. Hence, the global meshing are converge as the meshing size at CA 0.1 and NCA 0.15 for this model.

  2. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement

    Directory of Open Access Journals (Sweden)

    Juan J. Garcia-Cantero

    2017-06-01

    Full Text Available Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been

  3. Resterilized Polypropylene Mesh for Inguinal Hernia Repair

    African Journals Online (AJOL)

    2018-04-19

    Apr 19, 2018 ... Conclusion: The use of sterilized polypropylene mesh for the repair of inguinal ... and nonabsorbable materials to reduce the tissue–mesh. INTRODUCTION ... which we have been practicing in our center since we introduced ...

  4. Clinical study for pancreatic fistula after distal pancreatectomy with mesh reinforcement

    Directory of Open Access Journals (Sweden)

    Akira Hayashibe

    2018-05-01

    Full Text Available Summary: Background: The purpose of this cohort study was to determine whether distal pancreatectomy with mesh reinforcement can reduce postoperative pancreatic fistula (POPF rates compared with bare stapler. Methods: In total, 51 patients underwent stapled distal pancreatectomy. Out of these, 22 patients (no mesh group underwent distal pancreatectomy with bare stapler and 29 patients (mesh group underwent distal pancreatectomy with mesh reinforced stapler. The risk factor for clinically relevant POPF (grades B and C after distal pancreatectomy was also evaluated. Results: Clinical characteristics were almost similar in both the groups. The days of the mean hospital stay and drainage tube insertion in the mesh group were significantly fewer than those in the no mesh group. The mean level of amylase in the discharge fluid in the mesh group was also significantly lower than that the in no mesh group. The rate of clinically relevant POPF (grades B and C in the mesh group was significantly lower than that in the no mesh group (p=0.016. Univariate analyses of risk factors for POPF (grades B and C revealed that only mesh reinforcement was associated with POPF (grades B and C. Moreover, on multivariate analyses of POPF risk factors with p value<0.2 in univariate analyses by logistic regression, mesh reinforcement was regarded as a significant factor for POPF(grades B and C. Conclusions: The distal pancreatectomy with mesh reinforced stapler was thought to be favorable for the prevention of clinically relevant POPF (grades B and C. Keywords: mesh reinforcement, pancreatic fistula, pancreatic surgery

  5. Anisotropic mesh adaptation for marine ice-sheet modelling

    Science.gov (United States)

    Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

    2017-04-01

    Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh

  6. Multiphase flow of immiscible fluids on unstructured moving meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2012-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  7. Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam

    2013-01-01

    In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...

  8. Laparoscopic removal of mesh used in pelvic floor surgery.

    Science.gov (United States)

    Khong, Su-Yen; Lam, Alan

    2009-01-01

    Various meshes are being used widely in clinical practice for pelvic reconstructive surgery despite the lack of evidence of their long-term safety and efficacy. Management of complications such as mesh erosion and dyspareunia can be challenging. Most mesh-related complications can probably be managed successfully via the transvaginal route; however, this may be impossible if surgical access is poor. This case report demonstrates the successful laparoscopic removal of mesh after several failed attempts via the vaginal route.

  9. GENERATION OF IRREGULAR HEXAGONAL MESHES

    Directory of Open Access Journals (Sweden)

    Vlasov Aleksandr Nikolaevich

    2012-07-01

    Decomposition is performed in a constructive way and, as option, it involves meshless representation. Further, this mapping method is used to generate the calculation mesh. In this paper, the authors analyze different cases of mapping onto simply connected and bi-connected canonical domains. They represent forward and backward mapping techniques. Their potential application for generation of nonuniform meshes within the framework of the asymptotic homogenization theory is also performed to assess and project effective characteristics of heterogeneous materials (composites.

  10. Current role of mesh in vaginal prolapse surgery.

    Science.gov (United States)

    Richter, Lee A; Carter, Charelle; Gutman, Robert E

    2014-10-01

    This report summarizes the latest literature on transvaginal mesh (TVM) for the treatment of pelvic organ prolapse, with a focus on indications for use and management of complications. We describe trends in TVM by reviewing the recent literature and summarizing national meeting presentations. Vaginal mesh complications are most often managed surgically, and the majority of patients experiencing mesh-related pain have symptom improvement after intervention. New efforts will focus on identifying variables associated with success after intervention for mesh-related complications, to aid reconstructive pelvic surgeons in outcome prediction and patient counselling. Although the use of TVM has plateaued in recent years, we are seeing an exponential rise in synthetic mesh implant removal. Reconstructive pelvic surgeons advising patients with TVM complications should report that surgical intervention is often necessary, improvement rates of pain-related symptoms after surgery are high, and up to a third may require multiple interventions.

  11. Obturator foramen dissection for excision of symptomatic transobturator mesh.

    Science.gov (United States)

    Reynolds, W Stuart; Kit, Laura Chang; Kaufman, Melissa R; Karram, Mickey; Bales, Gregory T; Dmochowski, Roger R

    2012-05-01

    Groin pain after transobturator synthetic mesh placement can be recalcitrant to conservative therapy and ultimately requires surgical excision. We describe our experiences with and technique of obturator foramen dissection for mesh excision. The records of 8 patients treated from 2005 to 2010, were reviewed. Obturator dissection was performed via a lateral groin incision over the inferior pubic ramus at the level of the obturator foramen, typically in conjunction with orthopedic surgery. Five patients had transobturator mid urethral sling surgery for stress urinary incontinence, 2 had mid urethral sling and trocar based anterior vaginal wall mesh kits with transobturator passage of mesh arms for stress urinary incontinence and pelvic organ prolapse, and 1 had an anterior vaginal wall mesh kit for pelvic organ prolapse. Patients had 0 to 2 prior transvaginal mesh excisions before obturator surgery. All patients presented with intractable pain in the area of the obturator foramen and/or medial groin for which conservative treatment measures had failed. Six patients underwent concurrent vaginal and obturator dissection and 2 underwent obturator dissection alone. In all cases residual mesh (3 to 11 cm) was identified and excised from the obturator foramen. Mesh was closely associated to or traversing the adductor longus muscle and tendon with significant fibrous reaction in all cases. Postoperatively 5 patients were cured of pain and/or infection, and 3 reported no or some improvement at a mean followup of 6 months (range 1 to 12). Our experience suggests that surgical excision of residual mesh can alleviate many of the symptoms in many patients. In all cases mesh remnants were identified and removed, and typically involved neuromuscular structures adjacent to the obturator foramen. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Grid adaptation using chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1994-01-01

    The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.

  13. THM-GTRF: New Spider meshes, New Hydra-TH runs

    Energy Technology Data Exchange (ETDEWEB)

    Bakosi, Jozsef [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory; Francois, Marianne M. [Los Alamos National Laboratory; Lowrie, Robert B. [Los Alamos National Laboratory; Nourgaliev, Robert [Los Alamos National Laboratory

    2012-06-20

    Progress is reported on computational capabilities for the grid-to-rod-fretting (GTRF) problem of pressurized water reactors. Numeca's Hexpress/Hybrid mesh generator is demonstrated as an excellent alternative to generating computational meshes for complex flow geometries, such as in GTRF. Mesh assessment is carried out using standard industrial computational fluid dynamics practices. Hydra-TH, a simulation code developed at LANL for reactor thermal-hydraulics, is demonstrated on hybrid meshes, containing different element types. A series of new Hydra-TH calculations has been carried out collecting turbulence statistics. Preliminary results on the newly generated meshes are discussed; full analysis will be documented in the L3 milestone, THM.CFD.P5.05, Sept. 2012.

  14. AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.

  15. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  16. Engagement of Metal Debris into Gear Mesh

    Science.gov (United States)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  17. A conceptual framework for technology-enabled and technology-dependent user behavior toward device mesh and mesh app

    Directory of Open Access Journals (Sweden)

    Ming-Hsiung Hsiao

    2018-06-01

    Full Text Available The device mesh and mesh app revealed by Gartner as the future strategic technology trend are able to predict people's need from their historic data, then provides the needed services or service innovation to support their activity engagement. However, many theories have identified that it is the motivation, rather than technology, that drives people to engage in activities or tasks. For this reason, this study builds a conceptual framework by integrating the extant logic and theories to explore how future technology would generate benefits for people. It integrates task-technology fit (TTF model and motivation theory (mainly expectancy-value theory to explain such technology user behavior. It also points out the difference between technology-enabled and technology-dependent user behavior and concludes that too much emphasis on the role of technology with too little attention on motivation would distort technology user behavior, and the role of technology as well. Keywords: Device mesh, Mesh app, Expectancy-value theory, Task-technology fit (TTF, Technology-enabled user, Technology-dependent user

  18. A Survey of Solver-Related Geometry and Meshing Issues

    Science.gov (United States)

    Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris

    2016-01-01

    There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.

  19. Symptom resolution after operative management of complications from transvaginal mesh.

    Science.gov (United States)

    Crosby, Erin C; Abernethy, Melinda; Berger, Mitchell B; DeLancey, John O; Fenner, Dee E; Morgan, Daniel M

    2014-01-01

    Complications from transvaginal mesh placed for prolapse often require operative management. The aim of this study is to describe the outcomes of vaginal mesh removal. A retrospective review of all patients having surgery by the urogynecology group in the department of obstetrics and gynecology at our institution for a complication of transvaginal mesh placed for prolapse was performed. Demographics, presenting symptoms, surgical procedures, and postoperative symptoms were abstracted. Comparative statistics were performed using the χ or Fisher's exact test with significance at Pmesh and 84 had follow-up data. The most common presenting signs and symptoms were: mesh exposure, 62% (n=56); pain, 64% (n=58); and dyspareunia, 48% (n=43). During operative management, mesh erosion was encountered unexpectedly in a second area of the vagina in 5% (n=4), in the bladder in 1% (n=1), and in the bowel in 2% (n=2). After vaginal mesh removal, 51% (n=43) had resolution of all presenting symptoms. Mesh exposure was treated successfully in 95% of patients, whereas pain was only successfully treated in 51% of patients. Removal of vaginal mesh is helpful in relieving symptoms of presentation. Patients can be reassured that exposed mesh can almost always be successfully managed surgically, but pain and dyspareunia are only resolved completely in half of patients. III.

  20. A local level set method based on a finite element method for unstructured meshes

    International Nuclear Information System (INIS)

    Ngo, Long Cu; Choi, Hyoung Gwon

    2016-01-01

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time

  1. A local level set method based on a finite element method for unstructured meshes

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Long Cu; Choi, Hyoung Gwon [School of Mechanical Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-12-15

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time.

  2. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  3. Bilateral Laparoscopic Totally Extraperitoneal Repair Without Mesh Fixation

    OpenAIRE

    Dehal, Ahmed; Woodward, Brandon; Johna, Samir; Yamanishi, Frank

    2014-01-01

    Background and Objectives: Mesh fixation during laparoscopic totally extraperitoneal repair is thought to be necessary to prevent recurrence. However, mesh fixation may increase postoperative chronic pain. This study aimed to describe the experience of a single surgeon at our institution performing this operation. Methods: We performed a retrospective review of the medical records of all patients who underwent bilateral laparoscopic totally extraperitoneal repair without mesh fixation for ing...

  4. Reconstructive laparoscopic prolapse surgery to avoid mesh erosions

    Directory of Open Access Journals (Sweden)

    Devassy, Rajesh

    2013-09-01

    Full Text Available Introduction: The objective of the study is to examine the efficacy of the purely laparoscopic reconstructive management of cystocele and rectocele with mesh, to avoid the risk of erosion by the graft material, a well known complication in vaginal mesh surgery. Material and methods: We performed a prospective, single-case, non-randomized study in 325 patients who received laparoscopic reconstructive management of pelvic organe prolaps with mesh. The study was conducted between January 2004 and December 2012 in a private clinic in India. The most common prolapse symptoms were reducible vaginal lump, urinary stress incontinence, constipation and flatus incontinence, sexual dysfunction and dypareunia. The degree e of the prolaps was staged according to POPQ system. The approach was purely laparoscopic and involved the use of polypropylene (Prolene or polyurethane with activated regenerated cellulose coating (Parietex mesh. Results: The mean age was 55 (30–80 years and the most of the patients were multiparous (272/325. The patients received a plastic correction of the rectocele only (138 cases, a cystocele and rectocele (187 cases with mesh. 132 patients had a concomitant total hysterectomy; in 2 cases a laparoscopic supracervical hysterectomy was performed and 190 patients had a laparoscopic colposuspension. The mean operation time was 82.2 (60–210 minutes. The mean follow up was 3.4 (3–5 years. Urinary retention developed in 1 case, which required a new laparoscopical intervention. Bladder injury, observed in the same case was in one session closed with absorbable suture. There were four recurrences of the rectocele, receiving a posterior vaginal colporrhaphy. Erosions of the mesh were not reported or documented. Conclusion: The pure laparoscopic reconstructive management of the cystocele and rectocele with mesh seems to be a safe and effective surgical procedure potentially avoiding the risk of mesh erosions.

  5. Adaptive and dynamic meshing methods for numerical simulations

    Science.gov (United States)

    Acikgoz, Nazmiye

    For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad

  6. Selected mineral and heavy metal concentrations in blood and ...

    African Journals Online (AJOL)

    Unknown

    Pb in the dead vultures were generally above values characteristic of heavy metal poisoning. ... of the food chain), may accumulate and concentrate heavy metals in their ..... µg/g wet weight) (Honda et al., 1990), which validates the order of ...

  7. A Rare Complication of Composite Dual Mesh: Migration and Enterocutaneous Fistula Formation

    Directory of Open Access Journals (Sweden)

    Ozgur Bostanci

    2015-01-01

    Full Text Available Introduction. Mesh is commonly employed for abdominal hernia repair because it ensures a low recurrence rate. However, enterocutaneous fistula due to mesh migration can occur as a very rare, late complication, for which diagnosis is very difficult. Presentation of Case. Here we report the case of an enterocutaneous fistula due to late mesh migration in a mentally retarded, diabetic, 35-year-old male after umbilical hernia repair with composite dual mesh in 2010. Discussion. Mesh is a foreign substance, because of that some of the complications including hematoma, seroma, foreign body reaction, organ damage, infection, mesh rejection, and fistula formation may occur after implantation of the mesh. In the literature, most cases of mesh-associated enterocutaneous fistula due to migration involved polypropylene meshes. Conclusion. This case serves as a reminder of migration of composite dual meshes.

  8. Grid adaption using Chimera composite overlapping meshes

    Science.gov (United States)

    Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen

    1993-01-01

    The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.

  9. The Analysis of the Usefulness of Welded Meshes to Embankment Reinforcement

    Directory of Open Access Journals (Sweden)

    Ćwirko Marcin

    2017-09-01

    Full Text Available The aim of this paper was to find an answer to the question about the possibility of using steel welded mesh in building the retaining walls of gabion baskets. In light of the currently used gabion structure solutions, among which double-woven mesh is much more popular, the focus was put on the possibility of using welded mesh. A numerical analysis was conducted to examine the behavior of welded and woven mesh subjected to various loads and the results obtained for both types of mesh were directly compared. The maximal displacement in mesh nodes was admitted as the measurement of the system behavior (in the case of both undamaged and damaged mesh.

  10. Finite element simulation of impact response of wire mesh screens

    Directory of Open Access Journals (Sweden)

    Wang Caizheng

    2015-01-01

    Full Text Available In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg and a large mass (40 kg providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.

  11. Finite element meshing approached as a global minimization process

    Energy Technology Data Exchange (ETDEWEB)

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested

  12. Interactive Shape Modeling using a Skeleton-Mesh Co-Representation

    DEFF Research Database (Denmark)

    Bærentzen, Jacob Andreas; Abdrashitov, Rinat; Singh, Karan

    2014-01-01

    We introduce the Polar-Annular Mesh representation (PAM). A PAM is a mesh-skeleton co-representation designed for the modeling of 3D organic, articulated shapes. A PAM represents a manifold mesh as a partition of polar (triangle fans) and annular (rings of quads) regions. The skeletal topology of...... a PAM to a quad-only mesh. We further present a PAM-based multi-touch sculpting application in order to demonstrate its utility as a shape representation for the interactive modeling of organic, articulated figures as well as for editing and posing of pre-existing models....

  13. Cross-Sensory Correspondences: Heaviness is Dark and Low-Pitched.

    Science.gov (United States)

    Walker, Peter; Scallon, Gabrielle; Francis, Brian

    2017-07-01

    Everyday language reveals how stimuli encoded in one sensory feature domain can possess qualities normally associated with a different domain (e.g., higher pitch sounds are bright, light in weight, sharp, and thin). Such cross-sensory associations appear to reflect crosstalk among aligned (corresponding) feature dimensions, including brightness, heaviness, and sharpness. Evidence for heaviness being one such dimension is very limited, with heaviness appearing primarily as a verbal associate of other feature contrasts (e.g., darker objects and lower pitch sounds are heavier than their opposites). Given the presumed bidirectionality of the crosstalk between corresponding dimensions, heaviness should itself induce the cross-sensory associations observed elsewhere, including with brightness and pitch. Taking care to dissociate effects arising from the size and mass of an object, this is confirmed. When hidden objects varying independently in size and mass are lifted, objects that feel heavier are judged to be darker and to make lower pitch sounds than objects feeling less heavy. These judgements track the changes in perceived heaviness induced by the size-weight illusion. The potential involvement of language, natural scene statistics, and Bayesian processes in correspondences, and the effects they induce, is considered.

  14. Cartesian anisotropic mesh adaptation for compressible flow

    International Nuclear Information System (INIS)

    Keats, W.A.; Lien, F.-S.

    2004-01-01

    Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)

  15. Textile properties of synthetic prolapse mesh in response to uniaxial loading

    Science.gov (United States)

    Barone, William R.; Moalli, Pamela A.; Abramowitch, Steven D.

    2016-01-01

    BACKGROUND Although synthetic mesh is associated with superior anatomic outcomes for the repair of pelvic organ prolapse, the benefits of mesh have been questioned because of the relatively high complication rates. To date, the mechanisms that result in such complications are poorly understood, yet the textile characteristics of mesh products are believed to play an important role. Interestingly, the pore diameter of synthetic mesh has been shown to impact the host response after hernia repair greatly, and such findings have served as design criteria for prolapse meshes, with larger pores viewed as more favorable. Although pore size and porosity are well-characterized before implantation, the changes in these textile properties after implantation are unclear; the application of mechanical forces has the potential to greatly alter pore geometries in vivo. Understanding the impact of mechanical loading on the textile properties of mesh is essential for the development of more effective devices for prolapse repair. OBJECTIVE The objective of this study was to determine the effect of tensile loading and pore orientation on mesh porosity and pore dimensions. STUDY DESIGN In this study, the porosity and pore diameter of 4 currently available prolapse meshes were examined in response to uniaxial tensile loads of 0.1, 5, and 10 N while mimicking clinical loading conditions. The textile properties were compared with those observed for the unloaded mesh. Meshes included Gynemesh PS (Ethicon, Somerville, NJ), UltraPro (Artisyn; Ethicon), Restorelle (Coloplast, Minneapolis, MN), and Alyte Y-mesh (Bard, Covington, GA). In addition to the various pore geometries, 3 orientations of Restorelle (0-, 5-, 45-degree offset) and 2 orientations of UltraPro (0-, 90-degree offset) were examined. RESULTS In response to uniaxial loading, both porosity and pore diameter dramatically decreased for most mesh products. The application of 5 N led to reductions in porosity for nearly all groups

  16. Comparison of post-operative wound infection after inguinal hernia repair with polypropylene mesh and polyester mesh

    International Nuclear Information System (INIS)

    Mughal, M.A.; Ahmed, M.; Sajid, M.T.; Mustafa, Q.U.A.; Shukr, I.; Ahsan, J.

    2012-01-01

    Objective: To compare post operative wound infection frequency after inguinal hernia repair with polypropylene and polyester mesh using standard Lichtenstein hernioplasty technique. Study Design: Randomized controlled trial. Place and Duration: This study was conducted at general surgery department CMH/MH Rawalpindi from 8th April 2007 to 1st Jan 2008 over a period of 09 months. Patients and Materials: Sixty patients received through outpatient department with diagnosis of inguinal hernia satisfying inclusion/exclusion criteria were included. Patients were divided into two groups randomly. Group 1 included those patients in whom polypropylene mesh was used while group II patients were implanted with polyester mesh. Demographic as well as data concerning post operative wound infection was collected and analyzed. Results: Fifty seven patients (95%) were males while remaining (05%) were females. Mean age in group I was 41.17+-9.99 years while in group II was 41.47+-9.79 years (p=0.907). One patient (3.3%) in each group developed wound infection diagnosed by clinical evidence of pain at wound site, redness, induration and purulent discharge. Conclusion: There is no difference in post operative wound infection rate after inguinal Lichtenstein hernioplasty using either polypropylene or polyester mesh. (author)

  17. Does Attorney Advertising Influence Patient Perceptions of Pelvic Mesh?

    Science.gov (United States)

    Tippett, Elizabeth; King, Jesse; Lucent, Vincent; Ephraim, Sonya; Murphy, Miles; Taff, Eileen

    2018-01-01

    To measure the relative influence of attorney advertising on patient perceptions of pelvic mesh compared with a history of surgery and a first urology visit. A 52-item survey was administered to 170 female patients in 2 urology offices between 2014 and 2016. Multiple survey items were combined to form scales for benefit and risk perceptions of pelvic mesh, perceptions of the advertising, attitudes toward pelvic mesh, and knowledge of pelvic mesh and underlying medical conditions. Data were analyzed using hierarchical linear regression models. Exposure to attorney advertising was quite high; 88% reported seeing a mesh-related attorney advertisement in the last 6 months. Over half of patients reported seeing attorney advertisements more than once per week. A history of prior mesh implant surgery was the strongest predictor of benefit and risk perceptions of pelvic mesh. Exposure to attorney advertising was associated with higher risk perceptions but did not significantly affect perceptions of benefits. Past urologist visits increased perceptions of benefits but had no effect on risk perceptions. Attorney advertising appears to have some influence on risk perceptions, but personal experience and discussions with a urogynecologist or urologist also influence patient perceptions. Implications, limitations, and future research are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.

    Science.gov (United States)

    Dai, Xiaochuan; Hong, Guosong; Gao, Teng; Lieber, Charles M

    2018-02-20

    Nanobioelectronics represents a rapidly developing field with broad-ranging opportunities in fundamental biological sciences, biotechnology, and medicine. Despite this potential, seamless integration of electronics has been difficult due to fundamental mismatches, including size and mechanical properties, between the elements of the electronic and living biological systems. In this Account, we discuss the concept, development, key demonstrations, and future opportunities of mesh nanoelectronics as a general paradigm for seamless integration of electronics within synthetic tissues and live animals. We first describe the design and realization of hybrid synthetic tissues that are innervated in three dimensions (3D) with mesh nanoelectronics where the mesh serves as both as a tissue scaffold and as a platform of addressable electronic devices for monitoring and manipulating tissue behavior. Specific examples of tissue/nanoelectronic mesh hybrids highlighted include 3D neural tissue, cardiac patches, and vascular constructs, where the nanoelectronic devices have been used to carry out real-time 3D recording of electrophysiological and chemical signals in the tissues. This novel platform was also exploited for time-dependent 3D spatiotemporal mapping of cardiac tissue action potentials during cell culture and tissue maturation as well as in response to injection of pharmacological agents. The extension to simultaneous real-time monitoring and active control of tissue behavior is further discussed for multifunctional mesh nanoelectronics incorporating both recording and stimulation devices, providing the unique capability of bidirectional interfaces to cardiac tissue. In the case of live animals, new challenges must be addressed, including minimally invasive implantation, absence of deleterious chronic tissue response, and long-term capability for monitoring and modulating tissue activity. We discuss each of these topics in the context of implantation of mesh

  19. Dynamics of an SAITS alcoholism model on unweighted and weighted networks

    Science.gov (United States)

    Huo, Hai-Feng; Cui, Fang-Fang; Xiang, Hong

    2018-04-01

    A novel SAITS alcoholism model on networks is introduced, in which alcoholics are divided into light problem alcoholics and heavy problem alcoholics. Susceptible individuals can enter into the compartment of heavy problem alcoholics directly by contacting with light problem alcoholics or heavy problem alcoholics and the heavy problem alcoholics who receive treatment can relapse into the compartment of heavy problem alcoholics are also considered. First, the dynamics of our model on unweighted networks, including the basic reproduction number, existence and stability of equilibria are studied. Second, the models with fixed weighted and adaptive weighted networks are introduced and investigated. At last, some simulations are presented to illustrate and extend our results. Our results show that it is very important to treat alcoholics to quit the drinking.

  20. A mass-density model can account for the size-weight illusion

    Science.gov (United States)

    Bergmann Tiest, Wouter M.; Drewing, Knut

    2018-01-01

    When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object’s mass, and the other from the object’s density, with estimates’ weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects’ density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object’s density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness

  1. A mass-density model can account for the size-weight illusion.

    Science.gov (United States)

    Wolf, Christian; Bergmann Tiest, Wouter M; Drewing, Knut

    2018-01-01

    When judging the heaviness of two objects with equal mass, people perceive the smaller and denser of the two as being heavier. Despite the large number of theories, covering bottom-up and top-down approaches, none of them can fully account for all aspects of this size-weight illusion and thus for human heaviness perception. Here we propose a new maximum-likelihood estimation model which describes the illusion as the weighted average of two heaviness estimates with correlated noise: One estimate derived from the object's mass, and the other from the object's density, with estimates' weights based on their relative reliabilities. While information about mass can directly be perceived, information about density will in some cases first have to be derived from mass and volume. However, according to our model at the crucial perceptual level, heaviness judgments will be biased by the objects' density, not by its size. In two magnitude estimation experiments, we tested model predictions for the visual and the haptic size-weight illusion. Participants lifted objects which varied in mass and density. We additionally varied the reliability of the density estimate by varying the quality of either visual (Experiment 1) or haptic (Experiment 2) volume information. As predicted, with increasing quality of volume information, heaviness judgments were increasingly biased towards the object's density: Objects of the same density were perceived as more similar and big objects were perceived as increasingly lighter than small (denser) objects of the same mass. This perceived difference increased with an increasing difference in density. In an additional two-alternative forced choice heaviness experiment, we replicated that the illusion strength increased with the quality of volume information (Experiment 3). Overall, the results highly corroborate our model, which seems promising as a starting point for a unifying framework for the size-weight illusion and human heaviness perception.

  2. Polyhedral meshing in numerical analysis of conjugate heat transfer

    Science.gov (United States)

    Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata

    2018-06-01

    Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.

  3. Form-finding with polyhedral meshes made simple

    KAUST Repository

    Tang, Chengcheng

    2014-07-27

    We solve the form-finding problem for polyhedral meshes in a way which combines form, function and fabrication; taking care of user-specified constraints like boundary interpolation, planarity of faces, statics, panel size and shape, enclosed volume, and last, but not least, cost. Our main application is the interactive modeling of meshes for architectural and industrial design. Our approach can be described as guided exploration of the constraint space whose algebraic structure is simplified by introducing auxiliary variables and ensuring that constraints are at most quadratic. Computationally, we perform a projection onto the constraint space which is biased towards low values of an energy which expresses desirable "soft" properties like fairness. We have created a tool which elegantly handles difficult tasks, such as taking boundary-alignment of polyhedral meshes into account, planarization, fairing under planarity side conditions, handling hybrid meshes, and extending the treatment of static equilibrium to shapes which possess overhanging parts.

  4. Form-finding with polyhedral meshes made simple

    KAUST Repository

    Tang, Chengcheng; Sun, Xiang; Gomes, Maria Alexandra; Wallner, Johannes; Pottmann, Helmut

    2014-01-01

    We solve the form-finding problem for polyhedral meshes in a way which combines form, function and fabrication; taking care of user-specified constraints like boundary interpolation, planarity of faces, statics, panel size and shape, enclosed volume, and last, but not least, cost. Our main application is the interactive modeling of meshes for architectural and industrial design. Our approach can be described as guided exploration of the constraint space whose algebraic structure is simplified by introducing auxiliary variables and ensuring that constraints are at most quadratic. Computationally, we perform a projection onto the constraint space which is biased towards low values of an energy which expresses desirable "soft" properties like fairness. We have created a tool which elegantly handles difficult tasks, such as taking boundary-alignment of polyhedral meshes into account, planarization, fairing under planarity side conditions, handling hybrid meshes, and extending the treatment of static equilibrium to shapes which possess overhanging parts.

  5. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    Recent advances in the area of Metal Matrix Composites (MMC's) have brought these materials to a maturity stage where the technology is ready for transition to large-volume production and commercialization. The new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel, especially when they are selectively reinforced with carbon, silicon carbide, or aluminum oxide fibers. Most of the developments in the MMC materials have been spurred, mainly by applications that require high structural performance at elevated temperatures, the heavy vehicle industry could also benefit from this emerging technology. Increasing requirements of weight savings and extended durability are the main drivers for potential insertion of MMC technology into the heavy vehicle market. Critical elements of a typical tractor-trailer combination, such as highly loaded sections of the structure, engine components, brakes, suspensions, joints and bearings could be improved through judicious use of MMC materials. Such an outcome would promote the DOE's programmatic objectives of increasing the fuel efficiency of heavy vehicles and reducing their life cycle costs and pollution levels. However, significant technical and economical barriers are likely to hinder or even prevent broad applications of MMC materials in heavy vehicles. The tradeoffs between such expected benefits (lower weights and longer durability) and penalties (higher costs, brittle behavior, and difficult to machine) must be thoroughly investigated both from the performance and cost viewpoints, before the transfer of MMC technology to heavy vehicle systems can be properly assessed and implemented. MMC materials are considered to form one element of the comprehensive, multi-faceted strategy pursued by the High Strength/Weight Reduction (HS/WR) Materials program of the U.S. Department of Energy (DOE) for structural weight savings and quality enhancements in

  6. A moving mesh method with variable relaxation time

    OpenAIRE

    Soheili, Ali Reza; Stockie, John M.

    2006-01-01

    We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...

  7. Introducing a distributed unstructured mesh into gyrokinetic particle-in-cell code, XGC

    Science.gov (United States)

    Yoon, Eisung; Shephard, Mark; Seol, E. Seegyoung; Kalyanaraman, Kaushik

    2017-10-01

    XGC has shown good scalability for large leadership supercomputers. The current production version uses a copy of the entire unstructured finite element mesh on every MPI rank. Although an obvious scalability issue if the mesh sizes are to be dramatically increased, the current approach is also not optimal with respect to data locality of particles and mesh information. To address these issues we have initiated the development of a distributed mesh PIC method. This approach directly addresses the base scalability issue with respect to mesh size and, through the use of a mesh entity centric view of the particle mesh relationship, provides opportunities to address data locality needs of many core and GPU supported heterogeneous systems. The parallel mesh PIC capabilities are being built on the Parallel Unstructured Mesh Infrastructure (PUMI). The presentation will first overview the form of mesh distribution used and indicate the structures and functions used to support the mesh, the particles and their interaction. Attention will then focus on the node-level optimizations being carried out to ensure performant operation of all PIC operations on the distributed mesh. Partnership for Edge Physics Simulation (EPSI) Grant No. DE-SC0008449 and Center for Extended Magnetohydrodynamic Modeling (CEMM) Grant No. DE-SC0006618.

  8. Micro-mesh fabric pollination bags for switchgrass

    Science.gov (United States)

    Pollination bags for making controlled crosses between switchgrass plants were made from a polyester micro-mesh fabric with a mesh size of 41 µm which is smaller than the mean reported 43 µm diameter of switchgrass pollen. When used in paired plant crosses between switchgrass plants, the mean amoun...

  9. CAPAClTYANALYSIS OF WIRELESS MESH NET\\VORKS

    African Journals Online (AJOL)

    The limited available bandwidth makes capacity analysis of the network very essential. ... Wireless mesh networks can also be employed for wide variety ofapplications such ... wireless mesh networks using OPNET (Optimized Network Engineering Tool) Modeller 1-J..5. The .... /bps using I I Mbps data rate and 12000 bits.

