WorldWideScience

Sample records for heavy water deuterium

  1. Deuterium and heavy water

    International Nuclear Information System (INIS)

    Vasaru, G.; Ursu, D.; Mihaila, A.; Szentgyorgyi, P.

    1975-01-01

    This bibliography on deuterium and heavy water contains 3763 references (1932-1974) from 43 sources of information. An author index and a subject index are given. The latter contains a list of 136 subjects, arranged in 13 main topics: abundance of deuterium , catalysts, catalytic exchange, chemical equilibria, chemical kinetics, deuterium and heavy water analysis, deuterium and heavy water properties, deuterium and heavy water separation, exchange reactions, general review, heavy water as moderator, isotope effects, synthesis of deuterium compounds

  2. Selected bibliography on deuterium isotope effects and heavy water

    International Nuclear Information System (INIS)

    Dave, S.M.; Donde, M.M.

    1983-01-01

    In recent years, there has been a great deal of interest in using deuterium and heavy water not only in nuclear industry but also in various fields of basic as well as applied research in physics, chemistry and biology. As a result, the literature is being enriched with a large number of research papers and technical reports published each year. Thus, to enable the scientists to have an easy reference to these works, an endeavour has been made in this selected bibliography, to enlist the publications related to these fields. Since the interest is concerned mainly with heavy water production processes, deuterium isotope effects etc., several aspects (e.g. nuclear) of deuterium have not been covered here. The material in this bibliography which cites 2388 references has been classified under six broad headings, viz. (1) Production of heavy water, (2) Study of deuterium isotope effects, (3) Analysis and Properties of heavy water, (4) Laser Separation of deuterium, (5) Isotopic exchange reactions, and (6) Miscellaneous. The sources of information used for this compilation are chemical abstracts, nuclear science abstracts, INIS Atomindex and also some scattered search through journals and reports available in the B.A.R.C. library. However, in spite of sincere attempts for a wide coverage, no claim is being made towards the exhaustiveness of this bibliography. (author)

  3. Change of deuterium volume content in heavy water during carbon dioxide dissolution in it

    International Nuclear Information System (INIS)

    Efimova, T.I.; Kapitanov, V.F.; Levchenko, G.V.

    1985-01-01

    Carbon dioxide solution density in heavy water at increased temperature and pressure is measured and the influence of carbon dioxide solubility in heavy water on volumetric content of deuterium in it is determined. Investigations were conducted in the temperature range of 303-473 K and pressure range of 3-20 MPa by the autoclave method. Volumetric content of deuterium in heavy water decreases sufficiently with CO 2 dissolved in it in comparison with pure D 2 O under the similar conditions, and this decrease becomes more sufficient with the pressure increase. With the temperature increase the volumetric content of deuterium both for heavy water and for saturated carbon solution in heavy water decreases

  4. Standards for deuterium analysis requirements of heavy water plants (Preprint No. CA-1)

    Energy Technology Data Exchange (ETDEWEB)

    Rathi, B N; Gopalakrishnan, V T; Alphonse, K P; Pawar, P L; Sadhukhan, H K [Bhabha Atomic Research Centre, Bombay (India). Heavy Water Div.

    1989-04-01

    Accurate analysis of deuterium, covering the entire range, is of great importance in production of heavy water. Most of the methods for determination of deuterium in gas or liquid samples require appropriate standards. Since density of pure protium oxide and pure deuterium oxide has been determined very accurately by a large number of workers and density of mixtures of H{sub 2}O and D{sub 2}O follows a linear relation, it is possible to use accurate density determination for measurement of deuterium content. Float method for density measurements was improved further and used for the preparation of primary heavy water standards in high and low deuterium ranges. Heavy water plant laboratories require gas standards (ammonia synthesis gas matrix), in addition to low deuterium water standards, for calibration of mass spectrometers. SLAP (Standard Light Antarctic Precipitation, D/D+H = 89.02+-0.05ppm) and SMOW (Standard Mean Ocean Water, D/D+H =155.76+-0.05ppm) available from IAEA, Vienna, along with water practically free from deuterium, were used as standards to prepare secondary liquid standards. These secondary standards were subsequently reduced and mixed with pure nitrogen to obtain D/D+H standards in syngas matrix. (author). 8 refs., 2 figs.

  5. Production of heavy water

    Science.gov (United States)

    Spencer, Larry S.; Brown, Sam W.; Phillips, Michael R.

    2017-06-06

    Disclosed are methods and apparatuses for producing heavy water. In one embodiment, a catalyst is treated with high purity air or a mixture of gaseous nitrogen and oxygen with gaseous deuterium all together flowing over the catalyst to produce the heavy water. In an alternate embodiment, the deuterium is combusted to form the heavy water. In an alternate embodiment, gaseous deuterium and gaseous oxygen is flowed into a fuel cell to produce the heavy water. In various embodiments, the deuterium may be produced by a thermal decomposition and distillation process that involves heating solid lithium deuteride to form liquid lithium deuteride and then extracting the gaseous deuterium from the liquid lithium deuteride.

  6. Analysis of hydrogen-deuterium mixtures and of mixtures of heavy-water and light-water by means of a mass spectrometer

    International Nuclear Information System (INIS)

    Chenouard, J.; Gueron, J.; Roth, E.

    1951-07-01

    The differences between hydrogen and deuterium with respect to the capture of thermal neutrons (hydrogen = 0.31 barn; deuterium 0.00065 barn) explains the interest of detecting small variations of the isotopic composition of the heavy waters used in the Chatillon nuclear pile. The aim of this report is to describe and discuss the method used since more than a year for the dosimetry of heavy waters. After a recall of the principle of mass spectroscopy analysis of deuterium-hydrogen mixtures, the preciseness of the results is presented and the balancing method used for the determination of the isotopic composition of hydrogen-deuterium mixtures is explained in detail. Finally, a brief comparison of the preciseness of mass spectroscopy measurements with the analyses made with other methods is performed. Some calculations and the tables of results are presented in appendixes. (J.S.)

  7. The need for accurate deuterium analysis in a heavy water plant and its achievement

    International Nuclear Information System (INIS)

    Singh, R.R.; Pradhan, D.G.

    1979-01-01

    Importance of Mass Spectrometer as an analytical tool for deuterium analysis in heavy water plants is discussed. Some of the important requirements such as memory effect and H 3 + correction are described with reference to the Mass Spectrometer used at HWP (Talcher). For achieving the accuracy required, use of international deuterium standards and error estimation found by intercalibration are discussed. (auth.)

  8. Deuterium concentration deterioration in feed synthesis gas from ammonia plant to heavy water plant (Preprint No. ED-5)

    International Nuclear Information System (INIS)

    Sah, A.K.

    1989-04-01

    Heavy Water Plant (Thal) is designed for 110 T/ Year capacity (55 T/Year each stream), with inlet deuterium concentration of feed synthesis gas at 115 ppm and depleted to 15 ppm. During first start up of plant the inlet concentration to feed synthesis gas was about 97 ppm. At that time the rich condensate recirculation was not there. To make the effective recirculation of deuterium rich condensate and minimum posssible losses some modifications were carried out in ammonia plant. Major ones are: (i)Demineralised (DM) water export for heavy water plant and urea plant which was having deuterium rich DM water connection was connected with DM water of urea plant which is not rich in deuterium, (ii)Sample cooler pump suction was connected with raw water, (iii)Ammonia plant line No.II condensate stripper was rectified during annual shut down to avoid excessive steam venting from its top and other draining, and (iv)Stripper condensate directly connected to make up water bypassing open settler to avoid evaporation and diffusion losses. With these modifications the deuterium concentration in feed synthesis gas improved to about 105 ppm. To improve it to 115 ppm, further modifications are suggested. (author). 5 figs

  9. Method of producing deuterium-oxide-enriched water

    International Nuclear Information System (INIS)

    Mandel, H.

    1976-01-01

    A method and apparatus for producing deuterium-oxide-enriched water (e.g., as a source of deuterium-rich gas mixtures) are disclosed wherein the multiplicity of individual cooling cycles of a power plant are connected in replenishment cascade so that fresh feed water with a naturally occurring level of deuterium oxide is supplied to replace the vaporization losses, sludge losses and withdrawn portion of water in a first cooling cycle, the withdrawn water being fed as the feed water to the subsequent cooling cycle or stage and serving as the sole feed-water input to the latter. At the end of the replenishment-cascade system, the withdrawn water has a high concentration of deuterium oxide and may serve as a source of water for the production of heavy water or deuterium-enriched gas by conventional methods of removing deuterium oxide or deuterium from the deuterium-oxide-enriched water. Each cooling cycle may form part of a thermal or nuclear power plant in which a turbine is driven by part of the energy and air-cooling of the water takes place in the atmosphere, e.g., in a cooling tower

  10. Deuterium exchange between liquid water and gaseous hydrogen

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1982-01-01

    The overall separation factors for the deuterium exchange between liquid water and gaseous hydrogen have been calculated over a wide range of temperature, pressure and deuterium concentrations. These data would be useful in the design and other considerations for heavy water production, based on hydrogen-water exchange. (author)

  11. Deuterium content on surface waters VI to X Chile regions

    International Nuclear Information System (INIS)

    Aravena C, R; Pollastri J, A.; Suzuki S, O.

    1984-01-01

    One important parameter on any sitting study for a heavy water plant installation is the deuterium content of the feed water. Deuterium data on surface waters from differents areas located in the south of Chile, are presented. These results allow to idently some potential areas for a future heavy water plant. One of these areas, Lago Llanquihue, was sampled more in detail to study the vertical distribution and spatial variations. (Author)

  12. Finishing and upgrading of heavy water

    International Nuclear Information System (INIS)

    Butler, J.P.; Hammerli, M.

    1981-01-01

    This invention provides a process and apparatus for deuterium enrichment as a final stage in a heavy water plant, for continuous on-line enrichment of the heavy water in moderator and heat transfer systems in heavy water nuclear reactors, and for enrichment of hevy water that has been downgraded with natural water during the course of operating a heavy water nuclear reactor. The method comprises contacting partially-enriched heavy water feed in a catalyst column with hydrogen gas (essentially D 2 ) orginating in an electrolysis cell so as to enrich the feed water with deuterium extracted from the electrolytic hydrogen gas and passing the deuterium-enriched water to the electrolysis cell. The apparatus comprises a catalyst isotope exchange column with hydrogen gas and liquid water passing through in countercurrent isotope exchange, an electrolysis cell, a dehumidifer-scrubber; and means for passing the liquid water enriched in deuterium from the catalyst column through the dehumidifer-scrubber to the electrolysis cell, for passing the hydrogen gas evolved in the cathode side of the cell through the dehumidifier-scrubber to the catalyst column, for passing the hydrogen gas from the catalyst column to an output, for introducing an input water feed to the upper portion of the catalyst column, and for taking a product enriched in deuterium from the system. (LL)

  13. Absolute determination of the deuterium content of heavy water, measurement of absolute density

    International Nuclear Information System (INIS)

    Ceccaldi, M.; Riedinger, M.; Menache, M.

    1975-01-01

    The absolute density of two heavy water samples rich in deuterium (with a grade higher than 99.9%) was determined with the hydrostatic method. The exact isotopic composition of this water (hydrogen and oxygen isotopes) was very carefully studied. A theoretical estimate enabled us to get the absolute density value of isotopically pure D 2 16 O. This value was found to be 1104.750 kg.m -3 at t 68 =22.3 0 C and under the pressure of one atmosphere. (orig.) [de

  14. Procedure and equipment for the separation of isotopes for deuterium upgrading and for the production of heavy water

    International Nuclear Information System (INIS)

    Schoell, M.

    1981-01-01

    The invention concerns a simple procedure for the separation of isotopes for the enrichment of deuterium and for the production of heavy water as well as the equipment necessary for carrying out the process. Methane is conducted over bacterial cultures oxidizing methane to water and carbon dioxide. An enrichment of deuterium takes place in non-oxidized methane. The bacterial cultures are placed on carriers that are arranged in oxidation columns as baffle plates. Several oxidation towers of this kind can be arranged in series. (orig./RW) [de

  15. Use of steam condensate exchange process for recovery of deuterium from condensate of ammonia plant as adopted at Heavy Water Plant, Talcher (Paper No. 2.5)

    International Nuclear Information System (INIS)

    Saha, S.; Saha, P.

    1992-01-01

    This paper highlights the use of steam-condensate exchange system for recovery of deuterium from condensate of ammonia plant, which is adopted at Heavy Water Plant, Talcher. Deuterium concentration in the condensate leaving the steam-condensate exchange column can be brought down very close to the deuterium concentration in water thereby achieving practically complete deuterium recovery. (author). 2 tabs., 1 fig

  16. Analysis of hydrogen-deuterium mixtures and of mixtures of heavy-water and light-water by means of a mass spectrometer; Analyse des melanges hydrogene-deuterium et des melanges d'eau lourde et d'eau legere au moyen du spectrometre de masse

    Energy Technology Data Exchange (ETDEWEB)

    Chenouard, J; Gueron, J; Roth, E

    1951-07-01

    The differences between hydrogen and deuterium with respect to the capture of thermal neutrons (hydrogen = 0.31 barn; deuterium 0.00065 barn) explains the interest of detecting small variations of the isotopic composition of the heavy waters used in the Chatillon nuclear pile. The aim of this report is to describe and discuss the method used since more than a year for the dosimetry of heavy waters. After a recall of the principle of mass spectroscopy analysis of deuterium-hydrogen mixtures, the preciseness of the results is presented and the balancing method used for the determination of the isotopic composition of hydrogen-deuterium mixtures is explained in detail. Finally, a brief comparison of the preciseness of mass spectroscopy measurements with the analyses made with other methods is performed. Some calculations and the tables of results are presented in appendixes. (J.S.)

  17. Comparative study of heavy and deuterium-depleted water on platelet aggregation

    International Nuclear Information System (INIS)

    Haulica, I.; Neagu, B.; Boisteanu, C.P.; Bild, W.; Mihaila, C.; Bajenariu, M.

    2000-01-01

    The effects of timed incubation of PRP (Platelet-Rich Plasma) with various concentrations of deuterium-depleted or deuterated water were tested. Aggregation curves were obtained under constant stirring at 20 deg.C and at 37 deg.C, using 5 - 10 μM ADP as aggregation trigger, using a Specord photo colorimeter. Incubation with 10 % deuterated water showed a significant decrease in the aggregation curves, an effect consistent with the data in the literature. Incubation with deuterium depleted water in the same conditions showed a marked increase in the aggregation curves, which suggests a powerful pro-aggregating effect of deuterium depleted water. (authors)

  18. Process for the preparation of deuterium enriched water in the production of hydrogen

    International Nuclear Information System (INIS)

    Mandrin, Ch.

    1986-01-01

    A synthesis gas facility is operated for n consecutive periods. During the first period excess feed water is added to the facility. The effluent from the resulting mixture is fed to a storage container. During the following n-1 operating periods the stored effluent water is used as feed for the synthesis gas facility. The effluent from each operating period is stored in layers with corresponding deuterium concentration in the storage container. The effluent from the last operating period involving the highest deuterium concentration is fed to a second container and from there to a heavy water production unit. In order to recuperate the deuterium contained in the gas mixture leaving the condensor (consisting of hydrogen, vapour and residual compounds), the mixture is fed to an exchange stage. There the mixture is isotopically exchanged with additional water in a cross flow whereby this water gets enriched in deuterium and is fed to the synthesis gas facility. The process leads to an improved yield of heavy water in the heavy water production facility

  19. Process for the extraction of tritium from heavy water

    International Nuclear Information System (INIS)

    Dombra, A.H.

    1984-01-01

    The object of the invention is achieved by a process for the extraction of tritium from a liquid heavy water stream comprising: contacting the heavy water with a countercurrent gaseous deuterium stream in a column packed with a water-repellent catalyst such that tritium is transferred by isotopic exchange from the liquid heavy water stream to the gaseous deuterium stream

  20. Process for the preparation of ammonia and heavy water

    International Nuclear Information System (INIS)

    Mandrin, C.

    1980-01-01

    A process for the production of ammonia and heavy water comprises the steps of enriching a flow of water with deuterium in a monothermal isotropic process; supplying a first portion of the deuterium-enriched water to a heavy water preparation plant to produce heavy water and hydrogen; storing a second portion of the deuterium-enriched water substantially without interruption during the colder half of a year; electrolytically dissociating the stored deuterium-enriched water substantially without interruption during the wamer half of a year to form hydrogen; storing a portion of the electrolytically-produced hydrogen during said warmer half of a year while supplying the remainder to a synthesis circuit of a synthesizing plant and subsequently supplying the stored hydrogen to the synthesis circuit during said colder half of a year; removing some of the synthesis gas mixture from the synthesis circuit of the synthesizing plant; burning the removed synthesis gas mixture with air to produce a mixture consisting mainly of water and nitrogen; thereafter condensing and separating the water from the mixture of water and nitrogen; supplying the nitrogen of the mixture of water and nitrogen, the hydrogen from the heavy water preparation plant and the electrolytically-produced hydrogen to the synthesis circuit of the synthesizing plant to produce ammonia; and collecting deuterium-depleted water resulting from said burning step and feeding the collected deuterium-depleted water into the monothermal process

  1. Alternate applications of heavy water in biological and technological fields

    International Nuclear Information System (INIS)

    Bhaskaran, M.; Prakash, R.

    2005-01-01

    Deuterium and its various compounds like heavy water exhibit distinctly different properties when compared to hydrogen and its compounds. The differences in properties are due to the primary and secondary isotopic effects. Though heavy water has been used solely for nuclear applications so far, its applications in life sciences and high technology areas are fast emerging. Heavy Water Board has taken up development of alternate applications of heavy water. The study taken up has indicated superior thermal stability for oral polio vaccine prepared in heavy water. This study has revealed various opportunities for application of heavy water or deuterium in life sciences and the paper dwells on these possibilities. The higher stability of compounds with deuterium has also brought in its applications in various high technology areas. These are mainly in micro electronics. Use of deuterium in manufacture of high quality optical fibres has already been established. These are also included in the paper. (author)

  2. Deuterium-depleted water

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Steflea, Dumitru; Saros-Rogobete, Irina; Titescu, Gheorghe; Tamaian, Radu

    2001-01-01

    Deuterium-depleted water represents water that has an isotopic content smaller than 145 ppm D/(D+H) which is the natural isotopic content of water. Deuterium depleted water is produced by vacuum distillation in columns equipped with structured packing made from phosphor bronze or stainless steel. Deuterium-depleted water, the production technique and structured packing are patents of National Institute of Research - Development for Cryogenics and Isotopic Technologies at Rm. Valcea. Researches made in the last few years showed the deuterium-depleted water is a biological active product that could have many applications in medicine and agriculture. (authors)

  3. On line determination of deuterium in hydrogen water exchange reaction by mass spectrometry. IRP-10

    International Nuclear Information System (INIS)

    Sharma, J.D.; Alphonse, K.P.; Mishra, Sushama; Prabhu, S.A.; Mohan, Sadhana; Tangri, V.K.

    2007-01-01

    The Deuterium (D)/Hydrogen (H) analysis at low Concentration is generally carried out by Mass Spectrometry. Mass Spectrometer is specially designed for the measurement of Mass 2 and 3 ratio. The Deuterium analysis of water and hydrogen in concentration range of a few ppm to about 1% plays an important role in the Heavy Water Production Plants. For the enrichment of the Deuterium concentration in H 2 O by H 2 - H 2 O exchange a catalyst is essential as reaction is relatively slow. Heavy Water Division has developed in house Platinum based catalyst for the isotopic exchange of Hydrogen and Water

  4. Method for the preparation of deuterium-enriched water in the preparation of hydrogen

    International Nuclear Information System (INIS)

    Mandrin, C.

    1984-01-01

    The synthesis-gas plant is operated in a number of successive operating periods such that during the first operating period an excess of fresh water is supplied to the synthesis gas plant and the waste water from the resulting mixture is separated in a condenser and supplied to a storage container. During the subsequent operating periods, the waste water stored in the container is used as the feed water for the synthesis gas plant and the waste water obtained on each occasion is stored in the container with increasing deuterium concentration. The waste water obtained during the last operating period and having the highest deuterium concentration is used to feed a plant for producing heavy water. This process, when used in a synthesis gas plant for producing hydrogen, can be used to obtain deuterium-enriched water as a feedstock for a heavy-water plant without expensive additional energy-consuming devices

  5. Method and apparatus for enrichment or upgrading heavy water

    International Nuclear Information System (INIS)

    Butler, J.P.; Hammerli, M.

    1979-01-01

    A method and apparatus for upgrading and final enrichment of heavy water are described, comprising means for contacting partially enriched heavy water feed in a catalyst column with hydrogen gas (essentially D 2 ) originating in an electrolysis cell so as to enrich the feed water with deuterium extracted from the electrolytic hydrogen gas and means for passing the deuterium enriched water to the electrolysis cell. (author)

  6. 76 FR 52994 - Application for a License To Export Heavy Water

    Science.gov (United States)

    2011-08-24

    ... NUCLEAR REGULATORY COMMISSION Application for a License To Export Heavy Water Pursuant to 10 CFR... (liters). producing an active water). pharmaceutical ingredient known as CTP-499, which incorporates heavy water as the source of deuterium to achieve the hydrogen-deuterium exchange. November 30, 2010 December...

  7. A simple and rapid gas chromatographic method for the determination of dissolved deuterium and nitrogen in heavy water coolant of a nuclear reactor

    International Nuclear Information System (INIS)

    Nair, B.K.S.

    1976-01-01

    A known volume of a heavy water sample is equilibrated with a known volume of pure helium gas at atmospheric pressure in a sample tube. The dissolved gases evolve into the helium and distribute themselves between the gaseous and liquid phases according to their equilibrium partial pressures. These partial pressures of the gases in the equilibrium gas mixture are determined by analysing it gas-chromatographically. From these analytical data and the absorption coefficients of deuterium and nitrogen, their original concentrations in heavy water are calculated. Corrections for the increase in the total pressure of the gaseous phase owing to evolved gases are calculated and found to be negligible. Air contamination during sampling and analysis can be detected by the presence of the oxygen peak in the chromatogram and corrected for. The calculation is facilitated by programming it on an electronic calculator. The method is much simpler and faster than the vacuum method usually applied for this analysis. One determination can be completed in about an hour. The average deviation and standard deviation have been estimated at 0.19 ml/litre heavy water and 0.25 ml/litre heavy water respectively in deuterium, and 0.36 and 0.68 ml/litre in nitrogen. (author)

  8. Topical and working papers on heavy water requirements and availability

    International Nuclear Information System (INIS)

    The documents included in this report are: Heavy water requirements and availability; technological infrastructure for heavy water plants; heavy water plant siting; hydrogen and methane availability; economics of heavy water production; monothermal, water fed heavy water process based on the ammonia/hydrogen isotopic exchange; production strategies to meet demand projections; hydrogen availability; deuterium sources; the independent UHDE heavy water process

  9. Deuterium - depleted water. Achievements and perspectives

    International Nuclear Information System (INIS)

    Titescu, Gh.; Stefanescu, I.; Saros-Rogobete, I.

    2001-01-01

    Deuterium - depleted water represents water that has an isotopic content lower than 145 ppm D/(D+H) which is the natural isotopic content of water. The research conducted at ICSI Ramnicu Valcea, regarding deuterium - depleted water were completed by the following patents: - technique and installation for deuterium - depleted water production; - distilled water with low deuterium content; - technique and installation for the production of distilled water with low deuterium content; - mineralized water with low deuterium content and technique to produce it. The gold and silver medals won at international salons for inventions confirmed the novelty of these inventions. Knowing that deuterium content of water has a big influence on living organisms, beginning with 1996, the ICSI Ramnicu Valcea, deuterium - depleted water producer, co-operated with Romanian specialized institutes for biological effects' evaluation of deuterium - depleted water. The role of natural deuterium in living organisms was examined by using deuterium - depleted water instead of natural water. These investigations led to the following conclusions: 1. deuterium - depleted water caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the deuterium - depleted water persists after the removal of the vascular endothelium; -2. animals treated with deuterium - depleted water showed an increase of the resistance both to sublethal and to lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defence mechanism; 3, deuterium - depleted water stimulates immune defence reactions, represented by the opsonic, bactericidal and phagocyte capacity of the immune system, together with increase in the numbers of polymorphonuclear neutrophils; 4. investigations regarding artificial

  10. Heavy water cycle in the CANDU reactor

    International Nuclear Information System (INIS)

    Nanis, R.

    2000-01-01

    Hydrogen atom has two isotopes: deuterium 1 H 2 and tritium 1 H 3 . The deuterium oxide D 2 O is called heavy water due to its density of 1105.2 Kg/m 3 . Another important physical property of the heavy water is the low neutron capture section, suitable to moderate the neutrons into natural uranium fission reactor as CANDU. Due to the fact that into this reactor the fuel is cooled into the pressure tubes surrounded by a moderator, the usage of D 2 O as primary heat transport (PHT) agent is mandatory. Therefore a large amount of heavy water (approx. 500 tons) is used in a CANDU reactor. Being a costly resource - it represents 20% of the initial plant capital cost, D 2 O management is required to preserve it. (author)

  11. Heavy water: a distinctive and essential component of CANDU

    International Nuclear Information System (INIS)

    Miller, A.I.; van Alstyne, H.M.

    1994-06-01

    The exceptional properties of heavy water as a neutron moderator provide one of the distinctive features of CANDU reactors. Although most of the chemical and physical properties of deuterium and protium (mass 1 hydrogen) are appreciably different, the low terrestrial abundance of deuterium makes the separation of heavy water a relatively costly process, and so of considerable importance to the CANDU system. World heavy-water supplies are currently provided by the Girdler-Sulphide process or processes based on ammonia-hydrogen exchange. Due to cost and hazard considerations, new processes will be required for the production of heavy water in and beyond the next decade. Through AECL's development and refinement of wetproofed catalysts for the exchange of hydrogen isotopes between water and hydrogen, a family of new processes is expected to be deployed. Two monothermal processes, CECE (Combined Electrolysis and Catalytic Exchange, using water-to-hydrogen conversion by electrolysis) and CIRCE (Combined Industrially Reformed hydrogen and Catalytic Exchange, based on steam reforming of hydrocarbons), are furthest advanced. Besides its use for heavy-water production, the CECE process is a highly effective technology for heavy-water upgrading and for tritium separation from heavy (or light) water. (author). 10 refs., 1 tab., 7 figs

  12. Canadian heavy water production

    International Nuclear Information System (INIS)

    Dahlinger, A.; Lockerby, W.E.; Rae, H.K.

    1977-01-01

    The paper reviews Canadian experience in the production of heavy water, presents a long-term supply projection, relates this projection to the anticipated long-term electrical energy demand, and highlights principal areas for further improvement that form the bulk of the Canadian R and D programme on heavy water processes. Six Canadian heavy water plants with a total design capacity of 4000Mg/a are in operation or under construction. All use the Girdler-Sulphide (GS) process, which is based on deuterium exchange between water and hydrogen sulphide. Early operating problems have been overcome and the plants have demonstrated annual capacity factors in excess of 70%, with short-term production rates equal to design rates. Areas for further improvement are: to increase production rates by optimizing the control of foaming to give both higher sieve tray efficiency and higher flow rates, to reduce the incapacity due to deposition of pyrite (FeS 2 ) and sulphur (between 5% and 10%), and to improve process control and optimization of operating conditions by the application of mathematical simulations of the detailed deuterium profile throughout each plant. Other processes being studied, which look potentially attractive are the hydrogen-water exchange and the hydrogen-amine exchange. Even if they become successful competitors to the GS process, the latter is likely to remain the dominant production method for the next 10-20 years. This programme, when related to the long-term electricity demand, indicates that heavy water supply and demand are in reasonable balance and that the Candu programme will not be inhibited because of shortages of this commodity. (author)

  13. Deuterium-depleted water. Romanian achievements and perspective

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Saros-Rogobete, Irina; Titescu, Gheorghe

    2001-01-01

    Deuterium-depleted water has an isotopic content smaller than 145 ppm D/(D+H) which is the natural isotopic content of water. Beginning with 1996 ICSI Rm. Valcea, deuterium-depleted water producer, co-operated with Romanian specialized institutes for biological effect's evaluation of deuterium-depleted water. These investigations lead to the following conclusions: - Deuterium-depleted water caused a tendency towards the increase of the basal tonus, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tonus and vascular reactivity produced by the deuterium-depleted water persist after the removal of the vascular endothelium; - Animals treated with deuterium-depleted water showed an increase of the resistance both to sublethal and to lethal gamma radiation doses, suggesting a radioprotective action; - Deuterium-depleted water stimulates immune defence reactions and increases the numbers of polymorphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with deuterium-depleted water fecundated solutions confirmed favourable influence in embryo growth stage and resistance in subsequent growth stages; - It was studied germination, growth and quantitative character's variability in plants; one can remark the favourable influence of deuterium-depleted water on biological process in plants in various ontogenetic stages; - The deuterium depletion in seawater produces the diminution of the water spectral energy related to an increased metabolism of Tetraselmis Suecica. (authors)

  14. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  15. Heavy-water extraction from non-electrolytic hydrogen streams

    International Nuclear Information System (INIS)

    LeRoy, R.L.; Hammerli, M.; Butler, J.P.

    1981-01-01

    Heavy water may be produced from non-electrolytic hydrogen streams using a combined electrolysis and catalytic exchange process. The method comprises contacting feed water in a catalyst column with hydrogen gas originating partly from a non-electrolytic hydrogen stream and partly from an electrolytic hydrogen stream, so as to enrich the feed water with the deuterium extracted from both the non-electrolytic and electrolytic hydrogen gas, and passing the deuterium water to an electrolyser wherein the electrolytic hydrogen gas is generated and then fed through the catalyst column. (L.L.)

  16. Water conservation by 3 R's - case histories of Heavy Water Plants

    International Nuclear Information System (INIS)

    Agarwal, A.K.; Hiremath, S.C.

    2005-01-01

    The basics of water conservation revolve around three R's of Reduce, Recycle, and Reuse. The Heavy Water Plants are an excellent example of water savings, and these case studies will be of interest to the chemical industry. The issues involved with water conservation and re-use in different Heavy Water Plants are of different nature. In H 2 S-H 2 O process plants the water consumption has been substantially decreased as compared to the design water needs. To quote the figures HWP (Kota) was designed to consume 2280 m 3 /hr water, which included 453 m 3 /hr water as feed for deuterium extraction. Today the plant operates with only 1250 m 3 /hr water while processing 500 m 3 /hr feed; and is headed to decrease the total water consumption to 700 m 3 /hr. Similarly at HWP (Manuguru) the design had provided 5600 m 3 /hr water consumption, which is today operating with only 1750 m 3 /hr and poised to operate with 1600 m 3 /hr. The issues of water conservation in Ammonia Hydrogen exchange plants have an additional dimension since water losses mean direct loss of heavy water production. In adjoining ammonia plants deuterium shifts to steam in the reformer and shift converter, and this excess steam is condensed as rich condensate. It becomes incumbent on the fertilizer plant to maintain a tight discipline for conserving and re-using the rich condensate so that deuterium concentration in the synthesis gas is maintained. Efforts are also underway to utilize rich condensate of GSFC in the newly developed technology of water ammonia exchange at HWP (Baroda) and we are targeting 20% production gains by implementation of this scheme and with no increase in the pollution load. These case histories will be of interest to Chemical Process Industry. (author)

  17. Extraction of deuterium from D-rich process condensate of ammonia plants

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, T K; Kumar, Manoj; Ramamurty, C B [Heavy Water Board, Department of Atomic Energy, Mumbai (India)

    1994-06-01

    Heavy water plants based on ammonia-hydrogen exchange process receives feed synthesis gas from the adjacent fertilizer plants. The production capacity of such heavy water plants is directly proportional to the deuterium-content in feed synthesis gas. The chemical process involved in gas generation section of the fertilizer plant includes catalytic steam-reforming of natural gas/naphtha/fuel oil followed by shift conversion, alternatively coal classification followed by shift conversion. Effective extraction of deuterium from the deuterium-rich process condensate can boost the production capacity of heavy water plants considerably. This paper discusses various possible methods to achieve this objective. (author). 5 refs., 1 fig., 1 tab.

  18. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1978-01-01

    A method of separating deuterium, i.e., heavy hydrogen, from certain naturally occurring sources using tuned infrared lasers to selectively decompose specified classes of organic molecules (i.e., RX) into enriched molecular products containing deuterium atoms is described. The deuterium containing molecules are easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. The undecomposed molecules and the other reaction products which are depleted of their deuterium containing species can be catalytically treated, preferably using normal water, to restore the natural abundance of deuterium and such restored molecules can then be recycled

  19. Heavy water isotopic rectification in the ''ORPHEE'' reactor. SACLAY studies Centre

    International Nuclear Information System (INIS)

    Lejeune, P.; Breant, P.

    1993-01-01

    ORPHEE reactor supplies neutron beams, which are got back in a heavy water reflector. The neutron beams intensity depends on the reflector quality which is determined by the isotopic content of the heavy water. The deuterium submitted to core irradiation changes in radioactive tritium which must be eliminated largely for reasons of safety. The column must keep the heavy water isotopic content of the reflector to a value higher than 99.8% by eliminating light water by fractional distillation or rectification. This column is also used for the tritium elimination of heavy water. 13 figs

  20. Improved method of degassing of feed water at Heavy Water Plant, Kota

    International Nuclear Information System (INIS)

    Krishnan, G.K.; Agrawal, A.K.

    1994-01-01

    Heavy Water Plant (Kota) processes 450 MT/hr of feed water as the source of deuterium using water/hydrogen sulphide exchange process for the production of heavy water. Plant design has limited the ingress of dissolved oxygen in feed water to 0.2 ppm. However, even this low limit on dissolved oxygen has been found unacceptable during plant operation as over an operational period of 3-4 years accumulation of sulphur due to oxidation of hydrogen sulphide on exchange tower trays poses major operational problems. This paper discusses the results of nitrogen injection used for reducing the ingress of dissolved oxygen in the feed water system of the plant. (author)

  1. Deuterium isotope composition of palaeoinfiltration water trapped in speleothems

    International Nuclear Information System (INIS)

    Rozanski, K.

    1987-05-01

    Analytical and methodological aspects of combined isotope investigations of carbonate cave deposits are thoroughly discussed in the report. Weight is put on isotope analyses of fluid inclusions (D and 18 O content) extracted from speleothems of known age. Dating was done by the 230 Th/ 234 U ratio method. Isotopic analyses of speleothems originating from European caves allowed some important conclusions to be formulated regarding past climatic and environmental conditions prevailing over the European continent during the last 300,000 yrs: a) δD values of fluid inclusions suggest a remarkable constancy of the heavy-isotope content of European palaeoinfiltration waters recharged during interglacial periods, b) a climate-induced, long-term changes in isotopic composition of precipitation and surface air temperature over Europe can be characterized by the deuterium gradient of ca.1 4 deg./oo/deg. C, c) an apparent constancy of the continental gradient in deuterium content of European palaeoinfiltration waters as judged from the fluid inclusion data suggests that atmospheric circulation over Europe did not undergo substantial changes for at least 300,000 years

  2. High resolution conductometry for isotopic assay of deuterium in mixtures of heavy water and light water

    International Nuclear Information System (INIS)

    Ananthanarayanan, R.; Sahoo, P.; Murali, N.

    2014-01-01

    A PC based high resolution conductivity monitoring technique has been deployed for determination of isotopic purity of heavy water in samples containing heavy water and light water mixtures using pulsating sensor based conductivity monitoring instrument. The technique involves accurate determination of conductivities of a series of specially treated heavy water and light water mixtures of various compositions at a constant solution temperature. The shift in conductivity (Δκ), which is the difference between conductivities of composite mixture after and before the formation of a typical complex compound (boric acid–mannitol complex in this case), shows a smooth and reproducible decreasing trend with increase in percentage composition of heavy water. This relation, which is obtained by appropriate calibration, is used in the software program for direct display of isotopic purity of heavy water. The technique is examined for determination of percentage composition of heavy water in the entire range of concentration (0-100 %) with reasonable precision (relative standard deviation, RSD ≤1.5 %). About 1 mL of sample is required for each analysis and analysis is completed within a couple of minutes after pretreatment of sample. The accuracy in measurement is ≤1.75 %. (author)

  3. Possibility of deuterium free water using as antitumoral means with reference to conditions of Martian expedition

    Science.gov (United States)

    Sinyak, Y.; Turusov, V.; Grigroriev, A.; Yaridze, D.; Gaidadimov, V.; Antoshina, E.; Gorkova, T.; Truhanova, L.

    The interplanetary space flights, Martian program as an example, will take place under conditions of increasing radiation level on crew. The search of methods for a decrease of oncologic risk produced by irradiation of astronauts, is one of the major factors of a successful implementation of a flight program. One of such methods is a usage by crew of potable water with the reduced concentrations of a heavy stable isotope of hydrogen - deuterium, which can be obtained in the regenerative life support systems. The heavy water (D2O) has toxic properties, distorting biochemical reactions in the cell, inhibiting process of DNA replication. It can be presumed that the replacement of deuterium in the water for protium will result in normalization of cell metabolism, reparation will take place and this will lead to the inhibition of tumour development. In this study the water with a decreased by 65% of deuterium was used. Antitumour properties of D 2-free water were studied with transplantable Lewis lung carcinoma in BDF1 strain of mice. First results show that average time of appearance of the first nodules at the site of transplantation was 14 % longer in mice fed D 2-free water as compared to control. The tumour volume in the experimental group (decreased content of D2 ) was always lower than in the control. Statistically significant differences in the tumour volume were registered at the 13, 15, 23, 26 and 28 -th days after transplantation. Inhibition of tumour growth was equal to 100% and 51% at the 5 th and 15-th days after- transplantation respectively. Increase of life span in the experimental group was 10%. The results indicate that the use by astronauts of water with decreased content of deuterium may decrease the risk of oncological diseases under conditions of high radiation level in the flight to Mars.

  4. Improved method of degassing of feed water at Heavy Water Plant, Kota

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, G K; Agrawal, A K [Heavy Water Plant, Kota (India)

    1994-06-01

    Heavy Water Plant (Kota) processes 450 MT/hr of feed water as the source of deuterium using water/hydrogen sulphide exchange process for the production of heavy water. Plant design has limited the ingress of dissolved oxygen in feed water to 0.2 ppm. However, even this low limit on dissolved oxygen has been found unacceptable during plant operation as over an operational period of 3-4 years accumulation of sulphur due to oxidation of hydrogen sulphide on exchange tower trays poses major operational problems. This paper discusses the results of nitrogen injection used for reducing the ingress of dissolved oxygen in the feed water system of the plant. (author). 1 fig.

  5. Compared studies of natural and artificial deuterium depleted water

    International Nuclear Information System (INIS)

    Butnaru, Gallia; Mihacea, Sorina; Sirbovan, Alina; Butnariu, H.; Titescu, Gh.

    2001-01-01

    The biological influence of the deuterium on animals was studied insensitively in the last years. When animal cell cultures were analyzed it turned out an inhibition of the development, due to the reduced deuterium concentration. In the in vivo experiments a decreasing of the number of tumoral cells was pointed out when performing the depleted water treatment. It is obvious that the presence of deuterium in water is necessary for the development, especially for the tumoral cell proliferation. The aim of this work was to establish influence of the natural and artificial deuterium depleted water on the vegetal organisms development. For this purpose, the developmental stages of Lactuca sativa L. growth were followed. The experimental data were compared with the data obtained with distilled water. The birch, wine sap and some fruit juices are considered 'natural depleted' water sources because their deuterium content is smaller in comparison to natural water (D 2 =150 ppm). The effect of artificial deuterium depleted water (29 ppm D 2 ) was analyzed in comparison to three types of wine saps, which also have a reduced deuterium concentration (125-130 ppm D 2 ). If the deuterium depleted water was used, the germination percent and the root and shoot length were higher compared to control in the first stages. In wine sap it had a negative effect on germination and development. After three days the plants were transferred to soil and their development was followed. The foliage area was larger for all of the experimental variants compared to control. The differences were without significance when deuterium depleted water was tested but they were high and very significant in case of wine sap. The experiment pointed out a stimulative effect of the artificial deuterium depleted water. In case of wine sap the effect was negative when the contact was direct, but the growth was stimulated after the stress cessation. The first ontogenetic stages were represented by direct action

  6. Process for recovering water enriched with deuterium

    International Nuclear Information System (INIS)

    Mandel, H.

    1975-01-01

    By the process proposed herewith, enrichment of deuterium in water by cooling water recirculation through series-connection of several cooling ciruits in the form of columns is obtained. With this method, conventional, open-type cooling towers without special installations can be applied, which is an important advantage as compared with a formerly proposed single-stage process with specially designed, complicated cooling towers. Series-connection of the cooling towers is carried out in such a way that the circulating water of a certain cooling circuit, which has a corresponding output value of deuterium enrichment, is conveyed to a succeeding circuit where further enrichment is achieved. The water enriched with deuterium is removed from the last cooling circuit of the series while an amount of fresch water equivalent to the water removed or evaporated altogether is fed to the first circuit of the series. (RB) [de

  7. Water chemistry features of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sriram, Jayasree; Vijayan, K.; Kain, Vivekanad; Velmurugan, S.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) being designed in India proposes to use Plutonium and Thorium as fuel. The objective is to extract energy from the uranium-233 formed from Thorium. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a natural circulation reactor. Thus, it has got several advanced passive safety features built into the system. The various water coolant systems are listed below. i) Main Heat transport System ii) Feed water system iii) Condenser cooling system iv) Process water system and safety systems. As it is a tube type reactor, the radiolysis control differs from the normal boiling water reactor. The coolant enters the bottom of the coolant channel, boiling takes place and then the entire steam water mixture exits the core through the long tail pipes and reaches the moisture separator. Thus, there is a need to devise methods to protect the tail pipes from oxidizing water chemistry condition. Similarly, the moderator heavy water coolant chemistry differs from that of moderator system chemistry of PHWR. The reactivity worth per ppm of gadolinium and boron are low in comparison to PHWR. As a result, much higher concentration of neutron poison has to be added for planned shutdown, start up and for actuating SDS-2. The addition of higher concentration of neutron poison result in higher radiolytic production of deuterium and oxygen. Their recombination back to heavy water has to take into account the higher production of these gases. This paper also discusses the chemistry features of safety systems of AHWR. In addition, the presentation will cover the chemistry monitoring methodology to be implemented in AHWR. (author)

  8. The importance of heavy water in nuclear technology

    International Nuclear Information System (INIS)

    Gharib, A.G.

    2004-01-01

    Due to similarities of chemical and almost physical properties in H 2 O and D 2 O but differences in nuclear and particle peculiarities provide valuable application for D 2 O. To sustain a controlled chain reaction, the energy of neutrons produced by fission must be reduced through collisions with other nuclei, a process called moderation. A good moderator has a mass close to that of the neutron to maximize energy loss per collision and a very small neutron capture cross section to minimize unwanted nuclear reactions. Deuterium is far the best moderator, more than 80 times better than hydrogen and 30 times better than 12 C ir 18 O. Heavy water is almost as good as deuterium and has the distinct advantage of being a nonflammable liquid. Heavy water is also an excellent neutron reflector, and thus decreases the number of neutrons that escape the reactor core without participating in fission reactions. For this reason a feasibility study and subsequently a technical survey was carried out on engineering of a pilot scale plant. As the result of this studies, the know-how of heavy water production on basis of selected method including dual temperature isotopic exchange and distillation techniques developed. Subsequently the primary and almost detail engineering documents prepared on best knowledge of our own engineers without external contribution

  9. Possibilities for reorientation the activity of heavy water plants

    International Nuclear Information System (INIS)

    Pop, F.; Croitoru, C.; Titescu, Gh.; Stefanescu, I.; Hodor, I.; Cuna, S. . E-mail of corresponding author: pop.floarea@icsi.ro; Pop, F.)

    2005-01-01

    In Romania heavy water is produced by H 2 O-H 2 S chemical exchange (GS process) and by water distillation, simultaneously working two lines. The distillation plants have high separation capacity, a distillation line being able to concentrate water from two GS lines. The paper presents data regarding possibilities to use one distillation line for oxygen 18 production, as pre-concentrates or finite products. Using a simulation program it was calculated oxygen 18 concentration in heavy water produced, maximum 18 O concentration of pre-concentrate obtained on distillation line and the separation cascade dimensions for obtain 95% 18 O, with first and second stage having same dimensions like a distillation plant from Romanian heavy water factory. Oxygen-18 separation factor is much lower than deuterium separation factor. For this reason, oxygen-18 is a very expensive product. (author)

  10. Heavy water at Aswan

    International Nuclear Information System (INIS)

    1959-01-01

    A fertilizer factory is being built by Egyptian Chemical Industries (Kima) at Aswan on the upper Nile; it will produce a mixture of ammonium nitrate and calcium carbonate adjusted to contain 20.5% nitrogen. It is also proposed to construct a heavy water plant to be located at and integrated with the fertilizer factory. At the request of the Government of the United Arab Republic, the International Atomic Energy Agency sent an expert to carry out investigation of the technical, economic and other related aspects of the proposed production of heavy water. A report was submitted to the IAEA Director General. Its main conclusions can be summarized as follows: (1) Production of heavy water as a by-product of fertilizer manufacture at Aswan is technically feasible. Separation of deuterium from industrial hydrogen for this purpose could be done either by catalytic exchange or by liquefaction and distillation; the choice should depend on economic considerations. (2) The heavy water produced at Aswan should be competitive in cost with that produced elsewhere; this, however, would depend on whether firm contracts are obtained for the delivery of equipment at guaranteed prices and with guaranteed performance, and whether such prices are in reasonable agreement with preliminary estimates. (3) The future market for heavy water is difficult to predict. For one thing, there is a very large production capacity in the USA, most of which is idle due to lack of demand. Secondly, there is a relatively small production outside the USA that is sold at prices higher than that charged by the US Government. The future of the market is necessarily contingent upon the possibility of future free sale by the US Government. At the end of his report, the expert has also given his comments on possible further assistance to the project by IAEA

  11. Possibilities for reorientation of activity in Heavy Water Plants

    International Nuclear Information System (INIS)

    Pop, F.; Croitoru, C.; Titescu, Gh.; Stefanescu, I.; Hodor, I.; Cuna, S.

    2004-01-01

    In Romania heavy water is produced by H 2 O-H 2 S chemical exchange (GS process) and by water distillation, in two lines working simultaneously. The distillation plants have high separation capacity, a distillation line being able to concentrate water from two GS lines. The paper presents data regarding possibilities to use one distillation line for oxygen - 18 production, as pre-concentrates or finite products. A simulation program was used to calculate the oxygen - 18 concentration in the heavy water produced, maximum 18 O concentration of pre-concentrate obtained on distillation line and the separation cascade sizes to obtain 95% 18 O, with first and second stage having the same sizes like the distillation plant from the Romanian heavy water factory. Oxygen-18 separation factor is much lower than deuterium separation factor. For this reason, oxygen-18 is a very expensive product. (authors)

  12. Deuterium Excess of Waters in Slovenia. Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Brencic, M.; Torkar, A. [Faculty of Natural Sciences and Engineering, University of Ljubljana, Ljubljana (Slovenia); Vreca, P. [Jozef Stefan Institut, Department of Environmental Sciences, Ljubljana (Slovenia)

    2013-07-15

    In climatic and hydrological studies, deuterium excess has proven to be a useful parameter; therefore this parameter has been investigated in the waters of slovenia - positioned in central europe. All the data were acquired from publicly available data sources (e.g. journals, databases). Data were collected for four different parts of the water cycle: precipitation, surface water, groundwater and water in the unsaturated zone. For precipitation the value for deuterium excess ranges between -19.9 per mille and 28.8 per mille with the median at 10.1 per mille. Surface water has the minimum at 2.9 per mille, the maximum at 22.4 per mille and the median at 13.2 per mille. Values for groundwater vary between -17.7 per mille and 34.9 per mille with the median at 11.8 per mille. Median for deuterium excess for the unsaturated zone is 15.1 per mille and the values are between -2.8 per mille and 17.6 per mille. (author)

  13. Device and method to enrich and process heavy water

    International Nuclear Information System (INIS)

    Hammerli, M.M.; Butler, J.P.

    1979-01-01

    A device to process and enrich heavy water is proposed which is based on a combined electrolysis catalyst exchange system in which a D 2 O enrichment of more than 99.8% is achieved in the end stage. Water partly enriched with D 2 -containing hydrogen gas from an electrolysis cell is brought into contact in a catalyst column. The water is further enriched here with deuterium. It is then fed to the electrolysis cell. Details of the apparatus are closely described. (UWI) [de

  14. Process for the production of high purity deuterium

    International Nuclear Information System (INIS)

    Arrathoon, R.

    1977-01-01

    A process for the electrolysis of heavy water which results in the production of high purity deuterium without periodic replenishment of the electrolyte with additional deuterated compounds is defined. Electrolysis is effected through the use of an inexpensive cation-action permselective membrane which is essentially a solid polymer electrolyte and which is capable of automatically separating the evolved deuterium and oxygen gas. This cation-active permselective membrane does not introduce any intrinsic impurities or tritium contamination in the generated deuterium gas, does not require periodic revitalization with deuterated compounds or other chemical compounds, and is characterized by an unusually high electrical efficiency

  15. Biological effects of deuterium - depleted water

    International Nuclear Information System (INIS)

    Stefanescu, I.; Titescu, Gh.; Croitoru, Cornelia; Saros-Rogobete, Irina

    2000-01-01

    Deuterium-depleted water (DDW) is represented by water that has an isotopic content smaller than 145 ppm D/(D + H). DDW production technique consists in the separation of deuterium from water by a continuous distillation process under pressure of about 133.3 mbar. The water used as raw material has a isotopic content of 145 ppm D/(D + H) and can be demineralized water, distillated water or condensed-steam. DDW results as a distillate with an isotopic deuterium content of 15-80 ppm, depending on the level we want to achieve. Beginning with 1996 the Institute of Cryogenics and Isotopic Technologies, DDW producer, co-operated with Romanian specialized institutes for studying the biological effects of DDW. The role of naturally occurring D in living organisms was examined by using DDW instead of natural water. These investigations led to the following conclusions: - DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the DDW persists after the removal of the vascular endothelium; - Animals treated with DDW showed an increase of the resistance both to sublethal and lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defense mechanisms; - DDW stimulates immuno-defense reactions represented by the opsonic, bactericidal and phagocyte capacity of the immune system together with an increase in the number of poly-morphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favorable influence in embryo growth stage and resistance and following growth stages; - It was studied germination, growth and quantitative character variability in plants; one can remark the favorable influence of DDW on biological processes in plants in various ontogenetic stages. (authors)

  16. Deuterium exchange between hydrogen and water in a trickle bed reactor

    International Nuclear Information System (INIS)

    Enright, J.T.; Chuang, T.T.

    1978-01-01

    The catalyzed exchange of deuterium between hydrogen and liquid water has been studied as the basis for a heavy water production process. Platinum catalyst which had been waterproofed with Teflon was tested in a 0.2 m diameter trickle bed reactor at pressures and temperatures up to 6 MPa and 440 K. Extensive experimental data were used to test a model of the system which was developed from fundamental principles. It was found that mass transfer plays a very important role in the overall exchange and the conventional theory of vapour/liquid mass transfer does not adequately describe the absorption process. Modelling of the data has resulted in the postulation of a second method of mass transfer whereby HDO transfers directly from the catalyst to the bulk liquid phase. (author)

  17. [Determination of deuterium concentration in foods and influence of water with modified isotopic composition on oxidation parameters and heavy hydrogen isotopes content in experimental animals].

    Science.gov (United States)

    Basov, A A; Bykov, I M; Baryshev, M G; Dzhimak, S S; Bykov, M I

    2014-01-01

    The article presents the results of the study of the deuterium (D) content in food products as well as the influence of deuterium depleted water (DDW) on the concentration of heavy hydrogen isotopes in the blood and lyophilized tissues of rats. The most significant difference in the content of D was found between potato and pork fat, which indexes the standard delta notation (δ) D in promille, related to the international standard SMOW (Standard Mean Ocean of Water) amounted to -83,2 per thousand and -250,7 per thousand, respectively (phydrogen atoms in the body. The data obtained in the experimental modeling of the diet of male Wistar rats in the age of 5-6 mo (weight 235 ± 16 g) using DDW (δD = -743,2 per thousand) instead of drinking water (δD = -37,0 per thousand) with identical mineral composition showed that after 2 weeks significant (p tissue") is due to different rates ofisotopic exchange reactions in plasma and tissues (liver, kidney, heart), which can be explained by entering into the composition of a modified diet of organic substrates with more than DDW concentration D, which are involved in the construction of cellular structures and eventually lead to a redistribution of D and change direction of D/H gradient "plasmaheavy non-radioactive atoms will allow the targeted nutritional correction of prooxidant-antioxidant status of the population in areas with adverse environmental conditions, stimulating by created isotopic D/H gradient cytoprotective mechanisms influencing the various components of nonspecific protection, including free radical oxidation processes. And then again, periodic assessment of the isotopic composition of nutrients will monitor the quality of food consumed by the population, and if

  18. Heavy water GS process R and D achievements

    International Nuclear Information System (INIS)

    Bancroft, A.R.

    1978-10-01

    R and D support of Canadian heavy water production plants during the past five years has involved mainly AECL and Ontario Hydro, and their contractors. Testing has been done in the production plants, in two pilot plants and in research laboratories on topics that include sieve tray design, in-plant behaviour of oil and sulfur and choice of antifoam agent to control excessive foaming. The benefits are increased production through higher plant flows and higher extraction of deuterium from the feed, less down time because of process problems and lower cost for materials used to control water chemistry. (author)

  19. A painless approach to use distributed digital-control system for Heavy Water Plant- Tuticorin

    International Nuclear Information System (INIS)

    Potti, V.S.; Krishnan, S.; Rao, V.C.; Lamba, D.S.

    1994-01-01

    Heavy Water Plant (Tuticorin) production is based on mono thermal process of ammonia-hydrogen exchange and is connected with a 1100 tons per day capacity ammonia plant of M/s Southern Petrochemical Industries Limited for getting its feed. The deuterium concentration in the syngas (N 2 + 3H 2 ) is extracted through ammonia-hydrogen exchange process and finally burnt with air in the final product unit to get heavy water. The depleted syngas is sent back to M/s SPIC's synthesis unit. The purpose of this paper is to highlight the instrumentation requirements of heavy water production, problems encountered in use of DDCS along with remedial action taken for the back up facility. (author)

  20. Estimation of deuterium content in organic compounds by mass spectrometric methods

    International Nuclear Information System (INIS)

    Dave, S.M.; Goomer, N.C.

    1979-01-01

    Many organic sompounds are finding increasing importance in heavy water enrichment programme. New methods based on quantitative chemical conversion have been developed and standardized in for estimating deuterium contents of the exchanging organic molecules by mass spectrometry. The methods have been selected in such a way that the deuterium contents of both exchangeable as well as total hydrogens in the molecule can be conveniently estimated. (auth.)

  1. Survival of tumor-bearing mice exposed to heavy water or heavy water plus methotrexate

    International Nuclear Information System (INIS)

    Laissue, J.A.; Buerki, H.; Berchtold, W.

