WorldWideScience

Sample records for heavy vehicle systems

  1. Development of the heavy manipulator vehicle system

    International Nuclear Information System (INIS)

    Herbst, C.; Paustian, P.; Kruger, W.

    1993-01-01

    After the severe reactor accident of Tschernobyl in 1986 MaK System started to develop a Heavy Manipulator Vehicle System under contract from German nuclear technology assistance company ''KHG'' (Kerntechnische Hilfsdienst GmbH). The system comprises a remote controlled manipulator vehicle, a mobile mission control stand as well as a transport/service unit. In order to fulfill the high demands of this complex system a couple of new developments had to be started. The paper describes some of these developments and gives an overview about the main features of the Heavy Manipulator Vehicle System (HMV). (author)

  2. International Conference on Heavy Vehicles HVParis 2008 : Heavy Vehicle Transport Technology (HVTT 10)

    OpenAIRE

    JACOB, Bernard; NORDENGEN, Paul; O'CONNOR, Alan; BOUTELDJA, Mohamed

    2008-01-01

    Sommaire : Heavy vehicles and WIM technology, testing and standards. Interactions between heavy vehicles or trains and the infrastructure, environment and other system users. Heavy vehicle and road management information: measurements, data quality, data management. Freight mobility and safety. Vehicle classification, size and weight evaluation, regulations and enforcement. Traffic and road safety. WIM of road vehicles, trains and aeroplanes.

  3. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jacky C. Prucz; Samir N. Shoukry; Gergis W. William

    2005-08-31

    Recent advances in the area of Metal Matrix Composites (MMC's) have brought these materials to a maturity stage where the technology is ready for transition to large-volume production and commercialization. The new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel, especially when they are selectively reinforced with carbon, silicon carbide, or aluminum oxide fibers. Most of the developments in the MMC materials have been spurred, mainly by applications that require high structural performance at elevated temperatures, the heavy vehicle industry could also benefit from this emerging technology. Increasing requirements of weight savings and extended durability are the main drivers for potential insertion of MMC technology into the heavy vehicle market. Critical elements of a typical tractor-trailer combination, such as highly loaded sections of the structure, engine components, brakes, suspensions, joints and bearings could be improved through judicious use of MMC materials. Such an outcome would promote the DOE's programmatic objectives of increasing the fuel efficiency of heavy vehicles and reducing their life cycle costs and pollution levels. However, significant technical and economical barriers are likely to hinder or even prevent broad applications of MMC materials in heavy vehicles. The tradeoffs between such expected benefits (lower weights and longer durability) and penalties (higher costs, brittle behavior, and difficult to machine) must be thoroughly investigated both from the performance and cost viewpoints, before the transfer of MMC technology to heavy vehicle systems can be properly assessed and implemented. MMC materials are considered to form one element of the comprehensive, multi-faceted strategy pursued by the High Strength/Weight Reduction (HS/WR) Materials program of the U.S. Department of Energy (DOE) for structural weight savings and quality enhancements in

  4. Fault Tolerant Autonomous Lateral Control for Heavy Vehicles

    OpenAIRE

    Talbot, Craig Matthew; Papadimitriou, Iakovos; Tomizuka, Masayoshi

    2004-01-01

    This report summarizes the research results of TO4233, "Fault Tolerant Autonomous Lateral Control for Heavy Vehicles". This project represents a continuing effort of PATH's research on Automated Highway Systems (AHS) and more specifically in the area of heavy vehicles. Research on the lateral control of heavy vehicles for AHS has been going on at PATH since 1993. MOU129, "Steering and Braking Control of Heavy Duty Vehicles" was the first project and it was followed by MOU242, "Lateral Control...

  5. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  6. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hui; Yang Lifu; Junqing Jing; Yanling Luo [Jiangsu Xuzhou Construction Machinery Research Institute, Jiangsu (China)

    2011-01-15

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range. (author)

  7. Control strategy of hydraulic/electric synergy system in heavy hybrid vehicles

    International Nuclear Information System (INIS)

    Sun Hui; Yang Lifu; Jing Junqing; Luo Yanling

    2011-01-01

    Energy consumption and exhaust emissions of hybrid vehicles strongly depend on the energy storage source and the applied control strategy. Heavy vehicles have the characteristics of frequent starts/stops and significant amounts of braking energy, which needs to find a more efficient way to store and use the high power flow. A novel parallel hybrid vehicles configuration consisting of hydraulic/electric synergy system is proposed to overcome the existing drawbacks of single energy storage source in heavy hybrid vehicles. A control strategy combining a logic threshold approach and key parameters optimization algorithm is developed to achieve acceptable vehicle performance while simultaneously maximizing engine fuel economy and maintaining the battery state of charge in its rational operation range at all times. The experimental and simulation results illustrate the potential of the proposed control strategy in terms of fuel economy and in keeping the deviations of SOC at high efficiency range.

  8. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems; FINAL

    International Nuclear Information System (INIS)

    Peter J. Blau

    2000-01-01

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35% fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials

  9. Hybrid and electric advanced vehicle systems (heavy) simulation

    Science.gov (United States)

    Hammond, R. A.; Mcgehee, R. K.

    1981-01-01

    A computer program to simulate hybrid and electric advanced vehicle systems (HEAVY) is described. It is intended for use early in the design process: concept evaluation, alternative comparison, preliminary design, control and management strategy development, component sizing, and sensitivity studies. It allows the designer to quickly, conveniently, and economically predict the performance of a proposed drive train. The user defines the system to be simulated using a library of predefined component models that may be connected to represent a wide variety of propulsion systems. The development of three models are discussed as examples.

  10. Lifecycle-analysis for heavy vehicles

    International Nuclear Information System (INIS)

    Gaines, L.

    1998-01-01

    Various alternative fuels and improved engine and vehicle systems have been proposed in order to reduce emissions and energy use associated with heavy vehicles (predominantly trucks). For example, oil companies have proposed improved methods for converting natural gas to zero-aromatics, zero-sulfur diesel fuel via the Fischer-Tropsch process. Major heavy-duty diesel engine companies are working on ways to simultaneously reduce particulate-matter and NOX emissions. The trend in heavy vehicles is toward use of lightweight materials, tires with lower rolling resistance, and treatments to reduce aerodynamic drag. In this paper, we compare the Mecycle energy use and emissions from trucks using selected alternatives, such as Fisher-Tropsch diesel fuel and advanced fuel-efficient engines. We consider heavy-duty, Class 8 tractor-semitrailer combinations for this analysis. The total life cycle includes production and recycling of the vehicle itself, extraction, processing, and transportation of the fuel itself, and vehicle operation and maintenance. Energy use is considered in toto, as well as those portions that are imported, domestic, and renewable. Emissions of interest include greenhouse gases and criteria pollutants. Angonne's Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is used to generate per-vehicle fuel cycle impacts. Energy use and emissions for materials manufacturing and vehicle disposal are estimated by means of materials information from Argonne studies. We conclude that there are trade-offs among impacts. For example, the lowest fossil energy use does not necessarily result in lowest total energy use, and lower tailpipe emissions may not necessarily result in lower lifecycle emissions of all criteria pollutants

  11. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  12. Design of power steering systems for heavy-duty long-haul vehicles

    NARCIS (Netherlands)

    Silvas, E.; Backx, E.A.; Hofman, T.; Voets, H.; Steinbuch, M.

    2014-01-01

    Conventionally, all auxiliaries present in a heavy-duty vehicle (e.g., power-steering pump, air-conditioning compressor) are engine-driven systems, which put high constraints on their performance. Outputs (e.g., speed, temperature) and energy consumption are dictated by engine speed, while most

  13. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.

  14. Calculation of ground vibration spectra from heavy military vehicles

    Science.gov (United States)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  15. Heavy-Duty Vehicle Thermal Management | Transportation Research | NREL

    Science.gov (United States)

    Heavy-Duty Vehicle Thermal Management Heavy-Duty Vehicle Thermal Management Infrared image of a control materials and equipment on heavy-duty vehicles. Photo by Dennis Schroeder, NREL Illustration of a Ray David, NREL National Renewable Energy Laboratory (NREL) researchers are assisting heavy-duty

  16. Advanced vehicle dynamics of heavy trucks with the perspective of road safety

    Science.gov (United States)

    Trigell, Annika Stensson; Rothhämel, Malte; Pauwelussen, Joop; Kural, Karel

    2017-10-01

    This paper presents state-of-the art within advanced vehicle dynamics of heavy trucks with the perspective of road safety. The most common accidents with heavy trucks involved are truck against passenger cars. Safety critical situations are for example loss of control (such as rollover and lateral stability) and a majority of these occur during speed when cornering. Other critical situations are avoidance manoeuvre and road edge recovery. The dynamic behaviour of heavy trucks have significant differences compared to passenger cars and as a consequence, successful application of vehicle dynamic functions for enhanced safety of trucks might differ from the functions in passenger cars. Here, the differences between vehicle dynamics of heavy trucks and passenger cars are clarified. Advanced vehicle dynamics solutions with the perspective of road safety of trucks are presented, beginning with the topic vehicle stability, followed by the steering system, the braking system and driver assistance systems that differ in some way from that of passenger cars as well.

  17. Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1999-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  18. Heavy vehicle propulsion system materials program semi-annual progress report for October 1997 through March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1998-06-01

    The purpose of the Heavy Vehicle Propulsion System materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  19. Heavy vehicle pitch dynamics and suspension tuning

    OpenAIRE

    Cao, Dongpu; Rakheja, Subhash; Su, Chun-Yi

    2008-01-01

    The influence of suspension tuning of passenger cars on bounce and pitch ride performance has been explored in a number of studies, while only minimal efforts have been made for establishing similar rules for heavy vehicles. This study aims to explore pitch dynamics and suspension tunings of a two-axle heavy vehicle with unconnected suspension, which could also provide valuable information for heavy vehicles with coupled suspensions. Based on a generalised pitch-plane model of a two-axle heav...

  20. A survey of light-vehicle driver education curriculum on sharing the road with heavy vehicles.

    Science.gov (United States)

    Baker, Stephanie; Schaudt, William A; Freed, J C; Toole, Laura

    2012-07-01

    Light-vehicle driver education programs that contain content about sharing the road with heavy vehicles may be helpful in reducing future light-vehicle/heavy-vehicle interactions. However, the extent of curricula in the United States including such content is unclear. Researchers developed an online survey targeted at instructors/administrators of state driver education programs to identify curricula addressing heavy vehicles and to determine perceived effectiveness. Ninety-one percent of respondents indicated that the light-vehicle driver education curriculum they teach/administer included a component covering how to safely share the road with heavy vehicles (82% perceived this component to be effective). Although a large proportion of these programs included a component on how to safely share the road with heavy vehicles, participants indicated there may be room for improvement. Participants recommended that future improvements to driver education programs include updated materials and student hands-on experience with heavy vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Innovative Structural and Joining Concepts for Lightweight Design of Heavy Vehicle Systems

    Energy Technology Data Exchange (ETDEWEB)

    Prucz, Jacky C; Shoukry, Samir N; William, Gergis W; Evans, Thomas H

    2006-09-30

    The extensive research and development effort was initiated by the U.S. Department of Energy (DOE) in 2002 at West Virginia University (WVU) in order to investigate practical ways of reducing the structural weight and increasing the durability of heavy vehicles through the judicious use of lightweight composite materials. While this project was initially focused on specific Metal Matrix Composite (MMC) material, namely Aluminum/Silicon Carbide (Al/SiC) commercially referenced as ''LANXIDE'', the current research effort was expanded from the component level to the system level and from MMC to other composite material systems. Broadening the scope of this research is warranted not only by the structural and economical deficiencies of the ''LANXIDE'' MMC material, but also by the strong coupling that exists between the material and the geometric characteristics of the structure. Such coupling requires a truly integrated design approach, focused on the heaviest sections of a van trailer. Obviously, the lightweight design methods developed in this study will not be implemented by the commercial industry unless the weight savings are indeed impressive and proven to be economically beneficial in the context of Life Cycle Costs (LCC). ''Bulk Haul'' carriers run their vehicles at maximum certified weight, so that each pound saved in structural weight would translate into additional pound of cargo, and fewer vehicles necessary to transport a given amount of freight. It is reasonable to ascertain that a typical operator would be ready to pay a premium of about $3-4 for every additional pound of cargo, or every pound saved in structural weight. The overall scope of this project is to devise innovative, lightweight design and joining concepts for heavy vehicle structures, including cost effective applications of components made of metal matrix composite (MMC) and other composite materials in selected sections of such

  2. Integrated vehicle-based safety systems (IVBSS) : heavy truck platform field operational test data analysis plan.

    Science.gov (United States)

    2009-11-23

    This document presents the University of Michigan Transportation Research Institutes plan to perform : analysis of data collected from the heavy truck platform field operational test of the Integrated Vehicle- : Based Safety Systems (IVBSS) progra...

  3. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    International Nuclear Information System (INIS)

    D. Ray Johnson; Sidney Diamond

    2000-01-01

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given

  4. Lightweight Composite Materials for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Pruez, Jacky; Shoukry, Samir; Williams, Gergis; Shoukry, Mark

    2013-08-31

    The main objective of this project is to develop, analyze and validate data, methodologies and tools that support widespread applications of automotive lightweighting technologies. Two underlying principles are guiding the research efforts towards this objective: • Seamless integration between the lightweight materials selected for certain vehicle systems, cost-effective methods for their design and manufacturing, and practical means to enhance their durability while reducing their Life-Cycle-Costs (LCC). • Smooth migration of the experience and findings accumulated so far at WVU in the areas of designing with lightweight materials, innovative joining concepts and durability predictions, from applications to the area of weight savings for heavy vehicle systems and hydrogen storage tanks, to lightweighting applications of selected systems or assemblies in light–duty vehicles.

  5. Heavy Vehicle Crash Characteristics in Oman; 2009–2011

    Directory of Open Access Journals (Sweden)

    Islam Al-Bulushi

    2015-05-01

    Full Text Available In recent years, Oman has seen a shift in the burden of diseases towards road accidents. The main objective of this paper, therefore, is to describe key characteristics of heavy vehicle crashes in Oman and identify the key driving behaviours that influence fatality risks. Crash data from January 2009 to December 2011 were examined and it was found that, of the 22,543 traffic accidents that occurred within this timeframe, 3,114 involved heavy vehicles. While the majority of these crashes were attributed to driver behaviours, a small proportion was attributed to other factors. The results of the study indicate that there is a need for a more thorough crash investigation process in Oman. Future research should explore the reporting processes used by the Royal Oman Police, cultural influences on heavy vehicle operations in Oman and improvements to the current licensing system.

  6. Heavy Vehicle Technologies Program Retrospective and Outlook

    International Nuclear Information System (INIS)

    James J. Eberhardt

    1999-01-01

    OHVT Mission is to conduct, in collaboration with our heavy vehicle industry partners and their suppliers, a customer-focused national program to research and develop technologies that will enable trucks and other heavy vehicles to be more energy efficient and able to use alternative fuels while simultaneously reducing emissions

  7. Distributed Road Grade Estimation for Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sahlholm, Per

    2011-07-01

    An increasing need for goods and passenger transportation drives continued worldwide growth in traffic. As traffic increases environmental concerns, traffic safety, and cost efficiency become ever more important. Advancements in microelectronics open the possibility to address these issues through new advanced driver assistance systems. Applications such as predictive cruise control, automated gearbox control, predictive front lighting control, and hybrid vehicle state-of-charge control decrease the energy consumption of vehicles and increase the safety. These control systems can benefit significantly from preview road grade information. This information is currently obtained using specialized survey vehicles, and is not widely available. This thesis proposes new methods to obtain road grade information using on-board sensors. The task of creating road grade maps is addressed by the proposal of a framework where vehicles using a road network collect the necessary data for estimating the road grade. The estimation can then be carried out locally in the vehicle, or in the presence of a communication link to the infrastructure, centrally. In either case the accuracy of the map increases over time, and costly road surveys can be avoided. This thesis presents a new distributed method for creating accurate road grade maps for vehicle control applications. Standard heavy duty vehicles in normal operation are used to collect measurements. Estimates from multiple passes along a road segment are merged to form a road grade map, which improves each time a vehicle retraces a route. The design and implementation of the road grade estimator are described, and the performance is experimentally evaluated using real vehicles. Three different grade estimation methods, based on different assumption on the road grade signal, are proposed and compared. They all use data from sensors that are standard equipment in heavy duty vehicles. Measurements of the vehicle speed and the engine

  8. Assessing the roll stability of heavy vehicles in South Africa

    CSIR Research Space (South Africa)

    Benade, R

    2016-07-01

    Full Text Available of these crashes involve heavy vehicle rollover. The regulations in the National Road Traffic Act of South Africa that govern heavy vehicle design do not directly address the roll stability of heavy vehicles. The internationally accepted method of regulating roll...

  9. Natural Gas as a Future Fuel for Heavy-Duty Vehicles

    International Nuclear Information System (INIS)

    Wai-Lin Litzke; James Wegrzyn

    2001-01-01

    In addition to their significant environmental impacts, medium-duty and heavy-duty (HD) vehicles are high volume fuel users. Development of such vehicles, which include transit buses, refuse trucks, and HD Class 6-8 trucks, that are fueled with natural gas is strategic to market introduction of natural gas vehicles (NGV). Over the past five years the Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) has funded technological developments in NGV systems to support the growth of this sector in the highly competitive transportation market. The goals are to minimize emissions associated with NGV use, to improve on the economies of scale, and to continue supporting the testing and safety assessments of all new systems. This paper provides an overview of the status of major projects under a program supported by DOE/OHVT and managed by Brookhaven National Laboratory. The discussion focuses on the program's technical strategy in meeting specific goals proposed by the N GV industry and the government. Relevant projects include the development of low-cost fuel storage, fueling infrastructure, and HD vehicle applications

  10. Heavy Vehicles on Minor Highway Bridges

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Enevoldsen, I.

    of heavier trucks moving at larger speeds, and partly because the authorities want to permit transportation of special heavy goods at a larger part of the road net. These needs will in many cases cause the strengthening of the bridges becomes necessary. In order to keep the expenses of such strengthening...... the results obtained using the numerical models given in details in "Heavy Vehicles on Minor Highway Bridges : dynamic modelling of vehicles and bridges". The models are established using a ordinary vehicle which consists of a 48 t Scania with a 3 axle tractor and a 3 axle trailer, joined in a flexible hinge...

  11. Road Transport Management System (RTMS): a self regulation initiative in heavy vehicle transport in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2007-07-01

    Full Text Available This paper describes the most recent developments of an initiative to introduce meaningful self-regulation in the heavy vehicle transport industry through a Road Transport Management System (RTMS) with the aim of contributing to the road authorities...

  12. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems--including engines, microturbines, electric motors, and fuel cells--and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  13. Research on Correlation between Vehicle Cycle and Engine Cycle in Heavy-duty commercial vehicle

    Science.gov (United States)

    lin, Chen; Zhong, Wang; Shuai, Liu

    2017-12-01

    In order to study the correlation between vehicle cycle and engine cycle in heavy commercial vehicles, the conversion model of vehicle cycle to engine cycle is constructed based on the vehicle power system theory and shift strategy, which considers the verification on diesel truck. The results show that the model has high rationality and reliability in engine operation. In the acceleration process of high speed, the difference of model gear selection leads to the actual deviation. Compared with the drum test, the engine speed distribution obtained by the model deviates to right, which fits to the lower grade. The grade selection has high influence on the model.

  14. Clean Cities Guide to Alternative Fuel and Advanced Medium- and Heavy-Duty Vehicles (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2013-08-01

    Today's fleets are increasingly interested in medium-duty and heavy-duty vehicles that use alternative fuels or advanced technologies that can help reduce operating costs, meet emissions requirements, improve fleet sustainability, and support U.S. energy independence. Vehicle and engine manufacturers are responding to this interest with a wide range of options across a steadily growing number of vehicle applications. This guide provides an overview of alternative fuel power systems?including engines, microturbines, electric motors, and fuel cells?and hybrid propulsion systems. The guide also offers a list of individual medium- and heavy-duty vehicle models listed by application, along with associated manufacturer contact information, fuel type(s), power source(s), and related information.

  15. Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans

    International Nuclear Information System (INIS)

    D. Ray Johnson; Sidney Diamond

    2001-01-01

    The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given

  16. Investigation on dynamical interaction between a heavy vehicle and road pavement

    Science.gov (United States)

    Yang, Shaopu; Li, Shaohua; Lu, Yongjie

    2010-08-01

    This paper presents a model for three-dimensional, heavy vehicle-pavement-foundation coupled system, which is modelled as a seven-DOF vehicle moving along a simply supported double-layer rectangular thin plate on a linear viscoelastic foundation. The vertical tyre force is described by a single point-contact model, while the pavement-foundation is modelled as a double-layer plate on a linear viscoelastic foundation. Using the Galerkin method and quick direct integral method, the dynamical behaviour of the vehicle-pavement-foundation coupled system is investigated numerically and compared with that of traditional vehicle system and pavement system. The effects of coupling action on vehicle body vertical acceleration, suspension deformations, tyre forces and pavement displacements are also obtained. The investigation shows that the coupling action could not be neglected even on a smooth road surface, such as highway. Thus, it is necessary to investigate the dynamics of vehicle and pavement simultaneously based on the vehicle-pavement-foundation coupled system.

  17. A Comprehensive Examination of Heavy Vehicle Emissions Factors

    Science.gov (United States)

    2010-08-01

    This report summarizes the findings from reviewing the literature on several topics that are related to heavy vehicle emissions including engine and fuel types, vehicle technologies that can be used to reduce or mitigate vehicle emissions, the factor...

  18. Heavy vehicle propulsion system materials program semiannual progress report for April 1999 through September 1999

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    2000-01-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

  19. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  20. FY2015 Vehicle Systems Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-31

    The Vehicle Systems research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  1. Modelling of NO{sub x} emission factors from heavy and light-duty vehicles equipped with advanced aftertreatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.L.M., E-mail: monalisa@unifor.br [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Silva, C.M. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Moreno-Tost, R. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Farias, T.L. [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Jimenez-Lopez, Antonio [IDMEC - Institute of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Rodriguez-Castellon, E. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Unidad Asociada al Instituto de Catalisis, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain)

    2011-08-15

    Highlights: {yields} Alternative SCR materials. {yields} Catalysts used in heavy-duty vehicles are based on V{sub 2}O{sub 5}-WO{sub 3}-TiO{sub 2}. {yields}Zeolites containing transition metal ions as catalysts for urea SCR has increased. {yields} FeZSM5 catalyst can be a possible candidate as far as pollutants regulation is considered. {yields} Regarding N{sub 2}O emissions mordenite based SCR do not emit this pollutant. - Abstract: NO{sub x} emission standards are becoming stringiest over the world especially for heavy-duty vehicles. To comply with current and future regulations some vehicle manufacturers are adopting exhaust aftertreatment systems known as Selective Catalytic Reduction (SCR). The catalysts are based on Vanadium (Va) and the reductant agent based on ammonia. However, Va is listed on the California Proposition 65 List as potentially causing cancer and alternatives are being studied. This paper presents a model based on neural networks that integrated with a road vehicle simulator allows to estimate NO{sub x} emission factors for different powertrain configurations, along different driving conditions, and covering commercial, zeolite and mordenite alternatives as the base monolith for SCR. The research included the experimental study of copper based and iron based zeolites (ZSM5 and Cuban natural mordenite). The response of NO{sub x} conversion efficiency was monitored in a laboratory for varying space velocity, oxygen, sulfur, water, NO{sub x} and SO{sub 2} emulating the conditions of a Diesel engine exhaust along a trip. The experimental data was used for training neural networks and obtaining a mathematical correlation between the outputs and inputs of the SCR system. The developed correlation was integrated with ADVISOR road vehicle simulator to obtain NO{sub x} emission factors and to test each SCR system installed on light-duty and heavy-duty vehicles for standardized driving cycles and real measured driving cycles. Despite having lower NO

  2. Standardisation of heavy vehicle crash investigation procedures in South Africa

    CSIR Research Space (South Africa)

    Dube, S

    2015-07-01

    Full Text Available regarding accidents involving heavy vehicles and even less is known about the real cause of these accidents. This paper reports on the findings of a study on the status of heavy vehicle accident investigation procedures in South Africa. This study involved a...

  3. Hybrid and Electric Advanced Vehicle Systems Simulation

    Science.gov (United States)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  4. Development of heavy load carrying vehicle for nuclear power station

    International Nuclear Information System (INIS)

    Terabayashi, Yasuharu; Oono, Hiroo; Aizu, Takao; Kawaguchi, Kaname; Yamanaka, Masayuki; Hirobe, Tamio; Inagaki, Yoshiaki.

    1985-01-01

    In nuclear power stations, in order to carry out sound and stable operation, the routine inspection and regular inspection of machinery and equipment are performed, therefore, the transportation of heavy things is frequently carried out. Especially, the transportation of heavy things over the steps of passages and stairs requires much labor. Therefore, Chubu Electric Power Co., Inc. and Chubu Plant Service Co., Ltd. carried out the research on the development of a vehicle for transporting heavy components of nuclear power plants. In this research, it was aimed at developing a vehicle which can carry heavy components and get over a step, climb and descend stairs, and run through a narrow passage having many curves as well as running on flat ground. For this purpose, the actual state of the transportation of heavy things was investigated during the regular inspection of a nuclear power station, and on the basis of this results, a prototype vehicle was made and tested. Thereafter, a transporting vehicle of actual scale was made and tested. The investigation of actual state and the examination of the fundamental concept, the design, trial manufacture and verifying test are reported. (Kako, I.)

  5. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    Science.gov (United States)

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  6. FY2016 Vehicle Systems Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-10-31

    Vehicle Systems is concerned with advancing light-, medium-, and heavy-duty (HD) vehicle systems to support DOE’s goals of developing technologies for the U.S. transportation sector that enhance national energy security,increase U.S. competitiveness in the global economy, and support improvement of U.S. transportation and energy infrastructure.

  7. Heavy vehicle driver workload assessment. Task 7B, in-cab text message system and cellular phone use by heavy vehicle drivers in a part-task driving simulator

    Science.gov (United States)

    This report contains the results of a simulator study conducted to serve as a supplement to a National Highway Traffic Safety Administration (NHTSA) heavy vehicle driver workload field study. Its purpose was the evaluation of effects of cellular phon...

  8. Assessing retro-reflective markers (RRMs usage on heavy vehicles with respect to MS 828:2011

    Directory of Open Access Journals (Sweden)

    Mohd Amirudin M.R

    2017-01-01

    Full Text Available Malaysia is continuously developing and enhancing the safety system and policies for road users. One of the essential elements of safety is a good marking and thus the visibility of vehicles on the road. Since 2011, MS 828:2011 has been gazetted to guide industry on the right specification to follow with regards to RRMs. However, the RRMs that being used by heavy and long vehicle including in the current market were not up to the standard. Thus, the objectives of this study is to identify the current status of RRMs in Malaysia besides to measure the photometric values of current RRMs and to determine the usage rate of substandard RRMs on heavy vehicles and current market. Market surveillance and sample testing were conducted to determine on current RRMs usage and to analyse the RRMs with respect to MS 828:2011. As a result, 62% of RRMs condition on heavy vehicles are still not in a good condition or covered by dust. Also, only 4% of the RRMs sample complied to MS 828:2011. From this paper, it can be concluded that majority or 96% of the RRMs in current market and have been used by current heavy vehicles are substandard markings.

  9. Medium- and Heavy-Duty Vehicle Field Evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prohaska, Robert S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-11

    This presentation provides information about NREL's real-world evaluations of commercial vehicle technologies, which compare the performance of advanced medium- and heavy-duty fleet vehicles to conventional vehicles. NREL conducts these customized evaluations in partnership with commercial and government fleets across the nation. Current fleet and industry partners include UPS, Workhorse, Parker Hannifin, Proterra, Foothill Transit, Long Beach Transit, BYD, Odyne, Duke Energy, Miami-Dade, TransPower, Eaton, Cummins, Bosch, and Clean Cities/National Clean Fleet Partnership. The presentation focuses on two particular vehicle evaluation projects -- hydraulic hybrid refuse haulers operated by Miami-Dade and electric transit buses operated by Foothill Transit.

  10. Marginal abatement cost curves for Heavy Duty Vehicles. Background report

    Energy Technology Data Exchange (ETDEWEB)

    Schroten, A.; Warringa, G.; Bles, M.

    2012-09-15

    Cost curves were calculated for CO2 abatement technologies for Heavy Duty Vehicles. These curves were elaborated for eight different vehicle categories (six categories of truck and two subcategories), as well as for an 'average' truck and bus. Given that cost curves depend very much on underlying assumptions, the MACH model (Marginal Abatement Costs of Heavy duty vehicles) was developed. This model allows users to enter their own assumptions with respect to parameters like fuel prices and cost and lifetime of individual technologies, with the model then generating new cost curves for the various vehicle categories. This background report contains a description of the model and a summary of the results of several model runs.

  11. Autonomous prediction of performance-based standards for heavy vehicles

    CSIR Research Space (South Africa)

    Berman, R

    2015-11-01

    Full Text Available In most countries throughout the world, heavy vehicle use on public roads are governed by prescriptive rules, typically by imposing stringent mass and dimension limits in an attempt to control vehicle safety. A recent alternative framework is a...

  12. 49 CFR 393.130 - What are the rules for securing heavy vehicles, equipment and machinery?

    Science.gov (United States)

    2010-10-01

    ... heavy vehicles, equipment and machinery? (a) Applicability. The rules in this section apply to the transportation of heavy vehicles, equipment and machinery which operate on wheels or tracks, such as front end... heavy vehicles, equipment or machinery with crawler tracks or wheels. (1) In addition to the...

  13. Heavy Duty Vehicle Futures Analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Askin, Amanda Christine; Barter, Garrett.; West, Todd H.; Manley, Dawn Kataoka

    2014-05-01

    This report describes work performed for an Early Career Research and Development project. This project developed a heavy-duty vehicle (HDV) sector model to assess the factors influencing alternative fuel and efficiency technology adoption. This model builds on a Sandia light duty vehicle sector model and provides a platform for assessing potential impacts of technological advancements developed at the Combustion Research Facility. Alternative fuel and technology adoption modeling is typically developed around a small set of scenarios. This HDV sector model segments the HDV sector and parameterizes input values, such as fuel prices, efficiencies, and vehicle costs. This parameterization enables sensitivity and trade space analyses to identify the inputs that are most associated with outputs of interest, such as diesel consumption and greenhouse gas emissions. Thus this analysis tool enables identification of the most significant HDV sector drivers that can be used to support energy security and climate change goals.

  14. International Conference on Heavy Vehicles : HVParis 2008 : Weigh-In-Motion (ICWIM5)

    OpenAIRE

    JACOB, Bernard; O'BRIEN, Eugene; O'CONNOR, Alan; BOUTELDJA, Mohamed

    2008-01-01

    The conference addresses the broad range of technical issues related to heavy vehicles, surface transport technology, safety and weight measurement systems. It provides access to current research, best practice and related policy issues. It is a multi-disciplinary, inter-agency supported event.

  15. Real-world NOx emissions of Euro V and Euro VI heavy duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, R.; Dekker, H.; Vonk, W.

    2012-04-15

    TNO regularly performs measurements to determine the in-service performance and durability with respect to the pollutant emissions of heavy-duty vehicles under representative driving conditions. The 2011 measurement programme yields new insights regarding the emission performance of the upcoming Euro VI technology for heavy-duty vehicles, mandatory as of 31 December 2013 and, together with the results from earlier performed programmes, leads to conclusions on the emission performance of past and present generations of heavy-duty vehicles (Euro V, EEV)

  16. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  17. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    Directory of Open Access Journals (Sweden)

    Barouch Giechaskiel

    2018-02-01

    Full Text Available Particulate matter (PM, and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG, or Liquefied Natural Gas (LNG. Urban, rural and motorway (highway emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS. Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  18. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    Science.gov (United States)

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  19. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    Science.gov (United States)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  20. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  1. Medium and Heavy Duty Vehicle Field Evaluations (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Walkowicz, K.

    2014-06-01

    This presentation discusses field evaluations of medium- and heavy-duty vehicles performed by NREL. The project provides medium-duty (MD) and heavy-duty (HD) test results, aggregated data, and detailed analysis, including 3rd party unbiased data (data that would not normally be shared by industry in an aggregated and detailed manner). Over 5.6 million miles of advanced technology MD and HD truck data have been collected, documented, and analyzed on over 240 different vehicles since 2002. Data, analysis, and reports are shared within DOE, national laboratory partners, and industry for R&D planning and strategy. The results help guide R&D for new technology development, help define intelligent usage of newly developed technology, and help fleets/users understand all aspects of advanced technology.

  2. Combined emergency braking and turning of articulated heavy vehicles

    OpenAIRE

    Morrison, G; Cebon, David

    2017-01-01

    ‘Slip control’ braking has been shown to reduce the emergency stopping distance of an experimental heavy goods vehicle by up to 19%, compared to conventional electronic/anti-lock braking systems (EBS). However, little regard has been given to the impact of slip control braking on the vehicle’s directional dynamics. This paper uses validated computer models to show that slip control could severely degrade directional performance during emergency braking. A modified slip control strategy, ‘atte...

  3. Omnidirectional configuration and control approach on mini heavy loaded forklift autonomous guided vehicle

    Directory of Open Access Journals (Sweden)

    Adam Norsharimie

    2017-01-01

    Full Text Available This paper presents the omnidirectional configuration and control approach on Mini Heavy Loaded Forklift Autonomous Guided Vehicle (MHeLFAGV for flexibility maneuverability in confine and narrow area. The issue in turning motion for nonholonomic vehicle in confine area becoming a motivation in MHeLFAGV design to provide holonomic vehicle with flexible movement. Therefore an omni-wheeled named Mecanum wheel has been configured in this vehicle design as well as omnidirectional control algorithm. MHeLFAGV system is developed with collaboration and inspired from Vacuumshmelze (M Sdn. Bhd. Pekan, Pahang in order to have a customized mini forklift that able to work in a very confined warehouse (170cm × 270cm square with heavy payload in a range of 20-200kg. In electronics control design, two stages of controller boards are developed namely as Board 1 and 2 that specifically for movement controller board and monitoring controller board respectively. In addition separate module of left, right, forward, backward, diagonal and zigzagging movement is developed as embedded modules for MHeLFAGV system’s control architecture. A few experiments are done to verify the algorithm for each omnidirectional movement of MHeLFAGV system in the wide area. The waypoint of MHeLFAGV movement is plotted using Global Positioning System (GPS as well as a digital compass by mapping the longitude and latitude of the vehicle. There are slightly different between the targeted movements with recorded data since Mecanum wheeled affected by the uneven surface of the landscape. The experiment is also further on moving in confine are on the actual targeted warehouse.

  4. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  5. Substantiation of the road toll for heavy transport vehicles

    OpenAIRE

    Burmaka, N.; Chernykh, A.

    2010-01-01

    The existing and possible additional sources of developing state and local road funds of Ukraine have been considered. The formula for calculating monthly road toll for heavy transport vehicles has been proposed. This formula includes the payment rate per every kilometer of distance, the vehicle capacity utilization factor and the run with the load. The payment rate per every kilometer of distance for transport vehicles depending on the allowed total weight has been substantiated. The given r...

  6. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    R.R. Fessler; G.R. Fenske

    1999-12-13

    improvement over equivalent gasoline-fueled trucks. (2) Develop by 2004 the enabling technology for a Class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) that will meet prevailing emission standards, using either diesel or a liquid alternative fuel. (3) Develop by 2006 diesel engines with fuel flexibility and a thermal efficiency of 55% with liquid alternative fuels, and a thermal efficiency of 55% with dedicated gaseous fuels. (4) Develop a methodology for analyzing and evaluating the operation of a heavy vehicle as an integrated system, considering such factors as engine efficiency; emissions; rolling resistance; aerodynamic drag; friction, wear, and lubrication effects; auxiliary power units; material substitutions for reducing weight; and other sources of parasitic energy losses. Overarching these considerations is the need to preserve system functionality, cost, competitiveness, reliability, durability, and safety.

  7. Medium- and Heavy-Duty Vehicle Duty Cycles for Electric Powertrains

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kenneth; Bennion, Kevin; Miller, Eric; Prohaska, Bob

    2016-03-02

    NREL's Fleet Test and Evaluation group has extensive in-use vehicle data demonstrating the importance of understanding the vocational duty cycle for appropriate sizing of electric vehicle (EV) and power electronics components for medium- and heavy-duty EV applications. This presentation includes an overview of recent EV fleet evaluation projects that have valuable in-use data that can be leveraged for sub-system research, analysis, and validation. Peak power and power distribution data from in-field EVs are presented for four different vocations, including class 3 delivery vans, class 6 delivery trucks, class 8 transit buses, and class 8 port drayage trucks, demonstrating the impacts of duty cycle on performance requirements.

  8. FY2014 Vehicle and Systems Simulation and Testing Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-01

    The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  9. Assessing the ground vibrations produced by a heavy vehicle traversing a traffic obstacle.

    Science.gov (United States)

    Ducarne, Loïc; Ainalis, Daniel; Kouroussis, Georges

    2018-01-15

    Despite advancements in alternative transport networks, road transport remains the dominant mode in many modern and developing countries. The ground-borne motions produced by the passage of a heavy vehicle over a geometric obstacle (e.g. speed hump, train tracks) pose a fundamental problem in transport annoyance in urban areas. In order to predict the ground vibrations generated by the passage of a heavy vehicle over a geometric obstacle, a two-step numerical model is developed. The first step involves simulating the dynamic loads generated by the heavy vehicle using a multibody approach, which includes the tyre-obstacle-ground interaction. The second step involves the simulation of the ground wave propagation using a three dimensional finite element model. The simulation is able to be decoupled due to the large difference in stiffness between the vehicle's tyres and the road. First, the two-step model is validated using an experimental case study available in the literature. A sensitivity analysis is then presented, examining the influence of various factors on the generated ground vibrations. Factors investigated include obstacle shape, obstacle dimensions, vehicle speed, and tyre stiffness. The developed model can be used as a tool in the early planning stages to predict the ground vibrations generated by the passage of a heavy vehicle over an obstacle in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 40 CFR 86.1817-05 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Science.gov (United States)

    2010-07-01

    ..., trading, and banking program. 86.1817-05 Section 86.1817-05 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. (a) General. (1) Complete heavy-duty vehicles eligible for the NOX averaging, trading and banking program are described in the applicable...