  10. Converting skeletal structures to quad dominant meshes

    DEFF Research Database (Denmark)

    Bærentzen, Jakob Andreas; Misztal, Marek Krzysztof; Welnicka, Katarzyna

    2012-01-01

    We propose the Skeleton to Quad-dominant polygonal Mesh algorithm (SQM), which converts skeletal structures to meshes composed entirely of polar and annular regions. Both types of regions have a regular structure where all faces are quads except for a single ring of triangles at the center of each...

  11. Long-term follow-up of treatment for synthetic mesh complications.

    Science.gov (United States)

    Hansen, Brooke L; Dunn, Guinn Ellen; Norton, Peggy; Hsu, Yvonne; Nygaard, Ingrid

    2014-01-01

    The objectives of this study are (1) to describe the presenting symptoms, findings, and treatment and (2) to describe the self-reported improvement and function at least 6 months after presentation in women presenting to 1 urogynecology division for complications associated with synthetic vaginal mesh. Women evaluated between 2006 and 2011 were identified by diagnostic codes. We abstracted information from the medical record and attempted to contact all women to complete a follow-up telephone survey questionnaire consisting of several validated instruments. A total of 111 women were evaluated for complications associated with synthetic vaginal mesh. The mean interval from index surgery was 2.4 years. Of these, 84% were referred from outside hospitals. Index surgeries included vaginal mesh kits/vaginally placed mesh (47%), midurethral mesh slings (37%), abdominally placed vaginal mesh (11%), and vaginal mesh kit with concomitantly placed mesh sling (5%). The most common complications were extrusion (65%), contraction (17%), and chronic pelvic pain (16%). A total of 98 women underwent some type of treatment (85 surgical) by urogynecologists, pelvic pain specialists, or physical therapists. Eighty-four (76%) provided follow-up information at mean interval since presentation of 2.3 years. At follow-up, the mean (SD) Pelvic Floor Distress Inventory score was 98 (67), the mean (SD) EQ-5D index score was 0.69 (0.23), and 22% reported vaginal discharge, 15% vaginal bleeding or spotting, and 45% sexual abstinence due to problems related to mesh. A total of 71% reported being overall better, whereas 29% were the same or worse. Two years after tertiary care level multidisciplinary treatment of vaginal mesh complications, many women still report symptoms that negatively impact their quality of life.

  12. Laparoscopic sacrocolpopexy versus transvaginal mesh for recurrent pelvic organ prolapse.

    Science.gov (United States)

    Iglesia, Cheryl B; Hale, Douglass S; Lucente, Vincent R

    2013-03-01

    Both expert surgeons agree with the following: (1) Surgical mesh, whether placed laparoscopically or transvaginally, is indicated for pelvic floor reconstruction in cases involving recurrent advanced pelvic organ prolapse. (2) Procedural expertise and experience gained from performing a high volume of cases is fundamentally necessary. Knowledge of outcomes and complications from an individual surgeon's audit of cases is also needed when discussing the risks and benefits of procedures and alternatives. Yet controversy still exists on how best to teach new surgical techniques and optimal ways to efficiently track outcomes, including subjective and objective cure of prolapse as well as perioperative complications. A mesh registry will be useful in providing data needed for surgeons. Cost factors are also a consideration since laparoscopic and especially robotic surgical mesh procedures are generally more costly than transvaginal mesh kits when operative time, extra instrumentation and length of stay are included. Long-term outcomes, particularly for transvaginal mesh procedures, are lacking. In conclusion, all surgery poses risks; however, patients should be made aware of the pros and cons of various routes of surgery as well as the potential risks and benefits of using mesh. Surgeons should provide patients with honest information about their own experience implanting mesh and also their experience dealing with mesh-related complications.

  13. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  14. Use of mesh in laparoscopic paraesophageal hernia repair

    DEFF Research Database (Denmark)

    Müller-Stich, Beat P.; Kenngott, Hannes G.; Gondan, Matthias

    2015-01-01

    Introduction. Mesh augmentation seems to reduce recurrences following laparoscopic paraesophageal hernia repair (LPHR). However, there is an uncertain risk of mesh-associated complications. Risk-benefit analysis might solve the dilemma. Materials and Methods. A systematic literature search...... potential benefits of LMAH. All data regarding LMAH were used to estimate risk of mesh-associated complications. Risk-benefit analysis was performed using a Markov Monte Carlo decision-analytic model. Results. Meta-analysis of 3 RCTs and 9 OCSs including 915 patients revealed a significantly lower...

  15. Robust diamond meshes with unique wettability properties.

    Science.gov (United States)

    Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan

    2014-03-18

    Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.

  16. Heavy Smoking Is More Strongly Associated with General Unhealthy Lifestyle than Obesity and Underweight.

    Science.gov (United States)

    Lohse, Tina; Rohrmann, Sabine; Bopp, Matthias; Faeh, David

    2016-01-01

    Smoking and obesity are major causes of non-communicable diseases. We investigated the associations of heavy smoking, obesity, and underweight with general lifestyle to infer which of these risk groups has the most unfavourable lifestyle. We used data from the population-based cross-sectional Swiss Health Survey (5 rounds 1992-2012), comprising 85,575 individuals aged≥18 years. Height, weight, smoking, diet, alcohol intake and physical activity were self-reported. Multinomial logistic regression was performed to analyse differences in lifestyle between the combinations of body mass index (BMI) category and smoking status. Compared to normal-weight never smokers (reference), individuals who were normal-weight, obese, or underweight and smoked heavily at the same time had a poorer general lifestyle. The lifestyle of obese and underweight never smokers differed less from reference. Regardless of BMI category, in heavy smoking men and women the fruit and vegetable consumption was lower (e.g. obese heavy smoking men: relative risk ratio (RRR) 1.69 [95% confidence interval 1.30;2.21]) and high alcohol intake was more common (e.g. normal-weight heavy smoking women 5.51 [3.71;8.20]). In both sexes, physical inactivity was observed more often in heavy smokers and obese or underweight (e.g. underweight never smoking 1.29 [1.08;1.54] and heavy smoking women 2.02 [1.33;3.08]). A decrease of smoking prevalence was observed over time in normal-weight, but not in obese individuals. Unhealthy general lifestyle was associated with both heavy smoking and BMI extremes, but we observed a stronger association for heavy smoking. Future smoking prevention measures should pay attention to improvement of general lifestyle and co-occurrence with obesity and underweight.

  17. Heavy Smoking Is More Strongly Associated with General Unhealthy Lifestyle than Obesity and Underweight.

    Directory of Open Access Journals (Sweden)

    Tina Lohse

    Full Text Available Smoking and obesity are major causes of non-communicable diseases. We investigated the associations of heavy smoking, obesity, and underweight with general lifestyle to infer which of these risk groups has the most unfavourable lifestyle.We used data from the population-based cross-sectional Swiss Health Survey (5 rounds 1992-2012, comprising 85,575 individuals aged≥18 years. Height, weight, smoking, diet, alcohol intake and physical activity were self-reported. Multinomial logistic regression was performed to analyse differences in lifestyle between the combinations of body mass index (BMI category and smoking status.Compared to normal-weight never smokers (reference, individuals who were normal-weight, obese, or underweight and smoked heavily at the same time had a poorer general lifestyle. The lifestyle of obese and underweight never smokers differed less from reference. Regardless of BMI category, in heavy smoking men and women the fruit and vegetable consumption was lower (e.g. obese heavy smoking men: relative risk ratio (RRR 1.69 [95% confidence interval 1.30;2.21] and high alcohol intake was more common (e.g. normal-weight heavy smoking women 5.51 [3.71;8.20]. In both sexes, physical inactivity was observed more often in heavy smokers and obese or underweight (e.g. underweight never smoking 1.29 [1.08;1.54] and heavy smoking women 2.02 [1.33;3.08]. A decrease of smoking prevalence was observed over time in normal-weight, but not in obese individuals.Unhealthy general lifestyle was associated with both heavy smoking and BMI extremes, but we observed a stronger association for heavy smoking. Future smoking prevention measures should pay attention to improvement of general lifestyle and co-occurrence with obesity and underweight.

  18. Influence of mesh density, cortical thickness and material properties on human rib fracture prediction.

    Science.gov (United States)

    Li, Zuoping; Kindig, Matthew W; Subit, Damien; Kent, Richard W

    2010-11-01

    The purpose of this paper was to investigate the sensitivity of the structural responses and bone fractures of the ribs to mesh density, cortical thickness, and material properties so as to provide guidelines for the development of finite element (FE) thorax models used in impact biomechanics. Subject-specific FE models of the second, fourth, sixth and tenth ribs were developed to reproduce dynamic failure experiments. Sensitivity studies were then conducted to quantify the effects of variations in mesh density, cortical thickness, and material parameters on the model-predicted reaction force-displacement relationship, cortical strains, and bone fracture locations for all four ribs. Overall, it was demonstrated that rib FE models consisting of 2000-3000 trabecular hexahedral elements (weighted element length 2-3mm) and associated quadrilateral cortical shell elements with variable thickness more closely predicted the rib structural responses and bone fracture force-failure displacement relationships observed in the experiments (except the fracture locations), compared to models with constant cortical thickness. Further increases in mesh density increased computational cost but did not markedly improve model predictions. A ±30% change in the major material parameters of cortical bone lead to a -16.7 to 33.3% change in fracture displacement and -22.5 to +19.1% change in the fracture force. The results in this study suggest that human rib structural responses can be modeled in an accurate and computationally efficient way using (a) a coarse mesh of 2000-3000 solid elements, (b) cortical shells elements with variable thickness distribution and (c) a rate-dependent elastic-plastic material model. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Laparoscopic Pelvic Floor Repair Using Polypropylene Mesh

    Directory of Open Access Journals (Sweden)

    Shih-Shien Weng

    2008-09-01

    Conclusion: Laparoscopic pelvic floor repair using a single piece of polypropylene mesh combined with uterosacral ligament suspension appears to be a feasible procedure for the treatment of advanced vaginal vault prolapse and enterocele. Fewer mesh erosions and postoperative pain syndromes were seen in patients who had no previous pelvic floor reconstructive surgery.

  20. VARIABLE MESH STIFFNESS OF SPUR GEAR TEETH USING ...

    African Journals Online (AJOL)

    gear engagement. A gear mesh kinematic simulation ... model is appropnate for VMS of a spur gear tooth. The assumptions for ... This process has been continued until one complete tooth meshing cycle is ..... Element Method. Using MATLAB,.

  1. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    International Nuclear Information System (INIS)

    Ishigaki, Masahiro; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-01-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  2. Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows

    Energy Technology Data Exchange (ETDEWEB)

    Ishigaki, Masahiro, E-mail: ishigaki.masahiro@jaea.go.jp; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2017-04-01

    Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.

  3. Crack growth simulation for plural crack using hexahedral mesh generation technique

    International Nuclear Information System (INIS)

    Orita, Y; Wada, Y; Kikuchi, M

    2010-01-01

    This paper describes a surface crack growth simulation using a new mesh generation technique. The generated mesh is constituted of all hexahedral elements. Hexahedral elements are suitable for an analysis of fracture mechanics parameters, i.e. stress intensity factor. The advantage of a hexahedral mesh is good accuracy of an analysis and less number of degrees of freedoms than a tetrahedral mesh. In this study, a plural crack growth simulation is computed using the hexahedral mesh and its distribution of stress intensity factor is investigated.

  4. MHD simulations on an unstructured mesh

    International Nuclear Information System (INIS)

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.

    1998-01-01

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D

  5. Towards Blockchain-enabled Wireless Mesh Networks

    OpenAIRE

    Selimi, Mennan; Kabbinale, Aniruddh Rao; Ali, Anwaar; Navarro, Leandro; Sathiaseelan, Arjuna

    2018-01-01

    Recently, mesh networking and blockchain are two of the hottest technologies in the telecommunications industry. Combining both can reformulate internet access and make connecting to the Internet not only easy, but affordable too. Hyperledger Fabric (HLF) is a blockchain framework implementation and one of the Hyperledger projects hosted by The Linux Foundation. We evaluate HLF in a real production mesh network and in the laboratory, quantify its performance, bottlenecks and limitations of th...

  6. An Algorithm for Parallel Sn Sweeps on Unstructured Meshes

    International Nuclear Information System (INIS)

    Pautz, Shawn D.

    2002-01-01

    A new algorithm for performing parallel S n sweeps on unstructured meshes is developed. The algorithm uses a low-complexity list ordering heuristic to determine a sweep ordering on any partitioned mesh. For typical problems and with 'normal' mesh partitionings, nearly linear speedups on up to 126 processors are observed. This is an important and desirable result, since although analyses of structured meshes indicate that parallel sweeps will not scale with normal partitioning approaches, no severe asymptotic degradation in the parallel efficiency is observed with modest (≤100) levels of parallelism. This result is a fundamental step in the development of efficient parallel S n methods

  7. A novel three-dimensional mesh deformation method based on sphere relaxation

    International Nuclear Information System (INIS)

    Zhou, Xuan; Li, Shuixiang

    2015-01-01

    In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations

  8. A novel three-dimensional mesh deformation method based on sphere relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China); Li, Shuixiang, E-mail: lsx@pku.edu.cn [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China)

    2015-10-01

    In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations.

  9. PERFORMANCE ENHANCEMENT OF A MINIATURE STIRLING CRYOCOOLER WITH A MULTI MESH REGENERATOR DESIGN

    Directory of Open Access Journals (Sweden)

    KISHOR KUMAR V. V.

    2017-06-01

    Full Text Available A parametric study has been carried out using the software REGEN 3.3 to optimize the regenerator of a miniature Stirling cryocooler operating with a warm end temperature of 300 K and cold end temperature of 80 K. Regenerator designs which produce the maximum coefficient of performance (COP of the system is considered as an optimized regenerator. The length and diameter of the regenerator were fixed from the cooler system requirements. Single mesh regenerators made of 200, 250, 300, 400 and 450 Stainless Steel wire meshes were considered and the optimum phase angle and mesh size were obtained. A maximum COP of 0.1475 was obtained for 300 mesh regenerator at 70° phase angle. Then multi mesh regenerators were considered with finer mesh on the cold end and coarser mesh on the hot end. The optimum size and length of each mesh in the multi mesh regenerator and the optimum phase angle were calculated. The maximum COP of 0.156 was obtained for 200 300-400 multi mesh regenerator at 70° phase angle. The COP and net refrigeration obtained for an optimized multi mesh regenerator was found to be significantly higher than that of a single mesh regenerator. Thus a multi mesh regenerator design with a proper combination of regenerator mesh size and length can enhance the regenerator effectiveness.

  10. [Current state of transvaginal meshes by resolution of pelvic organ prolapse].

    Science.gov (United States)

    Jírová, J; Pán, M

    Treatment of pelvic organs prolapse with transvaginal mesh kits represents nowadays a widespread surgical method, which partially replaced classic operations due to high success rate and low count of recurrences. Just like any other surgical method, the placement of transvaginal mesh is linked with occurrence of complications. In this article we attempt to review the more and less known facts about trans-vaginal meshes, their efficacy, count of recurrence and the spectrum of complications and we try to compare this technique with traditional surgical methods used to treat pelvic organs prolapse (without graft materials). Review. Department of Obstetrics and Gynecology, Regional hospital Mladá Boleslav a.s., Mladá Boleslav. Overview of the results of recent studies published in the Czech and English language in recent years. Pelvic organ prolapse repair with vaginal mesh has generally lower count of relapse especially in patients with wide genital hiatal area and with major levator ani avulsion. The spectrum of complications differs from classical techniques because of the presence of synthetic nonabsorbable material. Some of the specific complications we did not encounter during classical operations include vaginal mesh erosion, infection of mesh associated with chronic pelvic pain, dyspareunia, protrusion of the mesh into the closest organs or the rejection and progressive extrusion of the mesh. Primary enthusiasm has now been replaced with worries of major complications. Future tasks should therefore be aimed at minimizing the rate of complications associated with transvaginal meshes. Except using well-known and safe materials and providing specialized training of physicians for each mesh implantation technique, other precautions outlined in this article should help, such as a closer specification of indication for the application of transvaginal mesh.

  11. Histologic and biomechanical evaluation of a novel macroporous polytetrafluoroethylene knit mesh compared to lightweight and heavyweight polypropylene mesh in a porcine model of ventral incisional hernia repair.

    Science.gov (United States)

    Melman, L; Jenkins, E D; Hamilton, N A; Bender, L C; Brodt, M D; Deeken, C R; Greco, S C; Frisella, M M; Matthews, B D

    2011-08-01

    To evaluate the biocompatibility of heavyweight polypropylene (HWPP), lightweight polypropylene (LWPP), and monofilament knit polytetrafluoroethylene (mkPTFE) mesh by comparing biomechanics and histologic response at 1, 3, and 5 months in a porcine model of incisional hernia repair. Bilateral full-thickness abdominal wall defects measuring 4 cm in length were created in 27 Yucatan minipigs. Twenty-one days after hernia creation, animals underwent bilateral preperitoneal ventral hernia repair with 8 × 10 cm pieces of mesh. Repairs were randomized to Bard(®)Mesh (HWPP, Bard/Davol, http://www.davol.com), ULTRAPRO(®) (LWPP, Ethicon, http://www.ethicon.com), and GORE(®)INFINIT Mesh (mkPTFE, Gore & Associates, http://www.gore.com). Nine animals were sacrificed at each timepoint (1, 3, and 5 months). At harvest, a 3 × 4 cm sample of mesh and incorporated tissue was taken from the center of the implant site and subjected to uniaxial tensile testing at a rate of 0.42 mm/s. The maximum force (N) and tensile strength (N/cm) were measured with a tensiometer, and stiffness (N/mm) was calculated from the slope of the force-versus-displacement curve. Adjacent sections of tissue were stained with hematoxylin and eosin (H&E) and analyzed for inflammation, fibrosis, and tissue ingrowth. Data are reported as mean ± SEM. Statistical significance (P 0.05 for all comparisons). However, for each mesh type, the maximum strength at 5 months was significantly lower than that at 1 month (P 0.05 for all comparisons). No significant differences with regard to inflammation, fibrosis, or tissue ingrowth were detected between mesh types at any time point (P > 0.09 for all comparisons). However, over time, inflammation decreased significantly for all mesh types (P 0.09). The maximum tensile strength of mesh in the abdominal wall decreased over time for HWPP, LWPP, and mkPTFE mesh materials alike. This trend may actually reflect inability to adequately grip specimens at later time points

  12. Engagement of Metal Debris into a Gear Mesh

    Science.gov (United States)

    Handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  13. 7th International Meshing Roundtable '98

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, T.J.

    1998-10-01

    The goal of the 7th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the past, the Roundtable has enjoyed significant participation from each of these groups from a wide variety of countries.

  14. Computational mesh generation for vascular structures with deformable surfaces

    International Nuclear Information System (INIS)

    Putter, S. de; Laffargue, F.; Breeuwer, M.; Vosse, F.N. van de; Gerritsen, F.A.; Philips Medical Systems, Best

    2006-01-01

    Computational blood flow and vessel wall mechanics simulations for vascular structures are becoming an important research tool for patient-specific surgical planning and intervention. An important step in the modelling process for patient-specific simulations is the creation of the computational mesh based on the segmented geometry. Most known solutions either require a large amount of manual processing or lead to a substantial difference between the segmented object and the actual computational domain. We have developed a chain of algorithms that lead to a closely related implementation of image segmentation with deformable models and 3D mesh generation. The resulting processing chain is very robust and leads both to an accurate geometrical representation of the vascular structure as well as high quality computational meshes. The chain of algorithms has been tested on a wide variety of shapes. A benchmark comparison of our mesh generation application with five other available meshing applications clearly indicates that the new approach outperforms the existing methods in the majority of cases. (orig.)

  15. Plated nickel wire mesh makes superior catalyst bed

    Science.gov (United States)

    Sill, M.

    1965-01-01

    Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.

  16. Mesh Processing in Medical-Image Analysis-a Tutorial

    DEFF Research Database (Denmark)

    Levine, Joshua A.; Paulsen, Rasmus Reinhold; Zhang, Yongjie

    2012-01-01

    Medical-image analysis requires an understanding of sophisticated scanning modalities, constructing geometric models, building meshes to represent domains, and downstream biological applications. These four steps form an image-to-mesh pipeline. For research in this field to progress, the imaging...

  17. Fragmentation of Millimeter-Size Hypervelocity Projectiles on Combined Mesh-Plate Bumpers

    Directory of Open Access Journals (Sweden)

    Aleksandr Cherniaev

    2017-01-01

    Full Text Available This numerical study evaluates the concept of a combined mesh-plate bumper as a shielding system protecting unmanned spacecraft from small (1 mm orbital debris impacts. Two-component bumpers consisting of an external layer of woven mesh (aluminum or steel directly applied to a surface of the aluminum plate are considered. Results of numerical modeling with a projectile velocity of 7 km/s indicate that, in comparison to the steel mesh-combined bumper, the combination of aluminum mesh and aluminum plate provides better fragmentation of small hypervelocity projectiles. At the same time, none of the combined mesh/plate bumpers provide a significant increase of ballistic properties as compared to an aluminum plate bumper. This indicates that the positive results reported in the literature for bumpers with metallic meshes and large projectiles are not scalable down to millimeter-sized particles. Based on this investigation’s results, a possible modification of the combined mesh/plate bumper is proposed for the future study.

  18. Challenging the Myth: Transvaginal Mesh is Not Associated with Carcinogenesis.

    Science.gov (United States)

    Chughtai, Bilal; Sedrakyan, Art; Mao, Jialin; Thomas, Dominique; Eilber, Karyn S; Clemens, J Quentin; Anger, Jennifer T

    2017-10-01

    We sought to determine if there was a potential link between synthetic polypropylene mesh implantation for transvaginal pelvic organ prolapse and stress urinary incontinence, and carcinogenesis using statewide administrative data. Women who underwent transvaginal surgery for pelvic organ prolapse or stress urinary incontinence with mesh between January 2008 and December 2009 in New York State were identified using ICD-9-CM procedure codes and CPT-4 codes. Patients in the mesh cohort were individually matched to 2 control cohorts based on comorbidities and procedure date. Carcinogenesis was determined before and after matching at 1, 2 and 3 years, and during the entire followup time. A total of 2,229 patients who underwent mesh based pelvic organ prolapse surgery and 10,401 who underwent sling surgery for stress urinary incontinence between January 2008 and December 2009 were included in the study. Mean followup was 6 years (range 5 to 7). Exact matching between the mesh and control cohorts resulted in 1,870 pairs for pelvic organ prolapse mesh and cholecystectomy (1:2), 1,278 pairs for pelvic organ prolapse mesh and hysterectomy (1:1), 7,986 pairs for sling and cholecystectomy (1:1) and 3,810 pairs for sling and hysterectomy (1:1). Transvaginal mesh implantation was not associated with an increased risk of a cancer diagnosis (pelvic/local cancers or any cancer) at 1 year and during the entire followup of up to 7 years. Transvaginal surgery with implantation of mesh was not associated with the development of malignancy at a mean followup of 6 years. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Incisional hernia prevention using a cyanoacrilate-fixed retrofascial mesh.

    Science.gov (United States)

    Hoyuela, Carlos; Juvany, Montserrat; Trias, Miquel; Ardid, Jordi; Martrat, Antoni

    2018-01-01

    The rate of incisional hernia in high-risk patients (obesity, cancer, etc.) is high, even in laparoscopic surgery. The aim of this study is to evaluate the safety of the use of cyanoacrylate fixed prophylactic meshes in the assistance incision in overweight or obese patients undergoing laparoscopic colorectal surgery. A prospective, non-randomized cohort study of patients undergoing elective laparoscopic resection for colorectal cancer between January 2013 and March 2016 was performed. Those with a body mass index greater than 25kg / m 2 were evaluated to implant a prophylactic meshes fixed with cyanoacrylate (Histoacryl®) as reinforcement of the assistance incision. 52 patients were analyzed (mean body mass index: 28.4±2kg / m 2 ). Prophylactic meshes was implanted in 15 patients. The time to put the mesh in place was always less than 5minutes. There was no significant difference in wound infection rate (12% vs. 10%). No mesh had to be explanted. Although the mean follow-up was shorter (14.1±4 vs. 22.3±9 months), there were no incisional hernia in the mesh group. On the other hand, in the non-mesh group, 1 acute evisceration (2.7%) and 4 incisional hernia of the assistance incision were observed (10.8%). There were no significant differences between groups regarding trocar incisional hernia (6.6 vs. 5.4%). The implantation of a reinforcement prophylactic mesh in overweight or obese patients undergoing laparoscopic colorectal surgery is safe and seems to reduce the short-term rate of incisional hernia. Fixation with cyanoacrylate is a rapid method that facilitates the procedure without additional complications. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. ZONE: a finite element mesh generator

    International Nuclear Information System (INIS)

    Burger, M.J.

    1976-05-01

    The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures

  1. Ordering schemes for parallel processing of certain mesh problems

    International Nuclear Information System (INIS)

    O'Leary, D.

    1984-01-01

    In this work, some ordering schemes for mesh points are presented which enable algorithms such as the Gauss-Seidel or SOR iteration to be performed efficiently for the nine-point operator finite difference method on computers consisting of a two-dimensional grid of processors. Convergence results are presented for the discretization of u /SUB xx/ + u /SUB yy/ on a uniform mesh over a square, showing that the spectral radius of the iteration for these orderings is no worse than that for the standard row by row ordering of mesh points. Further applications of these mesh point orderings to network problems, more general finite difference operators, and picture processing problems are noted

  2. Interoperable mesh components for large-scale, distributed-memory simulations

    International Nuclear Information System (INIS)

    Devine, K; Leung, V; Diachin, L; Miller, M

    2009-01-01

    SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. In this paper, we describe a software component - an abstract data model and programming interface - designed to provide support for parallel unstructured mesh operations. We describe key issues that must be addressed to successfully provide high-performance, distributed-memory unstructured mesh services and highlight some recent research accomplishments in developing new load balancing and MPI-based communication libraries appropriate for leadership class computing. Finally, we give examples of the use of parallel adaptive mesh modification in two SciDAC applications.

  3. H-Morph: An indirect approach to advancing front hex meshing

    Energy Technology Data Exchange (ETDEWEB)

    OWEN,STEVEN J.; SAIGAL,SUNIL

    2000-05-30

    H-Morph is a new automatic algorithm for the generation of a hexahedral-dominant finite element mesh for arbitrary volumes. The H-Morph method starts with an initial tetrahedral mesh and systematically transforms and combines tetrahedral into hexahedra. It uses an advancing front technique where the initial front consists of a set of prescribed quadrilateral surface facets. Fronts are individually processed by recovering each of the six quadrilateral faces of a hexahedron from the tetrahedral mesh. Recovery techniques similar to those used in boundary constrained Delaunay mesh generation are used. Tetrahedral internal to the six hexahedral faces are then removed and a hexahedron is formed. At any time during the H-Morph procedure a valid mixed hexahedral-tetrahedral mesh is in existence within the volume. The procedure continues until no tetrahedral remain within the volume, or tetrahedral remain which cannot be transformed or combined into valid hexahedral elements. Any remaining tetrahedral are typically towards the interior of the volume, generally a less critical region for analysis. Transition from tetrahedral to hexahedra in the final mesh is accomplished through pyramid shaped elements. Advantages of the proposed method include its ability to conform to an existing quadrilateral surface mesh, its ability to mesh without the need to decompose or recognize special classes of geometry, and its characteristic well-aligned layers of elements parallel to the boundary. Example test cases are presented on a variety of models.

  4. Development and verification of unstructured adaptive mesh technique with edge compatibility

    International Nuclear Information System (INIS)

    Ito, Kei; Ohshima, Hiroyuki; Kunugi, Tomoaki

    2010-01-01

    In the design study of the large-sized sodium-cooled fast reactor (JSFR), one key issue is suppression of gas entrainment (GE) phenomena at a gas-liquid interface. Therefore, the authors have been developed a high-precision CFD algorithm to evaluate the GE phenomena accurately. The CFD algorithm has been developed on unstructured meshes to establish an accurate modeling of JSFR system. For two-phase interfacial flow simulations, a high-precision volume-of-fluid algorithm is employed. It was confirmed that the developed CFD algorithm could reproduce the GE phenomena in a simple GE experiment. Recently, the authors have been developed an important technique for the simulation of the GE phenomena in JSFR. That is an unstructured adaptive mesh technique which can apply fine cells dynamically to the region where the GE occurs in JSFR. In this paper, as a part of the development, a two-dimensional unstructured adaptive mesh technique is discussed. In the two-dimensional adaptive mesh technique, each cell is refined isotropically to reduce distortions of the mesh. In addition, connection cells are formed to eliminate the edge incompatibility between refined and non-refined cells. The two-dimensional unstructured adaptive mesh technique is verified by solving well-known lid-driven cavity flow problem. As a result, the two-dimensional unstructured adaptive mesh technique succeeds in providing a high-precision solution, even though poor-quality distorted initial mesh is employed. In addition, the simulation error on the two-dimensional unstructured adaptive mesh is much less than the error on the structured mesh with a larger number of cells. (author)

  5. Effect of heavy metal and edta application on plant growth and phyto-extraction potential of sorghum (sorghum bicolor)

    International Nuclear Information System (INIS)

    Bacaha, N.; Shamas, R.; Bakht, J.; Rafi, A.; Farhatullah, M.; Gillani, S.

    2015-01-01

    Pot experiment was conducted to evaluate the phyto-extraction capacity of heavy metals by Sorghum. Sorghum bicolor was grown in soil artificially contaminated with different concentrations of lead (300, 350 and 400 mg/kg), chromium (50, 100 and 150 mg/kg) and cadmium (100, 150 and 200 mg/kg). Five mM EDTA was applied, as chelating agent to the plants after 4 weeks of sowing. Plants were grown for a total of two months and fresh weight and dry weight of shoot and heavy metal accumulation were analyzed at six and eight weeks after sowing. The results revealed that application of cadmium, chromium and lead and EDTA adversely affected shoot length, fresh weight and dry weight of S. bicolor at both time intervals. Heavy metals uptake increased with the increment of heavy metal by S. bicolor species. Application of 5mM EDTA enhanced the uptake of heavy metal. (author)

  6. An Interpreted Language and System for the Visualization of Unstructured Meshes

    Science.gov (United States)

    Moran, Patrick J.; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    We present an interpreted language and system supporting the visualization of unstructured meshes and the manipulation of shapes defined in terms of mesh subsets. The language features primitives inspired by geometric modeling, mathematical morphology and algebraic topology. The adaptation of the topology ideas to an interpreted environment, along with support for programming constructs such, as user function definition, provide a flexible system for analyzing a mesh and for calculating with shapes defined in terms of the mesh. We present results demonstrating some of the capabilities of the language, based on an implementation called the Shape Calculator, for tetrahedral meshes in R^3.

  7. Grouper: a compact, streamable triangle mesh data structure.

    Science.gov (United States)

    Luffel, Mark; Gurung, Topraj; Lindstrom, Peter; Rossignac, Jarek

    2014-01-01

    We present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. As a part of this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle--i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format--Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  8. Grouper: A Compact, Streamable Triangle Mesh Data Structure

    Energy Technology Data Exchange (ETDEWEB)

    Luffel, Mark [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU); Gurung, Topraj [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU); Lindstrom, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rossignac, Jarek [Georgia Inst. of Technology, Atlanta, GA (United States). Visualization and Usability Center (GVU)

    2014-01-01

    Here, we present Grouper: an all-in-one compact file format, random-access data structure, and streamable representation for large triangle meshes. Similarly to the recently published SQuad representation, Grouper represents the geometry and connectivity of a mesh by grouping vertices and triangles into fixed-size records, most of which store two adjacent triangles and a shared vertex. Unlike SQuad, however, Grouper interleaves geometry with connectivity and uses a new connectivity representation to ensure that vertices and triangles can be stored in a coherent order that enables memory-efficient sequential stream processing. We also present a linear-time construction algorithm that allows streaming out Grouper meshes using a small memory footprint while preserving the initial ordering of vertices. In this construction, we show how the problem of assigning vertices and triangles to groups reduces to a well-known NP-hard optimization problem, and present a simple yet effective heuristic solution that performs well in practice. Our array-based Grouper representation also doubles as a triangle mesh data structure that allows direct access to vertices and triangles. Storing only about two integer references per triangle-i.e., less than the three vertex references stored with each triangle in a conventional indexed mesh format-Grouper answers both incidence and adjacency queries in amortized constant time. Our compact representation enables data-parallel processing on multicore computers, instant partitioning and fast transmission for distributed processing, as well as efficient out-of-core access. We demonstrate the versatility and performance benefits of Grouper using a suite of example meshes and processing kernels.