    1982-01-01

    Moderate body deuteration combined with a cytostatic drug [methotrexate (MTX)] significantly increases the survival time of young adult DBA/2 mice bearing transplantable P815. L5178Y, or L1210 tumors. Neoplastic cells were grown in vitro from tumor stock and injected i.p. into mice from two groups, one drinking tap water, and other drinking 30% heavy water in tap water. One-half of the animals in each of these two groups was given a single injection of MTX (4 mg/kg body weight) on 3 consecutive days per week. At death, extension of primary and metastatic tumors was examined and was found to be macro- and microscopically comparable in the corresponding groups. The mean survival time of untreated mice drinking tap water was about 2 weeks following injection of the fast-growing P815, L5178Y, or L1210 (V) tumors and approximately 5 weeks after injection of cells from a slower-growing L1210 subline. Body deuteration alone roughly doubled the survival time solely of mice bearing this L1210 subline. Treatment with MTX approximately doubled the mean survival time of hosts bearing one of the fast-growing tumors. Combined treatment with heavy water and MTX increased the mean survival time of the mice in all groups by 15 to 125% as compared to control values. The reasons for this effect are unknown. However, heavy water has been shown to exert antimitotic activity and to depress the incorporation of radioactive precursors into DNA of proliferating mammalian cells. The depression of antibody formation following antigenic stimulation and the reduction in numbers of nonneoplastic lymphoid cells of mice following moderate body deuteration may have contributed to the enhancement of MTX activity in addition to other effects of deuterium

  2. Safety and environmental aspects of heavy water production (Paper No. 4.1)

    International Nuclear Information System (INIS)

    Singh, Mohinder

    1992-01-01

    Different processes are utilised for heavy water production in the heavy water plants in India. H 2 S is used in large quantities as carrier gas to extract deuterium content from water. The safe handling of such large quantities of H 2 S gas poses a major problem because of its toxicity, high corrosive nature and high flammability. Handling of large quantities of synthesis gas in ammonia based plants at high pressure and temperature poses a major problem because it is a mixture of hydrogen and nitrogen. H 2 is highly inflammable and explosive when mixed with air or oxygen. All the safety aspects considered while designing, fabricating, constructing and operating the plants are described. (author). 5 tabs

  3. Technical and economical feasibility studies and preliminary plan of a heavy water plant by the criogenic distillation method of hydrogen

    International Nuclear Information System (INIS)

    Dias Vargas, F.

    1983-01-01

    This paper presents the pre-feasibility study of a heavy water production plant, both from the technical and economical point of view. Criogenic distillation of hydrogen is used as the final enrichment stage. The deuterium source is water treated previously by a process of enrichment based on the water-hydrogen isotopic exchange. The economical analysis is aimed at the study of the feasibility of the installation of a heavy water moderated reaction in Chile. General properties of heavy water are presented and also the various materials of its enrichment at the industrial scale. The plant itself has a first stage based on the water-hydrogen isotopic exchange procesS, where deuterium is extracted from the water by the hydrogen which is subsequently treated in a criogenic distillation stage. An important fact of the plant analysis is the calculation of heat exchangers mainly in relation to the problem posed by tHe hydrogen's low point of liquifaction. The distillation units are also treated and designed. The economic evaluation produces project diScount rates of 15.71% and 21.97%, for 25 tons/year and 40 tons/year of production capacity. The heavy water price used for these evaluation was 600 $/Kg

  4. 1000 tones of heavy water produced at ROMAG PROD, Drobeta-Turnu Severin

    International Nuclear Information System (INIS)

    2001-01-01

    On May 25, 2001 the heavy water plant ROMAG PROD at Drobeta-Turnu Severin recorded the production of the 1000-th tone of nuclear purity heavy water. The heavy water plant ROMAG PROD makes use of a technology based on the results of isotopic deuterium separation research carried out at the Research and Design Institutes of Cluj, Craiova, Pitesti and Ploiesti during 1957-1970 and the separation technology tested at Ramnicu-Valcea pilot plant (at present the Cryogenics and Isotope Separation Institute). The first investments at ROMAG PROD were made in 1979 and on July 17, 1988 was produced the first amount of heavy water at the required parameters for CANDU type nuclear reactors. The period between 1990-1992 was dedicated to the project completion, upgrading the technological facilities and retrofitting the environmental protection and monitoring systems. Production was resumed in 1992. The first 500 t of heavy water required for the Cernavoda NPP first reactor operation were produced by summer 1997. The additional amount of 500 t of heavy water was produced between 1997-2001. ROMAG PROD obtained the ISO 9001/2001 certificate for the quality management system, the ISO 14001/1997 certificate for the environmental management system and the new environmental permit

  5. Deuterium-depleted water. Short history and news

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Tamaian, Radu; Titescu, Gheorghe

    2002-01-01

    Deuterium-depleted water represents water that has an isotopic content lower than 144 ppm D/(D+H) which is the natural isotopic content of water. DDW is a non-toxic product. Knowing that deuterium content of water has a significant influence on living organisms, since 1996 NIR-DCIT ICSTI at Rm. Valcea cooperated with Romanian specialized instititutes for biological effects' evaluation of DDW. The investigations lead to the conclusion that DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects. Animals teated with DDW showed an increase of the resistance both to sub lethal and to lethal gamma radiation doses. DDW stimulates immune defense reactions. Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favorable influence in embryo growth stage and resistance in next growth stages. One can remark the favourable influence of DDW on biological process in plants in various ontogenetic stages. (authors)

  6. Heavy water plant

    International Nuclear Information System (INIS)

    Rogers, D.G.

    1978-01-01

    This invention provides an auxiliary contactor column or exchange tower to receive stripped gas and vapour from a stripper. An auxiliary supply of heated feed water is passed in isotope exchanging relation with the gas in the auxiliary contactor to raise the deuterium content of the gas, which then is returned to the main process, at the hot tower or at the feed absorption tower as already described in relation to previous practice. Flow balance between gas and water in the auxiliary contactor is achieved relatively simply by monitoring the deuterium content of the hot water leaving the contactor column, and regulating the supply of hot water, to the contactor column in response thereto. (author)

  7. Warm water deuterium fractionation in IRAS 16293-2422

    DEFF Research Database (Denmark)

    Persson, Magnus Vilhelm; Jørgensen, Jes Kristian; van Dishoeck, E. F.

    2013-01-01

    observations reveal the physical and chemical structure of water vapor close to the protostars on solar-system scales. The red-shifted absorption detected toward source B is indicative of infall. The excitation temperature is consistent with the picture of water ice evaporation close to the protostar. The low......Context. Measuring the water deuterium fractionation in the inner warm regions of low-mass protostars has so far been hampered by poor angular resolution obtainable with single-dish ground- and space-based telescopes. Observations of water isotopologues using (sub)millimeter wavelength...... interferometers have the potential to shed light on this matter. Aims: To measure the water deuterium fractionation in the warm gas of the deeply-embedded protostellar binary IRAS 16293-2422. Methods: Observations toward IRAS 16293-2422 of the 53,2 - 44,1 transition of H218O at 692.07914 GHz from Atacama Large...

  8. A painless approach to use distributed digital-control system for Heavy Water Plant- Tuticorin

    Energy Technology Data Exchange (ETDEWEB)

    Potti, V S; Krishnan, S; Rao, V C; Lamba, D S [Heavy Water Project, Tuticorin (India)

    1994-06-01

    Heavy Water Plant (Tuticorin) production is based on mono thermal process of ammonia-hydrogen exchange and is connected with a 1100 tons per day capacity ammonia plant of M/s Southern Petrochemical Industries Limited for getting its feed. The deuterium concentration in the syngas (N{sub 2} + 3H{sub 2}) is extracted through ammonia-hydrogen exchange process and finally burnt with air in the final product unit to get heavy water. The depleted syngas is sent back to M/s SPIC`s synthesis unit. The purpose of this paper is to highlight the instrumentation requirements of heavy water production, problems encountered in use of DDCS along with remedial action taken for the back up facility. (author). 3 refs., 2 figs.

  9. Safety system in a heavy water detritiation plant

    International Nuclear Information System (INIS)

    Balteanu, O.; Stefan, I.; Retevoi, C.

    2003-01-01

    In a CANDU 6 type reactor a quantity of 55·10 15 Bq/year of tritium is generated, 95% being in the D 2 O moderator which can achieve a radioactivity of 2.5-3.5·10 12 Bq/kg. Tritium in heavy water contributes with 30-50% to the doses received by operation personnel and up to 20% to the radioactivity released in the environment. The large quantity of heavy water used in this type of reactors (500 tones) make storage very difficult, especially for environment. The extraction of tritium from tritiated heavy water of CANDU reactors solve the following problems: the radiation level in the operation area, the costs of maintenance and repair reduction due to reduction of personnel protection measures, the increase of NPP utilisation factor by shutdown time reduction for maintenance and repair, use the extracted tritium for fusion reactors and not for the last, lower costs and risk for storage heavy water waste. Heavy water detritiation methods, which currently are used in the industrial or experimental plant, are based on catalytic isotope exchange or electrolysis followed cryogenic distillation or permeation. The technology developed at Institute of Cryogenics and Isotope Separation is based upon catalytic exchange between tritiated water and deuterium, followed by cryogenic distillation of hydrogen isotopes. The nature of the fluids that are processed in detritiation requires the operation of the plant in safety conditions. The paper presents the safety system solution chose in order to solve this task, as well as a simulation of an incident and safety system response. The application software is using LabView platform that is specialised on control and factory automation applications. (author)

  10. Deuterium used as artificial tracer in column studies under saturated water flow conditions

    Science.gov (United States)

    Koeniger, P.; Geiges, M.; Leibundgut, Ch.

    2003-04-01

    In contrast to numerous investigations using deuterium as an environmental tracer, hydrological investigations with deuterium-labelled water are rather rare. Currently applications in groundwater studies are restricted due to increasing costs of spiking large water quantities but an application as intelligent tracer might be of advantage especially in combination with other tracers and under distinct environmental conditions. Therefore deuterium was applied as artificial tracer in column experiments that are well proved as a tool to characterise tracer behaviour in recent studies. Deuterium was tested in comparison to the more familiar conservative tracer fluorescein. Varying experimental conditions, e.g. column length (0.5, 1.0, 1.5 m), initial tracer concentration (0.01, 0.02, 0.2 mg) and flow velocity (1.5 to 6.0 m/d) were used to investigate tracer behaviour under saturated water flow conditions. Deuterium was analysed using an H/Device with chrome reduction connected to an isotope ratio mass spectrometer and expressed in relative concentrations [per mill V-SMOW]. Theoretical tracer breakthrough curves were calculated using a one dimensional dispersion model. The results indicate higher mean transport velocities and smaller dispersion for deuterium in all experiments. Due to different molecule properties that also determine the interaction of soil substrate and tracer, deuterium indicates a more conservative transport behaviour. Deuterium is non-toxic, completely soluble, chemically and biologically stable and not subject to light-influenced decay. Furthermore, it shows promise for investigations of water flow in the unsaturated zone, and of interactions of water in soil-plant-atmosphere systems. A further discussion of problems, together with possibilities for applying deuterium as an artificial tracer, will be presented.

  11. Influence of deuterium-depleted water on living organisms

    International Nuclear Information System (INIS)

    Stefanescu, I.; Titescu, Gh.; Croitoru, Cornelia; Saros-Rogobete, Irina

    2000-01-01

    Deuterium-depleted water (DDW) production technique consists in the separation of deuterium from water by means of an continuos distillation process under a pressure value of about 133,3 mbar. Water that is used as basic material has an isotopic content of 144 ppm D/(D+H). DDW results as distillate with an isotopic deuterium content of 15-80 ppm, depending on the level we want to achieve. Beginning with 1996 NIR and DCIT Rm. Valcea, which is a DDW producer, co-operated with Romanian specialised institutes for biological effects' evaluation of DDW. These investigations led to the next conclusions: - DDW caused a tendency towards the increase of the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tonus and vascular reactivity produced by the DDW persist after the removal of the vascular endothelium; - Animals treated with DDW showed an increase of the resistance both to sublethal and to lethal gamma radiation doses, suggesting a radioprotective action by the stimulation of non-specific immune defence mechanisms; - DDW stimulate immune defence reactions, represented by the opsonic, bactericidal and phagocyte capacity of the immune system, together with increase in the numbers of polymorphonuclear neutrophils; - Investigations regarding artificial reproduction of fish with DDW fecundated solutions confirmed favourable influence in embryo growth stage and resistance in next growth stages; - It was studied germination, growth and quantitative characters' variability at plants; one can remark the favourable influence of DDW on biological process at plants in various ontogenic stages. Further investigations are needed in order to establish the influence of deuterium-depleted water on living organisms. (authors)

  12. Direct harvesting of Helium-3 (3He) from heavy water nuclear reactors

    International Nuclear Information System (INIS)

    Bentoumi, G.; Didsbury, R.; Jonkmans, G.; Rodrigo, L.; Sur, B.

    2013-01-01

    The thermal neutron activation of deuterium inside a heavy-water-moderated or -cooled nuclear reactor produces a build-up of tritium in the heavy water. The in situ decay of tritium can, for certain reactor types and operating conditions, produce potentially useable amounts of 3 He, which can be directly extracted via the heavy-water cover gas without first separating, collecting and storing tritium outside the reactor. It is estimated that the amount of 3 He available for recovery from the moderator cover gas of a 700 MWe class Pressurized Heavy Water Reactor (PHWR) ranges from 0.1 to 0.7 m 3 (STP) per annum, varying with the tritium activity buildup in the moderator. The harvesting of 3 He would generate approximately 12.7 m 3 (STP) of 3 He, worth more than $30M at current market rates, over a typical 25-year operating cycle of the PHWR. This paper discusses the production of 3 He in the moderator of a PHWR and its extraction from the 4 He moderator cover gas system using conventional methods. (author)

  13. DYNAMIC DEUTERIUM ENRICHMENT IN COMETARY WATER VIA ELEY–RIDEAL REACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yunxi; Giapis, Konstantinos P., E-mail: giapis@cheme.caltech.edu [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States)

    2017-01-20

    The deuterium-to-hydrogen ratio (D/H) in water found in the coma of Jupiter family comet (JFC) 67P/Churyumov–Gerasimenko was reported to be (5.3 ± 0.7) × 10{sup −4}, the highest among comets and three times the value for other JFCs with an ocean-like ratio. This discrepancy suggests the diverse origins of JFCs and clouds the issue of the origin of Earth’s oceanic water. Here we demonstrate that Eley–Rideal reactions between accelerated water ions and deuterated cometary surface analogs can lead to instantaneous deuterium enrichment in water scattered from the surface. The reaction proceeds with H{sub 2}O{sup +} abstracting adsorbed D atoms, forming an excited H{sub 2}DO* state, which dissociates subsequently to produce energetic HDO. Hydronium ions are also produced readily by the abstraction of H atoms, consistent with H{sub 3}O{sup +} detection and abundance in various comets. Experiments with water isotopologs and kinematic analysis on deuterated platinum surfaces confirmed the dynamic abstraction mechanism. The instantaneous fractionation process is independent of the surface temperature and may operate on the surface of cometary nuclei or dust grains, composed of deuterium-rich silicates and carbonaceous chondrites. The requisite energetic water ions have been detected in the coma of 67P in two populations. This dynamic fractionation process may temporarily increase the water D/H ratio, especially as the comet gets closer to the Sun. The magnitude of the effect depends on the water ion energy-flux and the deuterium content of the exposed cometary surfaces.

  14. Use of 60 ppm deuterium depleted water in companionship animals

    International Nuclear Information System (INIS)

    Balint, Emilia; Manolescu, N.; Cranganu, D.; Militaru, Manuela; Pop, Aneta; Codreanu, M.; Panait, Marieta; Lastofka, D.

    2004-01-01

    There are presented the results of studies on the effects of deuterium depleted water in companionship animals. Based on these results, a new product was realized, 'Aqua Forte' that is a deuterium depleted potable water (60 ppm deuterium) with beneficial effects in animal's health maintaining. Aqua forte has prophylactic properties (in preventing diseases related to immune system) and therapeutic properties, as adjuvant in various therapeutic programs. The mechanism of action takes place at the cellular metabolism level by replacing the constitutional and free water of 150 ppm deuterium, this resulting in the stimulation of the immune cellular system and also of resistance at the onset of some pathological states. The non-specific stimulation implies performing both the humoral mediated immune reactions and of those cellularly mediated. Aqua forte is recommended in: - the feeding of the young weaned animals, the action being of growth stimulation, and increasing of the resistance against some diseases specific to the age; - as an adjuvant in some chronic diseases (hepatitis, pancreatitis, dermatological diseases, osteoarthropaties, hepato-renal syndrome, renal insufficiency, after surgical interventions, in antitumoral therapy); - in the feeding of the old animals for the quality of life improvement. (authors)

  15. Catalytic isotope exchange reaction between deuterium gas and water pre-adsorbed on platinum/alumina

    International Nuclear Information System (INIS)

    Iida, Itsuo; Kato, Junko; Tamaru, Kenzi.

    1976-01-01

    The catalytic isotope exchange reaction between deuterium gas and the water pre-adsorbed on Pt/Al 2 O 3 was studied. At reaction temperatures above 273 K, the exchange rate was proportional to the deuterium pressure and independent of the amount of adsorbed water, which suggests that the rate determining step is the supply of deuterium from the gas phase. Its apparent activation energy was 38 kJ mol -1 . Below freezing point of water, the kinetic behaviour was different from that above freezing point. At higher deuterium pressures the rate dropped abruptly at 273 K. Below the temperature the apparent activation energy was 54 kJ mol -1 and the exchange rate depended not on the deuterium pressure but on the amount of the pre-adsorbed water. At lower pressures, however, the kinetic behaviour was the same as the above 273 K, till the rate of the supply of deuterium from the gas phase exceeded the supply of hydrogen from adsorbed water to platinum surface. These results suggest that below 273 K the supply of hydrogen is markedly retarded, the state of the adsorbed water differing from that above 273 K. It was also demonstrated that when the adsorbed water is in the state of capillary condensation, the exchange rate becomes very small. (auth.)

  16. Fractionation of deuterium and protium between water and methanol

    International Nuclear Information System (INIS)

    Rolston, J.H.; Gale, K.L.

    1984-01-01

    The overall deuterium-protium separation factor, α, between hydrogen gas and aqueous methanol mixtures has been measured over the full composition range at temperatures between 25 and 55 0 C. At each temperature α increases smoothly with increasing mole fraction of methanol but the values fall significantly below the straight line joining the separation factors for the methanol-hydrogen and water-hydrogen systems. The equilibrium constant, K 1 (1), for exchange of a deuterium atom tracer between the hydroxyl groups of methanol and liquid water, calculated from the values of α for each solution, is independent of composition within experimental error. The value of K 1 (1) at 25 0 C is 0.54 +/- 0.02, so that deuterium favors the methanol environment rather than water. The dependence of k 1 (1) on absolute temperature, T, is given by the expression 1n K 1 (1) = -0.776 + 52.6/T, which corresponds to a reaction enthalpy of -0.43 kJ mol -1 . 24 references, 2 figures, 2 tables

  17. Peak power and heavy water production from electrolytic H2 and O2 using CANDU reactors

    International Nuclear Information System (INIS)

    Hammerli, M.; Stevens, W.H.; Bradley, W.J.; Butler, J.P.

    1976-04-01

    A combined energy storage - heavy water production system is presented. Off-peak nuclear energy is stored in the form of electrolytic H 2 (and O 2 ) from which a large fraction of the deuterium has been transferred to water in an H 2 /H 2 O deuterium exchange catalytic column. The main features and advantages of the combined electrolysis -catalytic exchange D 2 O process are discussed. Significant quantities of D 2 O could be produced economically at reasonable peak to base power cost ratios. Thirty to forty percent of the primary electric energy should be available for peak energy via either gas-steam turbines or fuel cells. (author)

  18. The Battle for Heavy Water Three physicists' heroic exploits

    CERN Multimedia

    2002-01-01

    Up until the end of the 1970s you could still catch a glimpse of his massive silhouette in the corridors of CERN. Lew Kowarksi, one of the pioneers of the Laboratory, was not only a great physicist; he was also a genuine hero of World War II. In 1940, along with Frédéric Joliot and Hans von Halban, Lew Kowarski managed to get the entire world supply of heavy water away to safety from the Nazis after a fantastic escape from occupied France. At the end of the war, the three physicists played themselves in a film about their adventures entitled 'la Bataille de l'eau lourde'. This film, which has been loaned to us by the French National Film Library, will be shown at CERN for the first time next Thursday. At the beginning of the war, heavy water (D20, two atoms of deuterium and one oxygen atom) was of strategic importance. In 1939 Frédéric Joliot, aided by Hans von Halban and Lew Kowarski, demonstrated the nuclear chain reaction and the moderator role that heavy water plays in it. A few weeks before the inv...

  19. Determination of dew absorption by coffee plant through deuterium concentrations in leaf water

    Energy Technology Data Exchange (ETDEWEB)

    Leopoldo, P R [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil); Salati, E; Matsui, E [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    1975-12-01

    The effect of dew falling on leaves on the water metabolism of the coffee plant (Coffea arabica) is examined. The use of natural stable isotopes variations in plant physiological studies is demonstrated. Water extracted from leaf samples is analysed by mass spectrometry. Analyses of deuterium concentrations in water extracted from plant leaves, dew and nutrient solutions are made. Determination of changes in deuterium concentration in the water of leaves from plants exposed to dew, compared with leaves not exposed to dew, is carried out. Results show that during daytime there is an enrichment in deuterium in water contained in the leaves, while at night the opposite occurs.

  20. Determination of dew absorption by coffee plant through deuterium concentrations in leaf water

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Salati, E.; Matsui, E.

    1975-01-01

    The effect of dew falling on leaves on the water metabolism of the coffee plant (Coffea arabica) is examined. The use of natural stable isotopes variations in plant physiological studies is demonstrated. Water extracted from leaf samples is analysed by mass spectrometry. Analyses of deuterium concentrations in water extracted from plant leaves, dew and nutrient solutions are made. Determination of changes in deuterium concentration in the water of leaves from plants exposed to dew, compared with leaves not exposed to dew, is carried out. Results show that during daytime there is an enrichment in deuterium in water contained in the leaves, while at night the opposite occurs [pt

  1. New evaluation of thermal neutron scattering libraries for light and heavy water

    Directory of Open Access Journals (Sweden)

    Marquez Damian Jose Ignacio

    2017-01-01

    Full Text Available In order to improve the design and safety of thermal nuclear reactors and for verification of criticality safety conditions on systems with significant amount of fissile materials and water, it is necessary to perform high-precision neutron transport calculations and estimate uncertainties of the results. These calculations are based on neutron interaction data distributed in evaluated nuclear data libraries. To improve the evaluations of thermal scattering sub-libraries, we developed a set of thermal neutron scattering cross sections (scattering kernels for hydrogen bound in light water, and deuterium and oxygen bound in heavy water, in the ENDF-6 format from room temperature up to the critical temperatures of molecular liquids. The new evaluations were generated and processable with NJOY99 and also with NJOY-2012 with minor modifications (updates, and with the new version of NJOY-2016. The new TSL libraries are based on molecular dynamics simulations with GROMACS and recent experimental data, and result in an improvement of the calculation of single neutron scattering quantities. In this work, we discuss the importance of taking into account self-diffusion in liquids to accurately describe the neutron scattering at low neutron energies (quasi-elastic peak problem. To improve modeling of heavy water, it is important to take into account temperature-dependent static structure factors and apply Sköld approximation to the coherent inelastic components of the scattering matrix. The usage of the new set of scattering matrices and cross-sections improves the calculation of thermal critical systems moderated and/or reflected with light/heavy water obtained from the International Criticality Safety Benchmark Evaluation Project (ICSBEP handbook. For example, the use of the new thermal scattering library for heavy water, combined with the ROSFOND-2010 evaluation of the cross sections for deuterium, results in an improvement of the C/E ratio in 48 out of

  2. New evaluation of thermal neutron scattering libraries for light and heavy water

    Science.gov (United States)

    Marquez Damian, Jose Ignacio; Granada, Jose Rolando; Cantargi, Florencia; Roubtsov, Danila

    2017-09-01

    In order to improve the design and safety of thermal nuclear reactors and for verification of criticality safety conditions on systems with significant amount of fissile materials and water, it is necessary to perform high-precision neutron transport calculations and estimate uncertainties of the results. These calculations are based on neutron interaction data distributed in evaluated nuclear data libraries. To improve the evaluations of thermal scattering sub-libraries, we developed a set of thermal neutron scattering cross sections (scattering kernels) for hydrogen bound in light water, and deuterium and oxygen bound in heavy water, in the ENDF-6 format from room temperature up to the critical temperatures of molecular liquids. The new evaluations were generated and processable with NJOY99 and also with NJOY-2012 with minor modifications (updates), and with the new version of NJOY-2016. The new TSL libraries are based on molecular dynamics simulations with GROMACS and recent experimental data, and result in an improvement of the calculation of single neutron scattering quantities. In this work, we discuss the importance of taking into account self-diffusion in liquids to accurately describe the neutron scattering at low neutron energies (quasi-elastic peak problem). To improve modeling of heavy water, it is important to take into account temperature-dependent static structure factors and apply Sköld approximation to the coherent inelastic components of the scattering matrix. The usage of the new set of scattering matrices and cross-sections improves the calculation of thermal critical systems moderated and/or reflected with light/heavy water obtained from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) handbook. For example, the use of the new thermal scattering library for heavy water, combined with the ROSFOND-2010 evaluation of the cross sections for deuterium, results in an improvement of the C/E ratio in 48 out of 65

  3. Experimental Study on Behavior of Bow-tie Tree Generation by Using Heavy Water

    Science.gov (United States)

    Kumazawa, Takao; Nakagawa, Wataru; Tsurumaru, Hidekazu

    Bow-tie tree (BTT) generated from contaminant, e.g., metal, carbon, amber(over cured resin) or void in insulator is a significant deterioration factor of XLPE power cable. However, essential role of water in generation and progress of BTT is not yet sufficiently cleared. In order to investigate the role of water we paid attention to difference in chemical properties of light water (H2O) and heavy water (D2O), moreover we evaluated influence of isotopic effect due to hydrogen and deuterium on behavior of BTT generation. In accelerated aging test the number of BTT in XLPE sample, in which copper powder of 500ppm was contaminated as BTT cores, dipped in heavy water (D2O:100wt%) decreased to one third compared with light water(D2O:0wt%). Furthermore, the maximum length of BTT decreased with increase in concentration of heavy water. The experimental results show that heavy water exerted a depression effect on generation and progress of BTT. We considered that the depression effect due to hydrogen isotope appeared by inhibiting ionization and elution of BTT cores, because salt-solubility and ionic mobility of heavy water are about 15 to 20% smaller than those of light water. Therefore, the essential role of water seemed to be production and transport of ions in XLPE.

  4. Characterization of physical and chemical properties of QLARIVIA-line of deuterium depleted Water

    International Nuclear Information System (INIS)

    Ferdes, Ov. S.; Mladin, C.; Petre, R.M.; Mitu, F.; Costinel, Diana; Vremera, Raluca; Sandru, Claudia

    2008-01-01

    QLARIVIA is the brand-name of Deuterium Depleted Water line of products of drinking water differentiating mainly by the deuterium concentration. It is the result of a national technological transfer project and it is based on an original, patented technology for deuterium depletion from the normal water. The paper presents the measuring and analysis results of the chemical and physical properties of the QLARIVIA brand-line of drinking DDW, as: pH; water hardness; permanganate index; Ca; Mg; Cl - ; SO4 2 - ; NH 4 ; NO 3 - ; NO 2 - , as well as the deuterium concentration determination by mass spectrometry. The analysis has been performed on at least 20 batch-samples, by usual, standardized and/or validated analytical methods, in ISO 17025:2005 accredited laboratories. The results are discussed considering the requirements of the EU directive on drinking water as well as of the Romanian Act on drinking water no. 458/2002 with its supplemental modification by the Act no.363/2004. The conclusion is that QLARIVIA - brand line of drinking DDW fulfills all the official physical and chemical requirements for the drinking water. (authors)

  5. Energy conservation and management strategies in Heavy Water Plants

    International Nuclear Information System (INIS)

    Kamath, H.S.

    2002-01-01

    In the competitive industrial environment it is essential that cost of the product is kept at the minimum possible. Energy conservation is an important aspect in achieving this as energy is one of the key recourses for growth and survival of industry. The process of heavy water production being very complex and energy intensive, Heavy Water board has given a focussed attention for initiating various measures for reducing the specific energy consumption in all the plants. The initiative resulted in substantial reduction in specific energy consumption and brought in savings in cost. The cumulative reduction of specific energy consumption has been over 30% over the last seven years and the total savings for the last three years on account of the same has been about Rs. 190 crore. The paper describes the strategies adopted in the heavy water plants for effecting the above achievements. The paper covers the details of some of the energy saving schemes carried out at different heavy water plants through case studies. The case studies of schemes implemented at HWPs are general in nature and is applicable for any other industry. The case studies cover the modifications with re-optimisation of the process parameters, improvements effected in utility units like refrigeration and cooling water systems, improvements in captive power plant cycle and improved recycle scheme for water leading to reduced consumptions. The paper also mentions the innovative ammonia absorption refrigeration with improved coefficient of performance and HWB's efforts in development of the system as an integrated unit of the ammonia water deuterium exchange process for heavy water production. HWB also has taken up R and D on various other schemes for improvements in energy consumption for future activities covering utilisation of low grade energy for generation of refrigeration. (author)

  6. Process for the separation of deuterium and tritium from water using ammonia and a hydrogen-nitrogen-mixture

    International Nuclear Information System (INIS)

    Mandrin, Ch.

    1986-01-01

    A multistage process for separation of deuterium and tritium from water using ammonia and a hydrogen-nitrogen mixture. In a first stage isotopic exchange takes place between water containing deuterium and tritium, and ammonia depleted in deuterium and tritium. The molar ammonia throughput is chosen to be greater than two third of the molar throughput of water. The advantage of the process consists in the fact that the main product is water almost entirely free from deuterium and tritium. The byproducts are compounds enriched in deuterium and tritium, and nitrogen enriched in N-15

  7. Heavy water critical experiments on plutonium lattice

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Shiba, Kiminori

    1975-06-01

    This report is the summary of physics study on plutonium lattice made in Heavy Water Critical Experiment Section of PNC. By using Deuterium Critical Assembly, physics study on plutonium lattice has been carried out since 1972. Experiments on following items were performed in a core having 22.5 cm square lattice pitch. (1) Material buckling (2) Lattice parameters (3) Local power distribution factor (4) Gross flux distribution in two region core (5) Control rod worth. Experimental results were compared with theoretical ones calculated by METHUSELAH II code. It is concluded from this study that calculation by METHUSELAH II code has acceptable accuracy in the prediction on plutonium lattice. (author)

  8. Growth acceleration and photosynthesis of the scenedesmus algae and cocconeis algae in deuterium water

    International Nuclear Information System (INIS)

    Liu Feng; Wang Wenqing

    1998-01-01

    In order to find new way to treat the radioactive tritium waste water, scenedesmus algae and cocconeis algae are cultured in medium which contains 30% (w) deuterium water. During different time, activities of photosymthesis, absorption spectrum, growth rate and low-temperature fluorescence spectrum are measured. Accelerated growth is found in the deuterium water compared to the normal water. Activities of photosynthesis show the similar result (F v /F m ) to the growth data. It is also concluded from low-temperature fluorescence spectra that algae activities in the deuterium water, which are expressed by PS I/PS II, are more sensitive than those in the normal water

  9. Selective deuterium ion acceleration using the Vulcan petawatt laser

    Energy Technology Data Exchange (ETDEWEB)

    Krygier, A. G. [Laboratoire pour l' Utilisation des Lasers Intenses, École Polytechnique, 91128 Palasiseau (France); Physics Department, The Ohio State University, Columbus, Ohio 43210 (United States); Morrison, J. T. [Propulsion Systems Directorate, Air Force Research Lab, Wright Patterson Air Force Base, Ohio 45433 (United States); Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.; Alejo, A.; Green, A.; Jung, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Clarke, R.; Notley, M. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Fuchs, J.; Vassura, L. [Laboratoire pour l' Utilisation des Lasers Intenses, École Polytechnique, 91128 Palasiseau (France); Kleinschmidt, A.; Roth, M. [Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstrasse 9, D-64289 Darmstadt (Germany); Najmudin, Z.; Nakamura, H. [The John Adams Institute, Blackett Laboratory, Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); Norreys, P. [Central Laser Facility, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX (United Kingdom); Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Oliver, M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Zepf, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Helmholtz Institute Jena, D-07743 Jena (Germany); Borghesi, M. [Centre for Plasma Physics, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Institute of Physics of the ASCR, ELI-Beamlines Project, Na Slovance 2, 18221 Prague (Czech Republic); Freeman, R. R. [Physics Department, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-05-15

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10{sup 20}W/cm{sup 2} laser pulse by cryogenically freezing heavy water (D{sub 2}O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  10. Selective deuterium ion acceleration using the Vulcan petawatt laser

    International Nuclear Information System (INIS)

    Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Green, A.; Jung, D.; Clarke, R.; Notley, M.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-01-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, >10 20 W/cm 2 laser pulse by cryogenically freezing heavy water (D 2 O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°–8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%

  11. Selective deuterium ion acceleration using the Vulcan petawatt laser

    Science.gov (United States)

    Krygier, A. G.; Morrison, J. T.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10 20 W / cm 2 laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0°-8.5°), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  12. Laser separation of hydrogen isotopes: Tritium-from-deuterium recovery

    International Nuclear Information System (INIS)

    Magnotta, F.; Herman, I.P.; Aldridge, F.T.; Maienschein, J.L.

    1984-01-01

    Single-step enrichment factors exceeding 15,000 have been observed in the removal of tritium-from-deuterium by 12 μm laser multiple-photon dissociation of chloroform. The photochemistry and photophysics of this process is discussed along with prospects for implementation of this method in practical heavy water reactor detritiation. 7 refs., 7 figs., 1 tab

  13. Determination of heavy water in heavy water - light water mixtures

    International Nuclear Information System (INIS)

    Sanhueza M, A.

    1986-01-01

    A description about experimental methodology to determine isotopic composition of heavy water - light water mixtures is presented. The employed methods are Nuclear Magnetic Resonance Spectroscopy, for measuring heavy water concentrations from 0 to 100% with intervals of 10% approx., and mass Spectrometry, for measuring heavy water concentrations from 0.1 to 1% with intervals of 0.15% approx., by means of an indirect method of Dilution. (Author)

  14. Control and monitoring of H2S in environments of Heavy Water Plant (Kota) (Paper No. 4.5)

    International Nuclear Information System (INIS)

    Hiremath, S.C.; Unni, V.K.R.

    1992-01-01

    Heavy Water Plant (Kota) utilizes dual temperature exchange process of hydrogen sulphide and water for extracting deuterium from water upto 15% and vacuum distillation process for enriching it from 15 to 99.8%. H 2 S gas is used in large quantities as a carrier gas to extract the deuterium content of water. The safe handling of large quantities of H 2 S gas poses a major problem. The properties of H 2 S gas are : high toxicity, high corrosive nature, high flammability and explosiveness. To overcome these properties all safety aspects have been considered while designing, fabricating, constructing and operating the plant and a number of design safety features have been incorporated in the systems. Some of the typical unusual occurrences happened have also been described. (author)

  15. Determination of the tritium content in the reactor heavy water; Odredjivanje porasta kolicine tritijuma u reaktorskoj teskoj vodi

    Energy Technology Data Exchange (ETDEWEB)

    Ribnikar, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-01-15

    Quantity of tritium was measured in the heavy water, in the heavy water vapour and radiolyzed deuterium from the helium cover gas of the RA reactor. It has been shown that isotopic equilibrium D{sub 2}O+DT{r_reversible}DTO+D{sub 2} exists and that it is catalyzed by irradiation. Small quantities of ammonium in the reactor cover gas are inhibiting the migration of tritium from the heavy water. Izmerena ja sadrzina tritijuma u tecnoj teskoj vodi, njenoj pari i radiolizovanom deuterijumu iz helijumske atmosfere reaktora RA. Pokazano je da postoji izotopska ravnoteza D{sub 2}O+DT{r_reversible}DTO+D{sub 2}, koja je katalizovana zracenjem. Male kolicine amonijaka reaktorske atmosfere deluju u smislu otezavanja migracije tritijuma iz teske vode (author)

  16. Deuterium isotope separation

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    Deuterium-containing molecules are separated and enriched by exposing commercially available ethylene, vinyl chloride, 1,2-dichloroethane or propylene to the radiation of tuned infrared lasers to selectively decompose these compounds into enriched molecular products containing deuterium atoms. The deuterium containing molecules can be easily separated from the starting material by absorption, distillation or other simple chemical separation techniques and methods. After evaporation such deuterium containing molecules can be burned to form water with an enriched deuterium content or pyrolyzed to form hydrogen gas with an enriched deuterium content. (author)

  17. Tritium and deuterium as water tracers in hydrologic systems. Completion report

    International Nuclear Information System (INIS)

    Stewart, G.L.; Stetson, J.R.

    1975-05-01

    A study was conducted to evaluate the suitability of deuterium and tritium as tracers to depict water and pollutant movement in porous media. This involved studying the interaction of these tracers with soil materials and evaluating this interaction in terms of retardation in tracer flow velocity, compared to bulk water flow. Previous work had suggested that tritium and deuterium interact with soils and are removed from tracer solution during flow. The data presented clearly show that a tracing front becomes diluted in tracer during infiltration into oven-dried soil. There appears to be very little difference between the degree of tritium and deuterium interaction. The source of interaction is demonstrated to be primarily hydroxyl associated with the clay minerals. These exchange sites are destroyed by heating soil to 70C which eliminates tracer loss during infiltration

  18. Measurement of the deuterium concentration in water samples using a CW chemical deuterium fluoride laser

    International Nuclear Information System (INIS)

    Trautmann, M.

    1979-10-01

    In this study a new method for the determination of the deuterium content in water samples is described. The absorption of the radiation of a CW deuterium fluoride laser by the isotope HDO in the water vapor of the sample is measured by means of an optoacoustic detector (spectrophone). Thereby advantage is taken of the fact that H 2 O hardly absorbs the laser radiation and that D 2 O only exists in negligible concentrations. The isotope ratio of hydrogen can be calculated from the measured relative concentration of HDO. In the course of this investigation the relative absorption cross sections of HDO for the different laser lines were determined. It was thereby established that there exists a very good coincidence of an HDO absorption line with the 2P2 laser line. Using a very sensitive nonresonant spectrophone the relative concentration of HDO in natural water samples could be determined with an accuracy of about 10%. The experiments also demonstrated that with appropriate improvements made to the apparatus and using a second spectrophone as a reference it should be possible to increase this accuracy to 0,1%. (orig.)

  19. Heat evolution involved with electrochemical discharge of hydrogen and deuterium onto palladium

    International Nuclear Information System (INIS)

    Chemla, M.; Chevalet, J.; Bury, R.

    1989-01-01

    Using a quasi-adiabatic micro-calorimeter, we could determine the thermal energy generated during electrolysis of a 0.2 M solution of LiO D in heavy water. In all cases of usual electrolysis, the heat production was found to be less than the total input of electrical energy. We also applied a new technique of transfer electrolysis, where a sample of deuterium saturated palladium was used as the anode. Then, the thermal energy is strictly equal to the consumed electrical energy. In a few experiments, a slight excess of enthalpy was observed and was assumed to result from partial oxidation of deuterium by trace amounts of oxygen. Similar experiments using natural water lead to comparable results [fr

  20. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  1. Drying of heavy water system and works of charging heavy water in Fugen

    International Nuclear Information System (INIS)

    Matsushita, Tadashi; Iijima, Setsuo

    1980-01-01

    The advanced thermal reactor ''Fugen'' is the first heavy water-moderated, boiling light water-cooled nuclear reactor for power generation in Japan. It is a large heavy water reactor having about 130 m 3 of heavy water inventory and about 300 m 3 of helium space as the cover gas of the heavy water system. The heavy water required was purchased from FRG, which had been used for the power output test in the KKN, and the quality was 99.82 mol % mean heavy water concentration. The concentration of heavy water for Fugen used for the nuclear design is 99.70 mol%, and it was investigated how heavy water can be charged without lowering the concentration. The matters of investigation include the method of bringing the heavy water and helium system to perfect dryness after washing and light water test, the method of confirming the sufficient dryness to prevent the deterioration, and the method of charging heavy water safely from its containers. On the basis of the results of investigation, the actual works were started. The works of drying the heavy water and helium system by vacuum drying, the works of sampling heavy water and the result of the degree of deterioration, and the works of charging heavy water and the measures to the heavy water remaing in the containers are described. All the works were completed safely and smoothly. (J.P.N.)

  2. Electrochemically induced nuclear fusion of deuterium

    International Nuclear Information System (INIS)

    Jorne, J.

    1990-01-01

    In this paper cold fusion of deuterium by electrolysis of heavy water onto a palladium (or titanium) cathode is reported. Contrary to the assumption of Fleishmann and Pons that electrochemically compressed D + exists inside the palladium cathode, the observations of Jones et al. can be partially explained by the simultaneous presence of deuteride D - and the highly mobile positive deuterium ion D + . The opposite charges reduce the intranuclear distance and enhance the tunneling fusion rate. Furthermore, alloying of lithium with palladium can stabilize a negatively charged deuteride ion due to the salinelike character of lithium deuteride. The enormous pressure (or fugacity), achieved by the applied electrochemical potential (10 30 atm), is a virtual pressure that would have existed in equilibrium with palladium deuteride (PdD x ). It is speculated that nuclear fusion occurs at the surface, and the PdD x serves as a reservoir for the supply of deuteride ions

  3. Mechanism and deuterium pickup in Zr-2.5Nb alloy

    International Nuclear Information System (INIS)

    Ploc, R.A.

    1999-12-01

    There are approximately 400 Zr-2.5Nb pressure tubes in a CANDU reactor. During operation, the pressure tubes contain heavy water at about 300 deg C, 10.3 NPa with a room-temperature pD of 10.5. Operation of the pressure tube in the environment leads to oxide formation and absorption of deuterium. Excess deuterium absorption leads to precipitation of zirconium deuterides in the metal. A knowledge of how the deuterium passes through the oxide film to enter into the metal is an important step in gaining control over ingress rates. Fresnel fringe imaging of cross-sectioned oxides grown on pressure tubes, combined with tilting in the electron microscope, has revealed the three-dimensional nature of porosity in the oxide films. Two primary types exist, flake and ribbon. The main route for deuterium ingress is via ribbon porosity, as shown by electrochemical impedance spectroscopy. The location of the ribbon porosity is along the boundary between the oxidized α-Zr and β-Zr phases. Modifications to reduce ribbon porosity are possible and this, in turn, leads to significantly lower rates of deuterium absorption and extension of pressure-tube lifetime. (author)

  4. Effect of design and operation of modern ammonia plants on the performance of integrated heavy water plants (Paper No. 2.1)

    International Nuclear Information System (INIS)

    Kumar, Manoj; Haldar, T.K.; Gupta, S.K.; Ramamurty, C.B.

    1992-01-01

    The heavy water plant being parasitic in nature, its design, operation and performance is affected to a great extent by the design, performance and operation of the ammonia plant. Some of the factors which affect the performance of heavy water plant such as on-stream hours and capacity utilisation of the ammonia plant, deuterium concentration (D/D+H) in feed synthesis gas, operating pressure of synthesis loop of ammonia plant, composition of feed synthesis gas, and level of oxygenated impurities in feed synthesis gas are described in this paper. (author). 3 tabs., 4 figs

  5. Deuterium depleted water. Romanian achievements and prospects

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Steflea, Dumitru; Titescu, Gheorghe; Tamaian, Radu

    2002-01-01

    The deuterium depleted water (DDW) is microbiologically pure distilled water with a deuterium content lower than that of natural waters which amounts to 140 - 150 ppm D/(D+H); variations depend on geographical zone and altitude. The procedure of obtaining DDW is based on isotopic separation of natural water by vacuum distillation. Isotope concentration can be chosen within 20 to 120 ppm D/(D+H). The ICSI at Rm. Valcea has patented the procedure and equipment for the production of DDW. According to the document SF-01-2002/INC-DTCI - ICSI Rm. Valcea, the product has a D/(D+H) isotope concentration of 25 ± 5. Studies and research for finding the effects and methods of application in different fields were initiated and developed in collaboration with different institutes in Romania. The following important results obtained so far could be mentioned: - absence of toxicity upon organisms; - activation of vascular reactivity; - enhancement of defence capacity of the organism through non-specific immunity activation; - increase of salmonid reproduction capacity and enhancement of the adaptability of alevins to the environmental conditions; - radioprotective effect to ionizing radiation; - maintaining meat freshness through osmotic shock; - stimulation of growth of aquatic macrophytes; - enhancement of culture plant development in certain ontogenetic stages. Mostly, the results and practical applications of the research were patented and awarded with gold medals at international invention fairs. At present, research-development programmes are undergoing to find active biological features of DDW in fighting cancer, on one hand, and its applicability as food additive of pets or performing animals, on the other hand

  6. Deuterium absorption in CANDU Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Ploc, R.A.; McRae, G.A.

    1999-12-01

    Corrosion of CANDU Zr-2.5%Nb pressure tubes in heavy water results in the formation of an oxide film and the absorption of deuterium by the alloy. If deuterium concentrations are allowed to exceed the terminal solid solubility of the alloy, brittle deuterides can form, thereby limiting the service life of a component. In CANDU pressure tubes, ingress rates are largely determined by the metastable β-Zr that is present as a thin layer encasing the predominant α-Zr grains (approximately 90% by volume). The distribution and continuity of the corroded β-phase in the oxide provides a pervasive web for the development of interconnected porosity from the free surface to the oxide/metal interface. Changing the distribution of the β-phase in the alloy changes the nature of the oxide porosity, a technique that can be used to reduce deuterium ingress rates. (author)

  7. Deuterium absorption in CANDU Zr-2.5Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ploc, R.A.; McRae, G.A

    1999-12-01

    Corrosion of CANDU Zr-2.5%Nb pressure tubes in heavy water results in the formation of an oxide film and the absorption of deuterium by the alloy. If deuterium concentrations are allowed to exceed the terminal solid solubility of the alloy, brittle deuterides can form, thereby limiting the service life of a component. In CANDU pressure tubes, ingress rates are largely determined by the metastable {beta}-Zr that is present as a thin layer encasing the predominant {alpha}-Zr grains (approximately 90% by volume). The distribution and continuity of the corroded {beta}-phase in the oxide provides a pervasive web for the development of interconnected porosity from the free surface to the oxide/metal interface. Changing the distribution of the {beta}-phase in the alloy changes the nature of the oxide porosity, a technique that can be used to reduce deuterium ingress rates. (author)

  8. Absolute measurement of the isotopic ratio of a water sample with very low deuterium content

    International Nuclear Information System (INIS)

    Hagemann, R.; Nief, G.; Roth, E.

    1968-01-01

    The presence of H 3+ ions which are indistinguishable from HD + ions presents the principal difficulty encountered in the measurement of isotopic ratios of water samples with very low deuterium contents using a mass spectrometer. Thus, when the sample contains no deuterium, the mass spectrometer does not indicate zero. By producing, in situ, from the sample to be measured, water vapor with an isotopic ratio very close to zero using a small distilling column, this difficulty is overcome. This column, its operating parameters, as well as the way in which the measurements are made are described. An arrangement is employed in which the isotopic ratios can be measured with a sensitivity better than 0.01 x 10 -6 . The method is applied to the determination of the isotopic ratios of three low deuterium content water samples. The results obtained permit one to assign to the sample with the lowest deuterium content an absolute value equal to 1.71 ± 0.03 ppm. This water sample is a primary standard from which is determined the isotopic ratio of a natural water sample which serves as the laboratory standard. (author) [fr

  9. Process control analysis requirement in NH3-H2 exchange bi-thermal Heavy Water Plant (Talcher) (Paper No. 6.8)

    International Nuclear Information System (INIS)

    Pattnaik, S.P.; Mishra, G.C.

    1992-01-01

    Heavy Water Plant, Talcher is based on bithermal NH 3 -H 2 exchange process. Isotopic exchange of deuterium takes place between gaseous hydrogen and liquid ammonia with potassium amide as catalyst. The process control analysis requirement in NH 3 -H 2 exchange dual temperature process is described. (author). 4 refs., 4 figs

  10. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2014-01-01

    Biologic influence of deuterium (D) on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О). The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of ...

  11. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    International Nuclear Information System (INIS)

    Dmitriyeva, O.; Cantwell, R.; McConnell, M.; Moddel, G.

    2012-01-01

    Highlights: ► We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. ► Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. ► Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. ► Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. ► Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  12. Electrolytic installation in order to obtain deuterium and to fill the pressure deposits

    International Nuclear Information System (INIS)

    Cordero Lopez, F.; Tanarro Sanz, A.

    1959-01-01

    In order to obtain deuterium to feed the ion sources of the accelerators an easy and automatic electrolytic installation has been prepared. this installation and a small compressor designed and constructed for this purpose permit to fill deposits of 1 or 2 liters capacity with deuterium, till a 4 atmosphere pressure in few hours of operation. The electrolytic cell has V shape and permits operation with 3 cc heavy water only as it has small dead volume; the electrodes are platinum and as electrolyte an OH Na solution in a proportion of 15 w/o is used. (Author) 3 refs

  13. Comparison of total body water determinations in lactating women by anthropometry, water displacement, and deuterium isotope dilution

    International Nuclear Information System (INIS)

    Wong, W.; Butte, N.; Lee, L.; Garza, C.; Klein, P.

    1986-01-01

    To expand the limited data on the total body water in lactating women, the authors have determined total body water contents, in eight subjects from anthropometric measurements, water displacement, and isotope dilution of deuterium oxide. On the day of the study, their skinfold thicknesses were measured over the biceps and triceps muscles and at the suprailiac and subscapular areas. Their body densities were measured by water displacement. Deuterium oxide was administered orally at 100 mg/kg of body weight. One predose milk sample was collected from each subject. The milk samples were defatted by centrifugation and the milk water was reduced to hydrogen gas for hydrogen isotope ratio measurements by gas-isotope-ratio mass spectrometry. The results indicated that total body water in lactating women estimated from anthropometric measurements was 49.7 +/- 3.3% of body weight, by water displacement was 54.9 +/- 7.2%, and by isotope dilution was 50.8 +/- 3.7%

  14. Airborne Observations of Water Vapor Deuterium Excess in the Mid-Latitude Lower Troposphere

    Science.gov (United States)

    Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.

    2017-12-01

    Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.

  15. Heavy water upgrader of 'Fugen'

    International Nuclear Information System (INIS)

    Matsushita, Tadashi; Sasaki, Shigeo

    1980-01-01

    The nuclear power station of the advanced thermal prototype reactor ''Fugen'' has continued the smooth operation since it started the fullscale operation in March, 1979. Fugen is the first heavy water-moderated, boiling light water-cooled reactor in Japan, and its outstanding feature is the use of heavy water as the moderator. The quantity of heavy water retained in Fugen is about 140 m 3 , and the concentration is 99.8 wt.%. This heavy water had been made is USA, and was imported from F.R. of Germany where it had been used. Heavy water is an internationally regulated material, and it is very expensive and hard to purchase. Therefore in order to prevent the deterioration of heavy water and to avoid its loss as far as possible, the management of the quantity and the control of the water quality have been carried out carefully and strictly. The generation of deteriorated heavy water occurs from the exchange of ion exchange resin for poison removal and purification. The heavy water upgrader reconcentrates the deteriorated heavy water of high concentration and returns to the heavy water system, and it was installed for the purpose of reducing the purchase of supplementary heavy water. The outline of the heavy water upgrader, its construction, the performance test and the operation are described. (Kako, I.)

  16. Prototype CIRCE plant - industrial demonstration of heavy water production from reformed hydrogen source

    International Nuclear Information System (INIS)

    Spagnolo, D.A.; Boniface, H.A.; Sadhankar, R.R.; Everatt, A.E.; Miller, A.I.; Blouin, J.

    2002-01-01

    Heavy water (D 2 0) production has been dominated by the Girdler-Sulphide (G-S) process, which suffers several intrinsic disadvantages that lead to high production costs. Processes based on hydrogen/water exchange have become more attractive with the development of proprietary wetproofed catalysts by AECL. One process that is synergistic with industrial hydrogen production by steam methane reforming (SMR), the Combined Industrial Reforming and Catalytic Exchange (CIRCE) process, offers the best prospect for commercialization. SMRs are common globally in the oil-upgrading and ammonia industries. To study the CIRCE process in detail, AECL, in collaboration with Air Liquide Canada, constructed a prototype CIRCE plant (PCP) in Hamilton, Ontario. The plant became fully operational in 2000 July and is expected to operate to at least late fall of 2002. To-date, plant operation has confirmed the adequacy of the design and the capability of enriching deuterium to produce heavy water without compromising hydrogen production. The proprietary wetproofed catalyst has performed as expected, both in activity and in robustness. (author)

  17. On the basic substances used in the separation process by isotope exchange H2S - H2O, at two temperatures, in view of producing heavy water

    International Nuclear Information System (INIS)

    Popescu, V.

    1977-01-01

    In view of producing heavy water, the influence of the deuterium proportion in the basic substances, on the efficiency of the isotope exchange process H 2 S - H 2 O for two temperatures was studied. Heavy water is extracted from ordinary water and concentrated from 0.014 per cent to 5-15 per cent D 2 O by isotope bithermal exchange with the hydrogen sulphite. Theoretical and experimental research was carried out in laboratories and then applied on a pilot plant by designing and testing a drying equipment for hydrogen sulphite. The maximum H 2 S concentration rose to 99.84 per cent. The purity of the hydrogen sulphite resulting from the pilot plant, as well as the optimization of the installation for producing H 2 S depending on the deuterium distribution, make sure that the two methods for the preparation of sodium sulphite and hydrogen sulphite can be applied in industry. (author)

  18. Origin of excess heat generated during loading Pd-impregnated alumina powder with deuterium and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriyeva, O., E-mail: olga.dmitriyeva@colorado.edu [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States); Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Cantwell, R.; McConnell, M. [Coolescence LLC, 2450 Central Ave Ste F, Boulder, CO 80301 (United States); Moddel, G. [Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 (United States)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer We studied heat produced by hydrogen and deuterium in Pd-impregnated alumina powder. Black-Right-Pointing-Pointer Samples were fabricated using light and heavy water isotopes and varied the gas used for loading. Black-Right-Pointing-Pointer Incorporation of hydrogen and deuterium influenced the amount of heat released or consumed. Black-Right-Pointing-Pointer Pd nanoparticles appear to catalyze hydrogen/deuterium (H/D) exchange chemical reactions. Black-Right-Pointing-Pointer Anomalous heating can be accounted for by chemical rather than nuclear reactions. - Abstract: We studied heat production in Pd-impregnated alumina powder in the presence of hydrogen and deuterium gases, investigating claims of anomalous heat generated as a result of nuclear fusion, usually referred to as a low energy nuclear reaction (LENR). By selecting the water isotope used to fabricate the material and then varying the gas used for loading, we were able to influence the amount of heat released or consumed. We suggest that Pd in its nanoparticle form catalyzes hydrogen/deuterium (H/D) exchange reactions in the material. This hypothesis is supported by heat measurements, residual gas analysis (RGA) data, and calculations of energy available from H/D exchange reactions. Based on the results we conclude that the origin of the anomalous heat generated during deuterium loading of Pd-enriched alumina powder is chemical rather than nuclear.