  11. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc; Carder, Daniel; Oshinuga, Adewale; Pasek, Randall; Hogo, Henry; Gautam, Mridul

    2016-11-01

    The study presents the measurement of carbonyl, BTEX (benzene, toluene, ethyl benzene, and xylene), ammonia, elemental/organic carbon (EC/OC), and greenhouse gas emissions from modern heavy-duty diesel and natural gas vehicles. Vehicles from different vocations that included goods movement, refuse trucks, and transit buses were tested on driving cycles representative of their duty cycle. The natural gas vehicle technologies included the stoichiometric engine platform equipped with a three-way catalyst and a diesel-like dual-fuel high-pressure direct-injection technology equipped with a diesel particulate filter (DPF) and a selective catalytic reduction (SCR). The diesel vehicles were equipped with a DPF and SCR. Results of the study show that the BTEX emissions were below detection limits for both diesel and natural gas vehicles, while carbonyl emissions were observed during cold start and low-temperature operations of the natural gas vehicles. Ammonia emissions of about 1 g/mile were observed from the stoichiometric natural gas vehicles equipped with TWC over all the driving cycles. The tailpipe GWP of the stoichiometric natural gas goods movement application was 7% lower than DPF and SCR equipped diesel. In the case of a refuse truck application the stoichiometric natural gas engine exhibited 22% lower GWP than a diesel vehicle. Tailpipe methane emissions contribute to less than 6% of the total GHG emissions. Modern heavy-duty diesel and natural gas engines are equipped with multiple after-treatment systems and complex control strategies aimed at meeting both the performance standards for the end user and meeting stringent U.S. Environmental Protection Agency (EPA) emissions regulation. Compared to older technology diesel and natural gas engines, modern engines and after-treatment technology have reduced unregulated emissions to levels close to detection limits. However, brief periods of inefficiencies related to low exhaust thermal energy have been shown to

  12. 40 CFR Appendix Xii to Part 86 - Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks XII Appendix XII to... Appendix XII to Part 86—Tables for Production Compliance Auditing of Heavy-Duty Engines and Heavy-Duty...

  13. Heavy Lift Vehicle (HLV) Avionics Flight Computing Architecture Study

    Science.gov (United States)

    Hodson, Robert F.; Chen, Yuan; Morgan, Dwayne R.; Butler, A. Marc; Sdhuh, Joseph M.; Petelle, Jennifer K.; Gwaltney, David A.; Coe, Lisa D.; Koelbl, Terry G.; Nguyen, Hai D.

    2011-01-01

    A NASA multi-Center study team was assembled from LaRC, MSFC, KSC, JSC and WFF to examine potential flight computing architectures for a Heavy Lift Vehicle (HLV) to better understand avionics drivers. The study examined Design Reference Missions (DRMs) and vehicle requirements that could impact the vehicles avionics. The study considered multiple self-checking and voting architectural variants and examined reliability, fault-tolerance, mass, power, and redundancy management impacts. Furthermore, a goal of the study was to develop the skills and tools needed to rapidly assess additional architectures should requirements or assumptions change.

  14. Heavy Vehicle Propulsion System Materials Program semiannual progress report for October 1996 through March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designers; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) cost effective high performance materials and processing; (2) advanced manufacturing technology; (3) testing and characterization; and (4) materials and testing standards.

  15. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles; FINAL

    International Nuclear Information System (INIS)

    R.R. Fessler; G.R. Fenske

    1999-01-01

    improvement over equivalent gasoline-fueled trucks. (2) Develop by 2004 the enabling technology for a Class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) that will meet prevailing emission standards, using either diesel or a liquid alternative fuel. (3) Develop by 2006 diesel engines with fuel flexibility and a thermal efficiency of 55% with liquid alternative fuels, and a thermal efficiency of 55% with dedicated gaseous fuels. (4) Develop a methodology for analyzing and evaluating the operation of a heavy vehicle as an integrated system, considering such factors as engine efficiency; emissions; rolling resistance; aerodynamic drag; friction, wear, and lubrication effects; auxiliary power units; material substitutions for reducing weight; and other sources of parasitic energy losses. Overarching these considerations is the need to preserve system functionality, cost, competitiveness, reliability, durability, and safety

  16. Road user charges for heavy goods vehicles (HGV)

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). This report on road transport is a continuation of previous reporting from EEA on estimates for the external costs of air...

  17. Deriving fuel-based emission factor thresholds to interpret heavy-duty vehicle roadside plume measurements.

    Science.gov (United States)

    Quiros, David C; Smith, Jeremy D; Ham, Walter A; Robertson, William H; Huai, Tao; Ayala, Alberto; Hu, Shaohua

    2018-04-13

    Remote sensing devices have been used for decades to measure gaseous emissions from individual vehicles at the roadside. Systems have also been developed that entrain diluted exhaust and can also measure particulate matter (PM) emissions. In 2015, the California Air Resources Board (CARB) reported that 8% of in-field diesel particulate filters (DPF) on heavy-duty (HD) vehicles were malfunctioning and emitted about 70% of total diesel PM emissions from the DPF-equipped fleet. A new high-emitter problem in the heavy-duty vehicle fleet had emerged. Roadside exhaust plume measurements reflect a snapshot of real-world operation, typically lasting several seconds. In order to relate roadside plume measurements to laboratory emission tests, we analyzed carbon dioxide (CO 2 ), oxides of nitrogen (NO X ), and PM emissions collected from four HD vehicles during several driving cycles on a chassis dynamometer. We examined the fuel-based emission factors corresponding to possible exceedances of emission standards as a function of vehicle power. Our analysis suggests that a typical HD vehicle will exceed the model year (MY) 2010 emission standards (of 0.2 g NO X /bhp-hr and 0.01 g PM/bhp-hr) by three times when fuel-based emission factors are 9.3 g NO X /kg fuel and 0.11 g PM/kg using the roadside plume measurement approach. Reported limits correspond to 99% confidence levels, which were calculated using the detection uncertainty of emissions analyzers, accuracy of vehicle power calculations, and actual emissions variability of fixed operational parameters. The PM threshold was determined for acceleration events between 0.47 and 1.4 mph/sec only, and the NO X threshold was derived from measurements where aftertreatment temperature was above 200°C. Anticipating a growing interest in real-world driving emissions, widespread implementation of roadside exhaust plume measurements as a compliment to in-use vehicle programs may benefit from expanding this analysis to a larger

  18. Road transport management system: a self regulation initiative to promote load optimisation, vehicle maintenance and driver wellness in heavy vehicle transport in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2008-04-01

    Full Text Available with inadequate vehicle maintenance, driver fatigue and poor driver health, contributes significantly to South Africa’s poor road safety record. This paper describes the most recent developments of an initiative to introduce meaningful self-regulation in the heavy...

  19. Accelerated pavement testing efforts using the heavy vehicle simulator

    CSIR Research Space (South Africa)

    Du Plessis, Louw

    2017-10-01

    Full Text Available This paper provides a brief description of the technological developments involved in the development and use of the Heavy Vehicle Simulator (HVS) accelerated pavement testing equipment. This covers the period from concept in the late 1960’s...

  20. Pavement Response to Variable Tyre Pressure of Heavy Vehicles

    Directory of Open Access Journals (Sweden)

    Arshad Ahmad Kamil

    2016-01-01

    Full Text Available In recent years, the effect of overinflated tyre pressure and increased heavy vehicles’ axle load on flexible pavements has become a subject of great concern because of the higher stress levels induced and damage caused to road pavements. This paper aims to evaluate the effect of variable tyre inflation pressures (using actual tyre contact/footprint area to determine the responses of flexible pavement. A full scale experiment was conducted on a heavy vehicle with 1:1:2 axle configuration, 10 R 20 tyre size and attached trailer with constant axle load. Measurements were made for actual tyre-pavement contact area. KENPAVE linear elastic program was then used to analyse the effects of the measured actual tyre-pavement contact area and the results was compared using conventional circular tyre contact area. A comparative analysis was then made between the actual contact area and the conventional circular tyre contact area. It was found that high tyre inflation pressure produce smaller contact area, giving more detrimental effect on the flexible pavement. It was also found that the temperature of tyres when the heavy vehicles are operational give less significant impact on tyre inflation pressure for the Malaysian climate.

  1. Heavy vehicle simulator testing of trial sections for CALTRANS.

    CSIR Research Space (South Africa)

    Rust, FC

    1993-10-01

    Full Text Available ) commissioned the University of California at Berkely (UCB), Dynatest Consulting and the Council for Scientific and Industrial Research (CSIR) in South Africa to conduct a pilot study to evaluate the potential of the South African Heavy Vehicle Simulator (HVS...

  2. Signal treatments to reduce heavy vehicle crash-risk at metropolitan highway intersections.

    Science.gov (United States)

    Archer, Jeffery; Young, William

    2009-05-01

    Heavy vehicle red-light running at intersections is a common safety problem that has severe consequences. This paper investigates alternative signal treatments that address this issue. A micro-simulation analysis approach was adopted as a precursor to a field trial. The simulation model emulated traffic conditions at a known problem intersection and provided a baseline measure to compare the effects of: an extension of amber time; an extension of green for heavy vehicles detected in the dilemma zone at the onset of amber; an extension of the all-red safety-clearance time based on the detection of vehicles considered likely to run the red light at two detector locations during amber; an extension of the all-red safety-clearance time based on the detection of potential red-light runners during amber or red; and a combination of the second and fourth alternatives. Results suggested safety improvements for all treatments. An extension of amber provided the best safety effect but is known to be prone to behavioural adaptation effects and wastes traffic movement time unnecessarily. A green extension for heavy vehicles detected in the dilemma zone and an all-red extension for potential red-light runners were deemed to provide a sustainable safety improvement and operational efficiency.

  3. Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle

    Science.gov (United States)

    Zeng, Xiaohua; Li, Guanghan; Yin, Guodong; Song, Dafeng; Li, Sheng; Yang, Nannan

    2018-02-01

    Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.

  4. Market Innovation in the Transport and Heavy Vehicle Market

    DEFF Research Database (Denmark)

    Borgström, Benedikte; Agndal, Henrik; Cui, Lianguang

    The purpose is to better understand the interrelatedness of new business models in the truck market and developments in the road transport sector. Based on a three year research project in cooperation with a European heavy vehicle manufacturer, we describe short cases showing some of the business...

  5. Multi-sources model and control algorithm of an energy management system for light electric vehicles

    International Nuclear Information System (INIS)

    Hannan, M.A.; Azidin, F.A.; Mohamed, A.

    2012-01-01

    Highlights: ► An energy management system (EMS) is developed for a scooter under normal and heavy power load conditions. ► The battery, FC, SC, EMS, DC machine and vehicle dynamics are modeled and designed for the system. ► State-based logic control algorithms provide an efficient and feasible multi-source EMS for light electric vehicles. ► Vehicle’s speed and power are closely matched with the ECE-47 driving cycle under normal and heavy load conditions. ► Sources of energy changeover occurred at 50% of the battery state of charge level in heavy load conditions. - Abstract: This paper presents the multi-sources energy models and ruled based feedback control algorithm of an energy management system (EMS) for light electric vehicle (LEV), i.e., scooters. The multiple sources of energy, such as a battery, fuel cell (FC) and super-capacitor (SC), EMS and power controller, DC machine and vehicle dynamics are designed and modeled using MATLAB/SIMULINK. The developed control strategies continuously support the EMS of the multiple sources of energy for a scooter under normal and heavy power load conditions. The performance of the proposed system is analyzed and compared with that of the ECE-47 test drive cycle in terms of vehicle speed and load power. The results show that the designed vehicle’s speed and load power closely match those of the ECE-47 test driving cycle under normal and heavy load conditions. This study’s results suggest that the proposed control algorithm provides an efficient and feasible EMS for LEV.

  6. Powertrain Test Procedure Development for EPA GHG Certification of Medium- and Heavy-Duty Engines and Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Paul H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deter, Dean D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    xiii ABSTRACT The goal of this project is to develop and evaluate powertrain test procedures that can accurately simulate real-world operating conditions, and to determine greenhouse gas (GHG) emissions of advanced medium- and heavy-duty engine and vehicle technologies. ORNL used their Vehicle System Integration Laboratory to evaluate test procedures on a stand-alone engine as well as two powertrains. Those components where subjected to various drive cycles and vehicle conditions to evaluate the validity of the results over a broad range of test conditions. Overall, more than 1000 tests were performed. The data are compiled and analyzed in this report.

  7. Modelling vertical uniform contact stress of heavy vehicle tyres

    CSIR Research Space (South Africa)

    Steenkamp, Anton J

    2016-07-01

    Full Text Available over the selected operating range of 25 kN to 45 kN which is the typical load range for heavy vehicle tyres due to legal axle load limits. The polynomial formulas require only the tyre inflation pressure and vertical tyre load as inputs, in order...

  8. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    International Nuclear Information System (INIS)

    Robert J. Englar

    2000-01-01

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model

  9. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  10. Particle number and particulate mass emissions of heavy duty vehicles in real operating conditions

    Directory of Open Access Journals (Sweden)

    Rymaniak Lukasz

    2017-01-01

    Full Text Available The article investigates the issue of PM emissions from HDV vehicles. The theoretical part discusses the problem of emission of this toxic compound in terms of particle structure taking into account the mass and dimensions of PM. Next, the methodology of the research and the results of the measurements performed under the conditions of actual operation were presented. The test drive routes were chosen in accordance with the operational purpose of the selected test vehicles. Two heavy vehicles were used for the study: a tractor with trailer and an eighteen meter long city bus. The test vehicles complied with the Euro V standard, with the second vehicle additionally complying with the EEV standard and being equipped with a DPF. The analysis of the research results was performed in the aspect of determining the operating time densities of vehicles and their drive systems as well as defining their emission characteristics and ecological indicators. PM and PN emissions were measured in the tests and particle size distribution was determined. It was shown that the exhaust gas after treatment system used in the city bus had a positive influence on the ecological indicators and had contributed to the reduction of PN emissions for heavier particles.

  11. Condition-based dynamic maintenance operations planning and grouping. Application to commercial heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bouvard, K., E-mail: keomany.bouvard@volvo.co [Volvo Technology, 99 route de Lyon, 69806 Saint Priest cedex (France); Laboratoire d' Automatique de Genie Informatique et Signal - FRE3303 - Polytech' Lille, 59655 Villeneuve d' Ascq (France); Artus, S., E-mail: samuel.artus@volvo.co [Volvo Technology, 99 route de Lyon, 69806 Saint Priest cedex (France); Berenguer, C., E-mail: christophe.berenguer@utt.f [Universite de technologie de Troyes - Institut Charles Delaunay and UMR CNRS 6279 - 12, rue Marie Curie, BP2060, 10010 Troyes cedex (France); Cocquempot, V., E-mail: vincent.cocquempot@univ-lille1.f [Laboratoire d' Automatique de Genie Informatique et Signal - FRE3303 - Polytech' Lille, 59655 Villeneuve d' Ascq (France)

    2011-06-15

    This paper aims at presenting a method to optimize the maintenance planning for a commercial heavy vehicle. Such a vehicle may be considered as a multi-components system. Grouping maintenance operations related to each component reduces the global maintenance cost of the system. Classically, the optimization problem is solved using a priori reliability characteristics of components. Two types of methods may be used, i.e. static or dynamic methods. Static methods provide a fixed maintenance planning, whereas dynamic methods redefine the groups of maintenance operations at each decision time. Dynamic procedures can incorporate component information such as component states or detected failures. For deteriorating systems, reliability characteristics of each component may be estimated thanks to deterioration models and may be updated when a degradation measure is available. This additional information on degradation features allows to better follow the real state of each component and to improve the maintenance planning.

  12. BENCHMARKING FOR THE ROMANIAN HEAVY COMMERCIAL VEHICLES MARKET

    Directory of Open Access Journals (Sweden)

    Pop Nicolae Alexandru

    2014-07-01

    Full Text Available The globalization has led to a better integration of international markets of goods, services and capital markets, fact which leads to a significant increase of investments in those regions with low labor cost and with access to commercial routes. The development of international trade has imposed a continuous growth of the volumes of transported goods and the development of a transport system, able to stand against the new pressure exercised by cost, time and space. The solution to efficient transport is the intermodal transportation relying on state-of-the-art technological platforms, which integrates the advantages specific to each means of transportation: flexibility for road transportation, high capacity for railway, low costs for sea, and speed for air transportation. Romania’s integration in the pan-European transport system alongside with the EU’s enlargement towards the east will change Romania’s positioning into a central one. The integrated governmental program of improving the intermodal infrastructure will ensure fast railway, road and air connections. For the Danube harbors and for the sea ports, EU grants and allowances will be used thus increasing Romania’s importance in its capacity as one of Europe’s logistical hubs. The present paper intends to use benchmarking, the management and strategic marketing tool, in order to realize an evaluation of the Romanian heavy commercial vehicles market, within European context. Benchmarking encourages change in a complex and dynamic context where a permanent solution cannot be found. The different results stimulate the use of benchmarking as a solution to reduce gaps. MAN’s case study shows the dynamics of the players on the Romanian market for heavy commercial vehicles, when considering the strong growth of Romanian exported goods but with a modest internal demand, a limited but developing road infrastructure, and an unfavorable international economical context together with

  13. Joint measurements of black carbon and particle mass for heavy-duty diesel vehicles using a portable emission measurement system

    Science.gov (United States)

    The black carbon (BC) emitted from heavy-duty diesel vehicles(HDDVs) is an important source of urban atmospheric pollution and createsstrong climate-forcing impacts. The emission ratio of BC to totalparticle mass (PM) (i.e., BC/PM ratio) is an essential variable used toestimate t...

  14. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Otto-cycle HDE. (d) Every manufacturer of new motor vehicle engines subject to the standards prescribed... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...

  15. 75 FR 51521 - Federal Motor Vehicle Safety Standards; Air Brake Systems; Technical Report on the Effectiveness...

    Science.gov (United States)

    2010-08-20

    ....121) mandates antilock braking systems (ABS) on all new air-braked vehicles with a GVWR of 10,000...-0116] Federal Motor Vehicle Safety Standards; Air Brake Systems; Technical Report on the Effectiveness of Antilock Braking Systems in Heavy Truck Tractors and Trailers AGENCY: National Highway Traffic...

  16. Particulate emissions from new heavy duty vehicles (Euro IV and V); Partikeludslip fra nye tunge koeretoejer (Euronorm IV og V)

    Energy Technology Data Exchange (ETDEWEB)

    Jordal-Joergensen, J.; Ohm, A.; Willumsen, E. (COWI A/S, Kgs. Lyngby (DK))

    2008-07-01

    The new Danish act on environmental zones allows local authorities to define zones where EURO III or older heavy duty vehicles should be equipped with a particulate filter. The introduction of EURO IV and V has reduced particulate emissions from heavy duty vehicles by approximately 80 % based on the mass of particles. There is, however, substantial uncertainty about the impact on the number of ultrafine particles, since they are not covered by Euronorm standards. When passing the bill, the Danish Minister for the Environment of the time stated that all relevant knowledge about particle emission from heavy duty vehicles needed to be collected for subsequent publication. To this end, the Danish Environmental Protection Agency (DEPA) commissioned a literature survey. The purpose of the survey is to provide an overview of the latest knowledge in the field of particle emissions from heavy duty vehicles, with special focus on the average size of the particle emissions. Another objective of the study is to analyse the direct emissions of NO{sub 2} from heavy duty vehicles classified under EURO IV and V. (au)

  17. Heavy weight vehicle traffic and its relationship with antimony content in human blood.

    Science.gov (United States)

    Quiroz, Waldo; De Gregori, Ida; Basilio, Paola; Bravo, Manuel; Pinto, Marcela; Lobos, Maria Gabriela

    2009-05-01

    Brake pads systems are nowadays considered as one of the most important sources of antimony in airborne particulate matter. One way that antimony can enter the body is through the lungs and specially by the interaction of antimony with -SH groups present in erythrocyte membrane cells. In spite of that, there are no studies about antimony enrichment in blood of workers exposed to high vehicle traffic. Port workers are generally exposed to heavy weight vehicle traffic. In Chile the biggest marine port is found in Valparaíso City. In this study antimony in whole blood and its fractions (erythrocytes-plasma and erythrocytes membranes-cytoplasm) of 45 volunteers were determined. The volunteers were port workers from Valparaíso city, and two control groups, one from Valparaíso and another from Quebrada Alvarado, the latter being a rural area located about 100 Km away from Valparaíso. The results demonstrate that port workers are highly impacted by antimony emissions from heavy weight vehicle traffic showing an average concentration of 27 +/- 9 ng Sb kg(-1), 5-10 times higher than the concentration of antimony in the blood of control groups. These are the highest antimony levels in blood ever reported in the literature. The highest antimony percentages (>60%) were always found in the erythrocyte fractions. However, the exposure degree to vehicle traffic is significant over antimony distribution in plasma, erythrocytes and cytoplasm. This results shows that the antimony mass in the erythrocyte membranes, was approximately constant at 1.0 +/- 0.1 ng Sb g(-1) of whole blood in all blood samples analyzed.

  18. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later...

  19. 40 CFR 86.1817-08 - Complete heavy-duty vehicle averaging, trading, and banking program.

    Science.gov (United States)

    2010-07-01

    ..., trading, and banking program. 86.1817-08 Section 86.1817-08 Protection of Environment ENVIRONMENTAL... Complete heavy-duty vehicle averaging, trading, and banking program. Section 86.1817-08 includes text that.... (1) Manufacturers of Otto-cycle vehicles may participate in an NMHC averaging, banking and trading...

  20. Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, E.H.

    2002-07-22

    The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

  1. Accidents in The Netherlands involving heavy motor vehicles : an analysis concerning underrun protection of rear ends, compared to the sides and the front ends. On behalf of RDW Vehicle Technology & Information Centre.

    NARCIS (Netherlands)

    Kampen, L.T.B. van

    1998-01-01

    In this report accident data concerning heavy vehicles (all motor vehicles with a total weight of more than 3500 kg) are studied. Special attention is given to the question whether accidents involving heavy motor vehicles gave specific reason for concern regarding other road users with respect to

  2. Establishment and verification of three-dimensional dynamic model for heavy-haul train-track coupled system

    Science.gov (United States)

    Liu, Pengfei; Zhai, Wanming; Wang, Kaiyun

    2016-11-01

    For the long heavy-haul train, the basic principles of the inter-vehicle interaction and train-track dynamic interaction are analysed firstly. Based on the theories of train longitudinal dynamics and vehicle-track coupled dynamics, a three-dimensional (3-D) dynamic model of the heavy-haul train-track coupled system is established through a modularised method. Specifically, this model includes the subsystems such as the train control, the vehicle, the wheel-rail relation and the line geometries. And for the calculation of the wheel-rail interaction force under the driving or braking conditions, the large creep phenomenon that may occur within the wheel-rail contact patch is considered. For the coupler and draft gear system, the coupler forces in three directions and the coupler lateral tilt angles in curves are calculated. Then, according to the characteristics of the long heavy-haul train, an efficient solving method is developed to improve the computational efficiency for such a large system. Some basic principles which should be followed in order to meet the requirement of calculation accuracy are determined. Finally, the 3-D train-track coupled model is verified by comparing the calculated results with the running test results. It is indicated that the proposed dynamic model could simulate the dynamic performance of the heavy-haul train well.

  3. An Experimental Study on Hysteresis Characteristics of a Pneumatic Braking System for a Multi-Axle Heavy Vehicle in Emergency Braking Situations

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2017-08-01

    Full Text Available This study aims to investigate the hysteresis characteristics of a pneumatic braking system for multi-axle heavy vehicles (MHVs. Hysteresis affects emergency braking performance severely. The fact that MHVs have a large size and complex structure leads to more nonlinear coupling property of the pneumatic braking system compared to normal two-axle vehicles. Thus, theoretical analysis and simulation are not enough when studying hysteresis. In this article, the hysteresis of a pneumatic brake system for an eight-axle vehicle in an emergency braking situation is studied based on a novel test bench. A servo drive device is applied to simulate the driver’s braking intensions normally expressed by opening or moving speed of the brake pedal. With a reasonable arrangement of sensors and the NI LabVIEW platform, both the delay time of eight loops and the response time of each subassembly in a single loop are detected in real time. The outcomes of the experiment show that the delay time of each loop gets longer with the increase of pedal opening, and a quadratic relationship exists between them. Based on this, the pressure transient in the system is fitted to a first-order plus time delay model. Besides, the response time of treadle valve and controlling pipeline accounts for more than 80% of the loop’s total delay time, indicating that these two subassemblies are the main contributors to the hysteresis effect.

  4. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    Science.gov (United States)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  5. Evaluation of duty cycles for heavy-duty urban vehicles : final report of IEA AMF Annex 29

    Energy Technology Data Exchange (ETDEWEB)

    Nylund, N.O.; Erkkila, K. [VTT Technical Research Centre of Finland, Espoo (Finland); Clark, N. [West Virginia Univ., Morgantown, WV (United States); Rideout, G. [Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre, Emissions Research and Measurement Div

    2007-07-01

    Heavy-duty vehicles in Europe and North America will require incylinder measures or exhaust gas after-treatment technology to control emissions and meet ever stringent emission requirements. Alternatively, manufacturers can choose clean burning alternative fuels such as natural gas. Although there are no international standards for heavy-duty vehicle chassis dynamometer testing at present, the IEA Implementing Agreements offer excellent platforms for international collaborative research. Harmonization of test methods for vehicles and fuels is one important task. This paper reported on the work of 3 laboratories that have produced emission results for complete heavy-duty vehicles. VTT Technical Research of Finland, Environment Canada and West Virginia University measured standard size urban buses driving various duty cycles on chassis dynamometers. The number of transient test cycles per laboratory varied from 6 to 16. European and North American diesel and natural gas vehicles were included in the vehicle matrix. The objective was to demonstrate how the driving cycle affects the emission performance of conventional and advanced urban buses. Several driving cycles were run on urban buses to better understand the characteristics of different duty cycles; produce a key for cross-interpretation of emission results generated with different cycles; and study the interaction between vehicle, exhaust after-treatment and fuel technologies and test procedures. Fuel consumption and exhaust emissions were measured. The results varied significantly not only by test cycle, but also by vehicle technology. In general, vehicles emissions were directly proportioned to the amount of fuel consumed, with the exception of NOx-emissions from SCR-vehicles. There was a clear difference in the emission profiles of European and North American vehicles. In Europe, fuel efficiency was emphasized, while in North America, more focus was given to regulated exhaust emissions, especially low

  6. Analysis of a gas turbine driven hybrid drive system for heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Malmquist, Anders

    1999-07-01

    The goal of this thesis has been to analyze the performance and behavior of a gas turbine driven hybrid drive train. The thesis covers both computer simulations and experimental tests. In two case studies, a number of measurements have been made on gas turbine driven hybrid vehicles that are developed by Volvo and ABB. In the recent years, much effort is currently put into the design and analysis of hybrid drive trains. Many studies involve computer simulations, but they are often made on a general level. This thesis concentrate on gas turbine driven hybrids for heavy vehicles, a field that has previously not been covered to a large extent in academic studies. A major contribution to the field of hybrid drive train design is the development of detailed simulation models that have a close connection to hybrids that are actually built and tested. The access to detailed gas turbine data has further enhanced the possibility to design a dynamic model of the gas turbine driven and the electric circuits. The combination of simulations and extensive field experience gains new knowledge on the properties of gas turbines in hybrid drive trains. Two simulation models have been developed in Matlab and Simulink. One is a quasi-steady state model that can be used for drive cycle simulations, e.g. a complete bus line. The other is a transient model that combines the thermodynamic properties of the gas turbine, the mechanical properties of the combined turbine-generator shaft, the electric power circuit and the control system. The transient model has been used to simulate the power response during accelerations and retardation. An analysis of the internal energy flows and the system efficiency of a hybrid drive train contributes to the understanding of the properties of series hybrid drive trains. An important part of the topology is that the system is based on a DC/DC-converter that is connected between the battery and the DC-bus. It controls the DC-bus voltage and by this

  7. Analysis of pavement structure sensitivity to passage of oversized heavy duty vehicle in terms of bearing capacity

    Science.gov (United States)

    Dawid, Rys; Piotr, Jaskula

    2018-05-01

    Oversized heavy duty vehicles occur in traffic very rarely but they reach extremely high weights, even up to 800 tonne. The detrimental impact of these vehicles on pavement structure is much higher than in case of commercial vehicles that comprise typical traffic, thus it is necessary to assess the sensitivity of pavement structure to passage of oversized vehicles. The paper presents results of sample calculations of load equivalency factor of a heavy duty oversized vehicle with usage of mechanistic-empirical approach. The effects of pavement thickness, type of distress (cracking or rutting) and pavement condition (new or old with structural damage) were considered in the paper. Analysis revealed that a single pass of an 800 tonne oversized vehicle is equivalent to pass of up to 377 standard 100 kN axles. Load equivalency factor calculated for thin structures is almost 3 times lower than for thick structures, however, the damage effect caused by one pass of an oversized vehicle is higher in the case of thin structure. Bearing capacity of a pavement structure may be qualified as sufficient for passage of an oversized heavy duty vehicle when the measured deflection, for example in an FWD test, does not exceed the maximum deflections derived from mechanistic-empirical analysis. The paper presents sample calculation of maximum deflections which allow to consider passage of an oversized vehicle as safe over different pavement structures. The paper provides road administration with a practical tool which helps to decide whether to issue a permit of passage for a given oversized vehicle.

  8. Real-world exhaust temperature profiles of on-road heavy-duty diesel vehicles equipped with selective catalytic reduction.

    Science.gov (United States)

    Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug

    2018-09-01

    On-road heavy-duty diesel vehicles are a major contributor of oxides of nitrogen (NO x ) emissions. In the US, many heavy-duty diesel vehicles employ selective catalytic reduction (SCR) technology to meet the 2010 emission standard for NO x . Typically, SCR needs to be at least 200°C before a significant level of NO x reduction is achieved. However, this SCR temperature requirement may not be met under some real-world operating conditions, such as during cold starts, long idling, or low speed/low engine load driving activities. The frequency of vehicle operation with low SCR temperature varies partly by the vehicle's vocational use. In this study, detailed vehicle and engine activity data were collected from 90 heavy-duty vehicles involved in a range of vocations, including line haul, drayage, construction, agricultural, food distribution, beverage distribution, refuse, public work, and utility repair. The data were used to create real-world SCR temperature and engine load profiles and identify the fraction of vehicle operating time that SCR may not be as effective for NO x control. It is found that the vehicles participated in this study operate with SCR temperature lower than 200°C for 11-70% of the time depending on their vocation type. This implies that real-world NO x control efficiency could deviate from the control efficiency observed during engine certification. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Impact of overweight vehicles (with heavy axle loads) on bridge deck deterioration.

    Science.gov (United States)

    2012-03-01

    Bridge deck slabs develop compressive stresses from global flexural deformation and locally from high-level : wheel loads when it is subjected to overweight trucks. This study quantified the impact of overweight vehicles : with heavy axle loads on br...

  10. Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude.

    Science.gov (United States)

    McCormick, R L; Graboski, M S; Alleman, T L; Yanowitz, J

    2000-11-01

    Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.

  11. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jovovic, Vladimir [Gentherm Incorporated, Azusa, CA (United States)

    2015-12-31

    Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed more modest potential.

  12. FY2011 Annual Progress Report for Vehicle and Systems Simulation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-15

    The VSST team's mission is to evaluate the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context. These evaluations address light-, medium-, and heavy-duty vehicle platforms. This work is directed toward evaluating and verifying the targets of the VTP R&D teams and to providing guidance in establishing roadmaps for achievement of these goals.

  13. Experimental Verification of Discretely Variable Compression Braking Control for Heavy Duty Vehicles

    OpenAIRE

    Vahidi, Ardalan; Stefanopoulou, Anna G.; Farias, Phil; Tsao, Tsu Chin

    2003-01-01

    In this report a recursive least square scheme with multiple forgetting factors is proposed for on-line estimation of road grade and vehicle mass. The estimated mass and grade can be used to robustify many automatic controllers in conventional or automated heavy-duty vehicles. We demonstrate with measured test data from the July 26-27, 2002 test dates in San Diego, CA, that the proposed scheme estimates mass within 5% of its actual value and tracks grade with good accuracy. The experimental s...

  14. Analysis of application of alternative drive systems for international heavy-duty transport on Wroclaw-Dresden-Prague routes

    Science.gov (United States)

    Skrętowicz, Maria; Sroka, Zbigniew

    2017-11-01

    The depletion of the fossil fuels resources, significant increase of the air pollution caused by the use of internal combustion engines, and emission of carbon dioxide which is responsible for the greenhouse effect escalates the development of vehicle's alternative drive systems. Generally, the emphasis is given to the alternative fuels (natural gas CNG, mixture of propane-butane gases LPG, hydrogen, alcohol fuels, biofuels) and hybrid or electric vehicles. Roads between large industrial and commercial centres, i.e. Wroclaw - Dresden - Prague, are used mainly by heavy-duty vehicles. Consequently, the contribution of the road transport to the ecological threat in this realm is significant. The objectives of this research were the assessment of the traffic volume and emission rate of exhaust gases caused by heavy-duty vehicles on the analysed roads and evaluation of the possibility of using existing and alternative drive systems in vehicles driving on the roads in the analysed region.

  15. 77 FR 50502 - California State Nonroad Engine Pollution Control Standards; In-Use Heavy-Duty Vehicles (As...

    Science.gov (United States)

    2012-08-21

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL 9716-9] California State Nonroad Engine Pollution Control Standards; In- Use Heavy-Duty Vehicles (As Applicable to Yard Trucks and Two-Engine Sweepers); Opportunity... control of emissions from new nonroad engines which are used in construction equipment or vehicles or used...

  16. 78 FR 53498 - Petition for Exemption From the Vehicle Theft Prevention Standard; Fuji Heavy Industries U.S.A...

    Science.gov (United States)

    2013-08-29

    ... From the Vehicle Theft Prevention Standard; Fuji Heavy Industries U.S.A., Inc. AGENCY: National Highway... deterring motor vehicle theft as compliance with the parts-marking requirements of the Theft Prevention Standard 49 CFR part 541, Federal Motor Vehicle Theft Prevention Standard. FUSA requested confidential...

  17. Effectiveness of vehicle weight enforcement in a developing country using weigh-in-motion sorting system considering vehicle by-pass and enforcement capability

    Directory of Open Access Journals (Sweden)

    Mohamed Rehan Karim

    2014-03-01

    Full Text Available Vehicle overloading has been identified as one of the major contributors to road pavement damage in Malaysia. In this study, the weigh-in-motion (WIM system has been used to function as a vehicle weight sorting tool to complement the exsiting static weigh bridge enforcement station. Data collected from the developed system is used to explore the effectiveness of using WIM system in terms of generating more accurate data for enforcement purposes and at the same time improving safety and reducing the number of vehicle weight violations on the roads. This study specifically focus on the effect of vehicle by-pass and static weigh station enforcement capability on the overall effectiveness of vehicle weight enforcement system in a developing country. Results from this study suggest that the WIM system will significantly enhance the effectiveness and efficiency of the current vehicle weight enforcement, thus generating substantial revenue that would greatly off-set the current road maintenance budget that comes from tax payers money. If there is substantial reduction in overloaded vehicles, the public will still gain through reduction in road maintenance budget, less accident risks involving heavy trucks, and lesser greenhouse gases (GHGs emissions.

  18. 77 FR 1973 - Petition for Exemption From the Vehicle Theft Prevention Standard; Fuji Heavy Industries U.S.A...

    Science.gov (United States)

    2012-01-12

    ... From the Vehicle Theft Prevention Standard; Fuji Heavy Industries U.S.A., Inc. AGENCY: National Highway... effective in reducing and deterring motor vehicle theft as compliance with the parts-marking requirements of the Theft Prevention Standard 49 CFR part 541, Federal Motor Vehicle Theft Prevention Standard. FUSA...

  19. Emission rates of regulated pollutants from on-road heavy-duty diesel vehicles

    Science.gov (United States)

    Shah, Sandip D.; Johnson, Kent C.; Wayne Miller, J.; Cocker, David R.

    Emissions from heavy-duty diesel (HDD) vehicles are affected by many factors. Changes in engine technology, operating mode, fuel properties, vehicle speed and ambient conditions can have significant effects on emission rates of regulated species. This paper presents the results of on-road emissions testing of 11 HDD vehicles (model years 1996-2000) over the ARB Four Phase driving schedule and the urban dynamometer driving schedule (UDDS). Emission rates were found to be highly dependent on vehicle operating mode. Per mile NO x emission rates for vehicle operation at low speeds, in simulated congested traffic, were three times higher per mile emissions then while cruising on the freeway. Comparisons of NO x emission factors to EMFAC baseline emission factors were within 5-40% for vehicles of various model years tested over the UDDS. A comparison of NO x emission factors for a weighted average of the ARB four phase driving schedule yielded values within 17-57% of EMFAC values. Generally, particulate matter (PM) emission rates were lower than EMFAC values.

  20. Vehicle systems design optimization study

    Science.gov (United States)

    Gilmour, J. L.

    1980-01-01

    The optimum vehicle configuration and component locations are determined for an electric drive vehicle based on using the basic structure of a current production subcompact vehicle. The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current internal combustion engine vehicles. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages, one at front under the hood and a second at the rear under the cargo area, in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passenger and cargo space for a given size vehicle.

  1. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen

    2008-01-01

    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  2. Heavy-duty diesel vehicles dominate vehicle emissions in a tunnel study in northern China.