  9. Male infertility after mesh hernia repair: A prospective study.

    Science.gov (United States)

    Hallén, Magnus; Sandblom, Gabriel; Nordin, Pär; Gunnarsson, Ulf; Kvist, Ulrik; Westerdahl, Johan

    2011-02-01

    Several animal studies have raised concern about the risk for obstructive azoospermia owing to vasal fibrosis caused by the use of alloplastic mesh prosthesis in inguinal hernia repair. The aim of this study was to determine the prevalence of male infertility after bilateral mesh repair. In a prospective study, a questionnaire inquiring about involuntary childlessness, investigation for infertility and number of children was sent by mail to a group of 376 men aged 18-55 years, who had undergone bilateral mesh repair, identified in the Swedish Hernia Register (SHR). Questionnaires were also sent to 2 control groups, 1 consisting of 186 men from the SHR who had undergone bilateral repair without mesh, and 1 consisting of 383 men identified in the general population. The control group from the SHR was matched 2:1 for age and years elapsed since operation. The control group from the general population was matched 1:1 for age and marital status. The overall response rate was 525 of 945 (56%). Method of approach (anterior or posterior), type of mesh, and testicular status at the time of the repair had no significant impact on the answers to the questions. Nor did subgroup analysis of the men ≤40 years old reveal any significant differences. The results of this prospective study in men do not support the hypothesis that bilateral inguinal hernia repair with alloplastic mesh prosthesis causes male infertility at a significantly greater rate than those operated without mesh. Copyright © 2011 Mosby, Inc. All rights reserved.

  10. Conforming to interface structured adaptive mesh refinement: 3D algorithm and implementation

    Science.gov (United States)

    Nagarajan, Anand; Soghrati, Soheil

    2018-03-01

    A new non-iterative mesh generation algorithm named conforming to interface structured adaptive mesh refinement (CISAMR) is introduced for creating 3D finite element models of problems with complex geometries. CISAMR transforms a structured mesh composed of tetrahedral elements into a conforming mesh with low element aspect ratios. The construction of the mesh begins with the structured adaptive mesh refinement of elements in the vicinity of material interfaces. An r-adaptivity algorithm is then employed to relocate selected nodes of nonconforming elements, followed by face-swapping a small fraction of them to eliminate tetrahedrons with high aspect ratios. The final conforming mesh is constructed by sub-tetrahedralizing remaining nonconforming elements, as well as tetrahedrons with hanging nodes. In addition to studying the convergence and analyzing element-wise errors in meshes generated using CISAMR, several example problems are presented to show the ability of this method for modeling 3D problems with intricate morphologies.

  11. The application of TINA in the MESH project

    NARCIS (Netherlands)

    van Sinderen, Marten J.; Ferreira Pires, Luis; Pires, L.F.; Plagemann, Thomas; Goebel, Vera

    1998-01-01

    This paper discusses the application of TINA concepts, architectures and related design paradigms in the MESH project. MESH adopted TINA as a means to facilitate the design and implementation of a flexible platform for developing and providing interactive multimedia services. This paper reports on

  12. Cell adhesion on NiTi thin film sputter-deposited meshes

    Energy Technology Data Exchange (ETDEWEB)

    Loger, K. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Engel, A.; Haupt, J. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Li, Q. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lima de Miranda, R. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); ACQUANDAS GmbH, Kiel (Germany); Quandt, E. [Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany); Lutter, G. [Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel (Germany); Selhuber-Unkel, C. [Biocompatible Nanomaterials, Institute for Materials Science, Faculty of Engineering, University of Kiel (Germany)

    2016-02-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm{sup 2} and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm{sup 2} and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  13. Cell adhesion on NiTi thin film sputter-deposited meshes

    International Nuclear Information System (INIS)

    Loger, K.; Engel, A.; Haupt, J.; Li, Q.; Lima de Miranda, R.; Quandt, E.; Lutter, G.; Selhuber-Unkel, C.

    2016-01-01

    Scaffolds for tissue engineering enable the possibility to fabricate and form biomedical implants in vitro, which fulfill special functionality in vivo. In this study, free-standing Nickel–Titanium (NiTi) thin film meshes were produced by means of magnetron sputter deposition. Meshes contained precisely defined rhombic holes in the size of 440 to 1309 μm 2 and a strut width ranging from 5.3 to 9.2 μm. The effective mechanical properties of the microstructured superelastic NiTi thin film were examined by tensile testing. These results will be adapted for the design of the holes in the film. The influence of hole and strut dimensions on the adhesion of sheep autologous cells (CD133 +) was studied after 24 h and after seven days of incubation. Optical analysis using fluorescence microscopy and scanning electron microscopy showed that cell adhesion depends on the structural parameters of the mesh. After 7 days in cell culture a large part of the mesh was covered with aligned fibrous material. Cell adhesion is particularly facilitated on meshes with small rhombic holes of 440 μm 2 and a strut width of 5.3 μm. Our results demonstrate that free-standing NiTi thin film meshes have a promising potential for applications in cardiovascular tissue engineering, particularly for the fabrication of heart valves. - Highlights: • Freestanding NiTi thin film scaffolds were fabricated with magnetron sputtering process. • Effective mechanical properties of NiTi scaffolds can be adapted by the mesh structure parameters. • Cell adhesion on the NiTi thin film scaffold is controlled by the structure parameters of the mesh. • Cells strongly adhere after seven days and form a confluent layer on the mesh.

  14. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  15. Expression robust 3D face recognition via mesh-based histograms of multiple order surface differential quantities

    KAUST Repository

    Li, Huibin

    2011-09-01

    This paper presents a mesh-based approach for 3D face recognition using a novel local shape descriptor and a SIFT-like matching process. Both maximum and minimum curvatures estimated in the 3D Gaussian scale space are employed to detect salient points. To comprehensively characterize 3D facial surfaces and their variations, we calculate weighted statistical distributions of multiple order surface differential quantities, including histogram of mesh gradient (HoG), histogram of shape index (HoS) and histogram of gradient of shape index (HoGS) within a local neighborhood of each salient point. The subsequent matching step then robustly associates corresponding points of two facial surfaces, leading to much more matched points between different scans of a same person than the ones of different persons. Experimental results on the Bosphorus dataset highlight the effectiveness of the proposed method and its robustness to facial expression variations. © 2011 IEEE.

  16. Adaptive Mesh Iteration Method for Trajectory Optimization Based on Hermite-Pseudospectral Direct Transcription

    Directory of Open Access Journals (Sweden)

    Humin Lei

    2017-01-01

    Full Text Available An adaptive mesh iteration method based on Hermite-Pseudospectral is described for trajectory optimization. The method uses the Legendre-Gauss-Lobatto points as interpolation points; then the state equations are approximated by Hermite interpolating polynomials. The method allows for changes in both number of mesh points and the number of mesh intervals and produces significantly smaller mesh sizes with a higher accuracy tolerance solution. The derived relative error estimate is then used to trade the number of mesh points with the number of mesh intervals. The adaptive mesh iteration method is applied successfully to the examples of trajectory optimization of Maneuverable Reentry Research Vehicle, and the simulation experiment results show that the adaptive mesh iteration method has many advantages.

  17. In vitro extracellular matrix model to evaluate stroma cell response to transvaginal mesh.

    Science.gov (United States)

    Wu, Ming-Ping; Huang, Kuan-Hui; Long, Cheng-Yu; Yang, Chau-Chen; Tong, Yat-Ching

    2014-04-01

    The use of surgical mesh for female pelvic floor reconstruction has increased in recent years. However, there is paucity of information about the biological responses of host stroma cells to different meshes. This study was aimed to establish an in vitro experimental model to study the micro-environment of extracellular matrix (ECM) with embedded mesh and the stroma cell behaviors to different synthetic meshes. Matrigel multi-cellular co-culture system with embedded mesh was used to evaluate the interaction of stroma cells and synthetic mesh in a simulated ECM environment. Human umbilical vein endothelial cells (HUVEC) and NIH3T3 fibroblasts were inoculated in the system. The established multi-cellular Matrigel co-culture system was used to detect stroma cell recruitment and tube formation ability for different synthetic meshes. HUVEC and NIH3T3 cells were recruited into the mesh interstices and organized into tube-like structures in type I mesh material from Perigee, Marlex and Prolift 24 hr after cell inoculation. On the contrary, there was little recruitment of HUVEC and NIH3T3 cells into the type III mesh of intra-vaginal sling (IVS). The Matrigel multi-cellular co-culture system with embedded mesh offers a useful in vitro model to study the biological behaviors of stroma cells in response to different types of synthetic meshes. The system can help to select ideal mesh candidates before actual implantation into the human body. © 2013 Wiley Periodicals, Inc.

  18. Vacuum assisted closure therapy in the treatment of mesh infection after hernia repair.

    Science.gov (United States)

    Tamhankar, A P; Ravi, K; Everitt, N J

    2009-10-01

    Mesh related infection after prosthetic abdominal wall hernia repair is a difficult clinical problem, particularly in an era of evolving microbial resistance. Commonly advocated treatment for such infection involves complete mesh excision which usually leaves a complicated weak wound. We report the use ofVAC therapy for mesh infections that allows mesh preservation leaving a sound wound. From june 2002 to January 2007, four patients with mesh related infection after abdominal wall hernia repair were treated with VAC therapy. Patients' notes were reviewed to gather clinical details. Mesh infection was evident after a variable period (day three to eight years) following hernia repair. Of the four patients, one had infection with methicillin resistant Staphylococcus aureus (MRSA), while the bacteriological cultures from two confirmed Staphylococcus aureus in one and a mixture of Pseudomonas and enterococcus species in the other. One patient failed to show significant bacterial growth on pus swab culture, having had prior broad-spectrum antibiotic treatment for mesh infection. Three patients had complete mesh preservation and one had partial mesh excision. All patients were treated with VAC therapy, following the drainage of their operation sites, until the visible mesh was covered with granulation (one to seven weeks). No patient had a recurrent hernia after complete wound healing. VAC therapy allows salvage of infected exposed mesh by promoting granulation through the mesh. Judicious use of VAC therapy may prevent the need of mesh excision and its wound related complications.

  19. Coarse-mesh method for multidimensional, mixed-lattice diffusion calculations

    International Nuclear Information System (INIS)

    Dodds, H.L. Jr.; Honeck, H.C.; Hostetler, D.E.

    1977-01-01

    A coarse-mesh finite difference method has been developed for multidimensional, mixed-lattice reactor diffusion calculations, both statics and kinetics, in hexagonal geometry. Results obtained with the coarse-mesh (CM) method have been compared with a conventional mesh-centered finite difference method and with experiment. The results of this comparison indicate that the accuracy of the CM method for highly heterogeneous (mixed) lattices using one point per hexagonal mesh element (''hex'') is about the same as the conventional method with six points per hex. Furthermore, the computing costs (i.e., central processor unit time and core storage requirements) of the CM method with one point per hex are about the same as the conventional method with one point per hex

  20. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    Science.gov (United States)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  1. Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovations proposed are twofold: 1) a robust unstructured mesh movement method able to handle isotropic (Euler), anisotropic (viscous), mixed element (hybrid)...

  2. Status of the Polyhedral Mesh Generator using SALOME PLATFORM and TetGen

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan

    2014-01-01

    Recently developed porous body approach codes such as SPACE and CUPID require a CAD system to estimate the porosity. Since they use the unstructured mesh and they also require reliable mesh generation system. The combination of CAD system and mesh generation system is necessary to cope with a large number of cells and the complex fluid system with structural materials inside. In the past, a CAD system Pro/Engineer and mesh generator Pointwise were evaluated for this application. But, the cost of those commercial CAD and mesh generator is sometimes a great burden. Therefore, efforts have been made to set up a mesh generation system with open source programs. The evaluation of the TetGen has been made in focusing the application for the polyhedral mesh generation. In this paper, SALOME will be described for the efforts to combine TetGen with it. In section 2, brief introduction will be made on the CAD and mesh generation capability of SALOME and Tetgen. SALOME and TetGen codes are being integrated to construct robust polyhedral mesh generator. Procedures to merge boundary faces and to cut concave cells are developed to remove concave cells to get final convex polyhedral mesh. Treating the internal boundary face, i.e. non-manifold face will be the next task in the future investigation

  3. Parallel Performance Optimizations on Unstructured Mesh-based Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; Huck, Kevin; Hollingsworth, Jeffrey; Malony, Allen; Williams, Samuel; Oliker, Leonid

    2015-01-01

    © The Authors. Published by Elsevier B.V. This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches. We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.

  4. Sacral colpopexy versus transvaginal mesh colpopexy in obese patients.

    Science.gov (United States)

    McDermott, Colleen D; Park, Jean; Terry, Colin L; Woodman, Patrick J; Hale, Douglass S

    2013-05-01

    Obesity can predispose women to pelvic organ prolapse and can also affect the success of pelvic organ prolapse surgery. The purpose of this study was to compare the postoperative anatomical outcomes following sacral colpopexy (SC) and transvaginal mesh colpopexy in a group of obese women with pelvic organ prolapse. We conducted a retrospective cohort study of obese women who underwent SC (n = 56) or transvaginal mesh colpopexy (n = 35). Follow-up ranged from 6 to 12 months. Preoperative, perioperative, and postoperative variables were compared using Student t, Mann-Whitney U, and Fisher exact tests, and by analysis of covariance. The women in the SC group had significantly higher mean apical vaginal measurements (P transvaginal mesh colpopexy group. There were no significant differences between the groups for other postoperative outcomes, including mesh erosion, recurrent prolapse symptoms, dyspareunia, and surgical satisfaction (P > 0.05). In these 91 obese patients with pelvic organ prolapse, SC resulted in better anatomical outcomes than transvaginal mesh colpopexy. However, the two procedures had similar outcomes with regard to recurrent symptoms and surgical satisfaction.

  5. using agama lizard as a biomaker in heavy metal pollution monitoring

    African Journals Online (AJOL)

    Oyekunle

    Key words: Agama lizard, environmental pollution, soil, heavy metals, liver, kidney. ... Despite the considerable weight of evidence that exists in favour of the ..... bioaccumulation capacity of heavy metals by the kidney. (59.2 ± 15.3 µg/g) was ...

  6. Design Investigation on Applicable Mesh Structures for Medical Stent Applications

    Science.gov (United States)

    Asano, Shoji; He, Jianmei

    2017-11-01

    In recent years, utilization of medical stents is one of effective treatments for stenosis and occlusion occurring in a living body’s lumen indispensable for maintenance of human life such as superficial femoral artery (SFA) occlusion. However, there are concerns about the occurrence of fatigue fractures caused by stress concentrations, neointimal hyperplasia and the like due to the shape structure and the manufacturing method in the conventional stents, and a stent having high strength and high flexibility is required. Therefore, in this research, applicable mesh structures for medical stents based on the design concepts of high strength, high flexibility are interested to solve various problem of conventional stent. According to the shape and dimensions of SFA occlusion therapy stent and indwelling delivery catheter, shape design of the meshed stent are performed using 3-dimensional CAD software Solid Works first. Then analytical examination on storage characteristics and compression characteristics of such mesh structure applied stent models were carried out through finite element analysis software ANSYS Workbench. Meshed stent models with higher strength and higher flexibility with integral molding are investigated analytically. It was found that the storage characteristics and compression characteristics of meshed stent modles are highly dependent on the basic mesh shapes with same surface void ratio. Trade-off relationship between flexibility and storage characteristics is found exited, it is required to provide appropriate curvatures during basic mesh shape design.

  7. Open preperitoneal groin hernia repair with mesh

    DEFF Research Database (Denmark)

    Andresen, Kristoffer; Rosenberg, Jacob

    2017-01-01

    Background For the repair of inguinal hernias, several surgical methods have been presented where the purpose is to place a mesh in the preperitoneal plane through an open access. The aim of this systematic review was to describe preperitoneal repairs with emphasis on the technique. Data sources...... A systematic review was conducted and reported according to the PRISMA statement. PubMed, Cochrane library and Embase were searched systematically. Studies were included if they provided clinical data with more than 30 days follow up following repair of an inguinal hernia with an open preperitoneal mesh......-analysis. Open preperitoneal techniques with placement of a mesh through an open approach seem promising compared with the standard anterior techniques. This systematic review provides an overview of these techniques together with a description of surgical methods and clinical outcomes....

  8. Open preperitoneal groin hernia repair with mesh

    DEFF Research Database (Denmark)

    Andresen, Kristoffer; Rosenberg, Jacob

    2017-01-01

    BACKGROUND: For the repair of inguinal hernias, several surgical methods have been presented where the purpose is to place a mesh in the preperitoneal plane through an open access. The aim of this systematic review was to describe preperitoneal repairs with emphasis on the technique. DATA SOURCES......: A systematic review was conducted and reported according to the PRISMA statement. PubMed, Cochrane library and Embase were searched systematically. Studies were included if they provided clinical data with more than 30 days follow up following repair of an inguinal hernia with an open preperitoneal mesh......-analysis. Open preperitoneal techniques with placement of a mesh through an open approach seem promising compared with the standard anterior techniques. This systematic review provides an overview of these techniques together with a description of surgical methods and clinical outcomes....

  9. Robotic removal of eroded vaginal mesh into the bladder.

    Science.gov (United States)

    Macedo, Francisco Igor B; O'Connor, Jeffrey; Mittal, Vijay K; Hurley, Patrick

    2013-11-01

    Vaginal mesh erosion into the bladder after midurethral sling procedure or cystocele repair is uncommon, with only a few cases having been reported in the literature. The ideal surgical management is still controversial. Current options for removal of eroded mesh include: endoscopic, transvaginal or abdominal (either open or laparoscopic) approaches. We, herein, present the first case of robotic removal of a large eroded vaginal mesh into the bladder and discuss potential benefits and limitations of the technique. © 2013 The Japanese Urological Association.

  10. Anterior colporrhaphy versus transvaginal mesh for pelvic-organ prolapse.

    Science.gov (United States)

    Altman, Daniel; Väyrynen, Tapio; Engh, Marie Ellström; Axelsen, Susanne; Falconer, Christian

    2011-05-12

    The use of standardized mesh kits for repair of pelvic-organ prolapse has spread rapidly in recent years, but it is unclear whether this approach results in better outcomes than traditional colporrhaphy. In this multicenter, parallel-group, randomized, controlled trial, we compared the use of a trocar-guided, transvaginal polypropylene-mesh repair kit with traditional colporrhaphy in women with prolapse of the anterior vaginal wall (cystocele). The primary outcome was a composite of the objective anatomical designation of stage 0 (no prolapse) or 1 (position of the anterior vaginal wall more than 1 cm above the hymen), according to the Pelvic Organ Prolapse Quantification system, and the subjective absence of symptoms of vaginal bulging 12 months after the surgery. Of 389 women who were randomly assigned to a study treatment, 200 underwent prolapse repair with the transvaginal mesh kit and 189 underwent traditional colporrhaphy. At 1 year, the primary outcome was significantly more common in the women treated with transvaginal mesh repair (60.8%) than in those who underwent colporrhaphy (34.5%) (absolute difference, 26.3 percentage points; 95% confidence interval, 15.6 to 37.0). The surgery lasted longer and the rates of intraoperative hemorrhage were higher in the mesh-repair group than in the colporrhaphy group (Pmesh-repair group and 0.5% in the colporrhaphy group (P=0.07), and the respective rates of new stress urinary incontinence after surgery were 12.3% and 6.3% (P=0.05). Surgical reintervention to correct mesh exposure during follow-up occurred in 3.2% of 186 patients in the mesh-repair group. As compared with anterior colporrhaphy, use of a standardized, trocar-guided mesh kit for cystocele repair resulted in higher short-term rates of successful treatment but also in higher rates of surgical complications and postoperative adverse events. (Funded by the Karolinska Institutet and Ethicon; ClinicalTrials.gov number, NCT00566917.).

  11. Some heavy metals in Luciobarbus esocinus for public consumption and consumer protection.

    Science.gov (United States)

    Düşükcan, M; Canpolat, Ö; Eroğlu, M

    2017-09-30

    In this study, the concentrations of some heavy metals were determined in the muscle of Luciobarbus esocinus Heckel, 1843 and in water where they live. The results were evaluated in term of potential human risk of consumption of this fish and the relationship between the heavy metal load of fish and some of their biological aspects (weight, length and sex). In addition, the accumulation factor of heavy metals in the muscle of L. esocinus were also determined. The Cr, Pb and Ni were not found in detectable levels according to results obtained by ICP. Only Cu, Zn and Fe were detected. It was found that heavy metals concentrations in the muscle of L. esocinus were higher than that in the water. The concentration of heavy metals showed differences according to weight, length and sex of fish. The results were discussed and compared with tolerable values for heavy metals provided from the EPA, FAO and WHO in order to determine whether this fish species has any risk for human consumption.

  12. A Unified 3D Mesh Segmentation Framework Based on Markov Random Field

    OpenAIRE

    Z.F. Shi; L.Y. Lu; D. Le; X.M. Niu

    2012-01-01

    3D Mesh segmentation has become an important research field in computer graphics during the past decades. Many geometry based and semantic oriented approaches for 3D mesh segmentation has been presented. In this paper, we present a definition of mesh segmentation according to labeling problem. Inspired by the Markov Random Field (MRF) based image segmentation, we propose a new framework of 3D mesh segmentation based on MRF and use graph cuts to solve it. Any features of 3D mesh can be integra...

  13. Development of a multimaterial, two-dimensional, arbitrary Lagrangian-Eulerian mesh computer program

    International Nuclear Information System (INIS)

    Barton, R.T.

    1982-01-01

    We have developed a large, multimaterial, two-dimensional Arbitrary Lagrangian-Eulerian (ALE) computer program. The special feature of an ALE mesh is that it can be either an embedded Lagrangian mesh, a fixed Eulerian mesh, or a partially embedded, partially remapped mesh. Remapping is used to remove Lagrangian mesh distortion. This general purpose program has been used for astrophysical modeling, under the guidance of James R. Wilson. The rationale behind the development of this program will be used to highlight several important issues in program design

  14. Clinical and ultrasonographic study of patients presenting with transvaginal mesh complications.

    Science.gov (United States)

    Manonai, Jittima; Rostaminia, Ghazaleh; Denson, Lindsay; Shobeiri, S Abbas

    2016-03-01

    The objective of this study was to investigate the clinical and ultrasonographic findings of women who had three-dimensional endovaginal ultrasound (EVUS) for the management of vaginal mesh complications. This was a retrospective study of patients that had EVUS due to mesh complications at a tertiary care center. The clinical charts were reviewed. The stored 3D volumes were reviewed regarding mesh information by two examiners independently. The predictive value of physical examination for detection of vaginal mesh was calculated. Patient outcomes were reviewed. Seventy-nine patients presented to our center because of their, or their physicians' concern regarding mesh complications. Forty-one (51.9%) had vaginal/pelvic pain, and 51/62 (82.2%) of sexually active women experienced dyspareunia. According to ultrasonographic findings, mesh or sling was not demonstrated in six patients who believed they have had mesh/sling implantation. The positive predictive value for vaginal examination was 94.5% (95% CI: 84.9%-98.8%), negative predictive value was 12.5% (95% CI: 2.8%-32.4%), sensitivity was 72.2% (95% CI: 59.4%-81.2%), and specificity was 50.0% (95% CI: 12.4%-87.6%). Fifty-four patients were indicated for surgical treatment. Median postoperative review was 12 (range, 3-18) months and 38/53 (71.7%) patients were satisfied. The most common complaints of vaginal mesh complications were pain and dyspareunia. EVUS appeared to be helpful for assessing mesh presence, location, and extent including planning for surgical intervention. © 2015 Wiley Periodicals, Inc.

  15. Autoclaved Sand-Lime Products with a Polypropylene Mesh

    Science.gov (United States)

    Kostrzewa, Paulina; Stępień, Anna

    2017-10-01

    The paper presents the results of the research on modifications of silicate bricks with a polypropylene mesh and their influence on physical, mechanical and microstructural properties of such bricks. The main goal of the paper was to determine effects of the polypropylene mesh on sand-lime product parameters. The analysis has focused on compressive strength, water absorption, bulk density and structural features of the material. The obtained product is characterized by improved basic performance characteristics compared to traditional silicate products. Using the polypropylene mesh increased compressive strength by 25% while decreasing the product density. The modified products retain their form and do not disintegrate after losing their bearing capacity.

  16. Riding Bare-Back on unstructured meshes for 21. century criticality calculations - 244

    International Nuclear Information System (INIS)

    Kelley, K.C.; Martz, R.L.; Crane, D.L.

    2010-01-01

    MCNP has a new capability that permits tracking of neutrons and photons on an unstructured mesh which is embedded as a mesh universe within its legacy geometry capability. The mesh geometry is created through Abaqus/CAE using its solid modeling capabilities. Transport results are calculated for mesh elements through a path length estimator while element to element tracking is performed on the mesh. The results from MCNP can be exported to Abaqus/CAE for visualization or other-physics analysis. The simple Godiva criticality benchmark problem was tested with this new mesh capability. Computer run time is proportional to the number of mesh elements used. Both first and second order polyhedrons are used. Models that used second order polyhedrons produced slightly better results without significantly increasing computer run time. Models that used first order hexahedrons had shorter runtimes than models that used first order tetrahedrons. (authors)

  17. Laparoscopy-like operative vaginoscopy: a new approach to manage mesh erosions.

    Science.gov (United States)

    Billone, Valentina; Amorim-Costa, Célia; Campos, Sara; Rabischong, Benoĭt; Bourdel, Nicolas; Canis, Michel; Botchorishvili, Revaz

    2015-01-01

    Mesh erosion through the vagina is the most common complication of synthetic mesh used for pelvic organ prolapse repair. However, conventional transvaginal mesh excision has many technical limitations. We aimed at creating and describing a new surgical technique for transvaginal removal of exposed mesh that would enable better exposition and access, thus facilitating optimal treatment. A step-by-step video showing the technique. A university tertiary care hospital. Five patients previously submitted to pelvic organ prolapse repair using synthetic mesh, presenting mesh erosion through the vagina. Mesh excision using a laparoscopy-like operative vaginoscopy in which standard laparoscopic instruments are used through a single-incision laparoscopic surgery port device placed in the vagina. In all cases, a very good exposure of the mesh was achieved, a minimal tissue traction was required, and the procedures were performed in a very ergonomic way. All the patients were discharged on the same day of the surgery and had a painless postoperative course. So far, there have been no cases of relapse. This seems to be a simple, cheap, and valuable minimally invasive technique with many advantages in comparison with the conventional approach. More cases and time are necessary to access its long-term efficacy. It may possibly be used for the management of other conditions. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  18. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang; Jiang, Caigui; Wallner, Johannes; Pottmann, Helmut

    2016-01-01

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals

  19. Recurrence and Pain after Mesh Repair of Inguinal Hernias

    African Journals Online (AJOL)

    Abstract. Background: Surgery for inguinal hernias has ... repair. Methods: The study was conducted on all inguinal hernia patients operated between 1st. October ... bilateral (1.6%). Only 101 .... Open Mesh Versus Laparoscopic Mesh. Repair ...

  20. Integrative analysis of many weighted co-expression networks using tensor computation.

    Directory of Open Access Journals (Sweden)

    Wenyuan Li

    2011-06-01

    Full Text Available The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks.

  1. An Implementation and Parallelization of the Scale Space Meshing Algorithm

    Directory of Open Access Journals (Sweden)

    Julie Digne

    2015-11-01

    Full Text Available Creating an interpolating mesh from an unorganized set of oriented points is a difficult problemwhich is often overlooked. Most methods focus indeed on building a watertight smoothed meshby defining some function whose zero level set is the surface of the object. However in some casesit is crucial to build a mesh that interpolates the points and does not fill the acquisition holes:either because the data are sparse and trying to fill the holes would create spurious artifactsor because the goal is to explore visually the data exactly as they were acquired without anysmoothing process. In this paper we detail a parallel implementation of the Scale-Space Meshingalgorithm, which builds on the scale-space framework for reconstructing a high precision meshfrom an input oriented point set. This algorithm first smoothes the point set, producing asingularity free shape. It then uses a standard mesh reconstruction technique, the Ball PivotingAlgorithm, to build a mesh from the smoothed point set. The final step consists in back-projecting the mesh built on the smoothed positions onto the original point set. The result ofthis process is an interpolating, hole-preserving surface mesh reconstruction.

  2. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures.

  3. Thermal Analysis of Concrete Storage Cask with Bird Screen Meshes

    International Nuclear Information System (INIS)

    Lee, Ju-Chan; Bang, K.S.; Yu, S.H.; Cho, S.S.; Choi, W.S.

    2016-01-01

    In this study, a thermal analysis of the cask with bird screen meshes has been performed using a porous media model. The overpack consists of a structural material, a concrete shielding, and a ventilation system. Heat is removed from the cask to the environment by a passive means only. Air inlet and outlet ducts are installed at the bottom and top of the cask for a ventilation system. Bird screen meshes are installed at the air inlet and outlet ducts to inhibit intrusion of debris from the external environment. The presence of this screens introduce an additional resistance to air flow through the ducts. Five types of meshes for bird screen were considered in this study. The bird screen meshes at the inlet and outlet vents reduce the open area for flow by about 44 - 79 %. Flow resistance coefficients for porous media model were deduced from the fluid flow analysis of bird screen meshes. Thermal analyses for the concrete cask have been carried out using a porous media model. The analysis results agreed well with the test results. Therefore, it was shown that the porous media model for the screen mesh was established to estimate the cask temperatures

  4. 3D Mesh Compression and Transmission for Mobile Robotic Applications

    Directory of Open Access Journals (Sweden)

    Bailin Yang

    2016-01-01

    Full Text Available Mobile robots are useful for environment exploration and rescue operations. In such applications, it is crucial to accurately analyse and represent an environment, providing appropriate inputs for motion planning in order to support robot navigation and operations. 2D mapping methods are simple but cannot handle multilevel or multistory environments. To address this problem, 3D mapping methods generate structural 3D representations of the robot operating environment and its objects by 3D mesh reconstruction. However, they face the challenge of efficiently transmitting those 3D representations to system modules for 3D mapping, motion planning, and robot operation visualization. This paper proposes a quality-driven mesh compression and transmission method to address this. Our method is efficient, as it compresses a mesh by quantizing its transformed vertices without the need to spend time constructing an a-priori structure over the mesh. A visual distortion function is developed to govern the level of quantization, allowing mesh transmission to be controlled under different network conditions or time constraints. Our experiments demonstrate how the visual quality of a mesh can be manipulated by the visual distortion function.

  5. 22nd International Meshing Roundtable

    CERN Document Server

    Staten, Matthew

    2014-01-01

    This volume contains the articles presented at the 22nd International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on Oct 13-16, 2013 in Orlando, Florida, USA.  The first IMR was held in 1992, and the conference series has been held annually since.  Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics.  The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics and visualization.

  6. 21st International Meshing Roundtable

    CERN Document Server

    Weill, Jean-Christophe

    2013-01-01

    This volume contains the articles presented at the 21st International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on October 7–10, 2012 in San Jose, CA, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics, and visualization.

  7. Kinetic solvers with adaptive mesh in phase space

    Science.gov (United States)

    Arslanbekov, Robert R.; Kolobov, Vladimir I.; Frolova, Anna A.

    2013-12-01

    An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a “tree of trees” (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.

  8. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study.