  19. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  20. Advances in deuterium dioxide concentration measurement

    Energy Technology Data Exchange (ETDEWEB)

    Shon, Woojung [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Sung Paal, E-mail: nspyim@kaeri.re.kr [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Lim; Park, Hyunmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Kwang Rag; Chung, Hongsuk [University of Science & Technology, Daejeon (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Cheo Kyung [Handong Global University, Pohang (Korea, Republic of)

    2016-11-01

    Highlights: • Heavy water (D{sub 2}O) with a high purity level is necessary for nuclear fusion application. • D{sub 2}O purity is analyzed using Fourier Transform infrared (FT-IR) spectroscopy and newly introduced off-axis integrated cavity output spectroscopy (OA-ICOS). • OA-ICOS has advantages in terms of analysis of D{sub 2}O vapor. • OA-ICOS is expected that it can be used for accurate isotopic analyses in the future. - Abstract: The deuterium–tritium (D–T) reaction has been identified as the most efficient reaction for fusion devices. Deuterium can be obtained by heavy water electrolysis. Heavy water (D{sub 2}O) with a high purity level is necessary for nuclear fusion application. A D{sub 2}O isotopic analysis is thus very important. A system for a heavy water analysis was built and a newly designed isotopic analysis experiment was carried out. We tried to analyze the D{sub 2}O purity using Fourier Transform infrared (FT-IR) spectroscopy and newly introduced off-axis integrated cavity output spectroscopy (OA-ICOS). We found that the OA-ICOS based on measurement via laser absorption spectroscopy shows very high sensitivity. We ameliorated the sensitivity by an order of magnitude of more than 10{sup 3}–10{sup 5}. We could make the apparatus smaller by employing very tiny diode laser and fiber optics elements of a DFB (Distributed Feedback) type. Consequently, our device has advantages in terms of maintainability and mobility even in a radioactive environment. This new method could be used for an accurate isotopic analysis in the future.

  1. Hydrogen/deuterium substitution methods: understanding water structure in solution

    International Nuclear Information System (INIS)

    Soper, A.K.

    1993-01-01

    The hydrogen/deuterium substitution method has been used for different applications, such as the short range order between water molecules in a number of different environments (aqueous solutions of organic molecules), or to study the partial structure factors of water at high pressure and temperature. The absolute accuracy that can be obtained remains uncertain, but important qualitative information can be obtained on the local organization of water in aqueous solution. Some recent results with pure water, methanol and dimethyl sulphoxide (DMSO) solutions are presented. It is shown that the short range water structure is not greatly affected by most solutes except at high concentrations and when the solute species has its own distinctive interaction with water (such as a dissolved small ion). 3 figs., 14 refs

  2. Prototype CIRCE plant-industrial demonstration of heavy-water production from a reformed hydrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, D.A.; Boniface, H.A.; Sadhankar, R.R.; Everatt, A.E.; Miller, A.I. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Blouin, J. [Air Liquide Canada, Hamilton, Ontario (Canada)

    2002-09-01

    Heavy-water (D{sub 2}0) production has been dominated by the Girdler-Sulphide (G-S) process, which suffers several intrinsic disadvantages that lead to high production costs. Processes based on hydrogen/water exchange have become more attractive with the development of proprietary wetproofed catalysts by AECL. One process that is synergistic with industrial hydrogen production by steam methane reforming (SMR), the combined industrial reforming and catalytic exchange (CIRCE) process, offers the best prospect for commercialization. SMRs are common globally in the oil upgrading and ammonia industries. To study the CIRCE process in detail, AECL, in collaboration with Air Liquide Canada, constructed a prototype CIRCE plant (PCP) in Hamilton, ON. The plant became fully operational in 2000 July and is expected to operate to at least the late fall of 2002. To date, plant operation has confirmed the adequacy of the design and the capability of enriching deuterium to produce heavy water without compromising hydrogen production. The proprietary wetproofed catalyst has performed as expected, both in activity and in robustness. (author)

  3. Prototype CIRCE plant-industrial demonstration of heavy-water production from a reformed hydrogen source

    International Nuclear Information System (INIS)

    Spagnolo, D.A.; Boniface, H.A.; Sadhankar, R.R.; Everatt, A.E.; Miller, A.I.; Blouin, J.

    2002-09-01

    Heavy-water (D 2 0) production has been dominated by the Girdler-Sulphide (G-S) process, which suffers several intrinsic disadvantages that lead to high production costs. Processes based on hydrogen/water exchange have become more attractive with the development of proprietary wetproofed catalysts by AECL. One process that is synergistic with industrial hydrogen production by steam methane reforming (SMR), the combined industrial reforming and catalytic exchange (CIRCE) process, offers the best prospect for commercialization. SMRs are common globally in the oil upgrading and ammonia industries. To study the CIRCE process in detail, AECL, in collaboration with Air Liquide Canada, constructed a prototype CIRCE plant (PCP) in Hamilton, ON. The plant became fully operational in 2000 July and is expected to operate to at least the late fall of 2002. To date, plant operation has confirmed the adequacy of the design and the capability of enriching deuterium to produce heavy water without compromising hydrogen production. The proprietary wetproofed catalyst has performed as expected, both in activity and in robustness. (author)

  4. The hydrogen and deuterium concentrations in chondrites

    International Nuclear Information System (INIS)

    Robert, F.; Merlivat, L.

    1978-01-01

    Water and isotopic concentration of H 2 O + are reported. It shows a correlation between the water, the deuterium concentrations and the petrologic types of chondrites. The Chainpur meteorite has been divided into several mineralogical fractions and the results are reported. The results of Orgueil are also reported. The correlation shows that as the sulfate content increases, the water and deuterium contents decrease. The terrestrial contamination is discussed and possible deuterium variation models are presented

  5. Heavy water and nonproliferation

    International Nuclear Information System (INIS)

    Miller, M.M.

    1980-05-01

    This report begins with a historical sketch of heavy water. The report next assesses the nonproliferation implications of the use of heavy water-moderated power reactors; several different reactor types are discussed, but the focus is on the natural uranium, on-power fueled, pressure tube reactor CANDU. The need for and development of on-power fueling safeguards is discussed. Also considered is the use of heavy water in plutonium production reactors as well as the broader issue of the relative nuclear leverage that suppliers can bring to bear on countries with natural uranium-fueled reactors as compared to those using enriched designs. The final chapter reviews heavy water production methods and analyzes the difficulties involved in implementing these on both a large and a small scale. It concludes with an overview of proprietary and nonproliferation constraints on heavy water technology transfer

  6. Improvement in fuel utilization in pressurized heavy water reactors due to increased heavy water purity

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    This paper reports that in a pressurized heavy water reactor (PHWR), the reactivity of the reactor and, consequently, the discharge burnup of the fuel depend on the isotopic purity of the heavy water used in the reactor. The optimal purity of heavy water used in PHWRs, in turn, depends on the cost of fabricated uranium fuel and on the incremental cost incurred in improving the heavy water purity. The physics and economics aspects of the desirability of increasing the heavy water purity in PHWRs in India were first examined in 1978. With the cost data available at that time, it was found that improving the heavy water purity from 99.80% to 99.95% was economically attractive. The same problem is reinvestigated with current cost data. Even now, there is sufficient incentive to improve the isotopic purity of heavy water used in PHWRs. Admittedly, the economic advantage that can be derived depends on the cost of the fabricated fuel. Nevertheless, irrespective of the economics, there is also a fairly substantial saving in natural uranium. That the increase in the heavy water purity is to be maintained only in the low-pressure moderator system, and not in the high-pressure coolant system, makes the option of achieving higher fuel burnup with higher heavy water purity feasible

  7. Development of a differential infrared absorption method to measure the deuterium content of natural water

    International Nuclear Information System (INIS)

    D'Alessio, Enrique; Bonadeo, Hernan; Karaianev de Del Carril, Stiliana.

    1975-07-01

    A system to measure the deuterium content of natural water using differential infrared spectroscopy is described. Parameters conducing to an optimized design are analyzed, and the construction of the system is described. A Perkin Elmer 225 infrared spectrometer, to which a scale expansion system has been added, is used. Sample and reference waters are alternatively introduced by a pneumatical-mechanical system into a unique F Ca thermostatized infrared cell. Results and calibration curves shown prove that the system is capable of measuring deuterium content with a precision of 1 part per million. (author)

  8. Effects of deuterium depleted water on reproduction of Rainbow fish

    International Nuclear Information System (INIS)

    Stefanescu, Ion; Saros-Rogobete, Irina; Titescu, Gheorghe; Caraus, Ion; Pricop, Ferdinand

    2001-01-01

    The paper refers to an isotopic composition used to prepare fecundating solutions for artificial reproduction of fish. The solution is constituted as a mixture of deuterium depleted water and natural water (whose isotopic concentration is of 85-90 ppm D/(D+H)) in which we can add activating and energizing substances. This fecundating solution ensures an improved fecundating level of fish roe, increase life index in the next growth up stages and increase fish resistance at special medium conditions. (authors)

  9. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    Science.gov (United States)

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.

  10. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1980-01-01

    A method of deuterium isotope separation and enrichment using infrared laser technology in combination with chemical processes for treating and recycling the unreacted and deuterium-depleted starting materials is described. Organic molecules of the formula RX (where R is an ethyl, isopropyl, t-butyl, or cyclopentenyl group and X is F, Cl, Br or OH) containing a normal abundance of hydrogen and deuterium are exposed to intense laser infrared radiation. An olefin containing deuterium (olefin D) will be formed, along with HX. The enriched olefin D can be stripped from the depleted stream of RX and HX, and can be burned to form enriched water or pyrolyzed to produce hydrogen gas with elevated deuterium content. The depleted RX is decomposed to olefins and RX, catalytically exchanged with normal water to restore the deuterium content to natural levels, and recombined to form RX which can be recycled. (LL)

  11. [Influence of deuterium depleted water on freeze-dried tissue isotopic composition and morphofunctional body performance in rats of different generations].

    Science.gov (United States)

    Dzhimak, S S; Baryshev, M G; Basov, A A; Timakov, A A

    2014-01-01

    The influence of deuterium depleted water on the body of different rats generations was investigated in physiological conditions. As a result of this study it was established that the most significant and rapid reduction in D/H equilibrium was observed in plasma (by 36.2%), and lyophilized kidney tissues (by 15.8%). Less pronounced deuterium decrease was characteristic of liver tissue (9.3%) and heart (8.5%). Stabilization of the isotopic exchange reaction rate was fixed in the blood and tissues of rats, starting from the second generation. At the same time when deuterium depleted water (40 ppm) was used in dietary intake, the change in morphological and functional parameters in laboratory animals associated with the processes of adaptation to the effects of substress isotopic D/H gradient was also noted. The study shows that modification of:only drinking water intake regime can't significantly change the deuterium content in tissues of metabolically active organs, because of the concurrent deuterium receipt in food substances of plant and animal origin.

  12. Considerations related to the deuterium-depleted water isotopic analysis for an industrial production pilot plant

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru; Irimescu, Rodica

    2000-01-01

    In the last few years, there is a major interest related to the use of Deuterium Depleted Water (DDW) for biological and medical purposes. Therefore, a production installation for DDW was developed and now, it is working in our Institute. The deuterium isotopic concentration for the final product is in the 10 - 40 ppm D / (D + H) range depending on customers' requirements. In order to control and manage the production process and also to validate the final product, a special procedure for deuterium content measurement for DDW by Isotopic Ratio Mass Spectrometry was developed. The main instrumentation is a MAT 250 IRMS with a hydrogen preparation line based on the zinc reduction process. The first concern regarding the analysis procedure for these water samples with very low deuterium concentration has been related to the preparation of an internal standard with a D / (D + H) isotopic value in the measurement range. For this raison, a distinct procedure was developed and applied, so that starting to the well-known VSMOW standard and so, a sequence of 12 samples with decreasing deuterium content was obtained. These samples were measured and 3 / 2 ratio mass signals versus 2 mass signal were plotted and statistically analyzed. Obviously, for each measurement, a H 3+ correction factor was calculated and applied, as a results of an entire statistically elimination procedure and by extrapolation of the linear curve plotted, a value for the primary DDW was determined. Other important problem related to deuterium content determination was to minimize the H 3+ factor correction. As the deuterium content is very low the contribution of this factor to the 3 mass signal becomes very important. Therefore, special operations were developed, considering the behaviour of linear dependence between 3 / 2 mass signal versus 2 mass signal in the lower part. Finally, special attention was given to estimate the lower isotopic concentration analysis limit. (authors)

  13. Measurement of water kinetics with deuterium oxide in lactating dairy cows

    International Nuclear Information System (INIS)

    Odwongo, W.O.; Conrad, H.R.; Staubus, A.E.; Harrison, J.H.

    1985-01-01

    Following intravenous infusion with approximately 300 mg deuterium oxide per kg body weight, blood was drawn from lactating Holsteins (Trial 1, n = 4, and Trial 2, n = 5) at suitable intervals for up to 12 days while the cows were maintained on dietary regimens to which they were well adapted. Time results for deuterium oxide concentration in blood were described best by the three-compartment open model system, which showed that the central, shallow peripheral, and deep peripheral body water compartments contained 27.1, 25.0, and 23.2% body weight in trial 1 and 33.7, 27.1, and 19.9% body weight in trial 2. Total body water estimates averaged 75.3 and 80.7% body weight during trials 1 and 2. Estimates for biological half-life of water were 4.6 and 3.2 days and those for water turnover were 68.9 and 109.7 liters/day, respectively. The data fitted the two-compartment open model system when observations made prior to 25 min post-administration were excluded from the analyses, because the central and shallow peripheral compartments were apparently lumped into one. Blood sampling at 0.5, 1, and 1.5 days following infusion and thereafter at 1-day intervals was adequate for the estimates of the one compartment open model system. Estimates of total body water, water biological half-life, and water turnover were similar for the different models. It is concluded that the three-compartment open model provides greater detail and insight into the water dynamics of lactating dairy cows having regular access to food and water, whereas the two- and one-compartment open model systems provide good approximations only

  14. Experiments regarding organism behaviour under deuterium-depleted water influence

    International Nuclear Information System (INIS)

    Stefanescu, I.; Steflea, D.; Titescu, Gh.

    1999-01-01

    Deuterium-depleted water (DDW) is water that has an deuterium content D/(D+H) lower than 145 ppm. The role of naturally occurring D in living organisms was examined by using DDW instead of natural water. The DDW significantly decreased the growth rate of the L 929 fibroblast cell line and also inhibited the tumour growth. These suggest that the naturally occurring D has a central role in signal transduction involved in cell cycle regulation. Beginning with 1996, Institute of Cryogenics and Isotopic Separation, a DDW producer, co-operated with Romanian specialized institutes for evaluation of biological effects of DDW. These investigation lead to the following conclusions: 1. DDW caused a tendency of increasing the basal tone, accompanied by intensification of vasoconstrictor effects of phenylephrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by DDW persists after removing the vascular in endothelium. 2. DDW stimulates immunodefence reactions, represented by the opsonic, bactericidal and phagocyte capacity of the immune system, together with increase in the number of polymorphonuclear neutrophils. 3. Animals treated with DDW showed an increase of the resistance both to the sublethal and to lethal gamma radiation doses, suggesting a radioprotective action. 4. Investigation regarding artificial reproduction of fish with DDW fecundated solutions confirmed favourable influence both in embryo growth stage and resistance in the following growing stages. 5. It was studied germination, growth and quantitative character variability of two genotypes of Avena Sativa; one can remark the favourable influence of DDW on biological process in plants in various ontogenetic stages. (authors)

  15. Energetics of semi-catalyzed-deuterium, light-water-moderated, fusion-fission toroidal reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Towner, H.H.; Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.

    1978-07-01

    The semi-catalyzed-deuterium Light-Water Hybrid Reactor (LWHR) comprises a lithium-free light-water-moderated blanket with U 3 Si fuel driven by a deuterium-based fusion-neutron source, with complete burn-up of the tritium but almost no burn-up of the helium-3 reaction product. A one-dimensional model for a neutral-beam-driven tokamak plasma is used to determine the operating modes under which the fusion energy multiplication Q/sub p/ can be equal to or greater than 0.5. Thermonuclear, beam-target, and energetic-ion reactions are taken into account. The most feasible operating conditions for Q/sub p/ approximately 0.5 are tau/sub E/ = 2 to 4 x 10 14 cm -3 s, = 10 to 20 keV, and E/sub beam/ = 500 to 1000 keV, with approximately 40% of the fusion energy produced by beam-target reactions. Illustrative parameters of LWHRs are compared with those of an ignited D-T reactor

  16. Determination of deuterium in water by a thermometric method

    International Nuclear Information System (INIS)

    Gabicar, J.

    1976-01-01

    A simple and rapid method for the determination of deuterium in water has been developed. The method is based on the change of the thermal effect of the solubility of sodium sulphate in the presence of D 2 O. The procedure is based on the measurement of the temperature of phase transition Na 2 SO 4 . 10 H 2 O reversible Na 2 SO 4 + 10 H 2 O. The sensitivity of the method proposed is comparable with mass spectrometry. (author)

  17. Improvement in deuterium recovery from water–isotope mixture by thermal diffusion in the device of branch columns

    International Nuclear Information System (INIS)

    Hsu, Ching-Chun; Yeh, Ho-Ming

    2014-01-01

    Highlights: • Recovery of deuterium by thermal diffusion from water–isotope mixture has been investigated. • The undesirable remixing effect can be reduced by employing the device of branch columns. • Deuterium recoveries were compared with that in a single column of the same total column length. • Considerable recovery improvement is obtainable in the device of branch columns, instead of in a single-column device. - Abstract: Deuterium recovery from water–isotopes mixture using thermal diffusion can be improved by employing the branch column device, instead of single column devices, with the same total column length. The remixing effect due to convection currents in a thermal diffusion column for heavy water enrichment is thus reduced and separation improvement increases when the flow rate or the total column length increases. The improvement in separation can reach about 50% for the numerical example given

  18. Oxidation and deuterium uptake of Zr-2.5Nb pressure tubes in CANDU-PHW reactors

    International Nuclear Information System (INIS)

    Urbanic, V.F.; Warr, B.D.; Manolescu, A.; Chow, C.K.; Shanahan, M.W.

    1989-01-01

    Oxidation and deuterium uptake in Zr-2.5Nb pressure tubes are being monitored by destructive examination of tubes removed from commercial Canadian deuterium uranium pressurized heavy-water (CANDU-PHW) stations and by analyses of microsamples, obtained in-situ, from the inside surface of tubes in the reactor. Unlike Zircaloy-2, there is no evidence for any acceleration in the oxidation rate for exposures up to about 4500 effective full power days. Changes towards a more equilibrium microstructure during irradiation may be partly responsible for maintaining the low oxidation rate, since thermal aging treatments, producing similar microstructural changes in initially cold worked tubes, were found to improve out-reactor corrosion resistance in 589 K water. With one exception, the deuterium uptake in Zr-2.5Nb tubes has been remarkably low and no greater than 3-mg/kg deuterium per year (0.39 mg/dm 2 hydrogen per year) . The exception is the most recent surveillance tube removed from Pickering (NGS) Unit 3, which had a deuterium content near the outlet end about five times higher than that seen in the previous tube examined. Current investigations suggest that most of the uptake in that tube may have come from the gas annulus surrounding the tube where deuterium exists as an impurity, and oxidation has been insufficient to maintain a protective oxide film. Results from weight gain measurements, chemical analyses, metallography, scanning electron microscopy, and transmission electron microscopy of irradiated pressure tubes and of small coupons exposed out reactor are presented and discussed with respect to the observed corrosion and hydriding behavior of CANDU-PHW pressure tubes. (author)

  19. Deuterium release from Li-D films exposed to atmospheric gases

    Energy Technology Data Exchange (ETDEWEB)

    Gasparyan, Yu. M., E-mail: YMGasparyan@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow (Russian Federation); Popkov, A.S.; Krat, S.A.; Pisarev, A.A.; Vasina, Ya. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow (Russian Federation); Lyublinski, I.E. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe highway 31, Moscow (Russian Federation); JSC “Red Star”, Electrolitniy proezd 1a, Moscow (Russian Federation); Vertkov, A.V. [JSC “Red Star”, Electrolitniy proezd 1a, Moscow (Russian Federation)

    2017-04-15

    Highlights: • The major part of deuterium desorbs from Li-D films in a very sharp peak at 670–710 K. • Exposure on air leads to intensive deuterium release from the Li-D film at room temperature. • Interaction with water vapor plays a major role in deuterium release from lithium films in the air. - Abstract: Deuterium release from Li-D films co-deposited on a Mo substrate at room temperature in magnetron discharge was investigated by means of thermal desorption spectroscopy. The deuterium concentration in the films was estimated to be D/Li = (14 ± 4)%. TDS from Li-D films just after co-deposition had a sharp peak at 670–710 K. Exposure of deposited Li-D films in the air at room temperature led to deuterium release. Comparison of release in air, water vapor, nitrogen, and oxygen demonstrated that water plays a major role in deuterium release in the air at low temperatures.

  20. Heavy Water Quality Management in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Chul; Lee, Mun; Kim, Hi Gon; Park, Chan Young; Choi, Ho Young; Hur, Soon Ock; Ahn, Guk Hoon

    2008-12-15

    Heavy water quality management in the reflector tank is a very important element to maintain the good thermal neutron flux and to ensure the performance of reflector cooling system. This report is written to provide a guidance for the future by describing the history of the heavy water quality management during HANARO operation. The heavy water quality in the reflector tank has been managed by measuring the electrical conductivity at the inlet and outlet of the ion exchanger and by measuring pH of the heavy water. In this report, the heavy water quality management activities performed in HANARO from 1996 to 2007 ere described including a basic theory of the heavy water quality management, exchanging history of used resin in the reflector cooling system, measurement data of the pH and the electrical conductivity, and operation history of the reflector cooling system.

  1. Production of heavy water in India

    International Nuclear Information System (INIS)

    Deshpande, P.G.; Bimbhat, K.S.; Bhargava, R.K.

    India's first heavy water plant, using electrolysis of water followed by liquid hydrogen distillation, has been operating in association with a fertilizer plant at Nangal since 1962. A dual-temperature process plant at Kota uses heat from the Rajasthan Atomic Power Station. The heavy water plants at Baroda and Tuticorin use ammonia-hydrogen exchange and are integrated with fertilizer ammonia plants. Choice of a particular process for heavy water production depends upon local conditions as well as the extent of the heavy water requirement

  2. Water containing deuterium electrolysis to obtain gaseous hydrogen isotope in a high state of purity

    International Nuclear Information System (INIS)

    Bellanger, Gilbert

    1992-01-01

    In this paper, the basic concept is to prepare hydrogen in a high state of purity by electrolysing water using a palladium cathode. During electrolysis, hydrogen is at first adsorbed at the palladium surface, and next it diffuses through it till opposite face of its entry where it is desorbed; thus permitting to regain it in a very pure state for storage. The method can be used from water containing deuterium. To improve hydrogen adsorption, surface effect of palladium must be studied. It was found that heat treatment of palladium improved the hydrogen permeation flux. The diffusivity of hydrogen is controlled by Fick and Sieverts equations in which temperature has a significant influence on permeation rates. Anyway, hydrogen desorption does not cause any difficulty. In a second part, we have studied the isotopic separation factor using water containing deuterium. We remarked in fact that it depends on current density, overpotential, diffusivity of hydrogen and deuterium and isotopic composition of electrolyte as expected. In the last part, we realized an original electrolysis model in a glove-box in which are taken into account the results given before and also the technology components employed in processes involving the use of tritium. (author) [fr

  3. Canadian heavy water production

    International Nuclear Information System (INIS)

    Dahlinger, A.; Lockerby, W.E.; Rae, H.K.

    1977-05-01

    The paper reviews Canadian experience in the production of heavy water, presents a long-term supply projection, relates this projection to the anticipated long-term electrical energy demand, and highlights principal areas for further improvement that form the bulk of our research and development program on heavy water processes

  4. Creatine Supplementation Increases Total Body Water in Soccer Players: a Deuterium Oxide Dilution Study.

    Science.gov (United States)

    Deminice, R; Rosa, F T; Pfrimer, K; Ferrioli, E; Jordao, A A; Freitas, E

    2016-02-01

    This study aimed to evaluate changes in total body water (TBW) in soccer athletes using a deuterium oxide dilution method and bioelectrical impedance (BIA) formulas after 7 days of creatine supplementation. In a double-blind controlled manner, 13 healthy (under-20) soccer players were divided randomly in 2 supplementation groups: Placebo (Pla, n=6) and creatine supplementation (CR, n=7). Before and after the supplementation period (0.3 g/kg/d during 7 days), TBW was determined by deuterium oxide dilution and BIA methods. 7 days of creatine supplementation lead to a large increase in TBW (2.3±1.0 L) determined by deuterium oxide dilution, and a small but significant increase in total body weight (1.0±0.4 kg) in Cr group compared to Pla. The Pla group did not experience any significant changes in TBW or body weight. Although 5 of 6 BIA equations were sensitive to determine TBW changes induced by creatine supplementation, the Kushner et al. 16 method presented the best concordance levels when compared to deuterium dilution method. In conclusion, 7-days of creatine supplementation increased TBW determined by deuterium oxide dilution or BIA formulas. BIA can be useful to determine TBW changes promoted by creatine supplementation in soccer athletes, with special concern for formula choice. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Power control device for heavy water moderated reactor

    International Nuclear Information System (INIS)

    Matsushima, Hidesuke; Masuda, Hiroyuki.

    1978-01-01

    Purpose: To improve self controllability of a nuclear power plant, as well as enable continuous power level control by a controlled flow of moderators in void pipes provided in a reactor core. Constitution: Hollow void pipes are provided in a reactor core to which a heavy water recycle loop for power control, a heavy water recycle pump for power control, a heavy water temperature regulator and a heavy water flow rate control valve for power control are connected in series to constitute a heavy water recycle loop for flowing heavy water moderators. The void ratio in each of the void pipes are calculated by a process computer to determine the flow rate and the temperature for the recycled heavy water. Based on the above calculation result, the heavy water temperature regulator is actuated by way of a temperature setter at the heavy water inlet and the heavy water flow rate is controlled by the actuation of the heavy water flow rate control valve. (Kawakami, Y.)

  6. Water use patterns of three species in subalpine forest, Southwest China: the deuterium isotope approach

    Science.gov (United States)

    Qing Xu; Harbin Li; Jiquan Chen; Jiquan Cheng; Xiaoli Cheng; Shirong Liu; Shuqing An

    2011-01-01

    Determination of water sources of plant species in a community is critical for understanding the hydrological processes and their importance in ecosystem functions. Such partitioning of plant xylem water into specific sources (i.e. precipitation, groundwater) can be achieved by analyzing deuterium isotopic composition (δD) values for source waters. A subalpine dark...

  7. Heavy water moderated tubular type nuclear reactor

    International Nuclear Information System (INIS)

    Oohashi, Masahisa.

    1986-01-01

    Purpose: To enable to effectively change the volume of heavy water per unit fuel lattice in heavy water moderated pressure tube type nuclear reactors. Constitution: In a nuclear reactor in which fuels are charged within pressure tubes and coolants are caused to flow between the pressure tubes and the fuels, heavy water tubes for recycling heavy water are disposed to a gas region formed to the outside of the pressure tubes. Then, the pressure tube diameter at the central portion of the reactor core is made smaller than that at the periphery of the reactor core. Further, injection means for gas such as helium is disposed to the upper portion for each of the heavy water tubes so that the level of the heavy water can easily be adjusted by the control for the gas pressure. Furthermore, heavy water reflection tubes are disposed around the reactor core. In this constitution, since the pitch for the pressure tubes can be increased, the construction and the maintenance for the nuclear reactor can be facilitated. Also, since the liquid surface of the heavy water in the heavy water tubes can be varied, nuclear properties is improved and the conversion ratio is improved. (Ikeda, J.)

  8. A spectrometrical method to measure the deuterium content in 2H-enriched water

    International Nuclear Information System (INIS)

    Dumke, I.

    1980-04-01

    A test method and spectrometer has been developed for emission-spectrometrical measurement of the deuterium content in water enriched with deuterium. The water sample is melted into a previously evacuated glas tube and a gas discharge is excited in vapour over the cooled sample to adjust to a low vapour pressure with high frequency. The intensities of the H(α) and D(α) lines appearing in the spectrum determine the D-content. Both lines were resolved by a Fabry-Perot interferometer and geometrically separated fed to two photodetectors. The remaining spectrum is filtered off. Following electronic calculation of the signals, the measured value is indicated which has to be corrected by a standard curve. The relative measuring accuracy is about +-1% for enrichments of over 1% D and less than +-5% in the region of 0.3-1% D. The detection limit is about 0.03% D (sample amount: 50 μl, average of 5 samples). (orig./HP) [de

  9. The deuterium depleted water effects on germination, growth and respiration processes in Zea Mays culture

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Fleancu, Monica; Giosanu, Daniela; Iorga-Siman, Ion

    2002-01-01

    The aim of this paper is to study the influence of deuterium depleted water (DDW) on the germination, growth and respiration processes in Zea Mays culture. The DDW is produced by the Institute of Cryogenics and Isotope Separation, Rm. Valcea (Romania). We used moist seeds in three experimental lots: L-1 (control), using distillated water (because the quality of DDW, excepting the deuterium content, is similar to that of distillated water); L-2, using a mixture of DDW and H 2 O in 1:1 proportion; L-3, germination in light water (DDW). Reported to the control lot, the germinative energy was higher in L-2 and L-3, but it was no significant difference between faculty of germination of variants. The length of main root was higher in L-2 and L-3 as compared to control lot. The intensity process of respiration was stimulated when DDW was used in both cases (L-2 or L-3). So, we can remark a favorable influence of light water on some biological processes in Zea mays plants (authors)

  10. Vertical distribution of deuterium in atmospheric water vapour: problems in application to assess atmospheric condensation models

    International Nuclear Information System (INIS)

    Taylor, C.B.

    1984-01-01

    The paper assesses the use of the author's data by Rozanski and Sonntag to support a multi-box model of the vertical distribution of deuterium in atmospheric water vapour, in which exchange between vapour and falling precipitation produces a steeper deuterium concentration profile than simpler condensation models. The mean deuterium/altitude profile adopted by Rozanski and Sonntag for this purpose is only one of several very different mean profiles obtainable from the data by arbitrary selection and weighting procedures; although it can be made to match the specified multi-box model calculations for deuterium, there is a wide discrepancy between the actual and model mean mixing ratio profiles which cannot be ignored. Taken together, the mixing ratio and deuterium profiles indicate that mean vapour of the middle troposphere has been subjected to condensation at greater heights and lower temperatures than those considered in the model calculations. When this is taken into account, the data actually fit much better to the simpler condensation models. But the vapour samples represent meteorological situations too remote in time from primary precipitation events to permit definite conclusions on cloud system mechanisms. (Auth.)

  11. Deuterium in atmospheric cycle

    International Nuclear Information System (INIS)

    Pontikis, M.C.

    Interest of the study concerning the deuterium content variation (HDO) in the atmospheric water. Standards and measurement methods. Molecule HDO cycle in the atmospheric water. Application to the study of hail-generating cumulus-nimbus and of the mantle of snow [fr

  12. Method of controlling power of a heavy water reactor

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1975-01-01

    Object: To adjust a level of heavy water in a region of reflection body to control power in a heavy water reactor. Structure: The interior of a core tank filled with heavy water is divided by a partition into a core heavy water region and a reflection body region formed by surrounding the core heavy water region, and a level of heavy water within the reflection body region is adjusted to control power. Preferably, it is desirable to communicate the core heavy water region with the reflection body heavy water region at their lower portion, and gas pressure applied to an upper portion within at least one of said regions is adjusted to adjust the level of heavy water within the reflection body heavy water region. Thereby, the heavy water within the reflection body heavy water region may be introduced into the core region, thus requiring no tank which stores heavy water within the reflection body region. (Kamimura, M.)

  13. Measurement of concentration of heavy water

    International Nuclear Information System (INIS)

    Tsukamoto, Yuichi; Kondo, Mitsuo; Sakurai, Naoyuki

    1979-01-01

    The concentration of heavy water is measured as one of the technical management in the Fugen plant. The heavy water is used as the moderator in the reactor. The measuring method depends on the theory of light absorption. The light absorption range of heavy water spreads from near infrared to infrared zone. The near infrared absorption was adopted for the purpose, as the absorption is much larger in infrared zone, and the measurement has to be conducted, limiting the apparent absorption. This measuring method is available to determine the concentration of heavy water in the broad range exactly. The preparation of heavy water sample and the measurement of the absorption spectra of near infrared ray are explained, as the experimental procedure. The sample cell was made of quartz, and the spectroscope was the Hitachi 323 type. The resolving power is 100 nm and 27 nm for the wave length of 1000 nm and 2500 nm, respectively. Concerning the measured results, the absorption was recorded in the wave length range from 600 nm to 2600 nm, and for the heavy water concentration range from 0 to 99.77 wt. %. The peaks of absorption were located at the wave length of 1450, 1660, 1920, 1970, 2020 and 2600 nm. The three kinds of fundamental vibration mode of the molecules of both light and heavy water are shown, and the peaks belong to H 2 O, HDO and D 2 O, respectively. The relation between the absorption and the heavy water concentration, and that between the transmissivity and the wave length are shown, when the cell thickness was varied to 5 mm and 20 mm, and the heavy water concentration to 21%, 62% and 99.85%. (Nakai, Y.)

  14. Poisoning by carbon monoxide in the hydrogen exchange reaction between deuterium gas and water preadsorbed on a platinum--alumina catalyst

    International Nuclear Information System (INIS)

    Iida, I.; Tamaru, K.

    1979-01-01

    Poisoning by carbon monoxide in the exchange reaction between deuterium and the water preadsorbed on a platinum--alumina catalyst was studied, by measuring not only the rate of reaction but also its kinetic behavior and the adsorption of reactants on the catalyst surface. The shape of the poisoning curve is closely associated with the kinetic behavior and exhibited an abrupt change on freezing the adsorbed water below 273 0 K. When the rate is proportional to deuterium pressure and independent of the amount of water adsorbed, the exchange rate dropped sharply by carbon monoxide adsorbed of a few percent coverage without any marked changes in the amount and the rate of hydrogen adsorption on the platinum surface. However, at temperatures lower than 273 0 K and at higher deuterium pressures, the rate depends not on the deuterium pressure but on the amount of water adsorbed. The migration of hydrogen in or through the adsorbed water is seemingly sufficiently suppressed by freezing to control the overall reaction rate. In this case, a small amount of adsorption of carbon monoxide did not show any toxicity, but then a steep poisoning started accompanying a change in the kinetic behavior. It was accordingly demonstrated that the mechanism of the reaction may be better understood by studying poisoning and measuring adsorption, overall rate, and kinetic behavior

  15. Study of the heavy water regeneration processes

    International Nuclear Information System (INIS)

    Cavcic, E.

    1965-11-01

    Experience derived from heavy water reactor operation showed degradation and dilution of heavy water to be inevitable and depends on the type of reactor. Dilution of heavy water during operation of the RA and the RB reactors is shown in this report. Principles and procedures of heavy water regeneration by electrolysis, fractional distillation, cleaning, prevention of tritium contamination are described as well as separation columns

  16. Heavy Water - Industrial Separation Processes

    International Nuclear Information System (INIS)

    Peculea, M.

    1984-01-01

    This monograph devoted to the heavy water production mainly presents the Romanian experience in the field which started in early sixties from the laboratory scale production and reached now the level of large scale industrial production at ROMAG-Drobeta, Romania. The book is structured in eleven chapters entitled: Overview, The main physical properties, Sources, Uses, Separation factor and equilibrium constant, Mathematical modelling of the separation process, Thermodynamical considerations on the isotope separation, Selection criteria for heavy water separation processes, Industrial installations for heavy water production, Prospects, Acknowledgements. 200 Figs., 90 Tabs., 135 Refs

  17. Seasonal changes in background levels of deuterium and oxygen-18 prove water drinking by harp seals, which affects the use of the doubly labelled water method.

    Science.gov (United States)

    Nordøy, Erling S; Lager, Anne R; Schots, Pauke C

    2017-12-01

    The aim of this study was to monitor seasonal changes in stable isotopes of pool freshwater and harp seal ( Phoca groenlandica ) body water, and to study whether these potential seasonal changes might bias results obtained using the doubly labelled water (DLW) method when measuring energy expenditure in animals with access to freshwater. Seasonal changes in the background levels of deuterium and oxygen-18 in the body water of four captive harp seals and in the freshwater pool in which they were kept were measured over a time period of 1 year. The seals were offered daily amounts of capelin and kept under a seasonal photoperiod of 69°N. Large seasonal variations of deuterium and oxygen-18 in the pool water were measured, and the isotope abundance in the body water showed similar seasonal changes to the pool water. This shows that the seals were continuously equilibrating with the surrounding water as a result of significant daily water drinking. Variations in background levels of deuterium and oxygen-18 in freshwater sources may be due to seasonal changes in physical processes such as precipitation and evaporation that cause fractionation of isotopes. Rapid and abrupt changes in the background levels of deuterium and oxygen-18 may complicate calculation of energy expenditure by use of the DLW method. It is therefore strongly recommended that analysis of seasonal changes in background levels of isotopes is performed before the DLW method is applied on (free-ranging) animals, and to use a control group in order to correct for changes in background levels. © 2017. Published by The Company of Biologists Ltd.

  18. Deuterium isotope separation factor between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Rolston, J.H.; den Hartog, J.; Butler, J.P.

    1976-01-01

    The overall deuterium isotope separation factor between hydrogen and liquid water, α, has been measured directly for the first time between 280 and 370 0 K. The data are in good agreement with values of α calculated from literature data on the equilibrium constant for isotopic exchange between hydrogen and water vapor, K 1 , and the liquid-vapor separation factor, α/sub V/. The temperature dependence of α over the range 273-473 0 K based upon these new experimental results and existing literature data is given by the equation ln α = -0.2143 + (368.9/T) + (27,870/T 2 ). Measurements on α/sub V/ given in the literature have been surveyed and the results are summarized over the same temperature range by the equation ln α/sub V/ = 0.0592 - (80.3/T) +

  19. Review on heavy water separation at pilot scale

    International Nuclear Information System (INIS)

    Wuryanto; Soeroto Ronodirdjo.

    1976-01-01

    The isotope exchange system ammonia-water and hydrogen sulfide water dual temperature are studied. Comparison of the two methods with water electrolysis, water distillation, hydrogen distillation and catalytic water hydrogen exchange are discussed. Water distillation is a simple method. Electrolysis of water has the highest separation factor. The isotope exchange hydrogen sulfide water dual temperature will be done in accord with the report on the operation of a dual temperature single stage for deuterium concentration written by M.L.Eidinoff and C.F. Hiskey. (authors)

  20. Detection of gaseous heavy water leakage points in CANDU 6 pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Park, T-K.; Jung, S-H.

    1996-01-01

    During reactor operation, the heavy water filled primary coolant system in a CANDU 6 Pressurized Heavy Water (PHWR) may leak through routine operations of the plant via components, mechanical joints, and during inadvertent operations etc. Early detection of leak points is therefore important to maintain plant safety and economy. There are many independent systems to monitor and recover heavy water leakage in a CANDU 6 PHWR. Methodology for early detection based on operating experience from these systems, is investigated in this paper. In addition, the four symptoms of D 2 O leakage, the associated process for clarifying and verifying the leakage, and the probable points of leakage are discussed. (author)

  1. Study of liquid hydrogen and liquid deuterium cold neutron sources

    International Nuclear Information System (INIS)

    Harig, H.D.

    1969-01-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10 15 n/cm 2 s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10 12 n/cm 2 s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [fr

  2. The role of deuterium excess in determining the water salinisation mechanism: A case study of the arid Tarim River Basin, NW China

    International Nuclear Information System (INIS)

    Huang, Tianming; Pang, Zhonghe

    2012-01-01

    Understanding the water salinisation mechanism is the basis for regional salt management. Mineral dissolution, evaporation and transpiration are the main factors controlling natural water salinity in arid inland basins; however, the two are difficult to differentiate. Because deuterium excess decreases during evaporation and is unrelated to the isotopic composition of the initial water, it is a potential tool for determining the contribution of the evapoconcentration of a given water body using the relationship between deuterium excess and salinity rather than between δ 18 O (or δ 2 H) and salinity. In this paper, the relationship between the residual water fraction and deuterium excess was derived from the Rayleigh distillation equation. The contribution of evapoconcentration and mineral dissolution and/or transpiration for a given water body can be determined by comparing the residual water fraction and salinity between the initial water and the evapoconcentrated water. The extremely arid Tarim River Basin in NW China is taken as an example to demonstrate deuterium excess and salinity evolution from the source stream to river water, lake/reservoir water and groundwater. The results show that mineral dissolution contributes most of the salinity (67–77%) for Boston Lake and the Kongque and Tarim rivers relative to the source stream. Mineral dissolution and/or transpiration contribute greater salinity (73–99.6%) to the groundwater recharged by the river water in the middle and lower reaches of the Tarim River. The study provides a method for determining the salinisation mechanism and is important for salt movement and management.

  3. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal.

    Science.gov (United States)

    Arora, Jasbir S; Oe, Tomoyuki; Blair, Ian A

    2011-05-15

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2( E )-nonenal and 4-oxo-2( E )-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α , β -unsaturated aldehyde that can react in multiple ways and with glutathione, proteins and DNA. Heavy isotope-labeled analogs of ONE are not readily available for conducting mechanistic studies or for use as internal standards in mass spectrometry (MS)-based assays. An efficient onestep cost-effective method has been developed for the preparation of C-9 deuterium-labeled ONE. In addition, a method for specific deuterium labeling of ONE at C-2, C-3 or both C-2 and C-3 has been developed. This latter method involved the selective reduction of an intermediate alkyne either by lithium aluminum hydride or lithium aluminum deuteride and quenching with water or deuterium oxide. The availability of these heavy isotope analogs will be useful as internal standards for quantitative studies employing MS and for conducting mechanistic studies of complex interactions between ONE and DNA bases as well as between ONE and proximal amino acid residues in peptides and proteins.

  4. Method of deuterium isotope separation using ethylene and ethylene dichloride

    International Nuclear Information System (INIS)

    Benson, S.W.

    1982-01-01

    Compounds enriched in deuterium may be obtained from ethylene, vinyl chloride, 1,2-dichloroethane, or propylene by laser isotope separation. Normal molecules of these organic compounds are exposed to infrared laser radiation of a suitable wavelength. Substantially all of the deuterium-containing molecules exposed to the laser can be selectively dissociated and the deuterium-containing products separated from the starting material and other reaction products. The deuterium-containing molecules can be burned to form water with an enriched deuterium content, or pyrolized to form hydrogen gas enriched in deuterium

  5. Indian heavy water programme - challenges and opportunities

    International Nuclear Information System (INIS)

    Aruldoss Kanthiah, W.S.

    2010-01-01

    Discovery of fission of uranium in 1939 opened up hitherto unknown possibilities for utilising the fission energy for use of mankind, mainly for the production of and electrical energy. It was realised that this nuclear energy could be an ideal substitute for the fast depleting fossil fuels which would one day get exhausted. Two main concepts of nuclear power reactor got evolved, one enriched uranium fuelled, ordinary water moderated reactor and another natural uranium fuelled heavy water moderated reactor. The concentration of uranium 235 U needed for ordinary water moderated reactors is 3% but the naturally occurring uranium in India contains only 0.7% of 235 U. The reactors utilising natural uranium as fuel require Heavy Water as moderator. The processing of uranium ore to achieve from 0.7% to 3% is highly complex. Recognising the fact that India has limited uranium resources but rich thorium resources, Dr. Bhabha formulated a three stage nuclear power generation programme for our country. The first generation reactors can use natural uranium as fuel with heavy water as moderator. Since the technology to generate such large scale heavy water to match the urgent need for nuclear power generation was not indigenously available, the technology available with Canada and France was utilised for installation of first generation heavy water plants in India. However, the peaceful nuclear experiment conducted by India in 1974 caused resentment among the countries that supplied Heavy Water technology to India and they stopped all technological help and assistance in nuclear field. Thereafter, it was the story of India going alone in heavy water production. That made India meets successfully all challenges on the way to installation, commissioning and sustained operation of all plants. Today we have six operating Heavy Water plants, spread all over the country. We have reached a stage, a change from a situation of crunch to a level of not only self sufficiency but to a

  6. Pre-commissioning activities of exchange units of Heavy Water Plant, Manuguru (Paper No. 1.2)

    International Nuclear Information System (INIS)

    Kamath, H.S.; Sikaria, R.P.

    1992-01-01

    Heavy Water Plant, Manuguru (HWPM) comprises of two exchange units where enrichment of deuterium from natural concentration to 15% concentration is achieved using dual temperature H 2 S-H 2 O exchange process in a three stage cascade. In each exchange unit an inventory of around 200 MT of H 2 S gas is required under normal operating pressure and a feed water flow rate of 450 MT/Hr is required to be maintained. In view of the large flow rates of H 2 S circulating gas, water, cooling water, steam etc., the lines sizes in exchange unit are quite large. Further, H 2 S gas being highly toxic and corrosive, extreme care is required in order to ensure integrity and leak tightness. While due care is taken in material selection, design, quality surveillance etc., during fabrication, certain additional measures are required to be taken during precommissioning of the systems handling H 2 S under pressure. This paper deals with the activities from completion of plant erection including hydrotesting of piping by the piping contractor to the stage of trial production run. (author)

  7. Research of catalysts for isotope enrichment of deuterium oxide in water - PX15-01/89 progress report

    International Nuclear Information System (INIS)

    1989-08-01

    The information about the development of research project for producing concentrate deuterium oxide by isotope enrichment in hydrogen-water contact systems combined with electrolysis are described. (C.G.C.)

  8. Technical status study of heavy water enrichment

    International Nuclear Information System (INIS)

    Sukarsono; Imam Dahroni; Didik Herhady

    2007-01-01

    Technical status study of heavy water enrichment in Indonesia and also in the world has been done. Heavy water enrichment processes have been investigated were water distillation, hydrogen distillation, laser enrichment, electrolysis and isotop exchange. For the isotop exchange, the chemical pair can be used were water-hydrogen sulphite, ammonium-hydrogen, aminomethane-hydrogen, and water-hydrogen. For the isotope exchange, there was carried out by mono thermal or bi thermal. The highest producer of heavy water is Canada, and the other producer is USA, Norwegian and India. The processes be used in the world are isotope exchange Girdler Sulphide (GS), distillation and electrolysis. Research of heavy water carried out in Batan Yogyakarta, has a purpose to know the characteristic of heavy water purification. Several apparatus which has erected were 3 distillation column: Pyrex glass of 2 m tall, stainless steel column of 3 m tall and steel of 6 m tall. Electrolysis apparatus is 50 cell electrolysis and an isotope exchange unit which has catalyst: Ni- Cr 2 O 3 and Pt-Carbon. These apparatus were not ready to operate. (author)

  9. Determination of deuterium concentration by falling drop method

    International Nuclear Information System (INIS)

    Kawai, Hiroshi; Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Fujii, Takashi.

    1976-01-01

    Falling drop method for determination of deuterium concentration in water sample was studied. The principle is the same as that developed by Kirshenbaum, I. in 1932. One drop of water sample falls down through a column filled with o-fluorotoluene at temperature of nearly 25 0 C. The falling time is, instead of using a stop-watch, measured with two light pulses led to a photomultiplier with mirrors, which make two pulse marks on moving chart paper. Distance between the two pulse marks is proportional to falling time. Instead of water filled double chambers of constant temperature equipped with heaters, thermostats and propellers for stirring, the column is dipped in circulating water supplied from a ''Thermoelectric'' made by ''Sharp'' company, which can circulate constant temperature water cooled or heated with thermoelements. Variation of the temperature is about 0.01 0 C. The range of deuterium concentration in our case was 20 -- 60D%. Sensitivity increased as the medium temperature decreased and as deuterium concentration of water sample increased. (auth.)

  10. The heavy water accountancy for research reactors in JAERI

    International Nuclear Information System (INIS)

    Yoshijima, Tetsuo; Tanaka, Sumitoshi; Nemoto, Denjirou

    1998-11-01

    The three research reactors have been operated by the Department of Research Reactor and used about 41 tons heavy water as coolant, moderator and reflector of research reactors. The JRR-2 is a tank type research reactor of 10MW in thermal power and its is used as moderator, coolant and reflector about 16 tons heavy water. The JRR-3M is a light water cooled and moderated pool type research reactor with a thermal power of 20MW and its is used as reflector about 7.3 tons heavy water. In the JRR-4, which is a light water cooled swimming pool type research reactor with the maximum thermal power of 3.5MW, about 1 ton heavy water is used to supply fully thermalized neutrons with a neutron beam experiment of facility. The heavy water was imported from U.S.A., CANADA and Norway. Parts of heavy water is internationally controlled materials, therefore management of heavy water is necessary for materials accountancy. This report described the change of heavy water inventories in each research reactors, law and regulations for accounting of heavy water in JAERI. (author)

  11. Retention and features of deuterium detrapping from radiation-induced damages in steels

    International Nuclear Information System (INIS)

    Tolstolutskaya, G.D.; Ruzhytskiy, V.V.; Karpov, S.A.; Kopanets, I.E.

    2009-01-01

    The accelerators and ion-beam analysis techniques are used for simulation of displacement damage and detailed investigation of distribution profiles of damage and impurity gas atoms (especially helium and hydrogen) in the irradiation of targets for a wide ranges of doses and particle energies. The influence of preimplanted helium and heavy ion-induced damage on deuterium trapping in austenitic and ferritic/martensitic steels was studied. The results obtained for 18Cr10NiTi stainless steel show that ion-implanted deuterium is weakly trapped by defects produced in 5 keV D + displacement cascades. The effective trapping temperature interval is between 300 and 600 K. The characteristics of trapping and the temperature range of hydrogen isotopes retention in traps formed by prior implantation of helium depend on the concentration of implanted helium and on the type of defects developed. The formation of helium bubbles in 18Cr10NiTi steel causes an order of magnitude increase in the content of retained deuterium atoms in the range of temperature 300-600 K and extends the interval of effective trapping temperatures to 1000 K. Energetic heavy-ion irradiation (1.4 MeV Ar + ) has been used for modeling defect cluster formation under displacement cascade conditions to simulate fusion reactor environments. It was found that retention of hydrogen and deuterium strongly increased in this case. It is shown that the presence of a surface-passive film considerably shifts the gas release interval to higher temperatures and reduces the deuterium surface recombination coefficient by several orders of magnitude.

  12. Electrolytic installation in order to obtain deuterium and to fill the pressure deposits; Instalacion electrolitica para la obtencion de deuterio y llenado de depositos a preseion

    Energy Technology Data Exchange (ETDEWEB)

    Cordero Lopez, F; Tanarro Sanz, A

    1959-07-01

    In order to obtain deuterium to feed the ion sources of the accelerators an easy and automatic electrolytic installation has been prepared. this installation and a small compressor designed and constructed for this purpose permit to fill deposits of 1 or 2 liters capacity with deuterium, till a 4 atmosphere pressure in few hours of operation. The electrolytic cell has V shape and permits operation with 3 cc heavy water only as it has small dead volume; the electrodes are platinum and as electrolyte an OH Na solution in a proportion of 15 w/o is used. (Author) 3 refs.

  13. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    Nitschke, E.; Desai, A.; Ilgner, H.

    1978-01-01

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m 3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  14. Catalyzed deuterium-deuterium and deuterium-tritium fusion blankets for high temperature process heat production

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Salimi, B.

    1982-01-01

    Tritiumless blanket designs, associated with a catalyzed deuterium-deuterium (D-D) fusion cycle and using a single high temperature solid pebble or falling bed zone, for process heat production, are proposed. Neutronics and photonics calculations, using the Monte Carlo method, show that an about 90% heat deposition fraction is possible in the high temperature zone, compared to a 30 to 40% fraction if a deuterium-tritium (D-T) fusion cycle is used with separate breeding and heat deposition zones. Such a design is intended primarily for synthetic fuels manufacture through hydrogen production using high temperature water electrolysis. A system analysis involving plant energy balances and accounting for the different fusion energy partitions into neutrons and charged particles showed that plasma amplification factors in the range of 2 are needed. In terms of maximization of process heat and electricity production, and the maximization of the ratio of high temperature process heat to electricity, the catalyzed D-D system outperforms the D-T one by about 20%. The concept is thought competitive to the lithium boiler concept for such applications, with the added potential advantages of lower tritium inventories in the plasma, reduced lithium pumping (in the case of magnetic confinement) and safety problems, less radiation damage at the first wall, and minimized risks of radioactive product contamination by tritium

  15. The Canadian heavy water situation

    International Nuclear Information System (INIS)

    Dahlinger, A.

    1975-08-01

    Existing heavy water plants in Canada are producing at a satisfactory rate and currently planned capacity is in balance with projected needs. By 1980, we shall have Girdler-Sulphide plants installed with a design capacity of almost 600 kg/h. Effort is required to minimize production costs for heavy water and to ensure that costs do not increase faster than the current inflationary trend. (Author)

  16. Study of liquid hydrogen and liquid deuterium cold neutron sources; Etude de sources de neutrons froids a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Harig, H D [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-12-01

    In view of the plant of the cold neutron source for a high flux reactor (maximal thermal flux of about 10{sup 15} n/cm{sup 2}s) an experimental study of several cold sources of liquid hydrogen and liquid deuterium has been made in a low power reactor (100 kW, about 10{sup 12} n/cm{sup 2}s). We have investigated: -cold neutron sources of liquid hydrogen shaped as annular layers of different thickness. Normal liquid hydrogen was used as well as hydrogen with a high para-percentage. -Cold neutron sources of liquid deuterium in cylinders of 18 and 38 cm diameter. In this case the sources could be placed into different positions to the reactor core within the heavy water reflector. This report gives a general description of the experimental device and deals more detailed with the design of the cryogenic systems. Then, the measured results are communicated, interpreted and finally compared with those of a theoretical study about the same cold moderators which have been the matter of the experimental investigation. (authors) [French] En vue de l'installation d'une source a neutrons froids dans un reacteur a haut flux (flux thermique maximal environ 10{sup 15} n/cm{sup 2}s), nous avons fait une etude neutronique experimentale de differentes sources froides a hydrogene et a deuterium liquides aupres d'un reacteur a faible puissance (100 kW environ 10{sup 12} n/cm{sup 2}s). Nous avons etudie: des couches annulaires de differentes epaisseurs d'hydrogene liquide normal et d'hydrogene a grand pourcentage para, des cellules cylindriques de 18 et 38 cm de diametre, remplies de deuterium liquide et placees a differentes positions dans le reflecteur D{sub 2}O. Ce travail traite l'implantation de l'installation cryogenique et donne une description generale de l'experience. L'interpretation des resultats fait etat entre autres d'une comparaison entre l'experience et une etude theorique portant sur les memes moderateurs. (auteurs)

  17. IR analyzer spots heavy water leaks

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    A correlation spectrometer developed by Barringer Research Ltd. (in collaboration with Atomic Energy of Canada and Ontario Hydro) is used to measure HDO concentrations in DTO in the final (distillation) stage of heavy-water production. A unit has been installed at Bruce Heavy Water Plant. Previously, such spectrometers had been installed to detect heavy-water leaks in CANDU reactors. The principle on which the instrument works is explained, with illustrations. It works by comparing the absorption at 2.9 μm, due to HDO, with that at 2.6 μm, due to both HDO and D 2 O. (N.D.H.)

  18. Moderator clean-up system in a heavy water reactor

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Hamamura, Kenji.