    Science.gov (United States)

    Song, Congbo; Ma, Chao; Zhang, Yanjie; Wang, Ting; Wu, Lin; Wang, Peng; Liu, Yan; Li, Qian; Zhang, Jinsheng; Dai, Qili; Zou, Chao; Sun, Luna; Mao, Hongjun

    2018-05-09

    The relative importance of contributions of gasoline vehicles (GVs) and diesel vehicles (DVs), heavy-duty diesel vehicles (HDDVs) and non-HDDVs to on-road vehicle emissions remains unclear. Vehicle emission factors (EFs), including fine particulate matter (PM 2.5 ), NO-NO 2 -NO x , and carbon monoxide (CO), were measured (August 4-18, 2017) in an urban tunnel in Tianjin, northern China. The average EFs (mg km -1 veh -1 ) of the fleet were as follows: 9.21 (95% confidence interval: 1.60, 23.07) for PM 2.5 , 62.08 (21.21, 138.25) for NO, 20.42 (0.79, 45.48) for NO 2 , 83.72 (26.29, 162.87) for NO x , and 284.54 (18.22, 564.67) for CO. The fleet-average EFs exhibited diurnal variations, due to diurnal variations in the proportion of HDDVs in the fleet, though the hourly proportion of HDDVs never exceeded 10% during the study period. The reconstructed average EFs for on-road vehicle emissions of PM 2.5 , NO, NO 2 , and NO x , and CO were approximately 2.2, 1.7, 1.5, 2.0, and 1.6 times as much as those in the tunnel, respectively, due to the higher HDDV fractions in the whole city than those in the tunnel. The EFs of PM 2.5 , NO, NO 2 , and NO x , and CO from each HDDV were approximately 75, 81, 24, 65, and 33 times of those from each non-HDDV, respectively. HDDVs were responsible for approximately 81.92%, 83.02%, 59.79%, 79.79%, and 66.77% of the total PM 2.5 , NO, NO 2 , and NO x , and CO emissions from on-road vehicles in Tianjin, respectively. DVs, especially HDDVs, are major sources of on-road PM 2.5 , NO-NO 2 -NO x , and CO emissions in northern China. The contribution of HDDVs to fleet emissions calculated by the EFs from Chinese 'on-road vehicle emission inventory guidebook' were underestimated, as compared to our results. The EFs from on-road vehicles should be updated due to the rapid progression of vehicle technology combined with emission standards in China. The management and control of HDDV emissions have become urgent to reduction of on-road vehicle

  3. VIRMS: A VEHICLE INFORMATION AND ROAD MONITORING SYSTEM

    Directory of Open Access Journals (Sweden)

    Fabio Arnéz

    2014-01-01

    Full Text Available Intelligent Transport Systems (ITS are emerging technologies for building collaborative vehicular networks to increase road safety and to improve driver’s experience. Unfortunately these technologies require heavy infrastructure to be deployed inside and outside the vehicle that is difficult to extend. In this article we present VIRMS (Vehicle Information and Road Monitoring System, an ITS that is based on low-cost and small footprint client and server infrastructure that was designed to increase vehicular security and reduce accident rates along highways. The VIRMS remote client device is an on board vehicle electronic device that gathers data from sensors and processes the collected data that is sent to the VIRMS server in order to keep drivers informed with precise context information through the detection and identification of events (accidents, traffic jams, bad weather conditions, etc. along the roads. A prototype running tests on Bolivian highways show that VIRMS can give a technological answer to a real problem where road safety is one of the highest issues and cause of mortality.

  4. Vehicle barrier systems

    International Nuclear Information System (INIS)

    Sena, P.A.

    1986-01-01

    The ground vehicle is one of the most effective tools available to an adversary force. Vehicles can be used to penetrate many types of perimeter barriers, transport equipment and personnel rapidly over long distances, and deliver large amounts of explosives directly to facilities in suicide missions. The function of a vehicle barrier system is to detain or disable a defined threat vehicle at a selected distance from a protected facility. Numerous facilities are installing, or planning to install, vehicle barrier systems and many of these facilities are requesting guidance to do so adequately. Therefore, vehicle barriers are being evaluated to determine their stopping capabilities so that systems can be designed that are both balanced and capable of providing a desired degree of protection. Equally important, many of the considerations that should be taken into account when establishing a vehicle barrier system have been identified. These considerations which pertain to site preparation, barrier selection, system integration and operation, and vehicle/barrier interaction, are discussed in this paper

  5. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Threet, Grady E., Jr.; Creech, Dennis M.; Philips, Alan D.; Water, Eric D.

    2011-01-01

    The Marshall Space Flight Center Advanced Concepts Office (ACO) has the leading role for NASA s preliminary conceptual launch vehicle design and performance analysis. Over the past several years the ACO Earth-to-Orbit Team has evaluated thousands of launch vehicle concept variations for a multitude of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). NASA plans to continue human space exploration and space station utilization. Launch vehicles used for heavy lift cargo and crew will be needed. One of the current leading concepts for future heavy lift capability is an inline one and a half stage concept using solid rocket boosters (SRB) and based on current Shuttle technology and elements. Potentially, the quickest and most cost-effective path towards an operational vehicle of this configuration is to make use of a demonstrator vehicle fabricated from existing shuttle assets and relying upon the existing STS launch infrastructure. Such a demonstrator would yield valuable proof-of-concept data and would provide a working test platform allowing for validated systems integration. Using shuttle hardware such as existing RS-25D engines and partial MPS, propellant tanks derived from the External Tank (ET) design and tooling, and four-segment SRB s could reduce the associated upfront development costs and schedule when compared to a concept that would rely on new propulsion technology and engine designs. There are potentially several other additional benefits to this demonstrator concept. Since a concept of this type would be based on man-rated flight proven hardware components, this demonstrator has the potential to evolve into the first iteration of heavy lift crew or cargo and serve as a baseline for block upgrades. This vehicle could also serve as a demonstration

  6. GHG emissions from sugar cane ethanol, plug-in hybrids, heavy duty gasoline vehicles and hybrids, and materials review

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided updates of new work and new pathways added to the GHGenius model. The model was developed to analyze lifecycle emissions of contaminants associated with the production and use of alternative and traditional fuels, and is continually updated with new information on existing processes and new innovations. The report described the addition of a new table that showed fossil energy consumption per km driven. New information on energy requirements to remove sulphur from gasoline and diesel fuel in Canada were provided. The report also outlined a new pathway for plug-in hybrid battery-powered electric and gasoline vehicles. Vehicle weight was included as part of the user inputs for modelling gasoline powered heavy duty vehicles and gasoline hybrid heavy duty vehicles. Information on the production processes of ethanol from sugar cane were also added to the model. Amounts of energy consumed during the manufacture of materials for vehicles were also incorporated into the model. 34 refs., 39 tabs., 6 figs

  7. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  8. US Department of Energy workshop on future fuel technology for heavy vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The objective of the workshop described in this report was to develop consensus on a program strategy for use of alternative fuels in heavy vehicles. Participants represented fuel providers, additive suppliers, the trucking industry, engine manufacturers, and government or national laboratory staff. Breakout sessions were co-facilitated by national laboratory staff and industry representatives.

  9. Design and Comparison of Power Systems for a Fuel Cell Hybrid Electric Vehicle

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand

    2008-01-01

    In a fuel cell hybrid electric vehicle (FCHEV) the fuel cell stack is assisted by one or more energy storage devices. Thereby the system cost, mass, and volume can be decreased, and a significant better performance can be obtained. Two often used energy storage devices are the battery...... ultracapacitors are the only energy storage device the system becomes too big and heavy. A fuel cell/battery/ultracapacitor hybrid provides the longest life time of the batteries. If the fuel cell stack power is too small, the system will be big, heavy, and have a poor efficiency....

  10. Vehicle systems design optimization study

    Energy Technology Data Exchange (ETDEWEB)

    Gilmour, J. L.

    1980-04-01

    The optimization of an electric vehicle layout requires a weight distribution in the range of 53/47 to 62/38 in order to assure dynamic handling characteristics comparable to current production internal combustion engine vehicles. It is possible to achieve this goal and also provide passenger and cargo space comparable to a selected current production sub-compact car either in a unique new design or by utilizing the production vehicle as a base. Necessary modification of the base vehicle can be accomplished without major modification of the structure or running gear. As long as batteries are as heavy and require as much space as they currently do, they must be divided into two packages - one at front under the hood and a second at the rear under the cargo area - in order to achieve the desired weight distribution. The weight distribution criteria requires the placement of batteries at the front of the vehicle even when the central tunnel is used for the location of some batteries. The optimum layout has a front motor and front wheel drive. This configuration provides the optimum vehicle dynamic handling characteristics and the maximum passsenger and cargo space for a given size vehicle.

  11. Model based control for waste heat recovery rankine cycle system in heavy duty trucks

    OpenAIRE

    Grelet, Vincent; Dufour, Pascal; Nadri, Madiha; Lemort, Vincent; Reiche, Thomas

    2015-01-01

    Driven by future emissions legislations and increase in fuel prices engine, gas heat recovering has recently attracted a lot of interest. In the past few years, a high number of studies have shown the interest of energy recovery Rankine based systems for heavy duty trucks engine compounding. Recent studies have brought a significant potential for such a system in a Heavy Duty (HD) vehicle, which can lead to a decrease in fuel consumption of about 5% [Wang et al. (2011)] and reduce engine emis...

  12. Co-simulation of heavy truck tire dynamics and electronic stability control systems (phase A).

    Science.gov (United States)

    2009-07-01

    Electronic stability control (ESC) systems have been proven to be an effective means of preventing instability and loss of control on both passenger vehicles and heavy trucks. In addition, roll stability algorithms are an effective means of reducing ...

  13. Emission factors for heavy metals from diesel and petrol used in European vehicles

    NARCIS (Netherlands)

    Pulles, M.P.J.; Denier van der Gon, H.A.C.; Appelman, W.A.J.; Verheul, M.

    2012-01-01

    Abstract: Heavy metals constitute an important group of persistent toxic pollutants occurring in ambient air and other media. One of the suspected sources of these metals in the atmosphere is combustion of transport fuels in road vehicles. However estimates of the emissions of these metals from road

  14. The GREET Model Expansion for Well-to-Wheels Analysis of Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Burnham, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Hang, Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Vyas, Anant [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-01

    Heavy-duty vehicles (HDVs) account for a significant portion of the U.S. transportation sector’s fuel consumption, greenhouse gas (GHG) emissions, and air pollutant emissions. In our most recent efforts, we expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREETTM) model to include life-cycle analysis of HDVs. In particular, the GREET expansion includes the fuel consumption, GHG emissions, and air pollutant emissions of a variety of conventional (i.e., diesel and/or gasoline) HDV types, including Class 8b combination long-haul freight trucks, Class 8b combination short-haul freight trucks, Class 8b dump trucks, Class 8a refuse trucks, Class 8a transit buses, Class 8a intercity buses, Class 6 school buses, Class 6 single-unit delivery trucks, Class 4 single-unit delivery trucks, and Class 2b heavy-duty pickup trucks and vans. These vehicle types were selected to represent the diversity in the U.S. HDV market, and specific weight classes and body types were chosen on the basis of their fuel consumption using the 2002 Vehicle Inventory and Use Survey (VIUS) database. VIUS was also used to estimate the fuel consumption and payload carried for most of the HDV types. In addition, fuel economy projections from the U.S. Energy Information Administration, transit databases, and the literature were examined. The U.S. Environmental Protection Agency’s latest Motor Vehicle Emission Simulator was employed to generate tailpipe air pollutant emissions of diesel and gasoline HDV types.

  15. Integration of Advanced Concepts and Vehicles Into the Next Generation Air Transportation System. Volume 1; Introduction, Key Messages, and Vehicle Attributes

    Science.gov (United States)

    Zellweger, Andres; Resnick, Herbert; Stevens, Edward; Arkind, Kenneth; Cotton William B.

    2010-01-01

    Raytheon, in partnership with NASA, is leading the way in ensuring that the future air transportation continues to be a key driver of economic growth and stability and that this system provides an environmentally friendly, safe, and effective means of moving people and goods. A Raytheon-led team of industry and academic experts, under NASA contract NNA08BA47C, looked at the potential issues and impact of introducing four new classes of advanced aircraft into the next generation air transportation system -- known as NextGen. The study will help determine where NASA should further invest in research to support the safe introduction of these new air vehicles. Small uncrewed or unmanned aerial systems (SUAS), super heavy transports (SHT) including hybrid wing body versions (HWB), very light jets (VLJ), and supersonic business jets (SSBJ) are the four classes of aircraft that we studied. Understanding each vehicle's business purpose and strategy is critical to assessing the feasibility of new aircraft operations and their impact on NextGen's architecture. The Raytheon team used scenarios created by aviation experts that depict vehicles in year 2025 operations along with scripts or use cases to understand the issues presented by these new types of vehicles. The information was then mapped into the Joint Planning and Development Office's (JPDO s) Enterprise Architecture to show how the vehicles will fit into NextGen's Concept of Operations. The team also identified significant changes to the JPDO's Integrated Work Plan (IWP) to optimize the NextGen vision for these vehicles. Using a proven enterprise architecture approach and the JPDO s Joint Planning Environment (JPE) web site helped make the leap from architecture to planning efficient, manageable and achievable. Very Light Jets flying into busy hub airports -- Supersonic Business Jets needing to climb and descend rapidly to achieve the necessary altitude Super-heavy cargo planes requiring the shortest common flight

  16. Aggregate strength for bituminous surfacings for low volume roads: a heavy vehicle simulator experience

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-09-01

    Full Text Available This paper discusses an investigation using the CSIR Transportek Heavy Vehicle Simulator (HVS) to determine the impact of using aggregates softer than specified in chip seals and to propose possible relaxations in the currently specified strength...

  17. Road Safety Data, Collection, Transfer and Analysis DaCoTa. Factsheet Traffic safety basic facts 2010 : heavy goods vehicles and buses.

    NARCIS (Netherlands)

    Pace, J.-F. López de Cozar, E. Pérez-Fuster, P. Sanmartín, J. Kirk, A. Yannis, G. Evgenikos, P. Argyropoulou, E. Papantoniou, P. Broughton, J. Knowles, J. Brandstaetter, C. Candappa, N. Christoph, M. Vis, M. Haddak, M. & Moutengou, E.

    2012-01-01

    Heavy Goods Vehicles (HGVs) are defined as goods vehicles of over 3,5 tons maximum permissible gross vehicle weight. Road traffic accidents involving HGVs tend to be more severe than other accidents because of the great size and mass of these vehicles. Buses and coaches are included in this Basic

  18. On-road emission characteristics of heavy-duty diesel vehicles in Shanghai

    Science.gov (United States)

    Chen, Changhong; Huang, Cheng; Jing, Qiguo; Wang, Haikun; Pan, Hansheng; Li, Li; Zhao, Jing; Dai, Yi; Huang, Haiying; Schipper, Lee; Streets, David G.

    On-road vehicle tests of nine heavy-duty diesel trucks were conducted using SEMTECH-D, an emissions measuring instrument provided by Sensors, Inc. The total length of roads for the tests was 186 km. Data were obtained for 37,255 effective driving cycles, including 17,216 on arterial roads, 15,444 on residential roads, and 4595 on highways. The impacts of speed and acceleration on fuel consumption and emissions were analyzed. Results show that trucks spend an average of 16.5% of the time in idling mode, 25.5% in acceleration mode, 27.9% in deceleration mode, and only 30.0% at cruise speed. The average emission factors of CO, total hydrocarbons (THC), and NO x for the selected vehicles are (4.96±2.90), (1.88±1.03) and (6.54±1.90) g km -1, respectively. The vehicle emission rates vary significantly with factors like speed and acceleration. The test results reflect the actual traffic situation and the current emission status of diesel trucks in Shanghai. The measurements show that low-speed conditions with frequent acceleration and deceleration, particularly in congestion conditions, are the main factors that aggravate vehicle emissions and cause high emissions of CO and THC. Alleviating congestion would significantly improve vehicle fuel economy and reduce CO and THC emissions.

  19. Chassis dynamometer study of emissions from 21 in-use heavy-duty diesel vehicles

    International Nuclear Information System (INIS)

    Yanowitz, J.; Graboski, M.S.; Ryan, L.B.A.; Alleman, T.L.; McCormick, R.L.

    1999-01-01

    Regulated emissions from 21 in-use heavy-duty diesel vehicles were measured on a heavy-duty chassis dynamometer via three driving cycles using a low-sulfur diesel fuel. Emissions of particulate matter (PM), nitrogen oxides (NO x ), carbon monoxide (CO), total hydrocarbon (THC), and PM sulfate fraction were measured. For hot start tests, emissions ranged from 0.30 to 7.43 g/mi (mean 1.96) for PM; 4.15--54.0 g/mi (mean 23.3) for NO x ; 2.09--86.2 g/mi (mean 19.5) for CO; and 0.25--8.25 g/mi (mean 1.70) for THC. When emissions are converted to a g/gal basis, the effect of driving cycle is eliminated for NO x and largely eliminated for PM. Sulfate comprised less than 1% of the emitted PM for all vehicles and test cycles. A strong correlation is observed between emissions of CO and PM. Cold starting at 77 F produced an 11% increase in PM emissions. Multivariate regression analyses indicate that in-use PM emissions have decreased at a slower rate than anticipated based on the stricter engine certification test standards put into effect since 1985. NO x emissions do not decrease with model year for the vehicles tested here. Smoke opacity measurements are not well correlated with mass emissions of regulated pollutants

  20. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of..., exhaust emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i) For Otto-cycle heavy-duty engines fueled with either gasoline or liquefied petroleum gas, and intended...

  1. Comparisons of system benefits and thermo-economics for exhaust energy recovery applied on a heavy-duty diesel engine and a light-duty vehicle gasoline engine

    International Nuclear Information System (INIS)

    Wang, Tianyou; Zhang, Yajun; Zhang, Jie; Peng, Zhijun; Shu, Gequn

    2014-01-01

    Highlights: • Comparisons of exhaust energy recovery are launched between two types of engine. • System performances are analyzed in terms of benefits and thermo-economics. • Diesel engine system presents superior to gasoline type in economic applicability. • Only diesel engine system using water under full load meets the economic demand. - Abstract: Exhaust energy recovery system (EERS) based on Rankine cycle (RC) in internal combustion engines have been studied mainly on heavy-duty diesel engines (D) and light-duty vehicle gasoline engines (G), however, little information available on systematical comparisons and evaluations between the two applications, which is a particularly necessary summary for clarifying the differences. In this paper, the two particular systems are compared quantitatively using water, R141b, R123 and R245fa as working fluids. The influences of evaporating pressure, engine type and load on the system performances are analyzed with multi-objectives, including the thermal efficiency improvement, the reduced CO 2 emission, the total heat transfer area per net power output (APP), the electricity production cost (EPC) and the payback period (PBP). The results reveal that higher pressure and engine load would be attractive for better performances. R141b shows the best performances in system benefits for the D-EERS, while water exhibits the largest contributions in the G-EERS. Besides, water performs the best thermo-economics, and R245fa serves as the most uneconomical fluid. The D-EERS presents superior to the G-EERS in the economic applicability as well as much more CO 2 emission reductions, although with slightly lower thermal efficiency improvement, and only the D-EERS with water under the full load meets the economic demand. Therefore the EERS based on RC serve more applicable on the heavy-duty diesel engine, while it might be feasible for the light-duty vehicle gasoline engine as the state-of-the art technologies are developed in the

  2. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe

    International Nuclear Information System (INIS)

    Arteconi, A.; Brandoni, C.; Evangelista, D.; Polonara, F.

    2010-01-01

    The aim of the present study was to compare the life cycle, in terms of greenhouse gas (GHG) emissions, of diesel and liquefied natural gas (LNG) used as fuels for heavy-duty vehicles in the European market (EU-15). A literature review revealed that the numerous studies conducted have reported different results when the authors departed from different baseline assumptions and reference scenarios. For our study, we concentrated on the European scenario and on heavy-duty road transport vehicles, given their important incidence on the global emissions of GHG. Two possible LNG procurement strategies were considered i.e. purchasing it directly from the regasification terminal (LNG-TER) or producing LNG locally (at the service station) with small-scale plants (LNG-SSL). We ascertained that the use of LNG-TER enables a 10% reduction in GHG emissions by comparison with diesel, while the emissions resulting from the LNG-SSL solution are comparable with those of diesel.

  3. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Arteconi, A.; Brandoni, C.; Evangelista, D.; Polonara, F. [Universita Politecnica delle Marche, Dipartimento di Energetica, Via Brecce Bianche, 1-60131 Ancona (Italy)

    2010-06-15

    The aim of the present study was to compare the life cycle, in terms of greenhouse gas (GHG) emissions, of diesel and liquefied natural gas (LNG) used as fuels for heavy-duty vehicles in the European market (EU-15). A literature review revealed that the numerous studies conducted have reported different results when the authors departed from different baseline assumptions and reference scenarios. For our study, we concentrated on the European scenario and on heavy-duty road transport vehicles, given their important incidence on the global emissions of GHG. Two possible LNG procurement strategies were considered i.e. purchasing it directly from the regasification terminal (LNG-TER) or producing LNG locally (at the service station) with small-scale plants (LNG-SSL). We ascertained that the use of LNG-TER enables a 10% reduction in GHG emissions by comparison with diesel, while the emissions resulting from the LNG-SSL solution are comparable with those of diesel. (author)

  4. FY2010 Annual Progress Report for Vehicle and Systems Simulation and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, Lee [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-01-15

    The VSST team evaluates the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context, covering light to heavy platforms. This work is directed toward evaluating and verifying the targets of the VTP R&D teams and to provide guidance in establishing roadmaps for achievement of these goals.

  5. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL

    2013-10-01

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data

  6. Development of a control system for a heavy object handling manipulator. Application to a remote maintenance system for ITER blanket module

    International Nuclear Information System (INIS)

    Yoshimi, Takashi; Tsuji, Kouichi; Miyagawa, Shinichi; Kubo, Tomomi; Kakudate, Satoshi; Tada, Eisuke

    2001-01-01

    This paper describes a control system for the heavy object handling manipulator. It has been developed for the blanket module remote maintenance system of ITER (International Thermonuclear Fusion Experimental Reactor). A rail-mounted vehicle-type manipulator is proposed for the precise handling of a blanket module which is about 4 tons in weight. Basically, this manipulator is controlled by teaching-playback technique. When grasping or releasing the module, the manipulator sags and the position of the end-effector changes about 50 [mm]. Applying only the usual teaching-playback control makes the smooth operation of setting/removing modules to/from the vacuum vessel wall difficult due to this position change. To solve this proper problem of heavy object handling manipulator, we have developed a system which uses motion patterns generated from two kinds of teaching points. These motion patterns for setting/removing heavy objects are generated by combining teaching points for positioning the manipulator with and without grasping the object. When these motion patterns are applied, the manipulator can transfer the object's weight smoothly at the setting/removing point. This developed system has been applied to the real-scale mock-up of the vehicle manipulator and through the actual module setting/removing experiments, we have verified its effectiveness and realized smooth maintenance operation. (author)

  7. Evaluation of a performance-based standards approach to heavy vehicle design to reduce pavement wear

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2013-11-01

    Full Text Available As a result of successful initiatives in Australia, New Zealand and Canada, the introduction of a performance-based standards (PBS) approach in the heavy vehicle sector in South Africa was identified by the Council for Scientific and Industrial...

  8. Nonlinear analysis of a closed-loop tractor-semitrailer vehicle system with time delay

    Science.gov (United States)

    Liu, Zhaoheng; Hu, Kun; Chung, Kwok-wai

    2016-08-01

    In this paper, a nonlinear analysis is performed on a closed-loop system of articulated heavy vehicles with driver steering control. The nonlinearity arises from the nonlinear cubic tire force model. An integration method is employed to derive an analytical periodic solution of the system in the neighbourhood of the critical speed. The results show that excellent accuracy can be achieved for the calculation of periodic solutions arising from Hopf bifurcation of the vehicle motion. A criterion is obtained for detecting the Bautin bifurcation which separates branches of supercritical and subcritical Hopf bifurcations. The integration method is compared to the incremental harmonic balance method in both supercritical and subcritical scenarios.

  9. Vehicle Tracking System, Vehicle Infrastructure Provided with Vehicle Tracking System and Method for Tracking

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A vehicle tracking system is described comprising - a plurality of sensor nodes (10) that each provide a message (D) indicative for an occupancy status of a detection area of an vehicle infrastructure monitored by said sensor node, said sensor nodes (10) being arranged in the vehicle infrastructure

  10. Hennepin County`s experience with heavy-duty ethanol vehicles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    From November 1993 to October 1996, Hennepin County, which includes Minneapolis, field-tested two heavy-duty snowplow/road maintenance trucks fueled by ethanol. The overall objective of this program was to collect data from original equipment manufacturer alternative fuel heavy-duty trucks, along with comparable data from a similarly configured diesel-powered vehicle, to establish economic, emissions, performance, and durability data for the alternative fuel technology. These ethanol trucks, along with an identical third truck equipped with a diesel engine, were operated year round to maintain the Hennepin county roads. In winter, the trucks were run in 8-hour shifts plowing and hauling snow from urban and suburban roads. For the rest of the year, the three trucks were used to repair and maintain these same roads. As a result of this project, a considerable amount of data was collected on E95 fuel use, as well as maintenance, repair, emissions, and operational characteristics. Maintenance and repair costs of the E95 trucks were considerably higher primarily due to fuel filter and fuel pump issues. From an emissions standpoint, the E95 trucks emitted less particulate matter and fewer oxides of nitrogen but more carbon monoxide and hydrocarbons. Overall, the E95 trucks operated as well as the diesel, as long as the fuel filters were changed frequently. This project was a success in that E95, a domestically produced fuel from a renewable energy source, was used in a heavy-duty truck application and performed the same rigorous tasks as the diesel counterparts. The drawbacks to E95 as a heavy-duty fuel take the form of higher operational costs, higher fuel costs, shorter range, and the lack of over-the-road infrastructure.

  11. Facing the Global Economic Crisis: the Case of Swedish Heavy Vehicle Subcontractors

    OpenAIRE

    Helmersson, Andreas; Radway, Robert

    2010-01-01

    In this paper, we investigate organisational responses to an economic crisis within a group of seven subcontractors in the Swedish heavy vehicle industry. Although the participating firms had similar exposures to an abrupt and severe shift in demand, their performances during the crisis varied extensively. One year after the crisis began, some firms were still encountering financial problems threatening their survival, yet others had orchestrated a recovery that was generating healthy cash fl...

  12. Emission Control Research to Enable Fuel Efficiency: Department of Energy Heavy Vehicle Technologies

    International Nuclear Information System (INIS)

    Gurpreet Singh; Ronald L. Graves; John M. Storey; William P. Partridge; John F. Thomas; Bernie M. Penetrante; Raymond M. Brusasco; Bernard T. Merritt; George E. Vogtlin; Christopher L. Aardahl; Craig F. Habeger; M.L. Balmer

    2000-01-01

    The Office of Heavy Vehicle Technologies supports research to enable high-efficiency diesel engines to meet future emissions regulations, thus clearing the way for their use in light trucks as well as continuing as the most efficient powerplant for freight-haulers. Compliance with Tier 2 rules and expected heavy duty engine standards will require effective exhaust emission controls (after-treatment) for diesels in these applications. DOE laboratories are working with industry to improve emission control technologies in projects ranging from application of new diagnostics for elucidating key mechanisms, to development and tests of prototype devices. This paper provides an overview of these R and D efforts, with examples of key findings and developments

  13. Powertrain preheating system of tracked hybrid electric vehicle in cold weather

    International Nuclear Information System (INIS)

    Wang, Rui; Wang, Yichun; Feng, Chaoqing; Zhang, Xilong

    2015-01-01

    In order to make sure that the heavy duty tracked vehicle can work in various conditions, especially severe cold weather, preheating system of powertrain should be adopted, and a novel preheating system is presented for the tracked hybrid electric vehicle (HEV) in which heat is generated by the low-speed drive motor. The new preheating system can meet the need of cold start without adding any additional device. The characteristic of heat generation by motor is tested when the rotor of motor is rotated in very low speed. The heat loss from power cabin to external environment has been simulated, and the relevant test has been done to verify the simulation results. Combining the characteristic of heat generation and heat loss situation about preheating system, the heat transfer model of preheating system was implemented by MATLAB. The total energy required for preheating in different ambient temperature was calculated by this model. The results showed that: the minimum heating power was 70 kW and energy required was about 180 MJ when the HEV worked in −46 °C. If lithium ferrous phosphate (LFP) battery was used in power system, the minimum battery capacity is about 290 A h. - Highlights: • A novel preheating method was proposed for heavy duty tracked HEV. • Thermal energy in preheating system is produced by the PMSM in driving system. • This method can achieve preheating target by its own components without any adding. • Analyzing low temperature performance of power battery and select its capacity.

  14. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  15. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System

    Directory of Open Access Journals (Sweden)

    Min-Seok Park

    2009-10-01

    Full Text Available This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  16. Vehicle Signal Analysis Using Artificial Neural Networks for a Bridge Weigh-in-Motion System.

    Science.gov (United States)

    Kim, Sungkon; Lee, Jungwhee; Park, Min-Seok; Jo, Byung-Wan

    2009-01-01

    This paper describes the procedures for development of signal analysis algorithms using artificial neural networks for Bridge Weigh-in-Motion (B-WIM) systems. Through the analysis procedure, the extraction of information concerning heavy traffic vehicles such as weight, speed, and number of axles from the time domain strain data of the B-WIM system was attempted. As one of the several possible pattern recognition techniques, an Artificial Neural Network (ANN) was employed since it could effectively include dynamic effects and bridge-vehicle interactions. A number of vehicle traveling experiments with sufficient load cases were executed on two different types of bridges, a simply supported pre-stressed concrete girder bridge and a cable-stayed bridge. Different types of WIM systems such as high-speed WIM or low-speed WIM were also utilized during the experiments for cross-checking and to validate the performance of the developed algorithms.

  17. Electric drive choices for light, medium, and heavy duty vehicles to reduce their climate change impact in Canada

    International Nuclear Information System (INIS)

    Fitzpatrick, N.P.

    2009-01-01

    The evolution of electric drive technologies from 1988, at the 9 th International Electric Vehicle Symposium (EVS 9) in Toronto, to 2007 at EVS 23 in Anaheim, is described. Total hybridization of Canada's fleet of light, medium and heavy duty vehicles would result in greenhouse reductions savings of 30 Mt of CO 2 E per year, similar to the saving from a 25% reduction in vehicle weight. Further savings in greenhouse reductions from plug-in hybrids require a battery cost similar to that needed for electric vehicles. Further development of both ultracapacitors and batteries is needed as is work on other parts of the electric drive supply chain. (author)

  18. Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck

    Directory of Open Access Journals (Sweden)

    Nicolas Stanzel

    2016-11-01

    Full Text Available A complex simulation model of a heavy duty truck, including an Organic Rankine Cycle (ORC based waste heat recovery system and a vehicle cooling system, was applied to determine the system fuel economy potential in a typical drive cycle. Measures to increase the system performance were investigated and a comparison between two different cooling system designs was derived. The base design, which was realized on a Mercedes-Benz Actros vehicle revealed a fuel efficiency benefit of 2.6%, while a more complicated design would generate 3.1%. Furthermore, fully transient simulation results were performed and are compared to steady state simulation results. It is shown that steady state simulation can produce comparable results if averaged road data are used as boundary conditions.

  19. Road user charges for heavy goods vehicles (HGV):Tables with external costs of air pollution

    OpenAIRE

    Andersen, Mikael Skou

    2013-01-01

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). This report on road transport is a continuation of previous reporting from EEA on estimates for the external costs of air pollution from industrial facilities (EEA, 2011).

  20. Bridge Expansion Joint in Road Transition Curve: Effects Assessment on Heavy Vehicles

    Directory of Open Access Journals (Sweden)

    Paola Di Mascio

    2017-06-01

    Full Text Available Properly-designed road surfaces provide a durable surface on which traffic can pass smoothly and safely. In fact, the main causes that determine the structural decay of the pavement and its parts are the traffic loads. These repeated actions can create undesirable unevennesses on the road surface, which induce vertical accelerations on vehicles, up to hindering contact between pavement and tire, with dangerous consequences on traffic safety. The dynamic actions transmitted by the vehicles depend on these irregularities: often, a bridge expansion joint (BEJ, introducing a necessary discontinuity between different materials, determines from the beginning a geometric irregularity in the running surface. Besides, some structural conditions could emphasize the problem (e.g., local cracking due to the settlement of the subgrade near the abutment or the discontinuity of stiffness due to the presence of different materials. When the BEJ is located in a transition curve, an inevitable vertical irregularity between road and joint can reach values of some centimeters, with serious consequences for the road safety. This paper deals with the analysis of a case study of a BEJ. Several test surveys were performed in order to fully characterize the effects on both vehicles and pavement. The three-dimensional representation of the pavement surface and the acceleration measurements on a heavy test vehicle were performed to analyze the joint behavior under traffic. Finally, a finite element model was implemented to evaluate the stress contribution on vehicle components induced by the vertical irregularities.

  1. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  2. Health Effects of Long-term Occupational Exposure to Whole Body Vibration: A Study on Drivers of Heavy Motor Vehicles in Iran

    Directory of Open Access Journals (Sweden)

    Masuod Neghab

    2016-04-01

    Full Text Available Background: Drivers of heavy motor vehicles are occupationally exposed to intense whole body vibration (WBV for several hours per day over their working lifetime. Therefore, they are at risk of WBV-induced occupational disorders. This study aimed to investigate health effects of long-term exposure to whole body vibration among a group of heavy vehicle drivers in Fars province, southwestern Iran. Methods: Data on vibration-induced health effects were gathered through a checklist specifically devised for this purpose, interview and medical records of 155 male heavy vehicle drivers as well as 70 referent subjects. Signs and symptoms were classified into 6 categories of neuropsychological, gastrointestinal, ocular, auditory and metabolic and cardiovascular disorders. Results: Symptoms such as neuropsychological, musculoskeletal, metabolic, visual and hearing disorders were significantly more prevalent among drivers than in referent individuals. Additionally, logistic regression analysis revealed that there were statistically significant associations between exposure to WBV and several outcomes. Conclusion: Findings of the study indicate that longterm occupational exposure to WBV is a risk factor for neuropsychological, musculoskeletal, metabolic, visual and hearing disorders.

  3. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Science.gov (United States)

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... to Otto-cycle engines used in such MDPVs, except as specified in subpart S of this part. The term... AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for Emission Regulations for 1977 and Later...

  4. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  5. Scenarios for use of biogas for heavy-duty vehicles in Denmark and related GHG emissions impacts

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Winther, Morten; Jørgensen, Uffe

    2017-01-01

    of biogas is of concern. This study has analysed the potential biomass and biogas production from all Danish organic waste sources under different scenario assumptions for future scenario years. The analysis includes energy demand of the road transportation sector by means of transport and fuel types......, and potential use of the limited biogas resource taking into account alternative fuel options available for transportation (electricity, hydrogen, biofuels). Further, the total differences in fuel consumption and GHG emissions due to the replacement of diesel-powered heavy-duty vehicles by gas-powered heavy...

  6. Total Particle Number Emissions from Modern Diesel, Natural Gas, and Hybrid Heavy-Duty Vehicles During On-Road Operation.

    Science.gov (United States)

    Wang, Tianyang; Quiros, David C; Thiruvengadam, Arvind; Pradhan, Saroj; Hu, Shaohua; Huai, Tao; Lee, Eon S; Zhu, Yifang

    2017-06-20

    Particle emissions from heavy-duty vehicles (HDVs) have significant environmental and public health impacts. This study measured total particle number emission factors (PNEFs) from six newly certified HDVs powered by diesel and compressed natural gas totaling over 6800 miles of on-road operation in California. Distance-, fuel- and work-based PNEFs were calculated for each vehicle. Distance-based PNEFs of vehicles equipped with original equipment manufacturer (OEM) diesel particulate filters (DPFs) in this study have decreased by 355-3200 times compared to a previous retrofit DPF dynamometer study. Fuel-based PNEFs were consistent with previous studies measuring plume exhaust in the ambient air. Meanwhile, on-road PNEF shows route and technology dependence. For vehicles with OEM DPFs and Selective Catalytic Reduction Systems, PNEFs under highway driving (i.e., 3.34 × 10 12 to 2.29 × 10 13 particles/mile) were larger than those measured on urban and drayage routes (i.e., 5.06 × 10 11 to 1.31 × 10 13 particles/mile). This is likely because a significant amount of nucleation mode volatile particles were formed when the DPF outlet temperature reached a critical value, usually over 310 °C, which was commonly achieved when vehicle speed sustained over 45 mph. A model year 2013 diesel HDV produced approximately 10 times higher PNEFs during DPF active regeneration events than nonactive regeneration.

  7. Euro VI technologies and costs for Heavy Duty vehicles: the expert panels summary of stakeholders responses

    NARCIS (Netherlands)

    Gense, N.L.J.; Riemersma, I.J.; Such, C.l; Ntziachristos, L.

    2006-01-01

    This report is the result of the work carried out under on the Europeans Commission’s call for tender regarding “Technical support for the Commission DG Environment on the development of Euro 5 standards for light-duty vehicles and Euro VI standards for heavy-duty vehicles” (Reference:

  8. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  9. 75 FR 70237 - California State Motor Vehicle Pollution Control Standards; California Heavy-Duty On-Highway Otto...

    Science.gov (United States)

    2010-11-17

    ... for the current CARB categories of heavy-duty vehicles are within-the-scope of the previously granted...) (Diesel) and 53 FR 7022 (March 4, 1988) (Otto-cycle). \\3\\ 69 FR 59920 (October 6, 2004). CARB's current... threshold test of materiality and * * * thereafter assess such material evidence against a standard of proof...

  10. Evaluation of commercially available seat suspensions to reduce whole body vibration exposures in mining heavy equipment vehicle operators.

    Science.gov (United States)

    Kim, Jeong Ho; Marin, Luz S; Dennerlein, Jack T

    2018-09-01

    As mining vehicle operators are exposed to high level of Whole body vibration (WBV) for prolonged periods of time, approaches to reduce this exposure are needed for the specific types of exposures in mining. Although various engineering controls (i.e. seat suspension systems) have been developed to address WBV, there has been lack of research to systematically evaluate these systems in reducing WBV exposures in mining heavy equipment vehicle settings. Therefore, this laboratory-based study evaluated the efficacy of different combinations of fore-aft (x-axis), lateral (y-axis), and vertical (z-axis) suspensions in reducing WBV exposures. The results showed that the active vertical suspension more effectively reduced the vertical vibration (∼50%; p's suspension (10%; p's suspension systems did not attenuate the corresponding axis vibration (p's > 0.06) and sometimes amplified the floor vibration, especially when the non-vertical vibration was predominant (p's suspensions to address non-vertical WBV exposures, especially because these non-vertical WBV exposures can increase risks for adverse health effects including musculoskeletal loading, discomfort, and impaired visual acuity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  12. Distributed Control in Multi-Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Paul A. Avery

    2013-12-01

    Full Text Available The Southwest Research Institute (SwRI Mobile Autonomous Robotics Technology Initiative (MARTI program has enabled the development of fully-autonomous passenger-sized commercial vehicles and military tactical vehicles, as well as the development of cooperative vehicle behaviors, such as cooperative sensor sharing and cooperative convoy operations. The program has also developed behaviors to interface intelligent vehicles with intelligent road-side devices. The development of intelligent vehicle behaviors cannot be approached as stand-alone phenomena; rather, they must be understood within a context of the broader traffic system dynamics. The study of other complex systems has shown that system-level behaviors emerge as a result of the spatio-temporal dynamics within a system's constituent parts. The design of such systems must therefore account for both the system-level emergent behavior, as well as behaviors of individuals within the system. It has also become clear over the past several years, for both of these domains, that human trust in the behavior of individual vehicles is paramount to broader technology adoption. This paper examines the interplay between individual vehicle capabilities, vehicle connectivity, and emergent system behaviors, and presents some considerations for a distributed control paradigm in a multi-vehicle system.

  13. Initiative to introduce a performance-based standards (PBS) approach for heavy vehicle design and operations in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2008-05-01

    Full Text Available The introduction of PBS for heavy vehicles in South Africa was first identified in the National Overload Control Strategy as a potential concession of a proposed Self-regulation initiative. In August 2004 a PBS committee was established...