    Science.gov (United States)

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-06-01

    The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey's post-hoc test were used for statistical analysis. Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively.

  9. Short term post-operative morphing of sacrocolpopexy mesh measured by magnetic resonance imaging.

    Science.gov (United States)

    Sindhwani, Nikhil; Callewaert, Geertje; Deprest, Thomas; Housmans, Susanne; Van Beckevoort, Dirk; Deprest, Jan

    2018-04-01

    Sacrocolpopexy (SC) involves suspension of the vaginal vault or cervix to the sacrum using a mesh. Following insertion, the meshes have been observed to have undergone dimensional changes. To quantify dimensional changes of meshes following implantation and characterize their morphology in-vivo. 24 patients underwent SC using PolyVinyliDeneFluoride mesh loaded with Fe 3 O 4 particles. Tailored anterior and posterior mesh flaps were sutured to the respective vaginal walls, uniting at the apex. The posterior flap continued to the sacrum and was attached there. Meshes were visualized on magnetic resonance (MR) imaging at 12 [3-12] (median [range]) months postoperatively and 3D models of the mesh were generated. Dynamic MR sequences were acquired during valsalva to record mesh mobility. The area of the vagina effectively supported by the mesh (Effective Support Area (ESA)) was calculated. The 3D models' wall thickness map was analyzed to identify the locations of mesh folding. Intraclass correlation (ICC) was calculated to test the reliability of the methods. To measure the laxity and flatness of the mesh, the curvature and the ellipticity of the sacral flap were calculated. The ESA calculation methodology had ICC = 0.97. A reduction of 75.49 [61.55-78.67] % (median [IQR]) in area, 47.64 [38.07-59.81] % in anterior flap, and of 23.95 [10.96-27.21] % in the posterior flap was measured. The mesh appeared thicker near its attachment at the sacral promontory (n = 19) and near the vaginal apex (n = 22). The laxity of the mesh was 1.13 [1.10-1.16] and 60.55 [49.76-76.25] % of the sacral flap was flat. We could not reliably measure mesh mobility (ICC = 0.16). A methodology for complete 3D characterization of SC meshes using MR images was presented. After implantation, the supported area is much lower than what is prepared prior to implantation. We propose this happened during the surgery itself. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    ... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

  11. Assessment of Pain and Quality of Life in Lichtenstein Hernia Repair Using a New Monofilament PTFE Mesh: Comparison of Suture vs. Fibrin-Sealant Mesh Fixation.

    Science.gov (United States)

    Fortelny, René H; Petter-Puchner, Alexander H; Redl, Heinz; May, Christopher; Pospischil, Wolfgang; Glaser, Karl

    2014-01-01

    Inguinal hernia repair is one of the most common operations in general surgery. The Lichtenstein tension-free operation has become the gold standard in open inguinal hernia repair. Despite the low recurrence rates, pain and discomfort remain a problem for a large number of patients. The aim of this study was to compare suture fixation vs. fibrin sealing by using a new monofilament PTFE mesh, i.e., the Infinit(®) mesh by W. L. Gore & Associates. This study was designed as a controlled prospective single-center two-cohort study. A total of 38 patients were enrolled and operated in Lichtenstein technique either standard suture mesh fixation or fibrin-sealant mesh fixation were used as described in the TIMELI trial. Primary outcome parameters were postoperative complications with the new mesh (i.e., seroma, infection), pain, and quality of life evaluated by the VAS and the SF-36 questionnaire. Secondary outcome was recurrence assessed by ultrasound and physical examination. Follow-up time was 1 year. Significantly, less postoperative pain was reported in the fibrin-sealant group compared to the suture group at 6 weeks (P = 0.035), 6 months (P = 0.023), and 1 year (P = 0.011) postoperatively. Additionally, trends toward a higher postoperative quality of life, a faster surgical procedure, and a shorter hospital stay were seen in the fibrin-sealant group. Fibrin-sealant mesh fixation in Lichtenstein hernioplasty effectively reduces acute and chronic postoperative pain. Monofilament, macro-porous, knitted PTFE meshes seem to be a practicable alternative to commonly used polypropylene meshes in open inguinal hernia repair.

  12. Assessment of pain and quality of life in Lichtenstein hernia repair using a new monofilament PTFE mesh: comparison of suture vs. fibrin sealant mesh fixation

    Directory of Open Access Journals (Sweden)

    René H Fortelny

    2014-11-01

    Full Text Available Background: Inguinal hernia repair is one of the most common operations in general surgery. The Lichtenstein tension-free operation has become the gold standard in open inguinal hernia repair. Despite the low recurrence rates, pain and discomfort remain a problem for a large number of patients. The aim of this study was to compare suture fixation vs. fibrin sealing by using a new monofilament PTFE mesh, i.e. the Infinit® mesh by W. L. Gore & Associates. Methods: This study was designed as a controlled prospective single-centre two cohort study. A total of 38 patients were enrolled and operated in Lichtenstein technique either standard suture mesh fixation or fibrin sealant mesh fixation were used as described in the TIMELI trial. Primary outcome parameters were postoperative complications with the new mesh (i.e. seroma, infection, pain and quality of life evaluated by the VAS and the SF-36 questionnaire. Secondary outcome was recurrence assessed by ultrasound and physical examination. Follow-up time was 1 year.Results: Significantly less postoperative pain was reported in the fibrin sealant group compared to the suture group at 6 weeks (P=0.035, 6 months (P=0.023 and 1 year (P=0.011 postoperatively. Additionally trends towards a higher postoperative quality of life, a faster surgical procedure and a shorter hospital stay were seen in the fibrin sealant group.Conclusion: Fibrin sealant mesh fixation in Lichtenstein hernioplasty effectively reduces acute and chronic postoperative pain. Monofilament, macro-porous, knitted PTFE meshes seem to be a practicable alternative to commonly used polypropylene meshes in open inguinal hernia repair.

  13. 3D face analysis by using Mesh-LBP feature

    Science.gov (United States)

    Wang, Haoyu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    Objective: Face Recognition is one of the widely application of image processing. Corresponding two-dimensional limitations, such as the pose and illumination changes, to a certain extent restricted its accurate rate and further development. How to overcome the pose and illumination changes and the effects of self-occlusion is the research hotspot and difficulty, also attracting more and more domestic and foreign experts and scholars to study it. 3D face recognition fusing shape and texture descriptors has become a very promising research direction. Method: Our paper presents a 3D point cloud based on mesh local binary pattern grid (Mesh-LBP), then feature extraction for 3D face recognition by fusing shape and texture descriptors. 3D Mesh-LBP not only retains the integrity of the 3D geometry, is also reduces the need for recognition process of normalization steps, because the triangle Mesh-LBP descriptor is calculated on 3D grid. On the other hand, in view of multi-modal consistency in face recognition advantage, construction of LBP can fusing shape and texture information on Triangular Mesh. In this paper, some of the operators used to extract Mesh-LBP, Such as the normal vectors of the triangle each face and vertex, the gaussian curvature, the mean curvature, laplace operator and so on. Conclusion: First, Kinect devices obtain 3D point cloud face, after the pretreatment and normalization, then transform it into triangular grid, grid local binary pattern feature extraction from face key significant parts of face. For each local face, calculate its Mesh-LBP feature with Gaussian curvature, mean curvature laplace operator and so on. Experiments on the our research database, change the method is robust and high recognition accuracy.

  14. The quasidiffusion method for transport problems on unstructured meshes

    Science.gov (United States)

    Wieselquist, William A.

    2009-06-01

    In this work, we develop a quasidiffusion (QD) method for solving radiation transport problems on unstructured quadrilateral meshes in 2D Cartesian geometry, for example hanging-node meshes from adaptive mesh refinement (AMR) applications or skewed quadrilateral meshes from radiation hydrodynamics with Lagrangian meshing. The main result of the work is a new low-order quasidiffusion (LOQD) discretization on arbitrary quadrilaterals and a strategy for the efficient iterative solution which uses Krylov methods and incomplete LU factorization (ILU) preconditioning. The LOQD equations are a non-symmetric set of first-order PDEs that in second-order form resembles convection- diffusion with a diffusion tensor, with the difference that the LOQD equations contain extra cross-derivative terms. Our finite volume (FV) discretization of the LOQD equations is compared with three LOQD discretizations from literature. We then present a conservative, short characteristics discretization based on subcell balances (SCSB) that uses polynomial exponential moments to achieve robust behavior in various limits (e.g. small cells and voids) and is second- order accurate in space. A linear representation of the isotropic component of the scattering source based on face-average and cell-average scalar fluxes is also proposed and shown to be effective in some problems. In numerical tests, our QD method with linear scattering source representation shows some advantages compared to other transport methods. We conclude with avenues for future research and note that this QD method may easily be extended to arbitrary meshes in 3D Cartesian geometry.

  15. The Quick Measure of a Nurbs Surface Curvature for Accurate Triangular Meshing

    Directory of Open Access Journals (Sweden)

    Kniat Aleksander

    2014-04-01

    Full Text Available NURBS surfaces are the most widely used surfaces for three-dimensional models in CAD/ CAE programs. When a model for FEM calculation is prepared with a CAD program it is inevitable to mesh it finally. There are many algorithms for meshing planar regions. Some of them may be used for meshing surfaces but it is necessary to take the curvature of the surface under consideration to avoid poor quality mesh. The mesh must be denser in the curved regions of the surface. In this paper, instead of analysing a surface curvature, the method to assess how close is a mesh triangle to the surface to which its vertices belong, is presented. The distance between a mesh triangle and a parallel tangent plane through a point on a surface is the measure of the triangle quality. Finding the surface point whose projection is located inside the mesh triangle and which is the tangency point to the plane parallel to this triangle is an optimization problem. Mathematical description of the problem and the algorithm to find its solution are also presented in the paper.

  16. Fitting polynomial surfaces to triangular meshes with Voronoi squared distance minimization

    KAUST Repository

    Nivoliers, Vincent

    2012-11-06

    This paper introduces Voronoi squared distance minimization (VSDM), an algorithm that fits a surface to an input mesh. VSDM minimizes an objective function that corresponds to a Voronoi-based approximation of the overall squared distance function between the surface and the input mesh (SDM). This objective function is a generalization of the one minimized by centroidal Voronoi tessellation, and can be minimized by a quasi-Newton solver. VSDM naturally adapts the orientation of the mesh elements to best approximate the input, without estimating any differential quantities. Therefore, it can be applied to triangle soups or surfaces with degenerate triangles, topological noise and sharp features. Applications of fitting quad meshes and polynomial surfaces to input triangular meshes are demonstrated. © 2012 Springer-Verlag London.

  17. In vitro analysis of biopolymer coating with glycidoxypropyltrimethoxysilane on hernia meshes.

    Science.gov (United States)

    Metzler, Steffen; Zankovych, Sergiy; Rauchfuß, Falk; Dittmar, Yves; Jandt, Karin; Jandt, Klaus D; Settmacher, Utz; Scheuerlein, Hubert

    2017-07-01

    Certain coatings may improve the biocompatibility of hernia meshes. The coating with self-assembled monolayers, such as glycidoxypropyltrimethoxysilane (GOPS) can also improve the materials characteristics of implants. This approach was not yet explored in hernia meshes. It was the aim of this work to clarify if and how hernia meshes with their three-dimensional structure can be coated with GOPS and with which technique this coating can be best characterized. Commercially available meshes made from polypropylene (PP), polyester (PE), and expanded polytetrafluorethylene (ePTFE) have been coated with GOPS. The coatings were analyzed via X-ray photoelectron spectroscopy (XPS), confocal laser scanning microscopy (CLSM), and cell proliferation test (mouse fibroblasts). Cell viability and cytotoxicity were tested by MTT test. With the GOPS surface modification, the adherence of mouse fibroblasts on polyester meshes and the proliferation on ePTFE meshes were increased compared to noncoated meshes. Both XPS and CLSM are limited in their applicability and validity due to the three-dimensional mesh structure while CLSM was overall more suitable. In the MTT test, no negative effects of the GOPS coating on the cells were detected after 24 h. The present results show that GOPS coating of hernia meshes is feasible and effective. GOPS coating can be achieved in a fast and cost-efficient way. Further investigations are necessary with respect to coating quality and adverse effects before such a coating may be used in the clinical routine. In conclusion, GOPS is a promising material that warrants further research as coating of medical implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1083-1090, 2017. © 2016 Wiley Periodicals, Inc.

  18. Parallel unstructured mesh optimisation for 3D radiation transport and fluids modelling

    International Nuclear Information System (INIS)

    Gorman, G.J.; Pain, Ch. C.; Oliveira, C.R.E. de; Umpleby, A.P.; Goddard, A.J.H.

    2003-01-01

    In this paper we describe the theory and application of a parallel mesh optimisation procedure to obtain self-adapting finite element solutions on unstructured tetrahedral grids. The optimisation procedure adapts the tetrahedral mesh to the solution of a radiation transport or fluid flow problem without sacrificing the integrity of the boundary (geometry), or internal boundaries (regions) of the domain. The objective is to obtain a mesh which has both a uniform interpolation error in any direction and the element shapes are of good quality. This is accomplished with use of a non-Euclidean (anisotropic) metric which is related to the Hessian of the solution field. Appropriate scaling of the metric enables the resolution of multi-scale phenomena as encountered in transient incompressible fluids and multigroup transport calculations. The resulting metric is used to calculate element size and shape quality. The mesh optimisation method is based on a series of mesh connectivity and node position searches of the landscape defining mesh quality which is gauged by a functional. The mesh modification thus fits the solution field(s) in an optimal manner. The parallel mesh optimisation/adaptivity procedure presented in this paper is of general applicability. We illustrate this by applying it to a transient CFD (computational fluid dynamics) problem. Incompressible flow past a cylinder at moderate Reynolds numbers is modelled to demonstrate that the mesh can follow transient flow features. (authors)

  19. Interoperable mesh and geometry tools for advanced petascale simulations

    International Nuclear Information System (INIS)

    Diachin, L; Bauer, A; Fix, B; Kraftcheck, J; Jansen, K; Luo, X; Miller, M; Ollivier-Gooch, C; Shephard, M S; Tautges, T; Trease, H

    2007-01-01

    SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. The Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS) will deliver interoperable and interchangeable mesh, geometry, and field manipulation services that are of direct use to SciDAC applications. The premise of our technology development goal is to provide such services as libraries that can be used with minimal intrusion into application codes. To develop these technologies, we focus on defining a common data model and data-structure neutral interfaces that unify a number of different services such as mesh generation and improvement, front tracking, adaptive mesh refinement, shape optimization, and solution transfer operations. We highlight the use of several ITAPS services in SciDAC applications

  20. Are patient specific meshes required for EIT head imaging?

    Science.gov (United States)

    Jehl, Markus; Aristovich, Kirill; Faulkner, Mayo; Holder, David

    2016-06-01

    Head imaging with electrical impedance tomography (EIT) is usually done with time-differential measurements, to reduce time-invariant modelling errors. Previous research suggested that more accurate head models improved image quality, but no thorough analysis has been done on the required accuracy. We propose a novel pipeline for creation of precise head meshes from magnetic resonance imaging and computed tomography scans, which was applied to four different heads. Voltages were simulated on all four heads for perturbations of different magnitude, haemorrhage and ischaemia, in five different positions and for three levels of instrumentation noise. Statistical analysis showed that reconstructions on the correct mesh were on average 25% better than on the other meshes. However, the stroke detection rates were not improved. We conclude that a generic head mesh is sufficient for monitoring patients for secondary strokes following head trauma.

  1. Physico-chemical characterization of polyethylene of ultra high molecular weight modified with gamma irradiation and heavy ions

    International Nuclear Information System (INIS)

    Lagarde, M; Del Grosso, M; Fasce, D; Dommarco, R; Laino, S; Fasce, L.A

    2012-01-01

    The ultra high molecular weight polyethylene (UHMWPE) is a biomaterial widely used in total joint replacement. In this work, the effect of two different irradiation techniques on UHMWPE is analyzed. One technique involves gamma irradiation (γ) followed by a thermal treatment, thus modifying the material bulk. The other implies swift heavy ion irradiation (SHI), which have an effect only on the near surface layers. The surface nanomechanical properties are evaluated from depth sensing indentation experiments, while changes in crystallinity and chemical structure are determined by DSC and Raman spectroscopy. The results show that even when both techniques are able to improve the UHMWPE wear behavior, the effect on other mechanical properties and molecular structure modification is different. The γ irradiated sample exhibits lower crystallinity, hardness and modulus than the pristine UHMWPE, while the SHI irradiated sample exhibits higher crystallinity and enhanced mechanical properties than the later

  2. Mapping method for generating three-dimensional meshes: past and present

    International Nuclear Information System (INIS)

    Cook, W.A.; Oakes, W.R.

    1982-01-01

    Two transformations are derived in this paper. One is a mapping of a unit square onto a surve and the other is a mapping of a unit cube onto a three-dimensional region. Two meshing computer programs are then discussed that use these mappings. The first is INGEN, which has been used to calculate three-dimensional meshes for approximately 15 years. This meshing program uses an index scheme to number boundaries, surfaces, and regions. With such an index scheme, it is possible to control nodal points, elements, and boundary conditions. The second is ESCHER, a meshing program now being developed. Two primary considerations governing development of ESCHER are that meshes graded using quadrilaterals are required and that edge-line geometry defined by Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) systems will be a major source of geometry definition. This program separates the processes of nodal-point connectivity generation, computation of nodal-point mapping space coordinates, and mapping of nodal points into model space

  3. Vertex Normals and Face Curvatures of Triangle Meshes

    KAUST Repository

    Sun, Xiang

    2016-08-12

    This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals deserves to be called a ʼnormal’ congruence. Our main results are a discussion of various definitions of normality, a detailed study of the geometry of such congruences, and a concept of curvatures and shape operators associated with the faces of a triangle mesh. These curvatures are compatible with both normal congruences and the Steiner formula.

  4. Deflating link buffers in a wireless mesh network

    KAUST Repository

    Jamshaid, Kamran; Shihada, Basem; Showail, Ahmad; Levis, Philip

    2014-01-01

    We analyze the problem of buffer sizing for backlogged TCP flows in 802.11-based wireless mesh networks. Our objective is to maintain high network utilization while providing low queueing delays. Unlike wired networks where a single link buffer feeds a bottleneck link, the radio spectral resource in a mesh network is shared among a set of contending mesh routers. We account for this by formulating the buffer size problem as sizing a collective buffer distributed over a set of interfering nodes. In this paper we propose mechanisms for sizing and distributing this collective buffer among the mesh nodes constituting the network bottleneck. Our mechanism factors in the network topology and wireless link rates, improving on pre-set buffer allocations that cannot optimally work across the range of configurations achievable with 802.11 radios. We evaluate our mechanisms using simulations as well as experiments on a testbed. Our results show that we can reduce the RTT of a flow by 6× or more, at the cost of less than 10% drop in end-to-end flow throughput.

  5. Deflating link buffers in a wireless mesh network

    KAUST Repository

    Jamshaid, Kamran

    2014-05-01

    We analyze the problem of buffer sizing for backlogged TCP flows in 802.11-based wireless mesh networks. Our objective is to maintain high network utilization while providing low queueing delays. Unlike wired networks where a single link buffer feeds a bottleneck link, the radio spectral resource in a mesh network is shared among a set of contending mesh routers. We account for this by formulating the buffer size problem as sizing a collective buffer distributed over a set of interfering nodes. In this paper we propose mechanisms for sizing and distributing this collective buffer among the mesh nodes constituting the network bottleneck. Our mechanism factors in the network topology and wireless link rates, improving on pre-set buffer allocations that cannot optimally work across the range of configurations achievable with 802.11 radios. We evaluate our mechanisms using simulations as well as experiments on a testbed. Our results show that we can reduce the RTT of a flow by 6× or more, at the cost of less than 10% drop in end-to-end flow throughput.

  6. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model.

    Science.gov (United States)

    Kahan, Lindsey G; Lake, Spencer P; McAllister, Jared M; Tan, Wen Hui; Yu, Jennifer; Thompson, Dominic; Brunt, L Michael; Blatnik, Jeffrey A

    2018-02-01

    Hernia meshes exhibit variability in mechanical properties, and their mechanical match to tissue has not been comprehensively studied. We used an innovative imaging model of in vivo strain tracking and ex vivo mechanical analysis to assess effects of mesh properties on repaired abdominal walls in a porcine model. We hypothesized that meshes with dissimilar mechanical properties compared to native tissue would alter abdominal wall mechanics more than better-matched meshes. Seven mini-pigs underwent ventral hernia creation and subsequent open repair with one of two heavyweight polypropylene meshes. Following mesh implantation with attached radio-opaque beads, fluoroscopic images were taken at insufflation pressures from 5 to 30 mmHg on postoperative days 0, 7, and 28. At 28 days, animals were euthanized and ex vivo mechanical testing performed on full-thickness samples across repaired abdominal walls. Testing was conducted on 13 mini-pig controls, and on meshes separately. Stiffness and anisotropy (the ratio of stiffness in the transverse versus craniocaudal directions) were assessed. 3D reconstructions of repaired abdominal walls showed stretch patterns. As pressure increased, both meshes expanded, with no differences between groups. Over time, meshes contracted 17.65% (Mesh A) and 0.12% (Mesh B; p = 0.06). Mesh mechanics showed that Mesh A deviated from anisotropic native tissue more than Mesh B. Compared to native tissue, Mesh A was stiffer both transversely and craniocaudally. Explanted repaired abdominal walls of both treatment groups were stiffer than native tissue. Repaired tissue became less anisotropic over time, as mesh properties prevailed over native abdominal wall properties. This technique assessed 3D stretch at the mesh level in vivo in a porcine model. While the abdominal wall expanded, mesh-ingrown areas contracted, potentially indicating stresses at mesh edges. Ex vivo mechanics demonstrate that repaired tissue adopts mesh properties, suggesting

  7. Outcome of transvaginal mesh and tape removed for pain only.

    Science.gov (United States)

    Hou, Jack C; Alhalabi, Feras; Lemack, Gary E; Zimmern, Philippe E

    2014-09-01

    Because there is reluctance to operate for pain, we evaluated midterm outcomes of vaginal mesh and synthetic suburethral tape removed for pain as the only indication. After receiving institutional review board approval we reviewed a prospective database of women without a neurogenic condition who underwent surgery for vaginal mesh or suburethral tape removal with a focus on pain as the single reason for removal and a minimum 6-month followup. The primary outcome was pain level assessed by a visual analog scale (range 0 to 10) at baseline and at each subsequent visit with the score at the last visit used for analysis. Parameters evaluated included demographics, mean time to presentation and type of mesh or tape inserted. From 2005 to 2013, 123 patients underwent surgical removal of mesh (69) and suburethral tape (54) with pain as the only indication. Mean followup was 35 months (range 6 to 59) in the tape group and 22 months (range 6 to 47) in the mesh group. The visual analog scale score decreased from a mean preoperative level of 7.9 to 0.9 postoperatively (p = 0.0014) in the mesh group and from 5.3 to 1.5 (p = 0.00074) in the tape group. Pain-free status, considered a score of 0, was achieved in 81% of tape and 67% of mesh cases, respectively. No statistically significant difference was found between the groups. When pain is the only indication for suburethral tape or vaginal mesh removal, a significant decrease in the pain score can be durably expected after removal in most patients at midterm followup. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Mesh size effects on assessments of planktonic hydrozoan abundance and assemblage structure

    Science.gov (United States)

    Nogueira Júnior, Miodeli; Pukanski, Luis Eduardo de M.; Souza-Conceição, José M.

    2015-04-01

    The choice of appropriate mesh-size is paramount to accurately quantify planktonic assemblages, however there is no such information available for hydrozoans. Here planktonic hydrozoan abundance and assemblage structure were compared using 200 and 500 μm meshes at Babitonga estuary (S Brazil), throughout a year cycle. Species richness and Shannon-Wiener diversity were higher in the 200 μm mesh, while evenness was typically higher in the 500 μm. Assemblage structure was significantly different between meshes (PERMANOVA, P 8 mm in October. These results suggest that both meshes have their drawbacks and the best choice would depend on the objectives of each study. Nevertheless species richness, total abundances and most taxa were better represented by the 200 μm mesh, suggesting that it is more appropriate to quantitatively sample planktonic hydrozoan assemblages.

  9. Sending policies in dynamic wireless mesh using network coding

    DEFF Research Database (Denmark)

    Pandi, Sreekrishna; Fitzek, Frank; Pihl, Jeppe

    2015-01-01

    This paper demonstrates the quick prototyping capabilities of the Python-Kodo library for network coding based performance evaluation and investigates the problem of data redundancy in a network coded wireless mesh with opportunistic overhearing. By means of several wireless meshed architectures ...

  10. Lagrangian fluid dynamics using the Voronoi-Delauanay mesh

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1981-01-01

    A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed

  11. [Three years results of transvaginal cystocele repair with polypropylene mesh using a tension-free technique].

    Science.gov (United States)

    El Harrech, Y; Ameur, A; Janane, A; Moufide, K; Ghadouane, M; Abbar, M

    2010-01-01

    To evaluate the long term efficacy and safety of transvaginal implantation of a non-resorbable synthetic prosthesis (Gynemesh) for the treatment of cystocele using transvaginal free tension technique. Prospective study of patients that have been submitted to correction of cystocele between April 2004 and July 2007. A prolene mesh was cut to an appropriate size to cover the whole cystocele leaving two tabs on each side. The two tabs of the mesh were then placed in paravaginal spaces, tension free, without stitches. Mesh was used in 31 patients. All patients had a symptomatic cystocele >or= 2 according to Baden-Walker halfway classification. Patients were reviewed initially at 1 and 3 month and then every 6 months. The mean age of the patients was 58 years (range: 47-70 years). Mean parity was 5.8 (range 1-11), and mean weight was 75 kg (range 60-82Kg). All women were postmenopausal. The operation was combined with vaginal hysterectomy in 2 patients, Posterior colporraphy in 2 patients, Perineorrhaphy in 1 patient, Sacrospinous fixation in 2 patients, transobturator tape for stress urinary incontinence in 7 women. Average time of surgery was 23 minutes for cystocele. There were no major complications, such as trauma to the bladder, urethra, bowels, or large vessels in the patient group treated. There was no immediate postoperative complications (up to 7 days) recorded. No hematoma or infection was observed in the operative area. Mesh erosion was detected in one patient. It was treated by excision of the eroded part of the mesh. Mean follow-up was 36.4 months (18 to 52 months). Using our definition of success based on both anatomic and functional outcomes, the overall cure rate was 74.19% (asymptomatic with no or grade 1 cystocele). The improvement rate (asymptomatic with a grade 2 cystocele) was 19.35% and the overall failure rate (symptomatic or with a grade 3 or 4 cystocele) was only 6.4% (2 women). The interposition of a sub-vesical transversal tension

  12. Management of complications arising from transvaginal mesh kit procedures: a tertiary referral center's experience.

    Science.gov (United States)

    Hurtado, Eric A; Appell, Rodney A

    2009-01-01

    This case series' purpose is to review a referral center's experience with complications from mesh kits. A chart review of 12 patients who presented with complications associated with transvaginal mesh kit procedures was performed. All patients underwent complete surgical removal of the mesh to treat mesh exposure, pain, or vaginal bleeding/discharge followed by an anterior or posterior repair. The mean follow-up time after surgery was 3.4 months. Eight of 12 patients had mesh that had formed a fibrotic band. Six of 12 patients had complete resolution of pain. Of the nine patients with mesh exposure, all required significant resection of the vaginal wall. No further mesh exposure occurred. The use of transvaginal mesh kits may cause previously undescribed complications such as pelvic/vaginal pain or large extrusions requiring complete removal. Removal of all mesh except the arms may cure or significantly improve these problems.

  13. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    Science.gov (United States)

    Boutchko, R.; Sitek, A.; Gullberg, G. T.

    2013-05-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  14. Practical implementation of tetrahedral mesh reconstruction in emission tomography

    International Nuclear Information System (INIS)

    Boutchko, R; Gullberg, G T; Sitek, A

    2013-01-01

    This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio

  15. LOOM-P: a finite element mesh generation program with on-line graphic display

    International Nuclear Information System (INIS)

    Ise, Takeharu; Yamazaki, Toshio.

    1977-06-01

    A description of the two-dimensional mesh generation program, LOOM-P, is given in detail. The program is developed newly to produce a mesh network for a reactor core geometry with the help of an automatic mesh generation routine built in it, under the control of the refresh-type graphic display. It is therefore similar to the edit program of the self-organizing mesh generator, QMESH-RENUM. Additional techniques are incorporated to improve the pattern of mesh elements by means of on-line conversational mode. The obtained mesh network is edited out as input data to the three-dimensional neutron diffusion theory code, FEM-BABEL. (auth.)

  16. The long-term behavior of lightweight and heavyweight meshes used to repair abdominal wall defects is determined by the host tissue repair process provoked by the mesh.

    Science.gov (United States)

    Pascual, Gemma; Hernández-Gascón, Belén; Rodríguez, Marta; Sotomayor, Sandra; Peña, Estefania; Calvo, Begoña; Bellón, Juan M

    2012-11-01

    Although heavyweight (HW) or lightweight (LW) polypropylene (PP) meshes are widely used for hernia repair, other alternatives have recently appeared. They have the same large-pore structure yet are composed of polytetrafluoroethylene (PTFE). This study compares the long-term (3 and 6 months) behavior of meshes of different pore size (HW compared with LW) and composition (PP compared with PTFE). Partial defects were created in the lateral wall of the abdomen in New Zealand White rabbits and then repaired by the use of a HW or LW PP mesh or a new monofilament, large-pore PTFE mesh (Infinit). At 90 and 180 days after implantation, tissue incorporation, gene and protein expression of neocollagens (reverse transcription-polymerase chain reaction/immunofluorescence), macrophage response (immunohistochemistry), and biomechanical strength were determined. Shrinkage was measured at 90 days. All three meshes induced good host tissue ingrowth, yet the macrophage response was significantly greater in the PTFE implants (P .05). Host collagen deposition is mesh pore size dependent whereas the macrophage response induced is composition dependent with a greater response shown by PTFE. In the long term, macroporous meshes show comparable biomechanical behavior regardless of their pore size or composition. Copyright © 2012 Mosby, Inc. All rights reserved.

  17. Trajectory Optimization Based on Multi-Interval Mesh Refinement Method

    Directory of Open Access Journals (Sweden)

    Ningbo Li

    2017-01-01

    Full Text Available In order to improve the optimization accuracy and convergence rate for trajectory optimization of the air-to-air missile, a multi-interval mesh refinement Radau pseudospectral method was introduced. This method made the mesh endpoints converge to the practical nonsmooth points and decreased the overall collocation points to improve convergence rate and computational efficiency. The trajectory was divided into four phases according to the working time of engine and handover of midcourse and terminal guidance, and then the optimization model was built. The multi-interval mesh refinement Radau pseudospectral method with different collocation points in each mesh interval was used to solve the trajectory optimization model. Moreover, this method was compared with traditional h method. Simulation results show that this method can decrease the dimensionality of nonlinear programming (NLP problem and therefore improve the efficiency of pseudospectral methods for solving trajectory optimization problems.

  18. A moving mesh finite difference method for equilibrium radiation diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  19. A moving mesh finite difference method for equilibrium radiation diffusion equations

    International Nuclear Information System (INIS)

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-01-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation

  20. Tetrahedral meshing via maximal Poisson-disk sampling

    KAUST Repository

    Guo, Jianwei

    2016-02-15

    In this paper, we propose a simple yet effective method to generate 3D-conforming tetrahedral meshes from closed 2-manifold surfaces. Our approach is inspired by recent work on maximal Poisson-disk sampling (MPS), which can generate well-distributed point sets in arbitrary domains. We first perform MPS on the boundary of the input domain, we then sample the interior of the domain, and we finally extract the tetrahedral mesh from the samples by using 3D Delaunay or regular triangulation for uniform or adaptive sampling, respectively. We also propose an efficient optimization strategy to protect the domain boundaries and to remove slivers to improve the meshing quality. We present various experimental results to illustrate the efficiency and the robustness of our proposed approach. We demonstrate that the performance and quality (e.g., minimal dihedral angle) of our approach are superior to current state-of-the-art optimization-based approaches.