    1983-01-01

    Purpose: To decrease the fluctuation of the poison concentration in heavy water moderator due to a heavy water clean-up system. Constitution: To a calandria tank filled with heavy water as poison-containing moderators, are connected both end of a pipeway through which heavy water flows and to which a clean-up device is provided. Strongly basic resin is filled within the clean-up device and a cooler is disposed to a pipeway at the upstream of the clean-up device. In this structure, the temperature of heavy water at the inlet of the clean-up device at a constant level between the temperature at the exit of the cooler and the lowest temperature for the moderator to thereby decrease the fluctuation in the poison concentration in the heavy water moderator due to the heavy water clean-up device. (Moriyama, K.)

  19. Future trends in heavy water production

    International Nuclear Information System (INIS)

    Galley, M.R.

    1983-10-01

    World heavy water production has spanned nearly fifty years and, for much of that period, the commodity was often in short supply, but that situation has changed, at least in Canada. There are now adequate reserves of heavy water and sufficient installed production capacity to service Canadian domestic and export demands for the next ten years or beyond. More than 90 percent of the world's inventory of heavy water has been produced by the GS process but this may not be the method that is chosen when the time comes to expand heavy water production again. Other countries, such as India and Argentina, have already chosen ammonia-hydrogen exchange as an alternative technology for part of their domestic production programs. Despite the present surplus of heavy water, research and development of new technologies is very active, particularly in Canada and Japan, because it is recognized that there are still attractive opportunities for future production by processes that are both less expensive and environmentally more acceptable, than either the demonstrated GS process or ammonia-hydrogen alternative. This paper describes the prospects for some of these new processes, contrasts them with the present established methods and assesses the probable impact on the future supply situation

  20. Water issues associated with heavy oil production.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  1. Effects of heavy water on ultrastructural and functional status of Hep 2 and CHO cells lysosomes

    International Nuclear Information System (INIS)

    Buzgariu, Wanda; Caloianu, Maria; Zarnescu, Otilia; Cimpean, Anisoara; Titescu, Gh.; Stefanescu, I.

    2002-01-01

    The heavy water effects on the ultrastructure and function of Hep 2 and CHO lysosomal cell compartment were investigated using electron microscopy and enzymatic studies. The cell viability, measured by neutral red uptake assay, and the total protein content determination, have shown a dose dependent decrease in cell growth for both studied cell types. The electron microscopy study has revealed a progressive increase in number and size of lysosomes and autophagosomes after 96 h exposure to different deuterium concentration media in a dose dependent manner. The enzymatic determination in the lysosomal pellet revealed an increased acid phosphatase activity in both cell types (15% and 33% for Hep 2 and 24% and 52% for CHO, respectively) exposed to media with high (65%, 90%) D 2 O content. (authors)

  2. Measurement of the Time Dependence of Neutron Slowing-Down and Therma in Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, E

    1966-03-15

    The behaviour of neutrons during their slowing-down and thermalization in heavy water has been followed on the time scale by measurements of the time-dependent rate of reaction between the flux and the three spectrum indicators indium, cadmium and gadolinium. The space dependence of the reaction rate curves has also been studied. The time-dependent density at 1.46 eV is well reproduced by a function, given by von Dardel, and a time for the maximum density of 7.1 {+-} 0.3 {mu}s has been obtained for this energy in deuterium gas in agreement with the theoretical value of 7.2 {mu}s. The spatial variation of this time is in accord with the calculations by Claesson. The slowing- down time to 0.2 eV has been found to be 16.3 {+-}2.4 {mu}s. The approach to the equilibrium spectrum takes place with a time constant of 33 {+-}4 {mu}s, and the equilibrium has been established after about 200 {mu}s. Comparison of the measured curves for cadmium and gadolinium with multigroup calculations of the time-dependent flux and reaction rate show the superiority of the scattering models for heavy water of Butler and of Brown and St. John over the mass 2 gas model. The experiment has been supplemented with Monte Carlo calculations of the slowing down time.

  3. Measurement of the Time Dependence of Neutron Slowing-Down and Therma in Heavy Water

    International Nuclear Information System (INIS)

    Moeller, E.

    1966-03-01

    The behaviour of neutrons during their slowing-down and thermalization in heavy water has been followed on the time scale by measurements of the time-dependent rate of reaction between the flux and the three spectrum indicators indium, cadmium and gadolinium. The space dependence of the reaction rate curves has also been studied. The time-dependent density at 1.46 eV is well reproduced by a function, given by von Dardel, and a time for the maximum density of 7.1 ± 0.3 μs has been obtained for this energy in deuterium gas in agreement with the theoretical value of 7.2 μs. The spatial variation of this time is in accord with the calculations by Claesson. The slowing- down time to 0.2 eV has been found to be 16.3 ±2.4 μs. The approach to the equilibrium spectrum takes place with a time constant of 33 ±4 μs, and the equilibrium has been established after about 200 μs. Comparison of the measured curves for cadmium and gadolinium with multigroup calculations of the time-dependent flux and reaction rate show the superiority of the scattering models for heavy water of Butler and of Brown and St. John over the mass 2 gas model. The experiment has been supplemented with Monte Carlo calculations of the slowing down time

  4. Ultrasonic relaxation studies associated with n-octylamine-heavy water

    International Nuclear Information System (INIS)

    Kor, S.K.; Singh, R.K.

    1994-01-01

    Ultrasonic absorption measurements have been carried out in lyotropic liquid crystalline system n-octylamine/heavy water in the frequency range 5-65 MHz and at temperatures 30 degC and 37 degC at different concentrations of heavy water in octylamine. Velocity has been measured using interferometric technique at 2 MHz at different concentrations of heavy water. Ultrasonic absorption coefficients at different concentrations in the concentration range 0.3-0.9 m.f. heavy water have been found to show a maxima in the absorption curve at critical concentration (∼0.85 m.f. heavy water). This peak has been found to shift towards lower concentrations of heavy water at higher frequencies. Results have been analysed and it has been found that single relaxation process takes place around 30 MHz and this has been attributed to aggregation of octylamine and heavy water molecules. (author). 8 refs., 6 figs., 3 tabs

  5. A study of Cirus heavy water system isotopic purity

    International Nuclear Information System (INIS)

    Thomas, Shibu; Sahu, A.K.; Unni, V.K.P.; Pant, R.C.

    2000-01-01

    Cirus uses heavy water as moderator and helium as cover gas. Approximately one tonne of heavy water was added to the system every year for routine make up. Isotopic purity (IP) of this water used for addition was always higher than that of the system. Though this should increase IP of heavy water in the system, it has remained almost at the same level, over the years. A study was carried out to estimate the extent of improvement in IP of heavy water in the system that should have occurred because of this and other factors in last 30 years. Reasons for non-occurrence of such an improvement were explored. Ion exchange resins used for purification of heavy water and air ingress into helium cover gas system appear to be the principal sources of entry of light water into heavy water system. (author)

  6. Radiation safety experience in upgrading 2-5% heavy water wastes at Heavy Water Plant, Nangal (Preprint No. SA-7)

    International Nuclear Information System (INIS)

    Sadhukhan, H.K.; Behl, D.; Ramraj; Iyengar, T.S.; Sadarangani, S.H.; Vaze, P.K.; Soman, S.D.

    1989-04-01

    This paper describes the radiological safety experience in upgrading 2-5% heavy water wastes at Heavy Water Plant at Nangal at the third stage electrolysers. The feed water concentrations at the third stage electrolyer was determined after a safety analysis study and pilot plant experiment, which gave the optimal concentrations of 1 to 1.5 mCi (3.7 to 5.5 x 10 7 Bq) per litre per minute feed from a submerged SS tank containing 2-5% heavy water wastes. This process not only yielded an efficient recovery of reactor grade heavy water but contained the tritium activity in the third stage electrolysers and in the final product viz., heavy water. The tritium concentrations were continuously monitore d by liquid scintillation counting method at all the three stages of electrolysis plant, the distillation plant, the heavy water filling rooms, the drains, the ambient air, the product fertilizer (calcium ammonia nitrate) and the Sutlej River and found to be well within the safety limits set for general public at large. The HD and D 2 process streams in the palnt were monitored using fill-in type of ionization chambers designed for the purpose, which served a D 2 inventory check as well. There was no internal exposure to any personnel during the entire period of programme. (author). 2 tabs

  7. Determination of the Deuterium Abundances in Water from 156 to 10,000 ppm by SIFT-MS

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Shestivska, Violetta; Chippendale, T. W. E.; Smith, D.

    2011-01-01

    Roč. 22, č. 1 (2011), s. 179-186 ISSN 1044-0305 Institutional research plan: CEZ:AV0Z40400503 Keywords : deuterium abundance * total body water * selected ion flow tube mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.002, year: 2011

  8. Heavy water leak detection using diffusion sampler

    International Nuclear Information System (INIS)

    Joshi, M.L.; Hussain, S.A.

    1990-01-01

    In the Pressurrised Heavy Water Reactors (PHWRs) detection of the sources of heavy water leaks is importent both for the purpose of radiation hazard control as well as for the reduction of escape/loss of heavy water which, is an expensive nuclear material. This paper describes an application of tritium diffusion sampler for heavy water leak detection. The diffusion sampler comprises an usual tritium counting glass vial with a special orifice. The counting vial has water vapour, deficient in HTO concentration. The HTO present outside diffuses in the vial through the orifice, gets exchanged with water of the wet filter paper kept at the bottom and the moisture in the vial atmosphere which has HTO concentration lower than that outside. This results in continuation of net movement of HTO in the vial. The exchanged tritium is counted in liquid scintillation spectrometer. The method has a sensitivity of 10000 dpm/DAC-h. (author). 2 figs., 2 ta bs

  9. Numerical analysis and optimisation of heavy water upgrading column

    International Nuclear Information System (INIS)

    Sankar, Rama; Ghosh, Brindaban; Bhanja, K.

    2013-01-01

    In the 'Pressurised Heavy Water' type of reactors, heavy water is used both as moderator and coolant. During operation of reactor downgraded heavy water is generated that needs to be upgraded for reuse in the reactor. When the isotopic purity of heavy water becomes less than 99.75%, it is termed as downgraded heavy water. Downgraded heavy water also contains impurity such as corrosion products, dirt, oil etc. Upgradation of downgraded heavy water is normally done in two steps: (i) Purification: In this step downgraded heavy water is first purified to remove corrosion products, dirt, oil, etc. and (ii) Upgradation of heavy water to increase its isotopic purity, this step is carried out by vacuum distillation of downgraded heavy water after purification. This project is aimed at mathematical modelling and numerical simulation of heavy water upgrading column. Modelling and simulation studies of the upgradation column are based on equilibrium stage model to evaluate the effect of feed location, pressure, feed composition, reflux ratio in the packed column for given reboiler and condenser duty of distillation column. State to stage modelling of two-phase two-component flow has constitutes the overall modelling of the column. The governing equations consist of stage-wise species and overall mass continuity and stage-wise energy balance. This results in tridigonal matrix equation for stage liquid fractions for heavy and light water. The stage-wise liquid flow rates and temperatures are governed by stage-wise mass and energy balance. The combined form of the corresponding governing equations, with the incorporation of thermodynamic equation of states, form a system of nonlinear equations. This system have been resolved numerically using modified Newton-Raphson method. A code in the MATLAB platform has been developed by on above numerical procedure. The optimisation of the column operating conditions is to be carried out based on parametric studies and analysis of different

  10. Topical and working papers on heavy water accountability and safeguards

    International Nuclear Information System (INIS)

    This report contains the following papers: 1) Statement of IAEA concerning safeguarding of heavy water; 2) Preliminary Canadian Comments on IAEA document on heavy water safeguards; 3) Heavy water accountability 03.10.78; 4) Heavy water accountability 05.04.79

  11. High conversion heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Wakabayashi, Toshio.

    1989-01-01

    In the present invention, fuel rods using uranium-plutonium oxide mixture fuels are arranged in a square lattice at the same pitch as that in light water cooled reactor and heavy water moderators are used. Accordingly, the volume ratio (Vm/Vf) between the moderator and the fuel can be, for example, of about 2. When heavy water is used for the moderator (coolant), since the moderating effect of heavy water is lower than that of light water, a high conversion ratio of not less than 0.8 can be obtained even if the fuel rod arrangement is equal to that of PWR (Vm/Vf about 2). Accordingly, it is possible to avoid problems caused by dense arrangement of fuel rods as in high conversion rate light water cooled reactors. That is, there are no more troubles in view of thermal hydrodynamic characteristics, re-flooding upon loss of coolant accident, etc., as well as the fuel production cost is not increased. (K.M.)

  12. Isotopic fractionation of soil water during evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Leopoldo, P R [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil); Salati, E; Matsui, E [Centro de Energia Nuclear na Agricultura, Piracicaba (Brazil)

    1974-07-01

    The study of the variation of D/H relation in soil water during evaporation is studied. The isotopic fractionation of soil water has been observed in two soils of light and heavy texture. Soil columns were utilized. Soil water was extracted in a system operated under low pressure and the gaseous hydrogen was obtained by decomposition of the water and was analyzed in a GD-150 mass spectrometer for deuterium content. The variation of the delta sub(eta) /sup 0///sub 00/ value during evaporation showed that for water held at potentials below 15 atm, the deuterium content of soil water stays practically constant. For water held at potentials higher than 15 atm, corresponding to the third stage of evaporation, there is a strong tendency of a constant increase of delta sub(eta) /sup 0///sub 00/ of the remaining water.

  13. Heavy water lattices: Second panel report

    International Nuclear Information System (INIS)

    1963-01-01

    The panel was attended by prominent physicists from most of the laboratories engaged in the field of heavy water lattices throughout the world. The participants presented written contributions and status reports describing the past history and plans for further development of heavy-water reactors. Valuable discussions took place, during which recommendations for future work were formulated. Refs, figs, tabs

  14. Heavy water lattices: Second panel report

    Energy Technology Data Exchange (ETDEWEB)

    1963-09-15

    The panel was attended by prominent physicists from most of the laboratories engaged in the field of heavy water lattices throughout the world. The participants presented written contributions and status reports describing the past history and plans for further development of heavy-water reactors. Valuable discussions took place, during which recommendations for future work were formulated. Refs, figs, tabs.

  15. The Canadian heavy water supply program

    International Nuclear Information System (INIS)

    Dahlinger, A.; McNally, P.J.

    1976-06-01

    The performance to date of individual Canadian heavy water plants is described in detail as are the current plant construction plans. These data, when related to the long-term electricity demand indicate that heavy water supply and demand are in reasonable balance and that the CANDU program will not be inhibited because of shortages of the commodity. (author)

  16. Heavy water. A production alternative for Venezuela

    International Nuclear Information System (INIS)

    A survey of heavy water production methods is made. Main facts about isotopic and distillation methods, reforming and coupling to a Hydrogen distillation plant are presented. A feasibility study on heavy water production in Venezuela is suggested

  17. Production of secondary Deuterium in the atmosphere at various latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Papini, P. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); Stephens, S.A. [Tata Institute of Fundamental Research, Bombay (International Commission on Radiation Units and Measurements)

    1995-09-01

    Secondary deuterium in the atmosphere are produced in interactions by primary cosmic rays. The shape of their energy spectrum depends on the primary cosmic ray spectrum incident at the top of the atmosphere. At high energies, the spectral shape depends on the primary spectrum of helium and heavy nuclei. However, at very low energies, specially below the geomagnetic cut-off, the spectral shape depends on the evaporation and recoil processes and hence almost independent of the spectral shape of the primary radiation. It is undertaken a calculation of the secondary deuterium spectrum at small atmospheric depths at various latitudes and the results will be presented.

  18. Heavy water physical verification in power plants

    International Nuclear Information System (INIS)

    Morsy, S.; Schuricht, V.; Beetle, T.; Szabo, E.

    1986-01-01

    This paper is a report on the Agency experience in verifying heavy water inventories in power plants. The safeguards objectives and goals for such activities are defined in the paper. The heavy water is stratified according to the flow within the power plant, including upgraders. A safeguards scheme based on a combination of records auditing, comparing records and reports, and physical verification has been developed. This scheme has elevated the status of heavy water safeguards to a level comparable to nuclear material safeguards in bulk facilities. It leads to attribute and variable verification of the heavy water inventory in the different system components and in the store. The verification methods include volume and weight determination, sampling and analysis, non-destructive assay (NDA), and criticality check. The analysis of the different measurement methods and their limits of accuracy are discussed in the paper

  19. Seismic re-evaluation of Heavy Water Plant, Kota

    International Nuclear Information System (INIS)

    Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-10-01

    This report deals with seismic re-evaluation of Heavy Water Plant, Kota. Heavy Water Plant, Kota handles considerable amount of H 2 S gas, which is very toxic. During the original design stage as per IS 1893-1966 seismic coefficient for zone-I was zero. Therefore earthquake and its effects were not considered while designing the heavy water plant structures. However as per IS 1893 (1984) the seismic coefficient for zone-I is 0.01 g. Hence seismic re-evaluation of various structures of the heavy water plant is carried out. Analysis of the heavy water plant structures was carried out for self weight, equipment load and earthquake load. Pressure loading was also considered in case of H 2 S storage tanks. Soil structure interaction effect was considered in the analysis. The combined stresses in the structures due to earthquake and dead load were checked with the allowable stresses. (author)

  20. The study of the deuterium isotopic fractionation through the cell membrane of the plant

    International Nuclear Information System (INIS)

    Berdea, P.; Cuna, Stela; Deliu, C.

    2002-01-01

    The purpose of this study is to prove that there is a water deuterium isotope fractionation when the water passes through the cell membrane. The carrots (Daucus carota) were grown in vitro in a Murashige and Skoog mineral-salt medium and have been exposed to a water solution with a uniform isotopic content. After seven days the cell culture was filtered and the cell water was vacuum extracted. The water from aqueous solution and the cell water were analyzed for hydrogen by isotope ratio mass spectrometry. The procedure was repeated for 14 and 21 day old cell cultures. The measurements have revealed a water deuterium isotopic fractionation between extra-cellular water and cellular water. The deuterium content was found to be higher within the cells by 10 o / oo for non-embryonic cells and 13 o / oo for the embryonic cells. This fractionation is a non-evaporative fractionation between intracellular and extra-cellular water and it represents a new step in the overall fractionation of deuterium water in the plants. The existence of such isotopic fractionation through the cell membrane implies that the relationship between the deuterium content of cellulose nitrate in plant and meteoric water should be revised. Also, this finding is of interest for understanding the balance and dynamics of the hydrogen isotopes in the environment. (authors)

  1. Alternatives to isotope ratio mass spectrometry for the measurement of deuterium content of body water

    International Nuclear Information System (INIS)

    Bluck, L.J.C.

    2000-01-01

    The measurement of breast milk intake using the isotope dilution techniques is now well established. The methodology involves the administration of a bolus of tracer followed by observation of the kinetics of its passage though the system. For example in the popular 'dose to the mother' method a dose of labeled water is administered to the mother, and over the following days samples of body fluids are taken and the concentration of tracer determined in order to establish the rate of loss of tracer from her body. Likewise samples are taken from the breast fed infant in order to determine the rates of tracer intake and subsequent loss. Deuterium is the tracer of choice for these experiments since it is non-radioactive, and therefore suitable for use in these vulnerable subject groups, and also because of its relative cheapness. Conventionally isotope ratio mass spectrometry (IRMS) has been used for the determination of the amount of deuterium in the body fluids. However this methodology is expensive (an instrument might typically cost US$ 150,000), and it requires a considerable amount of dedicated technical expertise for its operation. Consequently such instrumentation is not widely available, and this has limited the number and scope of studies using this technique. Recently there have been reports of possible alternative technologies for the determination of deuterium in body water which appear attractive because of the wider general availability of the equipment required. It is the purpose of this report to assess these reported methods for their suitability for breast milk intake measurements

  2. Tritium separation from light and heavy water by bipolar electrolysis

    International Nuclear Information System (INIS)

    Ramey, D.W.; Petek, M.; Taylor, R.D.; Kobisk, E.H.; Ramey, J.; Sampson, C.A.

    1979-10-01

    Use of bipolar electrolysis with countercurrent electrolyte flow to separate hydrogen isotopes was investigated for the removal of tritium from light water effluents or from heavy water moderator. Deuterium-tritium and protium-tritium separation factors occurring on a Pd-25% Ag bipolar electrode were measured to be 2.05 to 2.16 and 11.6 to 12.4 respectively, at current densities between 0.21 and 0.50 A cm -2 , and at 35 to 90 0 C. Current densities up to 0.3 A cm -2 have been achieved in continuous operation, at 80 to 90 0 C, without significant gas formation on the bipolar electrodes. From the measured overvoltage at the bipolar electrodes and the electrolyte conductivity the power consumption per stage was calculated to be 3.0 kwh/kg H 2 O at 0.2 A cm -2 and 5.0 kwh/kg H 2 O at 0.5 A cm -2 current density, compared to 6.4 and 8.0 kwh/kg H 2 O for normal electrolysis. A mathematical model derived for hydrogen isotope separation by bipolar electrolysis, i.e., for a square cascade, accurately describes the results for protium-tritium separation in two laboratory scale, multistage experiments with countercurrent electrolyte flow; the measured tiritum concentration gradient through the cascade agreed with the calculated values

  3. Method of operating heavy water moderated reactors

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1980-01-01

    Purpose: To enable stabilized reactor control, and improve the working rate and the safety of the reactor by removing liquid poison in heavy water while maintaining the power level constant to thereby render the void coefficient of the coolants negative in the low power operation. Method: The operation device for a heavy water moderated reactor comprises a power detector for the reactor, a void coefficient calculator for coolants, control rods inserted into the reactor, a poison regulator for dissolving poisons into or removing them out of heavy water and a device for removing the poisons by the poison regulator device while maintaining the predetermined power level or inserting the control rods by the signals from the power detector and the void coefficient calculator in the high temperature stand-by conditions of the reactor. Then, the heavy water moderated reactor is operated so that liquid poisons in the heavy water are eliminated in the high temperature stand-by condition prior to the start for the power up while maintaining the power level constant and the plurality of control rods are inserted into the reactor core and the void coefficient of the coolants is rendered negative in the low power operation. (Seki, T.)

  4. Body composition of lactating and dry Holstein cows estimated by deuterium dilution

    International Nuclear Information System (INIS)

    Martin, R.A.; Ehle, F.R.

    1986-01-01

    In three experiments patterns of water turnover and body composition estimated by deuterium oxide were studied in Holstein cows. In the first experiment, four lactating cows were infused with deuterium oxide, and blood samples were taken during 4-d collection. Milking was stopped; cows were reinfused with deuterium oxide and resampled. Slopes of deuterium oxide dilution curves indicated lactating cows turned water over more rapidly than nonlactating cows. In the second experiment with the same four cows, during 4-d collection, deuterium oxide concentrations in milk, urine, and feces showed dilution patterns similar to deuterium oxide in blood. Sampling milk may be an alternative to sampling blood. In the third experiment, 36 Holstein cows were fed 55, 65, or 75% alfalfa, smooth bromegrass, or equal parts of each forage as total mixed rations; remaining portions of rations were a grain mixture. Body composition was estimated at -1, 1, 2, 3, 4, and 5 mo postpartum. Empty body water, protein, mineral, fat, and fat percentage decreased from prepartum to postpartum. First calf heifers contained less empty body water, protein, and mineral than older cows. Cows fed diets with 55% forage had more body fat than those fed diets with 75% forage. Cows fed alfalfa-based diets had more gastrointestinal fill regardless of grain than cows fed diets that contained alfalfa and smooth bromegrass. Gastrointestinal fill of cows increased from prepartum to 5 mo postpartum

  5. Heavy water pumps; Pumpe D{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Zecevic, V; Nikolic, M

    1963-12-15

    Continuous increase of radiation intensity was observed on all the elements in the heavy water system during first three years of RA reactor operation. The analysis of heavy water has shown the existence of radioactive cobalt. It was found that cobalt comes from stellite, cobalt based alloy which was used for coating of the heavy water pump discs in order to increase resistance to wearing. Cobalt was removed from the surfaces due to friction, and transferred by heavy water into the reactor where it has been irradiated for 29 876 MWh up to 8-15 Ci/g. Radioactive cobalt contaminated all the surfaces of aluminium and stainless steel parts. This report includes detailed description of heavy water pumps repair, exchange of stellite coated parts, decontamination of the heavy water system, distillation of heavy water. [Serbo-Croat] U toku prve tri godine eksploatacije reaktora RA uocen je neprekidni porast intenziteta zracenja na svim elementima u teskovodnom sistemu. Analizom teske vode utvrdjeno je postojanje radioaktivnog kobalta. Ustanovljeno je da kobalt potice od stelita, legure na bazi kobalta kojim su presvuceni rukavci vratila teskovodnih pumpi radi otpornosi na habanje. Kobalt je trenjem skidan sa povrsina, u toku rada prenosen je teskom vodom u reaktor i ozracivan u toku 29 876 MWh do specificne aktivnosti 8-15 Ci/g. Radioaktivni kobalt je kontaminirao sve povrsine od aluminijuma i nerdjajuceg celika. Ovaj izvestaj sadrzi detaljan opis remonta pumpi, zamene delova teskovodnih pumpi novim delovima bez stelitnog sloja, dekontaminacije teskovodnog sistema, destilacije teske vode.

  6. Process and device for stage by stage enrichment of deuterium and/or tritium in a material suitable for isotope exchange of deuterium and tritium with hydrogen

    International Nuclear Information System (INIS)

    Iniotakis, N.; Decken, C.B. von der.

    1983-01-01

    Water containing deuterium and/or tritium is first introduced into a carrier gas flow and reduced for the stage by stage enrichment of deuterium and/or tritium. A hydrogen partial pressure of a maximum of 100 millibar is set in the carrier gas flow. The carrier gas flow is taken along the primary side of an exchange wall suitable for the permeation of hydrogen, and a further carrier gas flow flows on its secondary side, which contains water or hydrogen. Reaction products formed after isotope exchange of deuterium and/or tritium with hydrogen are removed by the secondary carrier gas flow. (orig./HP) [de

  7. A Drinking Water Sensor for Lead and Other Heavy Metals.

    Science.gov (United States)

    Lin, Wen-Chi; Li, Zhongrui; Burns, Mark A

    2017-09-05

    Leakage of lead and other heavy metals into drinking water is a significant health risk and one that is not easily detected. We have developed simple sensors containing only platinum electrodes for the detection of heavy metal contamination in drinking water. The two-electrode sensor can identify the existence of a variety of heavy metals in drinking water, and the four-electrode sensor can distinguish lead from other heavy metals in solution. No false-positive response is generated when the sensors are placed in simulated and actual tap water contaminated by heavy metals. Lead detection on the four-electrode sensor is not affected by the presence of common ions in tap water. Experimental results suggest the sensors can be embedded in water service lines for long-time use until lead or other heavy metals are detected. With its low cost (∼$0.10/sensor) and the possibility of long-term operation, the sensors are ideal for heavy metal detection of drinking water.

  8. Alkali metal and ammonium chlorides in water and heavy water (binary systems)

    CERN Document Server

    Cohen-Adad, R

    1991-01-01

    This volume surveys the data available in the literature for solid-fluid solubility equilibria plus selected solid-liquid-vapour equilibria, for binary systems containing alkali and ammonium chlorides in water or heavy water. Solubilities covered are lithium chloride, sodium chloride, potassium chloride, rubidium chloride, caesium chloride and ammonium chloride in water and heavy water.

  9. Procedure for operating a heavy water cooled power reactor

    International Nuclear Information System (INIS)

    Rau, P.; Kumpf, H.

    1981-01-01

    Nuclear reactors cooled by heavy water usually have equipment for fuel element exchange during operation, with the primary circuit remaining contained. This fuel element exchange equipment is expensive and complicated in many respects. According to the invention, the heavy water is therefore replaced by light water after a certain time of operation in such way that light water is led in and heavy water is led off. After the replacement, at least a quarter of the fuel elements of the reactor core is exchanged with the reactor pressure vessel being open. Then the light water serving as a shielding is replaced by heavy water, with the reactor pressure vessel being closed. The invention is of interest particularly for high-conversion reactors. (orig.) [de

  10. (Liquid + liquid) phase equilibrium and critical behavior of binary solution {heavy water + 2,6-dimethylpyridine}

    International Nuclear Information System (INIS)

    Xu, Chen; Chai, Shouning; Yin, Tianxiang; Chen, Zhiyun; Shen, Weiguo

    2015-01-01

    Highlights: • Coexistence curves, heat capacities and turbidities were measured. • Deuterium effect on coexistence curves was discussed. • Universal critical amplitude ratios were tested. • Asymmetry of coexistence curves was analyzed by the complete scaling theory. - Abstract: The (liquid + liquid) coexistence curves, the isobaric heat capacities per unit volume and the turbidities for the binary solution of {heavy water + 2,6-dimethylpyridine} have been precisely measured. The values of the critical exponents were obtained, which confirmed the 3D-Ising universality. It was found that the critical temperature dropped by 5.9 K and the critical amplitude of the coexistence curve significantly increased as compared to the binary solution of {water + 2,6-dimethylpyridine}. The complete scaling theory was applied to well describe the asymmetric behavior of the diameter of the coexistence curve as the heat capacity contribution was considered. Moreover, the values of the critical amplitudes of the correlation length and the osmotic compressibility were deduced, which together with the critical amplitudes of the coexistence curve and the heat capacity to test universal amplitude ratios

  11. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  12. Fuel and heavy water availability

    International Nuclear Information System (INIS)

    1980-01-01

    The general guidelines for the Working Group's evaluation of the availability of nuclear fuel and heavy water were set at the Organizing Conference of the International Nuclear Fuel Cycle Evaluation (INFCE), which was held in Washington, United States of America, 19-21 October 1977. The agreed technical and economic scope for the evaluation was to: (1) Estimate needs for nuclear energy and correlated needs for uranium and heavy water according to different fuel cycle strategies; (2) Review uranium availability with specific regard to: Assessment of resources and production capacities; policies and incentives for encouraging exploration and production including joint ventures; marketing policies and/or guarantees of sales for companies investing in exploration and production; marketing policies and/or guarantees of supply for utilities; technical development of exploration, mining and milling methods; (3) Review heavy water availability; (4) Review thorium availability; (5) Consider special needs of developing countries. The illustrations of availability and requirements developed in this report do provide a useful framework for considering future options and alternatives for the development of nuclear power

  13. Production of heavy water by photodesorption

    International Nuclear Information System (INIS)

    Gangwer, T.; Goldstein, M.K.

    1976-01-01

    Research has recently brought attention to the laser as a tool for isotope enrichment. So far the main thrust of this effort has been toward uranium enrichment; however, numerous successes in other areas have been demonstrated. Isotopes of boron, sulfur, chlorine, and carbon have been separated. A new technique is proposed for laser isotope enrichment. The technique, referred to as photodesorption, involves selective isotopic excitation of molecules adsorbed on a surface such that an enrichment results from subsequent physical or chemical events undergone by the excited molecules. The specific processes of concern are the physical photodesorption enrichment of heavy water from light water and tritiated water from heavy water. The ability to work directly with water molecules has significant advantages for a commercial process. A photodesorption enrichment process has been forumulated and some analyses have been performed. This process is described and some preliminary cost estimates are made which assume successful accomplishment of the major R and D objectives of the new process. The results indicate that the process has the promise of a significant reduction in the cost of heavy water and that further study is warranted

  14. The heavy water production plant at Arroyito, Argentina

    International Nuclear Information System (INIS)

    Ecabert, R.

    1984-01-01

    The author describes the construction of an industrial heavy water production plant (Planta Industrial de Agua Pesada, PIAP) in Argentina. The heavy water enrichment is based on a hydrogen/ammonia isotope exchange. (Auth.)

  15. Standards for heavy water concentration determinations in light water

    International Nuclear Information System (INIS)

    Varlam, M.; Steflea, D.; Pavelescu, M.

    1995-01-01

    The paper presents a method to prepare heavy water -light water standards within the range 144 ppm - 1%. A formula for computing standards concentration based on initial concentration of D 2 O and distilled water is given

  16. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  17. Overcoming technology - obsolescence: a case study in Heavy Water Plant

    International Nuclear Information System (INIS)

    Gupta, O.P.; Sonde, R.R.; Wechalekar, A.K.

    2002-01-01

    Ammonia based Heavy Water Plants in India are set up essentially in conjunction with fertiliser plants for the supply of feed synthesis gas. Earlier ammonia was being produced in fertiliser plants using high-pressure technology which was highly energy intensive. However with fast developments in the field of production of ammonia, fertiliser plants are switching over to low pressure technology. Ammonia based heavy water plants have to operate on pressures corresponding to that of fertiliser plants. Due to low pressures in production of ammonia, heavy water plants would also be required to operate at low pressures than the existing operating pressures. This problem was faced at Heavy Water Plant at Baroda where GSFC supplying synthesis gas switched over to low pressure technology making it imperative on the part of Heavy Water Board to carry out modification to the main plant for continued operation of Heavy Water Plant, Baroda. Anticipating similar problems due to production of ammonia at lower pressures in other fertiliser plants linked to existing Heavy Water Plants, it became necessary for HWB to develop water ammonia front end. The feed in such a case would be water instead of synthesis gas. This would enable HWB to dispense with dependence on fertiliser plants especially if grass-root ammonia based heavy water plants are to be set up. Incorporation of water ammonia front end would enable HWB to de link ammonia based heavy water plants with fertiliser plants. This paper discusses the advantage of de linking heavy water plant respective fertiliser plant by incorporating water ammonia front end and technical issues related to front end technology. A novel concept of ammonia absorption refrigeration (AAR) was considered for the process integration with the front end. The incorporation of AAR with water ammonia front-end configuration utilizes liquid ammonia refrigerant to generate refrigeration without additional energy input which otherwise would have been

  18. Evidence of radicals created by plasma in bacteria in water

    International Nuclear Information System (INIS)

    Lee, Chae Bok; Na, Young Ho; Hong, Tae-Eun; Choi, Eun Ha; Uhm, Han S.; Baik, Ku Youn; Kwon, Gichung

    2014-01-01

    Heavy water (D 2 O) was introduced into a non-thermal plasma-jet (NTPJ) device to generate deuterium monoxide (OD) radicals at room temperature. Owing to the similar reactivity and low prevalence of deuterium in nature, OD radicals can be utilized to visualize the OH radical interactions with water and living cells. Escherichia coli in water were treated with OD radicals, and D atom incorporation into cells was visualized using time-of-flight SIMS and Nano-SIMS. The results show that D atoms from NTPJ reach the cytoplasm of E. coli in H 2 O, indicating the usefulness of this OD-tracking method for the study of radical interactions with living cells.

  19. Determination of gluconeogenesis in man by the use of deuterium-NMR-spectroscopy

    International Nuclear Information System (INIS)

    Rosian, E.

    2000-03-01

    The aim of this dissertation is the quantification of the deuterium--distribution in human glucose by the use of the deuterium NMR spectroscopy of deuteriated water. The glucose production in human organism is composed of gluconeogenesis and glycolysis. The quantification of the part of gluconeogenesis on the total glucose production was determined by the use of deuterium NMR spectroscopy. (boteke)

  20. Deuterium diffusion along the three principal directions in anisotropic Zr–2.5Nb

    Energy Technology Data Exchange (ETDEWEB)

    Khatamian, D., E-mail: khatamiand@aecl.ca

    2013-12-15

    Highlights: •Diffusivity of deuterium in a Zr–2.5Nb plate was measured. •The plate had similar microstructure to that of a CANDU pressure tube. •Diffusion coefficients in the radial direction were 24% less than in the longitudinal direction. •These findings are in close agreement with the theoretical estimates made in the literature. -- Abstract: Pressure tubes of cold-worked Zr–2.5Nb material are used in the CANDU (CANada Deuterium Uranium is a registered trademark of Atomic Energy of Canada Ltd.) reactors to contain the fuel bundles and the heavy water coolant. The pressure tube microstructure consists of α-Zr platelets, with an aspect ratio of 1:5:50 in the radial, transverse and longitudinal directions, surrounded by a thin layer of β-Zr. The diffusivity of hydrogen in β-Zr is higher than in α-Zr. As a result, the diffusivity of hydrogen in the pressure tube material is enhanced compared to unalloyed α-Zr. Due to the anisotropic microstructure of the pressure tube with respect to the β-Zr network, the diffusivity of hydrogen is thought to be different in the three principal pressure tube directions. Measurements made using specimens machined from an 8 mm thick Zr–2.5Nb plate, with a microstructure similar to that of a CANDU pressure tube, suggest the difference between the diffusion constants for deuterium in different directions of an as-installed pressure tube may be as high as 25%.

  1. Electrolytic process for upgrading heavy water (Preprint No. PD-16)

    International Nuclear Information System (INIS)

    Rammohan, K.; Sadhukhan, H.K.

    1989-04-01

    In the reactor system the heavy water gets depleted in concentration due to leakages, intermixing and vapour collection in boiler vault system etc. Electrolysis of water was used as a secondary plant to enrich the dilute heavy water produced in the primery plant by hydrogen-sulfide-water exchange process. The studies made in the development of this process for the upgrading of downgra ded heavy water by setting up a full size Electrolyser Test Assembly are discussed a nd complete design of a heavy water upgrading plant based on electrolytic process for MAPS and NAPP is described. (author). 7 refs., 5 figs

  2. Use of azeotropic distillation for isotopic analysis of deuterium in soil water and saturate saline solution

    International Nuclear Information System (INIS)

    Santos, Antonio Vieira dos.

    1995-05-01

    The azeotropic distillation technique was adapted to extract soil water and saturate saline solution, which is similar to the sea water for the Isotopic Determination of Deuterium (D). A soil test was used to determine the precision and the nature of the methodology to extract soil water for stable isotopic analysis, using the azeotropic distillation and comparing with traditional methodology of heating under vacuum. This methodology has been very useful for several kinds of soil or saturate saline solution. The apparatus does not have a memory effect, and the chemical reagents do not affect the isotopic composition of soil water. (author). 43 refs., 10 figs., 12 tabs

  3. The use of deuterium in medicine

    International Nuclear Information System (INIS)

    Roth, E.; Sutton, J.; Marsac, J.

    1981-03-01

    Whenever a corporal function experiences a disturbance reflected either by changes in metabolic activity or modifications of the importance of pools of certain molecules the possibility exists of making use of isotopes in diagnosis. This paper discusses the use of deuterium to measure total body water and extravascular water in the lungs, and gives examples of clinical applications

  4. Observation of neutron bursts in saturation of titanium with deuterium by means of D2O electrolysis

    International Nuclear Information System (INIS)

    Artyukhov, V.I.; Bystritskij, V.M.; Gilev, A.I.

    1991-01-01

    The paper describes a correlation experiment on investigation of low-temperature nuclear dd-fusion during saturation of titanium with deuterium through electrolysis of heavy water D 2 O. The experiments with cathodes of chemically pure titanium and of titanium coated with a 0.4μm nickel layer (mass of titanium 26 g) were carried out. Emission of neutrons in the form of separate bursts was observed in the experiments with the nickel-coated cathode. The neutron emission density in the burst was found to be I n =(3.6±0.9)x10 4 s -1 . 17 refs.; 6 figs

  5. Characterization and treatment options for high TOC heavy water

    International Nuclear Information System (INIS)

    Evans, D.; Leilabadi, A.; Rudolph, A.; Williams, D.

    2007-01-01

    High total organic carbon (TOC) and high conductivity contamination in heavy water feed present serious problems for the operation of heavy water upgrader facilities. The authors describe the chemical analysis of a particular batch of contaminated heavy water which had resisted standard clean-up procedures. After chemical characterization, a special clean-up plan was developed and successfully tested in the laboratory, followed by its implementation at site. (author)

  6. Characterization of a deuterium-deuterium plasma fusion neutron generator

    Science.gov (United States)

    Lang, R. F.; Pienaar, J.; Hogenbirk, E.; Masson, D.; Nolte, R.; Zimbal, A.; Röttger, S.; Benabderrahmane, M. L.; Bruno, G.

    2018-01-01

    We characterize the neutron output of a deuterium-deuterium plasma fusion neutron generator, model 35-DD-W-S, manufactured by NSD/Gradel-Fusion. The measured energy spectrum is found to be dominated by neutron peaks at 2.2 MeV and 2.7 MeV. A detailed GEANT4 simulation accurately reproduces the measured energy spectrum and confirms our understanding of the fusion process in this generator. Additionally, a contribution of 14 . 1 MeV neutrons from deuterium-tritium fusion is found at a level of 3 . 5%, from tritium produced in previous deuterium-deuterium reactions. We have measured both the absolute neutron flux as well as its relative variation on the operational parameters of the generator. We find the flux to be proportional to voltage V 3 . 32 ± 0 . 14 and current I 0 . 97 ± 0 . 01. Further, we have measured the angular dependence of the neutron emission with respect to the polar angle. We conclude that it is well described by isotropic production of neutrons within the cathode field cage.

  7. Deuterium in the water cycle of the Schirmacher Oasis (Dronning Maud Land, East Antarctica). A data compilation

    International Nuclear Information System (INIS)

    Kowski, P.; Richter, W.

    1988-01-01

    The Schirmacher Oasis (Dronning Maud Land) - one of the rock deserts of the South Polar region - is situated on the coast of the Antarctic continent, between inland and shelf ice. The data compilation contains results of deuterium studies from different parts of the local water cycle and is arranged according to the main parts: precipitation and atmospheric moisture, both collected near Novolazarevskaya Station, lake water, surface snow and ice, shallow drill cores of snow and ice, and from melt water runoff. Finally, monthly means of precipitation and atmospheric moisture are given. (author)

  8. Re-evaluation of the neutron scattering dynamics in heavy water, generation of multigroup cross sections for THERM-126

    International Nuclear Information System (INIS)

    Keinert, J.

    1982-06-01

    In providing THERM-126 with cross section matrices for deuterium bound in heavy water the IKE phonon spectrum was reevaluated. The changes are modifications in the acoustic part and in the frequency of the second oscillator. Contrary to the phonon spectrum model for D in D 2 O in ENDF/B-IV the broad band of hindered rotations is assumed to be temperature dependent taking into account the diffusive motion of the molecule. With the new model scattering law data S (α, β) are generated in the temperature range 293.6 K-673.6 K. The THERM-126 scattering cross section matrices are calculated up to P 3 . As a validity check a lot of differential and integral cross sections are compared to experiments and benchmarks are recalculated. (orig.) [de

  9. The effects of environmental deuterium on normal and neoplastic cultured cell development

    International Nuclear Information System (INIS)

    Bild, W.; Schuller, T.; Zhihai, Qin; Blankenstein, T.; Nastasa, V.; Haulica, I.

    2000-01-01

    The powdered culture media (RPMI - 1640) were reconstituted either with normal distilled water (150 ppm deuterium) either with deuterium - depleted water (DDW) in various concentrations (30, 60, 90 ppm) and sterilized by filtration with 0.2 μm filters. The cell lines used were NIH (normal mouse fibroblasts), RAG (mouse renal carcinoma) and TS/A (mouse mammary adenocarcinoma). In auxiliary tests, BAIBC mouse splenocytes in direct culture were used, stimulated for growth with concanavalin A or LPS (bacterial lipopolysaccharide). The estimation of the growth was made using the MTT assay or direct counting with trypan blue exclusion. The following results were obtained: Deuterium - depleted water had a stimulating effect on cell growth, the most important stimulating action being from the 90 ppm deuterium-water. The growth curves show, in a first phase, a stimulation of the rapid -growing neoplastic cells, followed by a slower growth of the normal cells. Amiloride 100 mM blocking of the Na + /K + membrane pump did not affect the cell growth curves, while the lansoprazole 100 mM blocking of the K + /H + ATP-ase brought the growth curves at the level of those with normal water. This might show an eventual involvement of the K + /H + antiport in the stimulating effects of the DDW. (authors)

  10. A Reexamination of Deuterium Fractionation on Mars

    Science.gov (United States)

    Pathare, A.; Paige, D. A.

    1997-07-01

    The ratio of deuterium to hydrogen in the Martian atmosphere is enhanced by a factor of 5 with respect to the terrestrial value, probably due to fractionation associated with thermal Jeans escape from the top of the atmosphere. Theoretical analyses of the relative efficiency of H and D escape have suggested that the deuterium enrichment implies Mars has outgassed the vast majority of its H2O and that the Martian atmosphere is presently not exchanging water with a juvenile reservoir. However, measurements of high and variable D/H values within hydrous minerals in SNC meteorites strongly suggest that mixing between the atmosphere and juvenile water has taken place. Furthermore, the lack of any observed enrichment of atmospheric (18) O with respect to (16) O, in spite of fractionating nonthermal escape mechanisms, indicates buffering by some juvenile source of oxygen, most probably in the form of a surface or subsurface reservoir of water. We propose that this apparent paradox in the interpretation of isotopic hydrogen and oxygen fractionation --or lack thereof-- can be resolved by re-examining the standard model of deuterium fractionation efficiency on Mars. Specifically, we demonstrate the importance of using upper atmospheric temperatures more representative of the range experienced by the Martian exosphere over the course of the solar cycle. Preliminary calculations involving changes in effusion velocity and diffusive separation as a function of exospheric temperature indicate that incorporating these more representative lower exospheric temperatures will reduce the relative efficiency of D escape, in which case the observed enrichment of deuterium can indeed result from exchange with a juvenile source of water. We are in the process of confirming these computations with a one-dimensional upper atmospheric photochemical model that considers the effects of changing solar activity and exospheric temperature on ionospheric composition. If our initial calculations are

  11. High-throughput simultaneous determination of plasma water deuterium and 18-oxygen enrichment using a high-temperature conversion elemental analyzer with isotope ratio mass spectrometry.

    Science.gov (United States)

    Richelle, M; Darimont, C; Piguet-Welsch, C; Fay, L B

    2004-01-01

    This paper presents a high-throughput method for the simultaneous determination of deuterium and oxygen-18 (18O) enrichment of water samples isolated from blood. This analytical method enables rapid and simple determination of these enrichments of microgram quantities of water. Water is converted into hydrogen and carbon monoxide gases by the use of a high-temperature conversion elemental analyzer (TC-EA), that are then transferred on-line into the isotope ratio mass spectrometer. Accuracy determined with the standard light Antartic precipitation (SLAP) and Greenland ice sheet precipitation (GISP) is reliable for deuterium and 18O enrichments. The range of linearity is from 0 up to 0.09 atom percent excess (APE, i.e. -78 up to 5725 delta per mil (dpm)) for deuterium enrichment and from 0 up to 0.17 APE (-11 up to 890 dpm) for 18O enrichment. Memory effects do exist but can be avoided by analyzing the biological samples in quintuplet. This method allows the determination of 1440 samples per week, i.e. 288 biological samples per week. Copyright 2004 John Wiley & Sons, Ltd.

  12. Cascades for natural water enrichment in deuterium and oxygen-18 using membrane permeation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Matuszak, A.; Zakrzewska-Trznadel, G.; Van Hook, A.

    1991-01-01

    The enrichment of water in heavy isotopes by permeation through a hydrophobic membrane is described. Simple counter - current cascades are of no practical interest because of their high energy demand. A better solution is to employ a double counter - current cascade re-utilizing part of the heat of condensation. Currently employed methods of natural water enrichment in heavy isotopes are compared to the proposed membrane process. (author). 18 refs, 14 tabs, 21 figs

  13. Thermal conductivity coefficients of water and heavy water in the liquid state up to 3700C

    International Nuclear Information System (INIS)

    Le Neindre, B.; Bury, P.; Tufeu, R.; Vodar, B.

    1976-01-01

    The thermal conductivity coefficients of water and heavy water of 99.75 percent isotopic purity were measured using a coaxial cylinder apparatus, covering room temperature to their critical temperatures, and pressures from 1 to 500 bar for water, and from 1 to 1000 bar for heavy water. Following the behavior of the thermal conductivity coefficient of water, which shows a maximum close to 135 0 C, the thermal conductivity coefficient of heavy water exhibits a maximum near 95 0 C and near saturation pressures. This maximum is displaced to higher temperatures when the pressure is increased. Under the same temperature and pressure conditions the thermal conductivity coefficient of heavy water was lower than for water. The pressure effect was similar for water and heavy water. In the temperature range of our experiments, isotherms of thermal conductivity coefficients were almost linear functions of density

  14. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  15. High purity heavy water production: need for total organic carbon determination in process water streams

    International Nuclear Information System (INIS)

    Ayushi; Kumar, Sangita D.; Reddy, A.V.R.; Vithal, G.K.

    2009-01-01

    In recent times, demand for high purity heavy water (99.98% pure) in industries and laboratories has grown by manifold. Its application started in nuclear industry with the design of CANDU reactor, which uses natural uranium as fuel. In this reactor the purest grade of heavy water is used as the moderator and the primary coolant. Diverse industrial applications like fibre optics, medicine, semiconductors etc. use high purity heavy water extensively to achieve better performance of the specific material. In all these applications there is a stringent requirement that the total organic carbon content (TOC) of high purity heavy water should be very low. This is because the presence of TOC can lead to adverse interactions in different applications. To minimize the TOC content in the final product there is a need to monitor and control the TOC content at each and every stage of heavy water production. Hence a simple, rapid and accurate method was developed for the determination of TOC content in process water samples. The paper summarizes the results obtained for the TOC content in the water samples collected from process streams of heavy water production plant. (author)

  16. assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    userpc

    guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit of WHO. Keywords: Atomic Absorption Spectrophotometers, Heavy Metals, Water, Kauru Local. Government Area.

  17. The effects of deuterium-depleted water on bacteria

    International Nuclear Information System (INIS)

    Butnaru, Gallia; Jurca, Elena M.; Titescu, Gh.; Stefanescu, I.

    2000-01-01

    Due to their adaptability the bacteria are ubiquitous, occurring in a large variety of habitats. Most of them are saprotrophs or parasites. Bacteria are agents causing many diseases in animals and humans. The main purpose of this work was to reveal the deuterium-depleted water bactericidal effect. Nonpathogenic Gram-positive (Bacillus subtilis and Bacillus cereus) and pathogenic Gram-negative (Agrobacterium tumefaciens, Erwinia amylovora and Escherichia coli) bacteria were used. The variant deuterium depleted (DDW) eater was compared with distilled water eater one. The diffusometric method was found the proper way of investigation. The bacteria culture was developed in Petri dishes (diam = 70 mm) at a temperature of 25 deg. C. After 24 h, 48 h and 72 h the clear area was measured. The clear area was one in which the bacteria were killed. The surface was determined by the area of the small disc on the filter paper. The statistical data were determined by variance analysis. The results pointed out a large response to DDW presence. The data were classified in: 1. without response when no clear area occurred; - 2. with response when a clear area of under 5 mm 2 occurred; - 3. strong response when the clear area was higher than 10 mm 2 . The Gram-positive and Gram-negative bacteria behaviours were not in correlation with the DDW bactericidal effect. The Bacillus cereus and Escherichia coli were scored as without response and we presume that they were very tolerant. No clear area was induced by DDW. Bacillus subtilis and Erwinia amylovora showed weak response. After 24 h the killed bacteria were extended on the same area, namely, 2.89 mm 2 . Even if the DDW effect seems to be small it was significantly in comparison with the control case (s d = 2.78 mm 2 > 0.1). After 48 h and 72 h the clear surface remained the same. The Agrobacterium tumefaciens' response was very strong. The bacteria were killed on 22.50 mm 2 after 24 h and on 26.95 mm 2 after 48 h, being very

  18. Heavy water radiolysis and chemistry control of the Fugen Nuclear Power Station

    International Nuclear Information System (INIS)

    Ibuki, Y.; Kitabata, T.; Kato, T.

    1989-01-01

    A computer analysis for heavy water radiolysis clarified the mechanism of the heavy water radiolysis rate change with impurities in the heavy water and cover gas, helium. The mechanism is supported by over ten years' operational data of the heavy water radiolysis in the Fugen nuclear power station. (author)

  19. Wildcat: A commercial deuterium-deuterium tokamak reactor

    International Nuclear Information System (INIS)

    Evans, K.; Baker, C.C.; Barry, K.M.

    1983-01-01

    WILDCAT is a conceptual design of a catalyzed deuterium-deuterium tokamak commercial fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing deuterium-tritium (D-T) designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete conceptual design

  20. Gamma-spectrometric and total alpha-beta counting methods for radioactivity analysis of deuterium depleted water

    International Nuclear Information System (INIS)

    Ferdes, Ov. S.; Mladin, C.; Vladu, Mihaela; Bulubasa, G.; Bidica, N.

    2008-01-01

    According to national regulations, as well as to the EU directive on the quality of drinking water, the radionuclide concentrations represent some of the drinking water quality parameters. Among the most important radioactivity content parameters are: the total alpha and total beta concentration (Bq/l); K-40 content, and the gamma-nuclides volume activities. The paper presents the measuring methods for low-level total alpha and/or beta counting of volume samples, as well as the high-resolution gamma-ray spectrometric method used to measure the volume activity of nuclides in drinking water. These methods are applied to monitor the radioactivity content and quality of the QLARIVIA brand of Deuterium depleted water (DDW). There are discussed the performances of these applied methods as well as some preliminary results. (authors)

  1. The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence

    Science.gov (United States)

    Mayyasi, Majd; Clarke, John; Bhattacharyya, Dolon; Deighan, Justin; Jain, Sonal; Chaffin, Michael; Thiemann, Edward; Schneider, Nick; Jakosky, Bruce

    2017-10-01

    The enhanced ratio of deuterium to hydrogen on Mars has been widely interpreted as indicating the loss of a large column of water into space, and the hydrogen content of the upper atmosphere is now known to be highly variable. The variation in the properties of both deuterium and hydrogen in the upper atmosphere of Mars is indicative of the dynamical processes that produce these species and propagate them to altitudes where they can escape the planet. Understanding the seasonal variability of D is key to understanding the variability of the escape rate of water from Mars. Data from a 15 month observing campaign, made by the Mars Atmosphere and Volatile Evolution Imaging Ultraviolet Spectrograph high-resolution echelle channel, are used to determine the brightness of deuterium as observed at the limb of Mars. The D emission is highly variable, with a peak in brightness just after southern summer solstice. The trends of D brightness are examined against extrinsic as well as intrinsic sources. It is found that the fluctuations in deuterium brightness in the upper atmosphere of Mars (up to 400 km), corrected for periodic solar variations, vary on timescales that are similar to those of water vapor fluctuations lower in the atmosphere (20-80 km). The observed variability in deuterium may be attributed to seasonal factors such as regional dust storm activity and subsequent circulation lower in the atmosphere.

  2. Effect of deposited tungsten on deuterium accumulation in beryllium in contact with atomic deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Sharapov, V.M.; Gavrilov, L.E. [Institute of Physical Chemistry, Russian Academy of Sciences, Moscow (Russian Federation); Kulikauskas, V.S.

    1998-01-01

    Usually ion or plasma beam is used for the experiment with beryllium which simulates the interaction of plasma with first wall in fusion devices. However, the use of thermal or subthermal atoms of hydrogen isotopes seems to be useful for that purpose. Recently, the authors have studied the deuterium accumulation in beryllium in contact with atomic deuterium. The experimental setup is shown, and is explained. By means of elastic recoil detection (ERD) technique, it was shown that in the exposure to D atoms at 740 K, deuterium is distributed deeply into the bulk, and is accumulated up to higher concentration than the case of the exposure to molecular deuterium. The depth and concentration of deuterium distribution depend on the exposure time, and those data are shown. During the exposure to atomic deuterium, oxide film grew on the side of a sample facing plasma. In order to understand the mechanism of deuterium trapping, the experiment was performed using secondary ion mass spectrometry (SIMS) and residual gas analysis (RGA). The influence that the tungsten deposit from the heated cathode exerted to the deuterium accumulation in beryllium in contact with atomic deuterium was investigated. These results are reported. (K.I.)