  14. Empirical analysis of gross vehicle weight and free flow speed and consideration on its relation with differential speed limit.

    Science.gov (United States)

    Saifizul, Ahmad Abdullah; Yamanaka, Hideo; Karim, Mohamed Rehan

    2011-05-01

    Most highly motorized countries in the world have implemented different speed limits for light weight and heavy weight vehicles. The heavy vehicle speed limit is usually chosen to be lower than that of passenger cars due to the difficulty for the drivers to safely maneuver the heavy vehicle at high speed and greater impact during a crash. However, in many cases, the speed limit for heavy vehicle is set by only considering the vehicle size or category, mostly due to simplicity in enforcement. In this study, traffic and vehicular data for all vehicle types were collected using a weigh-in-motion system installed at Federal Route 54 in Malaysia. The first finding from the data showed that the weight variation for each vehicle category is considerable. Therefore, the effect of gross vehicle weight (GVW) and category of heavy vehicle on free flow speed and their interaction were analyzed using statistical techniques. Empirical analysis results showed that statistically for each type of heavy vehicle, there was a significant relationship between free flow speed of a heavy vehicle and GVW. Specifically, the results suggest that the mean and variance of free flow speed decrease with an increase GVW by the amount unrelated to size and shape for all GVW range. Then, based on the 85th percentile principle, the study proposed a new concept for setting the speed limit for heavy vehicle by incorporating GVW where a different speed limit is imposed to the heavy vehicle, not only based on vehicle classification, but also according to its GVW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks.

    Science.gov (United States)

    Camuzeaux, Jonathan R; Alvarez, Ramón A; Brooks, Susanne A; Browne, Joshua B; Sterner, Thomas

    2015-06-02

    While natural gas produces lower carbon dioxide emissions than diesel during combustion, if enough methane is emitted across the fuel cycle, then switching a heavy-duty truck fleet from diesel to natural gas can produce net climate damages (more radiative forcing) for decades. Using the Technology Warming Potential methodology, we assess the climate implications of a diesel to natural gas switch in heavy-duty trucks. We consider spark ignition (SI) and high-pressure direct injection (HPDI) natural gas engines and compressed and liquefied natural gas. Given uncertainty surrounding several key assumptions and the potential for technology to evolve, results are evaluated for a range of inputs for well-to-pump natural gas loss rates, vehicle efficiency, and pump-to-wheels (in-use) methane emissions. Using reference case assumptions reflecting currently available data, we find that converting heavy-duty truck fleets leads to damages to the climate for several decades: around 70-90 years for the SI cases, and 50 years for the more efficient HPDI. Our range of results indicates that these fuel switches have the potential to produce climate benefits on all time frames, but combinations of significant well-to-wheels methane emissions reductions and natural gas vehicle efficiency improvements would be required.

  16. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    International Nuclear Information System (INIS)

    Askin, Amanda C.; Barter, Garrett E.; West, Todd H.; Manley, Dawn K.

    2015-01-01

    We present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. The model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives. -- Highlights: •We present a parametric analysis of factors U.S. Class 7–8 trucks through 2050. •Conventional diesels will be more than 70% of U.S. heavy-duty vehicles through 2050. •CNG trucks are well suited to large, urban fleets with private refueling. •Ultra-efficient long haul diesel trucks are preferred over LNG at current fuel prices

  17. Waste management of a heavy vehicle maintenance: A study on reverse logistics for steel leftovers

    Directory of Open Access Journals (Sweden)

    Pedro Henrique de Oliveira Buono

    2017-09-01

    Full Text Available In addition to environmental performance, supply chain management is increasingly important in business context. Thus, companies started to give more importance to the management of by-products and the proper disposal of waste generated. In this sense, the objective of the study was to analyze the waste management in a maintenance workshop for heavy vehicles. Therefore, was conducted a case study in a maintenance workshop for heavy vehicles in the state of São Paulo that provides services for the main plants of this sector in the region. Data were collected over a period of 18 months and they were treated by the method of Input Per Service Material unit (MIPS, which allows measuring the environmental gains from the use of a certain material within the supply chain. As a result of the steel sale would be discarded and that, by the reverse logistics back to be included in the production cycle, it was found that 2000 tonnes of water and 20 tons of air are no longer polluted and used in the production of new material and more 245 tons of abiotic materials are no longer generated

  18. Electric vehicle data acquisition system

    DEFF Research Database (Denmark)

    Svendsen, Mathias; Winther-Jensen, Mads; Pedersen, Anders Bro

    2014-01-01

    and industrial applications, e.g. research in electric vehicle driving patterns, vehicle substitutability analysis and fleet management. The platform is based on a embedded computer running Linux, and features a high level of modularity and flexibility. The system operates independently of the make of the car......, by using the On-board Diagnostic port to identify car model and adapt its software accordingly. By utilizing on-board Global Navigation Satellite System, General Packet Radio Service, accelerometer, gyroscope and magnetometer, the system not only provides valuable data for research in the field of electric......A data acquisition system for electric vehicles is presented. The system connects to the On-board Diagnostic port of newer vehicles, and utilizes the in-vehicle sensor network, as well as auxiliary sensors, to gather data. Data is transmitted continuously to a central database for academic...

  19. Vehicle Dynamic Prediction Systems with On-Line Identification of Vehicle Parameters and Road Conditions

    Science.gov (United States)

    Hsu, Ling-Yuan; Chen, Tsung-Lin

    2012-01-01

    This paper presents a vehicle dynamics prediction system, which consists of a sensor fusion system and a vehicle parameter identification system. This sensor fusion system can obtain the six degree-of-freedom vehicle dynamics and two road angles without using a vehicle model. The vehicle parameter identification system uses the vehicle dynamics from the sensor fusion system to identify ten vehicle parameters in real time, including vehicle mass, moment of inertial, and road friction coefficients. With above two systems, the future vehicle dynamics is predicted by using a vehicle dynamics model, obtained from the parameter identification system, to propagate with time the current vehicle state values, obtained from the sensor fusion system. Comparing with most existing literatures in this field, the proposed approach improves the prediction accuracy both by incorporating more vehicle dynamics to the prediction system and by on-line identification to minimize the vehicle modeling errors. Simulation results show that the proposed method successfully predicts the vehicle dynamics in a left-hand turn event and a rollover event. The prediction inaccuracy is 0.51% in a left-hand turn event and 27.3% in a rollover event. PMID:23202231

  20. Heavy vehicle simulator operations: protocol for instrumentation, data collection and data storage - 2nd draft

    CSIR Research Space (South Africa)

    Jones, DJ

    2002-09-01

    Full Text Available The instrumentation used is discussed under the relevant sections. Keywords: Accelerated pavement testing (APT), Heavy Vehicle Simulator (HVS) Proposals for implementation: Follow protocol in all future HVS testing. Update as required... future HVS testing. The protocol discusses staffing, site selection and establishment, and data collection, analysis and storage. 1.2. Accelerated Pavement Testing Accelerated Pavement Testing (APT) can be described as a controlled application...

  1. 75 FR 39251 - Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty...

    Science.gov (United States)

    2010-07-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9173-5] Control of Air Pollution From New Motor Vehicles: Announcement of Public Workshop for Heavy-Duty Diesel Engines Employing Selective Catalyst Reduction Technology... engine manufacturers have recently begun utilizing a NO X emission control technology called selective...

  2. Averthermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Javani, N.; Dincer, I.; Naterer, G.F. [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (Canada)], email: nader.javani@uoit.ca

    2011-07-01

    The transportation sector is a heavy consumer of energy and better energy use is needed to reduce fuel consumption. One way to improve energy usage is to recover waste heat for cabin heating, cooling, or to produce electricity. The aim of this paper is to examine the use of waste heat in hybrid electric vehicles (HEV) and electric vehicles for cooling purposes using an ejector cooling cycle and an absorption cooling cycle. Energy and exergy analyses were conducted using waste heat from the battery pack and the exhaust gases to power the boiler and generator. Results showed that waste energy from the battery pack does not provide enough energy to produce cabin cooling but that exhaust gases can produce 7.32 kW and 7.91 kW cooling loads in the ejector and absorption systems. This study demonstrated that both ejector and absorption systems can reduce energy consumption in vehicles through the use of waste heat from exhaust gases.

  3. Vehicle usage verification system

    NARCIS (Netherlands)

    Scanlon, W.G.; McQuiston, Jonathan; Cotton, Simon L.

    2012-01-01

    EN)A computer-implemented system for verifying vehicle usage comprising a server capable of communication with a plurality of clients across a communications network. Each client is provided in a respective vehicle and with a respective global positioning system (GPS) by which the client can

  4. Systems Challenges for Hypersonic Vehicles

    Science.gov (United States)

    Hunt, James L.; Laruelle, Gerard; Wagner, Alain

    1997-01-01

    This paper examines the system challenges posed by fully reusable hypersonic cruise airplanes and access to space vehicles. Hydrocarbon and hydrogen fueled airplanes are considered with cruise speeds of Mach 5 and 10, respectively. The access to space matrix is examined. Airbreathing and rocket powered, single- and two-stage vehicles are considered. Reference vehicle architectures are presented. Major systems/subsystems challenges are described. Advanced, enhancing systems concepts as well as common system technologies are discussed.

  5. Technology updates from the OEMs (tires, rims, automation inflation systems, and alternative fuels for heavy vehicles)

    Energy Technology Data Exchange (ETDEWEB)

    White, N. [Charonic Canada Inc., Ottawa, ON (Canada)

    2001-07-01

    This power point presentation outlined a project at Charonic Canada Inc., which demonstrated and evaluated innovations in the areas of vehicle safety, operating economy and diesel fuel substitution. It also presented a range of results that demonstrate some of the trends that may be used on vehicles, particularly trucks, in the near future. The demonstration involved a 2 year observation of a five truck fleet hauling refuse from Toronto to Michigan. The trucks completed 2,500 round trips of 540 miles and used 115 tonnes of natural gas fuel replacing diesel fuel. Safety innovations included tire pressure monitoring, hazard locator radar system, anti-spray system, wheel nut and bearing temperature indicators and brake safe indicators. These features were reported as being worthwhile investments. Economy innovations included a dual-fuel engine system, wide base tires, light weight CNG tanks, centrifugal oil cleaner and an oil and lubrication system. Although the technology continues to improve, the dual-engine system requires further work. Difficulties were encountered when trying to meet performance, fuel economy and emission targets at the same time. 18 figs.

  6. 2007 Canadian vehicle survey : summary report

    Energy Technology Data Exchange (ETDEWEB)

    Garcha, A.; Norup, S.; Kormylo, A.

    2009-09-15

    The Canadian vehicle survey is a quarterly survey of vehicle transportation activities in Canada that began in 1999. This report presented the results of the Canadian vehicle survey for 2007. The purpose of the survey is to encourage Canadians to make energy-efficient choices regarding their driving habits. The study shed light on Canadian fuel consumption behaviour, modes of transportation and consumer trends. This report examined the composition of Canada's vehicle fleet, the main characteristics of this fleet, and the patterns of vehicle use. Some behavioural characteristics of Canadian drivers were also discussed. Specific topics that were presented included Canada's on-road vehicle fleet; geographic analysis; light vehicles; heavy vehicles such as medium and heavy trucks; and trip analysis such as road types used by vehicles, rush hour and fuel consumption, and driver's age and gender. It was concluded that vehicles in Canada consumed 31 billion litres of gasoline and 11 billion litres of diesel. In addition, fuel efficiency for heavy trucks increased 21 percent between 2000 and 2007. 15 tabs., 39 figs., 4 appendices.

  7. Usability Analysis of Collision Avoidance System in Vehicle-to-Vehicle Communication Environment

    Directory of Open Access Journals (Sweden)

    Hong Cho

    2014-01-01

    Full Text Available Conventional intelligent vehicles have performance limitations owing to the short road and obstacle detection range of the installed sensors. In this study, to overcome this limitation, we tested the usability of a new conceptual autonomous emergency braking (AEB system that employs vehicle-to-vehicle (V2V communication technology in the existing AEB system. To this end, a radar sensor and a driving and communication environment constituting the AEB system were simulated; the simulation was then linked by applying vehicle dynamics and control logic. The simulation results show that the collision avoidance relaxation rate of V2V communication-based AEB system was reduced compared with that of existing vehicle-mounted-sensor-based system. Thus, a method that can lower the collision risk of the existing AEB system, which uses only a sensor cluster installed on the vehicle, is realized.

  8. 10. International commercial vehicle congress; 10. Internationale Fachtagung Nutzfahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the International Conference 'Commercial Vehicles' at 27th to 28th May, 2009 in Neu-Ulm (Federal Republic of Germany), the following lectures were held: (1) Innovation management and product development: 'Amway from the crisis' (U. Seiffert); (2) Where does the energy the diesel go? Or: How is the consumption-optimal truck arranged? (M. Hilgers); (3) Contribution of truck tires for future environmental challenges (C. Lerner); (4) Aerodynamics of commercial vehicles - often underestimated and the future nevertheless? (S. Kopp); (5) Fuel conservation by means of optimization of generation and processing of compressed air (C. Wilken, F. van Son); (6) In the pilot test - increased consumption by retarder? (U. Steininger et al.); (7) Driver information system and driver assistance system for an energy efficient planning and processing of transport of goods by means of trucks (D. Hillesheim et al.); (8) A systematic testing of vehicle functions from the view of the total vehicle (C. Hellberg); (9) Increase of the quality of diagnosis of complex, mechanotronic vehicle systems by means of model based diagnosis with on-board detection and off-board evaluation (M. Kokes et al.); (10) Utilization of a vehicle simulator for the evaluation of comfort of MKS simulations of heavy trucks (T. Ille et al.); (11) System simulation and testing in the trailer development (M. Wildhagen); (12) What types of challenges for the simulation are posed from the requirements for ESP in commercial vehicles, coming into effect from 2010? (H.-J. Witter, E. Schmidt); (13) A method for evaluating the fuel saving potential of different hybrid steering system configurations in heavy commercial vehicles (U. Wiesel et al.); (14) Benefits of a hybrid electric architecture on medium commercial vehicles (M. Aimo Boot, L. Consano); (15) Lithium ion batteries for hybrid busses and hybrid commercial vehicles - being ready for the broad mass? (P. Pichler, M. Kapaun); (16) Electric

  9. Hybrid-Vehicle Transmission System

    Science.gov (United States)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  10. Drying of heavy water system and works of charging heavy water in Fugen

    International Nuclear Information System (INIS)

    Matsushita, Tadashi; Iijima, Setsuo

    1980-01-01

    The advanced thermal reactor ''Fugen'' is the first heavy water-moderated, boiling light water-cooled nuclear reactor for power generation in Japan. It is a large heavy water reactor having about 130 m 3 of heavy water inventory and about 300 m 3 of helium space as the cover gas of the heavy water system. The heavy water required was purchased from FRG, which had been used for the power output test in the KKN, and the quality was 99.82 mol % mean heavy water concentration. The concentration of heavy water for Fugen used for the nuclear design is 99.70 mol%, and it was investigated how heavy water can be charged without lowering the concentration. The matters of investigation include the method of bringing the heavy water and helium system to perfect dryness after washing and light water test, the method of confirming the sufficient dryness to prevent the deterioration, and the method of charging heavy water safely from its containers. On the basis of the results of investigation, the actual works were started. The works of drying the heavy water and helium system by vacuum drying, the works of sampling heavy water and the result of the degree of deterioration, and the works of charging heavy water and the measures to the heavy water remaing in the containers are described. All the works were completed safely and smoothly. (J.P.N.)

  11. Study on heavy duty truck stability control by braking force control; Seidoryoku seigyo ni yoru truck no sharyo kyodo anteika ni taisuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K; Shinjo, H; Harada, M; Ohata, K; Sakata, K [Mitsubishi Motors Corp., Tokyo (Japan)

    1997-10-01

    Now a days we are discussing about the vehicle stability control system which freely controls the braking force of each wheel to apply the yaw t and decelerate the vehicle. The system drastically improve the vehicle cornering performance and stabilize the vehicle behavior in its critical area. This paper discusses a point to notice in case of applying this technique for heavy duty trucks, and describes the possibility of the stabilization for vehicle cornering behavior about heavy duty truck. 3 refs., 10 figs., 2 tabs.

  12. Self regulation initiative in heavy vehicle transport to address road safety, accelerated road deterioration and transport productivity in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2006-06-01

    Full Text Available Heavy vehicle overloading and road safety continue to be major problems in South Africa notwithstanding efforts at more effective enforcement by the road and traffic authorities. Overloading causes premature road deterioration and, together...

  13. The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains

    CERN Document Server

    Orellano, Alexander

    2016-01-01

    This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future.   This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.  The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.

  14. Dynamics of vehicle-road coupled system

    CERN Document Server

    Yang, Shaopu; Li, Shaohua

    2015-01-01

    Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...

  15. Emergency vehicle traffic signal preemption system

    Science.gov (United States)

    Bachelder, Aaron D. (Inventor); Foster, Conrad F. (Inventor)

    2011-01-01

    An emergency vehicle traffic light preemption system for preemption of traffic lights at an intersection to allow safe passage of emergency vehicles. The system includes a real-time status monitor of an intersection which is relayed to a control module for transmission to emergency vehicles as well as to a central dispatch office. The system also provides for audio warnings at an intersection to protect pedestrians who may not be in a position to see visual warnings or for various reasons cannot hear the approach of emergency vehicles. A transponder mounted on an emergency vehicle provides autonomous control so the vehicle operator can attend to getting to an emergency and not be concerned with the operation of the system. Activation of a priority-code (i.e. Code-3) situation provides communications with each intersection being approached by an emergency vehicle and indicates whether the intersection is preempted or if there is any conflict with other approaching emergency vehicles. On-board diagnostics handle various information including heading, speed, and acceleration sent to a control module which is transmitted to an intersection and which also simultaneously receives information regarding the status of an intersection. Real-time communications and operations software allow central and remote monitoring, logging, and command of intersections and vehicles.

  16. Heavy and Overweight Vehicle Defects Interim Report

    Energy Technology Data Exchange (ETDEWEB)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL

    2012-12-01

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  17. Vehicle systems and payload requirements evaluation. [computer programs for identifying launch vehicle system requirements

    Science.gov (United States)

    Rea, F. G.; Pittenger, J. L.; Conlon, R. J.; Allen, J. D.

    1975-01-01

    Techniques developed for identifying launch vehicle system requirements for NASA automated space missions are discussed. Emphasis is placed on development of computer programs and investigation of astrionics for OSS missions and Scout. The Earth Orbit Mission Program - 1 which performs linear error analysis of launch vehicle dispersions for both vehicle and navigation system factors is described along with the Interactive Graphic Orbit Selection program which allows the user to select orbits which satisfy mission requirements and to evaluate the necessary injection accuracy.

  18. The technologies for heavy vehicles motors and their fuels; Les technologies des moteurs de vehicules lourds et leurs carburants

    Energy Technology Data Exchange (ETDEWEB)

    Plassat, G

    2005-07-01

    The heavy vehicles are those the total weight (charged) is more than 3,5 tons. This document provides a comparative and parametric analysis of the main technologies developed for the future buses. A detailed presentation is done for each technique, as the operating principles and the advantages and disadvantages facing the today solution. More particularly the author presents the evolution of the diesel-fuel motor, the motor optimization for specific fuel as the natural gas and the liquefied petroleum gas, the hybrid thermal-electric motor, the hydrogen fuel cells, the biofuels and the de-pollution systems to eliminate the NO{sub X} and the particles. (A.L.B.)

  19. Heavy vehicle simulator (HVS) evaluation of load transfer efficiency and continuously reinforced concrete inlays on the N3 near Pietermartizburg

    CSIR Research Space (South Africa)

    Du Plessis, L

    2006-07-01

    Full Text Available The paper addresses two different heavy Vehicle Simulator (HVS) studies conducted on concrete: Load transfer through aggregate interlock and the use of dowels and the evaluation of the performance of an in-service continuously reinforced concrete...

  20. Lane-Level Vehicle Trajectory Reckoning for Cooperative Vehicle-Infrastructure System

    Directory of Open Access Journals (Sweden)

    Yinsong Wang

    2012-01-01

    Full Text Available This paper presents a lane-level positioning method by trajectory reckoning without Global Positioning System (GPS equipment in the environment of Cooperative Vehicle-Infrastructure System (CVIS. Firstly, the accuracy requirements of vehicle position in CVIS applications and the applicability of GPS positioning methods were analyzed. Then, a trajectory reckoning method based on speed and steering data from vehicle’s Control Area Network (CAN and roadside calibration facilities was proposed, which consists of three critical models, including real-time estimation of steering angle and vehicle direction, vehicle movement reckoning, and wireless calibration. Finally, the proposed method was validated through simulation and field tests under a variety of traffic conditions. Results show that the accuracy of the reckoned vehicle position can reach the lane level and match the requirements of common CVIS applications.

  1. A 6-DOF vibration isolation system for hydraulic hybrid vehicles

    Science.gov (United States)

    Nguyen, The; Elahinia, Mohammad; Olson, Walter W.; Fontaine, Paul

    2006-03-01

    This paper presents the results of vibration isolation analysis for the pump/motor component of hydraulic hybrid vehicles (HHVs). The HHVs are designed to combine gasoline/diesel engine and hydraulic power in order to improve the fuel efficiency and reduce the pollution. Electric hybrid technology is being applied to passenger cars with small and medium engines to improve the fuel economy. However, for heavy duty vehicles such as large SUVs, trucks, and buses, which require more power, the hydraulic hybridization is a more efficient choice. In function, the hydraulic hybrid subsystem improves the fuel efficiency of the vehicle by recovering some of the energy that is otherwise wasted in friction brakes. Since the operation of the main component of HHVs involves with rotating parts and moving fluid, noise and vibration are an issue that affects both passengers (ride comfort) as well as surrounding people (drive-by noise). This study looks into the possibility of reducing the transmitted noise and vibration from the hydraulic subsystem to the vehicle's chassis by using magnetorheological (MR) fluid mounts. To this end, the hydraulic subsystem is modeled as a six degree of freedom (6-DOF) rigid body. A 6-DOF isolation system, consisting of five mounts connected to the pump/motor at five different locations, is modeled and simulated. The mounts are designed by combining regular elastomer components with MR fluids. In the simulation, the real loading and working conditions of the hydraulic subsystem are considered and the effects of both shock and vibration are analyzed. The transmissibility of the isolation system is monitored in a wide range of frequencies. The geometry of the isolation system is considered in order to sustain the weight of the hydraulic system without affecting the design of the chassis and the effectiveness of the vibration isolating ability. The simulation results shows reduction in the transmitted vibration force for different working cycles of

  2. Mobility Systems For Robotic Vehicles

    Science.gov (United States)

    Chun, Wendell

    1987-02-01

    The majority of existing robotic systems can be decomposed into five distinct subsystems: locomotion, control/man-machine interface (MMI), sensors, power source, and manipulator. When designing robotic vehicles, there are two main requirements: first, to design for the environment and second, for the task. The environment can be correlated with known missions. This can be seen by analyzing existing mobile robots. Ground mobile systems are generally wheeled, tracked, or legged. More recently, underwater vehicles have gained greater attention. For example, Jason Jr. made history by surveying the sunken luxury liner, the Titanic. The next big surge of robotic vehicles will be in space. This will evolve as a result of NASA's commitment to the Space Station. The foreseeable robots will interface with current systems as well as standalone, free-flying systems. A space robotic vehicle is similar to its underwater counterpart with very few differences. Their commonality includes missions and degrees-of-freedom. The issues of stability and communication are inherent in both systems and environment.

  3. 2014 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Diegel, Susan W [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-01

    This is the sixth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. The discussion of Medium and Heavy Trucks offers information on truck sales and technologies specific to heavy trucks. The Technology section offers information on alternative fuel vehicles and infrastructure, and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible tables and figures.

  4. Introducing Dual Suspension System in Road Vehicles

    OpenAIRE

    Imtiaz Hussain; Jawaid Daudpoto; Ali Asghar Memon

    2013-01-01

    The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability...

  5. Investigation Of The Effects Of Heavy Metal Pollution In Black Sea Seaside Caused From Vehicles By Using Verbascum Sinuatum L. (Scrophulariaceae

    Directory of Open Access Journals (Sweden)

    Neslihan Duru

    2011-12-01

    Full Text Available In this study, the heavy metal pollution caused by vehicle traffic was investigated in the leaves of Verbascum sinuatum L.(Scrophulariaceae collected from the Blacksea coast ranging between Samsun, Ordu, Giresun, Trabzon, Rize and Hopa. Sample collection procedure was made in 23 stations in the related route. Heavy metal concentrations in the leaf samples of each station were determined with Perkin Emler Optic Emission Spectrometry (ICP-OES. Heavy metal concentration in samples was showed an order as Lead (Pb ; Zinc (Zn ; Chromium (Cr ; Nickel (Ni ; Copper (Cu ; Cadmium (Cd. The results of this study showed that the heavy metal accumulation in samples increased with an increase in traffic and V. sinuatum used as a biological indicator of this accumulation.

  6. Hybrid vehicles - an alternative for the Swedish market; Hybridfordon - ett alternativ foer den svenska bilparken

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, Karl-Erik; Bucksch, S

    2000-06-01

    The object of this report is to assemble information on and describe the situation for the development of hybrid vehicles and various alternatives within this field of development. In the report the description is concentrated mainly on the combination of combustion engine and electric battery, which is the most common combination in present day hybrid vehicles. In order to take a glimpse into the future even the combination of fuel cells and electric battery is described. The light duty electric hybrid vehicles which have been developed up to now are mainly parallel hybrids. If the development of hybrid systems takes place it will most certainly concern light duty vehicles which will come to be parallel hybrids equipped with an Otto or a diesel engine, depending on what the manufacturers wish to back. In the report the use of series hybrid vehicles is estimated to be limited to heavy-duty hybrid vehicles. Hybrids will not be likely to be relevant for heavy-duty vehicles, with the exception of those lorries which operate in city centres, i.e. lorries which are used to distribute goods to shops, garbage vehicles and certain types of working vehicle for service purposes. Continued development of the hybrid system for buses seems uncertain for various reasons. If there is a technical breakthrough in the manufacture of batteries and simultaneously the manufacturers increase their efforts to develop hybrid vehicles, the situation can be changed so that there is a speedier introduction of hybrid vehicles for heavy-duty vehicles.

  7. Coupling vibration research on Vehicle-bridge system

    Science.gov (United States)

    Zhou, Jiguo; Wang, Guihua

    2018-01-01

    The vehicle-bridge coupling system forms when vehicle running on a bridge. It will generate a relatively large influence on the driving comfort and driving safe when the vibration of the vehicle is bigger. A three-dimensional vehicle-bridge system with biaxial seven degrees of freedom has been establish in this paper based on finite numerical simulation. Adopting the finite element transient numerical simulation to realize the numerical simulation of vehicle-bridge system coupling vibration. Then, analyze the dynamic response of vehicle and bridge while different numbers of vehicles running on the bridge. Got the variation rule of vertical vibration of car body and bridge, and that of the contact force between the wheel and bridge deck. The research results have a reference value for the analysis about the vehicle running on a large-span cabled bridge.

  8. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth; Lammert, Michael

    2016-10-06

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using the k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.

  9. Emissions of nitrogen oxides and particulates of diesel vehicles

    NARCIS (Netherlands)

    Kadijk, G.; Ligterink, N.E.; Mensch, P. van; Spreen, J.S.; Vermeulen, R.J.; Vonk, W.A.

    2015-01-01

    In real-world conditions, modern Euro VI heavy-duty vehicles produce an average of ten times less nitrogen oxide (NOx)emissions than previous generations of Euro IV and Euro V heavy-duty vehicles. However, Euro 6 passenger cars and light commercial vehicles present an entirely different picture

  10. Improved heavy-duty vehicle fuel efficiency in India, benefits, costs and environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Anand R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Karali, Nihan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sharpe, Ben [International Council on Clean Transportation (United States); Delgado, Oscar [International Council on Clean Transportation (United States); Bandivadekar, Anup [International Council on Clean Transportation (United States); Garg, Mehul [International Council on Clean Transportation (United States)

    2017-06-14

    The main objectives of this analysis are to examine the benefits and costs of fuel-saving technologies for new heavy-duty vehicles (HDVs) in India over the next 10 years and, to explore how various scenarios for the deployment of vehicles with these technologies will impact petroleum consumption and carbon dioxide (CO2) emissions over the next three decades. The study team developed simulation models for three representative HDV types—a 40-tonne tractor-trailer, 25-tonne rigid truck, and 16-tonne transit bus—based on top-selling vehicle models in the Indian market. The baseline technology profiles for all three vehicles were developed using India-specific engine data and vehicle specification information from manufacturer literature and input from industry experts. For each of the three vehicles we developed a comprehensive set of seven efficiency technology packages drawing from five major areas: engine, transmission and driveline, tires, aerodynamics, and weight reduction. Our analysis finds that India has substantial opportunity to improve HDV fuel efficiency levels using cost-effective technologies. Results from our simulation modeling of three representative HDV types—a tractor-trailer, rigid truck, and transit bus—reveal that per-vehicle fuel consumption reductions between roughly 20% and 35% are possible with technologies that provide a return on the initial capital investment within 1 to 2 years. Though most of these technologies are currently unavailable in India, experiences in other more advanced markets such as the US and EU suggest that with sufficient incentives and robust regulatory design, significant progress can be made in developing and deploying efficiency technologies that can provide real-world fuel savings for new commercial vehicles in India over the next 10 years. Bringing HDVs in India up to world-class technology levels will yield substantial petroleum and GHG reductions. By 2030, the fuel and CO2 reductions of the

  11. 32 CFR 635.27 - Vehicle Registration System.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Vehicle Registration System. 635.27 Section 635.27 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Offense Reporting § 635.27 Vehicle Registration System. The Vehicle Registration System (VR...

  12. Introducing Dual Suspension System in Road Vehicles

    Directory of Open Access Journals (Sweden)

    Imtiaz Hussain

    2013-04-01

    Full Text Available The main objective of suspension system is to reduce the motions of the vehicle body with respect to road disturbances. The conventional suspension systems in road vehicles use passive elements such as springs and dampers to suppress the vibrations induced by the irregularities in the road. But these conventional suspension systems can suppress vibrations to a certain limit. This paper presents a novel idea to improve the ride quality of roads vehicles without compromising vehicle?s stability. The paper proposes the use of primary and secondary suspension to suppress the vibrations more effectively.

  13. Hybrid Turbine Electric Vehicle

    Science.gov (United States)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  14. Multiple Vehicle Detection and Segmentation in Malaysia Traffic Flow

    Science.gov (United States)

    Fariz Hasan, Ahmad; Fikri Che Husin, Mohd; Affendi Rosli, Khairul; Norhafiz Hashim, Mohd; Faiz Zainal Abidin, Amar

    2018-03-01

    Vision based system are widely used in the field of Intelligent Transportation System (ITS) to extract a large amount of information to analyze traffic scenes. By rapid number of vehicles on the road as well as significant increase on cameras dictated the need for traffic surveillance systems. This system can take over the burden some task was performed by human operator in traffic monitoring centre. The main technique proposed by this paper is concentrated on developing a multiple vehicle detection and segmentation focusing on monitoring through Closed Circuit Television (CCTV) video. The system is able to automatically segment vehicle extracted from heavy traffic scene by optical flow estimation alongside with blob analysis technique in order to detect the moving vehicle. Prior to segmentation, blob analysis technique will compute the area of interest region corresponding to moving vehicle which will be used to create bounding box on that particular vehicle. Experimental validation on the proposed system was performed and the algorithm is demonstrated on various set of traffic scene.

  15. Logistic Vehicle System Replacement Cost Estimate

    National Research Council Canada - National Science Library

    Stinson, Margaret

    1998-01-01

    The Logistics Vehicle System (LVS) was originally fielded from 1985-1989. Most of the LVS fleet will reach end-of-service life in 2005, therefore the goal of the Logistics Vehicle System Replacement (LVSR...

  16. Vehicle systems: coupled and interactive dynamics analysis

    Science.gov (United States)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  17. Hybrid vehicle powertrain system with power take-off driven vehicle accessory

    Science.gov (United States)

    Beaty, Kevin D.; Bockelmann, Thomas R.; Zou, Zhanijang; Hope, Mark E.; Kang, Xiaosong; Carpenter, Jeffrey L.

    2006-09-12

    A hybrid vehicle powertrain system includes a first prime mover, a first prime mover driven power transmission mechanism having a power take-off adapted to drive a vehicle accessory, and a second prime mover. The second prime mover is operable to drive the power transmission mechanism alone or in combination with the first prime mover to provide power to the power take-off through the power transmission mechanism. The invention further includes methods for operating a hybrid vehicle powertrain system.

  18. Vehicle recovery and towing guideline

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    This guideline was developed to provide light and medium duty vehicles operators in the oil and gas industry with a set of best practices for avoiding injury and damage during the recovery of stuck vehicles. The aim of the guideline was to increase awareness of safety issues and promote the safe usage of the vehicles by personnel throughout the petroleum industry and to establish minimum standards of practice for vehicle recovery. The guideline included a step-by-step guide for pulling out a vehicle with a recovery strap as well as vehicle-mounted winch procedures. Pre-job checklists for both procedures were provided. Issues related to the strength rating of vehicle tow hooks and hitch receivers were discussed, as well as some of the hazards associated with steep terrains and heavy mud. The guideline also included recommendations for a vehicle recovery kit with instructions on vehicle recovery, a recovery strap, a recovery hitch and shackle, a collapsible shovel, traffic cones and reflector flares, and a heavy blanket and gloves. 7 refs., 2 tabs., 13 figs.

  19. Training in the Motor Vehicle Repair and Sales Sector in Greece. Report for the FORCE Programme.

    Science.gov (United States)

    Papaionnou, Skevos; Patsatzis, N.

    A study listed and analyzed the vocational training and continuing training systems for staff in the motor vehicle repair and sales sector in Greece. Heavy taxation on motor vehicles led to difficulty in replacing vehicles that resulted in a very high demand for vehicle repairs, which, in conjunction with the ambiguous legislation governing the…

  20. Natural gas application in light- and heavy-duty vehicles in Brazil: panorama, technological routes and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos, Cordeiro de Melo, Tadeu Cavalcante; Leao, Raphael Riemke de Campos Cesar; Iaccarino, Fernando Aniello; Figueiredo Moreira, Marcia

    2007-07-01

    The Brazilian CNG light-duty vehicle fleet has currently reached more than 1,300,000 units. This growth increased in the late 1990's, when CNG was approved for use in passenger cars. In 2001, the IBAMA (Brazilian Institute for Environment and Natural Renewable Resources), concerned with this uncontrolled growth, published CONAMA (National Environmental Council, controlled by IBAMA) resolution 291, which establishes rules for CNG conversion kit environmental certification.This paper discusses the technological challenges for CNG-converted vehicles to comply with PROCONVE (Brazilian Program for Automotive Air Pollution Control) emission limits. In the 1980's, because of the oil crisis, Natural Gas (NG) emerged as a fuel with great potential to replace Diesel in heavy-duty vehicles. Some experiences were conducted for partial conversions from Diesel to NG (Diesel-gas). Other experiences using NG Otto Cycle buses were conducted in some cities, but have not expanded. Another technological route called 'Ottolization' (Diesel to Otto cycle convertion) appeared recently. Population increase and the great growth in vehicle fleet promote a constant concern with automotive emissions. More restrictive emission limits, high international oil prices, and the strategic interest in replacing Diesel imports, altogether form an interesting scenario for CNG propagation to public transportation in the main Brazilian metropolises.

  1. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  2. Integrated vehicle control and guidance systems in unmanned ground vehicles for commercial applications

    Science.gov (United States)

    Kenyon, Chase H.

    1995-01-01

    While there is a lot of recent development in the entire IVHS field, very few have had the opportunity to combine the many areas of development into a single integrated `intelligent' unmanned vehicle. One of our systems was developed specifically to serve a major automobile manufacturer's need for an automated vehicle chassis durability test facility. Due to the severity of the road surface human drivers could not be used. A totally automated robotic vehicle driver and guidance system was necessary. In order to deliver fixed price commercial projects now, it was apparent system and component costs were of paramount importance. Cyplex has developed a robust, cost effective single wire guidance system. This system has inherent advantages in system simplicity. Multi-signal (per vehicle lane) systems complicate path planning and layout when multiple lanes and lane changes are required, as on actual highways. The system has demonstrated high enough immunity to rain and light snow cover that normal safety reductions in speed are adequate to stay within the required system performance envelope. This system and it's antenna interface have shown the ability to guide the vehicle at slow speeds (10 MPH) with a tracking repeatability of plus or minus 1/8 of an inch. The basic guide and antenna system has been tested at speeds up to 80 mph. The system has inherently superior abilities for lane changes and precision vehicle placement. The operation of this system will be described and the impact of a system that is commercially viable now for highway and off road use will be discussed.

  3. DESIGN OF A REAL TIME REMOTE VEHICLE LOCATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Ahmet Emir DİRİK

    2004-02-01

    Full Text Available In this study, a low-cost, real-time vehicle location system is developed. The vehicle location system includes three main modules, i.e. positioning, wireless communication and digital map modules. The positioning module used in location systems computes position of the mobile vehicle. These vehicle location data are transmitted through a wireless communication system to host. The host has a capability to monitor a fleet of vehicles by analyzing data collected from wireless communication system. In this project, mobile vehicle location positions can be computed in a range of 10m position error and by using these position data, its possible to monitor the fleet of mobile vehicles on a digital map in the observation and control center. In this study, vehicle analog mobile radios are used to establish wireless communication system. Thus, there is no need to use satellite or GSM systems for communication and a low-cost and high-performance vehicle location system is realized.

  4. The consequences of an increase in heavy goods vehicles for passenger car drivers' mental workload and behaviour : A simulator study

    NARCIS (Netherlands)

    De Waard, D.; Kruizinga, A; Brookhuis, K.A.

    The effects of an increase in Heavy Goods Vehicles (HGVs) on merging behaviour and on mental workload of motorists during filtering in and out of traffic were studied. Participants drove in a driving simulator in a total of 12 conditions; twice in each of two weather conditions and in three traffic

  5. Dynamic force profile in hydraulic hybrid vehicles: a numerical investigation

    Science.gov (United States)

    Mohaghegh-Motlagh, Amin; Elahinia, Mohammad H.