  1. The Effect of Cyclic Loading on the Mechanical Performance of Surgical Mesh

    Directory of Open Access Journals (Sweden)

    Ho Y.C.

    2010-06-01

    Full Text Available Polymeric meshes in the form of knitted nets are commonly used in the surgical repair of pelvic organ prolapses. Although a number of these prosthetic meshes are commercially available, there is little published data on their mechanical performance, in particular on the change in stiffness under the repeated loading experienced in vivo. In this in vitro study, cyclic tensile loading was applied to rectangular strips of four different commercially available meshes. The applied force and resultant displacement was monitored throughout the tests in order to evaluate the change in stiffness. In addition, each mesh was randomly marked using indelible ink in order to permit the use of threedimensional digital image correlation to evaluate local displacements during the tests. However, the scale and form of the deformation experienced by some of the meshes made correlation difficult so that confirmation of the values of stiffness were only obtained for two meshes. The results demonstrate that all the meshes experience an increase in stiffness during cyclic loading, that in most cases cyclic creep occurs and in some cases large-scale, irreversible reorganisation of the mesh structure occurs after as few as 200 cycles at loads of the order of 10N.

  2. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    Science.gov (United States)

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  3. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    Science.gov (United States)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2014-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  4. Shells of Nerita gastropod bio-monitors of heavy metals pollution around the Indian Ocean

    International Nuclear Information System (INIS)

    Badran, M.I.

    1999-01-01

    Minor and heavy metals Mg, Sr, Mn, Fe and Zn were measured in individual shells of four different Nerita species collected from Phuket Island, Thailand. Shell weight and crystallography were also recorded. Heavy metal concentrations were poorly correlated with both shell weight and crystallography. Out of the four species, N. albicilla acquired the highest heavy metal concentrations. Subsequently shells of N. albicilla collected from different sites around the Indian Ocean were compared for their metal concentrations. Shells of industrial sites in Kenya and India had significantly higher heavy metal concentrations than shells from pristine sites in Mauritius and Aldabra. Discussing the factors that may affect the shell metal concentration, the variations encountered herein are best attributed to the ambient bio-available metal concentration. (author)

  5. Developments of DPF systems with mesh laminated structures. Performances of DPF systems which consist of the metal-mesh laminated filter combustion with the alumina-fiber mesh, and the combustion device of trapped diesel particles; Mesh taso kozo no DPF no kaihatsu. Kinzokusen to arumina sen`i mesh ni yoru fukugo filter to filter heiyo heater ni yoru DPF no seino

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, T; Tange, A; Matsuda, K [NHK Spring Co. Ltd., Yokohama (Japan)

    1997-10-01

    For the purpose of continuous run without any maintenance, new DPF (diesel particulate filter)systems laminated by both metal-wire mesh and alumina-fiber mesh alternately, are under the developments. The perfect combustion of trapped diesel particulate can be achieved by a couple of the resistance heating devices inserted into the filter. 5 refs., 7 figs., 3 tabs.

  6. Staged Closure of Giant Omphalocele using Synthetic Mesh

    OpenAIRE

    Parida, Lalit; Pal, Kamalesh; Al Buainain, Hussah; Elshafei, Hossam

    2014-01-01

    Giant omphalocele is difficult to manage and is associated with a poor outcome. A male newborn presented to our hospital with a giant omphalocele. We performed a staged closure of giant omphalocele using synthetic mesh to construct a silo and then mesh abdominoplasty in the neonatal period that led to a successful outcome within a reasonable period of hospital stay.

  7. Spatial and Temporal Variability of Some of Heavy Metals in Aerosols of Lenjanat Region, Esfahan

    Directory of Open Access Journals (Sweden)

    N. Namazi

    2016-02-01

    Full Text Available Introduction: Heavy metals released from stationaryand mobile origins can be transported in water, air and soil and can be even absorbed by plants, animals and human bodies. Trace elements are currently of great environmental concern. Nowadays, one of the most important environmental problems is pollution of agricultural soils occurs by heavy metals due to human activities. Atmospheric subsidence is one of the main sources of these elements which can result from industrial activities, fertilizers, sewage sludge, compost and pesticides. Heavy metals mapping of the atmosphere dusts indicates the status of pollution and its intensity in industrial regions. This information can also be used as a guideline for better management and pollution control. This study was performed to investigate the spatial and temporal availability of heavy metals in atmospheric dusts of Lenjanat region, Isfahan where agricultural land is extensively surrounded by industrial activities like steel making factory (Esfahan, cement making factory (Sepahan and Esfahan and Bamalead mine. Materials and Methods: Sampling was done from 60 points with the same altitude(three to six meters from the groundand their location was recorded by GPS. Glass traps (1×1 m2 covered by plastic mesh (2 × 2 cmvents were used to trap the dusts for four seasons of the year. Collected dust samples were passed through a 200 mm mesh screen size and the total weight of the dusts and the heavy metals content of Cd, Zn, Cu, Ni and Pbwere determined(with HNO3 60%. Data analysis was performed using Statistical 6.0 software. Analysis of spatial data via variogram was calculated and performed using Variowin, 2.2 software packages. After determination of the best fitting model, kriged maps of the total concentration of heavy metals were prepared by Surfer 8 software. Results and Discussion: The average concentrations of Zn, Pb and Cd in dust in most parts of the study area were much higher than the soil

  8. Heavy water physical verification in power plants

    International Nuclear Information System (INIS)

    Morsy, S.; Schuricht, V.; Beetle, T.; Szabo, E.

    1986-01-01

    This paper is a report on the Agency experience in verifying heavy water inventories in power plants. The safeguards objectives and goals for such activities are defined in the paper. The heavy water is stratified according to the flow within the power plant, including upgraders. A safeguards scheme based on a combination of records auditing, comparing records and reports, and physical verification has been developed. This scheme has elevated the status of heavy water safeguards to a level comparable to nuclear material safeguards in bulk facilities. It leads to attribute and variable verification of the heavy water inventory in the different system components and in the store. The verification methods include volume and weight determination, sampling and analysis, non-destructive assay (NDA), and criticality check. The analysis of the different measurement methods and their limits of accuracy are discussed in the paper

  9. MESH2D Grid generator design and use

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-31

    Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].

  10. Surgical excision of eroded mesh after prior abdominal sacrocolpopexy.

    Science.gov (United States)

    South, Mary M T; Foster, Raymond T; Webster, George D; Weidner, Alison C; Amundsen, Cindy L

    2007-12-01

    We previously described an endoscopic-assisted transvaginal mesh excision technique. This study compares surgical outcomes after transvaginal mesh excision vs endoscopic-assisted transvaginal mesh excision. In addition, we reviewed our postoperative outcomes with excision via laparotomy. This was an inclusive retrospective analysis of patients presenting to our institution from 1997 to 2006 for surgical management of vaginal erosion of permanent mesh after sacrocolpopexy. Three techniques were utilized: transvaginal, endoscopic-assisted transvaginal, and laparotomy. For the patients undergoing transvaginal excision, data recorded included number and type of excisions performed, number of prior excisions performed at outside facilities, intraoperative and postoperative complications (including blood transfusions, pelvic abscess, or bowel complications), use of postoperative antibiotics, persistent symptoms of vaginal bleeding and discharge at follow-up, and demographic characteristics. The intraoperative and postoperative complications and the postoperative symptoms were recorded for the laparotomy cases. Thirty-one patients underwent transvaginal mesh excision during this time period: 17 endoscopic-assisted transvaginal and 14 transvaginal without endoscope assistance. In addition, a total of 7 patients underwent abdominal excision via laparotomy. Comparison of the 2 vaginal methods revealed no difference in the demographics or success rate, with success defined as no symptoms at follow-up. Endoscopic-assisted transvaginal excision was successful in 7 of 17 patients and transvaginal without endoscopic assistance in 9 of 13 patients (1 patient excluded for lack of follow-up data) for a total vaginal success rate of 53.3%. No intraoperative and only minor postoperative complications occurred with either vaginal method. Three patients underwent 3 vaginal attempts to achieve complete symptom resolution. The average follow-up time for the entire vaginal group was 14

  11. An Agent Based Collaborative Simplification of 3D Mesh Model

    Science.gov (United States)

    Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro

    Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.

  12. Assessment of the anti-biofouling potentials of a copper iodide-doped nylon mesh.

    Science.gov (United States)

    Sato, Tetsuya; Fujimori, Yoshie; Nakayama, Tsuruo; Gotoh, Yasuo; Sunaga, Yoshihiko; Nemoto, Michiko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2012-08-01

    We propose a copper iodide (CuI)-doped nylon mesh prepared using polyiodide ions as a precursor toward anti-biofouling polymer textile. The CuI-doped nylon mesh was subjected to the prevention of biofouling in marine environments. The attachment of the marine organisms was markedly inhibited on the CuI-doped nylon mesh surface until 249 days. Scanning electron microscopy-energy dispersive X-ray analysis indicated that copper compounds were maintained in the nylon mesh after the field experiment, although copper content in the nylon mesh was reduced. Therefore, the copper ions slowly dissolved from nylon mesh will contribute to the long-term prevention of biofouling. Furthermore, electron spin resonance analysis revealed the generation of reactive oxygen species (ROS) from CuI-doped nylon mesh after the field experiment. One of the possibilities for toxic action of copper ions will be the direct effect of Cu+ -induced ROS on biofilm forming on nylon mesh surface. The proposed polymer textile can be applied to fishing and aquafarming nets, mooring rope for ship, or silt fence to restrict polluted water in marine environments.

  13. Numerical study of Taylor bubbles with adaptive unstructured meshes

    Science.gov (United States)

    Xie, Zhihua; Pavlidis, Dimitrios; Percival, James; Pain, Chris; Matar, Omar; Hasan, Abbas; Azzopardi, Barry

    2014-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube. This type of bubble flow regime often occurs in gas-liquid slug flows in many industrial applications, including oil-and-gas production, chemical and nuclear reactors, and heat exchangers. The objective of this study is to investigate the fluid dynamics of Taylor bubbles rising in a vertical pipe filled with oils of extremely high viscosity (mimicking the ``heavy oils'' found in the oil-and-gas industry). A modelling and simulation framework is presented here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rise and reduce the computational effort without sacrificing accuracy. The numerical framework consists of a mixed control-volume and finite-element formulation, a ``volume of fluid''-type method for the interface capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Numerical examples of some benchmark tests and the dynamics of Taylor bubbles are presented to show the capability of this method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  14. A comparative study of onlay and retrorectus mesh placement in incisional hernia repair

    Directory of Open Access Journals (Sweden)

    Kundan Kharde

    2013-01-01

    Full Text Available Introduction: Incisional hernia after abdominal surgery is a well-known complication and the incidence of incisional hernias continues to be 2-11% after laparotomy. The repair of incisional hernia has always been a challenge to the surgeon. Various operative techniques for the repair of incisional hernia are in practice; however, the management is not standardized. The retro-rectus mesh placement or the sub-lay technique, popularized by Rives and Stoppa in Europe, has been reported to be quite effective, with low recurrence rates (0-23% and minimal complications. Aims and Objective: The purpose of this study was to compare the traditional on-lay mesh and retro-rectus mesh placement in incisional hernia repairs in terms of time taken for surgery, early complications (wound infections, Mesh extrusion, and Delayed complications (Recurrence. Materials and Methods: This is a prospective study which was conducted in the surgical department of our hospital. A total of 50 cases were included in this study. Of these cases, 25 cases were operated by the on-lay mesh method and 25 by retro-rectus mesh placement. Only the patients with midline hernias up to 10 cm in diameter were included in the study. Result: The operative time for retro-rectus mesh placement was insignificantly higher than that of on-lay mesh repair, whereas, complications like superficial Surgical site infection SSI were identical in both the study groups, but deep SSI leading to infection of mesh was higher in on-lay mesh repair. The recurrence rate was found to be 4% in on-lay mesh repair and 0% in retro-rectus mesh repair. Conclusion: The follow-up period in this study was 6months; hence, late recurrences were not taken into account. However, the low rate of local complications and the low recurrence rate indicate that retro-rectus mesh repair has an advantage over traditional on-lay repair.

  15. Users manual for Opt-MS : local methods for simplicial mesh smoothing and untangling.

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, L.

    1999-07-20

    Creating meshes containing good-quality elements is a challenging, yet critical, problem facing computational scientists today. Several researchers have shown that the size of the mesh, the shape of the elements within that mesh, and their relationship to the physical application of interest can profoundly affect the efficiency and accuracy of many numerical approximation techniques. If the application contains anisotropic physics, the mesh can be improved by considering both local characteristics of the approximate application solution and the geometry of the computational domain. If the application is isotropic, regularly shaped elements in the mesh reduce the discretization error, and the mesh can be improved a priori by considering geometric criteria only. The Opt-MS package provides several local node point smoothing techniques that improve elements in the mesh by adjusting grid point location using geometric, criteria. The package is easy to use; only three subroutine calls are required for the user to begin using the software. The package is also flexible; the user may change the technique, function, or dimension of the problem at any time during the mesh smoothing process. Opt-MS is designed to interface with C and C++ codes, ad examples for both two-and three-dimensional meshes are provided.

  16. Form-finding with polyhedral meshes made simple

    KAUST Repository

    Tang, Chengcheng

    2015-08-09

    We solve the form-finding problem for polyhedral meshes in a way which combines form, function and fabrication; taking care of user-specified constraints like boundary interpolation, planarity of faces, statics, panel size and shape, enclosed volume, and cost. Our main application is the interactive modeling of meshes for architectural and industrial design. Our approach can be described as guided exploration of the constraint space whose algebraic structure is simplified by introducing auxiliary variables and ensuring that constraints are at most quadratic.

  17. Form-finding with polyhedral meshes made simple

    KAUST Repository

    Tang, Chengcheng; Sun, Xiang; Gomes, Alexandra; Wallner, Johannes; Pottmann, Helmut

    2015-01-01

    We solve the form-finding problem for polyhedral meshes in a way which combines form, function and fabrication; taking care of user-specified constraints like boundary interpolation, planarity of faces, statics, panel size and shape, enclosed volume, and cost. Our main application is the interactive modeling of meshes for architectural and industrial design. Our approach can be described as guided exploration of the constraint space whose algebraic structure is simplified by introducing auxiliary variables and ensuring that constraints are at most quadratic.

  18. Evidence to justify retention of transvaginal mesh: comparison between laparoscopic sacral colpopexy and transvaginal Elevate™ mesh.

    Science.gov (United States)

    To, Valérie; Hengrasmee, Pattaya; Lam, Alan; Luscombe, Georgina; Lawless, Anna; Lam, Justin

    2017-12-01

    To determine if laparoscopic sacral colpopexy (LSC) offers better apical support with a lower exposure rate than transvaginal mesh surgery with Elevate™. This was a retrospective cohort study comparing patients with apical prolapse (POP-Q point C ≥ -1) who underwent Elevate™ mesh repair (n = 146) with patients who underwent laparoscopic sacral colpopexy (n = 267). The sacral colpopexy group had a mean age of 59 years and a BMI of 25.7. Patients in the Elevate™ group were older, with a mean age of 63 and a BMI of 26.3. Most of the patients of both groups presented with pelvic organ prolapse stage III (LSC 73.8% and Elevate™ 87.0%) and their mean POP-Q point C were not significantly different (LSC 1.4 vs Elevate™ 1.2 cm). Operative time was longer in the LSC group (113 vs 91 min, p < 0.001), but estimated blood loss was lower (75 cm 3 vs 137 cm 3 , p < 0.001). No difference in mesh exposure rate could be found between the two groups at one year (Elevate™ 0.7% vs LSC 2.6%, OR 0.26, 95% CI 0.03 to 2.10, p = 0.21). One-year objective cure rate, defined as no descent beyond the hymen, was 97.0% in the LSC group and 96.6% in the Elevate™ group (p = .81). The overall recurrence (objective, subjective recurrence or reoperation) was also not different between the groups (LSC 4.5% vs Elevate 4.8%, p = 0.89). Transvaginal Elevate™ mesh delivers comparable apical support with a low exposure rate similar to that of laparoscopic sacral colpopexy.

  19. Electroformation of Giant Vesicles on a Polymer Mesh

    Directory of Open Access Journals (Sweden)

    Yukihisa Okumura

    2011-07-01

    Full Text Available Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs from egg yolk phosphatidylcholine under applied electric voltage was examined on a substrate of a polymer mesh placed between two planar indium tin oxide coated glass electrodes. Under appropriate conditions, GVs were formed in good yield on meshes of various polymer materials, namely, hydrophobic poly(propylene, poly(ethylene terephthalate, a carbon fiber/nylon composite, and relatively hydrophilic nylon. Arranging threads in a mesh structure with appropriate openings improved GV formation compared to simply increasing the number of threads. For optimal electroformation of GVs, the size and shape of a mesh opening were crucial. With a too large opening, GV formation deteriorated. When the sides of an opening were partially missing, GV formation did not occur efficiently. With an adequate opening, a deposited lipid solution could fill the opening, and a relatively uniform lipid deposit formed on the surface of threads after evaporation of the solvent. This could supply a sufficient amount of lipids to the opening and also prevent a lipid deposit from becoming too thick for electroformation. As a result, good GV formation was often observed in openings filled with swelled lipid.

  20. Transvaginal mesh kits--how "serious" are the complications and are they reversible?

    Science.gov (United States)

    Lee, Dominic; Dillon, Benjamin; Lemack, Gary; Gomelsky, Alex; Zimmern, Philippe

    2013-01-01

    To review the merit of the U.S. Food and Drug Administration-issued warnings on the use of transvaginal mesh in women with pelvic organ prolapse because of escalating complications. On institutional review board approval, we reviewed the data from 2 tertiary institutions managing complications of transvaginal mesh. The data recorded included mesh type, details of surgical removal, and patient-reported clinical outcomes. From 2006 to March 2011, 58 women were evaluated. Their mean age was 54.6 years (range 32-80), with a mean follow-up of 13 months (range 6-67). The mean interval to mesh excision surgery from the original prolapse surgery was 21 months (range 2-60). Of the 58 women, 35 (60%) had undergone concurrent midurethral sling surgery with the transvaginal mesh surgery. Also, 21 of the 58 patients (36%) had undergone initial mesh removal attempts before their referral to either tertiary institution. Most women presented with multiple complaints, with mesh extrusion the most frequently reported (n=43 [74%]). Of the 58 women, 17 (29%) required re-excision of residual mesh, 13 once and 4 twice. Five women developed recurrent symptomatic pelvic organ prolapse (7%). The residual rate of dyspareunia and pelvic pain was 14% and 22%, respectively. Fourteen women (24%) were treated successfully, with complete resolution of all presenting symptoms. As outlined in the Food and Drug Administration notifications, patients should be forewarned that some transvaginal mesh complications are life altering and might not always be surgically correctable. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Electromagnetic interaction of a rotating plasma flow with a conducting mesh

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Sato, Hirofumi; Iwaya, Tohru; Sato, Naoyuki; Tanabe, Toshio; Mase, Hiroshi

    2001-01-01

    The effect of a conducting mesh (floating) on the penetrating current (a fraction of discharge current flowing in the downstream across a magnetic field) and the rotational velocity has been investigated and results have been compared with Simpson's model. The velocity was independent of the conductance of the mesh contrary to Simpson's model since the mesh is floating in the present study. (author)

  2. The numerical simulation study of hemodynamics of the new dense-mesh stent

    Science.gov (United States)

    Ma, Jiali; Yuan, Zhishan; Yu, Xuebao; Feng, Zhaowei; Miao, Weidong; Xu, Xueli; Li, Juntao

    2017-09-01

    The treatment of aortic aneurysm in new dense mesh stent is based on the principle of hemodynamic changes. But the mechanism is not yet very clear. This paper analyzed and calculated the hemodynamic situation before and after the new dense mesh stent implanting by the method of numerical simulation. The results show the dense mesh stent changed and impacted the blood flow in the aortic aneurysm. The changes include significant decrement of blood velocity, pressure and shear forces, while ensuring blood can supply branches, which means the new dense mesh stent's hemodynamic mechanism in the treatment of aortic aneurysm is clearer. It has very important significance in developing new dense mesh stent in order to cure aortic aneurysm.

  3. A mesh density study for application to large deformation rolling process evaluation

    International Nuclear Information System (INIS)

    Martin, J.A.

    1997-12-01

    When addressing large deformation through an elastic-plastic analysis the mesh density is paramount in determining the accuracy of the solution. However, given the nonlinear nature of the problem, a highly-refined mesh will generally require a prohibitive amount of computer resources. This paper addresses finite element mesh optimization studies considering accuracy of results and computer resource needs as applied to large deformation rolling processes. In particular, the simulation of the thread rolling manufacturing process is considered using the MARC software package and a Cray C90 supercomputer. Both mesh density and adaptive meshing on final results for both indentation of a rigid body to a specified depth and contact rolling along a predetermined length are evaluated

  4. Deploy production sliding mesh capability with linear solver benchmarking.

    Energy Technology Data Exchange (ETDEWEB)

    Domino, Stefan P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Alan B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ananthan, Shreyas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knaus, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Overfelt, James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sprague, Mike [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rood, Jon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    Wind applications require the ability to simulate rotating blades. To support this use-case, a novel design-order sliding mesh algorithm has been developed and deployed. The hybrid method combines the control volume finite element methodology (CVFEM) with concepts found within a discontinuous Galerkin (DG) finite element method (FEM) to manage a sliding mesh. The method has been demonstrated to be design-order for the tested polynomial basis (P=1 and P=2) and has been deployed to provide production simulation capability for a Vestas V27 (225 kW) wind turbine. Other stationary and canonical rotating ow simulations are also presented. As the majority of wind-energy applications are driving extensive usage of hybrid meshes, a foundational study that outlines near-wall numerical behavior for a variety of element topologies is presented. Results indicate that the proposed nonlinear stabilization operator (NSO) is an effective stabilization methodology to control Gibbs phenomena at large cell Peclet numbers. The study also provides practical mesh resolution guidelines for future analysis efforts. Application-driven performance and algorithmic improvements have been carried out to increase robustness of the scheme on hybrid production wind energy meshes. Specifically, the Kokkos-based Nalu Kernel construct outlined in the FY17/Q4 ExaWind milestone has been transitioned to the hybrid mesh regime. This code base is exercised within a full V27 production run. Simulation timings for parallel search and custom ghosting are presented. As the low-Mach application space requires implicit matrix solves, the cost of matrix reinitialization has been evaluated on a variety of production meshes. Results indicate that at low element counts, i.e., fewer than 100 million elements, matrix graph initialization and preconditioner setup times are small. However, as mesh sizes increase, e.g., 500 million elements, simulation time associated with \\setup-up" costs can increase to nearly 50% of

  5. Prevention of Incisional Hernias with Biological MeshA Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    FILIP ETIENNE MUYSOMS

    2016-09-01

    Full Text Available Background: Prophylactic mesh augmented reinforcement during closure of abdominal wall incisions has been proposed in patients with increased risk for development of incisional hernias (IH. As part of the BioMesh consensus project, a systematic literature review has been performed to detect those studies where MAR was performed with a non-permanent absorbable mesh (biological or biosynthetic. Methods: A computerized search was performed within 12 databases (Embase, Medline, Web-of-Science, Scopus, Cochrane, CINAHL, Pubmed publisher, Lilacs, Scielo, ScienceDirect, ProQuest, Google scholar with appropriate search terms. Qualitative evaluation was performed using the MINORS score for cohort studies and the Jadad score for RCTs. Results: For midline laparotomy incisions and stoma reversal wounds, 2 RCTs, 2 case control studies and 2 case series were identified. The studies were very heterogeneous in terms of mesh configuration (cross linked versus non cross linked, mesh position (intraperitoneal versus retromuscular versus onlay, surgical indication (gastric bypass versus aortic aneurysm, outcome results (effective versus non effective. After qualitative assessment we have to conclude that the level of evidence on the efficacy and safety of biological meshes for prevention of incisional hernias is very low. No comparative studies were found comparing biological mesh with synthetic non-absorbable meshes for the prevention of incisional hernias. Conclusion: There is no evidence supporting the use of non-permanent absorbable mesh (biological or biosynthetic for prevention of incisional hernias when closing a laparotomy in high-risk patients or in stoma reversal wounds. There is no evidence that a non-permanent absorbable mesh should be preferred to synthetic non-absorbable mesh both in clean or clean-contaminated surgery.

  6. Topological patterns of mesh textures in serpentinites

    Science.gov (United States)

    Miyazawa, M.; Suzuki, A.; Shimizu, H.; Okamoto, A.; Hiraoka, Y.; Obayashi, I.; Tsuji, T.; Ito, T.

    2017-12-01

    Serpentinization is a hydration process that forms serpentine minerals and magnetite within the oceanic lithosphere. Microfractures crosscut these minerals during the reactions, and the structures look like mesh textures. It has been known that the patterns of microfractures and the system evolutions are affected by the hydration reaction and fluid transport in fractures and within matrices. This study aims at quantifying the topological patterns of the mesh textures and understanding possible conditions of fluid transport and reaction during serpentinization in the oceanic lithosphere. Two-dimensional simulation by the distinct element method (DEM) generates fracture patterns due to serpentinization. The microfracture patterns are evaluated by persistent homology, which measures features of connected components of a topological space and encodes multi-scale topological features in the persistence diagrams. The persistence diagrams of the different mesh textures are evaluated by principal component analysis to bring out the strong patterns of persistence diagrams. This approach help extract feature values of fracture patterns from high-dimensional and complex datasets.

  7. Improved Mesh_Based Image Morphing ‎

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullah Taha

    2017-11-01

    Full Text Available Image morphing is a multi-step process that generates a sequence of transitions between two images. The thought is to get a ₔgrouping of middle pictures which, when ₔassembled with the first pictures would represent the change from one picture to the other.  The process of morphing requires time and attention to detail in order to get good results. Morphing image requires at least two processes warping and cross dissolve. Warping is the process of geometric transformation of images. The cross dissolve is the process interpolation of color of eachₔ pixel from the first image value to theₔ corresponding second imageₔ value over the time. Image morphing techniques differ from in the approach of image warping procedure. This work presents a survey of different techniques to construct morphing images by review the different warping techniques. One of the predominant approaches of warping process is mesh warping which suffers from some problems including ghosting. This work proposed and implements an improved mesh warping technique to construct morphing images. The results show that the proposed approach can overcome the problems of the traditional mesh technique

  8. Seismic re-evaluation of Heavy Water Plant, Kota

    International Nuclear Information System (INIS)

    Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-10-01

    This report deals with seismic re-evaluation of Heavy Water Plant, Kota. Heavy Water Plant, Kota handles considerable amount of H 2 S gas, which is very toxic. During the original design stage as per IS 1893-1966 seismic coefficient for zone-I was zero. Therefore earthquake and its effects were not considered while designing the heavy water plant structures. However as per IS 1893 (1984) the seismic coefficient for zone-I is 0.01 g. Hence seismic re-evaluation of various structures of the heavy water plant is carried out. Analysis of the heavy water plant structures was carried out for self weight, equipment load and earthquake load. Pressure loading was also considered in case of H 2 S storage tanks. Soil structure interaction effect was considered in the analysis. The combined stresses in the structures due to earthquake and dead load were checked with the allowable stresses. (author)

  9. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  10. Adaptive moving mesh methods for simulating one-dimensional groundwater problems with sharp moving fronts

    Science.gov (United States)

    Huang, W.; Zheng, Lingyun; Zhan, X.

    2002-01-01

    Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.

  11. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.; Dawson, Clint N.

    2014-01-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  12. Adaptive mesh refinement for storm surge

    KAUST Repository

    Mandli, Kyle T.

    2014-03-01

    An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.

  13. Incompressible Navier-Stokes inverse design method based on adaptive unstructured meshes

    International Nuclear Information System (INIS)

    Rahmati, M.T.; Charlesworth, D.; Zangeneh, M.

    2005-01-01

    An inverse method for blade design based on Navier-Stokes equations on adaptive unstructured meshes has been developed. In the method, unlike the method based on inviscid equations, the effect of viscosity is directly taken into account. In the method, the pressure (or pressure loading) is prescribed. The design method then computes the blade shape that would accomplish the target prescribed pressure distribution. The method is implemented using a cell-centered finite volume method, which solves the incompressible Navier-Stokes equations on unstructured meshes. An adaptive unstructured mesh method based on grid subdivision and local adaptive mesh method is utilized for increasing the accuracy. (author)

  14. Green Approach to the Fabrication of Superhydrophobic Mesh Surface for Oil/Water Separation.

    Science.gov (United States)

    Wang, Fajun; Lei, Sheng; Xu, Yao; Ou, Junfei

    2015-07-20

    We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200 °C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low-surface-energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92 % are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Surgical Management of Pelvic floor Prolapse in women using Mesh

    African Journals Online (AJOL)

    RAH

    polytetrafluoroethylene) . This article reviews our experience with polypropylene mesh in pelvic floor repair at the. Southern General Hospital Glasgow. The objective was to determine the safety and effectiveness of the prolene mesh in the repair ...

  16. An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, Charles R [Los Alamos National Laboratory

    2010-01-01

    Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. The most common SPU memory management strategies cannot be applied to the irregular memory access patterns of unstructured meshes, and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.

  17. Confinement of electron beams by mesh arrays in a relativistic klystron amplifier

    International Nuclear Information System (INIS)

    Wang Pingshan; Gu Binlin

    1998-01-01

    Theoretical and experimental results of intense beam confinement by conducting meshes in a relativistic klystron amplifier (RKA) are presented. Electron motions in a steady intense electron beam confined by conducting meshes are analyzed with an approximate space charge field distribution. And the conditions for steady beam transportation are discussed. Experimental results of a long distance (60 cm) transportation of an intense beam (400 kV, 2.5 kA) generated by a linear induction accelerator are presented. Experimental results of modulated beam transportation confined by the mesh array are presented also. The results show that the focusing ability of the conducting meshes is not very sensitive to the beam energy. And the meshes can be used effectively in a RKA to replace the magnetic field system

  18. The role of lifestyle in preventing low birth weight.

    Science.gov (United States)

    Chomitz, V R; Cheung, L W; Lieberman, E

    1995-01-01

    Lifestyle behaviors such as cigarette smoking, weight gain during pregnancy, and use of other drugs play an important role in determining fetal growth. The relationship between lifestyle risk factors and low birth weight is complex and is affected by psychosocial, economic, and biological factors. Cigarette smoking is the largest known risk factor for low birth weight. Approximately 20% of all low birth weight could be avoided if women did not smoke during pregnancy. Reducing heavy use of alcohol and other drugs during pregnancy could also reduce the rate of low birth weight births. Pregnancy and the prospect of pregnancy provide an important window of opportunity to improve women's health and the health of children. The adoption before or during pregnancy of more healthful lifestyle behaviors, such as ceasing to smoke, eating an adequate diet and gaining enough weight during pregnancy, and ceasing heavy drug use, can positively affect the long-term health of women and the health of their infants. Detrimental lifestyles can be modified, but successful modification will require large-scale societal changes. In the United States, these societal changes should include a focus on preventive health, family-centered workplace policies, and changes in social norms.

  19. Distributed Cross-layer Monitoring in Wireless Mesh Networks

    OpenAIRE

    Panmin, Ye; Yong,

    2009-01-01

    Wireless mesh networks has rapid development over the last few years. However, due to properties such as distributed infrastructure and interference, which strongly affect the performance of wireless mesh networks, developing technology has to face the challenge of architecture and protocol design issues. Traditional layered protocols do not function efficiently in multi-hop wireless environments. To get deeper understanding on interaction of the layered protocols and optimize the performance...