  3. Critical heat flux experiments in a circular tube with heavy water and light water. (AWBA Development Program)

    International Nuclear Information System (INIS)

    Williams, C.L.; Beus, S.G.

    1980-05-01

    Experiments were performed to establish the critical heat flux (CHF) characteristics of heavy water and light water. Testing was performed with the up-flow of heavy and of light water within a 0.3744 inch inside diameter circular tube with 72.3 inches of heated length. Comparisons were made between heavy water and light water critical heat flux levels for the same local equilibrium quality at CHF, operating pressure, and nominal mass velocity. Results showed that heavy water CHF values were, on the average, 8 percent below the light water CHF values

  4. Technical solutions for tritium removal from Cernavoda NPP heavy water systems

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Panait, Adrian

    2002-01-01

    In CANDU nuclear plants 2400 KCi/GW(e) - year tritium is generated. At a CANDU - 600 reactor similar to Cernavoda NPP Unit 1, 1500 KCi/year of tritium is generated 95% being in the D 2 O moderator, which can achieve a radioactivity level of 80 - 100 Ci/kg. Tritium in heavy water contributes with 30 - 50% to the doses received by operation personnel and with 20% to the radioactivity released to the environment. The extraction of tritium heavy water at CANDU reactors implies the following possibilities: - the radioactivity level reduction in the operation area; - the maintenance and repair cost reduction due to reduction of personnel protection measures and increased labor productivity; - the increase of NPP utilization factor by shutdown time reduction for maintenance and repair; - tritium concentration reduction from technological systems, ensuring thus the possibility of redesigning the systems in order to lower the cost of investment; - profitable use of extracted tritium. Technical measures provided by AECL project for CANDU 600 at Cernavoda make possible to satisfy the current standards concerning tritium concentration in the operation area atmosphere of 5 x 10 -6 Ci/m 3 . The regulations recommend that the radioactivity level should be maintained as low as possible in conformity with ALARA principles. Also, it is possible that norms will become more restrictive in the future, so the tritium removal technology is a good preventive measure which may become very necessary. The methods, which currently reached the industrial or pilot stages, are based on catalyzed chemical exchange, the heavy water electrolysis, and deuterium distillation. They are known as: VPCE - Vapour Phase Catalytic Exchange; LPCE - Liquid Phase Catalytic Exchange; DE - Direct Electrolysis; CD - Cryogenic Distillation. As transfer processes the catalyzed chemical exchange and heavy water electrolysis are used while concentration of tritium gas is done by cryogenic distillation. At present the

  5. Heavy water at Trail, British Columbia

    International Nuclear Information System (INIS)

    Arsenault, J.E.

    2006-01-01

    Today Canada stands on the threshold of a nuclear renaissance, based on the CANDU reactor family, which depends on heavy water as a moderator and for cooling. Canada has a long history with heavy water, with commercial interests beginning in 1934, a mere two years after its discovery. At one time Canada was the world's largest producer of heavy water. The Second World War stimulated interest in this rather rare substance, such that the worlds largest supply (185 kg) ended up in Canada in 1942 to support nuclear research work at the Montreal Laboratories of the National Research Council. A year later commercial production began at Trail, British Columbia, to support work that later became known as the P-9 project, associated with the Manhattan Project. The Trail plant produced heavy water from 1943 until 1956, when it was shut down. During the war years the project was so secret that Lesslie Thomson, Special Liaison Officer reporting on nuclear matters to C.D. Howe, Minister of Munitions and Supply, was discouraged from visiting Trail operations. Thomson never did visit the Trail facility during the war. In 2005 the remaining large, tall concrete exchange tower was demolished at a cost of about $2.4 million, about the same as it cost to construct the facility about 60 years ago. Thus no physical evidence remains of this historic facility and another important artifact from Canada's nuclear history has disappeared forever. It is planned to place a plaque at the site at some point in the future. (author)

  6. Heavy water at Trail, British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E. [Ontario (Canada)

    2006-09-15

    Today Canada stands on the threshold of a nuclear renaissance, based on the CANDU reactor family, which depends on heavy water as a moderator and for cooling. Canada has a long history with heavy water, with commercial interests beginning in 1934, a mere two years after its discovery. At one time Canada was the world's largest producer of heavy water. The Second World War stimulated interest in this rather rare substance, such that the worlds largest supply (185 kg) ended up in Canada in 1942 to support nuclear research work at the Montreal Laboratories of the National Research Council. A year later commercial production began at Trail, British Columbia, to support work that later became known as the P-9 project, associated with the Manhattan Project. The Trail plant produced heavy water from 1943 until 1956, when it was shut down. During the war years the project was so secret that Lesslie Thomson, Special Liaison Officer reporting on nuclear matters to C.D. Howe, Minister of Munitions and Supply, was discouraged from visiting Trail operations. Thomson never did visit the Trail facility during the war. In 2005 the remaining large, tall concrete exchange tower was demolished at a cost of about $2.4 million, about the same as it cost to construct the facility about 60 years ago. Thus no physical evidence remains of this historic facility and another important artifact from Canada's nuclear history has disappeared forever. It is planned to place a plaque at the site at some point in the future. (author)

  7. Chemistry in production of heavy water and industrial solvents

    International Nuclear Information System (INIS)

    Thomas, P.G.

    2015-01-01

    Industries are the temples of modern science built on the robust foundation of science and technology. The genesis of giant chemical industries is from small laboratories where the scientific thoughts are fused and transformed into innovative technologies Heavy water production is an energy intensive giant chemical industry where various hazardous and flammable chemicals are handled, extreme operating conditions are maintained and various complex chemical reactions are involved. Chemistry is the back bone to all chemical industrial activities and plays a lead role in heavy water production also. Heavy Water Board has now mastered the technology of design, construction, operation and maintenance of Heavy Water plants as well as fine tuning of the process make it more cost effective and environment friendly. Heavy Water Board has ventured into diversified activities intimately connected with our three stages of Nuclear Power Programme. Process development for the production of nuclear grade solvents for the front end and back end of our nuclear fuel cycle is one area where we have made significant contributions. Heavy Water Board has validated, modified and fine-tuned the synthesis routes for TBP, D2EHPA, TOPO, TAPO TIAP, DNPPA, D2EHPA-II, DHOA etc and these solvents were accepted by end users. Exclusive campaigns were carried out in laboratory scale, bench scale and pilot plant scale before scaling up to industrial scale. The process chemistry is understood very well and chemical parameters were monitored in every step of the synthesis. It is a continual improvement cycle where fine tuning is carried out for best quality and yield of product at lowest cost. In this presentation, an attempt is made to highlight the role of chemistry in the production of Heavy Water and industrial solvents

  8. Quantitative analysis of deuterium by gas chromatography

    International Nuclear Information System (INIS)

    Isomura, Shohei; Kaetsu, Hayato

    1981-01-01

    An analytical method for the determination of deuterium concentration in water and hydrogen gas by gas chromatography is described. HD and D 2 in a hydrogen gas sample were separated from H 2 by a column packed with Molecular Sieve 13X, using extra pure hydrogen gas as carrier. A thermal conductivity detector was used. Concentrations of deuterium were determined by comparison with standard samples. The error inherent to the present method was less a 1% on the basis of the calibration curves obtained with the standard samples. The average time required for the analysis was about 3 minutes. (author)

  9. The Canadian heavy water situation

    International Nuclear Information System (INIS)

    Dahlinger, A.

    The Canadian heavy water industry is analyzed. Supply and demand are predicted through 1985. Pricing is broken down into components. Backup R and D contributes greatly to process improvements. (E.C.B.)

  10. Tritium separation from heavy water using electrolysis

    International Nuclear Information System (INIS)

    Ogata, Y.; Sakuma, Y.; Ohtani, N.; Kodaka, M.

    2001-01-01

    A tritium separation from heavy water by the electrolysis using a solid polymer electrode (SPE) was specified on investigation. The heavy water (∼10 Bq g -1 ) and the light water (∼70 Bq g -1 ) were electrolysed using an electrolysis device (Tripure XZ001, Permelec Electrode Ltd.) with the SPE layer. The cathode was made of stainless steel (SUS314). The electrolysis was carried out at 20 A x 60 min, with the electrolysis temperature at 10, 20, or 30degC, and 15 A x 80 min at 5degC. The produced hydrogen and oxygen gases were recombined using a palladium catalyst (ND-101, N.E. Chemcat Ltd.) with nitrogen gas as a carrier. The activities of the water in the cell and of the recombined water were analyzed using a liquid scintillation counter. The electrolysis potential to keep the current 20 A was 2-3 V. The yields of the recombined water were more than 90%. The apparent separation factors (SF) for the heavy water and the light water were ∼2 and ∼12, respectively. The SF value was in agreement with the results in other work. The factors were changed with the cell temperature. The electrolysis using the SPE is applicable for the tritium separation, and is able to perform the small-scale apparatus at the room temperature. (author)

  11. Deuterium content of the Venus atmosphere

    International Nuclear Information System (INIS)

    Bertaux, -J.-L.; Clarke, J.T.

    1989-01-01

    The abundance of deuterium in the atmosphere of Venus is an important clue to the planet's history, because ordinary and deuterated water escape at different rates. Using the high-resolution mode of the International Ultraviolet Explorer (IUE), we measured hydrogen Lyman-α-emission but found only an upper limit on deuterium Lyman-α-emission, from which we inferred a D/H ratio of less than 2-5 x 10 -3 . This is smaller by a factor of 3-8 than the D/H ratio derived from measurements by the Pioneer Venus Large Probe, and may indicate either a stratification of D/H ratio with altitude or a smaller overall ratio than previously thought. (author)

  12. Canadian heavy water production - 1970 to 1980

    International Nuclear Information System (INIS)

    Galley, M.R.

    1981-01-01

    In the last decade, heavy water production in Canada has progressed from the commissioning of a single unit plant in Nova Scotia to a major production industry employing 2200 persons and operating three plants with an aggregate annual production capability in excess of 1800 Mg. The decade opened with an impending crisis in the supply of heavy water due to failure of the first Glace Bay Heavy Water Plant and difficulty in commissioning the second Canadian plant at Port Hawkesbury. Lessons learned at this latter plant were applied to the Bruce plant where the first two units were under construction. When the Bruce units were commissioned in 1973 the rate of approach to design production rates was much improved, renewing confidence in Canada's ability to succeed in large scale heavy water production. In the early 1970's a decision was made to rehabilitate the Glace Bay plant using a novel flowsheet and this rebuilt plant commenced production in 1976. The middle of the decade was marked by two main events: changes in ownership of the operating plants and initiation of a massive construction program to support the forecast of a rapidly expanding CANDU power station construction program. New production units embodying the best features of their predecessors were committed at Bruce by Ontario Hydro and at La Prade, Quebec, by AECL. The high growth rate in electrical demand did not continue and some new plant construction was curtailed. The present installed production capacity will now probably be adequate to meet anticipated demand for the next decade. Canadian plants have now produced more than 7800 Mg of heavy water at a commercially acceptable cost and with a high degree of safety and compliance with appropriate environmental regulations

  13. Tritium concentration in the heavy water upgrading plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Pop, F.; Titescu, Gh.; Dumitrescu, M.; Ciortea, C.; Stefanescu, I.; Peculea, M.; Pitigoi, Gh.; Trancota, D. . E-mail of corresponding author: croitoru@icsi.ro; Croitoru, C.)

    2005-01-01

    In the course of time heavy water used in CANDU nuclear power plants, as moderator or coolant, degrades, as a result of its impurification with light water and tritium. Concentration diminution below 99.8% mol for moderator and 99.75% mol for coolant causes an inefficient functioning of CANDU reactor. By isotopic distillation, light water is removed. Simultaneously tritium concentration takes place. The heavy water upgrading plant from Cernavoda is an isotopic separation cascade with two stages. The paper presents, for this plant, a theoretical study of the tritium concentration. (author)

  14. Effect of Coulomb screening on deuterium-deuterium fusion cross-section

    International Nuclear Information System (INIS)

    Wang Shunjin

    1991-01-01

    The popular Gamow formula for the deuterium-deuterium fusion cross-section is generalized to take into account the Coulomb screening effect. The generalized formula has been used to discuss the fusion process occurring in the metal medium

  15. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum

    International Nuclear Information System (INIS)

    Izawa, Hirozumi; Isomura, Shohei; Nakane, Ryohei.

    1979-01-01

    The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platinum supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms. (author)

  16. Deuterium depleted water effect on seawater spectral energy and marine phytoplankton

    International Nuclear Information System (INIS)

    Mirza, Maria; Zaharia, Mihaela; Cristescu, T.M.; Titescu, Gh.

    2002-01-01

    Solar radiation is the primary source of new energy in most aquatic ecosystems and it is the sun variability in amount and spectral distribution that drives many of the changes in material flux on different time and space scales. The dependency of ecosystem dynamics on sunlight is largely attributable to the simple fact that plants require solar radiation to carry out photosynthesis. The resulting primary production (the rate of the plant growth and reproduction) is an index of aquatic processes, including food web dynamics and biogeochemical cycling of compounds that affect everything from aquatic chemistry to regional and global weather patterns. Light dependent processes in plants (photo-synthesis, photoinhibition, phototaxis and photoprotection) and in aquatic environment, animal vision and microbial mediation of the photo-dissociation of chemical have evolved over millennia and most of them are regulated or at least influenced by the spectral composition of the light field The paper deals with the investigation of relations between water spectral energy modified by deuterium depleted water (DDW) and the microphyte alga Tetraselmis suecica or the total marine micro-phytoplankton growth. (authors)

  17. Cell growth and protein synthesis of unicellular green alga Chlamydomonas in heavy water

    International Nuclear Information System (INIS)

    Ishida, M.R.

    1983-01-01

    The effects of heavy water on the cell growth and protein synthesis of the photoautotrophically growing Chlamydomonas cells were studied. The growth rate of the cells is inversely proportional to the concentrations of heavy water. The cells can barely live in 90% heavy water, but they die in 99.85% heavy water within a few days. Incorporation of 14 Cleucine into cells is markedly stimulated by heavy water of various concentrations between 30 and 99.85% in the case of the short time incubation. Contrary to this, in the long time incubation as several days, heavy water inhibits the protein synthesis. Such two modes of the protein synthetic activities are dependent upon the incubation time of the cells grown photoautotrophically in the heavy water media. (author)

  18. High converter pressurized water reactor with heavy water as a coolant

    International Nuclear Information System (INIS)

    Ronen, Y.; Reyev, D.

    1983-01-01

    There is an increasing interest in water breeder and high converter reactors. The increase in the conversion ratio of these reactors is obtained by hardening the neutron spectrum achieved by tightening the reactor's lattice. Another way of hardening the neutron spectrum is to replace the light water with heavy water. Two pressurized water reactor fuel cycles that use heavy water as a coolant are considered. The first fuel cycle is based on plutonium and depleted uranium, and the second cycle is based on plutonium and enriched uranium. The uranium ore and separative work unit (SWU) requirements are calculated as well as the fuel cycle cost. The savings in uranium ore are about40 and 60% and about40% in SWU for both fuel cycles considered

  19. Deuterium exchange between hydrofluorocarbons and amines

    International Nuclear Information System (INIS)

    Hammond, W.B.; Bigeleisen, J.; Tuccio, S.A.

    1983-01-01

    The invention consists of a process for obtaining a compound enriched in deuterium which comprises the known method of exposing a gaseous hydrofluorocarbon to infrared laser radiation of a predetermined frequency to selectively cause a chemical reaction involving hydrofluorocarbon molecules containing deuterium without substantially affecting hydrofluorocarbon molecules not containing deuterium, thereby producing, as reaction products, a compound enriched in deuterium and hydrofluorocarbon depleted in deuterium; combined with a new method, which comprises enriching the deuterium content of the depleted hydrofluorocarbon by contacting the depleted hydrofluorocarbon with an alkali metal amide and an amine having a concentration of deuterium at least that which will yield an increase in deuterium concentration of the hydrofluorocarbon upon equilibration, whereby the amine becomes depleted in deuterium

  20. Rate-controlling two-proton transfer coupled with heavy-atom motion in the 2-pyridinone-catalyzed mutarotation of tetramethylglucose. Experimental and calculated deuterium isotope effects

    International Nuclear Information System (INIS)

    Engdahl, K.A.; Bivehed, H.; Ahlberg, P.; Saunders, W.H. Jr.

    1983-01-01

    Primary and secondary deuterium isotope effects have been measured by polarimetry, and primary isotope effects have been calculated for the classical bifunctional catalysis: 2-pyridinone-catalyzed mutarotation of 2,3,4,6-tetra-O-methyl-α-D-glucopyranose (α-TMG) in benzene. From the positively curved plot of the specific rate of epimerization vs. the mole fraction of 2 H in the ''pool'' of OH and NH hydrogens, the isotope effects k/sub HH//k/sub DD/ = 3.66 +/- 0.09, k/sub HH//k/sub DH/ = 1.5, and k/sub HH//k/sub HD/ = 2.4 have been calculated. A secondary isotope effect of 1.14 +/- 0.02 has been measured by using α-TMG and (1- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(l- 2 H)-α-TMG], the synthesis of which is described in detail, together with those for (N- 2 H)-2-pyridinone and (1-O- 2 H)-2,3,4,6-tetra-O-methyl-α-D-glucopyranose [(1-O- 2 H)-α-TMG]. The rate data obtained have also been analyzed by fractionation theory, yielding approximately equal fractionation factors (0.5). The interpretation of the results has been assisted by calculations of the primary deuterium isotope effects using the BEBOVIB IV program. Two models involving small and considerable coupling, respectively, of the transferring protons to heavy-atom motion have been considered. In the favored structure for the transition state of the rate-limiting step, two protons are in transit, and their motion is governed either by a potential with a barrier or by one without. Their motion is considerably coupled to the heavy-atom motion (i.e., the breakage of the ring C-O bond), and tunnel corrections to the isotope effects are found to be negligible

  1. Possible processes for origin of life and living matter in deuterium enriched hot mineral water

    OpenAIRE

    Ignatov, Ignat; Mosin, Oleg

    2013-01-01

    In the present paper the isotopic composition of water and its temperature in the process of evolution of life is analysed. It was proposed an assumption, that under conditions of the primary O 2 free atmosphere, under influence of short-wave solar radiation, geothermal energy and powerful spark discharges, deuterium in form of HDO could be collected in hydrosphere, which physical-chemical properties differ from those of H 2O. There were obtained adapted to the maximal concentration D 2O cell...

  2. Electromagnetic radiation during electrolysis of heavy water

    International Nuclear Information System (INIS)

    Koval'chuk, E.P.; Yanchuk, O.M.; Reshetnyak, O.V.

    1994-01-01

    The radiation in the visible and ultraviolet spectral regions during electrolysis of heavy water on nickel and palladium cathodes was determined for the first time. A sharp jump of the intensity photon flow was observed at a current density of higher than 125 mA/cm 2 . A hypothesis about the relation of the electrochemiluminescence phenomenon during electrolysis of heavy water with the formation of fresh surfaces in consequence of the hydrogenous corrosion of the cathode material is formulated. ((orig.))

  3. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries

    International Nuclear Information System (INIS)

    Chowdhury, Shakhawat; Mazumder, M.A. Jafar; Al-Attas, Omar; Husain, Tahir

    2016-01-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. - Highlights: • Co-exposure to multiple heavy metals in drinking water needs better understanding • Low-cost technologies for arsenic removal needs urgent attention • Protonated alginate needs further research for drinking water applications • Community level and PoU devices need improvement and cost reduction • Developing countries are most affected by heavy metals in drinking water

  4. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Shakhawat, E-mail: Schowdhury@kfupm.edu.sa [Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Mazumder, M.A. Jafar [Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Attas, Omar [Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Husain, Tahir [Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, NL (Canada)

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. - Highlights: • Co-exposure to multiple heavy metals in drinking water needs better understanding • Low-cost technologies for arsenic removal needs urgent attention • Protonated alginate needs further research for drinking water applications • Community level and PoU devices need improvement and cost reduction • Developing countries are most affected by heavy metals in drinking water.

  5. Producing deuterium-enriched products

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing an enriched deuterium product from a gaseous feed stream of mixed hydrogen and deuterium, comprises: (a) combining the feed stream with gaseous bromine to form a mixture of the feed stream and bromine and exposing the mixture to an electrical discharge effective to form deuterium bromide and hydrogen bromide with a ratio of D/H greater than the ratio of D/H in the feed stream; and (b) separating at least a portion of the hydrogen bromide and deuterium bromide from the mixture. (author)

  6. Quantitative analysis of water heavy by NMR spectroscopy

    International Nuclear Information System (INIS)

    Gomez Gil, V.

    1975-01-01

    Nuclear Magnetic Resonance has been applied to a wide variety of quantitative problems. A typical example has been the determination of isotopic composition. In this paper two different analytical methods for the determination of water in deuterium oxide are described. The first one, employs acetonitril as an internal standard compound and in the second one calibration curve of signal integral curve versus amount of D 2 O is constructed. Both methods give results comparable to those of mass spectrometry of IR spectroscopy. (Author) 5 refs

  7. A review of the UKAEA interest in heavy water reactors

    International Nuclear Information System (INIS)

    Symes, R.J.

    1983-01-01

    The chapter commences with a brief account of the history of heavy water production and then begins the story of the British use of this moderator in power reactors. This is equated with the introduction and development of the tube reactor as a distinct and important form of reactor construction in contrast with the perhaps better known vessel design that has tended to dominate reactor engineering to date. The account thus includes a succession of reactor designs including the gas and steam cooled heavy water systems in addition to the steam-generating heavy water reactor. The SGHWR was demonstrated by the construction of a substantial prototype, which continues in operation as a flexible and reliable electricity-generating plant. It was also, for a time, identified as the system to be used for Britain's third reactor programme. Today the successful Canadian CANDU power reactors represent the only penetration of heavy water reactor technology into large scale electricity generation. The range of research and experimental reactors using heavy water in their cores is reviewed. (author)

  8. Direction of Heavy Water Projects

    International Nuclear Information System (INIS)

    1984-07-01

    Summary of the activities performed by the Heavy Water Projects Direction of the Argentine Atomic Energy Commission from 1950 to 1983. It covers: historical data; industrial plant (based on ammonia-hydrogen isotopic exchange); experimental plant (utilizing hydrogen sulfides-water process); Module-80 plant (2-3 tons per year experimental plant with national technology) and other related tasks on research and development (E.A.C.) [es

  9. Thorium in heavy water reactors

    International Nuclear Information System (INIS)

    Andersson, G.

    1984-12-01

    Advanced heavy water reactors can provide energy on a global scale beyond the foreseeable future. Their economic and safety features are promising: 1. The theoretical feasibility of the Self Sufficient Equilibrium Thorium (SSET) concept is confirmed by new calculations. Calculations show that the adjuster rod geometry used in natural uranium CANDU reactors is adequate also for SSET if the absorption in the rods is graded. 2. New fuel bundle designs can permit substantially higher power output from a CANDU reactor. The capital cost for fuel, heavy water and mechanical equipment can thereby be greatly reduced. Progress is possible with the traditional fuel material oxide, but the use of thorium metal gives much larger effects. 3. A promising long range possibility is to use pressure tanks instead of pressure tubes. Heat removal from the core is facilitated. Negative temperature and void coefficients provide inherent safety features. Refuelling under power is no longer needed if control by moderator displacement is used. Reduced quality demand on the fuel permits lower fuel costs. The neutron economy is improved by the absence of pressure and clandria tubes and also by the use of radial and axial blankets. A modular seed blanket design can reduce the Pa losses. The experience from construction of tank designs is good e.g. AAgesta, Attucha. It is now also possible to utilize technology from LWR reactors and the implementation of advanced heavy water reactors would thus be easier than HTR or LMFBR systems. (Author)

  10. Decontamination of the RA reactor heavy water system, Annex 9

    International Nuclear Information System (INIS)

    Maksimovic, Z.B.; Nikolic, R.M.; Marinkovic, M.D.; Jelic, Lj.M.

    1963-01-01

    Both stainless steel and aluminium parts of the RA reactor heavy water system system were decontaminated as well as the heavy water itself. System was contaminated with 60 Co. Decontamination factor was determined by activity measurements during distillation. Concentration of the corrosion products in the heavy water was measured by spectrochemical analysis, and found to be 0.1 - 1 mg/l. Chemical analyses of the aluminium and stainless steel surfaces showed that cobalt was adsorbed on the aluminium oxide layer. Water solution of 7%H 3 PO 4 + 2% CrO 3 was used for decontamination of the heavy water system and distillation device. This was found to be the most efficient solvent which does not affect stainless steel corrosion. Decontamination factors achieved were from 60 - 100. Decontamination results enabled determining the distribution of cobalt in the system: 10 Ci on the stainless steel parts, 50 Ci in the heavy water; and above 600 Ci on the fuel and experimental channels. Specific activity of 60 Co was calculated to be 15 Ci/g on the reactor channels, 8 Ci/g on the stainless steel parts and 3 Ci/g in the heavy water. Decontamination of the aluminium parts was not done because it was considered it could initiate corrosion. Since the efficiency of distillation is increased it was expected that permanent distillation would remove most of the activity in the reactor channels

  11. Deuterium and oxygen-18 abundance in birds: Implications for DLW energetics studies

    International Nuclear Information System (INIS)

    Tatner, P.

    1990-01-01

    The doubly labeled water (DLW) technique for measuring energy expenditure may employ one ( 18 O) or two ( 18 O and deuterium) stable isotopes as tracers. These occur naturally in the environment, so when they are used as tracers it is necessary to subtract the background levels. Few studies report data on background concentrations. This work provides such data for a range of avian species. Overall, there was a strong positive correlation (r = 0.63) between the 18 O and deuterium concentrations in birds' body water. Variation in the deuterium concentration was less extensive than in the 18 O concentration (1:2.7 parts/million). In the European robin, there was a linked, seasonal variation in 18 O and deuterium abundance producing high summer and low winter values. Throughout the year, a high individual variability was greater in 18 O than in deuterium. A difference between the European robin and the dipper suggests that habitat may also influence background abundance. Investigation of the effect of variation in background abundance on measures of energy expenditure for small passerines (20 g) revealed that employing estimates, instead of direct measurements, had a minor influence over an experimental period of 1 day but could potentially introduce errors as large as 54% over a 2-day period

  12. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  13. Consequences of potential accidents in heavy water plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Lazar, R.E.; Preda, I.A.; Dumitrescu, M.

    2002-01-01

    Heavy water plants achieve the primary isotopic concentration by H 2 O-H 2 S chemical exchange. In these plants are stored large quantities of hydrogen sulphide (high toxic, corrosive, flammable and explosive) maintained in process at relative high temperatures and pressures. It is required an assessment of risks associated with the potential accidents. The paper presents adopted model for quantitative consequences assessment in heavy water plants. Following five basic steps are used to identify the risks involved in plants operation: hazard identification, accident sequences development, H 2 S emissions calculus, dispersion analyses and consequences determination. A brief description of each step and some information from risk assessment for our heavy water pilot plant are provided. Accident magnitude, atmospheric conditions and population density in studied area were accounted for consequences calculus. (author)

  14. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries.

    Science.gov (United States)

    Chowdhury, Shakhawat; Mazumder, M A Jafar; Al-Attas, Omar; Husain, Tahir

    2016-11-01

    Heavy metals in drinking water pose a threat to human health. Populations are exposed to heavy metals primarily through water consumption, but few heavy metals can bioaccumulate in the human body (e.g., in lipids and the gastrointestinal system) and may induce cancer and other risks. To date, few thousand publications have reported various aspects of heavy metals in drinking water, including the types and quantities of metals in drinking water, their sources, factors affecting their concentrations at exposure points, human exposure, potential risks, and their removal from drinking water. Many developing countries are faced with the challenge of reducing human exposure to heavy metals, mainly due to their limited economic capacities to use advanced technologies for heavy metal removal. This paper aims to review the state of research on heavy metals in drinking water in developing countries; understand their types and variability, sources, exposure, possible health effects, and removal; and analyze the factors contributing to heavy metals in drinking water. This study identifies the current challenges in developing countries, and future research needs to reduce the levels of heavy metals in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Radiation assisted thermonuclear burn wave dynamics in heavy ion fast ignition of cylindrical deuterium-tritium fuel target

    International Nuclear Information System (INIS)

    Rehman, S.; Kouser, R.; Nazir, R.; Manzoor, Z.; Tasneem, G.; Jehan, N.; Nasim, M.H.; Salahuddin, M.

    2015-01-01

    Dynamics of thermonuclear burn wave propagation assisted by thermal radiation precursor in a heavy ion fast ignition of cylindrical deuterium-tritium (DT) fuel target are studied by two dimensional radiation hydrodynamic simulations using Multi-2D code. Thermal radiations, as they propagate ahead of the burn wave, suffer multiple reflections and preheat the fuel, are found to play a vital role in burn wave dynamics. After fuel ignition, the burn wave propagates in a steady state manner for some time. Multiple reflection and absorption of radiation at the fuel-tamper interface, fuel ablation and radial implosion driven by ablative shock and fast fusion rates on the fuel axis, at relatively later times, result into filamentary wave front. Strong pressure gradients are developed and sausage like structures behind the front are appeared. The situation leads to relatively reduced and non-uniform radial fuel burning and burn wave propagation. The fuel burning due to DD reaction is also taken into account and overall fusion energy and fusion power density, due to DT and DD reactions, during the burn wave propagation are determined as a function of time. (authors)

  16. Deuterium exchange reaction between hydrogen and water in a trickle-bed column packed with novel catalysts

    International Nuclear Information System (INIS)

    Ahn, D. H.; Baek, S. W.; Lee, H. S.; Kim, K. R.; Kang, H. S.; Lee, S. H.; Jeong, H. S.

    1998-01-01

    The activity of a novel catalyst (Pt/SDBC) for deuterium exchange reaction between water and hydrogen streams in a trickle bed was measured. The performance of the catalyst was compared with a commercial catalyst with same metal content. The catalytic activity for the bed of wet-proofed catalyst diluted with hydrophillic packing material also measured. The Pt/SDBC catalyst shows higher activity in the liquid phase reaction than the commercial catalyst as measured in the vapor phase reaction. The performance for 50% dilution of the Pt/SDBC catalyst bed with hydrophillic packing material is better than that of the 100% bed due to more liquid holdup and better water distribution

  17. Determination of selected heavy metals in inland fresh water of ...

    African Journals Online (AJOL)

    Agadaga

    Key words: Heavy metals, freshwater, concentrations, quality, variation, distribution. ... prevalence of heavy metals in inland water of lower River. Niger drain are scarce ..... Niger waters at Ajaokuta were found to be low and within guideline.

  18. Development and implementation of the heavy water program at Bruce Power

    International Nuclear Information System (INIS)

    Davloor, R.; Bourassa, C.

    2014-01-01

    Bruce Power operates 8 pressurized heavy water reactor units requiring more than 6000 mega grams (Mg) of heavy water. A Heavy Water Management Program that has been developed to administer this asset over the past 3 years. Through a corporate management system the Program provides governance, oversight and support to the stations. It is implemented through organizational structure, program and procedure documents and an information management system that provides benchmarked metrics, business intelligence and analytics for decision making and prediction. The program drives initiatives such as major maintenance activities, capital programs, detritiation strategies and ensures heavy water systems readiness for outages and rehabilitation of units. (author)

  19. Development and implementation of the heavy water program at Bruce Power

    Energy Technology Data Exchange (ETDEWEB)

    Davloor, R.; Bourassa, C., E-mail: ram.davloor@brucepower.com, E-mail: carl.bourassa@brucepower.com [Bruce Power, Tiverton, ON (Canada)

    2014-07-01

    Bruce Power operates 8 pressurized heavy water reactor units requiring more than 6000 mega grams (Mg) of heavy water. A Heavy Water Management Program that has been developed to administer this asset over the past 3 years. Through a corporate management system the Program provides governance, oversight and support to the stations. It is implemented through organizational structure, program and procedure documents and an information management system that provides benchmarked metrics, business intelligence and analytics for decision making and prediction. The program drives initiatives such as major maintenance activities, capital programs, detritiation strategies and ensures heavy water systems readiness for outages and rehabilitation of units. (author)

  20. Consideration for a tritium removal facility at the Cernavoda Nuclear Power Station

    International Nuclear Information System (INIS)

    2006-01-01

    Full text: A pre-feasibility study considering process options for a Tritium Removal Facility at the Cernavoda Nuclear Power Station has been completed by ICIT and AECL. Three different process options were considered. These three options differ in the front-end process used to transfer tritium from heavy water to deuterium gas. All three options use cryogenic distillation (CD) as a back end process to extract tritium from the deuterium gas stream and concentrate it into a small volume stream of pure DT or T 2 that can be immobilized on a titanium sponge. The first option for the front-end process is Liquid Phase Catalytic Exchange (LPCE). The LPCE column is used to transfer the tritium from the heavy water to a recirculating stream of deuterium gas. The separation of hydrogen isotopes takes place in the cryogenic distillation column. Tritium-depleted deuterium gas from the CD system is fed back to the LPCE column. The cryogenic distillation system concentrates the tritium into a small volume of elemental tritium for storage. Tritiated heavy water that has been purified to remove catalyst poisons is fed to the top of the LPCE column. The heavy water leaving the column is depleted in deuterium. Both existing detritiation plants built to detritiate CANDU reactors (the Darlington TRF in Canada and the Wolsung TRF in Korea) use variations of the LPCE-CD process. The second option uses electrolysis to convert tritiated heavy water into oxygen and tritiated deuterium gas. The deuterium gas is sent to the Cryogenic Distillation system to extract and concentrate the tritium. The tritium depleted deuterium gas is recombined with the electrolytic oxygen to give a tritium-depleted heavy water product. The third option uses a Combined Electrolysis and Catalytic Exchange (CECE) front end. A CECE process concentrates the tritium in the water and, using water electrolysis, converts the concentrated tritium into deuterium gas. An overhead catalytic recombiner converts the

  1. Fine target of deuterium

    International Nuclear Information System (INIS)

    Diaz Diaz, J.; Granados Gonzalez, C. E.; Gutierrez Bernal, R.

    1959-01-01

    A fine target of deuterium on a tantalum plate by the absorption method is obtained. In order to obtain the de gasification temperature an induction generator of high frequency is used and the deuterium pass is regulated by means of a palladium valve. Two vacuum measures are available, one to measure the high vacuum in the de gasification process of the tantalum plate and the other, for low vacuum, to measure the deuterium inlet in the installation and the deuterium pressure change in the installation after the absorption in the tantalum plate. A target of 48 μ gr/cm 2 thick is obtained. (Author) 1 refs

  2. Study of the heavy water regeneration processes; Studija procesa za regeneraciju teske vode

    Energy Technology Data Exchange (ETDEWEB)

    Cavcic, E [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    Experience derived from heavy water reactor operation showed degradation and dilution of heavy water to be inevitable depends on the type of reactor. Dilution of heavy water during operation of the RA and the RB reactors is shown in this report. Principles and procedures of heavy water regeneration by electrolysis, fractional distillation, cleaning, prevention of tritium contamination are described as well as separation columns.

  3. Estimating the contribution of preferential flow to subsurface runoff from a hillslope using deuterium and chloride

    Science.gov (United States)

    Leaney, F. W.; Smettem, K. R. J.; Chittleborough, D. J.

    1993-06-01

    The concentrations of deuterium and chloride in rainfall, soil water and throughflow are reported for flow components through a mid-level gently sloping hillside podzolic soil with a well developed network of macropores. The deuterium and chloride signatures of the throughflow are shown to resemble that of rainfall rather than soil water for all rainfall events. Flow through macropores is considered to be the major mechanism for infiltration and throughflow. During the initial stages of rainfall, infiltrating water bypasses much of the soil matrix and a transient water table is established. Storage associated with this water table dampens much of the noise from the deuterium and chloride signature of the rainfall while maintaining the mean rainfall signature. The possible implications on the use of stable isotopes and conservative tracers such as chloride for streamflow partitioning are discussed.

  4. Radiation damage and deuterium trapping in deuterium-ion-irradiated Fe–9Cr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Iwakir, Hirotomo, E-mail: iwakiri@edu.u-ryukyu.ac.jp [Faculty and Graduate School of Education, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan); Tani, Munechika [Interdisciplinary Graduate School of Engineering Sciences, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan); Watanabe, Yoshiyuki [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Yoshida, Naoaki [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-01-15

    Thermal desorption of deuterium (D{sub 2}) from deuterium-ion (D{sub 2}{sup +})-irradiated Fe–9Cr was correlated with the microstructural evolution of the alloy during irradiation with 8-keV D{sub 2}{sup +} ions following annealing to determine the retention and desorption behavior of the implanted deuterium and to identify effective traps for them, particularly at high temperature. After irradiation at 573 K, a new desorption stage formed between 650 and 1100 K at higher fluences, and cavities were observed using transmission electron microscopy. The total amount of trapped deuterium following irradiation with a fluence of 3.0 × 10{sup 22} ions/m{sup 2} was 6.8 × 10{sup 17} D{sub 2}/m{sup 2}, or approximately 0.007%. These results indicate that the deuterium atoms recombined to form D{sub 2} molecules at the surfaces of the cavities.

  5. Conceptual designing of reduced-moderation water reactor with heavy water coolant

    Energy Technology Data Exchange (ETDEWEB)

    Hibi, Kohki; Shimada, Shoichiro; Okubo, Tsutomu E-mail: okubo@hems.jaeri.go.jp; Iwamura, Takamichi; Wada, Shigeyuki

    2001-12-01

    The conceptual designing of reduced-moderation water reactors, i.e. advanced water-cooled reactors using plutonium mixed-oxide fuel with high conversion ratios more than 1.0 and negative void reactivity coefficients, has been carried out. The core is designed on the concept of a pressurized water reactor with a heavy water coolant and a triangular tight lattice fuel pin arrangement. The seed fuel assembly has an internal blanket region inside the seed fuel region as well as upper and lower blanket regions (i.e. an axial heterogeneous core). The radial blanket fuel assemblies are introduced in a checkerboard pattern among the seed fuel assemblies (i.e. a radial heterogeneous core). The radial blanket region is shorter than the seed fuel region. This study shows that the heavy water moderated core can achieve negative void reactivity coefficients and conversion ratios of 1.06-1.11.

  6. Water deuterium fractionation in the high-mass star-forming region G34.26+0.15 based on Herschel/HIFI data

    DEFF Research Database (Denmark)

    Coutens, Audrey; Vastel, C.; Hincelin, U.

    2014-01-01

    Understanding water deuterium fractionation is important for constraining the mechanisms of water formation in interstellar clouds. Observations of HDO and H_2^{18}O transitions were carried out towards the high-mass star-forming region G34.26+0.15 with the Heterodyne Instrument for the Far...... to an age of ˜105 yr after the infrared dark cloud stage....

  7. Heavy water stratification in a low-mass protostar

    NARCIS (Netherlands)

    Coutens, A.; Vastel, C.; Cazaux, S.; Bottinelli, S.; Caux, E.; Ceccarelli, C.; Demyk, K.; Taquet, V.; Wakelam, V.

    Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular deuterium fractionation has been found in the environments of low-mass star-forming regions and, in particular, the Class 0 protostar IRAS 16293-2422. Aims. The key program Chemical HErschel Surveys of Star

  8. Conceptual design of a large heavy water reactor for US siting

    International Nuclear Information System (INIS)

    Shapiro, N.L.; Jesick, J.F.

    1979-09-01

    Information is presented concerning fuel management and safety and licensing assessment of the pressurized heavy water reactor; and commercial introduction of the pressurized heavy water reactor in the United States

  9. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  10. Carbon and deuterium nuclear magnetic resonance in solids

    Energy Technology Data Exchange (ETDEWEB)

    Shattuck, Thomas Wayne [Univ. of California, Berkeley, CA (United States)

    1976-07-01

    In Chapter I we present the results on a study of cross polarization dynamics, between protons and carbon-13 in adamantane, by the direct observation of the dilute, carbon-13, spins. These dynamics are an important consideration in the efficiency of proton enhancement double-resonance techniques and they also provide good experimental models for statistical theories of cross relaxation. In order to test these theories we present a comparison of the experimental and theoretical proton dipolar fluctuation correlation time τc, which is experimentally 110 ± 15 μsec and theoretically 122 μsec for adamantane. These double resonance considerations provide the background for extensions to deuterium and double quantum effects discussed in Chapter II. In Chapter II an approach to high resolution nmr of deuterium in solids is described. The m = 1 → -1 transition is excited by a double quantum process and the decay of coherence Q(τ) is monitored. Fourier transformation yields a deuterium spectrum devoid of quadrupole splittings and broadening. If the deuterium nuclei are dilute and the protons are spin decoupled, the double-quantum spectrum is a high resolution one and yields information on the deuterium chemical shifts Δω. The relationship Q(τ) ~ cos 2Δωτ is checked and the technique is applied to a single crystal of oxalic acid dihydrate enriched to ~ 10% in deuterium. The carboxyl and the water deuterium shifts are indeed resolved and the anisotropy of the carboxyl shielding tensor is estimated to be Δσ = 32 ± 3 ppm. A complete theoretical analysis is presented. The extension of cross relaxation techniques, both direct and indirect, to proton-deuterium double resonance is also described. The m = 1 → -1 double quantum transition and the m = ± 1 → 0 single quantum transitions may all be polarized and we present the derivation of the Hartmann-Hahn cross polarization conditions for each case. In addition the dynamics of the double quantum process

  11. Detritiation plant of the Laue Longevin Institute

    International Nuclear Information System (INIS)

    Pautrot, P.; Arnaud, J.P.

    The detritiation plant at the Laue Longevin Institute, which is to serve the double function of detritiation and reconcentration of heavy water in the high flux reactor (HFR) is described. The process effected in this unit combines a catalytic exchange between heavy water and deuterium and a distillation of liquid deuterium. Placed in operation at the end of 1971, this installation processed heavy water from the HFR from the beginning of 1972, maintaining an isotopic concentration above 99.6 percent and a tritium activity below 2 Ci/liter. Exceptionally satisfactory performance now permits also processing of tritiated heavy water from external sources

  12. Deuterium measurement by emission spectrometry

    International Nuclear Information System (INIS)

    Niemann, E.G.; Heilig, K.; Dumke, I.

    1978-01-01

    The method makes it possible to determine the relative deuterium content of enriched water samples. For this, the relative intensities of the Hα and Dα lines are measured which are emitted by a high-frequency discharge in water vapour. Although the method is not as exact as mass spectrometry, it has the following advantages: - Easy sample preparation (no reduction necessary); - samples of highly different enrichment can be measured one after the other without the danger of memory effects; - much lower apparatus and cost expenditure. The necessary sample size is about the same in both methods. (orig.) [de

  13. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    International Nuclear Information System (INIS)

    Itsuo, Iida; Junko, Kato; Kenzi, Tamuru

    1977-01-01

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.) [de

  14. Deuterium microscopy using 17 MeV deuteron–deuteron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Reichart, Patrick, E-mail: patrick.reichart@unibw.de; Moser, Marcus; Greubel, Christoph; Peeper, Katrin; Dollinger, Günther, E-mail: guenther.dollinger@unibw.de

    2016-03-15

    Using 17 MeV deuterons as a micrometer focused primary beam, we performed deuterium microscopy by using the deuteron–deuteron (dd) scattering reaction. We describe our new box like detector setup consisting of four double sided silicon strip detectors (DSSSD) with 16 strips on each side, each covering up to 0.5 sr solid angle for coincidence detection. This method becomes a valuable tool for studies of hydrogen incorporation or dynamic processes using deuterium tagging. The background from natural hydrocarbon or water contamination is reduced by the factor 150 ppm of natural abundance of deuterium in hydrogen. Deuterium energies of up to 25 MeV, available at the microprobe SNAKE, are ideal for the analysis of thin freestanding samples so that the scattered particles are transmitted to the detector. The differential cross section for the elastic scattering reaction is about the same as for pp-scattering (~100 mb/sr). The main background due to nuclear reactions is outside the energy window of interest. Deuteron–proton (dp) scattering events give an additional signal for hydrogen atoms, so the H/D-ratio can be monitored in parallel. A deuterium detection limit due to accidental coincidences of 3 at-ppm down to less than 1 at-ppm is demonstrated on deuterated polypropylen sheets as well as thick polycarbonate sheets after various stages of coincidence filtering that is possible with our granular detector.

  15. Isotope effect and deuterium excess parameter revolution in ice and snow melt

    International Nuclear Information System (INIS)

    Yin Guan; Ni Shijun; Fan Xiao; Wu Hao

    2003-01-01

    The change of water isotope composition actually is a integrated reaction depending on the change of environment. The ice and snow melt of different seasons in high mountain can obviously influence the change of isotope composition and deuterium excess parameter of surface flow and shallow groundwater. To know the isotopic fractionation caused by this special natural background, explore its forming and evolvement, is unusually important for estimating, the relationship between the environment, climate and water resources in an area. Taking the example of isotope composition of surface flow and shallow groundwater in Daocheng, Sichuan, this paper mainly introduced the changing law of isotope composition and deuterium excess parameter of surface flow and hot-spring on conditions of ice and snow melt with different seasons in high mountain; emphatically discussed the isotope effect and deuterium excess parameter revolution in the process of ice and snow melting and its reason. (authors)

  16. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    International Nuclear Information System (INIS)

    Seungwoo Paek; Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-01-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  17. Method for enriching and separating heavy hydrogen isotopes from substance streams containing such isotopes by means of isotope exchange

    International Nuclear Information System (INIS)

    Knochel, A.; Eggers, I.; Klatte, B.; Wilken, R. D.

    1985-01-01

    A process for enriching and separating heavy hydrogen isotopes having a heavy hydrogen cation (deuterium and/or tritium) from substance streams containing them, wherein the respectively present hydrogen isotopes are exchanged in chemical equilibria. A protic, acid solution containing deuterium and/or tritium is brought into contact with a value material from the group of open-chained polyethers or aminopolyethers, macro-monocyclic or macro-polycyclic polyethers, macro-monocyclic or macro-polycyclic amino polyethers, and mixtures of these values, in their free or proton salt form to form a reaction product of the heavy hydrogen cation with the value or value salt and bring about enrichment of deuterium and/or tritium in the reaction product. The reaction product containing the value or value salt is separated from the solution. The separated reaction product is treated to release the hydrogen isotope(s) to be enriched in the form of deuterium oxide (HDO) and/or tritium oxide (HTO) by regenerating the value or its salt, respectively. The regenerated value is returned for reuse

  18. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    Directory of Open Access Journals (Sweden)

    Huixuan Li

    2015-07-01

    Full Text Available China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1 spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2 spatial statistical methods were used to examine the underlying socioeconomic and physical factors behind water pollution including socioeconomic transitions (industrialization, urbanization, globalization and economic development, and environmental characteristic (natural resources, hydrology and vegetation coverage. The results show that only Cr pollution levels increased over the years. The individual pollution levels of the other four heavy metals, As, Cd, Hg, and Pb, declined. High heavy metal water pollution levels are closely associated with both anthropogenic activities and physical environments, in particular abundant mineral resources and industrialization prosperity. On the other hand, economic development and urbanization play important roles in controlling water pollution problems. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and strategies for protecting water sources and controlling water pollution; thus improving the quality of living environments.

  19. Extending the product variety at ROMAG-PROD Heavy Water Plant

    International Nuclear Information System (INIS)

    Preda, M.; Patrascu, M.; Achimescu, D.; Stroia, A.

    2004-01-01

    Full text: Having in mind that the prospects of operating the ROMAG-PROD Heavy Water Plant are conditioned by both the heavy water market demand and the wear of the equipment which is exposed to hydrogen sulfide-induced corrosion, some possibilities were considered to extend the assortment of products, the production of which could ensure the plant's operation on long term. The proposals here refer to promoting the efficient production of oxygen-isotope-based products which would optimize maximally the exploit of available raw materials, supply and utilities of the ROMAG compound. The market manifests a significant demand of water enriched in the 18 O isotope up to 95-97% purity that is used in Positron Emission Tomography (PET). This oxygen isotope is also used as a labelling agent in studies of reaction mechanisms and paleo-climatologic studies as well. Some research evidenced the superconducting properties of some oxygen compounds containing the 18 O isotope. The isotope 17 O has applications in Nuclear Magnetic Resonance (NMR) as being the sole oxygen isotope endowed with a nuclear magnetic moment. On the other hand, it was found that although the 16 O isotope has a natural abundance of 99.8%, applications exist that require the absolute purity of this isotope i.e. the elimination of the other oxygen isotopes as is the case of fission reactors with Plutonium dioxide as nuclear fuel. The methods applied on industrial scale for enriching the oxygen isotopes are based on distillation of some oxygen compounds such as water and nitrogen monoxide. The possibility of a supplementary distillation of the heavy water at a distillation line of ROMAG-PROD Heavy Water Plant was considered in order to enrich the heavy water in the 17 O and 18 O isotopes up to an upper limit of 2-5% for 18 O. Obtaining the heavy isotopes of oxygen by distillation of heavy water is characterized by several aspects as the following ones: a high specific consumption of steam due to both the low

  20. Report on Non-invasive acoustic monitoring of D2O concentration Oct 31 2017

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Eric Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-06

    There is an urgent need for real-time monitoring of the hydrogen /deuterium ratio (H/D) for heavy water production monitoring. Based upon published literature, sound speed is sensitive to the deuterium content of heavy water and can be measured using existing acoustic methods to determine the deuterium concentration in heavy water solutions. We plan to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of quantifying H/D ratios in solution. A successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended H/D ratio measurements with a resolution of less than 0.2% vol.

  1. Experiments regarding organism's behaviour under deuterium-depleted water influence

    International Nuclear Information System (INIS)

    Stefanescu, I.; Steflea, D.; Titescu, Gh.

    1999-01-01

    Deuterium-depleted water (DDW) has an isotopic content smaller than 45 ppm D/(D+H). The role of naturally occurring D in living organisms was examined by using DDW instead of natural water. The DDW significantly decreased the growth rate of the L929 fibroblast cell line, and also inhibited the tumour growth. These suggest that the naturally occurring D has a central role in signal transduction involved in cell cycle regulation. Beginning with 1996 the Institute of Cryogenics and Isotope Separation, DDW producer, co-operated with Romanian specialised institutes for biological effect's evaluation of DDW. These investigations led to the following conclusions: - DDW caused a tendency of increasing the basal tone, accompanied by the intensification of the vasoconstrictor effects of phenylefrine, noradrenaline and angiotensin; the increase of the basal tone and vascular reactivity produced by the DDW persists after the removal of the vascular endothelium. - DDW stimulates immune defence reactions, represented by the opsonic, bactericidal and phagocyte capacity of the immune system, together with increase in the numbers of polymorphonuclear neutrophils. - Animals treated with DDW showed an increase of the resistance both to sublethal and to lethal gamma radiation doses, suggesting a radioprotective action. - Investigation regarding artificial reproduction of fish with DDW fecundated solutions confirmed favourable influence both in embryo growth stage and in resistance in the following growth stages. - One has studied germination growth and quantitative character's variability at two genotypes of Avena Sativa; one can remark the favourable influence of DDW on biological process at plants in various ontogenic stages. (authors)

  2. Cooling water treatment for heavy water project (Paper No. 6.9)

    International Nuclear Information System (INIS)

    Valsangkar, H.N.

    1992-01-01

    With minor exceptions, water is the preferred industrial medium for the removal of unwanted heat from process systems. The application of various chemical treatments is required to protect the system from water related and process related problems of corrosion, scale and deposition and biofouling. The paper discusses the cooling water problems for heavy water industries along with the impact caused by associated fertilizer units. (author). 6 figs

  3. A study on the application of CRUDTRAN code in primary systems of domestic pressurized heavy-water reactors for prediction of radiation source term

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jong Soon; Cho, Hoon Jo; Jung, Min Young; Lee, Sang Heon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2017-04-15

    The importance of developing a source-term assessment technology has been emphasized owing to the decommissioning of Kori nuclear power plant (NPP) Unit 1 and the increase of deteriorated NPPs. We analyzed the behavioral mechanism of corrosion products in the primary system of a pressurized heavy-water reactor-type NPP. In addition, to check the possibility of applying the CRUDTRAN code to a Canadian Deuterium Uranium Reactor (CANDU)-type NPP, the type was assessed using collected domestic onsite data. With the assessment results, it was possible to predict trends according to operating cycles. Values estimated using the code were similar to the measured values. The results of this study are expected to be used to manage the radiation exposures of operators in high-radiation areas and to predict decommissioning processes in the primary system.

  4. Heavy water technology and its contribution to energy sustainability

    International Nuclear Information System (INIS)

    MacDiarmid, H.; Alizadeh, A.; Hopwood, J.; Duffey, R.

    2009-01-01

    Full text: As the global nuclear industry expands several markets are exploring avenues and technologies to underpin energy security. Heavy water reactors are the most versatile power reactors in the world. They have the potential to extend resource utilization significantly, to allow countries with developing industrial infrastructures access to clean and abundant energy, and to destroy long-lived nuclear waste. These benefits are available by choosing from an array of possible fuel cycles. Several factors, including Canada's early focus on heavy-water technology, limited heavy-industry infrastructure at the time, and a desire for both technological autonomy and energy self-sufficiency, contributed to the creation of the first commercial heavy water reactor in 1962. With the maturation of the industry, the unique design features of the now-familiar product-on-power refuelling, high neutron economy, and simple fuel design-make possible the realization of its potential fuel-cycle versatility. As resource constrains apply pressure on world markets, the feasibility of these options have become more attractive and closer to entering widespread commercial application

  5. HEAVY METALS AS UNWANTED COMPONENTS OF BACKWASH WATER DERIVED FROM GROUNDWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-06-01

    Full Text Available The paper presents some aspects of the problem of heavy metals presence in wastewater and sewage sludge from water treatment. In the first part, issues on quality of wastewaters and sludge produced during water treatment along with actions aimed at the neutralization of such wastes, were discussed. Subsequent parts of the work present the example of 12 groundwater treatment stations in a particular municipality, and the problem of backwash water quality, in particular, heavy metals contents. The analysis covered a period of three years: 2013, 2014, and 2015. The authors, using the discussed examples, have shown that besides hydrated iron and manganese oxides, also other toxic contaminants can be present in backwash water from groundwater treatment. In particular, the qualitative analysis of the backwash water revealed the presence of heavy metals, mainly zinc. The test results for backwash water were compared with those of filtrate qualitative assessment, wherein the heavy metals were not found. This fact indicated the metal retention in the filter bed and their unsustainable immobilization resulting in penetration of heavy metals from deposit to the backwash water along with other impurities, mainly iron and manganese oxides. The main conclusion from the study is to demonstrate the need for constant monitoring of the backwash water quality, including the presence of toxic heavy metals. This is also important because of the requirement to minimize the negative environmental impact of wastes generated during the water treatment process.