    2010-04-01

    A hybrid hydraulic vehicle (HHV) combines a hydraulic sub-system with the conventional drivetrain in order to improve fuel economy for heavy vehicles. The added hydraulic module manages the storage and release of fluid power necessary to assist the motion of the vehicle. The power collected by a pump/motor (P/M) from the regenerative braking phase is stored in a high-pressure accumulator and then released by the P/M to the driveshaft during the acceleration phase. This technology is effective in significantly improving fuel-economy for heavy-class vehicles with frequent stop-and-go drive schedules. Despite improved fuel economy and higher vehicle acceleration, noise and vibrations are one of the main problems of these vehicles. The dual function P/Ms are the main source of noise and vibration in a HHV. This study investigates the dynamics of a P/M and particularly the profile and frequency-dependence of the dynamic forces generated by a bent-axis P/M unit. To this end, the fluid dynamics side of the problem has been simplified for investigating the system from a dynamics perspective. A mathematical model of a bent axis P/M has been developed to investigate the cause of vibration and noise in HHVs. The forces are calculated in time and frequency domains. The results of this work can be used to study the vibration response of the chassis and to design effective vibration isolation systems for HHVs.

  6. A study of Cirus heavy water system isotopic purity

    International Nuclear Information System (INIS)

    Thomas, Shibu; Sahu, A.K.; Unni, V.K.P.; Pant, R.C.

    2000-01-01

    Cirus uses heavy water as moderator and helium as cover gas. Approximately one tonne of heavy water was added to the system every year for routine make up. Isotopic purity (IP) of this water used for addition was always higher than that of the system. Though this should increase IP of heavy water in the system, it has remained almost at the same level, over the years. A study was carried out to estimate the extent of improvement in IP of heavy water in the system that should have occurred because of this and other factors in last 30 years. Reasons for non-occurrence of such an improvement were explored. Ion exchange resins used for purification of heavy water and air ingress into helium cover gas system appear to be the principal sources of entry of light water into heavy water system. (author)

  7. Vehicle/Guideway Interaction in Maglev Systems

    Science.gov (United States)

    1992-03-01

    Technology Division Materials and Components in Maglev Systems Technology Division Materials and Components Technology Division byY. Cai, S. S. Chen, and D. M...Transportation Systems Reports (UC-330, Vehicle/Guideway Interaction in Maglev Systems by Y. Cai and S. S. Chen Materials and Components Technology Division D. M...Surface Irregularities ...................................... 32 4 Vehicle/Guideway Interaction in Transrapid Maglev System .................. 34 4.1

  8. 2012 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

    2013-03-01

    The Oak Ridge National Laboratory s Center for Transportation Analysis developed and published the first Vehicle Technologies Market Report in 2008. Three editions of the report have been published since that time. This 2012 report details the major trends in U.S. light vehicle and medium/heavy truck markets as well as the underlying trends that caused them. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national scale. The following section examines light-duty vehicle use, markets, manufacture, and supply chains. The discussion of medium and heavy trucks offers information on truck sales and fuel use. The technology section offers information on alternative fuel vehicles and infrastructure, and the policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standards.

  9. An appraisal of mass differences between individual tyres, axles and axle groups of a selection of heavy vehicles in South Africa

    CSIR Research Space (South Africa)

    De Beer, Morris

    2012-06-01

    Full Text Available study of 2 666 heavy vehicles (HVs) with Gross Combination Mass, (GCM) > 3 500 kg was conducted, where the mass (or weight) of each tyre (approximately 47 242 tyres (or wheels)) was measured. The measurements were done at slow speed over the SIM device...

  10. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  11. Design of Launch Vehicle Flight Control Systems Using Ascent Vehicle Stability Analysis Tool

    Science.gov (United States)

    Jang, Jiann-Woei; Alaniz, Abran; Hall, Robert; Bedossian, Nazareth; Hall, Charles; Jackson, Mark

    2011-01-01

    A launch vehicle represents a complicated flex-body structural environment for flight control system design. The Ascent-vehicle Stability Analysis Tool (ASAT) is developed to address the complicity in design and analysis of a launch vehicle. The design objective for the flight control system of a launch vehicle is to best follow guidance commands while robustly maintaining system stability. A constrained optimization approach takes the advantage of modern computational control techniques to simultaneously design multiple control systems in compliance with required design specs. "Tower Clearance" and "Load Relief" designs have been achieved for liftoff and max dynamic pressure flight regions, respectively, in the presence of large wind disturbances. The robustness of the flight control system designs has been verified in the frequency domain Monte Carlo analysis using ASAT.

  12. Prevalence of refraction errors and color blindness in heavy vehicle drivers.

    Science.gov (United States)

    Erdoğan, Haydar; Ozdemir, Levent; Arslan, Seher; Cetin, Ilhan; Ozeç, Ayşe Vural; Cetinkaya, Selma; Sümer, Haldun

    2011-01-01

    To investigate the frequency of eye disorders in heavy vehicle drivers. A cross-sectional type study was conducted between November 2004 and September 2006 in 200 driver and 200 non-driver persons. A complete ophthalmologic examination was performed, including visual acuity, and dilated examination of the posterior segment. We used the auto refractometer for determining refractive errors. According to eye examination results, the prevalence of the refractive error was 21.5% and 31.3% in study and control groups respectively (P<0.05). The most common type of refraction error in the study group was myopic astigmatism (8.3%) while in the control group simple myopia (12.8%). Prevalence of dyschromatopsia in the rivers, control group and total group was 2.2%, 2.8% and 2.6% respectively. A considerably high number of drivers are in lack of optimal visual acuity. Refraction errors in drivers may impair the traffic security.

  13. Smart mobile in-vehicle systems next generation advancements

    CERN Document Server

    Abut, Huseyin; Takeda, Kazuya; Hansen, John

    2014-01-01

    This is an edited collection by world-class experts, from diverse fields, focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. The book presents developments on road safety, in-vehicle technologies and state-of-the art systems. Includes coverage of DSP technologies in adaptive automobiles, algorithms and evaluation of in-car communication systems, driver-status monitoring and stress detection, in-vehicle dialogue systems and human-machine interfaces, challenges in video and audio processing for in-vehicle products, multi-sensor fusion for driver identification and vehicle to infrastructure wireless technologies.

  14. Sensor Systems for Vehicle Environment Perception in a Highway Intelligent Space System

    Science.gov (United States)

    Tang, Xiaofeng; Gao, Feng; Xu, Guoyan; Ding, Nenggen; Cai, Yao; Ma, Mingming; Liu, Jianxing

    2014-01-01

    A Highway Intelligent Space System (HISS) is proposed to study vehicle environment perception in this paper. The nature of HISS is that a space sensors system using laser, ultrasonic or radar sensors are installed in a highway environment and communication technology is used to realize the information exchange between the HISS server and vehicles, which provides vehicles with the surrounding road information. Considering the high-speed feature of vehicles on highways, when vehicles will be passing a road ahead that is prone to accidents, the vehicle driving state should be predicted to ensure drivers have road environment perception information in advance, thereby ensuring vehicle driving safety and stability. In order to verify the accuracy and feasibility of the HISS, a traditional vehicle-mounted sensor system for environment perception is used to obtain the relative driving state. Furthermore, an inter-vehicle dynamics model is built and model predictive control approach is used to predict the driving state in the following period. Finally, the simulation results shows that using the HISS for environment perception can arrive at the same results detected by a traditional vehicle-mounted sensors system. Meanwhile, we can further draw the conclusion that using HISS to realize vehicle environment perception can ensure system stability, thereby demonstrating the method's feasibility. PMID:24834907

  15. Heavy Truck Engine Program

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient

  16. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    Science.gov (United States)

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  17. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  18. Design and Implementation of an Emergency Vehicle Signal Preemption System Based on Cooperative Vehicle-Infrastructure Technology

    OpenAIRE

    Yinsong Wang; Zhizhou Wu; Xiaoguang Yang; Luoyi Huang

    2013-01-01

    Emergency vehicle is an important part of traffic flow. The efficiency, reliability, and safety of emergency vehicle operations dropped due to increasing traffic congestion. With the advancement of the wireless communication technologies and the development of the vehicle-to-vehicle (v2v) and vehicle-to-infrastructure (v2i) systems, called Cooperative Vehicle-Infrastructure System (CVIS), there is an opportunity to provide appropriate traffic signal preemption for emergency vehicle based on r...

  19. System modeling of an air-independent solid oxide fuel cell system for unmanned undersea vehicles

    Science.gov (United States)

    Burke, A. Alan; Carreiro, Louis G.

    To examine the feasibility of a solid oxide fuel cell (SOFC)-powered unmanned undersea vehicle (UUV), a system level analysis is presented that projects a possible integration of the SOFC stack, fuel steam reformer, fuel/oxidant storage and balance of plant components into a 21-in. diameter UUV platform. Heavy hydrocarbon fuel (dodecane) and liquid oxygen (LOX) are chosen as the preferred reactants. A maximum efficiency of 45% based on the lower heating value of dodecane was calculated for a system that provides 2.5 kW for 40 h. Heat sources and sinks have been coupled to show viable means of thermal management. The critical design issues involve proper recycling of exhaust steam from the fuel cell back into the reformer and effective use of the SOFC stack radiant heat for steam reformation of the hydrocarbon fuel.

  20. Heavy-Duty Vehicle Port Drayage Drive Cycle Characterization and Development: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Robert; Konan, Arnaud; Kelly, Kenneth; Lammert, Michael

    2016-08-01

    In an effort to better understand the operational requirements of port drayage vehicles and their potential for adoption of advanced technologies, National Renewable Energy Laboratory (NREL) researchers collected over 36,000 miles of in-use duty cycle data from 30 Class 8 drayage trucks operating at the Port of Long Beach and Port of Los Angeles in Southern California. These data include 1-Hz global positioning system location and SAE J1939 high-speed controller area network information. Researchers processed the data through NREL's Drive-Cycle Rapid Investigation, Visualization, and Evaluation tool to examine vehicle kinematic and dynamic patterns across the spectrum of operations. Using the k-medoids clustering method, a repeatable and quantitative process for multi-mode drive cycle segmentation, the analysis led to the creation of multiple drive cycles representing four distinct modes of operation that can be used independently or in combination. These drive cycles are statistically representative of real-world operation of port drayage vehicles. When combined with modeling and simulation tools, these representative test cycles allow advanced vehicle or systems developers to efficiently and accurately evaluate vehicle technology performance requirements to reduce cost and development time while ultimately leading to the commercialization of advanced technologies that meet the performance requirements of the port drayage vocation. The drive cycles, which are suitable for chassis dynamometer testing, were compared to several existing test cycles. This paper presents the clustering methodology, accompanying results of the port drayage duty cycle analysis and custom drive cycle creation.

  1. Vehicle Systems Analysis Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The mission of the Vehicle Systems Analysis Technical Team (VSATT) is to evaluate the performance and interactions of proposed advanced automotive powertrain components and subsystems, in a vehicle systems context, to inform ongoing research and development activities and maximize the potential for fuel efficiency improvements and emission reduction.

  2. Emissions of nitrogen oxides and particulates of diesel vehicles

    OpenAIRE

    Kadijk, G.; Ligterink, N.E.; Mensch, P. van; Spreen, J.S.; Vermeulen, R.J.; Vonk, W.A.

    2015-01-01

    In real-world conditions, modern Euro VI heavy-duty vehicles produce an average of ten times less nitrogen oxide (NOx)emissions than previous generations of Euro IV and Euro V heavy-duty vehicles. However, Euro 6 passenger cars and light commercial vehicles present an entirely different picture since, despite a continual tightening of European emissions limits, the real-world NOx emissions of new diesel passenger cars and light commercial vehicles have remained virtually unchanged over the la...

  3. Advanced Range Safety System for High Energy Vehicles

    Science.gov (United States)

    Claxton, Jeffrey S.; Linton, Donald F.

    2002-01-01

    The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.

  4. Cooperative Path-Planning for Multi-Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Qichen Wang

    2014-11-01

    Full Text Available In this paper, we propose a collision avoidance algorithm for multi-vehicle systems, which is a common problem in many areas, including navigation and robotics. In dynamic environments, vehicles may become involved in potential collisions with each other, particularly when the vehicle density is high and the direction of travel is unrestricted. Cooperatively planning vehicle movement can effectively reduce and fairly distribute the detour inconvenience before subsequently returning vehicles to their intended paths. We present a novel method of cooperative path planning for multi-vehicle systems based on reinforcement learning to address this problem as a decision process. A dynamic system is described as a multi-dimensional space formed by vectors as states to represent all participating vehicles’ position and orientation, whilst considering the kinematic constraints of the vehicles. Actions are defined for the system to transit from one state to another. In order to select appropriate actions whilst satisfying the constraints of path smoothness, constant speed and complying with a minimum distance between vehicles, an approximate value function is iteratively developed to indicate the desirability of every state-action pair from the continuous state space and action space. The proposed scheme comprises two phases. The convergence of the value function takes place in the former learning phase, and it is then used as a path planning guideline in the subsequent action phase. This paper summarizes the concept and methodologies used to implement this online cooperative collision avoidance algorithm and presents results and analysis regarding how this cooperative scheme improves upon two baseline schemes where vehicles make movement decisions independently.

  5. Retrofit SCR system for NOx control from heavy-duty mining equipment

    International Nuclear Information System (INIS)

    Mannan, M.A.

    2009-01-01

    Diesel engines are used extensively in the mining industry and offer many advantages. However, particulate matter (PM) emissions and nitrogen oxide emissions (NOx) are among its disadvantages. A significant concern related to PM and NOx in an underground mine involves the use of diesel exhaust after treatment systems such as diesel particulate filters and selective catalytic reduction (SCR). This presentation discussed NOx and PM control and provided a description of an SCR system and examples of SCR retrofits. Options for NOx control were discussed and a case study involving the installation of an SCR retrofit system in an underground mine operated by Sifto Salt was also presented. The purpose of the case study was to identify cost effective retrofit solutions to lower nitrogen dioxide emissions from heavy-duty trucks operating in underground mines. The case study illustrated and presented the candidate vehicle, baseline emissions, a BlueMax SCR retrofit solution, and BlueMax installation. 1 tab., 6 figs.

  6. Light armoured reconnaissance vehicle system S-LOV-CBRN

    International Nuclear Information System (INIS)

    Tomek, M.; Kare, J.; Cuda, P.; Fisera, O.; Res, B

    2014-01-01

    Light armoured reconnaissance vehicle system S-LOV-CBRN is intended mainly for CBRN reconnaissance and CBRN monitoring of areas of interest. The vehicle is designed to fulfil the missions according to military CBRN scenarios and to support effectively the first responders' teams during their response to the extent CBRN incident.The vehicle is equipped with a chemical (C) and a biological (B) detection system, as well as with a radiation and nuclear (RN) detection system consisting of the control unit with an internal dosimetric probe and of two external ones which are mounted on the right and left side of the vehicle. In this abstract the vehicle system S-LOV-CBRN is shortly described. (authors)

  7. NET in-vessel vehicle system

    International Nuclear Information System (INIS)

    Jones, H.

    1991-02-01

    The CFFTP/Spar In-vessel Vehicle System concept for in-vessel remote maintenance of the NET/ITER machine is described. It comprises a curved deployable boom, a vehicle which can travel on the boom and an end effector or work unit mounted on the vehicle. The stowed boom, vehicle, and work unit are inserted via the equatorial access port of the torus. Following insertion the boom is deployed and locked in place. The vehicle may then travel along the boom to transport the work unit to any desired location. A novel feature of the concept is the deployable boom. When fully deployed, it closely resembles a conventional curved truss structure in configuration and characteristics. However, the joints of the truss structure are hinged so that it can fold into a compact package, of less than 20% of deployed volume for storage, transportation and insertion into the torus. A full-scale 2-metre long section of this boom was produced for demonstration purposes. As part of the concept definition the work unit for divertor handling was studied to demonstrate that large payloads could be manipulated within the confines of the torus using the in-vessel vehicle system. Principal advantages of the IVVS are its high load capacity and rigidity, low weight and stowed volume, simplicity of control and operation, and its relatively high speed of transportation

  8. Vehicle brake testing system

    Science.gov (United States)

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  9. Reduced Attitude Control of a Robotic Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Bláha Lukáš

    2017-01-01

    Full Text Available This paper deals with stabilization and reduced attitude control of a robotic underwater vehicle. The vehicle is assumed to be able to perform a full stable rotations around all axes in underwater space, that is why the standard bottom-heavy structure is not used. The system preferably uses a vectored-thrust arrangement and is built as an overactuated system, which enables to gain a better robustness and guarantees a stable controlled motion even if some thruster suddenly stop working. Because the heading angle cannot be measured, the reduced attitude control strategy is designed and the stability of reduced state of the system is proved using perturbation method.

  10. Digital Signal Processing for In-Vehicle Systems and Safety

    CERN Document Server

    Boyraz, Pinar; Takeda, Kazuya; Abut, Hüseyin

    2012-01-01

    Compiled from papers of the 4th Biennial Workshop on DSP (Digital Signal Processing) for In-Vehicle Systems and Safety this edited collection features world-class experts from diverse fields focusing on integrating smart in-vehicle systems with human factors to enhance safety in automobiles. Digital Signal Processing for In-Vehicle Systems and Safety presents new approaches on how to reduce driver inattention and prevent road accidents. The material addresses DSP technologies in adaptive automobiles, in-vehicle dialogue systems, human machine interfaces, video and audio processing, and in-vehicle speech systems. The volume also features: Recent advances in Smart-Car technology – vehicles that take into account and conform to the driver Driver-vehicle interfaces that take into account the driving task and cognitive load of the driver Best practices for In-Vehicle Corpus Development and distribution Information on multi-sensor analysis and fusion techniques for robust driver monitoring and driver recognition ...

  11. Heavy Lift Launch Capability with a New Hydrocarbon Engine

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center was tasked to define the thrust requirement of a new liquid oxygen rich staged combustion cycle hydrocarbon engine that could be utilized in a launch vehicle to meet NASA s future heavy lift needs. Launch vehicle concepts were sized using this engine for different heavy lift payload classes. Engine out capabilities for one of the heavy lift configurations were also analyzed for increased reliability that may be desired for high value payloads or crewed missions. The applicability for this engine in vehicle concepts to meet military and commercial class payloads comparable to current ELV capability was also evaluated.

  12. Impacts of Electric Vehicle Loads on Power Distribution Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    operation. This paper investigates the effects on the key power distribution system parameters like voltages, line drops, system losses etc. by integrating electric vehicles in the range of 0-50% of the cars with different charging capacities. The dump as well as smart charging modes of electric vehicles......Electric vehicles (EVs) are the most promising alternative to replace a significant amount of gasoline vehicles to provide cleaner, CO2 free and climate friendly transportation. On integrating more electric vehicles, the electric utilities must analyse the related impacts on the electricity system...... is applied in this analysis. A typical Danish primary power distribution system is used as a test case for the studies. From the simulation results, not more than 10% of electric vehicles could be integrated in the test system for the dump charging mode. About 40% of electric vehicle loads could...

  13. Safety problems in vehicles with adaptive cruise control system

    Directory of Open Access Journals (Sweden)

    Yadav Arun K.

    2017-06-01

    Full Text Available In today’s world automotive industries are still putting efforts towards more autonomous vehicles (AVs. The main concern of introducing the autonomous technology is safety of driver. According to a survey 90% of accidents happen due to mistake of driver. The adaptive cruise control system (ACC is a system which combines cruise control with a collision avoidance system. The ACC system is based on laser and radar technologies. This system is capable of controlling the velocity of vehicle automatically to match the velocity of car, bus or truck in front of vehicle. If the lead vehicle gets slow down or accelerate, than ACC system automatically matches that velocity. The proposed paper is focusing on more accurate methods of detecting the preceding vehicle by using a radar and lidar sensors by considering the vehicle side slip and by controlling the distance between two vehicles. By using this approach i.e. logic for calculation of former vehicle distance and controlling the throttle valve of ACC equipped vehicle, an improvement in driving stability was achieved. The own contribution results with fuel efficient driving and with more safer and reliable driving system, but still some improvements are going on to make it more safe and reliable.

  14. 2015 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert G. [Roltek, Inc., Clinton, TN (United States); Moore, Sheila [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    This is the seventh edition of the Vehicle Technologies Market Report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 22 and 23 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 63 offer snapshots of major light-duty vehicle brands in the United States and Figures 70 through 81 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 90 through 94) and fuel use (Figures 97 through 100). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 105 through 118), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 130 through 137). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  15. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  16. Bayesian Parameter Estimation for Heavy-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Eric; Konan, Arnaud; Duran, Adam

    2017-03-28

    Accurate vehicle parameters are valuable for design, modeling, and reporting. Estimating vehicle parameters can be a very time-consuming process requiring tightly-controlled experimentation. This work describes a method to estimate vehicle parameters such as mass, coefficient of drag/frontal area, and rolling resistance using data logged during standard vehicle operation. The method uses Monte Carlo to generate parameter sets which is fed to a variant of the road load equation. Modeled road load is then compared to measured load to evaluate the probability of the parameter set. Acceptance of a proposed parameter set is determined using the probability ratio to the current state, so that the chain history will give a distribution of parameter sets. Compared to a single value, a distribution of possible values provides information on the quality of estimates and the range of possible parameter values. The method is demonstrated by estimating dynamometer parameters. Results confirm the method's ability to estimate reasonable parameter sets, and indicates an opportunity to increase the certainty of estimates through careful selection or generation of the test drive cycle.

  17. Mode Shift Control for a Hybrid Heavy-Duty Vehicle with Power-Split Transmission

    Directory of Open Access Journals (Sweden)

    Kun Huang

    2017-02-01

    Full Text Available Given that power-split transmission (PST is considered to be a major powertrain technology for hybrid heavy-duty vehicles (HDVs, the development and application of PST in the HDVs make mode shift control an essential aspect of powertrain system design. This paper presents a shift schedule design and torque control strategy for a hybrid HDV with PST during mode shift, intended to reduce the output torque variation and improve the shift quality (SQ. Firstly, detailed dynamic models of the hybrid HDV are developed to analyze the mode shift characteristics. Then, a gear shift schedule calculation method including a dynamic shift schedule and an economic shift schedule is provided. Based on the dynamic models and the designed shift schedule, a mode shift performance simulator is built using MATLAB/Simulink, and simulations are carried out. Through analysis of the dynamic equations, it is seen that the inertia torques of the motor–generator lead to the occurrence of transition torque. To avoid the unwanted transition torque, we use a mode shift control strategy that coordinates the motor–generator torque to compensate for the transition torque. The simulation and experimental results demonstrate that the output torque variation during mode shift is effectively reduced by the proposed control strategy, thereby improving the SQ.

  18. 36 CFR 1192.173 - Automated guideway transit vehicles and systems.

    Science.gov (United States)

    2010-07-01

    .... Vertical alignment may be accomplished by vehicle air suspension or other suitable means of meeting the... vehicles and systems. 1192.173 Section 1192.173 Parks, Forests, and Public Property ARCHITECTURAL AND... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.173 Automated guideway transit vehicles and systems. (a...

  19. Advanced propulsion system concept for hybrid vehicles

    Science.gov (United States)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  20. Review and analysis of potential safety impacts of and regulatory barriers to fuel efficiency technologies and alternative fuels in medium- and heavy-duty vehicles

    Science.gov (United States)

    2015-06-01

    This report summarizes a safety analysis of medium- and heavy-duty vehicles (MD/HDVs) equipped with fuel efficiency (FE) technologies and/or using alternative fuels (natural gas-CNG and LNG, propane, biodiesel and power train electrification). The st...

  1. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    Energy Technology Data Exchange (ETDEWEB)

    LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  2. Heavy Vehicle Essential Power Systems Workshop

    International Nuclear Information System (INIS)

    Susan Rogers

    2001-01-01

    Essential power is a crosscutting technology area that addresses the efficient and practical management of electrical and thermal requirements on trucks. Essential Power Systems: any function on the truck, that is not currently involved in moving the truck, and requires electrical or mechanical energy; Truck Lights; Hotel Loads (HVAC, computers, appliances, lighting, entertainment systems); Pumps, starter, compressor, fans, trailer refrigeration; Engine and fuel heating; and Operation of power lifts and pumps for bulk fluid transfer. Transition from ''belt and gear driven'' to auxiliary power generation of electricity - ''Truck Electrification'' 42 volts, DC and/ or AC; All electrically driven auxiliaries; Power on demand - manage electrical loads; Benefits include: increased fuel efficiency, reduced emission both when truck is idling and moving down the road

  3. Phenomenology of heavy quark systems

    International Nuclear Information System (INIS)

    Gilman, F.J.

    1987-03-01

    The spectroscopy of heavy quark systems is examined with regards to spin independent and spin dependent potentials. It is shown that a qualitative picture exists of the spin-independent forces, and that a semi-quantitative understanding exists for the spin-dependent effects. A brief review is then given of the subject of the decays of hadrons containing heavy quarks, including weak decays at the quark level, and describing corrections to the spectator model

  4. FASTSim: A Model to Estimate Vehicle Efficiency, Cost and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.; Gonder, J.; Wang, L.; Wood, E.; Lopp, S.; Ramroth, L.

    2015-05-04

    The Future Automotive Systems Technology Simulator (FASTSim) is a high-level advanced vehicle powertrain systems analysis tool supported by the U.S. Department of Energy’s Vehicle Technologies Office. FASTSim provides a quick and simple approach to compare powertrains and estimate the impact of technology improvements on light- and heavy-duty vehicle efficiency, performance, cost, and battery batches of real-world drive cycles. FASTSim’s calculation framework and balance among detail, accuracy, and speed enable it to simulate thousands of driven miles in minutes. The key components and vehicle outputs have been validated by comparing the model outputs to test data for many different vehicles to provide confidence in the results. A graphical user interface makes FASTSim easy and efficient to use. FASTSim is freely available for download from the National Renewable Energy Laboratory’s website (see www.nrel.gov/fastsim).

  5. Multi-Year On-Road Emission Factor Trends of Two Heavy-Duty California Fleets

    Science.gov (United States)

    Haugen, M.; Bishop, G.

    2017-12-01

    New heavy-duty vehicle emission regulations have resulted in the development of advanced exhaust after-treatment systems that specifically target particulate matter (PM) and nitrogen oxides (NOx = NO + NO2). This has resulted in significant decreases in the emissions of these species. The University of Denver has collected three data sets of on-road gaseous (CO, HC, NO and NOx) and PM (particle mass, black carbon and particle number) emission measurements from heavy-duty vehicles (HDVs) in the spring of 2013, 2015 and 2017 at two different locations in California. One site is located at the Port of Los Angeles, CA (1,150 HDVs measured in 2017) and the other site is located at a weigh station in Northern California near Cottonwood, CA (780 HDVs measured in 2017). The On-Road Heavy-Duty Measurement Setup measures individual HDV's fuel specific emissions (DOI: 10.1021/acs.est.6b06172). Vehicles drive under a tent-like structure that encapsulates vehicle exhaust and 15 seconds of data collection is integrated to give fuel specific information. The measurements obtained from these campaigns contain real-world emissions affected by different driving modes, after-treatment systems and location. The Port of Los Angeles contributes a fleet that is fully equipped with diesel particulate filters (DPFs) as a result of the San Pedro Ports Clean Air Action Plan enforced since 2010 that allows only vehicles model year 2007 or newer on the premises. This fleet, although comprised with relatively new HDVs with lower PM emissions, has increased PM emissions as it has aged. Cottonwood's fleet contains vehicles with and without after-treatment systems, a result of a gradual turnover rate, and fleet PM has decreased at a slower rate than at the Port of Los Angeles. The decrease in PM emissions is a result of more HDVs being newer model years as well as older model years being retrofit with DPFs. The complimentary fleets, studied over multiple years, have given the University of Denver

  6. Vehicle System Management Modeling in UML for Ares I

    Science.gov (United States)

    Pearson, Newton W.; Biehn, Bradley A.; Curry, Tristan D.; Martinez, Mario R.

    2011-01-01

    The Spacecraft & Vehicle Systems Department of Marshall Space Flight Center is responsible for modeling the Vehicle System Management for the Ares I vehicle which was a part of the now canceled Constellation Program. An approach to generating the requirements for the Vehicle System Management was to use the Unified Modeling Language technique to build and test a model that would fulfill the Vehicle System Management requirements. UML has been used on past projects (flight software) in the design phase of the effort but this was the first attempt to use the UML technique from a top down requirements perspective.

  7. A COOPERATIVE ASSISTANCE SYSTEM BETWEEN VEHICLES FOR ELDERLY DRIVERS

    Directory of Open Access Journals (Sweden)

    Naohisa HASHIMOTO

    2009-01-01

    Full Text Available This paper proposes a new concept of elderly driver assistance systems, which performs the assistance by cooperative driving between two vehicles, and describes some experiments with elderly drivers. The assistance consists of one vehicle driven by an elderly driver called a guest vehicle and the other driven by a assisting driver called a host vehicle, and the host vehicle assists or escorts the guest vehicle through the inter-vehicle communications. The functions of the systems installed on a single-seat electric vehicle are highly evaluated by subjects of elderly drivers in virtual streets on a test track.

  8. Vehicle Remote Health Monitoring and Prognostic Maintenance System

    Directory of Open Access Journals (Sweden)

    Uferah Shafi

    2018-01-01

    Full Text Available In many industries inclusive of automotive vehicle industry, predictive maintenance has become more important. It is hard to diagnose failure in advance in the vehicle industry because of the limited availability of sensors and some of the designing exertions. However with the great development in automotive industry, it looks feasible today to analyze sensor’s data along with machine learning techniques for failure prediction. In this article, an approach is presented for fault prediction of four main subsystems of vehicle, fuel system, ignition system, exhaust system, and cooling system. Sensor is collected when vehicle is on the move, both in faulty condition (when any failure in specific system has occurred and in normal condition. The data is transmitted to the server which analyzes the data. Interesting patterns are learned using four classifiers, Decision Tree, Support Vector Machine, K Nearest Neighbor, and Random Forest. These patterns are later used to detect future failures in other vehicles which show the similar behavior. The approach is produced with the end goal of expanding vehicle up-time and was demonstrated on 70 vehicles of Toyota Corolla type. Accuracy comparison of all classifiers is performed on the basis of Receiver Operating Characteristics (ROC curves.

  9. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    Science.gov (United States)

    Creech, Stephen A.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced propulsion technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability after 2021, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include asteroids, Lagrange Points, and Mars, among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the

  10. On-line energy and battery thermal management for hybrid electric heavy-duty truck

    NARCIS (Netherlands)

    Pham, H.T.; Kessels, J.T.B.A.; Bosch, van den P.P.J.; Huisman, R.G.M.; Nevels, R.M.P.A.

    2013-01-01

    This paper discusses an integrated approach for energy and thermal management to minimize the fuel consumption of a hybrid electric heavy-duty truck. Conventional Energy Management Systems (EMS) operate separately from the Battery Thermal Management System (BTMS) in Hybrid Electric Vehicles (HEVs).

  11. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  12. Characterization Test Procedures for Intersection Collision Avoidance Systems Based on Vehicle-to-Vehicle Communications

    Science.gov (United States)

    2015-12-01

    Characterization test procedures have been developed to quantify the performance of intersection collision avoidance (ICA) systems based on vehicle-to-vehicle communications. These systems warn the driver of an imminent crossing-path collision at a r...

  13. A wireless sensor network-based portable vehicle detector evaluation system.

    Science.gov (United States)

    Yoo, Seong-eun

    2013-01-17

    In an upcoming smart transportation environment, performance evaluations of existing Vehicle Detection Systems are crucial to maintain their accuracy. The existing evaluation method for Vehicle Detection Systems is based on a wired Vehicle Detection System reference and a video recorder, which must be operated and analyzed by capable traffic experts. However, this conventional evaluation system has many disadvantages. It is inconvenient to deploy, the evaluation takes a long time, and it lacks scalability and objectivity. To improve the evaluation procedure, this paper proposes a Portable Vehicle Detector Evaluation System based on wireless sensor networks. We describe both the architecture and design of a Vehicle Detector Evaluation System and the implementation results, focusing on the wireless sensor networks and methods for traffic information measurement. With the help of wireless sensor networks and automated analysis, our Vehicle Detector Evaluation System can evaluate a Vehicle Detection System conveniently and objectively. The extensive evaluations of our Vehicle Detector Evaluation System show that it can measure the traffic information such as volume counts and speed with over 98% accuracy.

  14. 2016 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    This is the seventh edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 27 through 69 offer snapshots of major light-duty vehicle brands in the United States and Figures 73 through 85 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 94 through 98) and fuel use (Figures 101 through 104). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 109 through 123), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 135 through 142). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets. Suggestions for future expansion, additional information, or other improvements are most welcome.

  15. 2013 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Susan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boundy, Robert Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moore, Sheila A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-03-01

    This is the fifth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. The first section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 12 through 14 discuss the connections between global oil prices and U.S. GDP, and Figures 21 and 22 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 24 through 51 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 56 through 64 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 73 through 75) and fuel use (Figures 78 through 81). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 84 through 95), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Corporate Average Fuel Economy standard (Figures 106 through 110). In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  16. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  17. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    Science.gov (United States)

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  18. Automated Vehicle Monitoring System

    OpenAIRE

    Wibowo, Agustinus Deddy Arief; Heriansyah, Rudi

    2014-01-01

    An automated vehicle monitoring system is proposed in this paper. The surveillance system is based on image processing techniques such as background subtraction, colour balancing, chain code based shape detection, and blob. The proposed system will detect any human's head as appeared at the side mirrors. The detected head will be tracked and recorded for further action.

  19. Vehicle-to-Grid Power in Danish Electric Power Systems

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    The integration of renewable energy systems is often constrained by the variable nature of their output. This demands for the services of storing the electricity generated from most of the renewable energy sources. Vehicle-to-grid (V2G) power could use the inherent energy storage of electric...... vehicles and its quick response time to balance and stabilize a power system with fluctuating power. This paper outlines the use of battery electric vehicles in supporting large-scale integration of renewable energy in the Danish electric power systems. The reserve power requirements for a high renewable...... energy penetration could be met by an amount of V2G based electric vehicles less than 10% of the total vehicle need in Denmark. The participation of electric vehicle in ancillary services would earn significant revenues to the vehicle owner. The power balancing services of electric vehicles...

  20. Vehicle health management for guidance, navigation and control systems

    Science.gov (United States)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  1. Road user charges for heavy goods vehicles (HGV). Tables with external costs of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Skou Andersen, M.

    2013-02-15

    In this report, the European Environment Agency (EEA) presents updated estimates of the external costs of air pollution for different categories of heavy goods vehicles (HGVs). The amended Eurovignette Directive (2011/76/EU) relating to the charging of HGVs for use of major European motorways prescribes that from 2013, Member States may include air pollution costs in any charging structure for roads under the Trans-European Network (TEN-T) and for comparable domestic motorways. The tables published here provide the basis for the inclusion of a vehicle-specific air pollution component in road user charges. Air pollution costs have been calculated on the basis of the formula prescribed in the directive, taking into account the fact that road transport emissions are mixed in a low volume of air. Following Article 9 in the Eurovignette Directive, additional revenues from external-cost charges must be used by Member States to benefit the transport sector and promote sustainable mobility. Making use of scientific developments subsequent to the 2007 Handbook of external costs (Maibach et al., 2008), the EEA is able to provide an updated estimate of the external costs of air pollution from road transport. The tables in this report indicate for each country and for the relevant vehicle categories, estimates of the external costs of air pollution in 2010 prices. The high level of detail gives member countries an informed basis to group the vehicle categories for administrative purposes. The tables also include estimates for three non-EU member countries of the EEA, of which one (Switzerland) pioneered the first HGV road user charge in Europe. (LN)

  2. A System for Fast Navigation of Autonomous Vehicles

    Science.gov (United States)

    1991-09-01

    AD-A243 523 4, jj A System for Fast Navigation of Autonomous Vehicles Sanjiv Singh, Dai Feng, Paul Keller, Gary Shaffer, Wen Fan Shi, Dong Hun Shin...FUNDING NUMBERS A System for Fast Navigation of Autonomous Vehicles 6. AUTHOR(S) S. Singh, D. Feng, P. Keller, G. Shaffer, W.F. Shi, D.H. Shin, J. West...common in the control of autonomous vehicles to establish the necessary kinematic models but to ignore an explicit representation of the vehicle dynamics

  3. Control system and method for a hybrid electric vehicle

    Science.gov (United States)

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2001-01-01

    A vehicle system controller (20) is presented for a LSR parallel hybrid electric vehicle having an engine (10), a motor (12), wheels (14), a transmission (16) and a battery (18). The vehicle system controller (20) has a state machine having a plurality of predefined states (22-32) that represent operating modes for the vehicle. A set of rules is defined for controlling the transition between any two states in the state machine. The states (22-32) are prioritized according to driver demands, energy management concerns and system fault occurrences. The vehicle system controller (20) controls the transitions from a lower priority state to a higher priority state based on the set of rules. In addition, the vehicle system controller (20) will control a transition to a lower state from a higher state when the conditions no longer warrant staying in the current state. A unique set of output commands is defined for each state for the purpose of controlling lower level subsystem controllers. These commands serve to achieve the desire vehicle functionality within each state and insure smooth transitions between states.

  4. Direct injection of diesel-butane blends in a heavy duty engine

    NARCIS (Netherlands)

    Leermakers, C.A.J.; van den Berge, B.; Luijten, C.C.M.; Goey, de L.P.H.; Jaasma, S.A.M.

    2011-01-01

    Increasing fuel prices keep bringing attention to alternative, cheaper fuels. Liquefied Petroleum Gas (LPG) has been well known for decades as an alternative fuel for spark ignition (SI) passenger cars. More recently, aftermarket LPG systems were also introduced to Heavy Duty transport vehicles.

  5. Emissions credits from natural gas vehicles

    International Nuclear Information System (INIS)

    Anderson, J.F.; Kodjak, D.

    1997-01-01

    Dedicated natural gas vehicles (NGVs) often are capable of testing to lower than federally required engine certification standards. NGVs often meet inherently low emission vehicle (ILEV) and ultra low emission vehicle (ULEV) standards. Over the useful life of the vehicle, a significant amount of mobile source emission reduction credits (MSERCs) can be generated. This paper will discuss key elements of establishing a workable methodology to quantify the emissions benefits generated through the purchase and use of heavy-duty natural gas vehicles instead of heavy-duty diesel vehicles. The paper will focus on a public fleet of transit buses owned by the Massachusetts Bay Transit Agency, the Massachusetts Port Authority, and a private fleet of waste haulers. Public fleets may generate emission credits as a key compliance option to offset emission shortfalls from changes to the Employee Commute Options (ECO) program, the Inspection and Maintenance program, and facilitate annual surface transportation conformity. Private fleets may generate emission credits for open market trading to area and stationary sources seeking to buy credits from mobile sources, where allowed by EPA and state policy

  6. A stereo vision-based obstacle detection system in vehicles

    Science.gov (United States)

    Huh, Kunsoo; Park, Jaehak; Hwang, Junyeon; Hong, Daegun

    2008-02-01

    Obstacle detection is a crucial issue for driver assistance systems as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision with the front vehicle. The vision-based obstacle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an obstacle detection system using stereo vision sensors is developed. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the obstacles. The proposed system can detect a front obstacle, a leading vehicle and a vehicle cutting into the lane. Then, the position parameters of the obstacles and leading vehicles can be obtained. The proposed obstacle detection system is implemented on a passenger car and its performance is verified experimentally.