  20. Mesh joinery: a method for building fabricable structures

    OpenAIRE

    Cignoni, Paolo; Pietroni, Nico; Malomo, Luigi; Scopigno, Roberto

    2015-01-01

    Mesh joinery is an innovative method to produce illustrative shape approximations suitable for fabrication. Mesh joinery is capable of producing complex fabricable structures in an efficient and visually pleasing manner. We represent an input geometry as a set of planar pieces arranged to compose a rigid structure by exploiting an efficient slit mechanism. Since slices are planar, a standard 2D cutting system is sufficient to fabricate them.

  1. Protective Factors as an Explanation for the "Paradox" of Black-White Differences in Heavy Drinking.

    Science.gov (United States)

    Mulia, Nina; Ye, Yu; Karriker-Jaffe, Katherine J; Zemore, Sarah E; Jones-Webb, Rhonda

    2018-04-02

    African Americans are generally known to have lower heavy drinking prevalence than Whites despite often greater individual and community risk factors. While it is supposed that their protective resources explain this "paradox," studies have not explicitly examined this. Assess the contribution of protective resources to Black-White differences in heavy drinking, and (secondarily) whether protective resources operate by reducing heavy drinking and/or increasing abstinence. Using data from the 2009-2010 U.S. National Alcohol Survey (N = 3,133 Whites and 1,040 Blacks ages 18+), we applied propensity score (PS) weighting to estimate racial differences in heavy drinking and abstinence under hypothetical conditions in which Whites are similar to Blacks in: (1) age and marital status; (2) socioeconomic position and unfair treatment; (3) neighborhood socioeconomic conditions and alcohol outlet density; and (4) protective resources (proscriptive religiosity, area-level religiosity, "drier" network drinking norms and patterns, and family social support). The Black-White gap in male and female drinkers' baseline heavy drinking increased after weighting adjustments for demographics. In women, this gap was reduced after weighting on disadvantage and eliminated after adjusting for protective resources. In men, adjustment for disadvantage increased the racial gap, and protective resources reduced it. Protective resources had a stronger effect on Black-White differences in men's abstinence than heavy drinking, but similar effects on these outcomes in women. Protective resources help explain Black-White differences in men's and particularly women's heavy drinking. Future research is needed to elucidate mechanisms of action and additional factors underlying racial differences in men's heavy drinking.

  2. A SURVEY on WIRELESS MESH NETWORKS, ROUTING METRICS and PROTOCOLS

    Directory of Open Access Journals (Sweden)

    Safak DURUKAN ODABASI

    2013-01-01

    Full Text Available Today, Internet has become an indispensable part of our daily lives. It has a growing user community in many fields from banking transactions to online entertainment. It will be very efficient for users, as the next generation internet access becomes wireless like frequently used services such as cellular phones. But for providing this, a new network is needed to be designed or an existing network must be improved as well as making changes on infrastructure. At this point, mesh network infrastructure arises and offers more sophisticated internet access with less need. The most important advantage of mesh networks is the capability of working without infrastructure. Mesh networks are an additional access technology more than being a renewed one in the next generation wireless networks called 4G. In this study, wireless mesh networks and example applications are mentioned. Base architecture and design factors are emphasized, current routing protocols that are used on wireless mesh networks and routing metrics on which these protocols are based, are explained. Finally, the performance effects of these protocols and metrics on different network topologies are referred.

  3. An Efficient Approach for Solving Mesh Optimization Problems Using Newton’s Method

    Directory of Open Access Journals (Sweden)

    Jibum Kim

    2014-01-01

    Full Text Available We present an efficient approach for solving various mesh optimization problems. Our approach is based on Newton’s method, which uses both first-order (gradient and second-order (Hessian derivatives of the nonlinear objective function. The volume and surface mesh optimization algorithms are developed such that mesh validity and surface constraints are satisfied. We also propose several Hessian modification methods when the Hessian matrix is not positive definite. We demonstrate our approach by comparing our method with nonlinear conjugate gradient and steepest descent methods in terms of both efficiency and mesh quality.

  4. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  5. Three new models for evaluation of standard involute spur gear mesh stiffness

    Science.gov (United States)

    Liang, Xihui; Zhang, Hongsheng; Zuo, Ming J.; Qin, Yong

    2018-02-01

    Time-varying mesh stiffness is one of the main internal excitation sources of gear dynamics. Accurate evaluation of gear mesh stiffness is crucial for gear dynamic analysis. This study is devoted to developing new models for spur gear mesh stiffness evaluation. Three models are proposed. The proposed model 1 can give very accurate mesh stiffness result but the gear bore surface must be assumed to be rigid. Enlighted by the proposed model 1, our research discovers that the angular deflection pattern of the gear bore surface of a pair of meshing gears under a constant torque basically follows a cosine curve. Based on this finding, two other models are proposed. The proposed model 2 evaluates gear mesh stiffness by using angular deflections at different circumferential angles of an end surface circle of the gear bore. The proposed model 3 requires using only the angular deflection at an arbitrary circumferential angle of an end surface circle of the gear bore but this model can only be used for a gear with the same tooth profile among all teeth. The proposed models are accurate in gear mesh stiffness evaluation and easy to use. Finite element analysis is used to validate the accuracy of the proposed models.

  6. Prevention of a parastomal hernia by biological mesh reinforcement

    Directory of Open Access Journals (Sweden)

    René H Fortelny

    2015-10-01

    Full Text Available Introduction: In the field of hernia prevention the prophylactic mesh-reinforcement of stoma-sites is one of the most controversially discussed issues. The incidence of parastomal hernias in the literature reported to be up to 48.1% after end colostomy and up to 30.8 % after of loop colostomy respectively, but still remains uncertain due to diagnostic variety of clinical or radiological methods, heterogeneous patient groups and variable follow-up intervals respectively. Anyway, the published data regarding the use of synthetic or bio-prostethic meshes in the prevention of parastomal hernia at the primary operation are very scarce. Methods: A literature search of the Medline database in terms of biological prophylactic mesh implantation in stoma creation identified 6 systematic reviews, 2 randomized controlled trials (RCT, 2 case controlled studies and 1 technical report. Results: In a systematic review focusing on the prevention of parastomal hernia including only RCTs encompassing one RCT using bio-prosthetic mesh the incidence of herniation was 12.5 % compared to 53% in the control group (p<0.0001. In 1 RCT and 2 case control studies respectively, there was a significant smaller incidence of parastomal herniation as well as a similar complication rate compared to the control group respectively. Only in 1 RCT no significant difference regarding the incidence of parastomal hernia was reported with comparable complication rates. Conclusion: Thus so far 2 RCT and 2 case control studies are published with prophylactic bio prosthetic reinforcement in stoma sites. The majority revealed significant better results in terms of parastomal herniation and without any mesh related complications in comparison to the non mesh group. Further multicenter RCT are required to achieve a sufficient level of recommendation.

  7. Tensor-based cortical surface morphometry via weighted spherical harmonic representation.

    Science.gov (United States)

    Chung, Moo K; Dalton, Kim M; Davidson, Richard J

    2008-08-01

    We present a new tensor-based morphometric framework that quantifies cortical shape variations using a local area element. The local area element is computed from the Riemannian metric tensors, which are obtained from the smooth functional parametrization of a cortical mesh. For the smooth parametrization, we have developed a novel weighted spherical harmonic (SPHARM) representation, which generalizes the traditional SPHARM as a special case. For a specific choice of weights, the weighted-SPHARM is shown to be the least squares approximation to the solution of an isotropic heat diffusion on a unit sphere. The main aims of this paper are to present the weighted-SPHARM and to show how it can be used in the tensor-based morphometry. As an illustration, the methodology has been applied in the problem of detecting abnormal cortical regions in the group of high functioning autistic subjects.

  8. Scalable Video Streaming in Wireless Mesh Networks for Education

    Science.gov (United States)

    Liu, Yan; Wang, Xinheng; Zhao, Liqiang

    2011-01-01

    In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…

  9. [Leaching characteristics of heavy metals and utilization of filter media in BAF].

    Science.gov (United States)

    Zou, Jin-long; Dai, Ying

    2007-10-01

    A series of leaching tests were conducted to study the solidification of heavy metals in biological filter media made with dried sludge as an additive. The maximum leaching contents of Cd, Cr, Cu and Pb are obtained when pH is 1; leaching contents of heavy metals have an obvious decrease as pH is greater than or equal to 3; and it can be concluded from the results that pH has a significant influence on the leaching characteristic of heavy metals at leaching time of either 24 h or 30 d. X-ray diffraction analysis performed on filter media reveal the main compounds of the 4 heavy metals are Pb2O(CrO4), CdSiO3 and CuO, and the heavy metals are solidified in the mesh structure of Si--O. Heavy metals (such as Cd, Cr, Cu and Pb) can be solidified in filter media through a series of crystalline phase changes and chemical reaction after high temperature sintering. The new filter media (obtained in test) were used in biological aerated filter (BAF) to treat wastewater (C/N about 11.5 and 25.5) in a simultaneous nitrification and denitrification (SND) system. Based on the mechanism of SND, the average removal efficienciesof NH4(+)-N and TN filled with the new filter media (obtained in test) are about 85.5%, 90.3%, 46.6% and 49.6%, respectively, and it is higher than those of other 3 medias (Jiangxi ceramsite, Guangzhou ceramsite and Shanxi activated carbon). The results provide a better understanding of factors that may affect the immobilization and leaching characteristics of heavy metals in ceramsite, which promotes the extensive use of filter media in BAF.

  10. Energy-efficient wireless mesh networks

    CSIR Research Space (South Africa)

    Ntlatlapa, N

    2007-06-01

    Full Text Available This paper outlines the objectives of a recently formed research group at Meraka Institute. The authors consider application of wireless mesh networks in rural infrastructure deficient parts of the African continent where nodes operate on batteries...

  11. High-resolution multi-code implementation of unsteady Navier-Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemes

    Science.gov (United States)

    Li, Gaohua; Fu, Xiang; Wang, Fuxin

    2017-10-01

    The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.

  12. A single centre comparative study of laparoscopic mesh rectopexy versus suture rectopexy

    Directory of Open Access Journals (Sweden)

    Manash Ranjan Sahoo

    2014-01-01

    Full Text Available Aim: The aim of our study is to compare the results of laparoscopic mesh vs. suture rectopexy. Materials and Methods: In this retrospective study, 70 patients including both male and female of age ranging between 20 years and 65 years (mean 42.5 yrs were subjected to laparoscopic rectopexy during the period between March 2007 and June 2012, of which 38 patients underwent laparoscopic mesh rectopexy and 32 patients laparoscopic suture rectopexy. These patients were followed up for a mean period of 12 months assessing first bowel movement, hospital stay, duration of surgery, faecal incontinence, constipation, recurrence and morbidity. Results: Duration of surgery was 100.8 ± 12.4 minutes in laparoscopic suture rectopexy and 120 ± 10.8 min in laparoscopic mesh rectopexy. Postoperatively, the mean time for the first bowel movement was 38 hrs and 40 hrs, respectively, for suture and mesh rectopexy. Mean hospital stay was five (range: 4-7 days. There was no significant postoperative complication except for one port site infection in mesh rectopexy group. Patients who had varying degree of incontinence preoperatively showed improvement after surgery. Eleven out of 18 (61.1% patients who underwent laparoscopic suture rectopexy as compared to nine of 19 (47.3% patients who underwent laparoscopic mesh rectopexy improved as regards constipation after surgery. Conclusion: There were no significant difference in both groups who underwent surgery except for patients undergoing suture rectopexy had better symptomatic improvement of continence and constipation. Also, cost of mesh used in laparoscopic mesh rectopexy is absent in lap suture rectopexy group. To conclude that laparoscopic suture rectopexy is a safe and feasible procedure and have comparable results as regards operative time, morbidity, bowel function, cost and recurrence or even slightly better results than mesh rectopexy.

  13. An Angular Method with Position Control for Block Mesh Squareness Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Yao, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stillman, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-19

    We optimize a target function de ned by angular properties with a position control term for a basic stencil with a block-structured mesh, to improve element squareness in 2D and 3D. Comparison with the condition number method shows that besides a similar mesh quality regarding orthogonality can be achieved as the former does, the new method converges faster and provides a more uniform global mesh spacing in our numerical tests.

  14. Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.

    Science.gov (United States)

    Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan

    2016-01-01

    Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.

  15. Three-dimensional gravity modeling and focusing inversion using rectangular meshes.

    Energy Technology Data Exchange (ETDEWEB)

    Commer, M.

    2011-03-01

    Rectangular grid cells are commonly used for the geophysical modeling of gravity anomalies, owing to their flexibility in constructing complex models. The straightforward handling of cubic cells in gravity inversion algorithms allows for a flexible imposition of model regularization constraints, which are generally essential in the inversion of static potential field data. The first part of this paper provides a review of commonly used expressions for calculating the gravity of a right polygonal prism, both for gravity and gradiometry, where the formulas of Plouff and Forsberg are adapted. The formulas can be cast into general forms practical for implementation. In the second part, a weighting scheme for resolution enhancement at depth is presented. Modelling the earth using highly digitized meshes, depth weighting schemes are typically applied to the model objective functional, subject to minimizing the data misfit. The scheme proposed here involves a non-linear conjugate gradient inversion scheme with a weighting function applied to the non-linear conjugate gradient scheme's gradient vector of the objective functional. The low depth resolution due to the quick decay of the gravity kernel functions is counteracted by suppressing the search directions in the parameter space that would lead to near-surface concentrations of gravity anomalies. Further, a density parameter transformation function enabling the imposition of lower and upper bounding constraints is employed. Using synthetic data from models of varying complexity and a field data set, it is demonstrated that, given an adequate depth weighting function, the gravity inversion in the transform space can recover geologically meaningful models requiring a minimum of prior information and user interaction.

  16. What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction?

    Science.gov (United States)

    Köckerling, F; Alam, N N; Antoniou, S A; Daniels, I R; Famiglietti, F; Fortelny, R H; Heiss, M M; Kallinowski, F; Kyle-Leinhase, I; Mayer, F; Miserez, M; Montgomery, A; Morales-Conde, S; Muysoms, F; Narang, S K; Petter-Puchner, A; Reinpold, W; Scheuerlein, H; Smietanski, M; Stechemesser, B; Strey, C; Woeste, G; Smart, N J

    2018-04-01

    Although many surgeons have adopted the use of biologic and biosynthetic meshes in complex abdominal wall hernia repair, others have questioned the use of these products. Criticism is addressed in several review articles on the poor standard of studies reporting on the use of biologic meshes for different abdominal wall repairs. The aim of this consensus review is to conduct an evidence-based analysis of the efficacy of biologic and biosynthetic meshes in predefined clinical situations. A European working group, "BioMesh Study Group", composed of invited surgeons with a special interest in surgical meshes, formulated key questions, and forwarded them for processing in subgroups. In January 2016, a workshop was held in Berlin where the findings were presented, discussed, and voted on for consensus. Findings were set out in writing by the subgroups followed by consensus being reached. For the review, 114 studies and background analyses were used. The cumulative data regarding biologic mesh under contaminated conditions do not support the claim that it is better than synthetic mesh. Biologic mesh use should be avoided when bridging is needed. In inguinal hernia repair biologic and biosynthetic meshes do not have a clear advantage over the synthetic meshes. For prevention of incisional or parastomal hernias, there is no evidence to support the use of biologic/biosynthetic meshes. In complex abdominal wall hernia repairs (incarcerated hernia, parastomal hernia, infected mesh, open abdomen, enterocutaneous fistula, and component separation technique), biologic and biosynthetic meshes do not provide a superior alternative to synthetic meshes. The routine use of biologic and biosynthetic meshes cannot be recommended.

  17. A self-cleaning underwater superoleophobic mesh for oil-water separation

    KAUST Repository

    Zhang, Lianbin

    2013-07-31

    Oil-water separation has recently become a global challenging task because of the frequent occurrence of oil spill accidents due to the offshore oil production and transportation, and there is an increasing demand for the development of effective and inexpensive approaches for the cleaning-up of the oily pollution in water system. In this study, a self-cleaning underwater superoleophobic mesh that can be used for oil-water separation is prepared by the layer-by-layer (LbL) assembly of sodium silicate and TiO2 nanoparticles on the stainless steel mesh. The integration of the self-cleaning property into the all-inorganic separation mesh by using TiO2 enables the convenient removal of the contaminants by ultraviolet (UV) illumination, and allows for the facile recovery of the separation ability of the contaminated mesh, making it promising for practial oil-water separation applications.

  18. MCR2S unstructured mesh capabilities for use in shutdown dose rate analysis

    International Nuclear Information System (INIS)

    Eade, T.; Stonell, D.; Turner, A.

    2015-01-01

    Highlights: • Advancements in shutdown dose rate calculations will be needed as fusion moves from experimental reactors to full scale demonstration reactors in order to ensure the safety of personnel. • The MCR2S shutdown dose rate tool has been modified to allow shutdown dose rates calculations using an unstructured mesh. • The unstructured mesh capability of MCR2S was used on three shutdown dose rate models, a simple sphere, the ITER computational benchmark and the DEMO computational benchmark. • The results showed a reasonable agreement between an unstructured mesh approach and the CSG approach and highlighted the need to carefully choose the unstructured mesh resolution. - Abstract: As nuclear fusion progresses towards a sustainable energy source and the power of tokamak devices increases, a greater understanding of the radiation fields will be required. As well as on-load radiation fields, off-load or shutdown radiation field are an important consideration for the safety and economic viability of a commercial fusion reactor. Previously codes such as MCR2S have been written in order to predict the shutdown dose rates within, and in regions surrounding, a fusion reactor. MCR2S utilises a constructive solid geometry (CSG) model and a superimposed structured mesh to calculate 3-D maps of the shutdown dose rate. A new approach to MCR2S calculations is proposed and implemented using a single unstructured mesh to replace both the CSG model and the superimposed structured mesh. This new MCR2S approach has been demonstrated on three models of increasing complexity. These models were: a sphere, the ITER computational shutdown dose rate benchmark and the DEMO computational shutdown dose rate benchmark. In each case the results were compared to MCR2S calculations performed using MCR2S with CSG geometry and a superimposed structured mesh. It was concluded that the results from the unstructured mesh implementation of MCR2S compared well to the CSG structured mesh

  19. Short-term outcomes of the transvaginal minimal mesh procedure for pelvic organ prolapse

    OpenAIRE

    Naoko Takazawa; Akiko Fujisaki; Yasukuni Yoshimura; Akira Tsujimura; Shigeo Horie

    2018-01-01

    Purpose: This study aimed to evaluate the clinical outcomes and complications of transvaginal minimal mesh repair without using commercially available kits for treatment of pelvic organ prolapse (POP). Materials and Methods: This retrospective cohort study involved 91 women who underwent surgical management of POP with originally designed small mesh between July 2014 and August 2015. This mesh is 56% smaller than the mesh widely used in Japan, and it has only two arms delivered into each righ...

  20. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall.

    Science.gov (United States)

    Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B

    2011-11-01

    The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Mario Ivan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Drumm, Clifton R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  2. Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications

    Science.gov (United States)

    Thompson, David; Tong, Xiaoling; Arnoldus, Qiuhan; Collins, Eric; McLaurin, David; Luke, Edward; Bidwell, Colin S.

    2013-01-01

    Robust, automated mesh generation for problems with deforming geometries, such as ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a technique to deform a discrete surface as it evolves due to the accretion of ice. The surface evolution algorithm is based on a smoothed, face-offsetting approach. We also describe a fast algebraic technique to propagate the computed surface deformations into the surrounding volume mesh while maintaining geometric mesh quality. Preliminary results presented here demonstrate the ecacy of the approach for a sphere with a prescribed accretion rate, a rime ice accretion, and a more complex glaze ice accretion.

  3. Expected Transmission Energy Route Metric for Wireless Mesh Senor Networks

    Directory of Open Access Journals (Sweden)

    YanLiang Jin

    2011-01-01

    Full Text Available Mesh is a network topology that achieves high throughput and stable intercommunication. With great potential, it is expected to be the key architecture of future networks. Wireless sensor networks are an active research area with numerous workshops and conferences arranged each year. The overall performance of a WSN highly depends on the energy consumption of the network. This paper designs a new routing metric for wireless mesh sensor networks. Results from simulation experiments reveal that the new metric algorithm improves the energy balance of the whole network and extends the lifetime of wireless mesh sensor networks (WMSNs.

  4. Numerical convergence of discrete exterior calculus on arbitrary surface meshes

    KAUST Repository

    Mohamed, Mamdouh S.

    2018-02-13

    Discrete exterior calculus (DEC) is a structure-preserving numerical framework for partial differential equations solution, particularly suitable for simplicial meshes. A longstanding and widespread assumption has been that DEC requires special (Delaunay) triangulations, which complicated the mesh generation process especially for curved surfaces. This paper presents numerical evidence demonstrating that this restriction is unnecessary. Convergence experiments are carried out for various physical problems using both Delaunay and non-Delaunay triangulations. Signed diagonal definition for the key DEC operator (Hodge star) is adopted. The errors converge as expected for all considered meshes and experiments. This relieves the DEC paradigm from unnecessary triangulation limitation.

  5. Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Beckingsale, D. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Gaudin, W. P. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Hornung, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gunney, B. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gamblin, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herdman, J. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Jarvis, S. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom)

    2014-11-17

    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.

  6. The mesh controversy [version 1; referees: 2 approved

    OpenAIRE

    Joshua A. Cohn; Elizabeth Timbrook Brown; Casey G. Kowalik; Melissa R. Kaufmann; Roger R. Dmochowski; W. Stuart Reynolds

    2016-01-01

    Pelvic organ prolapse and stress urinary incontinence are common conditions for which approximately 11% of women will undergo surgical intervention in their lifetime. The use of vaginal mesh for pelvic organ prolapse and stress urinary incontinence rose rapidly in the early 2000s as over 100 mesh products were introduced into the clinical armamentarium with little regulatory oversight for their use. US Food and Drug Administration Public Health Notifications in 2008 and 2011, as well as recla...

  7. Software tools for manipulating fe mesh, virtual surgery and post-processing

    Directory of Open Access Journals (Sweden)

    Milašinović Danko Z.

    2009-01-01

    Full Text Available This paper describes a set of software tools which we developed for the calculation of fluid flow through cardiovascular organs. Our tools work with medical data from a CT scanner, but could be used with any other 3D input data. For meshing we used a Tetgen tetrahedral mesh generator, as well as a mesh re-generator that we have developed for conversion of tetrahedral elements into bricks. After adequate meshing we used our PAKF solver for calculation of fluid flow. For human-friendly presentation of results we developed a set of post-processing software tools. With modification of 2D mesh (boundary of cardiovascular organ it is possible to do virtual surgery, so in a case of an aorta with aneurism, which we had received from University Clinical center in Heidelberg from a multi-slice 64-CT scanner, we removed the aneurism and ran calculations on both geometrical models afterwards. The main idea of this methodology is creating a system that could be used in clinics.

  8. Properties of pentacene-based films prepared using a heated tungsten mesh

    Energy Technology Data Exchange (ETDEWEB)

    Heya, Akira, E-mail: heya@eng.u-hyogo.ac.jp; Matsuo, Naoto

    2014-11-03

    A heated tungsten (W) mesh, set between a pentacene source and a substrate in a vacuum chamber, was used to prepare a bulk-phase pentacene film and a pentacene-based organic semiconductor film. Since the pentacene molecules come into contact with the heated W mesh before reaching the substrate, their thermal energy is increased prior to deposition. As the mesh temperature was increased from 23 to 1200 °C, the intensity ratio of bulk to thin-film phases increased from 0 to 9.7. Above 1300 °C there is a notable decomposition reaction, the products of which were identified as dihydropentacene, p-distrylbenzene, and 2,2′-dimethyl-1,1′-binaphthalene. These decomposed precursors are expected to provide a potential source of large graphene sheets and graphene nanoribbons. - Highlights: • Organic semiconductor films were prepared using pentacene, H{sub 2} gas, and heated W mesh. • The effect of mesh temperature on film deposition was observed. • Pentacene decomposition above 1300 °C provides graphene precursors. • A method is proposed for controlling the sheet resistance of organic films.

  9. No. 351-Transvaginal Mesh Procedures for Pelvic Organ Prolapse.

    Science.gov (United States)

    Larouche, Maryse; Geoffrion, Roxana; Walter, Jens-Erik

    2017-11-01

    This guideline reviews the evidence related to the risks and benefits of using transvaginal mesh in pelvic organ prolapse repairs in order to update recommendations initially made in 2011. Gynaecologists, residents, urologists, urogynaecologists, and other health care providers who assess, counsel, and care for women with pelvic organ prolapse. Adult women with symptomatic pelvic organ prolapse considering surgery and those who have previously undergone transvaginal mesh procedures for the treatment of pelvic organ prolapse. The discussion relates to transvaginal mesh procedures compared with other surgical options for pelvic organ prolapse (mainly about vaginal native tissue repairs and minimally about other alternatives such as biological and absorbable vaginal mesh and abdominally placed surgical mesh). The outcomes of interest are objective and subjective success rates and intraoperative and postoperative complications, such as adjacent organ injury (urinary, gastrointestinal), infection, hematoma/bleeding, vaginal mesh exposure, persistent pain, dyspareunia, de novo stress urinary incontinence, and reoperation. PubMed, Medline, the Cochrane Database, and EMBASE were searched using the key words pelvic organ prolapse/surgery*, prolapse/surgery*, surgical mesh, surgical mesh*/adverse effects, transvaginal mesh, and pelvic organ prolapse. were restricted to English or French language and human research. Articles obtained through this search strategy were included until the end of June 2016. Pertinent new studies were added up to September 2016. Grey literature was not searched. Clinical practice guidelines and guidelines of specialty societies were reviewed. Systematic reviews were included when available. Randomized controlled trials and observational studies were included when evidence for the outcome of interest or in the target population was not available from systematic reviews. New studies not yet included in systematic reviews were also included. Only

  10. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration.

    Science.gov (United States)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-05-15

    Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36mm, with preferable conditions being 400rpm rotation speed, 5min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. AUTOMATIC MESH GENERATION OF 3—D GEOMETRIC MODELS

    Institute of Scientific and Technical Information of China (English)

    刘剑飞

    2003-01-01

    In this paper the presentation of the ball-packing method is reviewed, and a schemeto generate mesh for complex 3-D geometric models is given, which consists of 4 steps: (1) createnodes in 3-D models by ball-packing method, (2) connect nodes to generate mesh by 3-D Delaunaytriangulation, (3) retrieve the boundary of the model after Delaunay triangulation, (4) improve themesh.

  12. Prosthetic Mesh Repair for Incarcerated Inguinal Hernia

    Directory of Open Access Journals (Sweden)

    Cihad Tatar

    2016-08-01

    Full Text Available Background: Incarcerated inguinal hernia is a commonly encountered urgent surgical condition, and tension-free repair is a well-established method for the treatment of noncomplicated cases. However, due to the risk of prosthetic material-related infections, the use of mesh in the repair of strangulated or incarcerated hernia has often been subject to debate. Recent studies have demonstrated that biomaterials represent suitable materials for performing urgent hernia repair. Certain studies recommend mesh repair only for cases where no bowel resection is required; other studies, however, recommend mesh repair for patients requiring bowel resection as well. Aim: The aim of this study was to compare the outcomes of different surgical techniques performed for strangulated hernia, and to evaluate the effect of mesh use on postoperative complications. Study Design: Retrospective cross-sectional study. Methods: This retrospective study was performed with 151 patients who had been admitted to our hospital’s emergency department to undergo surgery for a diagnosis of incarcerated inguinal hernia. The patients were divided into two groups based on the applied surgical technique. Group 1 consisted of 112 patients treated with mesh-based repair techniques, while Group 2 consisted of 39 patients treated with tissue repair techniques. Patients in Group 1 were further divided into two sub-groups: one consisting of patients undergoing bowel resection (Group 3, and the other consisting of patients not undergoing bowel resection (Group 4. Results: In Group 1, it was observed that eight (7.14% of the patients had wound infections, while two (1.78% had hematomas, four (3.57% had seromas, and one (0.89% had relapse. In Group 2, one (2.56% of the patients had a wound infection, while three (7.69% had hematomas, one (2.56% had seroma, and none had relapses. There were no statistically significant differences between the two groups with respect to wound infection

  13. Case report: heavy metal burden presenting as Bartter syndrome.

    Science.gov (United States)

    Crinnion, Walter J; Tran, Jessica Q

    2010-12-01

    Maternal transfer of heavy metals during fetal development or lactation possibly contributed to the clinical manifestations of Bartter syndrome and developmental delay in the offspring. An 11-month-old child diagnosed with Bartter syndrome and failure to thrive was treated concurrently for elevated metal burden while he was undergoing standard medical interventions. Treatment with body-weight doses of meso-2,3-dimercaptosuccinic acid (DMSA) reduced the body burden of lead, beryllium, copper, mercury, and cadmium at the three- and sixth-month follow-up tests. During the course of the six-month treatment, the patient gained 2.4 kg (5.2 lb) and grew approximately 9.5 cm (3.75 in). His weight shifted from significantly below the 5th percentile in weight to within the 5th percentile, and from below the 5th to within the 10th percentile for length. The child's acquisition of lead, beryllium, and copper correspond to his mother's history of stained glass assembly and occurred during fetal development or lactation, since there were no other identifiable sources that could have contributed to the heavy metal burden. Tests for known genetic mutations leading to Bartter syndrome were all negative. This case report highlights the potential benefit of DMSA for treatment of heavy metal body burden in infants who present with Bartter syndrome.

  14. A simple nodal force distribution method in refined finite element meshes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.

  15. Doppler Temperature Coefficient Calculations Using Adjoint-Weighted Tallies and Continuous Energy Cross Sections in MCNP6

    Science.gov (United States)

    Gonzales, Matthew Alejandro

    The calculation of the thermal neutron Doppler temperature reactivity feedback co-efficient, a key parameter in the design and safe operation of advanced reactors, using first order perturbation theory in continuous energy Monte Carlo codes is challenging as the continuous energy adjoint flux is not readily available. Traditional approaches of obtaining the adjoint flux attempt to invert the random walk process as well as require data corresponding to all temperatures and their respective temperature derivatives within the system in order to accurately calculate the Doppler temperature feedback. A new method has been developed using adjoint-weighted tallies and On-The-Fly (OTF) generated continuous energy cross sections within the Monte Carlo N-Particle (MCNP6) transport code. The adjoint-weighted tallies are generated during the continuous energy k-eigenvalue Monte Carlo calculation. The weighting is based upon the iterated fission probability interpretation of the adjoint flux, which is the steady state population in a critical nuclear reactor caused by a neutron introduced at that point in phase space. The adjoint-weighted tallies are produced in a forward calculation and do not require an inversion of the random walk. The OTF cross section database uses a high order functional expansion between points on a user-defined energy-temperature mesh in which the coefficients with respect to a polynomial fitting in temperature are stored. The coefficients of the fits are generated before run- time and called upon during the simulation to produce cross sections at any given energy and temperature. The polynomial form of the OTF cross sections allows the possibility of obtaining temperature derivatives of the cross sections on-the-fly. The use of Monte Carlo sampling of adjoint-weighted tallies and the capability of computing derivatives of continuous energy cross sections with respect to temperature are used to calculate the Doppler temperature coefficient in a research

  16. Laser additive manufacturing of 3D meshes for optical applications.

    Science.gov (United States)

    Essa, Khamis; Sabouri, Aydin; Butt, Haider; Basuny, Fawzia Hamed; Ghazy, Mootaz; El-Sayed, Mahmoud Ahmed

    2018-01-01

    Selective laser melting (SLM) is a widely used additive manufacturing process that can be used for printing of intricate three dimensional (3D) metallic structures. Here we demonstrate the fabrication of titanium alloy Ti-6Al-4V alloy based 3D meshes with nodally-connected diamond like unit cells, with lattice spacing varying from 400 to 1000 microns. A Concept Laser M2 system equipped with laser that has a wavelength of 1075 nm, a constant beam spot size of 50μm and maximum power of 400W was used to manufacture the 3D meshes. These meshes act as optical shutters / directional transmitters and display interesting optical properties. A detailed optical characterisation was carried out and it was found that these structures can be optimised to act as scalable rotational shutters with high efficiencies and as angle selective transmission screens for protection against unwanted and dangerous radiations. The efficiency of fabricated lattice structures can be increased by enlarging the meshing size.