  6. Liquid hydrogen and deuterium targets; Cibles a hydrogene et deuterium liquides

    Energy Technology Data Exchange (ETDEWEB)

    Bougon, M; Marquet, M; Prugne, P [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1961-07-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [French] Description de: 1) Cible a pression atmospherique; hydrogene liquide, 400 mm d'epaisseur; l'isolement thermique: styrofoam; on utilise les vapeurs d'hydrogene pour ameliorer le refroidissement de la cible; hublots en Mylar. 2) Cible sous vide; contenance 12 litres; hydrogene ou deuterium; epaisseur du liquide 400 mm; l'isolement thermique est assure par une cuve a vide et un ecran d'azote liquide. Recuperation et liquefaction des vapeurs de deuterium sont effectuees dans la cuve a vide contenant la cible. Le systeme de vidange pour la cible est concu pour fonctionner en quelques minutes. (auteur)

  7. "Periodic-table-style" paper device for monitoring heavy metals in water.

    Science.gov (United States)

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  8. Canned motor pumps at Heavy Water Project, Baroda

    International Nuclear Information System (INIS)

    Batra, R.K.; Waishampayan, S.C.

    1981-01-01

    Pumps to be used in heavy water plants must be reliable and should require negligible maintenance, because most of them are totally unapproachable under normal circumstances. Canned motor pumps fulfil these requirements. Their design features are described briefly. The details of: (1) the pumps in the isotopic exchange tower and (2) pumps for liquid ammonia and catalyst are given. Problems faced during commissioning of such pumps in Baroda Heavy Water Project were bulging of rotors of tower pumps, bulging of stators, jamming and failure of bearings. Solution of these problems is described. (M.G.B.)

  9. The tracer function of isotope composition and deuterium excess parameter of water bodies on prospecting for geothermal water: taking the prospecting for geothermal water in Sanjianshui, Sichuan for example

    International Nuclear Information System (INIS)

    Yang Bo; Yin Guan

    2003-01-01

    Based on the isotope composition features of water bodies in Sanjiashui area, this paper use the theory of deuterium excess parameter (d) to discuss and cause of formulation, recharge source, removed patch, detained time and dynamics feature on ground water. These discussed problems have far-reaching meaning on evaluating the size of geothermal water, exploited potential of thermal spring and find new thermal spring in neighboring area. We analyze the relation of d and tritium content (T) on different water bodies in Sanjianshui area and draw some conclusions. Firstly, all water bodies in Sanjianshui origin from precipitation. Secondly, precipitation of northwest mountain area that have long removed patch and long detained time is the recharge resource of groundwater in basin. In addition, we demonstrate the possibility of existence of geothermal water in several positions of Sanjianshui area. (authors)

  10. Changes in bacterial radiation sensitivity due to deuterium substitution

    International Nuclear Information System (INIS)

    Strauss, A.; Weiss, H.

    1985-01-01

    The influence of deuterium substitution for hydrogen on radiation sensitivity was measured under various conditions for E. coli B/r irradiated by 450 kev electrons in single intense pulses. Cells were grown in a nutrient medium made from a deuterium oxide based solution. They were suspended in a D/sub 2/O based buffered saline and plated in thin aqueous layers on membrane filters and irradiated in 100% N/sub 2/ or 100% O/sub 2/. Comparisons were made to cells similarly plated and irradiated but grown instead in a water based nutrient medium and suspended in either a water based or a D/sub 2/O based buffered saline. For the conventionally grown cells, D/sub 2/O increased the radiation sensitivity in both gases by about 10%. For cells grown and suspended with D/sub 2/O based media, a 50% reduction of radiation sensitivity was found with both gas and an increased extrapolation number was observed. In this latter method, deuterium is more fully substituted for hydrogen in the molecular substrate of the cell. These cells were also irradiated over a temperature range of 2 0 C to 43 0 C after being suspended in deuterated ethanol. Speculations for the changes induced by the substitution are presented

  11. Thermal neutron standard fields with the KUR heavy water facility

    International Nuclear Information System (INIS)

    Kanda, K.; Kobayashi, K.; Shibata, T.

    1978-01-01

    A heavy water facility attached to the KUR (Kyoto University Reactor, swimming pool type, 5 MW) yields pure thermal neutrons in the Maxwellian distribution. The facility is faced to the core of KUR and it contains about 2 tons of heavy water. The thickness of the layer is about 140 cm. The neutron spectrum was measured with the time of flight technique using a fast chopper. The measured spectrum was in good agreement with the Maxwellian distribution in all energy region for thermal neutrons. The neutron temperature was slightly higher than the heavy water temperature. The contamination of epithermal and fast neutrons caused by photo-neutrons of the γ-n reaction of heavy water was very small. The maximum intensity of thermal neutrons is 3x10 11 n/cm 2 sec. When the bismuth scatterer is attached, the gamma rays contamination is eliminated by the ratio of 0.05 of gamma rays to neutrons in rem. This standard neutron field has been used for such experiments as thermal neutron cross section measurement, detector calibration, activation analysis, biomedical purposes etc. (author)

  12. Heat exchangers in heavy water reactor systems

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1988-01-01

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  13. Longitudinal measurements of total body water and body composition in healthy volunteers by online breath deuterium measurement and other near-subject methods

    Czech Academy of Sciences Publication Activity Database

    Engel, B.; Španěl, Patrik; Smith, D.; Diskin, A. M.; Davis, S. J.

    2005-01-01

    Roč. 2, č. 3 (2005), s. 99-106 ISSN 1479-456X R&D Projects: GA ČR(CZ) GA203/00/0632 Institutional research plan: CEZ:AV0Z40400503 Keywords : total body water * deuterium isotope dilution * FA-MS * bio-impendance Subject RIV: CF - Physical ; Theoretical Chemistry

  14. Environmental assessment of ground water pollution by heavy ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the relationship between the concentrations of heavy metals in well water and bioaccumulation of the most abundant metals in chicken tissues in some areas in the province of Mecca Almokaramah, Saudi Arabia. Among the heavy metals (Cd, Zn, Cr, Mn, Cu Hg, Pb and Ni) studied, ...

  15. Deuterium isotope effect on the intramolecular electron transfer in Pseudomonas aeruginosa azurin

    DEFF Research Database (Denmark)

    Farver, O.; Zhang, Jingdong; Chi, Qijin

    2001-01-01

    rather than negative. Isotope effects are, however, also inherent in the nuclear reorganization Gibbs free energy and in the tunneling factor for the electron transfer process. A slightly larger thermal protein expansion in H2O than in D2O (0.001 nm K-1) is sufficient both to account for the activation......Intramolecular electron transfer in azurin in water and deuterium oxide has been studied over a broad temperature range. The kinetic deuterium isotope effect, k(H)/k(D), is smaller than unity (0.7 at 298 K), primarily caused by the different activation entropies in water (-56.5 J K-1 mol(-1...

  16. Operating experiences on ammonia water exchange system at Heavy Water Plant, Talcher (paper No. 6.12)

    International Nuclear Information System (INIS)

    Venkat Ram, D.; Sharma, A.K.

    1992-01-01

    The Heavy Water Plant at Talcher employs bithermal ammonia hydrogen exchange process for the production of heavy water. The paper describes about the existing ammonia water exchange column, its start-up, operating experience and the problems encountered in operation of the column. The operating experiences gained and the data collected over the last few years can be utilised for design and operation of new ammonia water exchange column. (V.R). 2 figs

  17. Heavy metal partitioning of suspended particulate matter-water and sediment-water in the Yangtze Estuary.

    Science.gov (United States)

    Feng, Chenghong; Guo, Xiaoyu; Yin, Su; Tian, Chenhao; Li, Yangyang; Shen, Zhenyao

    2017-10-01

    The partitioning of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) between the water, suspended particulate matter (SPM), and sediments in seven channel sections during three hydrologic seasons in the Yangtze Estuary was comprehensively investigated. Special attention was paid to the role of tides, influential factors (concentrations of SPM and dissolved organic carbon, and particle size), and heavy metal speciation. The SPM-water and sediment-water partition coefficients (K p ) of the heavy metals exhibited similar changes along the channel sections, though the former were larger throughout the estuary. Because of the higher salinity, the K p values of most of the metals were higher in the north branch than in the south branch. The K p values of Cd, Co, and As generally decreased from the wet season to the dry season. Both the diagonal line method and paired samples t-test showed that no specific phase transfer of heavy metals existed during the flood and ebb tides, but the sediment-water K p was more concentrated for the diagonal line method, owing to the relatively smaller tidal influences on the sediment. The partition coefficients (especially the K p for SPM-water) had negative correlations with the dissolved organic carbon (DOC) but positive correlations were noted with the particle size for most of the heavy metals in sediment. Two types of significant correlations were observed between K p and metal speciation (i.e., exchangeable, carbonate, reducible, organic, and residual fractions), which can be used to identify the dominant phase-partition mechanisms (e.g., adsorption or desorption) of heavy metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The future 700 MWe pressurized heavy water reactor

    International Nuclear Information System (INIS)

    Bhardwaj, S.A.

    2006-01-01

    The design of a 700 MWe pressurized heavy water reactor has been developed. The design is based on the twin 540 MWe reactors at Tarapur of which the first unit has been made critical in less than 5 years from construction commencement. In the 700 MWe design boiling of the coolant, to a limited extent, has been allowed near the channel exit. While making the plant layout more compact, emphasis has been on constructability. Saving in capital cost of about 15%, over the present units, is expected. The paper describes salient design features of 700 MWe pressurized heavy water reactor

  19. Deuterium abundance, from ultraviolet to visible

    International Nuclear Information System (INIS)

    Hebrard, Guillaume

    2000-01-01

    In the frame of the standard Big Bang model, the primordial abundance of deuterium is the most sensitive to the baryonic density of the Universe. It was synthesized only during the primordial nucleosynthesis few minutes after the Big Bang and no other standard mechanism is able to produce any further significant amount. On the contrary, since deuterium is burned up within stars, its abundance D/H decreases along cosmic evolution. Thus, D/H measurements constrain Big Bang and galactic chemical evolution models. There are three samples of deuterium abundances: primordial, proto-solar and interstellar. Each of them is representative of a given epoch, respectively about 15 Gyrs past, 4.5 Gyrs past and present epoch. Although the evolution of the deuterium abundance seems to be qualitatively understood, the measurements show some dispersion. Present thesis works are linked to deuterium interstellar abundance measurements. Such measurements are classically obtained from spectroscopic observations of the hydrogen and deuterium Lyman series in absorption in the ultraviolet spectral range, using space observatories. Results presented here were obtained with the Hubble Space Telescope and FUSE, which has recently been launched. Simultaneously, a new way to observe deuterium has been proposed, in the visible spectral range from ground-based telescopes. This has led to the first detections and the identification of the deuterium Balmer series, in emission in HII regions, using CFHT and VLT telescopes. (author) [fr

  20. Removal of gadolinium nitrate from heavy water

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W.

    2000-03-22

    Work was conducted to develop a cost-effective process to purify 181 55-gallon drums containing spent heavy water moderator (D2O) contaminated with high concentrations of gadolinium nitrate, a chemical used as a neutron poison during former nuclear reactor operations at the Savannah River Site (SRS). These drums also contain low level radioactive contamination, including tritium, which complicates treatment options. Presently, the drums of degraded moderator are being stored on site. It was suggested that a process utilizing biological mechanisms could potentially lower the total cost of heavy water purification by allowing the use of smaller equipment with less product loss and a reduction in the quantity of secondary waste materials produced by the current baseline process (ion exchange).

  1. Defect trapping of deuterium implanted in aluminium

    International Nuclear Information System (INIS)

    Kido, Y.; Kakeno, M.; Yamada, K.; Hioki, T.; Kawamoto, J.

    1982-01-01

    The behaviour of deuterium implanted in Al was studied by the D( 3 He,p) 4 He and the D(d,p)T nuclear reactions. Changes of the depth profiles of the deuterium after heat treatments indicated that the implanted deuterium was trapped by the defect produced during the deuterium implantation and the release probability of the trapped deuterium increased as the specimen temperature was raised. Assuming a thermal equilibrium locally in the region of high defect concentration, the trapping energy of deuterium in Al was determined to be 0.12eV. Since the release probability for the single crystal was considerably larger than that for the polycrystal specimens, the deuterium was considered to be strongly trapped in the grain boundaries. Distributions of displaced Al atoms and the recovery of the lattice damage by annealing were measured by the channelling technique. (author)

  2. Eliminating Heavy Metals from Water with NanoSheet Minerals as Adsorbents

    Directory of Open Access Journals (Sweden)

    Shaoxian Song

    2017-12-01

    Full Text Available Heavy metals usually referred to those with atomic weights ranging from 63.5 to 200.6. Because of natural-mineral dissolution and human activities such as mining, pesticides, fertilizer, metal planting and batteries manufacture, etc., these heavy metals, including zinc, copper, mercury, lead, cadmium and chromium have been excessively released into water courses, like underground water, lake and river, etc. The ingestion of the heavy metals-contaminated water would raise serious health problems to human beings even at a low concentration. For instance, lead can bring human beings about barrier to the normal function of kidney, liver and reproductive system, while zinc can cause stomach cramps, skin irritations, vomiting and anemia. Mercury is a horrible neurotoxin that may result in damages to the central nervous system, dysfunction of pulmonary and kidney, chest and dyspnea. Chromium (VI has been proved can cause many diseases ranging from general skin irritation to severe lung carcinoma. Accordingly, the World Health Organization announced the maximum contaminant levels (MCL for the heavy metals in drinking water. There are numerous processes for eliminating heavy metals from water in order to provide citizens safe drinking water, including precipitation, adsorption, ion exchange, membrane separation and biological treatment, etc. Adsorption is considered as a potential process for deeply removing heavy metals, in which the selection of adsorbents plays a predominant role. Nano-sheet minerals as the adsorbents are currently the hottest researches in the field. They are obtained from layered minerals, such as montmorillonite, graphite and molybdenite, through the processing of intercalation, electrochemical and mechanical exfoliation, etc. Nano-sheet minerals are featured by their large specific surface area, relatively low costs and active adsorbing sites, leading to be effective and potential adsorbents for heavy metals removal from water

  3. Future development in heavy water reactors in Canada

    International Nuclear Information System (INIS)

    Donnelly, J.; Hart, R.G.

    1982-01-01

    1982 marks the 35th anniversary of the start-up of Canada's first research and test reactor, NRX. Its first power reactor has been operating successfully for the past 20 years. With 5,000 MWe of domestic capacity installed, Canada's major CANDU (Canada Deuterium, Uranium) nuclear program has a further 9,500 MWe under construction in Canada for completion by 1990 as well as committed offshore projects in Argentina, Korea and Romania. The CANDU operating record, by any measure of performance, has been outstanding. This performance is largely due to the discipline imposed on the development, design, construction and operation by two fundamental choices: natural uranium and heavy water. The impact of these two choices on availability, fuel utilization, safety and economics is discussed. Future plans call for building on those characteristics which have made CANDU so successful. When time for change comes, current assessments indicate that it will be possible to convert to more efficient advanced fuel cycles without major changes to the basic CANDU design. Primary attention is being focussed on thorium fuel cycles to ensure an abundant and continuing supply of low cost energy for the long term. The resource savings available from these fuel cycles in expanding systems are reviewed and compared with those available from LWR's and Fast Breeders. The results clearly illustrate the versatility of the CANDU reactor. It can benefit from enrichment plants or get along without them. It can complement LWR's or compete with them. It can complement Fast Breeder Reactors or compete with them as well. In the very long term CANDU's and Fast Breeders combined offer the potential of burning all the world's uranium and all the world's thorium. (author)

  4. Development of a purification system at Dhruva to treat oil contaminated and chemically impure heavy water

    International Nuclear Information System (INIS)

    Suttraway, S.K.; Mishra, V.; Bitla, S.V.; Ghosh, S.K.

    2006-01-01

    Dhruva, a 100 MW (thermal) Research reactor uses Heavy Water as moderator, reflector and coolant. Normally during plant operation, the Heavy water from the system gets removed during operational and maintenance activities and this collected heavy water gets degraded and contaminated in the process. The degraded heavy water meeting the chemical specification requirement of the up gradation plant is sent for up gradation. Part of the Heavy water collected is contaminated with various organic and inorganic impurities and therefore cannot be sent for IP up gradation as it does not meet the chemical specification of the up gradation plant. This contaminated Heavy water was being stored in SS drums. Over the years of Reactor operation reasonable amount of contaminated Heavy water got collected in the plant. This Heavy water collected from leakages, during routine maintenance, operational activities and fuelling operation had tritium activity and variety of contamination including oil, chlorides, turbidity due to which the specific conductivity was very high. It was decided to purify this Heavy water in house to bring it up to up gradation plant chemical specification requirement. There were number of challenges in formulating a scheme to purify this Heavy water. The scheme needed to be simple and compact in design which could be set up in the plant itself. It should not pose radiological hazards due to radioactive Heavy water during its purification and handling. The contaminated Heavy water collected in drums had varying chemistry and IP. The purification plant should be able to do batch processing so that the different IP and chemical quality of Heavy water stored in different drums are not mixed during purification. It should be capable of removing the oil, chlorides, turbidity and decrease the conductivity to acceptable limits of the Up gradation plant. A purification plant was developed and commissioned after detail laboratory studies and trials. This paper explains

  5. Neutrinos: Heavy water detector

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The proponents of the Sudbury Neutrino Observatory (SNO) received a welcome Christmas present when William Winegard, Canadian Minister for Science and Technology announced the final details of the funding for this project, totalling 48 million Canadian dollars and including contributions from the US and the UK. The SNO experiment will extend significantly the study of solar neutrinos, using some 1,000 tonnes of heavy water to be installed more than two kilometres below ground in a nickel mine at Sudbury, Ontario

  6. Preparations for deuterium tritium experiments on the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.; Barnes, G.

    1994-04-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR). These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinet trademark system, modification of the vacuum system to handle tritium, preparation and testing of the neutral beam system for tritium operation and a final deuterium-deuterium (D-D) run to simulate expected deuterium-tritium (D-T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D-T experiments using D-D have been performed. The physics objectives of D-T operation are production of ∼ 10 megawatts (MW) of fusion power, evaluation of confinement and heating in deuterium-tritium plasmas, evaluation of α-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined α-particles. Experimental results and theoretical modeling in support of the D-T experiments are reviewed

  7. Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*

    International Nuclear Information System (INIS)

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Jaeger, E.F.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Kwon, S.; Labik, G.; Lam, N.T.; LaMarche, P.H.; Laughlin, M.J.; Lawson, E.; LeBlanc, B.; Leonard, M.; Levine, J.; Levinton, F.M.; Loesser, D.; Long, D.; Machuzak, J.; Mansfield, D.E.; Marchlik, M.; Marmar, E.S.; Marsala, R.; Martin, A.; Martin, G.; Mastrocola, V.; Mazzucato, E.; McCarthy, M.P.; Majeski, R.; Mauel, M.; McCormack, B.; McCune, D.C.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Milora, S.L.; Monticello, D.; Mueller, D.; Murakami, M.; Murphy, J.A.; Nagy, A.; Navratil, G.A.; Nazikian, R.; Newman, R.; Nishitani, T.; Norris, M.; O'Connor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D.K.; Park, H.; Park, W.; Paul, S.F.; Pavlov, Y.I.; Pearson, G.; Perkins, F.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C.K.; Pitcher, S.; Popovichev, S.; Qualls, A.L.; Raftopoulos, S.; Ramakrishnan, R.; Ramsey, A.; Rasmussen, D.A.; Redi, M.H.

    1994-01-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert TM system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of ∼10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of α-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined α particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed

  8. Chemical aspects of hydrogen ingress in zirconium and zircaloy pressure tubes: ageing management of Indian PHWR coolant channels - determination of hydrogen and deuterium

    International Nuclear Information System (INIS)

    Sayi, Y.S.; Shankaran, P.S.; Yadav, C.S.; Ramanjaneyulu, P.S.; Venugopal, V.; Ramakumar, K.L.; Chhapru, G.C.; Prasad, R.; Jain, H.C.; Sood, D.D.

    2009-02-01

    Pressurized heavy water reactors (PHWRs) use zirconium and zirconium based alloys as clad and coolant tubes since its beginning. The first ever zircaloy-2 pressure tube failure occurred in 1983 at Ontario Hydro's Pickering Unit 2 in Canada which necessitated a thorough examination of causes of such failure. The failure was attributed to massive hydriding at the failed spot of pressure tube. Continuous usage of zirconium alloys could result in their hydrogen and deuterium pick-up leading to hydrogen/ deuterium embrittlement. The life of the zircaloy coolant channels is dictated by hydrogen/deuterium content and hence ageing management of the pressure tubes is essential for ensuring their trouble-free usage. It is desirable to have a sound knowledge on the chemical aspects of zirconium and zirconium based alloys metallurgy, the mechanistic principles of hydrogen ingress into the pressure tubes during in reactor service, and identifying suitable analytical methodologies for precise and accurate determination of hydrogen in wafer thin sliver samples carved out from insides of pressure tubes without causing any structural damage so that it can continue to remain in service. This is desirable so that the ageing management does not result in cost-escalation. This report is divided in to three main parts. The first part deals with the chemical aspects of zirconium and zirconium based alloy metallurgy, the mechanism of hydrogen pick-up and hydride formation in zirconium matrix. The second part describes various methodologies and their limitations, available for hydrogen/deuterium determination. The third part deals in detail, about the extensive investigations carried out at Radioanalytical Chemistry Division (RACD) in Radiochemistry and Isotope Group for establishing an indigenously developed hot vacuum extraction system in combination with quadrupole mass spectrometry for precise determination of hydrogen and deuterium in wafer thin sliver sample of zircaloy. The

  9. Exploring the Origins of Deuterium Enrichments in Solar Nebular Organics

    Science.gov (United States)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; O'D. Alexander, Conel M.; Du, Fujun; Graninger, Dawn; Öberg, Karin I.; Harries, Tim J.

    2016-03-01

    Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies generally have higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this difference arises at least in part due to (1) the availability of additional chemical fractionation pathways for organics beyond that for water, and (2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic-ray ionization rate, and find that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursors CH2D+/CH3+. We also find that the D/H ratio in individual species varies significantly depending on their particular formation pathways. For example, from ˜20-40 au, CH4 can reach {{D}}/{{H}}˜ 2× {10}-3, while D/H in CH3OH remains locally unaltered. Finally, while the global organic D/H in our models can reproduce intermediately elevated D/H in the bulk hydrocarbon reservoir, our models are unable to reproduce the most deuterium-enriched organic materials in the solar system, and thus our model requires some inheritance from the cold interstellar medium from which the Sun formed.

  10. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    Science.gov (United States)

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  11. Investigation of the heavy water distillation system at the RA reactor

    International Nuclear Information System (INIS)

    Zecevic, V.; Badrljica, R.

    1963-01-01

    The heavy water distillation system was tested because this was not done before the reactor start-up. Detailed inspection of the system components showed satisfactory results. Leak testing was done as well as the testing of the instrumentation which enables reliable performance of the system. Performance testing was done with ordinary water and later 2700 l of heavy water from the reactor was purified, decreasing the activity by 45%

  12. Deuterium trapping in liquid lithium irradiated by deuterium plasma

    International Nuclear Information System (INIS)

    Pisarev, A.; Moshkunov, K.; Vizgalov, I.; Gasparyan, Yu.

    2013-01-01

    Liquid lithium was irradiated by deuterium plasma to a low fluence of 10 22 –10 23 D/m 2 , cooled down to room temperature, and then slowly heated. The temperature and release rate were measured during heating. Two plateaus on the temperature–time dependence were observed at 180 °C and 660 °C. The first one corresponds to melting of Li and the second one – either to melting or to decomposition of solid LiD. Features of deuterium release in TDS were interpreted in terms of decomposition of lithium deuterides formed during plasma irradiation

  13. Deuterium ion irradiation damage and deuterium trapping mechanism in candidate stainless steel material (JPCA2) for fusion reactor

    International Nuclear Information System (INIS)

    Ashizuka, Norihiro; Kurita, Takaaki; Yoshida, Naoaki; Fujiwara, Tadashi; Muroga, Takeo

    1987-01-01

    An improved austenitic stainless steel (JPCA), a candidate material for fusion reactor, is irradiated at room temperature with deuterium ion beams. Desorption spectra of deuterium gas is measured at various increased temperatures and defects formed under irradiation are observed by transmission electron microscopy to determine the mechanism of the thermal release of deuteriums and the characteristics of irradiation-induced defects involved in the process. In the deuterium deportion spectra observed, five release stages are found to exist at 90 deg C, 160 deg C, 220 deg C, 300 deg C and 400 deg C, referred to as Stage I, II, III, IV and V, respectively. Stage I is interpreted as representing the release of deuteriums trapped in point defects (presumably vacancies) formed under irradiation. The energy of desorption from the trapping sites is estimated at 0.8 eV. Stage II is concluded to be associated with the release of deuteriums trapped in a certain kind of existing defects. Stage III involves the release of deuteriums that are trapped in dislocations, dislocation loops or dislocated portions of stacking fault tetrahedra. This release occurs significantly in processed materials and other materials irradiated with high energy ion beams that may cause cascade damage. Stage IV is interpreted in terms of thermal decomposition of small deuterium clusters. Stage V is associated with the decomposition of rather large deuterium clusters grown on the {111} plane. (Nogami, K.)

  14. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Corrosion and deuterium uptake of Zr-based alloys in supercritical water

    International Nuclear Information System (INIS)

    Khatamian, D.

    2010-01-01

    To increase the thermodynamic efficiency above 40% in nuclear power plants, the use of supercritical water as the heat transport fluid has been suggested. Zircaloy-2, -4, Zr-Cr-Fe, Zr-1Nb and Zr-2.5Nb were tested as prospective fuel cladding materials in 30 MPa D 2 O at 500 o C. Zircaloy-2 showed the highest rates of corrosion and hydriding. Although Zr-Cr-Fe initially showed a very low corrosion rate, it displayed breakaway corrosion kinetics after 50 h exposure. The best-behaved material both from a corrosion and hydrogen uptake point of view was Zr-2.5Nb. However, the Zr-2.5Nb oxide growth rate was still excessive and beyond the current CANDU design allowance. Similar coupons, coated with Cr, were also tested. The coated layer effectively prevented oxidation of the coupons except on the edges, where the coating was thinner and had some flaws. In addition, the Cr-coated Zr-2.5Nb coupons had the lowest deuterium pickup of all the alloys tested and showed no signs of accelerated or nonuniform corrosion. (author)

  16. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    Energy Technology Data Exchange (ETDEWEB)

    Seungwoo Paek [KAERI (Korea, Republic of); Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-07-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  17. Operating performance of the prototype heavy water reactor Fugen

    International Nuclear Information System (INIS)

    1984-01-01

    Since the full scale operation was started in March, 1979, the ATR Fugen power station has been verifying the performance and reliability of the machinery and equipment, uranium-plutonium mixed oxide fuel and so on, and obtaining the technical prospect for putting ATRs in practical use by accumulating operation and maintenance techniques, through about five years of operation. In this report, the operational results of the Fugen power station are described. Fugen is a heavy water-moderated, boiling light water-cooled, pressure tube type reactor with 165 MWe output. As of the end of March, 1984, the total generated electric power was about 4.3 billion kWh, and the operation time was about 27,000 hours. The mean capacity ratio reached 58.8%. During the operation period, troubles including plant shutdown occurred eight times, but generally the performance and reliability of the machinery and equipment have been good. 580 fuels including 284 MOX fuels have been charged, but fuel breaking did not occur at all. The consumption of heavy water and the leak of tritium did not cause problem. The management of the core and fuel, the management of maintenance, the quality control of cooling water and heavy water, radiation control and the management of wastes are reported. (Kako, I.)

  18. Light and heavy water replacing system in reactor container

    International Nuclear Information System (INIS)

    Miyamoto, Keiji.

    1979-01-01

    Purpose: To enable to determine the strength of a reactor container while neglecting the outer atmospheric pressure upon evacuation, by evacuating the gap between the reactor container and a biological thermal shield, as well as the container simultaneously upon light water - heavy water replacement. Method: Upon replacing light water with heavy water by vacuum evaporation system in a nuclear reactor having a biological thermal shield surrounding the reactor container incorporating therein a reactor core by way of a heat expansion absorbing gap, the reactor container and the havy water recycling system, as well as the inside of heat expansion absorbing gap are evacuated simultaneously. This enables to neglect the outer atmospheric outer pressure upon evacuation in the determination of the container strength, and the thickness of the container can be decreased by so much as the external pressure neglected. (Moriyama, K.)

  19. High resolution deuterium NMR studies of bacterial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  20. High resolution deuterium NMR studies of bacterial metabolism

    International Nuclear Information System (INIS)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-01-01

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed

  1. Method of deuterium isotope separation and enrichment

    International Nuclear Information System (INIS)

    Benson, S.W.

    1979-01-01

    A method is described for separating and enriching deuterium containing molecules comprising the steps of: providing a source of organic molecules containing a normal abundance of deuterium atoms, the organic molecules having a structural formula RX, in which R is an organic radical selected from ethyl, isopropyl, t-butyl and 3-cyclopentenyl, and in which X is selected from F, Cl, Br and OH, and wherein R represents 3-cyclopentenyl, X may additionally represent H; exposing the molecules to the radiation of at least one pulsed infrared laser source which has been specifically tuned and focussed to selectively decompose RX molecules containing deuterium to form an enriched olefin specie containing deuterium, and HX; and separating the deuterium enriched olefin specie from the undecomposed deuterium depleted RX molecules and HX. (author)

  2. The Bare Critical Assembly of Natural Uranium and Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1958-07-01

    The first reactor built in Yugoslavia was the bare zero energy heavy water and natural uranium assembly at the Boris Kidric Institute of Nuclear Sciences, Belgrade. The reactor went critical on April 29, 1958. The possession of four tons of natural uranium metal and the temporary availability of seven tons of heavy water encouraged the staff of the Institute to build a critical assembly. A critical assembly was chosen, rather than high flux reactor, because the heavy water was available only temporarily. Besides, a 10 MW, enriched uranium, research reactor is being built at the same Institute and should be ready for operation late this year. It was supposed that the zero energy reactor would provide experience in carrying out critical experiments, operational experience with nuclear reactors, and the possibility for an extensive program in reactor physics. (author)

  3. Neutron disadvantage factors in heavy water and light water reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1966-01-01

    A number od heavy water and light water reactor cells are analyzed in this paper by applying analytical methods of neutron thermalization. Calculations done according to the one-group Amouyal-Benoist method are included in addition. Computer codes for ZUSE Z-23 computer were written by applying both methods. The obtained results of disadvantage factors are then compared to results obtained by one-group P 3 approximation and by multigroup K7-THERMOS code [sr

  4. Cost effective water treatment program in Heavy Water Plant (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Prasada Rao, G.

    2002-01-01

    Water treatment technology is in a state of continuous evolution. The increasing urgency to conserve water and reduce pollution has in recent years produced an enormous demand for new chemical treatment programs and technologies. Heavy water plant (Manuguru) uses water as raw material (about 3000 m 3 /hr) and its treatment and management has benefited the plant in a significant way. It is a fact that if the water treatment is not proper, it can result in deposit formation and corrosion of metals, which can finally leads to production losses. Therefore, before selecting treatment program, complying w.r.t. quality requirements, safety and pollution aspects cost effectiveness shall be examined. The areas where significant benefits are derived, are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and in-house development of cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments has helped the plant in achieving zero discharge and indirectly increased cost reduction of final product (heavy water); the dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15-20 lakhs in a year beside other advantages; the change over of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs.1.4 crore a year besides other advantages; the change over to proprietary formulation to in-house formulation in cooling water treatment has resulted in a saving about Rs.11 lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored. (author)

  5. Heavy metals concentrations in water bodies around aquamarine ...

    African Journals Online (AJOL)

    Water samples from three streams in the mining area of Eggon Hill were analysed. The Physicochemical values obtained were compared with WHO permissible standards in drinking water. Except for Cu and Zn with levels within permissible limits, other heavy metals determined were found to have levels above the WHO ...

  6. Imitation of deuterium plasma interaction with the surface of carbon materials in gaseous divertor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, S.N. E-mail: sinet@nfi.kiae.ru; Guseva, M.I.; Gureev, V.M.; Danelyan, L.S.; Khripunov, B.I.; Kolbasov, B.N.; Kulikauskas, V.S.; Litnovsky, A.M.; Martynenko, Yu.V.; Petrov, V.B.; Zatekin, V.V

    2003-03-01

    The experiments on simulation of gas divertor conditions were done in the LENTA facility under interaction of a plasma flow with neutral gas. The samples of carbon materials were exposed in a steady-state deuterium plasma (ion energy 5 eV, ion flux 5x10{sup 21} m{sup -2} s{sup -1}, fluence 10{sup 26} m{sup -2}) at 1470 K (MPG-8) and at 1320 K (SEP NB31). Heavy deuterocarbon molecules (C{sub 2}D{sub 2}, C{sub 2}D{sub 4}, C{sub 2}D{sub 6}) were observed in mass spectra of the discharge. This fact and high erosion yields show the presence of chemical erosion. Deuterium accumulation in carbon materials was studied by elastic recoil detection analysis. The integral deuterium content is 6x10{sup 18} m{sup -2} in SEP NB31 and 1.95x10{sup 19} m{sup -2} in MPG-8. The profiles of C and Mo atom distributions in deposited layer on Mo collector is 'X'-like. Carbon atoms distribution in deposited layer on Si is uniform. The integral deuterium content in co-deposited layers is 1.4x10{sup 21} m{sup -2} on Si and 4.8x10{sup 20} m{sup -2} on Mo. A globular structure of co-deposited layer on Mo collector was found.

  7. Deuterium oxide normalizes blood pressure and vascular calcium uptake in Dahl salt-sensitive hypertensive rats

    International Nuclear Information System (INIS)

    Vasdev, S.; Prabhakaran, V.; Sampson, C.A.

    1990-01-01

    This study examined the effect of 25% deuterium oxide in drinking water on systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas of Dahl salt-sensitive rats on 0.4% (low) and 8% (high) sodium chloride (salt) diet. Twenty-four rats were divided into four groups. Groups I and II were on the low salt diet and groups III and IV on the high salt diet from 6 weeks of age. Additionally, at 10 weeks of age groups I and III were placed on 100% water and groups II and IV on 25% deuterium oxide. At 14 weeks, systolic blood pressure, uptakes of calcium, and rubidium 86 by aortas were significantly higher (p less than 0.01) in rats on the high salt diet as compared with those on the low salt diet. Deuterium oxide intake normalized systolic blood pressure and aortic calcium uptake but not aortic rubidium 86 uptake in hypertensive rats on the high salt diet. Deuterium oxide had no effect on blood pressure or aortic calcium uptake in rats on the low salt diet. The parallel increase in systolic blood pressure and vascular calcium uptake suggests that increased calcium uptake mechanisms are associated with hypertension in salt-sensitive Dahl rats. Furthermore, deuterium oxide appears to normalize elevated blood pressure in salt-sensitive hypertensive rats by normalizing elevated vascular (aortic) calcium uptake

  8. Method for separation of water from bituminous shales, etc. [water-free heavy product and water-containing light product

    Energy Technology Data Exchange (ETDEWEB)

    Hellsing, G H

    1908-10-13

    The method is characterized by conducting all the products of distillation, coming from the retorts, into a controllable system of condensation. This system of condensation is so constructed that the products of distillation are cooled to such a temperature that only the water-free heavy distillates are being condensed, and is furthermore so constructed that the other products of distillation, not yet condensed, are being condensed in an ordinary system of coolers. The purpose is to separate the distillates into a water-free heavy product and a water-containing lighter product. The patent includes an additional claim.

  9. Use of Fourier transformed infrared spectrophotometer (FTIR) for determination of breastmilk output by the deuterium dilution method among Senegalese women

    International Nuclear Information System (INIS)

    Sarr Cisse, Aita; Diaham, Babou; Dossou, Nicole; Guiro, Amadou Tidiane; Wade, Salimata; Bluck, Leslie

    2002-01-01

    Breastmilk output can be estimated from the mother's total body water and water turnover rates after oral administration of deuterium oxide. Usually the deuterium enrichments are determined using a isotope ratio mass spectrometer, which is expensive and requires a specialist for operation and maintenance. Such equipment is dfficult to set up in developing countries. A less expensive method was developed which uses a Fourier transform infrared spectrophotometer (FTIR) for deuterium enrichment analysis. This study evaluated the constraints of using FTIR to study lactating women in Senegal. The deuterium isotope method was found to be adequate for free living subjects and presented few constraints except for the duration of the saliva sampling (14 days). The method offers the opportunity to determine simultaneously breastmilk output, mother's body composition, and breastfeeding practices. Deuterium sample enrichments measured with FTIR were fast and easy, but for spectrum quality some environmental control is required to optimize the results. (Authors)

  10. Assessment of heavy metals in loose deposits in drinking water distribution system.

    Science.gov (United States)

    Liu, Quanli; Han, Weiqiang; Han, Bingjun; Shu, Min; Shi, Baoyou

    2018-06-09

    Heavy metal accumulation and potential releases from loose deposits in drinking water distribution system (DWDS) can have critical impacts on drinking water safety, but the associated risks have not been sufficiently evaluated. In this work, the potential biological toxicity of heavy metals in loose deposits was calculated based on consensus-based sediment quality guidelines, and the effects of some of the main water quality parameters, such as the pH and bicarbonate and phosphate content, on the release behaviors of pre-accumulated heavy metals were investigated. The results showed that heavy metals (Cu, As, Cr, Pb, and Cd) significantly accumulated in all the samples, but the contents of the heavy metals were multiple magnitudes lower than the Fe and Mn contents. The potential biotoxicity of As and Cu was relatively high, but the biotoxicity of Cd was negligible. The water quality can significantly influence the release of heavy metals from loose deposits. As the pH increased from 7.0 to 9.0, the release of As and Cr obviously increased. The release of As, Cu, Pb, and Cr also accelerated with the addition of phosphate (from 1 to 5 mg/L). In contrast to the trends for the pH and phosphate, variations in the bicarbonate content did not have a significant influence on the release of As and Cr. The release ratios of heavy metals in the samples were very low, and there was not a correlation between the release rate of the heavy metals in the loose deposits and their potential biotoxicity.

  11. Development of a portable heavy-water leak sensor based on laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Lee, Lim; Park, Hyunmin; Kim, Taek-Soo; Kim, Minho; Jeong, Do-Young

    2016-01-01

    Highlights: • We developed a compact and portable laser sensor for a detection of heavy water leakage. • The sensor is wearable and also easy to use to search for the leak point. • It is sensitive enough to find invisible very tiny leaks. - Abstract: A compact and portable leak sensor based on cavity enhanced absorption spectroscopy has been newly developed for a detection of heavy water leakage which may happen in the facilities using heavy water such as pressurized heavy water reactor (PHWR). The developed portable sensor is suitable as an individual instrument for the measuring leak rate and finding the leak location because it is sufficiently compact in size and weight and operated by using an internal battery. In the performance test, the minimum detectable leak rate was estimated as 0.05 g/day from the calibration curve. This new sensor is expected to be a reliable and promising device for the detection of heavy water leakage since it has advantages on real-time monitoring and early detection for nuclear safety.

  12. Sediment, water pollution indicators for heavy metals

    International Nuclear Information System (INIS)

    Cabaleiro, S.; Horn, A.

    2010-01-01

    The complexity of an aquatic system requires consideration of its dynamics: spatial and temporal variations of physical, chemical and biological. Heavy metals have peculiar behavior in the aquatic system and may not be available in the waters, but on sediments.The sub-basin of the Sarandi stream is responsible for the contamination of Pampulha Lake. The Instituto Mineiro das Águas – IGAM - uses tool for monitoring the quality of surface water for developing strategies for conservation, restoration and rational use of water resources. So through the indices: IQA ( Indice de qualidade de águas) Index of water quality, and TC- toxic contamination, reduces conflicts, implements the disciplining of the environmental economy.This study determined the monitoring of sediment and water of Sarandi Stream, so in the samples collected during dry and rainy seasons (2007- 2008) were analyzed heavy metals (Cu, Cd, Cr, Co, Ni, Zn, Pb) and physical-chemical factors (conductivity, solids dissolved, temperature, turbidity). This allowed the determination of Hackanson factors of contamination and Muller Index geoaccumulation, indicating very high contamination in sediments regarding the elements Cr, Cu, and Cd, and high contamination for Pb, Zn, and Mn. The comparison with the indices of water quality- IQA (IGAM - 2006, 2007 and 2008), combined with exploratory data analysis and graphs of correlation between the variables indicated favorable conditions for metals contamination on water and sediment for these metals, besides allowing the identification of its source

  13. Critical evaluation of heavy water project at Thal (Preprint No. PM-5)

    International Nuclear Information System (INIS)

    Jayakumar, N.S.

    1989-04-01

    The project known as Thal Ammonia Extension was a heavy water project successfully completed by Rashtriya Chemicals and Fertilizers (RCF) Ltd. The project consisted of erecting a heavy water plant of 110 tons/year capacity at Thal. The process Know-how and engineering of the plant was supplied by the Heavy Water Projects Division of the Department of Atomic Energy. Salient features of the project, management features which resulted in fast completion of erection, bottlenecks faced and engineering innovations adopted for efficient operation of the plant are described. Some modifications which can lead to smoother operation are listed. (M.G.B.)

  14. Organically bound deuterium in soybean exposed to atmospheric D2O vapor as a substitute for HTO under different growth phase

    International Nuclear Information System (INIS)

    Ichimasa, Michiko; Maejima, Takuya; Seino, Nami; Ara, Tetsuki; Masukura, Akari; Nishihiro, Sayaka; Tauchi, Hiroshi; Ichimasa, Yusuke

    2003-01-01

    Heavy water vapor release experiments were carried out in a greenhouse using deuterium as a substitute for tritium and uptake and loss kinetics of D 2 O in leaves and formation, translocation and retention of organically bound deuterium (OBD) in bean soybean exposed to D 2 O under different growth phase were investigated. Rate constants of D 2 O uptake in leaves of soybean in the daytime release were 0.6 - 6.1 hr -1 and several times higher than those in the nighttime release. Rate constants of D 2 O loss in leaves after daytime release were almost the same as those after the nighttime release. No significant difference in the half time of D 2 O loss was observed between daytime and nighttime releases. After D 2 O release, OBD concentration in bean in daytime experiments increased with time until 3 - 4 days of the experiments and then decreased with time. The OBD concentrations in bean in daytime release were several times higher than those in nighttime release while the extents of decrease of OBD concentration were somewhat lower than those in the daytime experiment. (author)

  15. Deuterium/hydrogen isotope exchange on beryllium and beryllium nitride; Deuterium/Wasserstoff-Isotopenaustausch an Beryllium und Berylliumnitrid

    Energy Technology Data Exchange (ETDEWEB)

    Dollase, Petra; Eichler, Michael; Koeppen, Martin; Dittmar, Timo; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    In the fusion experiments JET and ITER, the first wall is made up of beryllium. The use of nitrogen is discussed for radiative cooling in the divertor. This can react with the surface of the first wall to form beryllium nitride (Be{sub 3}N{sub 2}). The hydrogen isotopes deuterium and tritium, which react in the fusion reaction to helium and a neutron, are used as fuel. Since the magnetic confinement of the plasma is not perfect, deuterium and tritium ions are also found on the beryllium wall and can accumulate there. This should be avoided due to the radioactivity of tritium. Therefore the isotope exchange with deuterium is investigated to regenerate the first wall. We investigate the isotopic exchange of deuterium and protium in order to have not to work with radioactive tritium. The ion bombardment is simulated with an ion source. With voltages up to a maximum of 5 kV, deuterium and protic hydrogen ions are implanted in polycrystalline Be and Be{sub 3}N{sub 2}. The samples are then analyzed in situ using X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). Subsequently, samples prepared under the same conditions are characterized ex-situ by means of nuclear reaction analysis (NRA). [German] In den Fusionsexperimenten JET und ITER besteht die erste Wand im Hauptraum aus Beryllium (Be). Zur Strahlungskuehlung im Divertor wird der Einsatz von Stickstoff diskutiert. Dieser kann mit der Oberflaeche der ersten Wand zu Berylliumnitrid (Be{sub 3}N{sub 2}) reagieren. Als Brennstoff werden die Wasserstoffisotope Deuterium und Tritium eingesetzt, die in der Fusionsreaktion zu Helium und einem Neutron reagieren. Da der magnetische Einschluss des Plasmas nicht perfekt ist, treffen auch Deuterium- und Tritiumionen auf die Berylliumwand auf und koennen sich dort anreichern. Das soll aufgrund der Radioaktivitaet von Tritium unbedingt vermieden werden. Daher wird zur Regenerierung der ersten Wand der Isotopenaustausch mit Deuterium untersucht. Wir

  16. Synthesis of deuterium-labeled fluphenazine.

    Science.gov (United States)

    Shetty, H U; Hawes, E M; Midha, K K

    1984-01-01

    The propylpiperazine side chain of fluphenazine has been labeled with two, four, and six deuterium atoms by lithium aluminum deuteride reduction of the appropriate ester or imide. The gamma-carbon of the propyl group was labeled with two deuterium atoms by reduction of 10- (2-methoxycarbonylethyl) -2-trifluoromethyl-10H-phenothiazine, while four deuterium atoms were incorporated into the piperazine ring by reduction of 10-[3-(3,5-dioxo-1-piperazinyl)propyl]-2-trifluoromethyl-10H-pheno thiazine. The latter reduction gave the d4-labeled N-deshydroxyethyl metabolite of fluphenazine.

  17. Phytoremediation of heavy metal-contaminated water and sediment by eleocharis acicularis

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Masayuki; Ha, Nguyen Thi Hoang [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Ohmori, Yuko [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Taisei Kiso Sekkei Co., Ltd., Tokyo (Japan); Sano, Sakae [Faculty of Education, Ehime University, Matsuyama (Japan); Sera, Koichiro [Cyclotron Center, Iwate Medical University, Takizawa-mura (Japan)

    2011-08-15

    Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log-linear fashion. The bioconcentration factor for these elements decreases log-linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Promoting crystallisation of the Salmonella enteritidis fimbriae 14 pilin SefD using deuterium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bing; Garnett, James A.; Lee, Wei-chao; Lin, Jing; Salgado, Paula; Taylor, Jonathan; Xu, Yingqi; Lambert, Sebastian; Cota, Ernesto [Centre for Structural Biology and Division of Molecular Biosciences, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Matthews, Steve, E-mail: s.j.matthews@imperial.ac.uk [Centre for Structural Biology and Division of Molecular Biosciences, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer The benefits of D{sub 2}O in screening for crystallisation was explored. Black-Right-Pointing-Pointer The crystal structures of the SefD pilin in both H{sub 2}O and D{sub 2}O reveal differences. Black-Right-Pointing-Pointer Crystallisation improvements are explained by altered interactions in D{sub 2}O crystals. Black-Right-Pointing-Pointer D{sub 2}O is useful additive in sparse-matrix screening for crystallisation. -- Abstract: The use of heavy water (D{sub 2}O) as a solvent is commonplace in many spectroscopic techniques for the study of biological macromolecules. A significant deuterium isotope effect exists where hydrogen-bonding is important, such as in protein stability, dynamics and assembly. Here we illustrate the use of D{sub 2}O in additive screening for the production of reproducible diffraction-quality crystals for the Salmonella enteritidis fimbriae 14 (SEF14) putative tip adhesin, SefD.

  19. Assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    The concentration of all the metals were considerably found to be below the limit permitted by WHO's drinking water guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit ...

  20. Analysis of hydrogen sulfide releases in heavy water production facilities

    International Nuclear Information System (INIS)

    Croitoru, Cornelia; Dumitrescu, Maria; Preda, Irina; Lazar, Roxana

    1996-01-01

    Safety analyses conducted at ICIS concern primarily the heavy water production installations. The quantitative risk assessment needs the frequency calculation of accident sequences and consequences. In heavy water plants which obtain primary isotopic concentration of water by H 2 O - H 2 S exchange, large amounts of hydrogen sulfide which is a toxic, inflammable and explosive gas, are circulated. The first stage in calculating the consequences consists in potential analysis of H 2 S release. This work presents a study of this types of releases for pilot installations of the heavy water production at ICIS (Plant 'G' at Rm. Valcea). The installations which contain and maneuver large quantities of H 2 S and the mathematical models for different types of releases are presented. The accidents analyzed are: catastrophic column, container, spy-hole failures or gas-duct rupture and wall cracks in the installation. The main results are given as tables while the time variations of the flow rate and quantities of H 2 O released by stack disposal are plotted

  1. Winter Maintenance Wash-Water Heavy Metal Removal Pilot Scale Evaluation

    Directory of Open Access Journals (Sweden)

    Christopher M. Miller

    2016-01-01

    Full Text Available To encourage sustainable engineering practices, departments of transportation are interested in reusing winter maintenance truck wash water as part of their brine production and future road application. Traffic-related metals in the wash water, however, could limit this option. The objective of this work was to conduct a pilot scale evaluation of heavy metal (copper, zinc, iron, and lead removal in a filtration unit (maximum flow rate of 45 L/minute containing proprietary (MAR Systems Sorbster® media. Three different trials were conducted and approximately 10,000 L of wash water collected from a winter maintenance facility in Ohio was treated with the pilot unit. Lab studies were also performed on six wash-water samples from multiple facilities to assess particle size removal and estimate settling time as a potential removal mechanism during wash-water storage. Pilot unit total metal removal efficiencies were 79%, 77%, 63%, and 94% for copper, zinc, iron, and lead, respectively. Particle settling calculation estimates for copper and zinc show that 10 hours in storage can also effectively reduce heavy metal concentrations in winter maintenance wash water in excess of 70%. These pilot scale results show promise for reducing heavy metal concentrations to an acceptable level for reuse.

  2. The cumulative effect of deuterium depleted water and pesticides used in fruit trees

    International Nuclear Information System (INIS)

    Cinca, Lidia; Butnaru, Gallia; Titescu, Gh.

    2007-01-01

    Full text: The molds as well as Monillia laxa damages on fruit trees represents 10 - 45% of the harmful agents affecting the trees. The pest utilization at a rate of 3 to 10 times will entail both a strong environment polluting effect and a fruit / food contamination. In our work we wanted to reveal the Deuterium Depleted Water (DDW) effect in enhancing the pest efficiency or to replace it at all. our results pointed out a significant increase of pest efficiency when DDW replaced neutral CuSO 4 at the first treatment. The DDW treatment (3 times) showed a similar effect as pest treatment (first - 20% neutral CuSO 4 ; second - 50% All Cupral and third 0.1% Carbendazin). The fruit yield was 44 and 42 kg/tree at the DDW and classical pest treatment, respectively. In conclusion, the difference was of no significance. (authors)

  3. Thorium utilization in heavy water moderated Accelerator Driven Systems

    International Nuclear Information System (INIS)

    Bajpai, Anil; Degweker, S.B.; Ghosh, Biplab

    2011-01-01

    Research on Accelerator Driven Systems (ADSs) is being carried out around the world primarily with the objective of waste transmutation. Presently, the volume of waste in India is small and therefore there is little incentive to develop ADS based waste transmutation technology immediately. With limited indigenous U availability and the presence of large Th deposits in the country, there is a clear incentive to develop Th related technologies. India also has vast experience in design, construction and operation of heavy water moderated reactors. Heavy water moderated reactors employing solid Th fuels can be self sustaining, but the discharge burnups are too low to be economical. A possible way to improve the performance such reactors is to use an external neutron source as is done in ADS. This paper discusses our studies on Th utilization in heavy water moderated ADSs. The study is carried out at the lattice level. The time averaged k-infinity of the Th bundle from zero burnup up to the discharge burnup is taken to be the same as the core (ensemble) averaged k-infinity. For the purpose of the analysis we have chosen standard PHWR and AHWR assemblies. Variation of the pitch and coolant (H 2 O/D 2 O) are studied. Both, the once through cycle and the recycling option are studied. In the latter case the study is carried out for various enrichments (% 233 U in Th) of the recycled Th fuel bundles. The code DTF as modified for lattice and burnup calculations (BURNTRAN) was used for carrying out the study. The once through cycle represents the most attractive ADS concept (Th burner ADS) possible for Th utilization. It avoids reprocessing of Th spent fuel and in the ideal situation the use of any fissile material either initially or for sustaining itself. The gain in this system is however rather low requiring a high power accelerator and a substantial fraction of the power generated to be fed back to the accelerator. The self sustaining Th-U cycle in a heavy moderated ADS

  4. Feasibility study and economic analysis on thorium utilization in heavy water reactors

    International Nuclear Information System (INIS)

    1978-07-01

    Even though natural uranium is a more easily usable fuel in heavy water reactors, thorium fuel cycles have also been considered owing to certain attractive features of the thorium fuel cycle in heavy water reactors. The relatively higher fission neutron yield per thermal neutron absorption in 233 U combined with the very low neutron absorption cross section of heavy water make it possible to achieve breeding in a heavy water reactor operating on Th- 233 U fuel cycle. Even if the breeding ratio is very low, once a self-sustaining cycle is achieved, thereafter dependence on uranium can be completely eliminated. Thus, with a self-sustaining Th- 233 U fuel cycle in heavy water reactors, a given quantity of natural uranium will be capable of supporting a much larger installed generating capacity to significantly longer period of time. However, since thorium does not contain any fissile isotope, fissile material has to be added at the beginning. Concentrated fissile material is considerably more expensive than the 235 U contained in natural uranium. This makes the fuel cycle cost higher with thorium fuel cycle, at least during the initial stages. The situation is made worse by the fact that, because of its higher thermal neutron absorption cross section, thorium requires a higher concentration of fissile material than 238 U. Nevertheless, because of the superior nuclear characteristics of 233 U, once uranium becomes more expensive, thorium fuel cycle in heavy water reactors may become economically acceptable. Furthermore, the energy that can be made available from a given quantity of uranium is considerably increased with a self-sustaining thorium fuel cycle

  5. Method of extracting tritium from heavy water

    International Nuclear Information System (INIS)

    Tsuchiya, Hiroyuki; Kikuchi, Makoto; Asakura, Yamato; Yusa, Hideo.

    1979-01-01

    Purpose: To extract tritium in heavy water by combining isotope exchange reaction with liquefaction distillation to increase the concentration of recovered tritium, thereby reducing the quantity of radioactive wastes recovered. Constitution: Heavy water containing tritium from a reactor is introduced into a tritium separator through a conduit pipe. On the other hand, a D 2 gas is introduced through the conduit pipe in the lower part of a tritium separator to transfer tritium into D 2 gas by isotope exchange. The D 2 gas containing DT is introduced into a liquefaction distillation tower together with an outlet gas of a converter supplied through a pipeline. The converter is filled with net-like metals of platinum group such as Pt, Ni, Pd and the like, and the D 2 gas affluent in DT, extracted from the distillation tower is converted into D 2 and T 2 . The gas which has been introduced into the liquefaction distillation tower is liquefied. The D 2 gas of low boiling point components reaches the tower top, and the T 2 gas of high boiling point components is concentrated at the tower bottom, and is rendered into tritium water in a recoupler and stored in a water storage apparatus. (Yoshino, Y.)

  6. The projects for heavy water production of the Argentine National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Garcia Bourg, J.M.; Garcia, E.E.