  7. Estimating Texas motor vehicle operating costs.

    Science.gov (United States)

    2009-10-01

    A specific Vcost model was developed for Texas conditions based on a sophisticated fuel model for light : duty vehicles, several excellent sources of secondary vehicle cost data, and the ability to measure heavy truck fuel : consumption through both ...

  8. NASA Exploration Launch Projects Overview: The Crew Launch Vehicle and the Cargo Launch Vehicle Systems

    Science.gov (United States)

    Snoddy, Jimmy R.; Dumbacher, Daniel L.; Cook, Stephen A.

    2006-01-01

    The U.S. Vision for Space Exploration (January 2004) serves as the foundation for the National Aeronautics and Space Administration's (NASA) strategic goals and objectives. As the NASA Administrator outlined during his confirmation hearing in April 2005, these include: 1) Flying the Space Shuttle as safely as possible until its retirement, not later than 2010. 2) Bringing a new Crew Exploration Vehicle (CEV) into service as soon as possible after Shuttle retirement. 3) Developing a balanced overall program of science, exploration, and aeronautics at NASA, consistent with the redirection of the human space flight program to focus on exploration. 4) Completing the International Space Station (ISS) in a manner consistent with international partner commitments and the needs of human exploration. 5) Encouraging the pursuit of appropriate partnerships with the emerging commercial space sector. 6) Establishing a lunar return program having the maximum possible utility for later missions to Mars and other destinations. In spring 2005, the Agency commissioned a team of aerospace subject matter experts to perform the Exploration Systems Architecture Study (ESAS). The ESAS team performed in-depth evaluations of a number of space transportation architectures and provided recommendations based on their findings? The ESAS analysis focused on a human-rated Crew Launch Vehicle (CLV) for astronaut transport and a heavy lift Cargo Launch Vehicle (CaLV) to carry equipment, materials, and supplies for lunar missions and, later, the first human journeys to Mars. After several months of intense study utilizing safety and reliability, technical performance, budget, and schedule figures of merit in relation to design reference missions, the ESAS design options were unveiled in summer 2005. As part of NASA's systems engineering approach, these point of departure architectures have been refined through trade studies during the ongoing design phase leading to the development phase that

  9. Evaluation of Environmental Impact of Biodiesel Vehicles in Real Traffic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Susumu; Mizushima, Norifumi [National Traffic Safety and Environment Laboratory (NTSEL) (Japan); Saito, Akira; Takada, Yutaka [Organization for the Promotion of Low Emission Vehicles (LEVO)(Japan

    2012-01-15

    This report focuses on the comparison of the real-world emissions between the case of using diesel oil and BDF (biodiesel fuel) for fuel. For this purpose, the on-road driving tests were made, by applying BDF, with the latest diesel vehicles complying with the latest emission regulations while avoiding any particular modification to them. For measurement, a PEMS (Portable Emission Measurement System) was used. Note that the heavy diesel vehicles complying with the latest emission gas regulations of Japan also meet the heavy vehicle fuel economy regulations introduced by Japan ahead of other countries of the world. Since application of BDF presents problems not only for the emission gas, but also has non-negligible influence on the fuel economy, the survey was also made for the real-world fuel economy. This report has been produced as the final version deliverable from the International Energy Agency’s (IEA’s) Advanced Motor Fuels (AMF) Implementing Agreement (Annex XXXVIII - Evaluation of Environmental Impact of Biodiesel Vehicle in Real Traffic Conditions).

  10. A review of dynamic characteristics of magnetically levitated vehicle systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  11. The selection of the traction system based on the energy efficiency for vehicles of heavy service; La seleccion del tren motriz basada en la eficiencia energetica para vehiculos de servicio pesado

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Morales, M.Y [Instituto Mexicano del Transporte, (Mexico); Cervantes de Gortari, J [Departamento de termoenergia, Facultad de ingenieria, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2004-01-15

    Transportation activities in Mexico, especially in heavy-duty vehicles, are affected by the low efficiency in fuel consumption. In spite of the advanced technology in energy efficiency that generally is being adopted and used in the Mexican cargo fleet, there is not a significant reduction in the operation costs of this very important economic activity. In this paper, an account about the influence that the selection of the traction system components has on the fuel consumption and the ascending capacity of the vehicle, is presented. As a result of the study, an algorithm based on real performance tests with optimal fuel economy, was developed. The program is useful for the selection of the most appropriate traction system of a given vehicle, taking into account the condition that has to fulfill for a give task. [Spanish] Entre los problemas que afectan a la economia del sector de autotransporte en Mexico, especialmente en el transporte destinado al servicio pesado, se encuentra el de baja eficiencia en el consumo de combustible. A pesar de la avanzada tecnologia que generalmente se va disponiendo y adoptando en el parque vehicular con relacion a la eficiencia energetica, el costo por toneladas transportada no ha disminuido de manera importante. En este trabajo, se presenta un estudio acerca de la influencia que tiene dentro de esta problematica la seleccion de los componentes del tren motriz en el consumo de combustible y en la capacidad de ascenso del vehiculo, en relacion con el peso de la carga transportada. Como resultado del estudio se desarrollo un algoritmo basado en las pruebas reales de desempeno a que puede someterse un vehiculo, buscando el regimen optimo de economia del combustible. El programa permite a las empresas de transporte, seleccionar el tren motriz mas adecuado para cada vehiculo teniendo en cuenta las operaciones a que debera sujetarse en un determinado servicio.

  12. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  13. Robust Road Condition Detection System Using In-Vehicle Standard Sensors

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2015-12-01

    Full Text Available The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  14. Robust Road Condition Detection System Using In-Vehicle Standard Sensors.

    Science.gov (United States)

    Castillo Aguilar, Juan Jesús; Cabrera Carrillo, Juan Antonio; Guerra Fernández, Antonio Jesús; Carabias Acosta, Enrique

    2015-12-19

    The appearance of active safety systems, such as Anti-lock Braking System, Traction Control System, Stability Control System, etc., represents a major evolution in road safety. In the automotive sector, the term vehicle active safety systems refers to those whose goal is to help avoid a crash or to reduce the risk of having an accident. These systems safeguard us, being in continuous evolution and incorporating new capabilities continuously. In order for these systems and vehicles to work adequately, they need to know some fundamental information: the road condition on which the vehicle is circulating. This early road detection is intended to allow vehicle control systems to act faster and more suitably, thus obtaining a substantial advantage. In this work, we try to detect the road condition the vehicle is being driven on, using the standard sensors installed in commercial vehicles. Vehicle models were programmed in on-board systems to perform real-time estimations of the forces of contact between the wheel and road and the speed of the vehicle. Subsequently, a fuzzy logic block is used to obtain an index representing the road condition. Finally, an artificial neural network was used to provide the optimal slip for each surface. Simulations and experiments verified the proposed method.

  15. Delay in polling systems in heavy traffic

    Science.gov (United States)

    van der Mei, Robert D.

    1998-10-01

    We study the delay in asymmetric cyclic polling systems with general mixtures of gated and exhaustive service, with generally distributed service times and switch-over times, in heavy traffic. We obtain closed-form expressions for all moments of the delay incurred at each of the queues. The expressions are strikingly simple and can even be expressed as finite products of known factors. The results provide new insights into the heavy-traffic behavior of polling systems.

  16. AUTOMATED COMPUTER SYSTEM OF VEHICLE VOICE CONTROL

    Directory of Open Access Journals (Sweden)

    A. Kravchenko

    2009-01-01

    Full Text Available Domestic cars and foreign analogues are considered. Failings are marked related to absence of the auxiliary electronic system which serves for the increase of safety and comfort of vehicle management. Innovative development of the complex system of vocal management which provides reliability, comfort and simplicity of movement in a vehicle is offered.

  17. Vehicle rollover risk and electronic stability control systems.

    Science.gov (United States)

    MacLennan, P A; Marshall, T; Griffin, R; Purcell, M; McGwin, G; Rue, L W

    2008-06-01

    Electronic stability control (ESC) systems were developed to reduce motor vehicle collisions (MVCs) caused by loss of control. Introduced in Europe in 1995 and in the USA in 1996, ESC is designed to improve vehicle lateral stability by electronically detecting and automatically assisting drivers in unfavorable situations. To examine the relationship between vehicle rollover risk and presence of ESC using a large national database of MVCs. A retrospective cohort study for the period 1995 through 2006 was carried out using data obtained from the National Automotive Sampling System General Estimates System. All passenger cars and sport utility vehicles (SUVs)/vans of model year 1996 and later were eligible. Vehicle ESC (unavailable, optional, standard) was determined on the basis of make, model, and model year. Risk ratios (RRs) and 95% CIs were calculated to compare rollover risk by vehicle ESC group. For all crashes, vehicles equipped with standard ESC had decreased risk of rollover (RR = 0.62, 95% CI 0.50 to 0.77) compared with vehicles with ESC unavailable. The association was consistent for single-vehicle MVCs (RR = 0.61, 95% CI 0.46 to 0.82); passenger cars had decreased rollover risk (RR = 0.77, 95% CI 0.52 to 1.12), but SUVs/vans had a more dramatically decreased risk (RR = 0.40, 95% CI 0.26 to 0.61). This study supports previous results showing ESC to be effective in reducing the risk of rollover. ESC is more effective in SUVs/vans for rollovers related to single-vehicle MVCs.

  18. Integrated vehicle-based safety systems light-vehicle field operational test key findings report.

    Science.gov (United States)

    2011-01-01

    "This document presents key findings from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michigan Transportat...

  19. Modular Energy Storage System for Alternative Energy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Janice [Magna Electronics Inc., Auburn Hills, MI (United States); Ervin, Frank [Magna Electronics Inc., Auburn Hills, MI (United States)

    2012-05-15

    An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystems performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact

  20. An Assessment Methodology for Emergency Vehicle Traffic Signal Priority Systems

    OpenAIRE

    McHale, Gene Michael

    2002-01-01

    Emergency vehicle traffic signal priority systems allow emergency vehicles such as fire and emergency medical vehicles to request and receive a green traffic signal indication when approaching an intersection. Such systems have been around for a number of years, however, there is little understanding of the costs and benefits of such systems once they are deployed. This research develops an improved method to assess the travel time impacts of emergency vehicle traffic signal priority system...

  1. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  2. 49 CFR 38.173 - Automated guideway transit vehicles and systems.

    Science.gov (United States)

    2010-10-01

    ... accomplished by vehicle air suspension or other suitable means of meeting the requirement. (c) In stations... 49 Transportation 1 2010-10-01 2010-10-01 false Automated guideway transit vehicles and systems... DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 38...

  3. [Mixed valent and heavy ferimons and related systems

    International Nuclear Information System (INIS)

    Schlottmann, P.

    1991-01-01

    The main objective of the project is to gain a better understanding of highly correlated fermion systems. High correlations appear in a variety of solid state phenomena: mixed-valence and heavy-fermions or Kondo systems, superfluid and normal He 3 , high-temperature superconductors, magnetism in low dimensions, quantum Hall effect, spin-fluctuations in transition metals, giant magnetic moments, tunneling of an atom interacting with a degenerate electron gas, quantum dissipative systems, organic superconductors, etc. The primary focus of the work is on valence mixing and heavy fermions, but elated highly correlated systems are also studied. In this paper a brief summary of the achievements grouped under four headings, namely (1) heavy fermions-mixed valence-Kondo, (2) magnetism in low dimensions, (3) narrow band phenomena/Hubbard model and (4) collaborations with experimentalists

  4. Integration of Vehicle-to-Grid in Western Danish Power System

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2011-01-01

    capabilities of large power plants in the future, demands for new balancing solutions like Vehicle-to-Grid systems. In this article, aggregated electric vehicle based battery storage representing a Vehicle-to-Grid system is modelled for the use in long term dynamic power system simulations. Further...... Transmission) control areas are significantly minimized by the faster up and down regulation characteristics of the electric vehicle battery storage....

  5. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  6. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  7. Off-highway vehicle technology roadmap.; TOPICAL

    International Nuclear Information System (INIS)

    NONE

    2002-01-01

    The off-highway sector is under increasing pressure to reduce operating costs (including fuel costs) and to reduce emissions. Recognizing this, the Society of Automotive Engineers and the U.S. Department of Energy (DOE) convened a workshop in April 2001 (ANL 2001) to (1) determine the interest of the off-highway sector (consisting of agriculture, construction, surface mining, inland marine) in crafting a shared vision of off-highway, heavy machines of the future and (2) identify critical research and development (R and D) needs for minimizing off-highway vehicle emissions while cost-effectively maintaining or enhancing system performance. The workshop also enabled government and industry participants to exchange information. During the workshop, it became clear that the challenges facing the heavy, surface-based off-highway sector can be addressed in three major machine categories: (1) engine/aftertreatment and fuels/lubes, (2) machine systems, and (3) thermal management. Working groups convened to address these topical areas. The status of off-highway technologies was determined, critical technical barriers to achieving future emission standards were identified, and strategies and technologies for reducing fuel consumption were discussed. Priority areas for R and D were identified. Given the apparent success of the discussions at the workshop, several participants from industry agreed to help in the formation of a joint industry/government ''roadmap'' team. The U.S. Department of Energy's Office of Heavy Vehicle Technologies has an extensive role in researching ways to make heavy-duty trucks and trains more efficient, with respect to both fuel usage and air emissions. The workshop participants felt that a joint industry/government research program that addresses the unique needs of the off-highway sector would complement the current research program for highway vehicles. With industry expertise, in-kind contributions, and federal government funding (coupled with

  8. Vehicle speed guidance strategy at signalized intersection based on cooperative vehicle infrastructure system

    Directory of Open Access Journals (Sweden)

    Fengyuan JIA

    2017-10-01

    Full Text Available In order to reduce stopping time of vehicle at a signalized intersection, aiming at the difficulty, even the impossibility to obtain real-time queue length of intersection in third and fourth-tier cities in China sometimes, a speed guidance strategy based on cooperative vehicle infrastructure system is put forward and studied. For validating the strategy, the traffic signal timing data of the intersection at Hengshan Road and North Fengming Lake Road in Wuhu is collected by a vehicular traffic signal reminder system which is designed. The simulation experiments using the acquired data are done by software VISSIM. The simulation results demonstrate that the strategy under high and low traffic flow can effectively decrease the link travel-time, reducing average ratio is 9.2 % and 13.0 %, respectively, and the effect under low traffic flow is better than that under high traffic flow. The strategy improves efficiency of traffic at a signalized intersection and provides an idea for the application of vehicle speed guidance based on cooperative vehicle infrastructure system.

  9. A Study to Identify Data Voids in the Application of Hi-Glide Canopies to Remotely Piloted Vehicles (RPV)

    Science.gov (United States)

    1976-01-01

    Parawing Vehicle (M.S. Thesis, Virginia Polytechnic Inst) N66-29712*# NASA-TM-X-57693 33. Clemmons , Dewey L. Some Analysis of Parawing Behavior... Maurice P. Two Body Trajectory Analysis of a Parachute-Cargo Airdrop System 79. Glauert, H. Heavy Flexible Cable for Towing a Heavy Body below an

  10. New heavy-lift system under construction

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Heavy-lift availability is at a premium, and the market is eager for alternatives to meet the demand. An alternative heavy-lift solution from SeaMetric - which has two multi-purpose heavy-lift vessels under construction in China - will be available in the first quarter of 2011. The TML system is based on buoyancy and ballast tanks, with four lifting arms mounted on two identical vessels, each vessel measuring 140 x 40 x 10.75 metres. To perform a lift, one TML with lifting arms is positioned on each side of the object. Using seawater pumps, lift force is created by de ballasting the buoyancy tanks and at the same time ballasting the ballast tanks. (AG). tab., ills

  11. Obstacle detection system for underground mining vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P.; Polotski, V.; Piotte, M.; Melamed, F. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada)

    1998-01-01

    A device for detecting obstacles by autonomous vehicles navigating in mine drifts is described. The device is based upon structured lighting and the extraction of relevant features from images of obstacles. The system uses image profile changes, ground and wall irregularities, disturbances of the vehicle`s trajectory, and impaired visibility to detect obstacles, rather than explicit three-dimensional scene reconstruction. 7 refs., 5 figs.

  12. Heavy Vehicles on Minor Highway Bridges

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Enevoldsen, I.

    of heavier trucks moving at larger speeds, and partly because the authorities want to permit transportation of special heavy goods at a larger part of the road net. These needs will in many cases cause the strengthening of the bridges becomes necessary. In order to keep the expenses of such strengthening...

  13. Assessment of the safety benefits of vehicles' advanced driver assistance, connectivity and low level automation systems.

    Science.gov (United States)

    Yue, Lishengsa; Abdel-Aty, Mohamed; Wu, Yina; Wang, Ling

    2018-04-11

    The Connected Vehicle (CV) technologies together with other Driving Assistance (DA) technologies are believed to have great effects on traffic operation and safety, and they are expected to impact the future of our cities. However, few research has estimated the exact safety benefits when all vehicles are equipped with these technologies. This paper seeks to fill the gap by using a general crash avoidance effectiveness framework for major CV&DA technologies to make a comprehensive crash reduction estimation. Twenty technologies that were tested in recent studies are summarized and sensitivity analysis is used for estimating their total crash avoidance effectiveness. The results show that crash avoidance effectiveness of CV&DA technology is significantly affected by the vehicle type and the safety estimation methodology. A 70% crash avoidance rate seems to be the highest effectiveness for the CV&DA technologies operating in the real-world environment. Based on the 2005-2008 U.S. GES Crash Records, this research found that the CV&DA technologies could lead to the reduction of light vehicles' crashes and heavy trucks' crashes by at least 32.99% and 40.88%, respectively. The rear-end crashes for both light vehicles and heavy trucks have the most expected crash benefits from the technologies. The paper also studies the effectiveness of Forward Collision Warning technology (FCW) under fog conditions, and the results show that FCW could reduce 35% of the near-crash events under fog conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  15. A Noise-Insensitive Semi-Active Air Suspension for Heavy-Duty Vehicles with an Integrated Fuzzy-Wheelbase Preview Control

    Directory of Open Access Journals (Sweden)

    Zhengchao Xie

    2013-01-01

    Full Text Available Semi-active air suspension is increasingly used on heavy-duty vehicles due to its capabilities of consuming less power and low cost and providing better ride quality. In this study, a new low cost but effective approach, fuzzy-wheelbase preview controller with wavelet denoising filter (FPW, is developed for semi-active air suspension system. A semi-active suspension system with a rolling lobe air spring is firstly modeled and a novel front axle vertical acceleration-based road prediction model is constructed. By adopting a sensor on the front axle, the road prediction model can predict more reliable road information for the rear wheel. After filtering useless signal noise, the proposed FPW can generate a noise-insensitive control damping force. Simulation results show that the ride quality, the road holding, the handling capability, the road friendliness, and the comprehensive performance of the semi-active air suspension with FPW outperform those with the traditional active suspension with PID-wheelbase preview controller (APP. It can also be seen that, with the addition of the wavelet filter, the impact of sensor noise on the suspension performance can be minimized.

  16. Impact of reformulated fuels on motor vehicle emissions

    Science.gov (United States)

    Kirchstetter, Thomas

    Motor vehicles continue to be an important source of air pollution. Increased vehicle travel and degradation of emission control systems have offset some of the effects of increasingly stringent emission standards and use of control technologies. A relatively new air pollution control strategy is the reformulation of motor vehicle fuels, both gasoline and diesel, to make them cleaner- burning. Field experiments in a heavily traveled northern California roadway tunnel revealed that use of oxygenated gasoline reduced on-road emissions of carbon monoxide (CO) and volatile organic compounds (VOC) by 23 +/- 6% and 19 +/- 8%, respectively, while oxides of nitrogen (NOx) emissions were not significantly affected. The introduction of reformulated gasoline (RFG) in California led to large changes in gasoline composition including decreases in alkene, aromatic, benzene, and sulfur contents, and an increase in oxygen content. The combined effects of RFG and fleet turnover between summers 1994 and 1997 were decreases in on-road vehicle exhaust emissions of CO, non-methane VOC, and NOx by 31 +/- 5, 43 +/- 8, and 18 +/- 4%, respectively. Although it was difficult to separate the fleet turnover and RFG contributions to these changes, it was clear that the effect of RFG was greater for VOC than for NOx. The RFG effect on exhaust emissions of benzene was a 30-40% reduction. Use of RFG reduced the reactivity of liquid gasoline and gasoline headspace vapors by 23 and 19%, respectively. Increased use of methyl tert-butyl ether in gasoline led to increased concentrations of highly reactive formaldehyde and isobutene in vehicle exhaust. As a result, RFG reduced the reactivity of exhaust emissions by only about 5%. Per unit mass of fuel burned, heavy-duty diesel trucks emit about 25 times more fine particle mass and 15-20 times the number of fine particles compared to light-duty vehicles. Exhaust fine particle emissions from heavy-duty diesels contain more black carbon than particulate

  17. Environmentally friendly traffic management system using integrated road-vehicle system

    NARCIS (Netherlands)

    Mahmod, M.M.; Arem, B. van

    2008-01-01

    Local habitability is coming under increasing pressure from harmful traffic emissions. This emission is strongly correlated to the characteristics and dynamics of traffic: type of vehicle, speed, acceleration and deceleration. This paper investigates the use of integrated road-vehicle systems for

  18. 40 CFR 205.52 - Vehicle noise emission standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Vehicle noise emission standards. 205... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.52 Vehicle noise emission standards. (a) Low Speed Noise Emission Standard. Vehicles which are manufactured after...

  19. Experimental Autonomous Vehicle Systems

    DEFF Research Database (Denmark)

    Ravn, Ole; Andersen, Nils Axel

    1998-01-01

    The paper describes the requirements for and a prototype configuration of a software architecture for control of an experimental autonomous vehicle. The test bed nature of the system is emphasised in the choice of architecture making re-configurability, data logging and extendability simple...

  20. Fallout radiation protection provided by transportation vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Burson, Z.G.

    1972-10-20

    Fallout radiation protection factors (PF's) were estimated for a variety of civilian transportation vehicles using measurements of the natural terrain radiation as a source. The PF values are below 2 in light vehicles, truck beds, or trailers; from 2.5 to 3 in the cabs of heavy trucks and in a railway guard car; and from 3.0 to 3.5 in the engineer's seat of heavy locomotives. This information can be useful in planning the possible movement of personnel from or through areas contaminated either by a wartime incident or a peacetime accident. The information may also be useful for studying the reduction of exposure to the natural terrestrial radiation environment provided by vehicles.

  1. A Review Of Design And Control Of Automated Guided Vehicle Systems

    OpenAIRE

    Le-Anh, Tuan; Koster, René

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict resolution. We discuss and classify important models and results from key publications in literature on automated guided vehicle systems, including often-neglected areas, such as idle-vehicle positionin...

  2. System Architecture Design for Electric Vehicle (EV) Systems

    DEFF Research Database (Denmark)

    Xu, Zhao; Wu, Qiuwei; Nielsen, Arne Hejde

    2010-01-01

    The electric vehicle (EV) system should fulfill the energy needs of EVs to meet the EV users’ driving requirements and enable the system service from EVs to support the power system operation with high penetration of renewable energy resources (RES) by providing necessary infrastructures. In orde...

  3. Fast reconstruction of an unmanned engineering vehicle and its application to carrying rocket

    Directory of Open Access Journals (Sweden)

    Jun Qian

    2014-04-01

    Full Text Available Engineering vehicle is widely used as a huge moving platform for transporting heavy goods. However, traditional human operations have a great influence on the steady movement of the vehicle. In this Letter, a fast reconstruction process of an unmanned engineering vehicle is carried out. By adding a higher-level controller and two two-dimensional laser scanners on the moving platform, the vehicle could perceive the surrounding environment and locate its pose according to extended Kalman filter. Then, a closed-loop control system is formed by communicating with the on-board lower-level controller. To verify the performance of automatic control system, the unmanned vehicle is automatically navigated when carrying a rocket towards a launcher in a launch site. The experimental results show that the vehicle could align with the launcher smoothly and safely within a small lateral deviation of 1 cm. This fast reconstruction presents an efficient way of rebuilding low-cost unmanned special vehicles and other automatic moving platforms.

  4. Comparative analysis of aluminum-air battery propulsion systems for passenger vehicles

    Science.gov (United States)

    Salisbury, J. D.; Behrin, E.; Kong, M. K.; Whisler, D. J.

    1980-02-01

    Three electric propulsion systems using an aluminum air battery were analyzed and compared to the internal combustion engine (ICE) vehicle. The engine and fuel systems of a representative five passenger highway vehicle were replaced conceptually by each of the three electric propulsion systems. The electrical vehicles were constrained by the computer simulation to be equivalent to the ICE vehicle in range and acceleration performance. The vehicle masses and aluminum consumption rates were then calculated for the electric vehicles and these data were used as figures of merit. The Al-air vehicles analyzed were (1) an Al-air battery only electric vehicle; (2) an Al-air battery combined with a nickel zinc secondary battery for power leveling and regenerative braking; and (3) an Al-air battery combined with a flywheel for power leveling and regenerative braking. All three electric systems compared favorably with the ICE vehicle.

  5. A Low-Cost Vehicle Anti-Theft System Using Obsolete Smartphone

    Directory of Open Access Journals (Sweden)

    Bang Liu

    2018-01-01

    Full Text Available In modern society, vehicle theft has become an increasing problem to the general public. Deploying onboard anti-theft systems could relieve this problem, but it often requires extra investment for vehicle owners. In this paper, we propose the idea of PhoneInside, which does not need a special device but leverages an obsolete smartphone to build a low-cost vehicle anti-theft system. After being fixed in the vehicle body with a car charger, the smartphone can detect vehicle movement and adaptively use GPS, cellular/WiFi localization, and dead reckoning to locate the vehicle during driving. Especially, a novel Velocity-Aware Dead Reckoning (VA-DR method is presented, which utilizes map knowledge and vehicle’s turns at road curves and intersections to estimate velocity for trajectory computation. Compared to traditional dead reckoning, it reduces accumulated errors and achieves great improvement in localization accuracy. Furthermore, based on the learning of the driving history, our system can establish individual mobility model for a vehicle and distinguish abnormal driving behaviors by a Long Short Term Memory (LSTM network. With the help of ad hoc authentication, the system can identify vehicle theft and send out timely alarming and tracking messages for rapid recovery. The realistic experiments running on Android smartphones prove that our system can detect vehicle theft effectively and locate a stolen vehicle accurately, with average errors less than the sight range.

  6. Posture estimation system for underground mine vehicles

    CSIR Research Space (South Africa)

    Hlophe, K

    2010-09-01

    Full Text Available Page 1 of 8 25th International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 13-16 July 2010, Pretoria, South Africa A POSTURE ESTIMATION SYSTEM FOR UNDERGROUND MINE VEHICLES Khonzumusa Hlophe1, Gideon Ferreira2... and the transmitter. The main difference between the three systems is their implementation. This paper describes an implementation of a posture estimation system for underground mine vehicles. The paper is organized as follows. In the next section, a brief...

  7. Future Automotive Systems Technology Simulator (FASTSim)

    Energy Technology Data Exchange (ETDEWEB)

    2018-04-11

    An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.

  8. Heavy Vehicles on Minor Highway Bridges

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Enevoldsen, I.

    The present paper worked out as a part of a research project on "Dynamic amplification factor of vehicle loadings on smaller bridges" establishes a two-dimensional spectral description of the road roughness surface based on measurements from a Danish road using so-called Profilograph used by Dani...

  9. Traffic Information Unit, Traffic Information System, Vehicle Management System, Vehicle, and Method of Controlling a Vehicle

    NARCIS (Netherlands)

    Papp, Z.; Doodeman, G.J.N.; Nelisse, M.W.; Sijs, J.; Theeuwes, J.A.C.; Driessen, B.J.F.

    2010-01-01

    A traffic information unit (MD1, MD2, MD3) according to the invention comprises a facility (MI) for tracking vehicle state information of individual vehicles present at a traffic infrastructure and a facility (T) for transmitting said vehicle state information to a vehicle (70B, 70E). A traffic

  10. A PEMFC hybrid electric vehicle real time control system

    Science.gov (United States)

    Sun, Hongqiao

    In recent years, environmental friendly technologies and alternative energy solutions have drawn a lot of public attentions due to global energy crisis and pollution issues. Fuel cell (FC), a technology invented almost at the same time as the internal combustion (IC) engine, is now the focus of the automotive industry again. The fuel cell vehicle (FCV) has zero emission and its efficiency is significantly higher than the conventional IC engine power vehicles. Among a variety of FCV technologies, proton exchange membrane (PEM) FC vehicle appears to be far more attractive and mature. The prototype PEMFC vehicle has been developed and demonstrated to the public by nearly all the major automotive manufacturers in recent years. However, to the interest of the public research, publications and documentations on the PEMFC vehicle technology are rarely available due to its proprietary nature, which essentially makes it a secured technology. This dissertation demonstrates a real world application of a PEMFC hybrid electric vehicle. Through presenting the vehicle design concept, developing the real time control system and generating generic operation principles, this dissertation targets at establishing the public knowledge base on this new technology. A complete PEMFC hybrid electric vehicle design, including vehicle components layout, process flow diagram, real time control system architecture, subsystem structures and control algorithms, is presented in order to help understand the whole vehicle system. The design concept is validated through the vehicle demonstration. Generic operating principles are established along with the validation process, which helps populate this emerging technology. Thereafter, further improvements and future research directions are discussed.

  11. Heavy Lift for Exploration: Options and Utilization

    Science.gov (United States)

    Creech, Steve; Sumrall, Phil

    2010-01-01

    Every study of exploration capabilities since the Apollo Program has recommended the renewal of a heavy lift launch capability for the United States. NASA is aggressively pursuing that capability. This paper will discuss several aspects of that effort and the potential uses for that heavy lift capability. The need for heavy lift was cited most recent in the findings of the Review of U.S. Human Space Flight Plans Committee. Combined with considerations of launch availability and on-orbit operations, the Committee finds that exploration will benefit from the availability of a heavy-lift vehicle, the report said. In addition, heavy lift would enable the launching of large scientific observatories and more capable deep-space missions. It may also provide benefit in national security applications. The most recent focus of NASA s heavy lift effort is the Ares V cargo launch vehicle, which is part of the Constellation Program architecture for human exploration beyond low Earth orbit (LEO). The most recent point-of-departure configuration of the Ares V was approved during the Lunar Capabilities concept Review (LCCR) in 2008. The Ares V first stage propulsion system consists of a core stage powered by six commercial liquid hydrogen/liquid oxygen (LH2/LOX) RS-68 engines, flanked by two 5.5-segment solid rocket boosters (SRBs) based on the 5-segment Ares I first stage. The boosters use the same Polybutadiene Acrylonitrile (PBAN) propellant as the Space Shuttle. Atop the core stage is the Earth departure stage (EDS), powered by a single J-2X upper stage engine based on the Ares I upper stage engine. The 33-foot-diameter payload shroud can enclose a lunar lander, scientific instruments, or other payloads. Since LCCR, NASA has continued to refine the design through several successive internal design cycles. In addition, NASA has worked to quantify the broad national consensus for heavy lift in ways that, to the extent possible, meet the needs of the user community.

  12. Advanced hybrid and electric vehicles system optimization and vehicle integration

    CERN Document Server

    2016-01-01

    This contributed volume contains the results of the research program “Agreement for Hybrid and Electric Vehicles”, funded by the International Energy Agency. The topical focus lies on technology options for the system optimization of hybrid and electric vehicle components and drive train configurations which enhance the energy efficiency of the vehicle. The approach to the topic is genuinely interdisciplinary, covering insights from fields. The target audience primarily comprises researchers and industry experts in the field of automotive engineering, but the book may also be beneficial for graduate students.

  13. Vehicle emission factors of solid nanoparticles in the laboratory and on the road using Portable Emission Measurement Systems (PEMS

    Directory of Open Access Journals (Sweden)

    Barouch eGiechaskiel

    2015-12-01

    Full Text Available Emission inventories are used to quantify sources and identify trends in the emissions of air pollutants. They use vehicle-specific emission factors that are typically determined in the laboratory, through remote-sensing, vehicle chasing experiments and, more recently, on-board Portable Emission Measurement Systems (PEMS. Although PEMS is widely applied to measure gaseous pollutants, their application to Solid Particle Number (SPN emissions is new. In this paper, we discuss the current status of determining SPN emission factors both on the chassis dynamometer and on-road using PEMS-SPN. First, we determine the influence of the measurement equipment, ambient temperature, driving style and cycle characteristics, and the extra mass of the PEMS equipment on the SPN emissions. Afterward, we present the SPN emissions under type-approval conditions as well as on the road of two heavy-duty diesel vehicles equipped with Diesel Particulate Filter (DPF (one Euro VI, two light-duty diesel vehicles equipped with DPF, one light-duty vehicle equipped with a Port Fuel Injection engine (PFI, and seven Gasoline Direct Injection (GDI passenger cars (two Euro 6. We find that cold-start and strong accelerations tend to substantially increase SPN emissions. The two heavy-duty vehicles showed emissions around 2×10^13 p/km (Euro V truck and 6×10^10 p/km (Euro VI truck, respectively. One of the DPF-equipped light-duty vehicles showed emissions of 8×10^11 p/km, while the other one had one order of magnitude lower emissions. The PFI car had SPN emissions slightly higher than 1×10^12 p/km. The emissions of GDI cars spanned approximately from 8×10^11 p/km to 8×10^12 p/km. For the cars without DPF, the SPN emissions remained within a factor of two of the laboratory results. This factor was on average around 0.8 for the Euro 6 and 1.6 for the Euro 5 GDIs. The DPF equipped vehicles showed a difference of almost one order of magnitude between laboratory and on-road tests

  14. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  15. Anticipatory vehicle routing using delegate multi-agent systems

    OpenAIRE

    Weyns, Danny; Holvoet, Tom; Helleboogh, Alexander

    2007-01-01

    This paper presents an agent-based approach, called delegate multi-agent systems, for anticipatory vehicle routing to avoid traffic congestion. In this approach, individual vehicles are represented by agents, which themselves issue light-weight agents that explore alternative routes in the environment on behalf of the vehicles. Based on the evaluation of the alternatives, the vehicles then issue light-weight agents for allocating road segments, spreading the vehicles’ intentions and coordi...

  16. Integrated vehicle-based safety systems light-vehicle field operational test, methodology and results report.

    Science.gov (United States)

    2010-12-01

    "This document presents the methodology and results from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michi...

  17. A Low-Cost Vehicle Anti-Theft System Using Obsolete Smartphone

    OpenAIRE

    Liu, Bang; Liu, Nianbo; Chen, Guihai; Dai, Xili; Liu, Ming

    2018-01-01

    In modern society, vehicle theft has become an increasing problem to the general public. Deploying onboard anti-theft systems could relieve this problem, but it often requires extra investment for vehicle owners. In this paper, we propose the idea of PhoneInside, which does not need a special device but leverages an obsolete smartphone to build a low-cost vehicle anti-theft system. After being fixed in the vehicle body with a car charger, the smartphone can detect vehicle movement and adaptiv...

  18. TA-60-1 Heavy Equipment Shop Areas SWPPP Rev 2 Jan 2017-Final

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, Jillian Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    The primary activities and equipment areas at the facility that are potential stormwater pollution sources include; The storage of vehicles and heavy equipment awaiting repair; or repaired vehicles waiting to be picked up; The storage and handling of oils, anti-freeze, solvents, degreasers, batteries and other chemicals for the maintenance of vehicles and heavy equipment; and Equipment cleaning operations including exterior vehicle wash-down. Steam cleaning is only done on the steam cleaning pad area located at the north east end of Building 60-0001.

  19. Automatic vehicle counting system for traffic monitoring

    Science.gov (United States)

    Crouzil, Alain; Khoudour, Louahdi; Valiere, Paul; Truong Cong, Dung Nghy

    2016-09-01

    The article is dedicated to the presentation of a vision-based system for road vehicle counting and classification. The system is able to achieve counting with a very good accuracy even in difficult scenarios linked to occlusions and/or presence of shadows. The principle of the system is to use already installed cameras in road networks without any additional calibration procedure. We propose a robust segmentation algorithm that detects foreground pixels corresponding to moving vehicles. First, the approach models each pixel of the background with an adaptive Gaussian distribution. This model is coupled with a motion detection procedure, which allows correctly location of moving vehicles in space and time. The nature of trials carried out, including peak periods and various vehicle types, leads to an increase of occlusions between cars and between cars and trucks. A specific method for severe occlusion detection, based on the notion of solidity, has been carried out and tested. Furthermore, the method developed in this work is capable of managing shadows with high resolution. The related algorithm has been tested and compared to a classical method. Experimental results based on four large datasets show that our method can count and classify vehicles in real time with a high level of performance (>98%) under different environmental situations, thus performing better than the conventional inductive loop detectors.

  20. Magnetic fluctuations in heavy fermion systems

    International Nuclear Information System (INIS)

    Broholm, C.L.

    1989-06-01

    Magnetic order and fluctuations in the heavy Fermion systems UPt 3 , U 2 Zn 17 and URu 2 Si 2 have been studied by neutron scattering. Single crystalline samples and triple-axis neutron-scattering techniques with energy transfers between 0 and 40 meV and energy resolutions between 0.1 meV and 4 meV have been employed. UPt 3 develops an antiferromagnetically ordered moment of (0.02±0.005) μ B below T N = 5 K which doubles the unit cell in the basal plane and coexists with superconductivity below T c = 0.5 K. The magnetic fluctuations are relaxational, and enhanced at the antiferromagnetic zone center in a low-energy regime. The characteristic zone-center relaxation energy is 0.3 meV. The temperature- and field-dependence of the antiferromagnetic order in the superconducting phase suggest a close relation between these two properties in UPt 3 . U 2 Zn 17 has a broad spectrum of magnetic fluctuations, even below T N = 9.7 K, of which the transverse part below 10 meV is strongly enhanced at the antiferromagnetic zone center. The system has an anomalously extended critical region and the antiferromagnetic phase transition seems to be driven by the temperature-dependence of an effective RKKY interaction, as anticipated theoretically. URu 2 Si 2 , a strongly anisotropic heavy Fermion system, has a high-energy regime of antiferromagnetically-correlated overdamped magnetic fluctuations. Below T N = 17.5 K weak antiferromagnetic order, μ = (0.04±0.01)μ B , with finite correlations along the tetragonal c axis, develops along with a low-energy regime of strongly dispersive singlet-singlet excitations. Below T c = 1 K antiferromagnetism coexists with superconductivity. A phenomenological model describing the exchange-enhanced overdamped magnetic fluctuations of heavy Fermion systems is proposed. Our experimental results are compared to the anomalous bulk properties of heavy Fermion systems, and to magnetic fluctuations in other metallic magnets. (orig.)