  17. Laser additive manufacturing of 3D meshes for optical applications.

    Directory of Open Access Journals (Sweden)

    Khamis Essa

    Full Text Available Selective laser melting (SLM is a widely used additive manufacturing process that can be used for printing of intricate three dimensional (3D metallic structures. Here we demonstrate the fabrication of titanium alloy Ti-6Al-4V alloy based 3D meshes with nodally-connected diamond like unit cells, with lattice spacing varying from 400 to 1000 microns. A Concept Laser M2 system equipped with laser that has a wavelength of 1075 nm, a constant beam spot size of 50μm and maximum power of 400W was used to manufacture the 3D meshes. These meshes act as optical shutters / directional transmitters and display interesting optical properties. A detailed optical characterisation was carried out and it was found that these structures can be optimised to act as scalable rotational shutters with high efficiencies and as angle selective transmission screens for protection against unwanted and dangerous radiations. The efficiency of fabricated lattice structures can be increased by enlarging the meshing size.

  18. Algebraic mesh generation for large scale viscous-compressible aerodynamic simulation

    International Nuclear Information System (INIS)

    Smith, R.E.

    1984-01-01

    Viscous-compressible aerodynamic simulation is the numerical solution of the compressible Navier-Stokes equations and associated boundary conditions. Boundary-fitted coordinate systems are well suited for the application of finite difference techniques to the Navier-Stokes equations. An algebraic approach to boundary-fitted coordinate systems is one where an explicit functional relation describes a mesh on which a solution is obtained. This approach has the advantage of rapid-precise mesh control. The basic mathematical structure of three algebraic mesh generation techniques is described. They are transfinite interpolation, the multi-surface method, and the two-boundary technique. The Navier-Stokes equations are transformed to a computational coordinate system where boundary-fitted coordinates can be applied. Large-scale computation implies that there is a large number of mesh points in the coordinate system. Computation of viscous compressible flow using boundary-fitted coordinate systems and the application of this computational philosophy on a vector computer are presented

  19. Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles

    Science.gov (United States)

    Eldred, Lloyd B.

    2011-01-01

    Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.

  20. Postoperative Urinary Retention and Urinary Tract Infections Predict Midurethral Sling Mesh Complications.

    Science.gov (United States)

    Punjani, Nahid; Winick-Ng, Jennifer; Welk, Blayne

    2017-01-01

    To determine if postoperative urinary retention and urinary tract infections (UTIs) were predictors of future mesh complications requiring surgical intervention after midurethral sling (MUS). Administrative data in Ontario, Canada, between 2002 and 2013 were used to identify all women who underwent a mesh-based MUS. The primary outcome was revision of the transvaginal mesh sling (including mesh removal/erosion/fistula, or urethrolysis). Two potential risk factors were analyzed: postoperative retention (within 30 days of procedure) and number of postoperative emergency room visits or hospital admissions for UTI symptoms. A total of 59,556 women had a MUS, of which 1598 (2.7%) required revision surgery. Of the 2025 women who presented to the emergency room or were admitted to hospital for postoperative retention, 212 (10.5%) required operative mesh revision. Of the 11,747 patients who had at least one postoperative UTI, 366 (3.1%) patients required operative mesh revision. In adjusted analysis, postoperative retention was significantly predictive of future reoperation (hazard ratio [HR] 3.46, 95% confidence interval [CI] 2.97-4.02), and this difference persisted when urethrolysis was excluded as a reason for sling revision (HR 3.08, 95% CI 2.62-3.63). Similarly, in adjusted analysis, each additional postoperative hospital visit for UTI symptoms increased the risk for surgical intervention for mesh complications (HR 1.74, 95% CI 1.61-1.87). Postoperative urinary retention and hospital presentation for UTI symptoms are associated with an increased risk of reoperation for MUS complications. These patients should be followed and investigated for mesh complications when appropriate. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.

    Science.gov (United States)

    Zachariah, S G; Sanders, J E; Turkiyyah, G M

    1996-06-01

    A general method to generate hexahedral meshes for finite element analysis of residual limbs and similar biomedical geometries is presented. The method utilizes skeleton-based subdivision of cross-sectional domains to produce simple subdomains in which structured meshes are easily generated. Application to a below-knee residual limb and external prosthetic socket is described. The residual limb was modeled as consisting of bones, soft tissue, and skin. The prosthetic socket model comprised a socket wall with an inner liner. The geometries of these structures were defined using axial cross-sectional contour data from X-ray computed tomography, optical scanning, and mechanical surface digitization. A tubular surface representation, using B-splines to define the directrix and generator, is shown to be convenient for definition of the structure geometries. Conversion of cross-sectional data to the compact tubular surface representation is direct, and the analytical representation simplifies geometric querying and numerical optimization within the mesh generation algorithms. The element meshes remain geometrically accurate since boundary nodes are constrained to lie on the tubular surfaces. Several element meshes of increasing mesh density were generated for two residual limbs and prosthetic sockets. Convergence testing demonstrated that approximately 19 elements are required along a circumference of the residual limb surface for a simple linear elastic model. A model with the fibula absent compared with the same geometry with the fibula present showed differences suggesting higher distal stresses in the absence of the fibula. Automated hexahedral mesh generation algorithms for sliced data represent an advancement in prosthetic stress analysis since they allow rapid modeling of any given residual limb and optimization of mesh parameters.

  2. A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids

    Science.gov (United States)

    Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar

    2014-11-01

    We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.

  3. Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair.

    Science.gov (United States)

    Deeken, Corey R; Abdo, Michael S; Frisella, Margaret M; Matthews, Brent D

    2011-01-01

    For meshes to be used effectively for hernia repair, it is imperative that engineers and surgeons standardize the terminology and techniques related to physicomechanical evaluation of these materials. The objectives of this study were to propose standard techniques, perform physicomechanical testing, and classify materials commonly used for inguinal hernia repair. Nine meshes were evaluated: 4 polypropylene, 1 polyester, 1 polytetrafluoroethylene, and 3 partially absorbable. Physical properties were determined through image analysis, laser micrometry, and density measurements. Biomechanical properties were determined through suture retention, tear resistance, uniaxial, and ball burst testing with specimens tested in 2 different orientations. A 1-way ANOVA with Tukey's post-test or a t-test were performed, with p INFINIT (WL Gore & Associates) did not resist tearing as effectively as the others. All meshes exhibited supraphysiologic burst strengths except INFINIT and ULTRAPRO. Significant differences exist between the physicomechanical properties of polypropylene, polyester, polytetrafluoroethylene, and partially absorbable mesh prostheses commonly used for inguinal hernia repair. Orientation of the mesh was also shown to be critical for the success of meshes, particularly those demonstrating anisotropy. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    International Nuclear Information System (INIS)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Hu, Li-Fang; Shen, Dong-Sheng

    2014-01-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling

  5. Reduction of heavy metals in residues from the dismantling of waste electrical and electronic equipment before incineration

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Hu, Li-Fang [College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018 (China); Shen, Dong-Sheng, E-mail: shends@zju.edu.cn [Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China)

    2014-05-01

    Highlights: • The highest metal reduction occurs at a 2.36 mm sieving size. • Washing promotes heavy metal recycling without secondary pollution. • Sieving and washing are environmentally friendly pretreatments for WEEE wastes. - Abstract: Residues disposal from the dismantling of waste electrical and electronic equipment are challenging because of the large waste volumes, degradation-resistance, low density and high heavy metal content. Incineration is advantageous for treating these residues but high heavy metal contents may exist in incinerator input and output streams. We have developed and studied a specialized heavy metal reduction process, which includes sieving and washing for treating residues before incineration. The preferable screen aperture for sieving was found to be 2.36 mm (8 meshes) in this study; using this screen aperture resulted in the removal of approximately 47.2% Cu, 65.9% Zn, 26.5% Pb, 55.4% Ni and 58.8% Cd from the residues. Subsequent washing further reduces the heavy metal content in the residues larger than 2.36 mm, with preferable conditions being 400 rpm rotation speed, 5 min washing duration and liquid-to-solid ratio of 25:1. The highest cumulative removal efficiencies of Cu, Zn, Pb, Ni and Cd after sieving and washing reached 81.1%, 61.4%, 75.8%, 97.2% and 72.7%, respectively. The combined sieving and washing process is environmentally friendly, can be used for the removal of heavy metals from the residues and has benefits in terms of heavy metal recycling.

  6. Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent.

    Science.gov (United States)

    Suzuki, Yoshihiro; Kametani, Takuji; Maruyama, Toshiroh

    2005-05-01

    The growth of dense green seaweed mats of Ulva spp. is an increasing problem in estuaries and coasts worldwide. The enormous amount of Ulva biomass thus becomes a troublesome waste disposal problem. On the other hand, it has been revealed that nonliving seaweed biomass, particularly brown seaweeds, has a high capacity for assimilating heavy metals. In this study, the possibility of using Ulva seaweed biomass as a biosorbent for the removal of heavy metals was examined. After processing, the biomass material was very easy to separate from the aqueous solution using a mesh. The sorption capacity of Cd on Ulva biomass increased upon pretreatment with alkali solution. The outstanding function of the biosorbent was demonstrated at around pH 8. On the basis of the Langmuir isotherms of Cd, Zn and Cu using the alkali-pretreated biomass, the parameters q(m) and b were determined to be within the narrow range of 60-90 mg/g and 0.03-0.04 L/mg, respectively, for each metal. Given the q(m) and b values, Ulva seaweed is a good biosorbent material for removing heavy metals. In an experiment using artificial wastewater containing Cd, Zn, Cu, Cr and Ni, it was possible to remove each metal simultaneously using Ulva biomass. Adsorption by Ulva biomass is effective for the removal of heavy metals from wastewater.

  7. Transvaginal Resection of an Infected Sacrocolpopexy Mesh by Single-Port Trocar.

    Science.gov (United States)

    Schaub, Marie; Lecointre, Lise; Faller, Emilie; Boisramé, Thomas; Baldauf, Jean-Jacques; Akladios, Cherif Youssef

    Laparoscopy using a single port improves morbidity while keeping the same level of requirement. This technique has been evaluated in gynecology for salpingectomy, ovarian surgery, and hysterectomy. Here, the authors illustrate a new use of a single port using the transvaginal approach. Case report (Canadian Task Force classification III). Tertiary referral center in Strasbourg, France. Woman age 59 years. Single-port platform used in the transvaginal approach for resection of sacrocolpopexy mesh. The local institutional review board approved the video. A 59-year-old woman suffering from insulin-dependent diabetes and a tobacco user had 2 laparoscopic sacrocolpopexies for recurrent rectocele, the first in 2007 and the second in 2012. The sequences were marked by mesh erosion and granuloma in the vagina, requiring its surgical excision in 2016. The patient was then symptomatic, with an increasingly foul-smelling vaginal discharge with recurrent mesh erosion. Magnetic resonance imaging showed an abscess formation along the length of the mesh to the promontory. The patient then underwent surgery, realized under probabilistic antibiotic therapy, consisting of complete excision of the sacrocolpopexy mesh by the transvaginal approach. After putting the single-port trocar (GelPoint; Applied Medical, Rancho Santa Margarita, CA) into the vagina and obtaining distension with the insufflator (AirSeal; Conmed, Utica, NY), classic laparoscopic instruments were introduced by the single-port trocar. The mesh was entirely resected in the retroperitoneal space. Mesh was again used because the exposed space is almost always surrounded by loose granulation tissue that facilitates dissection and also prevents injury to adjacent structures such as bladder, rectum, and peritoneum. Moreover, the opening of adjacent structures will manifest gas leaks and, consequently, loss of the pneumovagina. At the end of procedure, the vagina is not closed to permit optimal drainage with a multitubular

  8. Mesh complications in female pelvic floor reconstructive surgery and their management: A systematic review

    Directory of Open Access Journals (Sweden)

    Hemendra N Shah

    2012-01-01

    Full Text Available We reviewed the incidence, predisposing factors, presentation and management of complications related to the use of synthetic mesh in the management of stress urinary incontinence and pelvic organ prolapse repair. Immediate complications, such as bleeding, hematoma, injury to adjacent organs during placement of mesh and complication of voiding dysfunction are not discussed in this review, since they are primarily related to technique. A PubMed search of related articles published in English was done from April 2008 to March 2011. Key words used were urinary incontinence, mesh, complications, midurethral sling, anterior prolapse, anterior vaginal repair, pelvic organ prolapse, transvaginal mesh, vault prolapse, midurethral slings, female stress urinary incontinence, mesh erosion, vaginal mesh complications, and posterior vaginal wall prolapse. Since there were very few articles dealing with the management of mesh-related complications in the period covered in the search we extended the search from January 2005 onwards. Articles were selected to fit the scope of the topic. In addition, landmark publications and Manufacturer and User Facility Device Experience (MAUDE data (FDA website were included on the present topic. A total of 170 articles were identified. The use of synthetic mesh in sub-urethral sling procedures is now considered the standard for the surgical management of stress urinary incontinence. Synthetic mesh is being increasingly used in the management of pelvic organ prolapse. While the incidence of extrusion and erosion with mid-urethral sling is low, the extrusion rate in prolapse repair is somewhat higher and the use in posterior compartment remains controversial. When used through the abdominal approach the extrusion and erosion rates are lower. The management of mesh complication is an individualized approach. The choice of the technique should be based on the type of mesh complication, location of the extrusion and/or erosion

  9. Critical Under-Reporting of Hernia Mesh Properties and Development of a Novel Package Label.

    Science.gov (United States)

    Kahan, Lindsey G; Blatnik, Jeffrey A

    2018-02-01

    With an array of hernia meshes with varying properties, intraoperative decision making for the optimal mesh is critical. Although meshes are subjected to regulatory review through the Food and Drug Administration, it is unknown whether mesh properties are visually accessible. To facilitate greater knowledge for the surgeon on mesh choice, we aimed to comprehensively analyze hernia mesh packaging and regulations. Labeling guidelines and 510(k) requirements across Food and Drug Administration-regulated products were analyzed and compared with mesh packaging. Packages and Instructions for Use were analyzed for commonly available hernia meshes. Literature review was conducted to understand recommended guidelines for mesh products. A novel hernia mesh packaging label was designed to rectify under-reporting. We found that food labels undergo critical scrutiny and detailed specifications, yet medical devices are not subjected to similar guidelines. The highest reported property on packages was the presence of a barrier (80%), and the lowest reported property was barrier composition (33%). For Instructions for Use, the lowest reported properties were mechanics (31%) and thickness (11%), both of which were not reported on packaging. Descriptive terms for pore size and mechanics were reported inconsistently. To overcome this under-reporting of properties, we propose a novel packaging label with properties chosen from regulatory guidelines, packaging analysis, and literature review. Although standardized terminology has been proposed in literature, property knowledge has not adequately permeated surgery, industry, or regulatory guidelines. There is extreme under-reporting and lack of consistency of clinically important mesh properties. Standardized packaging labels will provide accessibility of these properties and aim to bring standardized terminology into practice. With an increase in access to important properties, this can facilitate intraoperative decision making on a

  10. Outcomes of trocar-guided Gynemesh PS™ versus single-incision trocarless Polyform™ transvaginal mesh procedures.

    Science.gov (United States)

    Larouche, Maryse; Merovitz, Lisa; Correa, José A; Walter, Jens-Erik

    2015-01-01

    The aim of the study was to compare rates of success, mesh exposure, and surgical re-intervention after trocar-guided Gynemesh PS™ and trocarless Polyform™ transvaginal mesh procedures. We conducted a retrospective cohort study of all transvaginal mesh procedures performed at our centers between January 2008 and May 2012. Multiple logistic regression models were used to explore the binary outcomes of objective and subjective success rates, as well as mesh exposure and re-intervention rates, between the two procedures after adjustment for patient's age, parity, body mass index, smoking status, previous hysterectomy, previous prolapse surgery, and follow-up time. We included 103 transvaginal mesh procedures (47 trocar-guided Gynemesh PS™ and 56 trocarless Polyform™). In both groups, Pelvic Organ Prolapse Quantification (POP-Q) scores were significantly improved after the procedure. Median follow-up was 340 days and interquartile range (IQR) 152-644. Objective success rates were 55.3 % (26/47) in the trocar group and 60.7 % (34/56) in the trocarless group (p = 0.9), whereas subjective success was 83.0 % (39/47) and 94.6 % (53/56), respectively (p = 0.1). The adjusted odds of developing mesh exposure were significantly less after trocarless transvaginal mesh procedures compared to trocar-guided ones [odds ratio (OR) 0.16, 95 % confidence interval (CI) 0.03-0.97]. Surgical re-interventions, aimed mostly at treating recurrent prolapse, mesh exposure, and latent stress urinary incontinence, were also significantly less frequent after trocarless procedures [5 patients (8.9 %) requiring re-intervention versus 15 (31.9 %), respectively, adjusted OR 0.15, 95 % CI 0.04-0.60]. Trocar-guided Gynemesh PS™ and trocarless Polyform™ transvaginal mesh systems result in similar objective and subjective success rates. The newer Polyform™ mesh results in significantly fewer mesh exposures and surgical re-interventions.

  11. Mesh complications in female pelvic floor reconstructive surgery and their management: A systematic review

    Science.gov (United States)

    Shah, Hemendra N.; Badlani, Gopal H.

    2012-01-01

    We reviewed the incidence, predisposing factors, presentation and management of complications related to the use of synthetic mesh in the management of stress urinary incontinence and pelvic organ prolapse repair. Immediate complications, such as bleeding, hematoma, injury to adjacent organs during placement of mesh and complication of voiding dysfunction are not discussed in this review, since they are primarily related to technique. A PubMed search of related articles published in English was done from April 2008 to March 2011. Key words used were urinary incontinence, mesh, complications, midurethral sling, anterior prolapse, anterior vaginal repair, pelvic organ prolapse, transvaginal mesh, vault prolapse, midurethral slings, female stress urinary incontinence, mesh erosion, vaginal mesh complications, and posterior vaginal wall prolapse. Since there were very few articles dealing with the management of mesh-related complications in the period covered in the search we extended the search from January 2005 onwards. Articles were selected to fit the scope of the topic. In addition, landmark publications and Manufacturer and User Facility Device Experience (MAUDE) data (FDA website) were included on the present topic. A total of 170 articles were identified. The use of synthetic mesh in sub-urethral sling procedures is now considered the standard for the surgical management of stress urinary incontinence. Synthetic mesh is being increasingly used in the management of pelvic organ prolapse. While the incidence of extrusion and erosion with mid-urethral sling is low, the extrusion rate in prolapse repair is somewhat higher and the use in posterior compartment remains controversial. When used through the abdominal approach the extrusion and erosion rates are lower. The management of mesh complication is an individualized approach. The choice of the technique should be based on the type of mesh complication, location of the extrusion and/or erosion, its magnitude

  12. Computational performance of Free Mesh Method applied to continuum mechanics problems

    Science.gov (United States)

    YAGAWA, Genki

    2011-01-01

    The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753

  13. Evidence for replacement of an infected synthetic by a biological mesh in abdominal wall hernia repair

    Directory of Open Access Journals (Sweden)

    Agneta eMontgomery

    2016-01-01

    Full Text Available The incidence of deep infection using a synthetic mesh in inguinal hernia repair is low and reported to be well below 1%. This is in contrast to incisional hernia surgery where the reported incidence is 3% respective 13% comparing laparoscopic to open mesh repair reported in a Cochrane review. Main risk factors were long operation time, surgical site contamination and early wound complications. An infected mesh can be preserved using conservative treatment were negative pressure wound therapy (VAC® could play an important role. If strategy fails, the mesh needs to be removed. This review aims to look at evidence for situations were a biological mesh would work as a replacement of a removed infected synthetic mesh. Material and MethodsA literature search of the Medline database was performed using the PubMed search engine. Twenty publications were found relevant for this review.ResultsFor studies reviewed three options are presented: removal of the infected synthetic mesh alone, replacement with either a new synthetic or a new biological mesh. Operations were all performed at specialist centers. Removal of the mesh alone was an option limited to inguinal hernias. In ventral/incisional hernias the use of a biological mesh for replacement resulted in a very high recurrence rate, if bridging was required. Either a synthetic or a biological mesh seems to work as a replacement when fascial closure can be achieved. Evidence is though very low. ConclusionWhen required, either a synthetic or a biological meshes seems to work as a replacement for an infected synthetic mesh if the defect can be closed. It is however not recommended to use a biological mesh for bridging. Mesh replacement surgery is demanding and is recommended to be performed in a specialist center.

  14. An efficient approach to unstructured mesh hydrodynamics on the cell broadband engine (u)

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, Charles R [Los Alamos National Laboratory

    2010-12-14

    Unstructured mesh physics for the Cell Broadband Engine (CBE) has received little or no attention to date, largely because the CBE architecture poses particular challenges for unstructured mesh algorithms. SPU memory management strategies such as data preloading cannot be applied to the irregular memory storage patterns of unstructured meshes; and the SPU vector instruction set does not support the indirect addressing needed by connectivity arrays. This paper presents an approach to unstructured mesh physics that addresses these challenges, by creating a new mesh data structure and reorganizing code to give efficient CBE performance. The approach is demonstrated on the FLAG production hydrodynamics code using standard test problems, and results show an average speedup of more than 5x over the original code.

  15. Propriety check for quenching meshes for control of hydrogen combustion between two compartments

    International Nuclear Information System (INIS)

    Yang, S. Y.; Jeong, S. H.; Kim, H. Z.; Kim, H. D.; Hong, S. W.

    2001-01-01

    In our previous study, the quenching meshes have been proposed for the control of hydrogen combustion under nuclear severe accident. It has been investigated whether the method of installation of quenching mesh to prevent flame from propagating to the other compartment is proper or not. Schlieren photograph is used to visualize the propagation of flame between two compartments. Without the quenching mesh equipped between the compartments, it has been observed that the flame always propagates from a compartment to the other. The data on quencing distance of hydrogen premixed flames gotten in our previous study is alayzed to setup of optimum quenching mesh, too. Such experimental results establish that the quenching meshes proposed for the control of hydrogen combustion are resonably available

  16. optimization design of ground grid mesh of 132/33kv substation

    African Journals Online (AJOL)

    user

    INTRODUCTION. Grounding system for transmission substation is very ... drop will occur in mesh which will result in rise of mesh potentials ... minimize the effectiveness of transient voltage. ..... and Grounding in HC and LV Distribution System,.

  17. A software platform for continuum modeling of ion channels based on unstructured mesh

    International Nuclear Information System (INIS)

    Tu, B; Bai, S Y; Xie, Y; Zhang, L B; Lu, B Z; Chen, M X

    2014-01-01

    Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson–Nernst–Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels. (paper)

  18. Mesh complications and failure rates after transvaginal mesh repair compared with abdominal or laparoscopic sacrocolpopexy and to native tissue repair in treating apical prolapse.

    Science.gov (United States)

    Dandolu, Vani; Akiyama, Megumi; Allenback, Gayle; Pathak, Prathamesh

    2017-02-01

    Our objective was to quantitate the extent of complications and failure rate for apical prolapse repair with transvaginal mesh (TVM) use versus sacrocolpopexy over a minimum of 2 years of follow-up. Truven CCAE and Medicare Supplemental databases 2008-2013 were used for analysis. Patients with apical prolapse repair via transvaginal mesh (TVMR), abdominal sacrocolpopexy (ASCP), laparoscopic sacrocolpopexy (LSCP), or native tissue repair (NTR) and continuously enrolled for years were in the study cohort. Surgical failures were identified by reoperation for any prolapse or subsequent use of pessary. SAS® 9.3 was used for analysis. Mesh removal/revision was reported highest in TVMR (5.1 %), followed by LSCP (1.7 %) and ASCP (1.2 %). In those with concomitant sling, combined rates for mesh/sling revision were high, at 9.0 % in TVMR + sling, 5.6 % in ASCP + sling, and 4.5 % LSCP + sling. Sling-alone cases reported a 3.5 % revision rate. Pelvic pain (16.4-22.7 %) and dyspareunia (5.6-7.5 %) were high in all three approaches for apical prolapse repairs. Reoperation for apical prolapse was more common for TVMR (2.9 %) compared with NTR (2.3 %) [odds ratio (OR) 1.27; confidence interval (CI) 1.1-1.47; p 0.002]. Both ASCP and LSCP were superior to NTR (ASCP 1.5 %, OR 0.63, CI 0.46-0.86; p 0.003) and LSCP 1.8 % (OR 0.79, CI 0.62-1.01; p 0.07). Overall prolapse recurrence, as indicated by any compartment surgery for prolapse and/or pessary use, was also noted highest in TVMR (5.9 % OR 1.23, CI 1.11-1.36; p mesh is used for repair, mesh revision is highest with TVMR and lowest with ASCP.

  19. Prevention of parastomal hernia with a preperitoneal polypropelene mesh.

    Science.gov (United States)

    Valdés-Hernández, Javier; Díaz Milanés, Juan Antonio; Capitán Morales, Luis Cristóbal; Del Río la Fuente, Francisco Javier; Torres Arcos, Cristina; Cañete Gómez, Jesús; Oliva Mompeán, Fernando; Padillo Ruiz, Javier

    2015-01-01

    To show our results with the use of a polypropylene mesh at the stoma site, as prophylaxis of parastomal hernias in patients with rectal cancer when a terminal colostomy is performed. From January 2010 until March 2014, 45 consecutive patients with rectal cancer, underwent surgical treatment with the need of a terminal colostomy. A prophylactic mesh was placed in a sublay position at the stoma site in all cases. We analyze Demographics, technical issues and effectiveness of the procedure, as well as subsequent complications. A prophylactic mesh was placed in 45 patients, 35 male and 10 females, mean age of 66.2 (47-88) and Body Mass Index 29.19 (20.4-40.6). A total of 7 middle rectal carcinoma, 36 low rectal carcinoma, one rectal melanoma and one squamous cell anal carcinoma were electively treated with identical protocol. Abdominoperineal resection was performed in 38 patients, and low anterior resection with terminal colostomy in 7. An open approach was elected in 39 patients and laparoscopy in 6, with 2 conversions to open surgery. Medium follow up was 22 months (2.1-53). Overall, 3 parastomal hernias (6.66%) were found, one of which was a radiological finding with no clinical significance. No complications related to the mesh or the colostomy were found. The use of a prophylactic polypropylene mesh placed in a sublay position at the stoma site is a safe and feasible technique. It lowers the incidence of parastomal hernias with no increased morbidity. Copyright © 2014 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Connectivity editing for quad-dominant meshes

    KAUST Repository

    Peng, Chihan; Wonka, Peter

    2013-01-01

    and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.

  1. Comparative efficacy of Prolene and Prolene-Vicryl composite mesh for experimental ventral hernia repair in dogs.

    Science.gov (United States)

    Anjum, H; Bokhari, S G; Khan, M A; Awais, M; Mughal, Z U; Shahzad, H K; Ijaz, F; Siddiqui, M I; Khan, I U; Chaudhry, A S; Akhtar, R; Aslam, S; Akbar, H; Asif, M; Maan, M K; Khan, M A; Noor, A; Khan, W A; Ullah, A; Hayat, M A

    2016-01-01

    In this study, efficacy of two hernia mesh implants viz. conventional Prolene and a novel Prolene-Vicryl composite mesh was assessed for experimental ventral hernia repair in dogs. Twelve healthy mongrel dogs were selected and randomly divided into three groups, A, Band C (n=4). In all groups, an experimental laparotomy was performed; thereafter, the posterior rectus sheath and peritoneum were sutured together, while, a 5 × 5 cm defect was created in the rectus muscle belly and anterior rectus sheath. For sublay hernioplasty, the hernia mesh (Prolene: group A; Prolene-Vicryl composite mesh: group B), was implanted over the posterior rectus sheath. In group C (control), mesh was not implanted; instead the laparotomy incision was closed after a herniorrhaphy. Post-operative pain, mesh shrinkage and adhesion formation were assessed as short term complications. Post-operatively, pain at surgical site was significantly less (P<0.001) in group B (composite mesh); mesh shrinkage was also significantly less in group B (21.42%, P<0.05) than in group A (Prolene mesh shrinkage: 58.18%). Group B (composite mesh) also depicted less than 25% adhesions (Mean ± SE: 0.75 ± 0.50 scores, P≤0.013) when assessed on the basis of a Quantitative Modified Diamond scale; a Qualitative Adhesion Tenacity scale also depicted either no adhesions (n=2), or, only flimsy adhesions (n=2) in group B (composite mesh), in contrast to group A (Prolene), which manifested greater adhesion formation and presence of dense adhesions requiring blunt dissection. Conclusively, the Prolene-Vicryl composite mesh proved superior to the Prolene mesh regarding lesser mesh contraction, fewer adhesions and no short-term follow-up complications.

  2. Mesh Generation via Local Bisection Refinement of Triangulated Grids

    Science.gov (United States)

    2015-06-01

    Science and Technology Organisation DSTO–TR–3095 ABSTRACT This report provides a comprehensive implementation of an unstructured mesh generation method...and Technology Organisation 506 Lorimer St, Fishermans Bend, Victoria 3207, Australia Telephone: 1300 333 362 Facsimile: (03) 9626 7999 c© Commonwealth...their behaviour is critically linked to Maubach’s method and the data structures N and T . The top- level mesh refinement algorithm is also presented

  3. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

    Directory of Open Access Journals (Sweden)

    Akio Kitoh

    2016-03-01

    Full Text Available High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20 km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5 under the Representative Concentration Pathways (RCP-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America. South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific.

  4. Quality of pharmacy-specific Medical Subject Headings (MeSH) assignment in pharmacy journals indexed in MEDLINE.

    Science.gov (United States)

    Minguet, Fernando; Salgado, Teresa M; van den Boogerd, Lucienne; Fernandez-Llimos, Fernando

    2015-01-01

    The Medical Subject Headings (MeSH) is the National Library of Medicine (NLM) controlled vocabulary for indexing articles. Inaccuracies in the MeSH thesaurus have been reported for several areas including pharmacy. To assess the quality of pharmacy-specific MeSH assignment to articles indexed in pharmacy journals. The 10 journals containing the highest number of articles published in 2012 indexed under the MeSH 'Pharmacists' were identified. All articles published over a 5-year period (2008-2012) in the 10 previously selected journals were retrieved from PubMed. MeSH terms used to index these articles were extracted and pharmacy-specific MeSH terms were identified. The frequency of use of pharmacy-specific MeSH terms was calculated across journals. A total of 6989 articles were retrieved from the 10 pharmacy journals, of which 328 (4.7%) were articles not fully indexed and therefore did not contain any MeSH terms assigned. Among the 6661 articles fully indexed, the mean number of MeSH terms was 10.1 (SD = 4.0), being 1.0 (SD = 1.3) considered as Major MeSH. Both values significantly varied across journals. The mean number of pharmacy-specific MeSH terms per article was 0.9 (SD = 1.2). A total of 3490 (52.4%) of the 6661 articles were indexed in pharmacy journals without a single pharmacy-specific MeSH. Of the total 67193 MeSH terms assigned to articles, on average 10.5% (SD = 13.9) were pharmacy-specific MeSH. A statistically significant different pattern of pharmacy-specific MeSH assignment was identified across journals (Kruskal-Wallis P journals can be improved to further enhance evidence gathering in pharmacy. Over half of the articles published in the top-10 journals publishing pharmacy literature were indexed without a single pharmacy-specific MeSH. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Field effects of pollutants in dynamic environments. A case study on earthworm populations in river floodplains contaminated with heavy metals

    International Nuclear Information System (INIS)

    Klok, Chris; Goedhart, Paul W.; Vandecasteele, Bart

    2007-01-01

    In industrialized countries river floodplains can be strongly polluted with heavy metals. Published studies on effects of heavy metal pollution on soil invertebrates in floodplains, however, are inconclusive. This is unexpected since studies in other less dynamic environments reported clear effects at even lower levels of pollution. Flooding induces extra variation in invertebrate biomass and abundance which may reduce the probability to detect heavy metal effects. In this paper we combine reported data from studies on river floodplains in The Netherlands and Belgium and statistically analyze the effect of heavy metals on species composition, biomass, density and individual weight of earthworms. Interaction effects of heavy metal stress and flooding are also considered. The results suggest clear effects of zinc and copper on all variables and interaction of heavy metals and flooding for individual weight. - Interaction with flooding masks heavy metal effects

  6. Suture-free and mesh reinforced small intestinal anstomoses: a feasibility study in rabbits.

    Science.gov (United States)

    Ulmer, T F; Stumpf, M; Rosch, R; Junge, K; Binnebösel, M; von Trotha, K T; Oettinger, A P; Neumann, U

    2013-08-01

    Anastomotic leakage still remains a major complication in general surgery. Beside general risk factors, the ideal method of anastomotic technique has not been found until now. The aim of the present study was to analyze wound healing in suture-free small intestine anastomoses using fibrin glue with and without mesh-reinforcement. Laparotomy and four different types of small bowel anastomoses were performed in 32 chinchilla rabbits. Standard hand-sewn anastomoses (CG), suture-free glued anastomoses (FG) with and without mesh reinforcement using two different types of meshes [Vicryl-mesh (VM) and Surgisis (SM)]. Animals were sacrificed after 5 and 21 days. Bursting pressure, collagen type I/III ratio, and matrix-metalloproteinase 2, 9, and 13 were analyzed. None of the animals died due to an anastomotic leakage. All animals in the long term group with Surgisis mesh died due to a mechanical bowel obstruction based on a distinctive stenosis of the anastomosis. The bursting pressures did significantly differed in animals with fibrin glue alone compared to animals with Vicryl-mesh reinforcement (p < 0.05). Histological examination revealed statistically significant differences (p < 0.05) in the values for MMP-2 (VM < SM), MMP-9 (VM < CG), and MMP-13 (CG < SM, VM < FG, and VM < SM). However, collagen type I/III ratios were not significantly different between groups. Our results suggest that a mesh reinforced glued anastomosis is technically feasible. Furthermore, mesh-reinforcement using VM increased the integrity and simplified the technique of suture-free anastomoses.