    1982-01-01

    The bases and scope of the projects for heavy water production that are being currently developed by the Argentine National Atomic Energy Commission (CNEA) are described. As an introduction, the following points are presented: a) the fundamentals of heavy water utilization in a nuclear reactor, with a mention of its properties and uses, b) a review of the physicochemical bases of the principal methods for heavy water production: chemical exchange (monothermal and bithermal processes), distillation and electrolysis, with tables summarizing the fundamental characteristics of the first two ones, and an evaluation of the different production methods from the viewpoint of their application in an industrial scale; and c) a synthetic information, in the form of tables, about the world's heavy water production. The subject of heavy water production in Argentina is treated in the principal section, describing the scope, location, main characteristics and chemical processes corresponding to the projects being developed by CNEA, which currently are the installation of an Industrial Plant in Arroyito (Province of Neuquen), purchased on a turnkey basis and using the NH 3 /H 2 isotopic exchange method; the installation of an Experimental Plant in Atucha (Province of Buenos Aires), for the development of the domestic technology of heavy-water production by the SH 2 /H 2 O isotopic exchange method, and the development of the engineering of an industrial plant (''Module 80''), based on the Experimental Plant's technology. (M.E.L.) [es

  7. Safety Evaluation of Osun River Water Containing Heavy Metals and ...

    African Journals Online (AJOL)

    Summary: This study evaluated the pH, heavy metals and volatile organic compounds (VOCs) in Osun river water. It also evaluated its safety in rats. Heavy metals were determined by atomic absorption spectrophotometry (AAS) while VOCs were determined by gas chromatography coupled with flame ionization detector ...

  8. Data acquisition and control system in a heavy water detritiation installation

    International Nuclear Information System (INIS)

    Stefan, Iuliana; Balteanu, Ovidiu; Retevoi, Carmen; Stefan, Liviu

    2002-01-01

    The experimental installation for extracting tritium and deuterium from the tritiated heavy water used as moderator in CANDU type nuclear reactors is described. The separated tritium of high purity can be used in the fusion reactors of the future or in various laboratory researches. The fluids implied in operating this installation require special safety measures to be taken to protect both the operational personnel and the environment. Accordingly, in the technologic room no personnel is allowed and hence parameter monitoring, analyses and the testing must be done by remote control equipment. The computers for monitoring, warning and testing, as well as the sensors are housed in the data acquisition room, separated from the control room. The values generated by the process variables are converted in electrical or pneumatic signals and subsequently transmitted to the subsystems of monitoring, control and protection. Data acquisition in the control room is ensured by a computer provided with a FieldPoint interface. So, the connection between I/O modules from the data acquisition room and the computer ensures a 115.2 kb/s speed. Measured values of the parameters are recorded and displayed in the control room. Here these are compared with preset limits of the process parameters and in case of abnormal behavior, an alarm is triggered both optically and acoustically. At the same time, the program which controls the inputs and the outputs makes decisions and issues corrective or preventive commands for the technological process or installation protection, respectively. A diagram illustrating the monitoring, using a LabView platform is presented

  9. Assessment of Heavy Metals in the Water of Sahastradhara Hill Stream at Dehradun, India

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Bharti

    2014-09-01

    Full Text Available A study on heavy metals assessment in the water of Sahastradhara hill-stream was conducted with different five sites at significant differences. The present paper deals with the water quality status of Sahastradhara stream by the assessment of heavy metals. Heavy Metals were found in fluctuated trend from first upstream to last downstream. The values of almost all Heavy Metals were found in increasing manner especially after the fourth sampling site. After the third sampling station, a solid waste dumping site was found. So, there may be a relation between heavy metals in stream water and solid waste dumping site. Concentrations of all Heavy Metals at fourth and fifth sampling site were found very high. DOI: http://dx.doi.org/10.3126/ije.v3i3.11076 International Journal of Environment Vol.3(3 2014: 164-172

  10. Electrolytic separation factors for oxygen isotopes in light and heavy water solutions

    International Nuclear Information System (INIS)

    Gulens, J.; Olmstead, W.J.; Longhurst, T.H.; Gale, K.L.; Rolston, J.H.

    1987-01-01

    The electrolytic separation factor, α, has been measured for /sup 17/O and /sup 18/O at Pt and Ni anodes in both light and heavy water solutions of 6M KOH as a function of current density. For oxygen-17, isotopic separation effects were not observed, within the experimental uncertainty of +-2%, under all conditions studied. For oxygen-18, there is a small difference of 2% in α values between Pt and Ni in both light and heavy water solutions, but there is no significant difference in α values between light and heavy water solutions. In light waters solutions, the separation factor at Pt is small, α(/sup 18/O) ≤ 1.02 for i ≥ 0.1 A/cm/sub 2/. This value agrees reasonably well with theoretical estimates

  11. Pulse radiolysis studies of liquid heavy water at temperatures up to 250 degrees C

    International Nuclear Information System (INIS)

    Stuart, C.R.; Ouellette, D.C.; Elliot, A.J.

    2002-09-01

    This report documents the rate constants and associated activation energies for the reactions of the primary radical species, e aq - , ·OD and ·D, which are formed during the radiolysis of heavy water within the temperature range 20 to 250 o C. These heavy-water data have been compared with the corresponding information for light water. These kinetic data form part of the database that is required to model the aqueous radiation chemistry that occurs within the core of the heavy water cooled and moderated CANDU reactor. (author)

  12. Pulse radiolysis studies of liquid heavy water at temperatures up to 250 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, C.R.; Ouellette, D.C.; Elliot, A.J

    2002-09-01

    This report documents the rate constants and associated activation energies for the reactions of the primary radical species, e{sub aq}{sup -}, {center_dot}OD and {center_dot}D, which are formed during the radiolysis of heavy water within the temperature range 20 to 250 {sup o}C. These heavy-water data have been compared with the corresponding information for light water. These kinetic data form part of the database that is required to model the aqueous radiation chemistry that occurs within the core of the heavy water cooled and moderated CANDU reactor. (author)

  13. Method to separate and enrich molecules containing deuterium

    International Nuclear Information System (INIS)

    Benson, S.W.

    1978-01-01

    Organic molecules having a normal H and D content and the general formula RX, in which R is chosen from ethyl, isopropyl, tert. butyl or cyclopentenyl groups and X is a functional group such as F, Cl, Br or OH and can even be H in the special case of cyclopentene, are exposed to an infra-red laser radiation. By careful adjustment, bundling and pulsing of an infrared laser, D-contained RX molecules exposed to the laserbeam, can dissociate or decompose. A D-contained olefin and HX is formed under suitable conditions after exposure to laser radiation. The D-contained olefin is drawn off and combusted to obtain D-contained water or D-contained hydrogen. The non-decomposed or non-reacted RX molecules which are deuterium-impoverished can be decomposed to deuterium impoverished olefins and HX in a further process step by heating on a catalyst. The latter products can then be separated off and be catylytically exchanged with normal water in order to reproduce the normal isotopic composition. They may then where necessary be catalytically recombined to form normal RX which can be recycled. (GG) [de

  14. Point design for deuterium-deuterium compact reversed-field pinch reactors

    International Nuclear Information System (INIS)

    Dabiri, A.E.; Dobrott, D.R.; Gurol, H.; Schnack, D.D.

    1984-01-01

    A deuterium-deuterium (D-D) reversed-field pinch (RFP) reactor may be made comparable in size and cost to a deuterium-tritium (D-T) reactor at the expense of high-thermal heat load to the first wall. This heat load is the result of the larger percentage of fusion power in charged particles in the D-D reaction as compared to the D-T reaction. The heat load may be reduced by increasing the reactor size and hence the cost. In addition to this ''degraded'' design, the size may be kept small by means of a higher heat load wall, or by means of a toroidal divertor, in which case most of the heat load seen by the wall is in the form of radiation. Point designs are developed for these approaches and cost studies are performed and compared with a D-T reactor. The results indicate that the cost of electricity of a D-D RFP reactor is about20% higher than a D-T RFP reactor. This increased cost could be offset by the inherent safety features of the D-D fuel cycle

  15. Synthesis of deuterium and tritium labelled tyrosine

    International Nuclear Information System (INIS)

    Kanska, M.; Drabarek, S.

    1980-01-01

    A new method of synthesis of tyrosine labelled with deuterium and tritium in the aromatic ring has been developed. Deuterated and tritiated tyrosine was obtained by isotope exchange between tyrosine and deuterated or tritiated water at elevated temperature in hydrochloric acid medium using K 2 PtCl 4 as a catalyst. For synthesis of tritiated tyrosine 1 Ci HTO was used; the specific activity of the product was 5 mCi/mMol. (author)

  16. Special operations in the heavy water system, III-2; III-2 Posebne operacije u sistemu teske vode

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    Special operations in the heavy water system described in this chapter are as follows: treatment, drainage and pouring of heavy water, emptying of the heavy water system, cleaning and vacuuming of the heavy water system. [Serbo-Croat] Posebne operacije u sistemu teske vode opisane u ovom poglavlju su: tretiranje, dreniranje i razlivanje teske vode, praznjenje sistema teske vode, 'ispiranje' i vakumiranje sistema teske vode.

  17. Improvements on heavy water separation technology by isotopic water-hydrogen sulfide exchange

    International Nuclear Information System (INIS)

    Peculea, M.

    1987-01-01

    A series of possible variance is presented for the heavy water separation technology by isotopic H 2 O-H 2 S exchange at dual temperatures. The critical study of these variants, which are considered as characteristic quantities for the isotopes transport (production) and the extraction level is related to a dual temperature plant fed by liquid and cold column, which is the up-to-date technology employed in all heavy water production plants as variants of following plants are studied: dual temperature plant with double feeding; dual-temperature plant with equilibrium column (booster); dual-temperature-dual-pressure plant. Attention is paid to the variant with equilibration column (booster), executed and tested at the State Committee for Nuclear Energy and to the dual-temperature-dual pressure plant which presents the highest efficiency. (author)

  18. Distribution of deuterium and hydrogen in Zr and Ti foil assemblies under the action of a pulsed deuterium high-temperature plasma

    Science.gov (United States)

    Bondarenko, G. G.; Volobuev, I. V.; Eriskin, A. A.; Kobzev, A. P.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Borovitskaya, I. V.

    2017-09-01

    Deuteron and proton elastic recoil detection analysis is used to study the accumulation and redistribution of deuterium and hydrogen in assemblies of two high-pure zirconium or titanium foils upon pulsed action of high-temperature deuterium plasma (PHTDP) in a plasma-focus installation PF-4. It is noted that, under the action of PHTDP, an implanted deuterium and hydrogen gas impurity are redistributed in the irradiated foils in large depths, which are significantly larger than the deuterium ion free paths (at their maximum velocity to 108 cm/s). The observed phenomenon is attributed to the carrying out of implanted deuterium and hydrogen under the action of powerful shock waves formed in the metallic foils under the action of PHTDP and/or the acceleration of diffusion of deuterium and hydrogen atoms under the action of a compression-rarefaction shock wave at the shock wave front with the redistribution of deuterium and hydrogen to large depths.

  19. Surface Water Modeling Using an EPA Computer Code for Tritiated Waste Water Discharge from the heavy Water Facility

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    Tritium releases from the D-Area Heavy Water Facilities to the Savannah River have been analyzed. The U.S. EPA WASP5 computer code was used to simulate surface water transport for tritium releases from the D-Area Drum Wash, Rework, and DW facilities. The WASP5 model was qualified with the 1993 tritium measurements at U.S. Highway 301. At the maximum tritiated waste water concentrations, the calculated tritium concentration in the Savannah River at U.S. Highway 301 due to concurrent releases from D-Area Heavy Water Facilities varies from 5.9 to 18.0 pCi/ml as a function of the operation conditions of these facilities. The calculated concentration becomes the lowest when the batch releases method for the Drum Wash Waste Tanks is adopted

  20. Erosion and deuterium retention of CLF-1 steel exposed to deuterium plasma

    Science.gov (United States)

    Qiao, L.; Wang, P.; Hu, M.; Gao, L.; Jacob, W.; Fu, E. G.; Luo, G. N.

    2017-12-01

    In recent years reduced activation ferritic martensitic steel has been proposed as the plasma-facing material in remote regions of the first wall. This study reports the erosion and deuterium retention behaviours in CLF-1 steel exposed to deuterium (D) plasma in a linear experimental plasma system as function of incident ion energy and fluence. The incident D ion energy ranges from 30 to 180 eV at a flux of 4 × 1021 D m-2 s-1 up to a fluence of 1025 D m-2. SEM images revealed a clear change of the surface morphology as functions of incident fluence and impinging energy. The mass loss results showed a decrease of the total sputtering yield of CLF-1 steel with increasing incident fluence by up to one order of magnitude. The total sputtering yield of CLF-1 steel after 7.2 × 1024 D m-2 deuterium plasma exposure reduced by a factor of 4 compared with that of pure iron, which can be attributed to the enrichment of W at the surface due to preferential sputtering of iron and chromium. After D plasma exposure, the total deuterium retention in CLF-1 steel samples measured by TDS decreased with increasing incident fluence and energy, and a clear saturation tendency as function of incident fluence or energy was also observed.

  1. The deuterium inventory in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Mayer, M.; Rohde, V.; Ramos, G; Vainonen-Ahlgren, E.; Likonen, J.; Herrmann, A.; Neu, R.

    2007-01-01

    The deuterium inventory in ASDEX Upgrade was determined by quantitative ion beam analysis techniques and SIMS for different discharge campaigns between the years 2002 and 2005. ASDEX Upgrade was a carbon dominated machine during this phase. Full poloidal sections of the lower and upper divertor tile surfaces, limiter tiles, gaps between divertor tiles, gaps between inner heat shield tiles and samples from remote areas below the roof baffle and in pump ducts were analysed, thus offering an exhaustive survey of all relevant areas in ASDEX Upgrade. Deuterium is mainly trapped on plasma-exposed surfaces of inner divertor tiles, where about 70% of the retained deuterium inventory is found. About 20% of the inventory is retained at or below the divertor roof baffle, and about 10% is observed in other areas, such as the outer divertor and in gaps between tiles. The long term deuterium retention is 3-4% of the total deuterium input. The obtained results are compared with gas balance measurements, and conclusions about tritium retention in ITER are made

  2. Commissioning performance activities of Heavy Water Plant (Hazira) (Paper No. 1.4)

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Heavy Water Plant, Hazira is the fourth in the line of plants based on monothermal NH 3 -H 2 exchange process. The experience gained during operation of other heavy water plants is reflected in the construction, commissioning and operation of HWP, Hazira. This paper aims at outlining the strategy adopted for both commissioning and operation. (author)

  3. Programmable logic controllers in Heavy Water Project, Manuguru (Paper No. 3.4)

    International Nuclear Information System (INIS)

    Gupta, S.C.; Bhaskar, R.; Maiti, A.; Venkatesu, G.; Satish, P.; Goel, R.K.

    1992-01-01

    Enhancement to plant operational flexibility has been achieved in Heavy Water Project, Manuguru by installing programmable logic controllers for its control equipment. The earlier sulfide based Heavy Water Plant, Kota is using relay logic and diode based program-matrix for binary controls. Performance improvement and advantages of PLC and experience in its operation are described. (author). 3 refs

  4. Fluoride content in water in and around heavy water plant Manuguru colony

    International Nuclear Information System (INIS)

    Mohapatra, C.; Dubey, S.K.; Reddy, A.R.; Ravi Kumar, T.S.P.; Selvaraj, S.

    1996-01-01

    Fluoride concentration in water used for human consumption has significant importance with respect to its toxic effects. Hence there was a need for analysing fluoride concentration in drinking water primarily used at Heavy water Plant, Manuguru (HWP (M)) colony and its nearby villages. We found that at HWP (M) colony there is not much variation in the fluoride concentration. However, nearby villages are having wide variation from 0.79 to 5.1 ppm. (author). 5 refs., 1 tab

  5. Stable Oxygen-18 and Deuterium Isotopes

    DEFF Research Database (Denmark)

    Müller, Sascha

    The application of stable Oxygen-18 (18O) and Deuterium (2H) isotopes, as a tracer for fluxes between different compartments of the water cycle was subject of the present PhD-thesis. During a three year period, temporal data from a wide range of water cycle constituents was collected from...... the Skjern River catchment, Denmark. The presented applications focused on studying the isotopic 'input signal' to the hydrosphere in the form of precipitation, the isotopic 'output signal' with its related dynamic processes at a coastal saltwater-freshwater interface (groundwater isotopes) and the temporal...... development within a given lowland headwater catchment (stream water isotopes). Based on our investigations on the precipitation isotopic composition a local meteoric water line (LMWL) was constructed and expressed as: δ2H=7.4 δ18O + 5.36‰. Moreover, we showed that under maritime temperature climate influence...

  6. Assets optimization at Heavy Water Plants

    International Nuclear Information System (INIS)

    Hiremath, S.C.

    2006-01-01

    In the world where the fittest can only survive, manufacturing and production enterprises are under intense pressure to achieve maximum efficiency in each and every field related to the ultimate production of plant. The winners will be those that use their assets, i.e men, material, machinery and money most effectively. The objective is to optimize the utilization of all plant assets-from entire process lines to individual pressure vessels, piping, process machinery, and vital machine components. Assets of Heavy Water Plants mainly consist of Civil Structures, Equipment and Systems (Mechanical, Electrical) and Resources like Water, Energy and Environment

  7. Features in ammonia plant for maximising heavy water production (Paper No. 2.10)

    International Nuclear Information System (INIS)

    Tangri, N.N.; Singh, R.J.; Mukherjee, P.K.; Mishra, B.N.

    1992-01-01

    Whenever an ammonia plant is linked with heavy water production, a system should be foreseen in the design stage itself for total conservation of D 2 in synthesis gas and zero D 2 loss. The process should ensure recycle of D 2 rich condensate within the front end. This alone would be the single most important factor for improving heavy water production rate. The synthesis loop pressure should be chosen keeping in view the interest of heavy water plant (HWP). With vast experience in engineering NH 3 and HWP plants, it is possible to integrate HWP requirements at the design stage itself. (author)

  8. Urban water pollution by heavy metals and health implication in ...

    African Journals Online (AJOL)

    Studies of common heavy metals were conducted at Onitsha, Anambra State, the most urbanized city in Southeastern Nigeria. It was discovered that both surface and subsurface water were heavily polluted. Seven (7) heavy metals namely: arsenic (As+2), cadmium (Cd+2), lead (Pb+2), mercury (Hg+2), zinc (Zn+2), copper ...

  9. Hydrogen/deuterium isotope effects in water and aqueous solutions of organic molecules and proteins

    International Nuclear Information System (INIS)

    Price, David L.; Fu, Ling; Bermejo, F. Javier; Fernandez-Alonso, Felix; Saboungi, Marie-Louise

    2013-01-01

    Highlights: ► Hydrogen/deuterium substitution has significant effects in hydrogenous materials. ► The effects can involve structure, phase behavior and protein stability. ► The effects must be kept in mind in the interpretation of scattering experiments. ► The effects may be mitigated by an appropriate choice of experimental conditions. - Abstract: It is pointed out that hydrogen/deuterium substitution, frequently used in neutron scattering studies of the structure and dynamics of hydrogenous samples, can have significant effects on structure, phase behavior and protein stability. The effects must be kept in mind in the interpretation of such experiments. In suitable cases, these effects can be mitigated by an appropriate choice of experimental conditions

  10. General description of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Kakodkar, A.; Sinha, R.K.; Dhawan, M.L.

    1999-01-01

    Advanced Heavy Water Reactor is a boiling light water cooled, heavy water moderated and vertical pressure tube type reactor with its design optimised for utilisation of thorium for power generation. The core consists of (Th-U 233 )O 2 and (Th-Pu)O 2 fuel with a discharge burn up of 20,000 MWd/Te. This reactor incorporates several features to simplify the design, which eliminate certain systems and components. AHWR design is also optimised for easy replaceability of coolant channels, facilitation of in-service inspection and maintenance and ease of erection. The AHWR design also incorporates several passive systems for performing safety-related functions in the event of an accident. In case of LOCA, emergency coolant is injected through 4 accumulators of 260 m 3 capacity directly into the core. Gravity driven water pool of capacity 6000 m 3 serves to cool the core for 3 days without operator's intervention. Core submergence, passive containment isolation and passive containment cooling are the added features in AHWR. The paper describes the various process systems, core and fuel design, primary components and safety concepts of AHWR. Plant layout and technical data are also presented. The conceptual design of the reactor has been completed, and the detailed design and development is scheduled for completion in the year 2002. (author)

  11. APPLICATION OF THE NATURALLY-OCCURRING DEUTERIUM ISOTOPE TO TRACING THE CAPILLARY FRINGE

    Science.gov (United States)

    Naturally-occurring deuterium is a useful tracer of subsurface hydrologic processes. A possible application includes the identification of capillary fringes in the vadose zone. Multiple and discontinuous water tables persist in many temperate regions, under various hydrogeologi...

  12. Environmental health scoping study at Bruce Heavy Water Plant

    International Nuclear Information System (INIS)

    Prior, M.; Mostrom, M.; Coppock, R.; Florence, Z.

    1995-10-01

    There are concerns that hydrogen sulfide released from the Heavy Water Plant near Kincardine, Ontario may be the cause of the mortalities and morbidities observed in a nearby flock of sheep. The Philosopher's Wool sheep farm is about four kilometres south-southeast of the Bruce Heavy Water Plant. Ontario Hydro, the owner and operator of the Bruce Heavy Water Plant, claims that hydrogen sulphide emissions from the Bruce Heavy Water Plant are within regulatory limits and well below levels that cause harm. Accordingly, the Atomic Energy Control Board commissioned the Alberta Environmental Centre, Alberta Department of Environmental Protection, to develop a scoping study for this environmental health issue. The first objective was to describe a field investigation model to define clearly the environmental health and operation of the sheep farm. The second objective was to describe possible exposure patterns and develop a holistic environmental pathway model. If appropriate, the third study objective was to describe animal models of the actual situation to elucidate specific aspects of the environmental health concerns. It was not the objective of this report to provide a definitive answer to the present environmental health issue. Ontario Hydro provided data to the Alberta Environmental Centre, as di the sheep farmer, the attending veterinarian, the University of Guelph study team, and the Atomic Energy Control Board. A six-tiered strategy of sequential evaluations of the ovine health problem is based on the multiple-response paradigm. It assumes the observed ovine health results are the result of multiple effector events. Each tier constitutes a separate, but inter-related, study. Sequential evaluation and feedback of each tier allow sound scientific judgements and efficient use of resources. (author). 59 refs., 11 tabs., 22 figs

  13. Deuterium trapping in tungsten

    Science.gov (United States)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  14. Deuterium trapping in tungsten

    International Nuclear Information System (INIS)

    Poon, M.

    2004-01-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D 2 molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  15. Deuterium trapping in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M

    2004-07-01

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. . Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D{sub 2} molecules inside the void with a trap energy of 1.2 eV. . Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  16. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1982-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength KEVLAR/epoxy composite. This arbon has been spin-tested to a tip speed of 1 km/s

  17. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1983-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength Kevlar/epoxy composite. This arbor has been spin-tested to a tip speed of 1 km/s

  18. Measurement of scattering cross sections of liquid and solid hydrogen, deuterium and deuterium hydride for thermal neutrons

    International Nuclear Information System (INIS)

    Seiffert, W.D.

    1984-01-01

    The scattering cross sections for liquid and solid normal hydrogen, para-hydrogen, deuterium and deuterium hydride were measured for thermal neutrons at various temperatures. Solid samples of para-hydrogen exhibit distinct Bragg scattering. Liquid samples of deuterium and para-hydrogen also exhibit distinct coherence phenomena, which is indicative of strong local ordering of the molecules. In para-hydrogen and deuterium hydride, the threshold for scattering with excitation of rotations is distinctly visible. The positions of the thresholds show that the molecules in liquid hydrogen are not unhindered in their movement. After the beginning of the rotational excitation the scattering cross sections of liquid and solid para-hydrogen have different shapes which is to be explained by the differences in the dynamics of the liquid and the solid specimen. 22 references

  19. Deuterium- and 18O-content in the cooling water of power station cooling towers

    International Nuclear Information System (INIS)

    Heimbach, H.; Dongmann, G.

    1976-09-01

    The 0-18/0-16 and D/H isotope ratios of water from two different cooling towers were determined by mass spectrometry. The observed isotope fractionation corresponds to that known from natural evaporation or transpiration processes: cooling tower I: delta(D) = 46.8 per thousand, delta( 18 O) = 7.6 per thousand cooling tower II: delta(D) = 33.9 per thousand delta( 18 O) = 5.7 per thousand Evaluation of simple compartment models of a cooling tower and a distillation device suggests that there exists some isotope discrimination within the open trickling unit of a cooling tower analogous to that in a rectification column. In a real cooling tower, however, this effect is compensated largely by the recycling of the cooling water, resulting only in a small enrichment of the heavy isotopes. This can be understood as the result of three partial effects: 1) a fractionation in the vapor pressure equilibrium, 2) a kinetic effect due to diffusion of the water vapor into a turbulent atmosphere, and 3) an exchange effect which is proportional to relative humidity. This low enrichment of the heavy isotope excludes the technical use of cooling towers as isotope separation devices. (orig.) [de

  20. Solubilities of boric acid in heavy water

    International Nuclear Information System (INIS)

    Nakai, Shigetsugu; Aoi, Hideki; Hayashi, Ken-ichi; Katoh, Taizo; Watanabe, Takashi.

    1988-01-01

    A gravimetric analysis using meta-boric acid (HBO 2 or DBO 2 ) as a weighing form has been developed for solubility measurement. The method gave satisfactory results in preliminary measurement of solubilities of boric acid in light water. By using this method, the solubilities of 10 B enriched D 3 BO 3 in heavy water were measured. The results are as follows; 2.67 (7deg C), 3.52 (15deg C), 5.70 (30deg C), 8.87 (50deg C) and 12.92 (70deg C) w/o, respectively. These values are about 10% lower than those in light water. Thermodynamical consideration based on the data shows that boric acid is the water structure breaker. (author)

  1. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    Directory of Open Access Journals (Sweden)

    Amir Waseem

    2014-01-01

    Full Text Available Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water, soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  2. Ex-vacuo nuclear reaction analysis of deuterium

    International Nuclear Information System (INIS)

    Lee, S.R.; Doyle, B.L.

    1989-01-01

    A novel technique for performing in-air d( 3 He, p) nuclear reaction analysis of deuterium using external 3 He ion beams ranging in energy from 0.3-2.0 MeV is presented. Variable on-target beam energies for the depth profiling of deuterium are obtained by varying the transmission distance of the external 3 He beam in air. The ex-vacuo nuclear reaction analysis (XNRA) apparatus is described, and unique aspects and limitations of in-air depth profiling of deuterium using the d( 3 He, p) reaction are discussed. Example analyses where XNRA has been used for the multidimensional measurement of deuterium in fusion reactor components are presented in order to illustrate the advantages of XNRA for deuterium. These advantages include nondestructive analysis of large targets, efficient depth profiling via variable air gap energy tuning, and rapid analysis of numerous samples in the absence of vacuum cycling. (orig.)

  3. Neutron moderation in heavy water

    International Nuclear Information System (INIS)

    Assis, J.T. de.

    1980-03-01

    The calculation of the energetic spectrum of thermic neutrons in heavy water, according to the models of the differential cross section; is presented. Simplifications in the Butler model are suggested for the diminution of computer time. The results obtained are compared with experimental data and with the Brown - St.John model. This calculation has been done in 30 energy groups and within our limit of precision, the results with the models and simplifications present satisfactory values, allowing its inclusion in reactor codes. (Author) [pt

  4. Apparatus and process for deuterium exchange

    International Nuclear Information System (INIS)

    Ergenc, M.S.

    1976-01-01

    The deuterium exchange plant is combined with an absorption refrigeration plant in order to improve the exchange process and to produce refrigeration. The refrigeration plant has a throttling means for expanding and cooling a portion of the liquid exchange medium separated in the exchange plant as well as an evaporator, in which the said liquid exchange medium is brought into heat exchange with a cold consumer device, absorption means for forming a solution of the used exchange medium and fresh water and a pump for pumping the solution into the exchange plant

  5. Reactivity requirements and safety systems for heavy water reactors

    International Nuclear Information System (INIS)

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  6. Heavy-Water Power Reactors. Proceedings Of A Symposium

    International Nuclear Information System (INIS)

    1968-01-01

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 11-15 September 1967. The timeliness of the meeting was underlined by the large gathering of over 225 participants from 28 countries and three international organizations. Contents: Experience with heavy-water power and experimental reactors and projects (14 papers); New and advanced power reactor designs and concepts (8 papers); Development programmes and thorium cycle (9 papers); Economics and prospects of heavy-water power reactors (7 papers); Physics and fuel management (8 papers); Fuels (5 papers); Safety, control and engineering (6 papers); Panel discussion. Except for one Russian paper, which is published in English, each paper is in its original language (49 English and 8 French) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)

  7. Heavy-Water Power Reactors. Proceedings Of A Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-04-15

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 11-15 September 1967. The timeliness of the meeting was underlined by the large gathering of over 225 participants from 28 countries and three international organizations. Contents: Experience with heavy-water power and experimental reactors and projects (14 papers); New and advanced power reactor designs and concepts (8 papers); Development programmes and thorium cycle (9 papers); Economics and prospects of heavy-water power reactors (7 papers); Physics and fuel management (8 papers); Fuels (5 papers); Safety, control and engineering (6 papers); Panel discussion. Except for one Russian paper, which is published in English, each paper is in its original language (49 English and 8 French) and is preceded by an abstract in English with a second one in the original language if this is not English. Discussions are in English. (author)

  8. Probabilistic integrity assessment of pressure tubes in an operating pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Young-Jin; Park, Heung-Bae [KEPCO E and C, 188 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-870 (Korea, Republic of); Lee, Jung-Min; Kim, Young-Jin [School of Mechanical Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon-si, Gyeonggi-do 440-746 (Korea, Republic of); Ko, Han-Ok [Korea Institute of Nuclear Safety, 34 Gwahak-ro, Yuseong-gu, Daejeon-si 305-338 (Korea, Republic of); Chang, Yoon-Suk, E-mail: yschang@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2012-02-15

    Even though pressure tubes are major components of a pressurized heavy water reactor (PHWR), only small proportions of pressure tubes are sampled for inspection due to limited inspection time and costs. Since the inspection scope and integrity evaluation have been treated by using a deterministic approach in general, a set of conservative data was used instead of all known information related to in-service degradation mechanisms because of inherent uncertainties in the examination. Recently, in order that pressure tube degradations identified in a sample of inspected pressure tubes are taken into account to address the balance of the uninspected ones in the reactor core, a probabilistic approach has been introduced. In the present paper, probabilistic integrity assessments of PHWR pressure tubes were carried out based on accumulated operating experiences and enhanced technology. Parametric analyses on key variables were conducted, which were periodically measured by in-service inspection program, such as deuterium uptake rate, dimensional change rate of pressure tube and flaw size distribution. Subsequently, a methodology to decide optimum statistical distribution by using a robust method adopting a genetic algorithm was proposed and applied to the most influential variable to verify the reliability of the proposed method. Finally, pros and cons of the alternative distributions comparing with corresponding ones derived from the traditional method as well as technical findings from the statistical assessment were discussed to show applicability to the probabilistic assessment of pressure tubes.

  9. Method for measuring deuterium in erbium deuteride films

    International Nuclear Information System (INIS)

    Brangan, J.R.; Thornberg, S.M.; Keenan, M.R.

    1997-09-01

    Determining the quantity of deuterium in an erbium deuteride (ErD 2 ) film is essential for assessing the quality of the hydriding process but is a challenging measurement to make. First, the ideal gas law cannot be applied directly due to high temperature (950 degrees C) and low temperature (25 degrees C) regions in the same manifold. Additionally, the metal hydride does not release all of the deuterium rapidly upon heating and metal evaporation occurs during extended heating periods. Therefore, the method developed must provide a means to compensate for temperature inhomogeneities and the amount of deuterium retained in the metal film while heating for a minimal duration. This paper presents two thermal desorption methods used to evaluate the kinetics and equilibria of the deuterium desorption process at high temperatures (950 degrees C). Of primary concern is the evaluation of the quantity of deuterium remaining in these films at the high temperature. A multiple volume expansion technique provided insight into the kinetics of the deuterium evolution and metal evaporation from the film. Finally a repeated pump-down approach yielded data that indicated approximately 10% of the deuterium is retained in the metal film at 950 degrees C and approximately 1 Torr pressure. When the total moles of deuterium determined by this method were divided by the moles of erbium determined by ICP/AES, nearly stochiometric values of 2:1 were obtained for several erbium dideuteride films. Although this work presents data for erbium and deuterium, these methods are applicable to other metal hydrides as well

  10. The deuterium-exchange reaction between water and hydrogen with the thin-film hydrophobic catalyst

    International Nuclear Information System (INIS)

    Yamashita, Hisao; Mizumoto, Mamoru; Matsuda, Shimpei

    1985-01-01

    The deuterium-exchange reaction between water and hydrogen with a hydrophobic catalyst was studied. The hydrophobic catalyst was composed of platinum as an active component and porous poly(tetrafluoroethylene) (PTFE) as a support. The PTFE support was in two forms, i.e., (a) a pellet and (b) a thin-film with the thickness of 50 μm. The primary purpose of the thin film hydrophobic catalyst was to reduce the platinum usage in the reactor. The activity of the catalyst was measured in a trickle bed reactor at atmospheric pressure and temperature of 20 ∼ 70 deg C. It has been found that the employment of the thin-film catalyst reduced the platinum usage to 1/5 of the reactor in the case of using a conventional catalyst. Platinum particles on the thin-film catalyst work efficiently because the reactants were easily diffused to the active sites. It has also been found that the isotopic exchange rate with the thin-film catalyst increased with the increase in the ratio of liquid/gas and increased with the rise of the reaction temperature. It was found from an endurance test that the activity of the thin-film catalyst decreased gradually due to the condensation of water vapor in the catalyst, but was regenarated by heating the catalyst to remove the condensed water. (author)

  11. Counter-diffusion and -permeation of deuterium and hydrogen through metals

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Tanabe,; Tetsuo, [Nagoya Univ. (Japan)

    1998-03-01

    The first experiments for counter-diffusion and -permeation of deuterium and hydrogen through palladium were performed. Deuterium permeation rates against D{sub 2} pressure were measured under the condition where hydrogen permeated to opposite direction by supplying H{sub 2} gas at the permeated side of D{sub 2}. It was found that not a small amount of deuterium was clearly permeated even if the deuterium pressure was much smaller than the hydrogen pressure. Deuterium permeation rate was gradually reduced by increasing the counter H permeation. The deuterium permeation rate under the counter H permeation is well represented by a simple model in which the ratio of the deuterium permeation rates with and without the counter H permeation was proportional to the fractional concentration of deuterium in the bulk. As increasing the hydrogen counter flow, however, the deuterium permeation rate deviates from the model. This means that adsorption (absorption) of D{sub 2} from gas phase is inhibited and surface recombination of deuterium is blocked by hydrogen. (author)

  12. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China.

    Science.gov (United States)

    Wang, Zhixiu; Yao, Lu; Liu, Guihua; Liu, Wenzhi

    2014-09-01

    Through retaining runoff and pollutants such as heavy metals from surrounding landscapes, ponds around a lake play an important role in mitigating the impacts of human activities on lake ecosystems. In order to determine the potential for heavy metal accumulation of submerged macrophytes, we investigated the concentrations of 10 heavy metals (i.e., As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in water, sediments, and submerged macrophytes collected from 37 ponds around the Dianchi Lake in China. Our results showed that both water and sediments of these ponds were polluted by Pb. Water and sediments heavy metal concentrations in ponds received urban and agricultural runoff were not significantly higher than those in ponds received forest runoff. This result indicates that a large portion of heavy metals in these ponds may originate from atmospheric deposition and weathering of background soils. Positive relationships were found among heavy metal concentrations in submerged macrophytes, probably due to the coaccumulation of heavy metals. For most heavy metals, no significant relationships were found between submerged macrophytes and their water and sediment environments. The maximum concentrations of Cr, Fe and Ni in Ceratophyllum demersum were 4242, 16,429 and 2662mgkg(-1), respectively. The result suggests that C. demersum is a good candidate species for removing heavy metals from polluted aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A Management Strategy for the Heavy Water Reflector Cooling System of HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Park, Y. C.; Lim, S. P. (and others)

    2007-11-15

    Heavy water is used as the reflector and the moderator of the HANARO research reactor. After over 10 years operation since first criticality in 1995 there arose some operational issues related with the tritium. A task force team(TFT) has been operated for 1 year since September 2006 to study and deduce resolutions of the issues concerning the tritium and the degradation of heavy water in the HANARO reflector system. The TFT drew many recommendations on the hardware upgrade, tritium containing air control, heavy water quality management, waste management, and tritium measurement system upgrade.

  14. Accelerator driven heavy water blanket on circulating fuel

    International Nuclear Information System (INIS)

    Kazaritsky, V.D.; Blagovolin, P.P.; Mladov, V.R.; Okhlopkov, M.L.; Batyaev, V.F.; Stepanov, N.V.; Seliverstov, V.V.

    1997-01-01

    A conceptual design of a heavy water blanket with circulating fuel for an accelerator driven transmutation system is described. The hybrid system consists of a high-current linear accelerator of protons and 4 targets, each placed inside a subcritical blanket

  15. Heterogeneously catalyzed deuterium separation processes: Hydrogen-water exchange studies at elevated temperatures and pressures

    International Nuclear Information System (INIS)

    Halliday, J.D.; Rolston, J.H.; Au, J.C.; Den Hartog, J.; Tremblay, R.R.

    1985-01-01

    New processes for the separation of hydrogen isotopes are required to produce heavy water for CANDU nuclear reactors and to extract tritium formed in the moderator during reactor operation. Wetproofed platinum catalysts capable of promoting rapid exchange of isotopes between countercurrent flows of hydrogen and liquid water in packed columns have been developed at CRNL over the past 15 years. These catalysts provide a catalystic surface for the gas phase exchange reaction H/sub 2/O/sub (v)/ + HD/sub (g)/ ↔ HDO/sub (v)/ + H/sub 2(g)/ as well as a large liquid surface for the liquid phase isotope transfer reaction HDO/sub (v)/ + H/sub 2/O/sub (iota)/↔HDO/sub (iota)/+H/sub 2/O/sub (v)/. Any economic stand-alone heavy water separation process, based on bithermal hydrogen-water exchange over wetproofed platinum catalysts, requires rapid overall exchange of isotopes between two phases at two temperatures. Catalysts developed for cold tower operation at 25-60 0 C are now being tested in a laboratory scale stainless steel trickle bed reactor for performance and stability at simulated hot tower conditions, 150 0 C and 2.0 MPa pressure. Catalytically active layers containing platinum supported on carbon or crystalline silica and wetproofed with Teflon have been prepared on ceramic spheres and stainless steel screening and tested in both random and ordered bed columns

  16. Desorption dynamics of deuterium in CuCrZr alloy

    Science.gov (United States)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  17. Halden Boiling Water Reactor. Plant Performance and Heavy-Water Management

    Energy Technology Data Exchange (ETDEWEB)

    Aas, S.; Jamne, E.; Wullum, T.; Fjellestad, K. [Institutt for Atomenergi, OECD Halden Reactor Project, Halden (Norway)

    1968-04-15

    The Halden boiling heavy-water reactor, designed and built by the Norwegian Institutt for Atomenergi, has since June 1958 been operated as an international project. On its second charge the reactor was operated at power levels up to 25 MW and most of the time at a pressure of 28.5 kg/cm{sup 2}. During the period from July 1964 to December 1966 the plant availability was close to 64% including shutdowns because of test fuel failures and loading/unloading of fuel. Disregarding such stops, the availability was close to 90%. The average burnup of the core is about 6200 MWd/t UO{sub 2} : the most highly exposed elements have reached 10000 MWd/t UO{sub 2}. The transition temperature of the reactor tank has been followed closely. The results of the surveillance programme and the implication on the reactor operation are discussed. The reactor is located in a cave in a rock. Some experiences with such a containment are given. To locate failed test-fuel elements a fuel failure location system has been installed. A fission gas collection system has saved valuable reactor time during clean-up of the reactor system following test fuel failures. Apart from one incident with two of the control stations, the plant control and instrumentation systems have functioned satisfactorily. Two incidents with losses of 150 and 200 kg of heavy water have occurred. However, after improved methods for leakage detection had been developed, the losses have been kept better than 50 g/h . Since April 1962 the isotopic purity of the heavy water (14 t) has decreased from 99.75 to 99.62%. The tritium concentration is now slightly above 700 {mu}C/cm{sup 3}. This activity level has not created any serious operational or maintenance problems. An extensive series of water chemistry experiments has been performed to study the influence of various operating parameters on radiolytic gas formation. The main results of these experiments will be reported. Different materials such as mild steel, ferritic steel

  18. Advanced technology heavy water monitors offering reduced implementation costs

    International Nuclear Information System (INIS)

    Kalechstein, W.; Hippola, K.B.

    1984-10-01

    The development of second generation heavy water monitors for use at CANDU power stations and heavy water plants has been completed and the instruments brought to the stage of commercial availability. Applications of advanced technology and reduced utilization of custom manufactured components have together resulted in instruments that are less expensive to produce than the original monitors and do not require costly station services. The design has been tested on two prototypes and fully documented, including the inspection and test procedures required for manufacture to the CSA Z299.3 quality verfication program standard. Production of the new monitors by a commercial vendor (Barringer Research Ltd.) has begun and the first instrument is scheduled for delivery to CRNL's NRU reactor in late 1984

  19. Influence of tungsten microstructure and ion flux on deuterium plasma-induced surface modifications and deuterium retention

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Unterberg, B.; M. Reinhart,; Dittmar, T.; Matveev, D.; Linsmeier, C.; Breuer, U.; Kreter, A.; Van Oost, G.

    2015-01-01

    The influence of surface temperature, particle flux density and material microstructure on the surface morphology and deuterium retention was studied by exposing tungsten targets (20 μm and 40 μm grain size) to deuterium plasma at the same particle fluence (1026 m−2) and

  20. Concentration of Heavy Metals in Drinking Water from Urban Areas ...

    African Journals Online (AJOL)

    Bheema

    drinking water treatment practices in the areas, which in turn have important human health implications. This study, therefore, recommends the government and other responsible authorities to take appropriate corrective measures. Key words: Drinking water quality, Heavy metals, Maximum admissible limit, World health.

  1. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  2. Detection of Deuterium in Icy Surfaces and the D/H Ratio of Icy Objects

    Science.gov (United States)

    Clark, Roger Nelson; Brown, Robert H.; Swayze, Gregg A.; Cruikshank, Dale P.

    2017-10-01

    Water ice in crystalline or amorphous form is orientationally disordered, which results in very broad absorptions. Deuterium in trace amounts goes into an ordered position, so is not broadened like H2O absorptions. The D-O stretch is located at 4.13 microns with a width of 0.027 micron. Laboratory spectral measurements on natural H2O and deuterium doped ice show the absorption is slightly asymmetric and in reflectance the band shifts from 4.132 to 4.137 microns as abundance decreases. We derive a preliminary absorption coefficient of ~ 80,000 cm^-1 for the D-O stretch compared to about 560 cm^-1 in H2O ice at 4.13 microns, enabling the detection of deuterium at levels less than Vienna Standard Mean Ocean Water (VSMOW), depending on S/N. How accurate the D/H ratios can be derived will require additional lab work and radiative transfer modeling to simultaneously derive the grain size distribution, the abundance of any contaminants, and deuterium abundance. To first order, the grain size distribution can be compensated by computing the D-O stretch band depth to 2-micron H2O ice band depth ratio, which we call Dratio. Colorado fresh water (~80% of VSMOW) has a Dratio of 0.036, at a D/H = 0.0005, the Dratio = 0.15, and at a D/H = 0.0025, the Dratio = 0.42. The VSMOW Dratio is ~ 0.045.We have used VIMS data from the Cassini spacecraft to compute large spectral averages to detect the deuterium in the rings and on the icy satellite surfaces. A B-ring, 21,882 pixel average, at 640 ms/pixel, or 3.89 hours of integration time, shows a 3.5% O-D stretch band depth and a Dratio = 0.045, indicating deuterium abundance equal to VSMOW. Rhea, using 1.89 hours of integration time shows Dratio = 0.052, or slightly higher than VSMOW. Phoebe has an unusually deep O-D stretch band of 1.85% considering the high abundance of dark material suppressing the ice absorptions. We measure a Dratio = 0.11, an enhancement of ~2.4 over VSMOW, but detailed radiative transfer modeling is needed to

  3. Heavy water production by alkaline water electrolysis

    International Nuclear Information System (INIS)

    Kamath, Sachin; Sandeep, K.C.; Bhanja, Kalyan; Mohan, Sadhana; Sugilal, G.

    2014-01-01

    Several heavy water isotope production processes are reported in literature. Water electrolysis in combination with catalytic exchange CECE process is considered as a futuristic process to increase the throughput and reduce the cryogenic distillation load but the application is limited due to the high cost of electricity. Any improvement in the efficiency of electrolyzers would make this process more attractive. The efficiency of alkaline water electrolysis is governed by various phenomena such as activation polarization, ohmic polarization and concentration polarization in the cell. A systematic study on the effect of these factors can lead to methods for improving the efficiency of the electrolyzer. A bipolar and compact type arrangement of the alkaline water electrolyzer leads to increased efficiency and reduced inventory in comparison to uni-polar tank type electrolyzers. The bipolar type arrangement is formed when a number of single cells are stacked together. Although a few experimental studies have been reported in the open literature, CFD simulation of a bipolar compact alkaline water electrolyzer with porous electrodes is not readily available.The principal aim of this study is to simulate the characteristics of a single cell compact electrolyzer unit. The simulation can be used to predict the Voltage-Current Density (V-I) characteristics, which is a measure of the efficiency of the process.The model equations were solved using COMSOL multi-physics software. The simulated V-I characteristic is compared with the experimental data

  4. Performance of refractometry in quantitative estimation of isotopic concentration of heavy water in nuclear reactor

    International Nuclear Information System (INIS)

    Dhole, K.; Roy, M.; Ghosh, S.; Datta, A.; Tripathy, M.K.; Bose, H.

    2013-01-01

    Highlights: ► Rapid analysis of heavy water samples, with precise temperature control. ► Entire composition range covered. ► Both variations in mole and wt.% of D 2 O in the heavy water sample studied. ► Standard error of calibration and prediction were estimated. - Abstract: The method of refractometry has been investigated for the quantitative estimation of isotopic concentration of heavy water (D 2 O) in a simulated water sample. Feasibility of refractometry as an excellent analytical technique for rapid and non-invasive determination of D 2 O concentration in water samples has been amply demonstrated. Temperature of the samples has been precisely controlled to eliminate the effect of temperature fluctuation on refractive index measurement. The method is found to exhibit a reasonable analytical response to its calibration performance over the purity range of 0–100% D 2 O. An accuracy of below ±1% in the measurement of isotopic purity of heavy water for the entire range could be achieved

  5. Heavy metal pollution in drinking water - a global risk for human ...

    African Journals Online (AJOL)

    Water resources in the world have been profoundly influenced over the last years by human activities, whereby the world is currently facing critical water supply and drinking water quality problems. In many parts of the world heavy metal (HM) concentrations in drinking water are higher than some international guideline ...

  6. DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Vormelker, P.

    2009-07-31

    Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

  7. AECB staff annual report of Bruce Heavy Water Plant operation for the year 1991

    International Nuclear Information System (INIS)

    1992-11-01

    Bruce Heavy Water Plant operation was acceptably safe in 1991. There were no breaches of any of the regulations issued under the authority of the Atomic Energy Control Act. There was one violation of the operating licence. For one hour on October 30, 1991, water leaving the plant contained more hydrogen sulphide than Ontario regulations allow. There was no threat to public health or safety or harm to the environment as a result of this violation. One worker was overcome by hydrogen sulphide. The worker did not lose consciousness, but had the symptoms of H 2 S poisoning. Ontario Hydro took actions to increase awareness of the Operating Policy and Principles at Bruce Heavy Water Plant during 1991. All personnel attended a training course, and Ontario Hydro is reviewing all Bruce Heavy Water Plant documentation to ensure it is consistent with the Operating Policies and Principles. Ontario Hydro met 13 of 15 safety-related system availability targets. The AECB is satisfied appropriate action is being taken to improve the performance of the other two systems. Ontario Hydro continued to put heavy emphasis on safety training; however, they did not meet some of their other training targets. Ontario Hydro completed all of the planned emergency exercises at Bruce Heavy Water Plant in 1991. (Author)

  8. Meaning of the Deuterium excess in the interpretation of δ 18O and δ 2H stable isotopes in hydrogeological studies

    International Nuclear Information System (INIS)

    Valencia, Jacinto

    2013-01-01

    An analysis element that helps with information on the interpretation of stable isotopes δ 18 O and deuterium in hydrogeological studies is called deuterium excess δ. In the present study, it has been used to interpret the weather, evaporation, humidity and wind conditions at the time of the precipitation in the Altiplano region of Puno, which have led to leaks of mine under study. The values obtained from the calculation of the deuterium excess δ of the seepage water samples are in the order of +15o/oo, indicating that the characteristics of the rainfall in the region have dominated high land desert climate conditions, different the current, ie, low humidity at the time of precipitation and further filtering these waters have received contribution of close water basin, evaporated and could come from Lake Titicaca. (author).

  9. Deuterium behavior in first-wall materials for nuclear fusion

    International Nuclear Information System (INIS)

    Bernard, E.

    2012-01-01

    Plasma-wall interactions play an important part while choosing materials for the first wall in future fusion reactors. Moreover, the use of tritium as a fuel will impose safety limits regarding the total amount present in the tokamak. Previous analyses of first-wall samples exposed to fusion plasma highlighted an in-bulk migration of deuterium (as an analog to tritium) in carbon materials. Despite its limited value, this retention is problematic: contrary to co-deposited layers, it seems very unlikely to recover easily the deuterium retained in such a way. Because of the difficult access to in situ samples, most published studies on the subject were carried out using post-mortem sample analysis. In order to access to the dynamic of the phenomenon and come apart potential element redistribution during storage, we set up a bench intended for simultaneous low-energy ion implantation, reproducing the deuterium interaction with first-wall materials, and high-energy micro beam analysis. Nuclear reaction analysis performed at the micrometric scale (μNRA) allows to characterize deuterium repartition profiles in situ. This analysis technique was confirmed to be non-perturbative of the mechanisms studied. We observed on the experimental data set that the material surface (0-1 μm) display a high and nearly constant deuterium content, with a uniform distribution. On the contrary, in-bulk deuterium (1-11 μm) localizes in preferential trapping sites related to the material microstructure. In-bulk deuterium inventory seems to increase with the incident fluence, in spite of the wide data scattering attributed to the structure variation of studied areas. Deuterium saturation at the surface as well as in-depth migration are instantaneous; in-vacuum storage leads to a small deuterium global desorption. Observations made via μNRA were coupled with results from other characterization techniques. X-ray μtomography allowed to identify porosities as the preferential trapping sites

  10. Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan

    Science.gov (United States)

    Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji

    2009-11-01

    In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.

  11. Impact analysis and testing of tritiated heavy water transportation packages including hydrodynamic effects

    International Nuclear Information System (INIS)

    Sauve, R.G.; Tulk, J.D.; Gavin, M.E.

    1989-01-01

    Ontario Hydro has recently designed a new Type B(M) Tritiated Heavy Water Transportation Package (THWTP) for the road transportation of tritiated heavy water from its operating nuclear stations to the Tritium Removal Facility in Ontario. These packages must demonstrate the ability to withstand severe shock and impact scenarios such as those prescribed by IAEA standards. The package, shown in figure 1, comprises an inner container filled with tritiated heavy water, and a 19 lb/ft 3 polyurethane foam-filled overpack. The overpack is of sandwich construction with 304L stainless steel liners and 10.5 inch thick nominal foam walls. The outer shell is 0.75 inch thick and the inner shell is 0.25 inch thick. The primary containment boundary consists of the overpack inner liner, the containment lid and outer containment seals in the lid region. The total weight of the container including the 12,000 lb. payload is 36,700 lb. The objective of the present study is to evaluate the hydrodynamic effect of the tritiated heavy water payload on the structural integrity of the THWTP during a flat end drop from a height of 9 m. The study consisted of three phases: (i) developing an analytical model to simulate the hydrodynamic effects of the heavy water payload during impact; (ii) performing an impact analysis for a 9 m flat end drop of the THWTP including fluid structure interaction; (iii) verification of the analytical models by experiment

  12. Deuterium retention in liquid lithium

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.; Luckhardt, S.C.; Conn, R.W.

    2002-01-01

    Measurements of deuterium retention in samples of lithium exposed in the liquid state to deuterium plasma are reported. Retention was measured as a function of plasma ion dose in the range 6x10 19 -4x10 22 D atoms and exposure temperature between 523 and 673 K using thermal desorption spectrometry. The results are consistent with the full uptake of all deuterium ions incident on the liquid metal surface and are found to be independent of the temperature of the liquid lithium over the range explored. Full uptake, consistent with very low recycling, continues until the sample is volumetrically converted to lithium deuteride. This occurs for exposure temperatures where the gas pressure during exposure was both below and slightly above the corresponding decomposition pressure for LiD in Li. (author)

  13. Linear induction accelerator for heavy ions

    International Nuclear Information System (INIS)

    Keefe, D.

    1976-01-01

    There is considerable recent interest in the use of high energy heavy ions to irradiate deuterium-tritium pellets in a reactor vessel to constitute a power source at the level of 1 GW or more. Various accelerator configurations involving storage rings have been suggested. This paper discusses how the technology of linear induction accelerators - well known to be matched to high current and short pulse length - may offer significant advantages for this application. (author)

  14. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    International Nuclear Information System (INIS)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C.

    2013-01-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD 2 ) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD 2 source will be presented. To achieve these gains, a large volume (35 litres) of LD 2 is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD 2 . The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD 2 at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that installation of the LD 2 cold

  15. A Liquid Deuterium Cold Neutron Source for the NIST Research Reactor - Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R. E.; Middleton, M.; Kopetka, P.; Rowe, J. M.; Brand, P. C. [NIST Center for Neutron Research, Gaithersburg (United States)

    2013-07-01

    The NBSR is a 20 MW research reactor operated by the NIST Center for Neutron Research (NCNR) as a neutron source providing beams of thermal and cold neutrons for research in materials science, fundamental physics and nuclear chemistry. A large, 550 mm diameter beam port was included in the design for the installation of a cold neutron source, and the NCNR has been steadily improving its cold neutron facilities for more than 25 years. Monte Carlo Simulations have shown that a liquid deuterium (LD{sub 2}) source will provide a gain of 1.5 to 2 for neutron wavelengths between 4 A and 10 A with respect to the existing liquid hydrogen cold source. The conceptual design for the LD{sub 2} source will be presented. To achieve these gains, a large volume (35 litres) of LD{sub 2} is required. The expected nuclear heat load in this moderator and vessel is 4000 W. A new, 7 kW helium refrigerator is being built to provide the necessary cooling capacity; it will be completely installed and tested early in 2014. The source will operate as a naturally circulating thermosiphon, very similar to the horizontal cold source in the High Flux Reactor at the Institut Laue-Langevin (ILL) in Grenoble. A condenser will be mounted on the reactor face about 2 m above the source providing the gravitational head to supply the source with LD{sub 2}. The system will always be open to a 16 m3 ballast tank to store the deuterium at 500 kPa when the refrigerator is not operating, and providing a passively safe response to a refrigerator trip. It is expected the source will operate at 23 K, the boiling point of LD{sub 2} at 100 kPa. All components will be surrounded by a blanket of helium to prevent the possibility of creating a flammable mixture of deuterium and air. A design for the cryostat assembly, consisting of the moderator chamber, vacuum jacket, helium containment and a heavy water cooling water jacket, has been completed and sent to procurement to solicit bids. It is expected that

  16. Tritium separation from heavy water by electrolysis with solid polymer electrolyte

    International Nuclear Information System (INIS)

    Ogata, Y.; Ohtani, N.; Kotaka, M.