  1. 'H-Bahn' - Dortmund demonstration system. Automatic vehicle protection system

    Energy Technology Data Exchange (ETDEWEB)

    Rosenkranz

    1984-01-01

    The automatic vehicle protection system of the H-Bahn at the Universtiy of Dortmund is responsible for fail-safe operating of the automatic vehicles. Its functions are protection of vehicle operation and protection of passengers boarding and leaving the vehicles. These functions are managed decentrally by two fail-safe operating controllers. Besides the well-known relay-techniques of railway-fail-safe systems, electronics are applied which are based on safe operating URTL-microcontrollers. These are controlled by software stored in EPROMs. A connection link using glass-fibres serves for safe data-exchange between the two fail-safe operating controllers. The experts' favourable reports on 'train protection and safety during passenger processing' were completed in March 84; thus, transportation of passengers could start in April 84.

  2. Controlling active cabin suspensions in commercial vehicles

    NARCIS (Netherlands)

    Evers, W.J.E.; Besselink, I.J.M.; Teerhuis, A.P.; Knaap, van der A.C.M.; Nijmeijer, H.

    2009-01-01

    The field of automotive suspensions is changing. Semi-active and active suspensions are starting to become viable options for vehicle designers. Suspension design for commercial vehicles is especially interesting given its potential. An active cabin suspension for a heavy-duty truck is considered,

  3. Intelligent Emergency Response System for Police Vehicles in India

    DEFF Research Database (Denmark)

    Ganeshan, Ishan; Memon, Nasrullah

    2015-01-01

    time by the police vehicles. In the proposed system, the administrator can view the performance of all the police vehicles at any time through a web portal. The system used traditional data mining algorithms in order to analyze crimes in different areas of a city and at different times of the day....... Based on this crime mapping, the administrator assigns patrol schedules for different police vehicles throughout the day. The proposed system would make it very easy for people to call for the help, and the police authorities to know the locations of the callers and identify crime hot spots...... and the administrator to keep track of the performance of each police vehicle....

  4. Multi-actuators vehicle collision avoidance system - Experimental validation

    Science.gov (United States)

    Hamid, Umar Zakir Abdul; Zakuan, Fakhrul Razi Ahmad; Akmal Zulkepli, Khairul; Zulfaqar Azmi, Muhammad; Zamzuri, Hairi; Rahman, Mohd Azizi Abdul; Aizzat Zakaria, Muhammad

    2018-04-01

    The Insurance Institute for Highway Safety (IIHS) of the United States of America in their reports has mentioned that a significant amount of the road mishaps would be preventable if more automated active safety applications are adopted into the vehicle. This includes the incorporation of collision avoidance system. The autonomous intervention by the active steering and braking systems in the hazardous scenario can aid the driver in mitigating the collisions. In this work, a real-time platform of a multi-actuators vehicle collision avoidance system is developed. It is a continuous research scheme to develop a fully autonomous vehicle in Malaysia. The vehicle is a modular platform which can be utilized for different research purposes and is denominated as Intelligent Drive Project (iDrive). The vehicle collision avoidance proposed design is validated in a controlled environment, where the coupled longitudinal and lateral motion control system is expected to provide desired braking and steering actuation in the occurrence of a frontal static obstacle. Results indicate the ability of the platform to yield multi-actuators collision avoidance navigation in the hazardous scenario, thus avoiding the obstacle. The findings of this work are beneficial for the development of a more complex and nonlinear real-time collision avoidance work in the future.

  5. Deterioration Models for Cement Bound Materials in Structural Design and Evaluation of Heavy Duty Pavements

    DEFF Research Database (Denmark)

    Skar, Asmus; Holst, Mogens Løvendorf

    Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design of such ......Ports and industries require special types of pavements to resist the heavy static load from containers and continuous loads from operation vehicles. To reduce the risk of rutting and settlements over time concrete or compositepavement systems are typically applied. The structural design...... of such pavements are today based on Mechanistic-Empirical (M-E) methods. The M-E method is appropriate for many situations, in other situations it may lead to overdesign, or maybe worse, underdesign. The method has limited capabilities and cannot account for signicant factors affecting the pavement response...... number of model parameters. In order to move a step towards more generalised structural design methods for analysis of heavy duty pavements, this study aims at developing a mechanistic approach based on constitutive models. A simple framework for engineering application is sought; creating a rational...

  6. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  7. Four-Wheel Vehicle Suspension System

    Science.gov (United States)

    Bickler, Donald B.

    1990-01-01

    Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).

  8. Thermoelectrics as elements of hybrid-electric vehicle thermal energy systems

    Science.gov (United States)

    Headings, Leon; Washington, Gregory; Jaworski, Christopher M.

    2008-03-01

    Despite vast technological improvements, the traditional internal combustion powered vehicle still achieves only 25- 30% efficiency, with the remainder lost primarily as heat. While the load leveling offered by hybrid-electric vehicle technology helps to improve this overall efficiency, part of the efficiency gains are achieved by making new systems such as regenerative braking viable. In a similar fashion, thermoelectric (TE) energy recovery has long been considered for traditional vehicles with mixed results, but little has been done to consider thermoelectrics in the framework of the unique energy systems of hybrid vehicles. Systems that may not have been viable or even possible with traditional vehicles may offer improvements to system efficiency as well as emissions, vehicle durability, passenger comfort, and cost. This research describes a simulation developed for evaluating and optimizing thermoelectric energy recovery systems and results for four different system configurations. Two novel system configurations are presented which offer the potential for additional benefits such as emissions reduction that will soon be quantified. In addition, a test setup is presented which was constructed for the testing and validation of various thermoelectric recovery systems. Actual test performance was near the expected theoretical performance and supported the conclusions reached from the computer simulations.

  9. In-vehicle signing functions and systems concepts

    Energy Technology Data Exchange (ETDEWEB)

    Tufano, D.R.; Spelt, P.F.; Knee, H.E.

    1996-03-01

    This paper describes functional requirements and system concepts for an In-Vehicle Signing (IVS) system, which will bring information from roadway signs, signals, and pavement markings into the vehicle for presentation to the driver. Information filter functions will assure that the only messages displayed are those which are important to the driver and which apply. Display functions will optimize the presentation of the message to ambient conditions, driver preferences, the number of simultaneous messages, and the urgency of the message. Timing functions will display a sign as soon as it is needed, for the entire time that it applies, and only while it applies. IVS is one of the core components of an integrated In-Vehicle Information System, which will manage and fuse all driving-related information. Two different IVS system concepts have been investigated: one based on a map database, the other on beacon technology. This work is being conducted by the Oak Ridge National Laboratory for the US Federal Highway Administration as part of the Intelligent Transportation System Program.

  10. Autonomous system for launch vehicle range safety

    Science.gov (United States)

    Ferrell, Bob; Haley, Sam

    2001-02-01

    The Autonomous Flight Safety System (AFSS) is a launch vehicle subsystem whose ultimate goal is an autonomous capability to assure range safety (people and valuable resources), flight personnel safety, flight assets safety (recovery of valuable vehicles and cargo), and global coverage with a dramatic simplification of range infrastructure. The AFSS is capable of determining current vehicle position and predicting the impact point with respect to flight restriction zones. Additionally, it is able to discern whether or not the launch vehicle is an immediate threat to public safety, and initiate the appropriate range safety response. These features provide for a dramatic cost reduction in range operations and improved reliability of mission success. .

  11. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO{sub 2}-emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market

  12. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    International Nuclear Information System (INIS)

    Nielsen, L.H.; Joergensen, K.

    2000-04-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore to illustrate the potential synergistic interplay between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalised electricity market are analysed. The project focuses on battery electric vehicles and fuel cell vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and for the conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport vehicles. Focus is put on the Danish fleet of passenger cars and delivery vans. The scenario analysis includes assumptions on market potential developments and market penetration for the alternative vehicles. Vehicle replacement rates in the Danish transport fleet and the size of fleet development are based on data from The Danish Road Directorate. The electricity supply system development assumed is based on the Danish energy plan, Energy 21, The Plan scenario. The time horizon of the analysis is year 2030. Results from the scenario analysis include the time scales involved for the potential transition towards electricity based vehicles, the fleet composition development, the associated developments in transport fuel consumption and fuel substitution, and the potential CO 2 -emission reduction achievable in the overall transport and power supply system. Detailed model simulations, on an hourly basis, have furthermore been carried out for year 2005 that address potential electricity purchase options for electric vehicles in the context of a liberalised electricity market. The

  13. Electric vehicle energy management system

    Science.gov (United States)

    Alaoui, Chakib

    This thesis investigates and analyzes novel strategies for the optimum energy management of electric vehicles (EVs). These are aimed to maximize the useful life of the EV batteries and make the EV more practical in order to increase its acceptability to market. The first strategy concerns the right choice of the batteries for the EV according to the user's driving habits, which may vary. Tests conducted at the University of Massachusetts Lowell battery lab show that the batteries perform differently from one manufacturer to the other. The second strategy was to investigate the fast chargeability of different batteries, which leads to reduce the time needed to recharge the EV battery pack. Tests were conducted again to prove that only few battery types could be fast charged. Test data were used to design a fast battery charger that could be installed in an EV charging station. The third strategy was the design, fabrication and application of an Electric Vehicle Diagnostic and Rejuvenation System (EVDRS). This system is based on Mosfet Controlled Thyristors (MCTs). It is capable of quickly identifying any failing battery(s) within the EV pack and rejuvenating the whole battery pack without dismantling them and unloading them. A novel algorithm to rejuvenate Electric Vehicle Sealed Lead Acid Batteries is described. This rejuvenation extends the useful life of the batteries and makes the EV more competitive. The fourth strategy was to design a thermal management system for EV, which is crucial to the safe operation, and the achievement of normal/optimal performance of, electric vehicle (EV) batteries. A novel approach for EV thermal management, based on Pettier-Effect heat pumps, was designed, fabricated and tested in EV. It shows the application of this type of technology for thermal management of EVs.

  14. Complex Decision-Making Applications for the NASA Space Launch System

    Science.gov (United States)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman, Stuart

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. NASA is working diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond LEO large ]scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decisionmaking framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing FOM-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  15. Optimal Distributed Controller Synthesis for Chain Structures: Applications to Vehicle Formations

    OpenAIRE

    Khorsand, Omid; Alam, Assad; Gattami, Ather

    2012-01-01

    We consider optimal distributed controller synthesis for an interconnected system subject to communication constraints, in linear quadratic settings. Motivated by the problem of finite heavy duty vehicle platooning, we study systems composed of interconnected subsystems over a chain graph. By decomposing the system into orthogonal modes, the cost function can be separated into individual components. Thereby, derivation of the optimal controllers in state-space follows immediately. The optimal...

  16. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Full Text Available Introduction. It has been recognized that environmental pollution can affect the quality of health of the human population. Heavy metals are among the group of highly emitted contaminants and their adverse effect of living organisms has been widely studied in recent decades. Lifestyle and quality of the ambient environment are among these factors which can mainly contribute to the heavy metals exposure in humans. Objective. A review of literature linking heavy metals and the female reproductive system and description of the possible associations with emission and exposure of heavy metals and impairments of female reproductive system according to current knowledge. Results. The potential health disorders caused by chronic or acute heavy metals toxicity include immunodeficiency, osteoporosis, neurodegeneration and organ failures. Potential linkages of heavy metals concentration found in different human organs and blood with oestrogen-dependent diseases such as breast cancer, endometrial cancer, endometriosis and spontaneous abortions, as well as pre-term deliveries, stillbirths and hypotrophy, have also been reported. Conclusions. Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  17. 40 CFR 205.57-3 - Test vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Test vehicle preparation. 205.57-3... PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.57-3 Test vehicle preparation. (a) Prior to the official test, the test vehicle selected in accordance with § 205-57-2 shall not...

  18. Design of vehicle intelligent anti-collision warning system

    Science.gov (United States)

    Xu, Yangyang; Wang, Ying

    2018-05-01

    This paper mainly designs a low cost, high-accuracy, micro-miniaturization, and digital display and acousto-optic alarm features of the vehicle intelligent anti-collision warning system that based on MCU AT89C51. The vehicle intelligent anti-collision warning system includes forward anti-collision warning system, auto parking systems and reversing anti-collision radar system. It mainly develops on the basis of ultrasonic distance measurement, its performance is reliable, thus the driving safety is greatly improved and the parking security and efficiency enhance enormously.

  19. Extent and variations in mobile phone use among drivers of heavy vehicles in Denmark

    DEFF Research Database (Denmark)

    Troglauer, Thomas; Hels, Tove; Christens, P.

    2006-01-01

    A substantial body of research has shown that use of mobile phones while driving can impair driving performance and increase the risk of being involved in accidents. Similarly, mobile phone use seems to be an increasing activity thus representing a relevant traffic safety issue. This paper...... investigates the extent and variations in mobile phone use among drivers of heavy vehicles in Denmark. The data was collected through written questionnaires and had a response rate of 58%. It was found that more than 99% of the drivers used mobile phones while driving. Despite a prohibition of hand-held mobile...... the number of stops and the amount of phone use. 0.5% reported that their use of mobile phones had contributed to an accident, while 6% had experienced their mobile phone use causing a dangerous situation. However, 66% reported experiencing dangerous situations because of others road users' mobile phone use...

  20. Integrated vehicle-based safety systems (IVBSS) : light vehicle platform field operational test data analysis plan.

    Science.gov (United States)

    2009-12-22

    This document presents the University of Michigan Transportation Research Institutes plan to : perform analysis of data collected from the light vehicle platform field operational test of the : Integrated Vehicle-Based Safety Systems (IVBSS) progr...

  1. Ergonomics in the arctic - a study and checklist for heavy machinery in open pit mining.

    Science.gov (United States)

    Reiman, Arto; Sormunen, Erja; Morris, Drew

    2016-11-22

    Heavy mining vehicle operators at arctic mines have a high risk of discomfort, musculoskeletal disorders and occupational accidents. There is a need for tailored approaches and safety management tools that take into account the specific characteristics of arctic work environments. The aim of this study was to develop a holistic evaluation tool for heavy mining vehicles and operator well-being in arctic mine environments. Data collection was based on design science principles and included literature review, expert observations and participatory ergonomic sessions. As a result of this study, a systemic checklist was developed and tested by eight individuals in a 350-employee mining environment. The checklist includes sections for evaluating vehicle specific ergonomic and safety aspects from a technological point of view and for checking if the work has been arranged so that it can be performed safely and fluently from an employee's point of view.

  2. Simulation Research on an Electric Vehicle Chassis System Based on a Collaborative Control System

    Directory of Open Access Journals (Sweden)

    Nenglian Feng

    2013-01-01

    Full Text Available This paper presents a collaborative control system for an electric vehicle chassis based on a centralized and hierarchical control architecture. The centralized controller was designed for the suspension and steering system, which is used for improving ride comfort and handling stability; the hierarchical controller was designed for the braking system, which is used for distributing the proportion of hydraulic braking and regenerative braking to improve braking performance. These two sub-controllers function at the same level of the vehicle chassis control system. In order to reduce the potential conflict between the two sub-controllers and realize a coordination optimization of electric vehicle performance, a collaborative controller was built, which serves as the upper controller to carry out an overall coordination analysis according to vehicle signals and revises the decisions of sub-controllers. A simulation experiment was carried out with the MATLAB/Simulink software. The simulation results show that the proposed collaborative control system can achieve an optimized vehicle handling stability and braking safety.

  3. An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2003-2010 Light-Duty Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Tom P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2018-01-05

    The Department of Energy’s (DOE) Vehicle Technologies Office funds research on development of technologies to improve the fuel economy of both light- and heavy-duty vehicles, including advanced combustion systems, improved batteries and electric drive systems, and new lightweight materials. Of these approaches to increase fuel economy and reduce fuel consumption, reducing vehicle mass through more extensive use of strong lightweight materials is perhaps the easiest and least expensive method; however, there is a concern that reducing vehicle mass may lead to more fatalities. Lawrence Berkeley National Laboratory (LBNL) has conducted several analyses to better understand the relationship between vehicle mass, size and safety, in order to ameliorate concerns that down-weighting vehicles will inherently lead to more fatalities. These analyses include recreating the regression analyses conducted by the National Highway Traffic Safety Administration (NHTSA) that estimate the relationship between mass reduction and U.S. societal fatality risk per vehicle mile of travel (VMT), while holding vehicle size (i.e. footprint, wheelbase times track width) constant; these analyses are referred to as LBNL Phase 1 analysis. In addition, LBNL has conducted additional analysis of the relationship between mass and the two components of risk per VMT, crash frequency (crashes per VMT) and risk once a crash has occurred (risk per crash); these analyses are referred to as LBNL Phase 2 analysis.

  4. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... fully develop improved brake systems and also to ensure vehicle control and stability while braking... [Docket No. NHTSA 2009-0175] RIN 2127-AK62 Federal Motor Vehicle Safety Standards; Air Brake Systems... Federal motor vehicle safety standard for air brake systems by requiring substantial improvements in...

  5. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... initial speeds, vehicle manufacturers will need to develop unique or complicated braking systems to comply... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring...

  6. Moderator clean-up system in a heavy water reactor

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Hamamura, Kenji.

    1983-01-01

    Purpose: To decrease the fluctuation of the poison concentration in heavy water moderator due to a heavy water clean-up system. Constitution: To a calandria tank filled with heavy water as poison-containing moderators, are connected both end of a pipeway through which heavy water flows and to which a clean-up device is provided. Strongly basic resin is filled within the clean-up device and a cooler is disposed to a pipeway at the upstream of the clean-up device. In this structure, the temperature of heavy water at the inlet of the clean-up device at a constant level between the temperature at the exit of the cooler and the lowest temperature for the moderator to thereby decrease the fluctuation in the poison concentration in the heavy water moderator due to the heavy water clean-up device. (Moriyama, K.)

  7. Knowledge-based fault diagnosis system for refuse collection vehicle

    International Nuclear Information System (INIS)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y.

    2015-01-01

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle

  8. Knowledge-based fault diagnosis system for refuse collection vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Tan, CheeFai; Juffrizal, K.; Khalil, S. N.; Nidzamuddin, M. Y. [Centre of Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    The refuse collection vehicle is manufactured by local vehicle body manufacturer. Currently; the company supplied six model of the waste compactor truck to the local authority as well as waste management company. The company is facing difficulty to acquire the knowledge from the expert when the expert is absence. To solve the problem, the knowledge from the expert can be stored in the expert system. The expert system is able to provide necessary support to the company when the expert is not available. The implementation of the process and tool is able to be standardize and more accurate. The knowledge that input to the expert system is based on design guidelines and experience from the expert. This project highlighted another application on knowledge-based system (KBS) approached in trouble shooting of the refuse collection vehicle production process. The main aim of the research is to develop a novel expert fault diagnosis system framework for the refuse collection vehicle.

  9. Systemic causes of heavy menstrual bleeding

    NARCIS (Netherlands)

    Verschueren, Sophie

    2017-01-01

    Heavy menstrual bleeding (HMB) is a common problem in fertile women. In addition to local factors, such as a polyp or a uterine fibroid, systemic causes may lead to HMB. These systemic causes are discussed in this thesis. For years, women with HMB were tested underlying thyroid disorder, but our

  10. Electric vehicles and renewable energy in the transport sector - energy system consequences. Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles

    DEFF Research Database (Denmark)

    Nielsen, L.H.; Jørgensen K.

    2000-01-01

    The aim of the project is to analyse energy, environmental and economic aspects of integrating electric vehicles in the future Danish energy system. Consequences of large-scale utilisation of electric vehicles are analysed. The aim is furthermore toillustrate the potential synergistic interplay...... between the utilisation of electric vehicles and large-scale utilisation of fluctuating renewable energy resources, such as wind power. Economic aspects for electric vehicles interacting with a liberalisedelectricity market are analysed. The project focuses on battery electric vehicles and fuel cell...... vehicles based on hydrogen. Based on assumptions on the future technical development for battery electric vehicles, fuel cell vehicles on hydrogen, and forthe conventional internal combustion engine vehicles, scenarios are set up to reflect expected options for the long-term development of road transport...

  11. Road Vehicle Monitoring System Based on Intelligent Visual Internet of Things

    Directory of Open Access Journals (Sweden)

    Qingwu Li

    2015-01-01

    Full Text Available In recent years, with the rapid development of video surveillance infrastructure, more and more intelligent surveillance systems have employed computer vision and pattern recognition techniques. In this paper, we present a novel intelligent surveillance system used for the management of road vehicles based on Intelligent Visual Internet of Things (IVIoT. The system has the ability to extract the vehicle visual tags on the urban roads; in other words, it can label any vehicle by means of computer vision and therefore can easily recognize vehicles with visual tags. The nodes designed in the system can be installed not only on the urban roads for providing basic information but also on the mobile sensing vehicles for providing mobility support and improving sensing coverage. Visual tags mentioned in this paper consist of license plate number, vehicle color, and vehicle type and have several additional properties, such as passing spot and passing moment. Moreover, we present a fast and efficient image haze removal method to deal with haze weather condition. The experiment results show that the designed road vehicle monitoring system achieves an average real-time tracking accuracy of 85.80% under different conditions.

  12. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    Science.gov (United States)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  13. Accurate Localization of Communicant Vehicles using GPS and Vision Systems

    Directory of Open Access Journals (Sweden)

    Georges CHALLITA

    2009-07-01

    Full Text Available The new generation of ADAS systems based on cooperation between vehicles can offer serious perspectives to the road security. The inter-vehicle cooperation is made possible thanks to the revolution in the wireless mobile ad hoc network. In this paper, we will develop a system that will minimize the imprecision of the GPS used to car tracking, based on the data given by the GPS which means the coordinates and speed in addition to the use of the vision data that will be collected from the loading system in the vehicle (camera and processor. Localization information can be exchanged between the vehicles through a wireless communication device. The creation of the system must adopt the Monte Carlo Method or what we call a particle filter for the treatment of the GPS data and vision data. An experimental study of this system is performed on our fleet of experimental communicating vehicles.

  14. Safety aspects of heavy goods vehicle construction.

    NARCIS (Netherlands)

    Schreuder, D.A.

    2017-01-01

    Road freight transport is an essential element in the present socio-economic structure of society. This society is consumption oriented, characterised by large concentrations of population, and concentrated centers of production an consumption that are geographically far apart. Thus heavy goods

  15. Onboard power line conditioning system for an electric or hybrid vehicle

    Science.gov (United States)

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  16. Dedicated natural gas vehicle with low emission

    NARCIS (Netherlands)

    Voogd, A. de; Weide, J. van der; Konig, A.; Wegener, R.

    1995-01-01

    In the introduction an overview is given of international activities in the field of natural gas vehicles. The main incentives for the use of natural gas in vehicles are: emission reduction in urban areas, fuel diversification, and long term availability. Heavy duty natural gas engines are mainly

  17. Simulation of speed control in acceleration mode of a heavy duty vehicle; Ogatasha no kasokuji ni okeru shasoku seigyo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Endo, S; Ukawa, H [Isuzu Advanced Engineering Center, Ltd., Tokyo (Japan); Sanada, K; Kitagawa, A [Tokyo Institute of Technology, Tokyo (Japan)

    1997-10-01

    A control law of speed of a heavy duty vehicle in acceleration mode is presented, which is an extended version of a control law in deceleration mode proposed by the authors. The control law is based on constant acceleration strategy. Using the control law, target velocity and target distance can be performed. Both control laws for acceleration and deceleration mode can be represented by a unified mathematical formulae. Some simulation results are shown to demonstrate the control performance. 7 refs., 9 figs., 2 tabs.

  18. Innovative control systems for tracked vehicle platforms

    CERN Document Server

    2014-01-01

     This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.

  19. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2011-07-27

    ... [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards; Air Brake Systems... final rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... between Bendix Commercial Vehicle Systems and Dana Corporation; and ArvinMeritor. The agency received four...

  20. Advanced hybrid vehicle propulsion system study

    Science.gov (United States)

    Schwarz, R.

    1982-01-01

    Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.

  1. Decontamination of the RA reactor heavy water system, Annex 9

    International Nuclear Information System (INIS)

    Maksimovic, Z.B.; Nikolic, R.M.; Marinkovic, M.D.; Jelic, Lj.M.

    1963-01-01

    Both stainless steel and aluminium parts of the RA reactor heavy water system system were decontaminated as well as the heavy water itself. System was contaminated with 60 Co. Decontamination factor was determined by activity measurements during distillation. Concentration of the corrosion products in the heavy water was measured by spectrochemical analysis, and found to be 0.1 - 1 mg/l. Chemical analyses of the aluminium and stainless steel surfaces showed that cobalt was adsorbed on the aluminium oxide layer. Water solution of 7%H 3 PO 4 + 2% CrO 3 was used for decontamination of the heavy water system and distillation device. This was found to be the most efficient solvent which does not affect stainless steel corrosion. Decontamination factors achieved were from 60 - 100. Decontamination results enabled determining the distribution of cobalt in the system: 10 Ci on the stainless steel parts, 50 Ci in the heavy water; and above 600 Ci on the fuel and experimental channels. Specific activity of 60 Co was calculated to be 15 Ci/g on the reactor channels, 8 Ci/g on the stainless steel parts and 3 Ci/g in the heavy water. Decontamination of the aluminium parts was not done because it was considered it could initiate corrosion. Since the efficiency of distillation is increased it was expected that permanent distillation would remove most of the activity in the reactor channels

  2. Design for Safety - The Ares Launch Vehicles Paradigm Change

    Science.gov (United States)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  3. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  4. Fission delay and GDR γ-ray from very heavy system

    International Nuclear Information System (INIS)

    Shen, W.Q.; Wang, J.S.; Ye, W.; Cai, Y.H.; Ma, Y.G.; Feng, J.; Fang, D.Q.; Cai, X.Z.

    1999-01-01

    The study of the fission delay in reaction of 84 Kr+ 27 Al at 10.6 Mev/u and the systematics of fission delay are described. Authors also discussed the possibility to study the GDR γ rays emitted from the super-heavy compound system on the basis of the strong increasing of the GDR γ rays duo to the fission delay. The calculation results of the GDR γ rays from the super-heavy compound system via microscopic semi-classical Vlasov equation and the experimental data analysis for searching the super-heavy compound system via GDR γ were given

  5. Blind spot monitoring in light vehicles -- system performance.

    Science.gov (United States)

    2014-07-01

    This report summarizes findings of a small population study of blind spot monitoring systems (BSM) installed by : original vehicle manufacturers on standard production vehicles. The primary goals of these tests were to simulate real-world driving sce...

  6. 40 CFR 86.1231-90 - Vehicle preparation.

    Science.gov (United States)

    2010-07-01

    ... Emission Test Procedures for New Gasoline-Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1231-90 Vehicle preparation. (a) Prepare the fuel tank(s) for... tank is 40 percent full. (b) Provide additional fittings and adapters, as required, to accommodate a...

  7. Point-Cloud Compression for Vehicle-Based Mobile Mapping Systems Using Portable Network Graphics

    Science.gov (United States)

    Kohira, K.; Masuda, H.

    2017-09-01

    A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG) format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.

  8. POINT-CLOUD COMPRESSION FOR VEHICLE-BASED MOBILE MAPPING SYSTEMS USING PORTABLE NETWORK GRAPHICS

    Directory of Open Access Journals (Sweden)

    K. Kohira

    2017-09-01

    Full Text Available A mobile mapping system is effective for capturing dense point-clouds of roads and roadside objects.Point-clouds of urban areas, residential areas, and arterial roads are useful for maintenance of infrastructure, map creation, and automatic driving. However, the data size of point-clouds measured in large areas is enormously large. A large storage capacity is required to store such point-clouds, and heavy loads will be taken on network if point-clouds are transferred through the network. Therefore, it is desirable to reduce data sizes of point-clouds without deterioration of quality. In this research, we propose a novel point-cloud compression method for vehicle-based mobile mapping systems. In our compression method, point-clouds are mapped onto 2D pixels using GPS time and the parameters of the laser scanner. Then, the images are encoded in the Portable Networking Graphics (PNG format and compressed using the PNG algorithm. In our experiments, our method could efficiently compress point-clouds without deteriorating the quality.

  9. Hydraulic regenerative system for a light vehicle

    OpenAIRE

    Orpella Aceret, Jordi; Guinart Trayter, Xavier

    2009-01-01

    The thesis is based in a constructed light vehicle that must be improved by adding a hydraulic energy recovery system. This vehicle named as TrecoLiTH, participated in the Formula Electric and Hybrid competition (Formula EHI) 2009 in Italy -Rome- and won several awards. This system consists in two hydraulic motors hub mounted which are used to store fluid at high pressure in an accumulator when braking. Through a valve the pressure will flow from the high pressure accumulator to the low press...

  10. In-vehicle signing functions of an in-vehicle information system

    Energy Technology Data Exchange (ETDEWEB)

    Tufano, D.R.; Knee, H.E.; Spelt, P.F.

    1996-04-01

    The definition of In-Vehicle Signing (IVS) functions was guided by the principles of traffic engineering as they apply to the design and placement of roadway signs. Because of the dynamic and active nature of computing, communications, and display technology, IVS can fulfill the signing principles of traffic engineering in ways that have been impossible with conventional signage. Current signing technology represents a series of compromises of these principles, especially the data and equations contributing to the calculation of required sight distance. A number of conditions relevant to sight distance are quite variable, e.g.: vehicle speed, visibility, weather, and driver reaction time. However, conventional signing requires that there are fixed values of each variable for the determination of (e.g.) legibility distance. IVS, on the other hand, will be able to tailor the timing of sign presentation to the dynamically diverse variable values of all of these conditions. A clear, in-vehicle sign display, adaptive to ambient and driver conditions, will in fact obviate the entire issue of sign legibility. These capabilities, together with information filtering functions, will truly enhance the presentation of sign information to drivers. The development of IVS is a critical step in the development of an integrated In-Vehicle Information System (IVIS).

  11. Cooperative Networked Control of Dynamical Peer-to-Peer Vehicle Systems

    National Research Council Canada - National Science Library

    Dullerud, Geir E; Bullo, Francesco; Feron, Eric; Frazzoli, Emilio; Kumar, P. R; Lall, Sanjay; Liberzon, Daniel; Lynch, Nancy A; Mitchell, John C; Mitter, Sanjoy K

    2007-01-01

    ... and semi-autonomous air vehicles. The research is specifically aimed at the critical reliability and performance issues facing autonomous vehicle systems which operate in highly uncertain environments, and enables the vehicles...

  12. A Concept of Operations for an Integrated Vehicle Health Assurance System

    Science.gov (United States)

    Hunter, Gary W.; Ross, Richard W.; Berger, David E.; Lekki, John D.; Mah, Robert W.; Perey, Danie F.; Schuet, Stefan R.; Simon, Donald L.; Smith, Stephen W.

    2013-01-01

    This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems.

  13. Impact of emerging clean vehicle system on water stress

    International Nuclear Information System (INIS)

    Cai, Hua; Hu, Xiaojun; Xu, Ming

    2013-01-01

    Graphical abstract: Display Omitted - Highlights: • Clean vehicles may increase US water consumption up to 2810 billion gallons/year. • Large-scale clean vehicle adoption could lead to severe regional water stress. • Fuel choice for clean vehicle is crucial in minimizing regional water stress. • Regional optimization illustrated the importance of regional consideration. - Abstract: While clean vehicles (i.e., vehicles powered by alternative fuels other than fossil fuels) offer great potential to reduce greenhouse gas emissions from gasoline-based vehicles, the associated impact on water resources has not yet been fully assessed. This research provides a systematic evaluation of the impact of a fully implemented clean vehicle system on national and state-level water demand and water stress. On the national level, based on existing policies, transitioning the current gasoline-based transportation into one with clean vehicles will increase national annual water consumption by 1950–2810 billion gallons of water, depending on the market penetration of electric vehicles. On the state level, variances of water efficiency in producing different fuels are significant. The fuel choice for clean vehicle development is especially crucial for minimizing water stress increase in states with already high water stress, high travel demands, and significant variations in water efficiency in producing different alternative fuels. Current development of clean vehicle infrastructure, however, has not reflected these state-level variations. This study takes an optimization approach to further evaluate impacts on state-level water stress from a fully implemented clean vehicle system and identified potential roles (fuel producer or consumer) states may play in real world clean vehicle development scenario. With an objective of minimizing overall water stress impact, our optimization model aims to provide an analytical framework to better assess impacts on state-level water

  14. A Review Of Design And Control Of Automated Guided Vehicle Systems

    NARCIS (Netherlands)

    T. Le-Anh (Tuan); M.B.M. de Koster (René)

    2004-01-01

    textabstractThis paper presents a review on design and control of automated guided vehicle systems. We address most key related issues including guide-path design, estimating the number of vehicles, vehicle scheduling, idle-vehicle positioning, battery management, vehicle routing, and conflict

  15. Complex Decision-Making Applications for the NASA Space Launch System

    Science.gov (United States)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Feldman, Stuart; Monk, Timothy

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decision-making framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  16. Tracking of nuclear shipments with automatic vehicle location systems

    International Nuclear Information System (INIS)

    Colhoun, C.J.K.

    1989-01-01

    A complete Automatic Vehicle Location System (AVL) consists of three main elements: (1) the location sensor in the vehicle, this device constantly determines the coordinates of the vehicles position; (2) the radio link between vehicle and central base; (3) the data processing and display in the central base. For all three elements there are several solutions. The optimal combination of the different techniques depends on the requirements of the special application

  17. In-Vehicle Information Systems

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2012-10-01

    Full Text Available The work considers different information systems, includingthe infonnation ~ystems with autonomous units, whichcany all their intelligence around with them, and those withcommunicating units, which infonn the motorist about the currentsituation of the road system by radio or other means. Thesymbols of various messages have three main objectives: to provideinstruction, to warn of oncoming dange1~ or to give adviceregarding parking or looking for altemative routes. When notused for these pwposes, they are used to provide general informationabout the weathe1~ temperature or possible attractions.The in-vehicle information systems fly to assist the motorist indriving, and they are promoted as part of the comprehensive intelligenttransport system.

  18. Canadian high speed magnetically levitated vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L [Queen' s Univ., Kingston, Ont.; Belanger, P R; Burke, P E; Dawson, G E; Eastham, A R; Hayes, W F; Ooi, B T; Silvester, P; Slemon, G R

    1978-04-01

    A technically feasible high speed (400 to 480 km/h) guided ground transportation system, based on the use of the vehicle-borne superconducting magnets for electrodynamic suspension and guidance and for linear synchronous motor propulsion was defined as a future modal option for Canadian application. Analysis and design proposals were validated by large-scale tests on a rotating wheel facility and by modelling system components and their interactions. Thirty ton vehicles carrying 100 passengers operate over a flat-topped elevated guideway, which minimizes system down-time due to ice and snow accumulation and facilitates the design of turn-outs. A clearance of up to 15 cm is produced by the electrodynamic interaction between the vehicle-borne superconducting magnets and aluminum guideway strips. Propulsion and automatic system control is provided by the superconducting linear synchronous motor which operates at good efficiency (0.74) and high power factor (0.95). The vehicle is guided primarily by the interaction between the LSM field magnet array and flat null-flux loops overlying the stator windings in the guideway. The linear synchronous motor, electrodynamic suspension as well as levitation strip joints, parasitic LSM winding losses and limitations to the use of ferromagnetic guideway reinforcement were investigated experimentally on the test wheel facility. The use of a secondary suspension assures adequate dynamic stability, and good ride quality is achieved by optimized passive components with respect to lateral modes and by an actively controlled secondary suspension with respect to vertical motion.

  19. Harmonic Analysis of Electric Vehicle Loadings on Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yijun A [University of Southern California, Department of Electrical Engineering; Xu, Yunshan [University of Southern California, Department of Electrical Engineering; Chen, Zimin [University of Southern California, Department of Electrical Engineering; Peng, Fei [University of Southern California, Department of Electrical Engineering; Beshir, Mohammed [University of Southern California, Department of Electrical Engineering

    2014-12-01

    With the increasing number of Electric Vehicles (EV) in this age, the power system is facing huge challenges of the high penetration rates of EVs charging stations. Therefore, a technical study of the impact of EVs charging on the distribution system is required. This paper is applied with PSCAD software and aimed to analyzing the Total Harmonic Distortion (THD) brought by Electric Vehicles charging stations in power systems. The paper starts with choosing IEEE34 node test feeder as the distribution system, building electric vehicle level two charging battery model and other four different testing scenarios: overhead transmission line and underground cable, industrial area, transformer and photovoltaic (PV) system. Then the statistic method is used to analyze different characteristics of THD in the plug-in transient, plug-out transient and steady-state charging conditions associated with these four scenarios are taken into the analysis. Finally, the factors influencing the THD in different scenarios are found. The analyzing results lead the conclusion of this paper to have constructive suggestions for both Electric Vehicle charging station construction and customers' charging habits.

  20. An electric vehicle driving behavior model in the traffic system with a wireless charging lane

    Science.gov (United States)

    He, Jia; Huang, Hai-Jun; Yang, Hai; Tang, Tie-Qiao

    2017-09-01

    In this paper, a car-following model is proposed to study each EV's (electric vehicle) motion behavior near the WCL (wireless charging lane) and a lane-changing rule is designed to describe the EV's lane-changing behavior. Then, the car-following model and lane-changing rule are used to explore each EV's micro driving behavior in a two-lane system with a WCL. Finally, the impacts of the WCL on each EV's motion behavior are investigated. The numerical results show that each EV should run slowly on the WCL if it needs charge of electricity, that the EV's lane-changing behavior has great effects on the whole system, that the delay time caused by the WCL turns more prominent when the traffic turns heavy, and that lane-changing frequently occurs near the WCL (especially at the downstream of the WCL).

  1. ADVANCED DRIVER SAFETY SUPPORT SYSTEMS FOR THE URBAN TYPE VEHICLE

    Directory of Open Access Journals (Sweden)

    Katarzyna JEZIERSKA-KRUPA

    2015-12-01

    Full Text Available Smart Power Team is currently working on the design of an urban electric vehicle designed to compete in the Shell Eco-marathon. One important aspect of this type of vehicle characteristics is it safety. The project of advanced driver assistance systems has included some proposals of such systems and the concept of their execution. The first concept, BLIS (Blind Spot Information System, is to build a system of informing a driver about vehicles appearing in the blind spot. The system constitutes a second concept, CDIS (Collision Detection and Information System, and it is designed to detect a vehicle collision and inform the team. Further systems are: DPMS (Dew Point Measurement System - a system which does not allow a situation, where the windows are fogged, OHRS (Overtaking Horn Reminder System - a system which checks overtaking and MSS (main supervision system - a supervisory system. These concepts are based on the assumption of the use of laser sensors, photoelectric, humidity and temperature, and other commercially available systems. The article presents a detailed description of driver assistance systems and virtual prototyping methodology for these systems, as well as the numerical results of the verification of one of the systems.