  7. GOMESH, Finite Elements Structure Plot with Triangular Mesh

    International Nuclear Information System (INIS)

    Draper, J.

    1977-01-01

    1 - Nature of the physical problem solved: Graphical representation of calculations on structures with finite subdivision. 2 - Method of solution: GOMESH treats meshes with triangular basic elements. The program uses the same punched cards as those required for the input to the 'STAG' series of stress analysis codes and can prepare three basic mesh diagrams which differ in their mode of numbering. One objective of using these diagrams is to show up errors in the card deck by making them visually recognisable. Furthermore, digital tests are made within the program to check that certain requirements have been observed in the production of the lattice. The program 'GOMESH', can provide, superimposed in the graphical representation, stress and temperature values in numerical form, can represent the displacement of the mesh before and after a specified irradiation time, and give the directions and sense of the principal stresses occurring in the individual elements, in the form of arrows of varying length

  8. Smooth Bézier surfaces over unstructured quadrilateral meshes

    CERN Document Server

    Bercovier, Michel

    2017-01-01

    Using an elegant mixture of geometry, graph theory and linear analysis, this monograph completely solves a problem lying at the interface of Isogeometric Analysis (IgA) and Finite Element Methods (FEM). The recent explosion of IgA, strongly tying Computer Aided Geometry Design to Analysis, does not easily apply to the rich variety of complex shapes that engineers have to design and analyse. Therefore new developments have studied the extension of IgA to unstructured unions of meshes, similar to those one can find in FEM. The following problem arises: given an unstructured planar quadrilateral mesh, construct a C1-surface, by piecewise Bézier or B-Spline patches defined over this mesh. This problem is solved for C1-surfaces defined over plane bilinear Bézier patches, the corresponding results for B-Splines then being simple consequences. The method can be extended to higher-order quadrilaterals and even to three dimensions, and the most recent developments in this direction are also mentioned here.

  9. A new method for simplification and compression of 3D meshes

    OpenAIRE

    Attene, Marco

    2001-01-01

    We focus on the lossy compression of manifold triangle meshes. Our SwingWrapper approach partitions the surface of an original mesh M into simply-connected regions, called triangloids. We compute a new mesh M'. Each triangle of M' is a close approximation of a pseudo-triangle of M. By construction, the connectivity of M' is fairly regular and can be compressed to less than a bit per triangle using EdgeBreaker or one of the other recently developed schemes. The locations of the vertices of M' ...

  10. Procedure for the automatic mesh generation of innovative gear teeth

    Directory of Open Access Journals (Sweden)

    Radicella Andrea Chiaramonte

    2016-01-01

    Full Text Available After having described gear wheels with teeth having the two sides constituted by different involutes and their importance in engineering applications, we stress the need for an efficient procedure for the automatic mesh generation of innovative gear teeth. First, we describe the procedure for the subdivision of the tooth profile in the various possible cases, then we show the method for creating the subdivision mesh, defined by two series of curves called meridians and parallels. Finally, we describe how the above procedure for automatic mesh generation is able to solve specific cases that may arise when dealing with teeth having the two sides constituted by different involutes.

  11. Watermarking on 3D mesh based on spherical wavelet transform.

    Science.gov (United States)

    Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng

    2004-03-01

    In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.

  12. Mesh Processing in Medical Image Analysis

    DEFF Research Database (Denmark)

    The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

  13. Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Angeles [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain)], E-mail: aguileraba@inta.es; Souza-Egipsy, Virginia [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); San Martin-Uriz, Patxi [Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Amils, Ricardo [Centro de Astrobiologia (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Centro de Biologia Molecular (UAM-CSIC), Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2008-07-30

    To evaluate the importance of the extracellular matrix in relation to heavy metal binding capacity in extreme acidic environments, the extracellular polymeric substances (EPS) composition of 12 biofilms isolated from Rio Tinto (SW, Spain) was analyzed. Each biofilm was composed mainly by one or two species of eukaryotes, although other microorganisms were present. EPS ranged from 130 to 439 mg g{sup -1} biofilm dry weight, representing between 15% and the 40% of the total biofilm dry weight (DW). Statistically significant differences (p < 0.05) were found in the amount of total EPS extracted from biofilms dominated by the same organism at different sampling points. The amount of EPS varied among different biofilms collected from the same sampling location. Colloidal EPS ranged from 42 to 313 mg g{sup -1} dry weight; 10% to 30% of the total biofilm dry weight. Capsular EPS ranged from 50 to 318 mg g{sup -1} dry weight; 5% to 30% of the total biofilm dry weight. Seven of the 12 biofilms showed higher amounts of capsular than colloidal EPS (p < 0.05). Total amount of EPS decreased when total cell numbers and pH increased. There was a positive correlation between EPS concentration and heavy metal concentration in the water. Observations by low temperature scanning electron microscopy (LTSEM) revealed the mineral adsorption in the matrix of EPS and onto the cell walls. EPS in all biofilms were primarily composed of carbohydrates, heavy metals and humic acid, plus small quantities of proteins and DNA. After carbohydrates, heavy metals were the second main constituents of the extracellular matrix. Their total concentrations ranged from 3 to 32 mg g{sup -1} biofilm dry weight, reaching up to 16% of the total composition. In general, the heavy metal composition of the EPS extracted from the biofilms closely resembled the metal composition of the water from which the biofilms were collected.

  14. Study on boundary search method for DFM mesh generation

    Directory of Open Access Journals (Sweden)

    Li Ri

    2012-08-01

    Full Text Available The boundary mesh of the casting model was determined by direct calculation on the triangular facets extracted from the STL file of the 3D model. Then the inner and outer grids of the model were identified by the algorithm in which we named Inner Seed Grid Method. Finally, a program to automatically generate a 3D FDM mesh was compiled. In the paper, a method named Triangle Contraction Search Method (TCSM was put forward to ensure not losing the boundary grids; while an algorithm to search inner seed grids to identify inner/outer grids of the casting model was also brought forward. Our algorithm was simple, clear and easy to construct program. Three examples for the casting mesh generation testified the validity of the program.

  15. Lichtenstein Mesh Repair (LMR) v/s Modified Bassini's Repair (MBR) + Lichtenstein Mesh Repair of Direct Inguinal Hernias in Rural Population - A Comparative Study.

    Science.gov (United States)

    Patil, Santosh M; Gurujala, Avinash; Kumar, Ashok; Kumar, Kuthadi Sravan; Mithun, Gorre

    2016-02-01

    Lichtenstein's tension free mesh hernioplasty is the commonly done open technique for inguinal hernias. As our hospital is in rural area, majority of patients are labourers, open hernias are commonly done. The present study was done by comparing Lichtenstein Mesh Repair (LMR) v/s Modified Bassini's repair (MBR) + Lichtenstein mesh repair (LMR) of direct Inguinal Hernias to compare the technique of both surgeries and its outcome like postoperative complications and recurrence rate. A comparative randomized study was conducted on patients reporting to MNR hospital, sangareddy with direct inguinal hernias. A total of fifty consecutive patients were included in this study of which, 25 patients were operated by LMR and 25 patients were operated by MBR+LMR and followed up for a period of two years. The outcomes of the both techniques were compared. Study involved 25 each of Lichtenstein's mesh repair (LMR) and modified bassini's repair (MBR) + LMR, over a period of 2 years. The duration of surgery for lichtenstein mesh repair is around 34.56 min compared to LMR+MBR, which is 47.56 min which was statistically significant (p-value is MBR group in POD 1, but not statistically significant (p-value is 0.0949) and from POD 7 the pain was almost similar in both groups. The recurrence rate is 2% for LMR and 0% for MBR+LMR. LMR+MBR was comparatively better than only LMR in all direct inguinal hernias because of low recurrence rate (0%) and low postoperative complications, which showed in our present study.

  16. Cu mesh for flexible transparent conductive electrodes.

    Science.gov (United States)

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-06-03

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

  17. Numerical Investigation of Corrugated Wire Mesh Laminate

    Directory of Open Access Journals (Sweden)

    Jeongho Choi

    2013-01-01

    Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.

  18. Influence of reinforcement mesh configuration for improvement of concrete durability

    Science.gov (United States)

    Pan, Chong-gen; Jin, Wei-liang; Mao, Jiang-hong; Zhang, Hua; Sun, Li-hao; Wei, Dong

    2017-10-01

    Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair technology for reinforced concrete structures in such chloride corrosion environments. By applying the BIEM, chloride ions can be removed from the concrete and the migrating corrosion inhibit can be moved to the steel surface. In conventional engineering, the concrete structure is often configured with a multi-layer steel mesh. However, the effect of the BIEM in such structures has not yet been investigated. In this paper, the relevant simulation test is carried out to study the migration law of chloride ions and the migrating corrosion inhibitor in a concrete specimen with complex steel mesh under different energizing modes. The results show that the efficiency of the BIEM increases 50% in both the monolayer steel mesh and the double-layer steel mesh. By using the single-sided BIEM, 87% of the chloride ions are removed from the steel surface. The different step modes can affect the chloride ion removal. The chloride ions within the range of the reinforcement protective cover are easier to be removed than those in the concrete between the two layers of steel mesh. However, the amount of migrating corrosion inhibitor is larger in the latter circumstances.

  19. Approximation of scalar and vector transport problems on polyhedral meshes

    International Nuclear Information System (INIS)

    Cantin, Pierre

    2016-01-01

    This thesis analyzes, at the continuous and at the discrete level on polyhedral meshes, the scalar and the vector transport problems in three-dimensional domains. These problems are composed of a diffusive term, an advective term, and a reactive term. In the context of Friedrichs systems, the continuous problems are analyzed in Lebesgue graph spaces. The classical positivity assumption on the Friedrichs tensor is generalized so as to consider the case of practical interest where this tensor takes null or slightly negative values. A new scheme converging at the order 3/2 is devised for the scalar advection-reaction problem using scalar degrees of freedom attached to mesh vertices. Two new schemes considering as well scalar degrees of freedom attached to mesh vertices are devised for the scalar transport problem and are robust with respect to the dominant regime. The first scheme converges at the order 1/2 when advection effects are dominant and at the order 1 when diffusion effects are dominant. The second scheme improves the accuracy by converging at the order 3/2 when advection effects are dominant. Finally, a new scheme converging at the order 1/2 is devised for the vector advection-reaction problem considering only one scalar degree of freedom per mesh edge. The accuracy and the efficiency of all these schemes are assessed on various test cases using three-dimensional polyhedral meshes. (author)

  20. Long-term anisotropic mechanical response of surgical meshes used to repair abdominal wall defects.

    Science.gov (United States)

    Hernández-Gascón, B; Peña, E; Pascual, G; Rodríguez, M; Bellón, J M; Calvo, B

    2012-01-01

    Routine hernia repair surgery involves the implant of synthetic mesh. However, this type of procedure may give rise to pain and bowel incarceration and strangulation, causing considerable patient disability. The purpose of this study was to compare the long-term behaviour of three commercial meshes used to repair the partially herniated abdomen in New Zealand White rabbits: the heavyweight (HW) mesh, Surgipro(®) and lightweight (LW) mesh, Optilene(®), both made of polypropylene (PP), and a mediumweight (MW) mesh, Infinit(®), made of polytetrafluoroethylene (PTFE). The implanted meshes were mechanical and histological assessed at 14, 90 and 180 days post-implant. This behaviour was compared to the anisotropic mechanical behaviour of the unrepaired abdominal wall in control non-operated rabbits. Both uniaxial mechanical tests conducted in craneo-caudal and perpendicular directions and histological findings revealed substantial collagen growth over the repaired hernial defects causing stiffness in the repair zone, and thus a change in the original properties of the meshes. The mechanical behaviour of the healthy tissue in the craneo-caudal direction was not reproduced by any of the implanted meshes after 14 days or 90 days of implant, whereas in the perpendicular direction, SUR and OPT achieved similar behaviour. From a mechanical standpoint, the anisotropic PP-lightweight meshes may be considered a good choice in the long run, which correlates with the structure of the regenerated tissue. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A novel method of the image processing on irregular triangular meshes

    Science.gov (United States)

    Vishnyakov, Sergey; Pekhterev, Vitaliy; Sokolova, Elizaveta

    2018-04-01

    The paper describes a novel method of the image processing based on irregular triangular meshes implementation. The triangular mesh is adaptive to the image content, least mean square linear approximation is proposed for the basic interpolation within the triangle. It is proposed to use triangular numbers to simplify using of the local (barycentric) coordinates for the further analysis - triangular element of the initial irregular mesh is to be represented through the set of the four equilateral triangles. This allows to use fast and simple pixels indexing in local coordinates, e.g. "for" or "while" loops for access to the pixels. Moreover, representation proposed allows to use discrete cosine transform of the simple "rectangular" symmetric form without additional pixels reordering (as it is used for shape-adaptive DCT forms). Furthermore, this approach leads to the simple form of the wavelet transform on triangular mesh. The results of the method application are presented. It is shown that advantage of the method proposed is a combination of the flexibility of the image-adaptive irregular meshes with the simple form of the pixel indexing in local triangular coordinates and the using of the common forms of the discrete transforms for triangular meshes. Method described is proposed for the image compression, pattern recognition, image quality improvement, image search and indexing. It also may be used as a part of video coding (intra-frame or inter-frame coding, motion detection).

  2. Compressive and Flexural Tests on Adobe Samples Reinforced with Wire Mesh

    Science.gov (United States)

    Jokhio, G. A.; Al-Tawil, Y. M. Y.; Syed Mohsin, S. M.; Gul, Y.; Ramli, N. I.

    2018-03-01

    Adobe is an economical, naturally available, and environment friendly construction material that offers excellent thermal and sound insulations as well as indoor air quality. It is important to understand and enhance the mechanical properties of this material, where a high degree of variation is reported in the literature owing to lack of research and standardization in this field. The present paper focuses first on the understanding of mechanical behaviour of adobe subjected to compressive stresses as well as flexure and then on enhancing the same with the help of steel wire mesh as reinforcement. A total of 22 samples were tested out of which, 12 cube samples were tested for compressive strength, whereas 10 beams samples were tested for modulus of rupture. Half of the samples in each category were control samples i.e. without wire mesh reinforcement, whereas the remaining half were reinforced with a single layer of wire mesh per sample. It has been found that the compressive strength of adobe increases by about 43% after adding a single layer of wire mesh reinforcement. The flexural response of adobe has also shown improvement with the addition of wire mesh reinforcement.

  3. ANALYSIS OF COMBINED POLYSURFACES TO MESH SURFACES MATCHING

    Directory of Open Access Journals (Sweden)

    Marek WYLEŻOŁ

    2014-06-01

    Full Text Available This article applies to an example of the process of quantitatively evaluate the fit of combined polysurface (NURBS class to a surface mesh. The fitting process of the polysurface and the evaluation of obtained results have been realized in the environment of the CATIA v5 system. Obtained quantitative evaluation are shown graphically in the form of three-dimensional graphs and histograms. As the base surface mesh was used a pelvic bone stl model (the model was created by digitizing didactic physical model.

  4. Local adaptive mesh refinement for shock hydrodynamics

    International Nuclear Information System (INIS)

    Berger, M.J.; Colella, P.; Lawrence Livermore Laboratory, Livermore, 94550 California)

    1989-01-01

    The aim of this work is the development of an automatic, adaptive mesh refinement strategy for solving hyperbolic conservation laws in two dimensions. There are two main difficulties in doing this. The first problem is due to the presence of discontinuities in the solution and the effect on them of discontinuities in the mesh. The second problem is how to organize the algorithm to minimize memory and CPU overhead. This is an important consideration and will continue to be important as more sophisticated algorithms that use data structures other than arrays are developed for use on vector and parallel computers. copyright 1989 Academic Press, Inc

  5. Unstructured Adaptive Meshes: Bad for Your Memory?

    Science.gov (United States)

    Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob

    2003-01-01

    This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.

  6. Delayed vaginal and urethral mesh exposure: 10 years after TVT surgery.

    Science.gov (United States)

    Khanuengkitkong, Siwatchaya; Lo, Tsia-Shu; Dass, Anil Krishna

    2013-03-01

    Delayed mesh exposure after tension-free vaginal tape (TVT) procedure is rare. We report a case of mesh exposure into the vagina and urethra that developed 10 years after TVT surgery. A 58-year-old postmenopausal woman presented with mixed urinary incontinence. She was investigated, and her stress urinary incontinence was cured with a TVT procedure 10 years ago. She was then scheduled follow-up annually. Two years postsurgery, a granulation tissue was observed and excised at the vaginal incision site. Vaginal examination 10 years postsurgery showed vaginal mesh erosion 0.5 cm from urethral meatus. Cystoscopy revealed concomitant urethral erosion at the posterior urethral wall. Mesh excision was performed, and urethra and vagina were repaired in layers. Postoperative recovery was uneventful. This finding shows that, although rare, complications can occur even after 10 years of TVT surgery.

  7. Children with health impairments by heavy metals in an e-waste recycling area.

    Science.gov (United States)

    Zeng, Xiang; Xu, Xijin; Boezen, H Marike; Huo, Xia

    2016-04-01

    E-waste recycling has become a global environmental health issue. Pernicious chemicals escape into the environment due to informal and nonstandard e-waste recycling activities involving manual dismantling, open burning to recover heavy metals and open dumping of residual fractions. Heavy metals derived from electronic waste (e-waste), such as, lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), aluminum (Al) and cobalt (Co), differ in their chemical composition, reaction properties, distribution, metabolism, excretion and biological transmission. Our previous studies showed that heavy metal exposure have adverse effects on children's health including lower birth weight, lower anogenital distance, lower Apgar scores, lower current weight, lower lung function, lower hepatitis B surface antibody levels, higher prevalence of attention-deficit/hyperactivity disorder, and higher DNA and chromosome damage. Heavy metals influence a number of diverse systems and organs, resulting in both acute and chronic effects on children's health, ranging from minor upper respiratory irritation to chronic respiratory, cardiovascular, nervous, urinary and reproductive disease, as well as aggravation of pre-existing symptoms and disease. These effects of heavy metals on children's health are briefly discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Analysis of achievable capacity in irregularly-placed high performance mesh nodes

    CSIR Research Space (South Africa)

    Olwal, TO

    2012-09-01

    Full Text Available -directional antenna for backhaul mesh connectivity and access. The third radio interface card is attached to a 2.4 GHz omni-directional antenna for mesh client access network. As shown in Figure 2, the HPN block diagram has a weather proof Unshielded Twisted Pair... by an embedded microcontroller technology [11]. To ensure high speed performance, the innovation has the first radio interface card attached to a 5 GHz directional antenna for backhaul mesh routing; the second interface card is connected to a 5 GHz omni...

  9. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    Science.gov (United States)

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  10. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    Directory of Open Access Journals (Sweden)

    Zichun Zhong

    2016-01-01

    Full Text Available By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  11. A general boundary capability embedded in an orthogonal mesh

    International Nuclear Information System (INIS)

    Hewett, D.W.; Yu-Jiuan Chen

    1995-01-01

    The authors describe how they hold onto orthogonal mesh discretization when dealing with curved boundaries. Special difference operators were constructed to approximate numerical zones split by the domain boundary; the operators are particularly simple for this rectangular mesh. The authors demonstrated that this simple numerical approach, termed Dynamic Alternating Direction Implicit, turned out to be considerably more efficient than more complex grid-adaptive algorithms that were tried previously

  12. Surgical treatment of subcostal incisional hernia with polypropylene mesh - analysis of late results

    Directory of Open Access Journals (Sweden)

    Marco Antonio de Oliveira Peres

    Full Text Available OBJECTIVE: To evaluate the results of subcostal incisional hernia repair using polypropylene mesh, the technical aspects of musculo-aponeurotic reconstruction, routine fixation of supra-aponeurotic mesh and follow-up for five years.METHODS: We conducted a retrospective study that assessed 24 patients undergoing subcostal incisional hernia repair with use of polypropylene mesh; 15 patients (62.5% were female; ages ranged from 33 to 82, and 79.1% had comorbidities.RESULTS: Early complications: three cases (12.5% of wound infection, three cases (12.5% of seroma, one case (4.1% of hematoma; and one case (4.1% of wound dehiscence. Late complications occurred in one case (4.1% of hernia recurrence attributed to technical failure in the fixation of the mesh and in one case (4.1% of chronic pain. There were no cases of exposure or rejection of the mesh.CONCLUSION: The subcostal incisional hernia, though not very relevant, requires adequate surgical treatment. Its surgical correction involves rebuilding the muscle-aponeurotic defect, supra-aponeurotic fixation of polypropylene mesh, with less complexity and lower rates of complications and recurrences.

  13. Numerical homogenization of concrete microstructures without explicit meshes

    International Nuclear Information System (INIS)

    Sanahuja, Julien; Toulemonde, Charles

    2011-01-01

    Life management of electric hydro or nuclear power plants requires to estimate long-term concrete properties on facilities, for obvious safety and serviceability reasons. Decades-old structures are foreseen to be operational for several more decades. As a large number of different concrete formulations are found in EDF facilities, empirical models based on many experiments cannot be an option for a large fleet of power plant buildings. To build predictive models, homogenization techniques offer an appealing alternative. To properly upscale creep, especially at long term, a rather precise description of the microstructure is required. However, the complexity of the morphology of concrete poses several challenges. In particular, concrete is formulated to maximize the packing density of the granular skeleton, leading to aggregates spanning several length scales with small inter particle spacings. Thus, explicit meshing of realistic concrete microstructures is either out of reach of current meshing algorithms or would produce a number of degrees of freedom far higher than the current generic FEM codes capabilities. This paper proposes a method to deal with complex matrix-inclusions microstructures such as the ones encountered at the mortar or concrete scales, without explicitly meshing them. The microstructure is superimposed to an independent mesh, which is a regular Cartesian grid. This inevitably yields so called 'gray elements', spanning across multiple phases. As the reliability of the estimate of the effective properties highly depends on the behavior affected to these gray elements, special attention is paid to them. As far as the question of the solvers is concerned, generic FEM codes are found to lack efficiency: they cannot reach high enough levels of discretization with classical free meshes, and they do not take advantage of the regular structure of the mesh. Thus, a specific finite differences/finite volumes solver has been developed. At first, generic off

  14. Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing.

    Science.gov (United States)

    Yates, Keegan M; Untaroiu, Costin D

    2018-04-16

    Statistical shape analysis was conducted on 15 pairs (left and right) of human kidneys. It was shown that the left and right kidney were significantly different in size and shape. In addition, several common modes of kidney variation were identified using statistical shape analysis. Semi-automatic mesh morphing techniques have been developed to efficiently create subject specific meshes from a template mesh with a similar geometry. Subject specific meshes as well as probabilistic kidney meshes were created from a template mesh. Mesh quality remained about the same as the template mesh while only taking a fraction of the time to create the mesh from scratch or morph with manually identified landmarks. This technique can help enhance the quality of information gathered from experimental testing with subject specific meshes as well as help to more efficiently predict injury by creating models with the mean shape as well as models at the extremes for each principal component. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. A software framework for the portable parallelization of particle-mesh simulations

    DEFF Research Database (Denmark)

    Sbalzarini, I.F.; Walther, Jens Honore; Polasek, B.

    2006-01-01

    Abstract: We present a software framework for the transparent and portable parallelization of simulations using particle-mesh methods. Particles are used to transport physical properties and a mesh is required in order to reinitialize the distorted particle locations, ensuring the convergence...

  16. Empirical analysis of gross vehicle weight and free flow speed and consideration on its relation with differential speed limit.

    Science.gov (United States)

    Saifizul, Ahmad Abdullah; Yamanaka, Hideo; Karim, Mohamed Rehan

    2011-05-01

    Most highly motorized countries in the world have implemented different speed limits for light weight and heavy weight vehicles. The heavy vehicle speed limit is usually chosen to be lower than that of passenger cars due to the difficulty for the drivers to safely maneuver the heavy vehicle at high speed and greater impact during a crash. However, in many cases, the speed limit for heavy vehicle is set by only considering the vehicle size or category, mostly due to simplicity in enforcement. In this study, traffic and vehicular data for all vehicle types were collected using a weigh-in-motion system installed at Federal Route 54 in Malaysia. The first finding from the data showed that the weight variation for each vehicle category is considerable. Therefore, the effect of gross vehicle weight (GVW) and category of heavy vehicle on free flow speed and their interaction were analyzed using statistical techniques. Empirical analysis results showed that statistically for each type of heavy vehicle, there was a significant relationship between free flow speed of a heavy vehicle and GVW. Specifically, the results suggest that the mean and variance of free flow speed decrease with an increase GVW by the amount unrelated to size and shape for all GVW range. Then, based on the 85th percentile principle, the study proposed a new concept for setting the speed limit for heavy vehicle by incorporating GVW where a different speed limit is imposed to the heavy vehicle, not only based on vehicle classification, but also according to its GVW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Split thickness skin graft meshing ratio indications and common practices.

    Science.gov (United States)

    Pripotnev, Stahs; Papp, Anthony

    2017-12-01

    Split thickness skin grafting is a commonly used technique in burn surgery for resurfacing wounds that are unlikely to heal without scarring. Meshing and expanding skin grafts allow for reconstruction of larger wounds with smaller donor sites. A retrospective chart review was performed of 210 patients with burns equal to or greater than 20% total body surface area admitted to Vancouver General Hospital between 1998 and 2014. Charts were reviewed to collect data on patient and burn demographics. A survey was sent to Canadian plastic surgeons registered with the CSPS to collect data on common practices in burn surgery nationwide. The patients that received 3:1 or higher meshed grafts were all flame burns, had a significantly higher average TBSA (51.89%±14.87 vs 29.13%±9.48, p=0.001), and a significantly higher full thickness burn TBSA (25.76%±21.97 vs 6.20%±9.04, p=0.001). We found no significant differences in gender, age, or burn location between the less than 2:1 and 3:1 or greater meshing ratio groups. The survey of plastic surgeons performing burn surgery in Canada revealed that 60% of responders had experience with skin grafts using meshing ratios of 3:1 or higher. Of these surgeons, 100% felt that burn size and 36% felt that burn location would influence their decision to use a 3:1 or higher meshing ratio. A larger burn size is the major influencing factor for the use of higher skin graft meshing ratios by Canadian burn surgeons. Furthermore, burn location determines the choice of donor and recipient sites in these cases. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  18. Clinical outcomes after parastomal hernia repair with a polyester monofilament composite mesh

    DEFF Research Database (Denmark)

    Oma, E; Pilsgaard, B; Jorgensen, L N

    2018-01-01

    with intraperitoneal placement of a polyester monofilament macroporous composite mesh. METHODS: Data on all patients undergoing parastomal hernia repair with Parietex™ Composite Parastomal Mesh at our institution during a 4-year period were examined. Patients with urostomy were excluded. A team of three experienced...... chronic pain. CONCLUSION: In this study, we found low rates of recurrence and chronic pain following parastomal hernia repair using intraperitoneal reinforcement with a polyester monofilament composite mesh....

  19. Mesh Intercomparisons of Fog Water Collected Yield Insight Into the Nature of Fog-Drip Collection Mechanisms

    Science.gov (United States)

    Fernandez, D.; Torregrosa, A.; Weiss-Penzias, P. S.; Oliphant, A. J.; Dodge, C.; Bowman, M.; Wilson, S.; Mairs, A. A.; Gravelle, M.; Barkley, T.

    2016-12-01

    At multiple sites across central CA, several passive fog water collectors have been deployed for the past 3 years. All of the sites employ standard Raschel polypropylene mesh as the fog collection medium and five of them also integrated a novel polypropylene mesh of German manufacture with a 3-dimensional internal structure. Additionally, six metal mesh manufactured by McMaster-Carr of various hole sizing were coated with a POSS-PEMA substance at the Massachusetts Institute of Technology and deployed in parallel with the Raschel mesh at six distinct locations. Finally, fluorine-free versions of the POSS-PEMA substance were generated by NBD Nanotechnology and coated on a much finer mesh substrate. Three of those and one control (uncoated mesh) were deployed at one of the fog collection sites for one season, along with a standard Raschel mesh. Preliminary results from one intercomparison from just one pair of mesh over two seasons seem to reveal a wind speed and also, possibly, a droplet-size dependence on the fog collection efficiency for the mesh. This study will continue to intercompare the various mesh in conjunction with the wind speed and direction data. If a collection efficiency dependence on mesh size or coating is confirmed, it may point to interesting and relevant mechanisms for fog droplet capture and collection hitherto unobserved in field conditions.

  20. Short-term outcomes of the transvaginal minimal mesh procedure for pelvic organ prolapse

    Directory of Open Access Journals (Sweden)

    Naoko Takazawa

    2018-03-01

    Full Text Available Purpose: This study aimed to evaluate the clinical outcomes and complications of transvaginal minimal mesh repair without using commercially available kits for treatment of pelvic organ prolapse (POP. Materials and Methods: This retrospective cohort study involved 91 women who underwent surgical management of POP with originally designed small mesh between July 2014 and August 2015. This mesh is 56% smaller than the mesh widely used in Japan, and it has only two arms delivered into each right and left sacrospinous ligament. The main study outcome was the anatomic cure rate defined as recurrence of POP quantification (POP-Q stage II or more. We also assessed changes in the overactive bladder symptom score (OABSS and prolapse quality of life questionnaire (P-QOL and evaluated adverse events. Finally, we compared patient backgrounds between the patients with and without recurrence. Results: Prolapse recurred in 10 of 91 patients (11.0%, and all patients with recurrence were diagnosed as POP-Q stage II. As adverse events, only mesh erosion occurred in two (2.2% and pelvic pain in one (1.1% of the 91 patients. The OABSS and P-QOL were significantly improved by the operation. When we compared patient backgrounds between the patients with and without recurrence, body mass index was the only factor influencing affecting recurrence. Conclusions: Transvaginal minimal mesh repair resulted in successful outcomes with low mesh-related complications and anatomic recurrence at one year. Furthermore, significant improvement in QOL was offered by this procedure. Our minimal mesh technique should be considered as one treatment option for the management of POP.