    2003-01-01

    A tritium separation from heavy water by electrolysis using a solid polymer electrode layer was specified. The cathode was made of stainless steel or nickel. The electrolysis was performed for 1 hour at 5, 10, 20, and 30 deg C. Using a palladium catalyst, generated hydrogen and oxygen gases were recombined, which was collected with a cold trap. The activities of the samples were measured by a liquid scintillation counter. The apparent tritium separation factors of the heavy and light water at 20 deg C were ∼2 and ∼12, respectively. (author)

  17. Improvements done at Heavy Water Plant (Manuguru) to increase the standards of environmental protection

    International Nuclear Information System (INIS)

    Rama Rao, V.V.S.; Gupta, R.V.; Pandey, B.L.

    1997-01-01

    The Heavy Water Plant at Manuguru is designed to produce 185 MTY of nuclear grade heavy water based on bithermal H 2 S-H 2 O exchange process and handles large inventory of H 2 S gas (about 400 MT). As H 2 S gas is very toxic, corrosive and hazardous in nature, extreme care has been taken in the design of plant, selection of equipment and materials adhering to stringent fabrication procedures and codes to ensure the production of heavy water in a safe manner. This paper highlights the improvements done at Heavy Water Plant (Manuguru) to increase the standards of environmental protection. The safety assessment of a hazardous plant is a continuous process. Apart from the extreme care taken in the design, construction, commissioning and operation of the plant, review of each and every safety related unusual occurrence by various levels of review committees as stipulated and speedy implementation of the recommendations goes in a long way in increasing the standards of environmental protection

  18. Nuclear processes in deuterium/natural hydrogen-metal systems

    International Nuclear Information System (INIS)

    Zelensky, V.F.

    2013-01-01

    The survey presents the analysis of the phenomena taking place in deuterium - metal and natural hydrogen - metal systems under cold fusion experimental conditions. The cold fusion experiments have shown that the generation of heat and helium in the deuterium-metal system without emission of energetic gamma-quanta is the result of occurrence of a chain of chemical, physical and nuclear processes observed in the system, culminating in both the fusion of deuterium nuclei and the formation of a virtual, electron-modified excited 4He nucleus. The excitation energy of the helium nucleus is transferred to the matrix through emission of conversion electrons, and that, under appropriate conditions, provides a persistent synthesis of deuterium. The processes occurring in the deuterium/natural hydrogen - metal systems have come to be known as chemonuclear DD- and HD-fusion. The mechanism of stimulation of weak interaction reactions under chemonuclear deuterium fusion conditions by means of strong interaction reactions has been proposed. The results of numerous experiments discussed in the survey bear witness to the validity of chemonuclear fusion. From the facts discussed it is concluded that the chemonuclear deuterium fusion scenario as presented in this paper may serve as a basis for expansion of deeper research and development of this ecologically clean energy source. It is shown that the natural hydrogen-based system, containing 0.015% of deuterium, also has good prospects as an energy source. The chemonuclear fusion processes do not require going beyond the scope of traditional physics for their explanation

  19. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    OpenAIRE

    Muneeb Ur Rahman Khattak, Muhammad; Zahoor, Muhammad; Muhammad, Bakhtiar; Khan, Farhat Ali; Ullah, Riaz; AbdEI-Salam, Naser M.

    2017-01-01

    Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA) and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn) from water. The adsorption parameters were determined for heavy metals adsorpti...

  20. Catalyzed deuterium fueled tokamak reactors

    International Nuclear Information System (INIS)

    Southworth, F.H.

    1977-01-01

    Catalyzed deuterium fuel presents several advantages relative to D-T. These are, freedom from tritium breeding, high charged particle power fraction and lowered neutron energy deposition in the blanket. Higher temperature operation, lower power densities and increased confinement are simultaneously required. However, the present study has developed designs which have capitalized upon the advantages of catalyzed deuterium to overcome the difficulties associated with the fuel while obtaining high efficiency

  1. Deuterium as a tracer in coal liquefaction. Pt. 1

    International Nuclear Information System (INIS)

    Wilson, M.A.; Collin, P.J.; Barron, P.F.; Vassallo, A.M.

    1982-01-01

    Deuterium has been used to trace the pathways by which hydrogen reacts with an Australian bituminous coal (Liddell) in the presence of a nickel/molybdenum catalyst. The results show that at 400 0 C extensive scrambling of hydrogen and deuterium occurs among aromatic and α to aromatic aliphatic hydrogen and deuterium substituents. Deuterium can enter all structural groups in both asphaltene and hexane-soluble fractions of the coal-derived liquids, but it enters aromatic and α to aromatic groups in preference to alkyl groups remote from aromatic rings. Thus the results indicate that hydrogen atoms are very mobile during coal hydrogenation. Deuterium from deuterium oxide generated during conversion can also be incorporated into the coal-derived liquids. During coal hydrogenation, the eventual fate of much of the hydrogen in the gas phase is to substitute for hydrogen already in the coal. (Auth.)

  2. Graphite-moderated and heavy water-moderated spectral shift controlled reactors

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs

  3. Effective management of water systems in a chemical industry: a case study at Heavy Water Plant, Manuguru

    International Nuclear Information System (INIS)

    Prahalad, B.; Pandey, B.L.

    1997-01-01

    This paper describes about the important methods of water management in general followed by a description of the water system and measures taken/to be implemented at Heavy Water Plant, Manuguru in particular in order to effectively tackle the effluent water by reuse of the treated effluents

  4. Physical and water properties of selected Polish heavy soils of various origins

    Directory of Open Access Journals (Sweden)

    Kaczmarek Zbigniew

    2015-12-01

    Full Text Available The paper presents the characteristics of selected physical, chemical, and water properties of four mineral arable soils characterized with heavy and very heavy texture. Soil samples from genetic horizons of black earths from areas near Kętrzyn, Gniew and Kujawy, and alluvial soils from Żuławy were used. The following properties were determined in the samples of undisturbed and disturbed structure: texture, particle density, bulk density, porosity, natural and hygroscopic moistures, maximal hygroscopic capacity, saturated hydraulic conductivity, potential of water bonding in soil, total and readily available water, total retention in the horizon of 0–50 cm, drainage porosity, content of organic carbon and total nitrogen Parent rocks of these soils were clays, silts and loams of various origin. High content of clay fraction strongly influenced the values of all the analyzed properties. All the examined soils had high content of organic carbon and total nitrogen and reaction close to neutral or alkaline. High content of mineral and organic colloids and, what follows, beneficial state of top horizons’ structure, determined – apart from heavy texture – low soil bulk density and high porosity. The investigated soils were characterized by high field water capacity and wide scopes of total and readily available water. The saturated hydraulic conductivity was low and characteristic to heavy mineral arable soils. The parameter which influenced the variability of analyzed parameters most was texture.

  5. Predicting big bang deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Hata, N.; Scherrer, R.J.; Steigman, G.; Thomas, D.; Walker, T.P. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States)

    1996-02-01

    We present new upper and lower bounds to the primordial abundances of deuterium and {sup 3}He based on observational data from the solar system and the interstellar medium. Independent of any model for the primordial production of the elements we find (at the 95{percent} C.L.): 1.5{times}10{sup {minus}5}{le}(D/H){sub {ital P}}{le}10.0{times}10{sup {minus}5} and ({sup 3}He/H){sub {ital P}}{le}2.6{times}10{sup {minus}5}. When combined with the predictions of standard big bang nucleosynthesis, these constraints lead to a 95{percent} C.L. bound on the primordial abundance deuterium: (D/H){sub best}=(3.5{sup +2.7}{sub {minus}1.8}){times}10{sup {minus}5}. Measurements of deuterium absorption in the spectra of high-redshift QSOs will directly test this prediction. The implications of this prediction for the primordial abundances of {sup 4}He and {sup 7}Li are discussed, as well as those for the universal density of baryons. {copyright} {ital 1996 The American Astronomical Society.}

  6. Assessment of heavy metal pollution in drinking water due to mining ...

    African Journals Online (AJOL)

    Mining and smelting activities are the main causes for the increasing pollution of heavy metals from water sources. The toxicity of these heavy metals from the mining, milling and smelting companies can cause harmful and even lethal effects on the human health. The objective of this study was to investigate the level of As, ...

  7. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.

    Science.gov (United States)

    Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu

    2013-10-01

    The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.

  8. Spin exchange in polarized deuterium

    International Nuclear Information System (INIS)

    Przewoski, B. von; Meyer, H.O.; Balewski, J.; Doskow, J.; Ibald, R.; Pollock, R.E.; Rinckel, T.; Wellinghausen, A.; Whitaker, T.J.; Daehnick, W.W.; Haeberli, W.; Schwartz, B.; Wise, T.; Lorentz, B.; Rathmann, F.; Pancella, P.V.; Saha, Swapan K.; Thoerngren-Engblom, P.

    2003-01-01

    We have measured the vector and tensor polarization of an atomic deuterium target as a function of the target density. The polarized deuterium was produced in an atomic beam source and injected into a storage cell. For this experiment, the atomic beam source was operated without rf transitions, in order to avoid complications from the unknown efficiency of these transitions. In this mode, the atomic beam is vector and tensor polarized and both polarizations can be measured simultaneously. We used a 1.2-cm-diam and 27-cm-long storage cell, which yielded an average target density between 3 and 9x10 11 at/cm 3 . We find that the tensor polarization decreases with increasing target density while the vector polarization remains constant. The data are in quantitative agreement with the calculated effect of spin exchange between deuterium atoms at low field

  9. Deuterium Values from Hydrated Volcanic Glass: A Paleoelevation Proxy for Oregon's Cascade Range

    Science.gov (United States)

    Carlson, T. B.; Bershaw, J. T.; Cassel, E. J.

    2017-12-01

    Deuterium ratios (δD) of hydrated volcanic glass have been used to reconstruct Cenozoic paleoenvironments. However, the reliability and proper sample preparation protocol have been debated. The Cascades are an excellent location to study the validity of hydrated volcanic glass as a paleoelevation proxy for several reasons. Moisture is largely derived from a single oceanic source and falls as orographic precipitation in the Cascades, leading to a characteristic altitude effect, or inverse relationship between elevation and the isotopic composition of meteoric water (δD). Additionally, past studies have inferred uplift of the Cascades since the Miocene based on changing fossil assemblages, tectonic models, and other isotopic proxies including soil carbonates and fossil teeth. In this study, hydrated volcanic ash samples from the lee of the Cascades were rinsed with hydrochloric acid and sonicated before glass shards were hand-selected and analyzed for δD and wt. % water. These preliminary results exhibited δD values becoming enriched with time, a trend opposite of other paleowater proxy studies in the area. A possible explanation for this trend is contamination due to inadequate removal of materials adhered to shard surfaces that can readily exchange with environmental water. Recent research asserts that hydrofluoric acid (HF) etching during sample preparation is necessary to accurately measure δD values of syndepositional water. Volcanic ash samples were reanalyzed after preparation using HF abrasion and heavy liquid separation. The data from these two subsets are interpreted in the context of modern water across the range, as well as other paleowater proxy and geologic studies to determine the implications of volcanic glass as a paleoelevation proxy in the Pacific Northwest.

  10. Long term assurance of supply of heavy water

    International Nuclear Information System (INIS)

    1978-01-01

    The answer of Switzerland and Great Britain to a number of questions concerning the long-term assurance of the supply of heavy water are presented. The original problems are seen in the wider context of raw materials supply and its assurance in general. Non-proliferation aspects are touched

  11. Equilibrium deuterium isotope effect of surprising magnitude

    International Nuclear Information System (INIS)

    Goldstein, M.J.; Pressman, E.J.

    1981-01-01

    Seemingly large deuterium isotope effects are reported for the preference of deuterium for the α-chloro site to the bridgehead or to the vinyl site in samples of anti-7-chlorobicyclo[4.3.2]undecatetraene-d 1 . Studies of molecular models did not provide a basis for these large equilibrium deuterium isotope effects. The possibility is proposed that these isotope effects only appear to be large for want of comparison with isotope effects measured for molecules that might provide even greater contrasts in local force fields

  12. Deuterium trapping in carbon fiber composites under high fluence

    International Nuclear Information System (INIS)

    Airapetov, A.A.; Begrambekov, L.B.; Kuzmin, A.A.; Shigin, P.A.; Zakharov, A.M.

    2010-01-01

    The paper is devoted to investigation of deuterium trapping in CFC, dance graphite MPG-8 and pyrolytic graphite (PG) under plasma ion- and electron irradiation. Number of specific features of deuterium trapping and retention under plasma ion and electron irradiation is presented and discussed. In particular it is shown that 1) deuterium trapping takes place even when energy of impinging ions approaches zero; 2) deuterium is trapped under irradiation by plasma electrons; 3) under irradiation at equal fluences deuterium trapping is higher, when ion flux is smaller. High energy ion penetrating the surfaces are trapped in the traps created at the expense of their kinetic energy. The process may be named 'kinetic trapping'. Under low energy (smaller than 200 eV) electron and/or ion irradiation the energy of inelastic interaction on the surface provides creation of active centers, which initiate dissociation of deuterium sorbed on the surface, penetration of deuterium atoms into graphite and their trapping in specific low energy traps. The term 'potential trapping' is proposed for this type of trapping. Under high energy irradiation such atoms can fill the traps formed through kinetic mechanism. Origination of moveable deuterium atoms from the layer of surface sorption seems to be time dependent process and it is a reason of increase of trapping along with irradiation time. New features of deuterium trapping and retention in graphite evaluated in this study offer new opportunities for analysis and correct estimation of hydrogen isotope trapping and retention in tokamaks having graphite tiles. (authors)

  13. On-line infrared heavy-water instruments: status, economics and prospects

    International Nuclear Information System (INIS)

    Lynch, G.F.

    1978-06-01

    An intensive program to rehabilitate and establish the reliability of on-line heavy-water monitors is now showing tangible results. After determining the operating specifications and characteristics of the infrared D 2 O analyzers manufactured by Barringer Research Limited, monitoring systems based on these instruments were installed and commissioned at reactors and heavy-water plants. Ten such systems are currently operating reliably in the field. Laboratory tests and field experience have identified design features which would make the analyzers more convenient to use and less sensitive to environmental conditions. The conceptual design of a new instrument which is less dependent on station services and more tolerant of plant conditions has been completed

  14. CANDU - Canadian experience and expectations with the heavy-water reactor

    International Nuclear Information System (INIS)

    Foster, J.S.; Russell, S.H.

    1977-05-01

    The paper describes the evolution of the CANDU nuclear-power plants with particular reference to the objectives of safety, reliability and economy; the development of industrial capacity for the supply of fuel, components and heavy water; and the prospective development of advanced fuel cycles and the projected results. It provides data on radiation, releases, and exposures, internal and external to the power plants; plant availability, capacity factors and other performance data; heavy water production data with reference to safety, reliability, and economics; projections of the performance of CANDU reactors operating on a thorium-U-233 cycle and the development required to establish this cycle; and intent with respct to spent-fuel management and radioactive-waste storage. (author)

  15. Benchmark testing of Canadol-2.1 for heavy water reactor

    International Nuclear Information System (INIS)

    Liu Ping

    1999-01-01

    The new version evaluated nuclear data library of ENDF-B 6.5 has been released recently. In order to compare the quality of evaluated nuclear data CENDL-2.1 with ENDF-B 6.5, it is necessary to do benchmarks testing for them. In this work, CENDL-2.1 and ENDF-B 6.5 were used to generated the WIMS-69 group library respectively, and benchmarks testing was done for the heavy water reactor, using WIMS5A code. It is obvious that data files of CENDL-2.1 is better than that of old WIMS library for the heavy water reactors calculations, and is in good agreement with those of ENDF-B 6.5

  16. [Heavy metals in environmental media around drinking water conservation area of Shanghai].

    Science.gov (United States)

    Shi, Gui-Tao; Chen, Zhen-Lou; Zhang, Cui; Bi, Chun-Juan; Cheng, Chen; Teng, Ji-Yan; Shen, Jun; Wang, Dong-Qi; Xu, Shi-Yuan

    2008-07-01

    The levels of heavy metals in Shanghai drinking water conservation area were determined, and the spatial distributions and main sources of heavy metals were investigated. Moreover, the ecological risk assessment of heavy metals was conducted. Some conclusions can be drawn as follows: (1) The average concentrations of Cd, Hg, Pb, Cu, Zn, Ni, Cr and As in road dust were 0.80, 0.23, 148.45, 127.52, 380.57, 63.17, 250.38 and 10.37 mg x kg(-1) respectively. In terms of the pollution level, the values of soils were relatively lower, with the mean contents of 0.16 (Cd), 0.33 (Hg), 30.14 (Pb), 30.66 (Cu), 103.79 (Zn), 24.04 (Ni), 65.75 (Cr) and 6.31 mg x kg(-1) (As) severally; meanwhile the average levels of heavy metals in vegetables were 0.010 (Cd), 0.016 (Hg), 0.36 (Pb), 12.80 (Cu), 61.69 (Zn), 2.04 (Ni), 2.41 (Cr) and 0.039 mg x kg(-1) (As) respectively. (2) Semivariogram and multivariate analysis indicated that heavy metals pollution of soils was induced by anthropogenic activities mostly, and the pollutants produced by traffic were the major source of heavy metals in road dust. (3) The order for heavy metal enrichment coefficients of vegetables was as following: Zn (0.589) > Cu (0.412) > 0.102 (Ni) > Cd (0.059) > Cr (0.061) > Hg (0.056) > Pb (0.012) > As (0.007), and the results indicated that Cd and Zn in vegetables were mainly from the soils, and the other metals were probably from the pollutants in the atmosphere. (4) Sediments in drinking water conservation area were probably derived from soils around; however, there was no significant relationship between heavy metals contents of them. (5) The results of ecological risk assessment of heavy metals showed that heavy metals in soils were in no-warning to warning situation, and warning to light-warning situation for road dust and vegetables. The fuzzy synthesis judgment for all the environmental media around drinking water conservation area was warning to light-warning.

  17. Growth scenarios with thorium fuel cycles in pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Balakrishnan, M.R.

    1991-01-01

    Since India has generous deposits of thorium, the availability of thorium will not be a limiting factor in any growth scenario. It is fairly well accepted that the best system for utilisation of thorium is the heavy water reactor. The growth scenarios possible using thorium in HWRs are considered. The base has been taken as 50,000 tons of natural uranium and practically unlimited thorium. The reference reactor has been assumed to be the PHWR, and all other growth scenarios are compared with the growth scenario provided by the once-through natural cycle in the PHWR. Two reactor types have been considered: the heavy water moderated, heavy water cooled, pressure tube reactor, known as the PHWR; and the heavy water moderated and cooled pressure vessel kind, similar to the ATUCHA reactor in Argentina. For each reactor, a number of different fuel cycles have been studied. All these cycles have been based on thorium. These are: the self-sustaining equilibrium thorium cycle (SSET); the high conversion ratio high burnup cycle; and the once through thorium cycle (OTT). The cycle have been initiated in two ways: one is by starting the cycle with natural uranium, reprocessing the spent fuel to obtain plutonium, and use that plutonium to initiate the thorium cycle; the other is to enrich the uranium to about 2-3% U-235 (the so-called Low Enriched Uranium or LEU), and use the LEU to initiate the thorium cycle. Both cases have been studied, and growth scenarios have been projected for every one of the possible combinations. (author). 1 tab

  18. Fine target of deuterium; Blanco fino de deuterio

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Diaz, J; Granados Gonzalez, C E; Gutierrez Bernal, R

    1959-07-01

    A fine target of deuterium on a tantalum plate by the absorption method is obtained. In order to obtain the de gasification temperature an induction generator of high frequency is used and the deuterium pass is regulated by means of a palladium valve. Two vacuum measures are available, one to measure the high vacuum in the de gasification process of the tantalum plate and the other, for low vacuum, to measure the deuterium inlet in the installation and the deuterium pressure change in the installation after the absorption in the tantalum plate. A target of 48 {mu} gr/cm{sup 2} thick is obtained. (Author) 1 refs.

  19. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    This study assessed the seasonal variation in heavy metal contamination of stream water and sediments in the gold mining area of Atakunmosa West local Government, Osun State, Nigeria. Twelve villages of prominence in illegal gold mining were selected for the study covering dry and wet seasons of 2012. Stream water ...

  20. The density behaviour of heavy oils in water

    International Nuclear Information System (INIS)

    Fingas, M.; Hollebone, B.; Fieldhouse, B.

    2006-01-01

    The recent concern regarding the difficulty of cleaning up Low API gravity oils (LAPIO) spilled in water was discussed. Sinking and overwashing are 2 phenomena related to the behaviour of these heavy oils in water. Sinking refers to the complete submergence of the oil to the bottom of a waterbody, while over-washing refers to the overflowing of a layer of water over dense oil at sea when the oil is still close to the surface. The latter is important because even a micron-layer of water could render the oil undetectable, particularly at acute viewing angles, such as from a ship. This paper reviewed the properties of heavy oil, the prediction of density changes and the sinking/over-washing of heavy oil. In particular, it discussed a spill which occurred in August 2005 when 11 tank cars from train derailment spilled 800,000 litres of Bunker fuel mixed with high PAH-containing pole-treating oil into Lake Wabamun, Alberta. The behaviour of the oil included submergence, neutral buoyancy, resurfacing and formation of several types of aggregates of oil. This study summarized the behaviours and processes that transformed the particles of oil into small tar balls, larger logs, sheets, and large lumps into a slick. Sediment uptake or loss was found to be the major process that caused the changes in density. The behaviour of the oils was compared with respect to density and uptake of various types of sediment. The paper also reviewed the literature on dense oil behaviour. Weathering experiments performed on dense oils to determine if extensive weathering could render oils heavier than water showed that rarely is weathering the only factor in the bulk sinking of oil. Once an oil is submerged, little weathering occurs, either by dissolution or volatilization. The uptake of particulate matter is the most important process in increasing density. This study reviewed over-washing experiments to develop a mathematical solution of the conditions required for oil to be covered by a

  1. The influence of variation of deuterium's concentration on the immunity system

    International Nuclear Information System (INIS)

    Tamaian, Radu

    2007-01-01

    Hydrogen's substitution by deuterium represents an environmental alteration at which the organism (in vivo) and the cells (in vitro), respectively, if they can't accommodate will recede. In this way the variations of deuterium's isotopic abundance can be compared with the environmental factors of stress (variations of temperature, quantity of nourishment, radiations, etc). As different forms of existence of life are more or less sensitive at environment's factors variations, so they respond in different ways to concentration variations of deuterium from the living environment/organism. Consequently the mammals' immunity system (IS) presents different feed-backs. The main results are stressed as follows: - a. The use as alimentary adjuvant of deuterium depleted water (DDW) in prolonged periods (21 days) increased the capacity of unspecific immunity defense against the specific bacterial aggression, both in Gram-positive bacteria (Streptococcus pneumoniae558) and of Gram-negative (Klebsiella pneumoniae507); - b. The immunosuppression determined by cyclophosphamide-alquilant agent with medullary depletion of white series reduced the survival of inoculated animals, even in the conditions in which the animals have received dietary supplement with DDW; - c. The immunosuppression through medullary depletion due to irradiation reduced also the survival of inoculated animals, even in the conditions in which the animals have received dietary supplement with DDW. Those mentioned herein lead to the hypothesis that prolonged administration of DDW simulates the unspecific immunity defence, probably through the stimulation of the hematogenic marrow and of lymphopoietic and granulopoietic stem cells. (author)

  2. Neutron scattering of a floating heavy water bridge

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Bitschnau, Brigitte; Woisetschlaeger, Jakob; Maier, Eugen; Beuneu, Brigitte; Teixeira, Jose

    2009-01-01

    When high voltage is applied to distilled water filled into two beakers close to each other, a water connection forms spontaneously, giving the impression of a floating water bridge (Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4, 2008 J. Phys. D: Appl. Phys. 41 185502). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the first data on neutron scattering of a floating heavy water bridge are presented and possible interpretations are discussed. D 2 O was measured instead of H 2 O because of the very strong incoherent scattering of H. The obtained data support the 'bubble hypothesis' suggested earlier (Fuchs et al 2008).

  3. Deuterium fractionation in dense interstellar clouds

    International Nuclear Information System (INIS)

    Millar, T.J.; Bennett, A.; Herbst, E.

    1989-01-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized. 60 refs

  4. Deuterium fractionation in dense interstellar clouds

    Science.gov (United States)

    Millar, T. J.; Bennett, A.; Herbst, Eric

    1989-05-01

    The time-dependent gas-phase chemistry of deuterium fractionation in dense interstellar clouds ranging in temperature between 10 and 70 K was investigated using a pseudo-time-dependent model similar to that of Brown and Rice (1986). The present approach, however, considers much more complex species, uses more deuterium fractionation reactions, and includes the use of new branching ratios for dissociative recombinations reactions. Results indicate that, in cold clouds, the major and most global source of deuterium fractionation is H2D(+) and ions derived from it, such as DCO(+) and H2DO(+). In warmer clouds, reactions of CH2D(+), C2HD(+), and associated species lead to significant fractionation even at 70 K, which is the assumed Orion temperature. The deuterium abundance ratios calculated at 10 K are consistent with those observed in TMC-1 for most species. However, a comparison between theory and observatiom for Orion, indicates that, for species in the ambient molecular cloud, the early-time results obtained with the old dissociative recombination branching ratios are superior if a temperature of 70 K is utilized.

  5. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    Directory of Open Access Journals (Sweden)

    Muhammad Muneeb Ur Rahman Khattak

    2017-01-01

    Full Text Available Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn from water. The adsorption parameters were determined for heavy metals adsorption using Freundlich and Langmuir isotherms. The adsorption kinetics and effect of time, pH, and temperature on heavy metal ions were also determined. The best fits were obtained for Freundlich isotherm. The percent adsorption showed a decline at high pH. Best fit was obtained with second-order kinetics model for the kinetics experiments. The values of ΔH° and ΔG° were negative while that of ΔS° was positive. The prepared adsorbent has high adsorption capacities and can be efficiently used for the removal of heavy metals from water.

  6. Studies of the Effect of Heavy Water in the Fast Reactor FR0

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, L I; Haakansson, R; Karmhag, B

    1968-08-15

    Core 9 of the FR0 fast critical assembly was diluted with heavy water to 24 vol. per cent, contained in thin walled copper cans. The report describes measurements of the critical mass and the reactivity coefficient of heavy water in this core. The effect of the heterogeneous core composition on these items is also dealt with. The results are compared with theoretical predictions using several computer codes. Criticality is accurately predicted, but the measured reactivity coefficient of heavy water is about 20 % lower than the value obtained with the best available methods, involving the SPENG and DTF-4 programmes. The result of bunching measurements, in which the degree of heterogeneity of core composition was changed, is compared with theoretical estimates of the resonance shielding, flux advantage and leakage components of the heterogeneity effect.

  7. Studies of the Effect of Heavy Water in the Fast Reactor FR0

    International Nuclear Information System (INIS)

    Tiren, L.I.; Haakansson, R.; Karmhag, B.

    1968-08-01

    Core 9 of the FR0 fast critical assembly was diluted with heavy water to 24 vol. per cent, contained in thin walled copper cans. The report describes measurements of the critical mass and the reactivity coefficient of heavy water in this core. The effect of the heterogeneous core composition on these items is also dealt with. The results are compared with theoretical predictions using several computer codes. Criticality is accurately predicted, but the measured reactivity coefficient of heavy water is about 20 % lower than the value obtained with the best available methods, involving the SPENG and DTF-4 programmes. The result of bunching measurements, in which the degree of heterogeneity of core composition was changed, is compared with theoretical estimates of the resonance shielding, flux advantage and leakage components of the heterogeneity effect

  8. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  9. Chemical elimination of alumina in suspension in nuclear reactors heavy water

    International Nuclear Information System (INIS)

    Ledoux, A.

    1967-02-01

    Corrosion of aluminium in contact with moderating water in nuclear reactor leads to the formation of an alumina hydrosol which can have an adverse effect on the operation of the reactor. Several physical methods have been used in an attempt to counteract this effect. The method proposed here consists in the elimination of the aluminium by dissolution and subsequent fixation in the ionic form on mixed-bed ion-exchange resin. In order to do this, the parameters and the values of these parameters most favorable to the dissolution process have been determined. If the moderator is heavy water, the deuterated acid can be prepared by converting a solution in heavy water to a salt of the acid using a deuterated cationic resin. (author) [fr

  10. Embalse nuclear power plant and heavy water valuation

    International Nuclear Information System (INIS)

    Martin, Daniel E.

    2008-01-01

    The author describes the nuclear power plant characteristics, the building work, the heavy water valuation criteria and the reasons why he considers that any capital good can be valued by the cash-flow method. The Embalse nuclear power plant replacement value is of U$S 1.593.538.000. (author) [es

  11. Energy conservation measures adopted at Heavy Water Plant, Manuguru

    International Nuclear Information System (INIS)

    Gupta, R.V.; Venugopal, M.

    1997-01-01

    The importance of conservation of energy is well recognised all over the world as the world reserves of fossil fuels will eventually run out depending on the rate of their use. This paper deals with various energy conservation schemes adopted at Heavy Water Plant, Manuguru (HWPM). Most energy conservation measures offer large financial saving with very short pay back periods. This fact has been well recognised by the management of HWPM as well as Heavy Water Board and their wholehearted and enthusiastic approach to energy conservation and energy management yielded very good results in reducing the operating cost. The process of energy conservation is not a one time exercise. Persistent efforts are on to identify the areas like condition of heat exchangers, margins in control valves, steam and condensate leakages etc. for further reduction in energy consumption

  12. Compton-scattering from hydrogen, deuterium and complex nuclei at photonenergies of 3 and 5 Gev under very small scattering angles

    International Nuclear Information System (INIS)

    Kahl, T.

    1976-01-01

    Compton scattering on hydrogen, deuterium and heavy nuclei up to hold was studied at very small momentum transfer and at two energies. Measurements were carried out in the region 0.002LT= /t/ LT=0.06 (GeV/c)**2 at 5 GeV and in the region 0.001 LT=/t/LT=0.02 (GeV/c)**2 at 3 GeV. (orig.) [de

  13. Sampling method of water sources at study site Taiping, Perak and Pulau Burung, Penang for research on pollutant movement in underground water

    International Nuclear Information System (INIS)

    Mohd Rifaie Mohd Murtadza; Mohd Tadza Abdul Rahman; Kamarudin Samuding; Roslanzairi Mostapa

    2005-01-01

    This paperwork explain the method of water sampling being used to take the water samples from the study sites in Taiping, Perak and Pulau Burung, Pulau Pinang. The sampling involve collecting of water samples for groundwater from boreholes and surface water from canal, river, pond, and ex-mining pond from several locations at the study sites. This study also elaborates the instruments and chemical used. The main purpose of this sampling are to obtain the important water quality parameters such as pH, conductivity, Total Dissolved Solid (TDS), heavy metals, anions, cations, and environmental isotopes delta values (d) for 18O, Deuterium dan Tritium. A correct sampling method according to standard is very important to ensure an accurate and precise results. With this, the data from the laboratory tests result can be fully utilized to make the interpretation of the pollutants movement. (Author)

  14. SAIDE: A Semi-Automated Interface for Hydrogen/Deuterium Exchange Mass Spectrometry.

    Science.gov (United States)

    Villar, Maria T; Miller, Danny E; Fenton, Aron W; Artigues, Antonio

    2010-01-01

    Deuterium/hydrogen exchange in combination with mass spectrometry (DH MS) is a sensitive technique for detection of changes in protein conformation and dynamics. Since temperature, pH and timing control are the key elements for reliable and efficient measurement of hydrogen/deuterium content in proteins and peptides, we have developed a small, semiautomatic interface for deuterium exchange that interfaces the HPLC pumps with a mass spectrometer. This interface is relatively inexpensive to build, and provides efficient temperature and timing control in all stages of enzyme digestion, HPLC separation and mass analysis of the resulting peptides. We have tested this system with a series of standard tryptic peptides reconstituted in a solvent containing increasing concentration of deuterium. Our results demonstrate the use of this interface results in minimal loss of deuterium due to back exchange during HPLC desalting and separation. For peptides reconstituted in a buffer containing 100% deuterium, and assuming that all amide linkages have exchanged hydrogen with deuterium, the maximum loss of deuterium content is only 17% of the label, indicating the loss of only one deuterium molecule per peptide.

  15. Long Term Retention of Deuterium and Tritium in Alcator C-Mod

    International Nuclear Information System (INIS)

    FIORE, C.; LABOMBARD, B.; LIPSCHULTZ, B.; PITCHER, C.S.; SKINNER, C.H.; WAMPLER, WILLIAM R.

    1999-01-01

    We estimate the total in-vessel deuterium retention in Alcator C-Mod from a run campaign of about 1090 plasmas. The estimate is based on measurements of deuterium retained on 22 molybdenum tiles from the inner wall and divertor. The areal density of deuterium on the tiles was measured by nuclear reaction analysis. From these data, the in-vessel deuterium inventory is estimated to be about 0.1 gram, assuming the deuterium coverage is toroidally symmetric. Most of the retained deuterium is on the walls of the main plasma chamber, only about 2.5% of the deuterium is in the divertor. The D coverage is consistent with a layer saturated by implantation with ions and charge-exchange neutrals from the plasma. This contrasts with tokamaks with carbon plasma-facing components (PFC's) where long-term retention of tritium and deuterium is large and mainly in the divertor due to codeposition with carbon eroded by the plasma. The low deuterium retention in the C-Mod divertor is mainly due to the absence of carbon PFC's in C-Mod and the low erosion rate of Mo

  16. Assessment of irradiation effects on beryllium reflector and heavy water tank of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Yoji; Kakehuda, Kazuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M, a swimming pool type research reactor with beryllium and heavy water reflectors, has been operated since 1990. Since the beryllium reflectors are close to fuel and receive high fast neutron fluence in a relatively short time, they may be subject to change their dimensions by swelling due mostly to entrapped helium gaseous. This may bend the reflectors to the outside and narrow gaps between the reflectors and the fuel elements. The gaps have been measured with an ultrasonic thickness gage in an annual inspection. The results in 1996 show that the maximum of expansion in the diametral directions was 0.6 mm against 1.6 mm of a managed value for replacement of the reflector. A heavy water tank of the JRR-3M is made of aluminum alloy A5052. Surveillance tests of the alloy have been conducted to evaluate irradiation effects of the heavy water tank. Five sets of specimens of the alloy have been irradiated in the beryllium reflectors where fast neutron flux is higher than that in the heavy water tank. In 1994, one set of specimens had been unloaded and carried out the post-irradiation tests. The results show that the heavy water tank preserved satisfactory mechanical properties. (author)

  17. D2O, Computation of Thermodynamic and Transport Properties of Heavy Water

    International Nuclear Information System (INIS)

    Durmayaz, Ahmet

    2000-01-01

    1 - Description of program or function: A computer program for the fast computation of the thermodynamic and transport properties of heavy water (D 2 O) at saturation, in subcooled liquid and superheated vapor states. Specific volume (or density), specific enthalpy, specific entropy, constant-pressure specific heat and temperature at saturation are calculated by a number of piecewise continuous approximation functions of (and their derivatives are calculated with respect to) pressure whereas pressure at saturation is calculated by a piecewise continuous approximation function of temperature for heavy water. Density in subcooled liquid state, specific volume in super-heated vapor state, specific enthalpy, specific entropy and constant-pressure specific heat in both of these states are calculated by some piecewise continuous approximation functions of pressure and temperature for heavy water. The correlations used in the calculation of these thermodynamic properties of heavy water were derived by fitting some appropriate curves to the data given in the steam tables by Hill et al (1981). The whole set of correlations and the approximation method used in their derivation are presented by Durmayaz (1997). Dynamic viscosity and thermal conductivity for heavy water are calculated as functions of temperature and density with the correlations given by Hill et al (1981), by Matsunaga and Nagashima (1983) and by Kestin et al (1984). Surface tension for heavy water is calculated as a function of temperature with the correlation given by Crabtree and Siman-Tov (1993). 2 - Methods: A group of pressure-enthalpy (P-h) pairs can be given in an input data file or assigned in the main program without knowing the state in which fluid takes place. In this case, first, the enthalpies at saturation corresponding to the given pressure are computed. Second, the state is determined by comparing the given enthalpy to the saturation enthalpies. Then, the properties are computed. Program D 2 O

  18. Hydrogen-water isotopic exchange process

    International Nuclear Information System (INIS)

    Cheung, H.

    1983-01-01

    Deuterium is concentrated in a hydrogen-water isotopic exchange process enhanced by the use of catalyst materials in cold and hot tower contacting zones. Water is employed in a closed liquid recirculation loop that includes the cold tower, in which deuterium is concentrated in the water, and the upper portion of the hot tower in which said deuterium is concentrated in the hydrogen stream. Feed water is fed to the lower portion of said hot tower for contact with the circulating hydrogen stream. The feed water does not contact the water in the closed loop. Catalyst employed in the cold tower and the upper portion of the hot tower, preferably higher quality material, is isolated from impurities in the feed water that contacts only the catalyst, preferably of lower quality, in the lower portion of the hot zone. The closed loop water passes from the cold zone to the dehumidification zone, and a portion of said water leaving the upper portion of the hot tower can be passed to the humidification zone and thereafter recycled to said closed loop. Deuterium concentration is enhanced in said catalytic hydrogen-water system while undue retarding of catalyst activity is avoided

  19. Development of a polymer catalyst for HANARO detritiation

    International Nuclear Information System (INIS)

    Chung, H.; Kang, H.S.; Paek, S.W.; Yoo, J.H.; Shon, S.H.; Kim, K.R.; Lee, S.H.; Ahn, D.H.; Lee, H.S.

    1998-01-01

    The use of heavy water as a reflector in HANARO results in the continuous exposure of deuterium oxide to neutron flux. Substantial quantities of tritium are generated by neutron activation of deuterium in the reflector. Airborne emissions and staff internal radiation doses could be caused by tritiated heavy water escaping from the system. A detritiation facility is thought to be effective in reducing the overall radiological impact. The detritiation process may consist of a catalytic exchange in the front-end and a cryogenic deuterium distillation section. In this paper, the catalyst manufacturing and its performance evaluation technology was presented. The waterproof polymer catalyst has a specific surface area larger than 400m 2 /g. It showed a high reaction rate in the hydrogen isotope exchange reaction. (author)

  20. Waste minimization through process optimization/integration and resource management at eco-friendly Heavy Water Plants

    International Nuclear Information System (INIS)

    Nageshri, Jagdish; Gupta, S.K.

    2004-01-01

    Heavy Water Board has celebrated 2003 as Environmental Conservation Year captivating a range of enviro-friendly measures. This article attempts to give a brief overview of the outcome of systems and adapted procedures for waste minimization through process integration and resource management at Heavy Water Plants

  1. Reactivity effect of a heavy water tank as reflector in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Fuga, Rinaldo

    2013-01-01

    This experiment comprises a set of experiments performed in the IPEN/MB-01 reactor and described in the International Handbook of Evaluated Reactor Physics Benchmark Experiments, specifically the experiment aim to evaluate the reactivity due to the heavy water tank placed at reflector region of the IPEN/MB-01 reactor. An aluminum tank was designed to be filled with heavy water and positioned at the west face of the IPEN/MB-01, additionally the experiment was also designed to allow variable heavy water height inside of this tank providing different neutron leakage rate in the west face of the IPEN/MB-01, consequently providing a series of interesting combinations. The measured quantities in the experiment are reactivities and critical control bank positions for several combinations of the control banks and an excess of reactivity of the heavy water tank. The experiment will be simulated using a Monte Carlo code MCNP in order to compare the different critical control bank position. (author)

  2. Advances in heavy water reactors

    International Nuclear Information System (INIS)

    1994-03-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The Technical Committee Meeting (TCM) on Advances in Heavy Water Reactors was organized by the IAEA in the framework of the activities of the International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) and hosted by the Atomic Energy of Canada Limited. Sixty-five participants from nine countries (Canada, Czech Republic, India, German, Japan, Republic of Korea, Pakistan, Romania and USA) and the IAEA attended the TCM. Thirty-four papers were presented and discussed in five sessions. A separate abstract was prepared for each of these papers. All recommendations which were addressed by the participants of the Technical Committee meeting to the IWGATWR have been submitted to the 5th IWGATWR meeting in September 1993. They were reviewed and used as input for the preparation of the IAEA programme in the area of advanced water cooled reactors. This TCM was mainly oriented towards advances in HWRs and on projects which are now in the design process and under discussion. Refs, figs and tabs

  3. Deuterium isotope effects on the ring inversion equilibrium in cyclohexane: the A value of deuterium and its origin

    International Nuclear Information System (INIS)

    Anet, F.A.L.; Kopelevich, M.

    1986-01-01

    It has been reported recently that the deuterium in cyclohexane-d 1 prefers the equatorial over the axial position by about 200 J/mol (i.e., ca. 50 cal/mol), as shown by three different kinds of NMR measurements. Such an isotope effect is unexpectedly large, and this has led the authors to reinvestigate the problem using Saunder's isotopic perturbation method. The authors thereby established that the free energy difference (the A value for deuterium) is 6.3 +/- 1.5 cal/mol, with deuterium more stable equatorial than axial. This value is supported by molecular mechanics calculations based in part on experimental vibrational frequencies. 17 references, 1 figure

  4. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  5. Impact of different moderator ratios with light and heavy water cooled reactors in equilibrium states

    International Nuclear Information System (INIS)

    Permana, Sidik; Takaki, Naoyuki; Sekimoto, Hiroshi

    2006-01-01

    As an issue of sustainable development in the world, energy sustainability using nuclear energy may be possible using several different ways such as increasing breeding capability of the reactors and optimizing the fuel utilization using spent fuel after reprocessing as well as exploring additional nuclear resources from sea water. In this present study the characteristics of light and heavy water cooled reactors for different moderator ratios in equilibrium states have been investigated. The moderator to fuel ratio (MFR) is varied from 0.1 to 4.0. Four fuel cycle schemes are evaluated in order to investigate the effect of heavy metal (HM) recycling. A calculation method for determining the required uranium enrichment for criticality of the systems has been developed by coupling the equilibrium fuel cycle burn-up calculation and cell calculation of SRAC 2000 code using nuclear data library from the JENDL 3.2. The results show a thermal spectrum peak appears for light water coolant and no thermal peak for heavy water coolant along the MFR (0.1 ≤ MFR ≤ 4.0). The plutonium quality can be reduced effectively by increasing the MFR and number of recycled HM. Considering the effect of increasing number of recycled HM; it is also effective to reduce the uranium utilization and to increase the conversion ratio. trans-Plutonium production such as americium (Am) and curium (Cm) productions are smaller for heavy water coolant than light water coolant. The light water coolant shows the feasibility of breeding when HM is recycled with reducing the MFR. Wider feasible area of breeding has been obtained when light water coolant is replaced by heavy water coolant

  6. Heavy metal contamination of water and fish in peri-urban dams ...

    African Journals Online (AJOL)

    Heavy metals were measured in water, sediment and fish in dams located downstream of effluent discharge zones in Bulawayo and were compared to those in a pristine upstream dam. Water conductivity indicated pollution of downstream dams. Levels of lead (0.13 – 0.28 ppm) and cadmium (0.02 – 0.06 ppm) in water from ...

  7. Heavy water production benefits of a supporting r and d program

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Chuang, K.T.; Dalrymple, D.G.

    1981-01-01

    Considerable economic benefit was obtained from an active R and D program while the Canadian heavy water plants were brought to mature operation during the 1970s. The introduction to Canada of this new chemical processing industry led to unexpected process, equipment and materials problems. Having a small team of technical experts already working on heavy water processes and a much larger R and D team working in related fields allowed a rapid response to the problems that limited production. The number of engineers and scientists working on the GS process rose rapidly from a skeleton team in 1970 to 54 during 1974. Effort declined steadily as the major problems were solved and reached 22 by 1980. Cumulative effort over the decade was 264 man-years at a cost of 3.3 percent of the value of the heavy water produced. The new production benefits have lagged behind the R and D expenditure by a few years and the current spending rate is 1.2 percent of product value. Important contributions were made in the areas of process simulation, process chemistry, materials of construction, sieve trays, and mechanical equipment

  8. Heavy metal pollution in drinking water - a global risk for the human ...

    African Journals Online (AJOL)

    Fabian Fernandez

    parts of the world heavy metal (HM) concentrations in drinking water are higher than some international guideline values. ..... become the basis for several drinking water treatment approaches ...... physiological and hygienic needs. Monitoring ...

  9. Deuterium and big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Burles, S.

    2000-01-01

    Measurements of deuterium absorption in high redshift quasar absorption systems provide a direct inference of the deuterium abundance produced by big bang nucleosynthesis (BBN). With measurements and limits from five independent absorption systems, we place strong constraints on the primordial ratio of deuterium to hydrogen, (D/H) p = 3.4 ± 0.3 x 10 -5 [1,2]. We employ a direct numerical treatment to improve the estimates of critical reaction rates and reduce the uncertainties in BBN predictions of D/H and 7 Li/H by a factor of three[3] over previous efforts[4]. Using our measurements of (D/H) p and new BBN predictions, we find at 95% confidence the baryon density ρ b = (3.6 ± 0.4) x 10 -31 g cm -3 (Ω b h 2 65 = 0.045 ± 0.006 in units of the critical density), and cosmological baryon-photon ratio η = (5.1 ± 0.6) x 10 -10

  10. Various analytical techniques used for the measurement of isotopic purity of heavy water at Madras Atomic Power Station

    International Nuclear Information System (INIS)

    Satyanarayanan, V.; Umapathy, P.; Bhaskaran, R.; Nagarajan, J.; Pradeep, Jeena; Ayyar, S.R.

    2008-01-01

    The paper deals with the various techniques used for the measurement of isotopic purity of heavy water samples received from different sources viz. reactor systems, heavy water upgrading plant and fresh consignment from heavy water production plants. Heavy water is used in PHWRs as moderator and primary coolant. Isotopic Purity is an important parameter to be monitored/analysed regularly for both the systems. There is a minimum isotopic purity level to be maintained in the moderator system due to neutron economy/fuel burnup and in the case of coolant system the measurement is of paramount importance due to its safety considerations. The selection of the method of analysis depends on the isotopic range. The techniques used to measure the isotopic purity of heavy water are a) Infrared Spectrophotometry b) Refractometry c) Densitometry. Infrared spectrometer uses the property of molecular absorption of IR radiation by HOD species and the absorbance is the measure of isotopic purity. This technique is generally used for measuring high isotopic (80-99.98%) and low isotopic samples. Refractometer uses the property of refractive index of heavy water. The difference in refractive indices of light water and heavy water is 0.0048. A 1 % change in D 2 O concentration would thus equal to 0.000048 refractive index units. This method is used for determining the approximate isotopic value of a sample. Density meter uses the property of difference in densities of light and heavy water. The difference in density of 99.999% D 2 O and light water is 0.107540 which covers the whole range of interest. The experience gained with these techniques in the measurements of isotopic purity of various samples are presented in this paper. (author)

  11. Water Quality and Heavy Metal Concentrations in Sediment of Sungai Kelantan, Kelantan, Malaysia: A Baseline Study

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Mushrifah, I.; Mohamad Shuhaimi Othman

    2009-01-01

    A study on water quality and heavy metal concentration in sediment at selected sites of Sungai Kelantan was carried out. Ten water samples were collected along the river for physical and chemical analysis and twenty-six water and sediment samples were collected for heavy metal analysis. Water was sampled at three different dates throughout the study period whereas sediments were collected once. In addition to heavy metal analysis, sediment samples were also analysed for texture, ph and organic content. The physical and chemical water quality analyses were carried out according to the ALPHA procedures. Result of water quality analysis (physico-chemical) indicated that Sungai Kelantan is characterised by excellent water quality and comparable to pristine ecosystems such as the National Park and Kenyir Lake. This river was classified into class I - class III based on Malaysian interim water quality standard criteria (INWQS). Heavy metals Pb, Zn, Cu and Cd was detected at low concentration in sediment samples, except for Fe and Mn. The presence of Fe and Mn in sediment samples was though to be of natural origin from the soil. Anthropogenic metal concentrations in sediment were low indicating that Sungai Kelantan has not experienced extreme pollution. (author)

  12. Process development, design and operation of off-line purification system for oil-contaminated impure heavy water

    International Nuclear Information System (INIS)

    Bose, H.; Rakesh Kumar; Gandhi, H.C.; Unny, V.K.P.; Ghosh, S.K.; Mishra, Vivek; Shukla, D.K.; Duraisamy, S.; Agarwal, S.K.

    2004-01-01

    A large volume of degraded, tritiated heavy water contaminated with mineral oil and ionic impurities have accumulated at Dhruva in the past years of reactor operation as a result of routine operation and maintenance activities. The need was felt for a simple and efficient process that could be set up and operated locally at site using readily available materials, to purify the accumulated impure heavy waters at Dhruva so as to make them acceptable at the up gradation facilities. After a detailed laboratory study, a three stage clean-up process was developed which could purify a highly turbid oil-water emulsion to yield clear, oil-free and de-mineralized heavy water at reasonable rates of volume through-put. Based on the laboratory data, a suitably scaled up purification unit has been designed and commissioned which in the past few months has processed a sizeable volume of oil-contaminated heavy water waste from Dhruva, with most satisfactory results

  13. Investigations for heavy metals pollution in the Nile water in Khartoum area using XRF

    International Nuclear Information System (INIS)

    Salih, Saadia Elsir

    1998-06-01

    The purpose of this study was to perform measurements for heavy metals pollution in the Nile water in Khartoum area. Ten locations were selected for the study on the white Nile, the Blue Nile and the Nile. Standard methods were used for samples collection and preparation for the measurements using XRF. Nine elements were observed and their concentrations determined in the various locations. These Ti, Cr, Fe, Cu, Zn, As, Pb, Zr, and Se. From the performed measurements for heavy metals pollution in the Nile water in Khartoum area using the XRF method the following conclusions can be made: There is no heavy metal pollution in the Nile water in Khartoum area resulting from industrial activities. However, there are indications for possible Pb pollution resulting from automobile emission. - The concentrations for the observed heavy metals, except Fe, were much below the maximum permissible international levels provided by the USA, EEC and WHO. - The origin for the observed concentrations of heavy metals, except for Pb, was considered to be soil and silt carried by river in it's journey from the Ethiopian Highlands and lake Victoria. (Author)

  14. A study of pollution extent in some drinking water resources by heavy elements in Hadramout governorate

    International Nuclear Information System (INIS)

    Barheyan, Saad Awadh

    2001-01-01

    The paper is considered as a preliminary study of pollution extent in some drinking water resources in Hadramout governorate by heavy elements which differ in their toxicity. The elements subjected to study are Cd, Pb, Fe, Cr, Mn, Zn, Co and Cu. Atomic absorption spectrometric method of analysis (AAS) is used for the determination of heavy elements concentrations. The elemental analysis of drinking water samples shows that the concentration of the above-mentioned elements in drinking water resources, lies in the permissible limit given by the WHO. Similarity of elements content is observed in Thela and Fuwah waters, bu the case is different for Ghail Bawzeer and Asshihir waters due to their different lithospheric structures. Drinking water used by the civilians is not subjected to physical, biological or chemical treatment which may lead to total or partial removal of heavy elements and other rejected impurities. Drinking water running in distribution nets is a hard water and has a weak base (Ph which explains the reason why heavy elements are absorbed and precipitated inside drinking water pipes before they reach consumers. This type of hard water causes accumulation of salt precipitates inside the water pipes which results in many economic and health disturbances to consumers. The slight increase of Cr, Mn, and Co concentration in drinking water flowing in the pipes may be due to the effect of some anions such as nitrates which form soluble compounds with the elements contained in the chemical composition of the drinking water pipes. This paper is a strong indicator for determination of heavy elements concentrations in different drinking water resources in Hadramout govemorate. Such approach seeks a further comprehensive work with special focus on the study of lithospheric structure of the feeding water regions of Hadramout aquifers. (author)

  15. Permeation of deuterium implanted into vanadium alloys

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1986-05-01

    Permeation of deuterium through the vanadium alloy, V-15Cr-5Ti, was investigated using 3-keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurements of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5-mm thick specimens heated to tempertures from 623 to 823 0 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). Analyses of these measurements indicate that for the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This corresponds to approximately 1000 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates D = 1.4 x 10 -8 exp(-.11 eV/kT) (m 2 /s)

  16. Liquid hydrogen and deuterium targets

    International Nuclear Information System (INIS)

    Bougon, M.; Marquet, M.; Prugne, P.

    1961-01-01

    A description is given of 1) Atmospheric pressure target: liquid hydrogen, 400 mm thickness; thermal insulation: styrofoam; the hydrogen vapors are used to improve the target cooling; Mylar windows. 2) Vacuum target: 12 liter content: hydrogen or deuterium; liquid thickness 400 mm; thermal insulation is afforded by a vacuum vessel and a liquid nitrogen shield. Recovery and liquefaction of deuterium vapors are managed in the vacuum vessel which holds the target. The target emptying system is designed for operating in a few minutes. (author) [fr

  17. Energy Levels of Hydrogen and Deuterium

    Science.gov (United States)

    SRD 142 NIST Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  18. Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp)

    International Nuclear Information System (INIS)

    Vinodhini, R.; Narayanan, M.

    2008-01-01

    The objective of the present study is to determine the bioaccumulation of heavy metals in various organs of the fresh water fish exposed to heavy metal contaminated water system. The experimental fish was exposed to Cr. Ni, Cd and Pb at sublethal concentrations for periods of 32 days. The elements Cd, Pb, Ni and Cr were assayed using Shimadzu AA 6200 atomic absorption spectrophotometry and the results were given as μg/g dry wt. The accumulation of heavy metal gradually increases in liver during the heavy metal exposure period. All the results were statistically significant at p Pb > Ni > Cr and Pb > Cd > Ni > Cr. Similarly, in case of kidney and flesh tissues, the order was Pb > Cd > Cr > Ni and Pb > Cr > Cd > Ni. In all heavy metals, the bioaccumulation of lead and cadmium proportion was significantly increased in the tissues of Cyprinus carpio (Common carp)

  19. Measurement of M{sup 3} and k{sub {infinity}} for heavy water natural uranium assembly

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D; Raisic, N; Markovic, H; Takac, S; Zdravkovic, Z; Lolic, B [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)

    1959-03-15

    The migration length M and the infinite multiplication factor k{sub {infinity}} of the heavy water-natural uranium bare assembly are determined by measuring the reactivity of the reactor as function of the heavy water level. Since the assembly is non reflected the results obtained are of relatively high accuracy. (author)

  20. Site occupation state of deuterium atoms in fcc Fe

    International Nuclear Information System (INIS)

    Aoki, Katsutoshi; Machida, Akihiko; Saitoh, Hiroyuki; Hattori, Takanori; Sano-Furukawa, Asami

    2015-01-01

    The deuterization process of fcc Fe to form solid-solution fcc FeD x was investigated by in situ neutron diffraction measurements at high temperature and high pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy the octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal-lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å 3 per deuterium atom. The minor occupation of tetrahedral site is likely driven by the intersite movement of deuterium atoms along the <111> direction in the fcc metal lattice. These results provide implications for the light elements in the Earth's core and the mechanism of hydrogen embrittlement of ferrous metals. (author)