  2. Fiber optic gyroscopes for vehicle navigation systems

    Science.gov (United States)

    Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao

    1994-03-01

    Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.

  3. An anticipative escape system for vehicles in water crashes

    Science.gov (United States)

    Shen, Chuanliang; Wang, Jiawei; Yin, Qi; Zhu, Yantao; Yang, Jiawei; Liao, Mengdi; Yang, Liming

    2017-07-01

    In this article, it designs an escape system for vehicles in water crashes. The structure mainly contains sensors, control organs and actuating mechanism for both doors and windows. Sensors judge whether the vehicle falls into water or is in the falling process. The actuating mechanism accepts the signal delivered by the control organs, then open the electronic central lock on doors and meanwhile lower the window. The water escape system is able to anticipate drowning situations for vehicles and controls both doors and windows in such an emergency. Under the premise of doors staying in an undamaged state, it is for sure that people in the vehicle can open the door while drowning in the water and safely escape.

  4. Research on Dynamic Optimization for Road-friendly Vehicle Suspension

    Directory of Open Access Journals (Sweden)

    Lu Yongjie

    2014-10-01

    Full Text Available The heavy vehicle brings large dynamic loads to the road surface, which would reduce vehicle ride comfort and shorten road service life. The structure characteristic of heavy vehicle suspension has a significant impact on vehicle performance. Based on the D'Alembert principle, the dynamics models of independent and integral balanced suspension are proposed considering mass and inertia of balancing rod. The sprung mass acceleration and the tire dynamic force for two kinds of balanced suspension and the traditional quarter vehicle model are compared in frequency-domain and time-domain respectively. It is concluded that a quarter vehicle model simplified for balanced suspension could be used to evaluate the ride comfort of vehicle well, but it has some limitations in assessing the vehicle road-friendliness. Then, the sprung mass acceleration and the road damage coefficients are also analyzed under different vehicle design and running parameters at detail. Some conclusions are obtained: low suspension stiffness, high suspension damping and low tire stiffness are all favorable to improve vehicle performance; there is a saturation range of suspension damping enhancing vehicle performance; improving the road surface roughness and avoiding the no-load running are two effective methods to accomplish the better ride comfort and road-friendliness. The suspension stiffness and damping parameters are chosen for optimal parameters matching of road friendliness based on the approximation optimization method.

  5. Bus systems in motor vehicles; Bussysteme im Kfz

    Energy Technology Data Exchange (ETDEWEB)

    Schule, Roland

    2008-07-01

    There is hardly any modern vehicle without a bus system. This interactive learning software explains why electric and electronic systems in motor vehicles should be linked and uses various bus types to illustrate the various alternatives, bus structures, and data types. The physical side of bus systems is gone into, the data structure is explained, and the various bus typologies are outlined. From the fundamentals of bus systems, the software proceeds to present the most important bus systems and their main properties. Subjects: Diagnosis bus, LIN bus, CAN bus, MOST bus, Bluetooth. The bus systems EIA-485, LVDS, D{sup 2}B, byteflight, and Flexray are briefly characterised. (orig.)

  6. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  7. Evaluating the effectiveness of active vehicle safety systems.

    Science.gov (United States)

    Jeong, Eunbi; Oh, Cheol

    2017-03-01

    Advanced vehicle safety systems have been widely introduced in transportation systems and are expected to enhance traffic safety. However, these technologies mainly focus on assisting individual vehicles that are equipped with them, and less effort has been made to identify the effect of vehicular technologies on the traffic stream. This study proposed a methodology to assess the effectiveness of active vehicle safety systems (AVSSs), which represent a promising technology to prevent traffic crashes and mitigate injury severity. The proposed AVSS consists of longitudinal and lateral vehicle control systems, which corresponds to the Level 2 vehicle automation presented by the National Highway Safety Administration (NHTSA). The effectiveness evaluation for the proposed technology was conducted in terms of crash potential reduction and congestion mitigation. A microscopic traffic simulator, VISSIM, was used to simulate freeway traffic stream and collect vehicle-maneuvering data. In addition, an external application program interface, VISSIM's COM-interface, was used to implement the AVSS. A surrogate safety assessment model (SSAM) was used to derive indirect safety measures to evaluate the effectiveness of the AVSS. A 16.7-km freeway stretch between the Nakdong and Seonsan interchanges on Korean freeway 45 was selected for the simulation experiments to evaluate the effectiveness of AVSS. A total of five simulation runs for each evaluation scenario were conducted. For the non-incident conditions, the rear-end and lane-change conflicts were reduced by 78.8% and 17.3%, respectively, under the level of service (LOS) D traffic conditions. In addition, the average delay was reduced by 55.5%. However, the system's effectiveness was weakened in the LOS A-C categories. Under incident traffic conditions, the number of rear-end conflicts was reduced by approximately 9.7%. Vehicle delays were reduced by approximately 43.9% with 100% of market penetration rate (MPR). These results

  8. Syntheses and Tribological Property of CrMoN/MoS2 Multilayer Films on Piston Rings of Heavy Vehicle Engine

    Institute of Scientific and Technical Information of China (English)

    WANG Xiancheng; LI Qi; LI Ruoting; DI Yuelan

    2016-01-01

    In order to prolong the service life of piston rings of heavy vehicle engine and decrease the friction and wear of piston rings and cylinder liner, CrMoN/MoS2 multilayer iflms were deposited on the surface of rings by magnetron sputtering and low temperature ion sulfuration. FESEM equipped with EDX was adopted to analyze the compositions and morphologies of surface, cross-section, and wear scars of the multilayer iflms. The nano-hardness and Young’s modulus of the iflms were measured by a nano tester. Tribological properties of the iflms were tested by an SRV®4 wear tester. The experimental results indicate that the structures of the multilayer films are dense and compact. The films possess nano hardness value of approximately 26.7 GPa and superior ability of plastic deformation resistance. The multilayer iflms can activate solid lubricating, and possess an excellent antifriction and wear resistance under the conditions of heavy load, high frequency, high temperature, and dynamic load.

  9. Development of an intermediate energy heavy-ion micro-beam irradiation system

    International Nuclear Information System (INIS)

    Song Mingtao; Wang Zhiguang; He Yuan; Gao Daqing; Yang Xiaotian; Liu Jie; Su Hong; Man Kaidi; Sheng Li'na

    2008-01-01

    The micro-beam irradiation system, which focuses the beam down the micron order and precisely delivers a predefined number of ions to a predefined spot of micron order, is a powerful tool for radio-biology, radio-biomedicine and micromachining. The Institute of Modern Physics of Chinese Academy of Sciences is developing a heavy-ion micro-beam irradiation system up to intermediate energy. Based on the intermediate and low energy beam provided by Heavy Ion Research Facility of Lanzhou, the micro-beam system takes the form of the magnetic focusing. The heavy-ion beam is conducted to the basement by a symmetrical achromatic system consisting of two vertical bending magnets and a quadrupole in between. Then a beam spot of micron order is formed by magnetic triplet quadrupole of very high gradient. The sample can be irradiated either in vacuum or in the air. This system will be the first opening platform capable of providing heavy ion micro-beam, ranging from low (10 MeV/u) to intermediate energy (100 MeV/u), for irradiation experiment with positioning and counting accuracy. Target material may be biology cell, tissue or other non-biological materials. It will be a help for unveiling the essence of heavy-ion interaction with matter and also a new means for exploring the application of heavy-ion irradiation. (authors)

  10. Fault-tolerant Actuator System for Electrical Steering of Vehicles

    DEFF Research Database (Denmark)

    Sørensen, Jesper Sandberg; Blanke, Mogens

    2006-01-01

    is needed that meets this requirement. This paper studies the fault-tolerance properties of an electrical steering system. It presents a fault-tolerant architecture where a dedicated AC motor design used in conjunction with cheap voltage measurements can ensure detection of all relevant faults......Being critical to the safety of vehicles, the steering system is required to maintain the vehicles ability to steer until it is brought to halt, should a fault occur. With electrical steering becoming a cost-effective candidate for electrical powered vehicles, a fault-tolerant architecture...

  11. Engineering systems designs for a recirculating heavy ion induction accelerator

    International Nuclear Information System (INIS)

    Newton, M.A.; Barnard, J.J.; Reginato, L.L.; Yu, S.S.

    1991-05-01

    Recirculating heavy ion induction accelerators are being investigated as possible drivers for heavy ion fusion. Part of this investigation has included the generation of a conceptual design for a recirculator system. This paper will describe the overall engineering conceptual design of this recirculator, including discussions of the dipole magnet system, the superconducting quadrupole system and the beam acceleration system. Major engineering issues, evaluation of feasibility, and cost tradeoffs of the complete recirculator system will be presented and discussed. 5 refs., 4 figs

  12. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  13. Heavy Metals in ToxCast: Relevance to Food Safety (SOT)

    Science.gov (United States)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals hav...

  14. Ground Vehicle System Integration (GVSI) and Design Optimization Model

    National Research Council Canada - National Science Library

    Horton, William

    1996-01-01

    This report documents the Ground Vehicle System Integration (GVSI) and Design Optimization Model GVSI is a top-level analysis tool designed to support engineering tradeoff studies and vehicle design optimization efforts...

  15. 76 FR 55825 - Federal Motor Vehicle Safety Standards, Child Restraint Systems

    Science.gov (United States)

    2011-09-09

    ... [Docket No. NHTSA-2011-0139] RIN 2127-AJ44 Federal Motor Vehicle Safety Standards, Child Restraint Systems..., amends a provision in Federal Motor Vehicle Safety Standard No. 213, ``Child restraint systems,'' that... provision: When a motor vehicle safety standard is in effect under this chapter, a State or a political...

  16. Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles

    Science.gov (United States)

    2011-01-01

    ABSTRACT Title of dissertation: Dynamics and Control of Non-Smooth Systems with Applications to Supercavitating Vehicles Vincent Nguyen, Doctor of...relates to the dynamics of non-smooth vehicle systems, and in particular, supercavitating vehicles. These high-speed under- water vehicles are...Applications to Supercavitating Vehicles 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK

  17. Monitoring system for gamma radiation of porch type for vehicles

    International Nuclear Information System (INIS)

    Vazquez C, R.M.; Molina, G.; Gutierrez O, E.; Ramirez J, F.J.; Garcia H, J.M.; Aguilar B, M.A.; Vilchis P, A.E.; Cruz E, P.; Torres B, M.A.

    2005-01-01

    A monitoring system of gamma radiation for vehicles of the porch type developed in the ININ is presented. This system carries out the radiological monitoring of the vehicles in continuous form, detecting the bottom radiological environment and the presence of nuclear material transported in vehicles. The vehicles are monitored while they pass to low speed through the porch. The detectors are plastic scintillators of great volume that allow high sensibility detection. The arrangement of detecting is interconnected in net, and the data are concentrated on a personal computer whose interface man-machine can be accessed from any personal computer connected to Internet. The system monitoring in real time with options of sampling times from 50 ms configurable up to 500 ms. (Author)

  18. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport

    Science.gov (United States)

    Quiros, David C.; Smith, Jeremy; Thiruvengadam, Arvind; Huai, Tao; Hu, Shaohua

    2017-11-01

    Heavy-duty on-road vehicles account for 70% of all freight transport and 20% of transportation-sector greenhouse gas (GHG) emissions in the United States. This study measured three prevalent GHG emissions - carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) - from seven heavy-duty vehicles, fueled by diesel and compressed natural gas (CNG), and compliant to the MY 2007 or 2010 U.S. EPA emission standards, while operated over six routes used for freight movement in California. Total combined (tractor, trailer, and payload) weights were 68,000 ± 1000 lbs. for the seven vehicles. Using the International Panel on Climate Change (IPCC) radiative forcing values for a 100-year time horizon, N2O emissions accounted for 2.6-8.3% of total tailpipe CO2 equivalent emissions (CO2-eq) for diesel vehicles equipped with Diesel Oxidation Catalyst, Diesel Particulate Filter, and Selective Catalytic Reduction system (DOC + DPF + SCR), and CH4 emissions accounted for 1.4-5.9% of CO2-eq emissions from the CNG-powered vehicle with a three-way catalyst (TWC). N2O emissions from diesel vehicles equipped with SCR (0.17-0.30 g/mi) were an order of magnitude higher than diesel vehicles without SCR (0.013-0.023 g/mi) during highway operation. For the vehicles selected in this test program, we measured 11-22% lower CO2-eq emissions from a hybrid compared to conventional diesel vehicles during transport over lower-speed routes of the freight transport system, but 20-27% higher CO2-eq emissions during higher-speed routes. Similarly, a CNG vehicle emitted up to 15% lower CO2-eq compared to conventional diesel vehicles over more neutral-grade highway routes, but emitted up to 12% greater CO2-eq emissions over routes with higher engine loads.

  19. Real-Time Vehicle Data Logging System Using GPS And GSM

    OpenAIRE

    Win Minn Thet; MyoMaung Maung; Hla Myo Tun

    2015-01-01

    Abstract This paper proposes and implements a low cost Vehicle Data Logging System using GPS and GSM. This system allows a user to trace the present and past positions recorded in SD card. This system also reads the current position of the vehicle using GPS the data is sent via GSM service from the GSM network. The vehicles position including the driving speed the UTC time and data are stored in the SD card for live and past tracking. All of that GPS data is sent to PIC 18F4520 by the Uni...

  20. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  1. Wireless IR Image Transfer System for Autonomous Vehicles

    Science.gov (United States)

    2003-12-01

    the camera can operate between 0 and 500 C; this uniquely suites it for employment on autonomous vehicles in rugged environments. The camera is...system is suitable for used on autonomous vehicles under varying antenna orientations. • The third is the use of MDS transceivers allows the received

  2. The Commercial Vehicle Information Systems and Network program, 2012.

    Science.gov (United States)

    2014-03-01

    The Commercial Vehicle Information Systems and : Networks (CVISN) program supports that safety : mission by providing grant funds to States for: : Improving safety and productivity of motor : carriers, commercial motor vehicles : (CMVs), and thei...

  3. FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES

    OpenAIRE

    THOMAS MATHEWS; NISHANTH D

    2013-01-01

    Today, many hybrid electric vehicles have been developed in order to reduce the consumption of fossil fuels; unfortunately these vehicles require electrochemical batteries to store energy, with high costs as well as poor conversion efficiencies. By integrating flywheel hybrid systems, these drawbacks can be overcome and can potentially replace battery powered hybrid vehicles cost effectively. The paper will explain the engineering, mechanics of the flywheel system and it’s working in detail. ...

  4. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  5. 2011 Vehicle Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and

  6. Heavy-ion-spectrometer system

    International Nuclear Information System (INIS)

    1982-05-01

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures

  7. Heavy-ion-spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    LBL safety policy (Pub 300 Appendix E) states that every research operation with a Class A risk potential (DOE 5484.1) should identify potentially hazardous procedures associated with the operation and develop methods for accomplishing the operation safely without personnel injury or property damage. The rules and practices that management deems to be minimally necessary for the safe operations of the Heavy Ion Spectrometer System (HISS) in the Bevatron Experimental Hall (51B) are set forth in this Operation Safety Procedures (OSP).

  8. Determination of the Levels of some Heavy Metals in Urban Run

    African Journals Online (AJOL)

    The heavy metals in urban road sediments take their origin from sources such as vehicles, road wear, activities of roadside artisans (battery charging, vehicle repairs, iron-bending, vehicle painting and panel beating) and emissions and /or discharges fi'om industries. The metals come mainly from vehicular activities such as ...

  9. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  10. Two lighter than air systems in opposing flight regimes: An unmanned short haul, heavy load transport balloon and a manned, light payload airship

    Science.gov (United States)

    Pohl, R. A.

    1975-01-01

    Lighter Than Air vehicles are generally defined or categorized by the shape of the balloon, payload capacity and operational flight regime. Two balloon systems that are classed as being in opposite categories are described. One is a cable guided, helium filled, short haul, heavy load transport Lighter Than Air system with a natural shaped envelope. The other is a manned, aerodynamic shaped airship which utilizes hot air as the buoyancy medium and is in the light payload class. While the airship is in the design/fabrication phase with flight tests scheduled for the latter part of 1974, the transport balloon system has been operational for some eight years.

  11. PILCs for trapping phosphorus in a heavy duty engine exhaust system : An experimental evaluation of the phosphorus sorption capability of different clay materials

    OpenAIRE

    Kvarned, Anders

    2016-01-01

    In order to fulfil the requirements in the EURO VI standard, regulating emissions from heavy duty vehicles, the exhaust aftertreatment system needs to maintain its efficiency for at least seven years or 700 000 km. In diesel applications the diesel oxidation catalyst (DOC) is located closest to the engine and is thus the most vulnerable to poisoning contaminants, such as phosphorus originating from fuel and oil additives, which deactivates the catalyst. An idea to reduce the impact from phosp...

  12. Optimization and Control of Cyber-Physical Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Justin M. Bradley

    2015-09-01

    Full Text Available A cyber-physical system (CPS is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  13. Optimization and Control of Cyber-Physical Vehicle Systems.

    Science.gov (United States)

    Bradley, Justin M; Atkins, Ella M

    2015-09-11

    A cyber-physical system (CPS) is composed of tightly-integrated computation, communication and physical elements. Medical devices, buildings, mobile devices, robots, transportation and energy systems can benefit from CPS co-design and optimization techniques. Cyber-physical vehicle systems (CPVSs) are rapidly advancing due to progress in real-time computing, control and artificial intelligence. Multidisciplinary or multi-objective design optimization maximizes CPS efficiency, capability and safety, while online regulation enables the vehicle to be responsive to disturbances, modeling errors and uncertainties. CPVS optimization occurs at design-time and at run-time. This paper surveys the run-time cooperative optimization or co-optimization of cyber and physical systems, which have historically been considered separately. A run-time CPVS is also cooperatively regulated or co-regulated when cyber and physical resources are utilized in a manner that is responsive to both cyber and physical system requirements. This paper surveys research that considers both cyber and physical resources in co-optimization and co-regulation schemes with applications to mobile robotic and vehicle systems. Time-varying sampling patterns, sensor scheduling, anytime control, feedback scheduling, task and motion planning and resource sharing are examined.

  14. Vehicle-to-Grid for islanded power system operation in Bornholm

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2010-01-01

    Vehicle-to-Grid (V2G) systems are an emerging concept of utilizing the battery storage of electric vehicles (EVs) for providing power system regulation services. This technology could be used to balance the variable electricity generated from various renewable energy sources. This article considers...... a model of an aggregated electric vehicle based battery storage to support an isolated power system operating with a large wind power penetration in the Danish island of Bornholm. From the simulation results, the EV battery storages represented by the V2G systems are able to integrate more fluctuating...... wind power. The islanded Bornholm power system operates satisfactory for the case of replacing most of the conventional generator reserves with V2G systems, which may represent a future operation scenario....

  15. Vehicle electrical system state controller

    Science.gov (United States)

    Bissontz, Jay E.

    2017-10-17

    A motor vehicle electrical power distribution system includes a plurality of distribution sub-systems, an electrical power storage sub-system and a plurality of switching devices for selective connection of elements of and loads on the power distribution system to the electrical power storage sub-system. A state transition initiator provides inputs to control system operation of switching devices to change the states of the power distribution system. The state transition initiator has a plurality of positions selection of which can initiate a state transition. The state transition initiator can emulate a four position rotary ignition switch. Fail safe power cutoff switches provide high voltage switching device protection.

  16. Unmanned Aerial Vehicle Systems for Disaster Relief: Tornado Alley

    Science.gov (United States)

    DeBusk, Wesley M.

    2009-01-01

    Unmanned aerial vehicle systems are currently in limited use for public service missions worldwide. Development of civil unmanned technology in the United States currently lags behind military unmanned technology development in part because of unresolved regulatory and technological issues. Civil unmanned aerial vehicle systems have potential to augment disaster relief and emergency response efforts. Optimal design of aerial systems for such applications will lead to unmanned vehicles which provide maximum potentiality for relief and emergency response while accounting for public safety concerns and regulatory requirements. A case study is presented that demonstrates application of a civil unmanned system to a disaster relief mission with the intent on saving lives. The concept utilizes unmanned aircraft to obtain advanced warning and damage assessments for tornados and severe thunderstorms. Overview of a tornado watch mission architecture as well as commentary on risk, cost, need for, and design tradeoffs for unmanned aerial systems are provided.

  17. Vehicle-manipulator systems modeling for simulation, analysis, and control

    CERN Document Server

    From, Pal Johan; Pettersen, Kristin Ytterstad

    2014-01-01

    Furthering the aim of reducing human exposure to hazardous environments, this monograph presents a detailed study of the modeling and control of vehicle-manipulator systems. The text shows how complex interactions can be performed at remote locations using systems that combine the manipulability of robotic manipulators with the ability of mobile robots to locomote over large areas.  The first part studies the kinematics and dynamics of rigid bodies and standard robotic manipulators and can be used as an introduction to robotics focussing on robust mathematical modeling. The monograph then moves on to study vehicle-manipulator systems in great detail with emphasis on combining two different configuration spaces in a mathematically sound way. Robustness of these systems is extremely important and Modeling and Control of Vehicle-manipulator Systems effectively represents the dynamic equations using a mathematically robust framework. Several tools from Lie theory and differential geometry are used to obtain glob...

  18. In-vehicle information system functions

    Energy Technology Data Exchange (ETDEWEB)

    Tufano, D.R.; Spelt, P.F.; Knee, H.E.

    1997-04-01

    This paper describes the functional requirement for an In-Vehicle Information System (IVIS), which will manage and display all driving-related information from many sources. There are numerous information systems currently being fielded or developed (e.g., routing and navigation, collision avoidance). However, without a logical integration of all of the possible on-board information, there is a potential for overwhelming the driver. The system described in this paper will filter and prioritize information across all sources, and present it to the driver in a timely manner, within a unified interface. To do this, IVIS will perform three general functions: (1) interact with other, on-board information subsystems and the vehicle; (2) manage the information by filtering, prioritizing, and integrating it; and (3) interact with the driver, both in terms of displaying information to the driver and allowing the driver to input requests, goals and preferences. The functional requirements described in this paper have either been derived from these three high-level functions or are directly mandated by the overriding requirements for modularity and flexibility. IVIS will have to be able to accommodate different types of information subsystems, of varying level of sophistication. The system will also have to meet the diverse needs of different types of drivers (private, commercial, transit), who may have very different levels of expertise in using information systems.

  19. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.

    Science.gov (United States)

    Meyer, Patrick E; Green, Erin H; Corbett, James J; Mas, Carl; Winebrake, James J

    2011-03-01

    Heavy-duty vehicles (HDVs) present a growing energy and environmental concern worldwide. These vehicles rely almost entirely on diesel fuel for propulsion and create problems associated with local pollution, climate change, and energy security. Given these problems and the expected global expansion of HDVs in transportation sectors, industry and governments are pursuing biofuels and natural gas as potential alternative fuels for HDVs. Using recent lifecycle datasets, this paper evaluates the energy and emissions impacts of these fuels in the HDV sector by conducting a total fuel-cycle (TFC) analysis for Class 8 HDVs for six fuel pathways: (1) petroleum to ultra low sulfur diesel; (2) petroleum and soyoil to biodiesel (methyl soy ester); (3) petroleum, ethanol, and oxygenate to e-diesel; (4) petroleum and natural gas to Fischer-Tropsch diesel; (5) natural gas to compressed natural gas; and (6) natural gas to liquefied natural gas. TFC emissions are evaluated for three greenhouse gases (GHGs) (carbon dioxide, nitrous oxide, and methane) and five other pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter, and sulfur oxides), along with estimates of total energy and petroleum consumption associated with each of the six fuel pathways. Results show definite advantages with biodiesel and compressed natural gas for most pollutants, negligible benefits for e-diesel, and increased GHG emissions for liquefied natural gas and Fischer-Tropsch diesel (from natural gas).

  20. The vehicle data translator V3.0 system description.

    Science.gov (United States)

    2011-05-30

    With funding and support from the USDOT RITA and direction from the FHWA Road Weather Management Program, NCAR is developing a Vehicle Data Translator (VDT) software system that incorporates vehicle-based measurements of the road and surrounding atmo...

  1. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    Science.gov (United States)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area

  2. Overview of use of natural gas on heavy duty vehicles in Brazil; Panorama da utilizacao do gas natural veicular em veiculos pesados no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme Bastos; Melo, Tadeu Cavalcante Cordeiro de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Area de Desempenho de Produtos em Motores; Lastres, Luiz Fernando Martins [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Gerencia de Lubrificantes e Produtos Especiais

    2004-07-01

    The use of vehicular natural gas (VNG) was initiated in Brazil in he 80's seeking the replacement of diesel in heavy vehicles due to the oil crisis. In this season PETROBRAS participated, along with other companies, in the development of conversion technologies for replacement part of the diesel by natural gas through systems known as diesel-gas. Were made works to development bank of tests of engines and field tests on some bus companies, verifying if there are technical and economic viability of such conversion. Due to factors such as small mesh distribution of natural gas in Brazil, lack of infrastructure of technical support suitable for conversions and lack of culture in the use of natural gas, the program not progressed and experience was interrupted. Other experiments were conducted in Brazil with the use of engines dedicated to natural gas (Otto cycle) developed and manufactured in the country for use in urban buses. Currently there is a scenario favorable to the return of use of natural gas in weighed vehicles by the following factors: 1) increase the mesh distribution of VNG due to the high growth of the fleet light vehicles to VNG in the country, solving part of the problems of logistics; 2) pressure from environmental agencies by values of emissions of particles and gases ever less pollutants in urban centers; 3) excess supply of natural gas in the domestic market due to new discoveries in Brazil, contracts for the import of natural gas signed with Bolivia and low demand for current industrial consumption of gas; 4) need to replace the import of diesel, which weighs in trade of the country. This paper will be presented some experiences with the technology of diesel-gas and the engine dedicated the VNG in weighed vehicles in Brazil. Also some recommendations will be made to increase and spread the use of these technologies, aiming to increase the replacement of diesel by vehicular natural gas in weighed vehicles. (author)

  3. Reactivity requirements and safety systems for heavy water reactors

    International Nuclear Information System (INIS)

    Kati, S.L.; Rustagi, R.S.

    1977-01-01

    The natural uranium fuelled pressurised heavy water reactors are currently being installed in India. In the design of nuclear reactors, adequate attention has to be given to the safety systems. In recent years, several design modifications having bearing on safety, in the reactor processes, protective and containment systems have been made. These have resulted either from new trends in safety and reliability standards or as a result of feed-back from operating reactors of this type. The significant areas of modifications that have been introduced in the design of Indian PHWR's are: sophisticated theoretical modelling of reactor accidents, reactivity control, two independent fast acting systems, full double containment and improved post-accident depressurisation and building clean-up. This paper brings out the evolution of design of safety systems for heavy water reactors. A short review of safety systems which have been used in different heavy water reactors, of varying sizes, has been made. In particular, the safety systems selected for the latest 235 MWe twin reactor unit station in Narora, in Northern India, have been discussed in detail. Research and Development efforts made in this connection are discussed. The experience of design and operation of the systems in Rajasthan and Kalpakkam reactors has also been outlined

  4. Heavy-flavour transport: from large to small systems

    Energy Technology Data Exchange (ETDEWEB)

    Beraudo, A.; De Pace, A.; Monteno, M.; Nardi, M.; Prino, F.

    2016-12-15

    Predictions for heavy-flavour production in relativistic heavy-ion experiments provided by the POWLANG transport setup, including now also an in-medium hadronization model, are displayed, After showing some representative findings for the Au-Au and Pb-Pb cases, a special focus will be devoted to the results obtained in the small systems formed in proton(deuteron)-nucleus collisions, where recent experimental data suggest the possible formation of a medium featuring a collective behaviour.

  5. 76 FR 55859 - Federal Motor Vehicle Safety Standards No. 121; Air Brake Systems

    Science.gov (United States)

    2011-09-09

    ... during road tests for the braking system, a vehicle equipped with an interlocking axle system or a front... vehicle braking systems, tire characteristics related to lateral force and longitudinal force generation... stopping distance without activating the ABS system by braking the vehicle so that the brake pressure is...

  6. Hardware-in-loop simulation of electric vehicles automated mechanical transmission system

    Energy Technology Data Exchange (ETDEWEB)

    Liao, C.; Wu, Y.; Wang, L. [Chinese Academy of Sciences, Beijing (China). Inst. of Electrical Engineering

    2009-03-11

    Automated mechanical transmission (AMT) can be used to enhance the performance of hybrid electric vehicles. In this study, hardware-in-loop (HIL) simulations were used to develop an AMT control system. HIL was used to simulate the running and fault status of the system as well as to optimize its performance. HIL was combined with a commercial simulation tool and an automatic code generation technology in a real time environment tool to develop the AMT control system. A hybrid vehicle system dynamics model was generated and then simulated in various real time operating vehicle environments. Virtual instrument technology was used to develop real time monitoring, parameter matching calibration, data acquisition and offline analyses for the optimization of the control system. Results of the analyses demonstrated that the AMT control system can be used to optimize the performance of hybrid electric vehicles. 5 refs., 9 figs.

  7. Analysis of Some Heavy Metals in Grass ( Paspalum Orbiculare ...

    African Journals Online (AJOL)

    The increased deposition of trace metals from vehicle exhausts on plants has raised concerns about the risks of the quality of food consumed by humans since the heavy metals emitted through the exhaust by vehicles can enter food chain through deposition on grass grazed by animals. Grass (Paspalum Orbiculare) and ...

  8. A Microcontroller Based Car-Safety System Implementing Drowsiness Detection And Vehicle-Vehicle Distance Detection In Parallel.

    Directory of Open Access Journals (Sweden)

    Pragyaditya Das.

    2015-08-01

    Full Text Available Abstract Accidents due to drowsiness can be controlled and prevented with the help of eye blink sensor using IR rays. It consists of IR transmitter and an IR receiver. The transmitter transmits IR rays into the eye. If the eye is shut then the output is high. If the eye is open then the output is low. This output is interfaced with an alarm inside and outside the vehicle. This module can be connected to the braking system of the vehicle and can be used to reduce the speed of the vehicle. The alarm inside the vehicle will go on for a period of time until the driver is back to his senses. If the driver is unable to take control of the vehicle after that stipulated amount of time then the alarm outside the vehicle will go on to warn and tell others to help the driver.

  9. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  10. Evaluating the development of life and progress of heavy vehicles ...

    African Journals Online (AJOL)

    Regarding the investigation of new technologies, we have to think to make changes in vehicle technology or finding alternative technology. According to the first priority, criteria and the weight of analytic hierarchy process, the technical criteria, first the action should be done in technical improvements of the vehicle, and also ...

  11. Numerical calculation on infrared characteristics of the special vehicle exhaust system

    Science.gov (United States)

    Feng, Yun-song; Li, Xiao-xia; Jin, Wei

    2017-10-01

    For mastery of infrared radiation characteristics and flow field of the special vehicle exhaust system, first, a physical model of the special vehicle exhaust system is established with the Gambit, and the mathematical model of flow field is determined. Secondly, software Fluent6.3 is used to simulated the 3-D exterior flow field of the special vehicle exhaust system, and the datum of flow field, such as temperature, pressure and density, are obtained. Thirdly, based on the plume temperature, the special vehicle exhaust space is divided. The exhaust is equivalent to a gray-body. A calculating model of the vehicle exhaust infrared radiation is established, and the exhaust infrared radiation characteristics are calculated by the software MATLAB, then the spatial distribution curves are drawn. Finally, the numerical results are analyzing, and the basic laws of the special vehicle exhaust infrared radiation are explored. The results show that with the increase of the engine speed, the temperature of the exhaust pipe wall of the special vehicle increases, and the temperature and pressure of the exhaust gas flow field increase, which leads to the enhancement of the infrared radiation intensity

  12. An electric-drive vehicle strategy for Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, D.; Lipman, T. [California Univ., Davis, CA (United States). Inst. of Transportation Studies; Lundberg, M. [Swedish Transport and Communications Research Board, Stockholm (Sweden)

    2000-07-01

    The strategy that Sweden has taken regarding the use of electric-powered vehicles (EVs) to mitigate the environmental impacts caused by the transportation sector was discussed. Sweden's unique attributes include inexpensive and clean electricity, a strong environmental ethic and a strong automotive sector. All versions of electric-drive technology are considered to be environmentally superior to internal combustion engine vehicles. While the cost of batteries is dropping, they will remain highly priced. However, manufacturers are making larger investments into hybrid EVs and fuel cell EVs. Electric drive buses are also gaining in popularity as a means by which to reduce exhaust gases in urban areas. Sweden's industrial policy is aimed at manufacturing electrically driven heavy duty vehicles such as buses and trucks. The environmental policy is aimed at deploying small EVs for on and off-road transportation use, as well as heavy duty EVs targeted by the industrial policy. refs.

  13. Heavy quark effective theory and study of heavy hadron spectra

    International Nuclear Information System (INIS)

    Dong Yubing

    1995-01-01

    By employing the heavy quark effective theory, the spectra of heavy hadrons, such as heavy mesons (Q-barq), heavy baryons (QQq and Qqq) and heavy multiquark systems (Q-barQ-barqq) are studied systemically. The results are compared with the predictions for Q-barQ-barqq in potential model

  14. Systems analysis of decontamination options for civilian vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

  15. No increased systemic fibrinolysis in women with heavy menstrual bleeding

    NARCIS (Netherlands)

    Wiewel-Verschueren, S.; Knol, H. M.; Lisman, T.; Bogchelman, D. H.; Kluin-Nelemans, J. C.; van der Zee, A.G.J.; Mulder, A.B.; Meijer, K.

    BackgroundBleeding disorders have been recognized as important etiologic or contributory factors in women with heavy menstrual bleeding. Fibrinolysis in the endometrium plays a role in heavy menstrual bleeding. It is unknown whether increased systemic fibrinolysis might also increase the risk of

  16. HEAVY-DUTY GREENHOUSE GAS EMISSIONS MODEL ...

    Science.gov (United States)

    Class 2b-8 vocational truck manufacturers and Class 7/8 tractor manufacturers would be subject to vehicle-based fuel economy and emission standards that would use a truck simulation model to evaluate the impact of the truck tires and/or tractor cab design on vehicle compliance with any new standards. The EPA has created a model called “GHG Emissions Model (GEM)”, which is specifically tailored to predict truck GHG emissions. As the model is designed for the express purpose of vehicle compliance demonstration, it is less configurable than similar commercial products and its only outputs are GHG emissions and fuel consumption. This approach gives a simple and compact tool for vehicle compliance without the overhead and costs of a more sophisticated model. Evaluation of both fuel consumption and CO2 emissions from heavy-duty highway vehicles through a whole-vehicle operation simulation model.

  17. 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User's Conference Proceedings (CD)

    International Nuclear Information System (INIS)

    Markel, T.

    2001-01-01

    The 2001 Joint ADVISOR/PSAT Vehicle Systems Modeling User Conference provided an opportunity for engineers in the automotive industry and the research environment to share their experiences in vehicle systems modeling using ADVISOR and PSAT. ADVISOR and PSAT are vehicle systems modeling tools developed and supported by the National Renewable Energy Laboratory and Argonne National Laboratory respectively with the financial support of the US Department of Energy. During this conference peers presented the results of studies using the simulation tools and improvements that they have made or would like to see in the simulation tools. Focus areas of the presentations included Control Strategy, Model Validation, Optimization and Co-Simulation, Model Development, Applications, and Fuel Cell Vehicle Systems Analysis. Attendees were offered the opportunity to give feedback on future model development plans

  18. Fuzzy-Skyhook Control for Active Suspension Systems Applied to a Full Vehicle Model

    Directory of Open Access Journals (Sweden)

    Aref M.A. Soliman

    2012-04-01

    Full Text Available Nowadays, most modern vehicles are equipped with controlled suspension systems for improving the vehicle ride comfort. Therefore, this paper is concerned with a theoretical study for the ride comfort performance of the vehicle. The theoretical investigation includes a suggestion of an active suspension system controller using fuzzy-skyhook control theory, which offers new opportunities for the improvement of vehicle ride performance. The ride comfort of the active suspension system has been evaluated using a 7 degree of freedom full vehicle mathematical model. The simulation results are presented in the time and frequency domain, also in terms of RMS values, and it’s shown that the proposed active suspension system with fuzzy-skyhook control improved the vehicle ride quality in terms of body acceleration, suspension working space and dynamic tyre load in comparison with the passive and skyhook suspension systems.

  19. Simulation methods supporting homologation of Electronic Stability Control in vehicle variants

    Science.gov (United States)

    Lutz, Albert; Schick, Bernhard; Holzmann, Henning; Kochem, Michael; Meyer-Tuve, Harald; Lange, Olav; Mao, Yiqin; Tosolin, Guido

    2017-10-01

    Vehicle simulation has a long tradition in the automotive industry as a powerful supplement to physical vehicle testing. In the field of Electronic Stability Control (ESC) system, the simulation process has been well established to support the ESC development and application by suppliers and Original Equipment Manufacturers (OEMs). The latest regulation of the United Nations Economic Commission for Europe UN/ECE-R 13 allows also for simulation-based homologation. This extends the usage of simulation from ESC development to homologation. This paper gives an overview of simulation methods, as well as processes and tools used for the homologation of ESC in vehicle variants. The paper first describes the generic homologation process according to the European Regulation (UN/ECE-R 13H, UN/ECE-R 13/11) and U.S. Federal Motor Vehicle Safety Standard (FMVSS 126). Subsequently the ESC system is explained as well as the generic application and release process at the supplier and OEM side. Coming up with the simulation methods, the ESC development and application process needs to be adapted for the virtual vehicles. The simulation environment, consisting of vehicle model, ESC model and simulation platform, is explained in detail with some exemplary use-cases. In the final section, examples of simulation-based ESC homologation in vehicle variants are shown for passenger cars, light trucks, heavy trucks and trailers. This paper is targeted to give a state-of-the-art account of the simulation methods supporting the homologation of ESC systems in vehicle variants. However, the described approach and the lessons learned can be used as reference in future for an extended usage of simulation-supported releases of the ESC system up to the development and release of driver assistance systems.

  20. Use of natural gas on heavy duty vehicles in Brazil: experience, current scene and barriers that still persist; Utilizacao do gas natural em veiculos pesados no Brasil: experiencia, cenario atual e barreiras que ainda persistem

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Guilherme B.; Melo, Tadeu C.C.; Lastres, Luiz Fernando M. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In the 80's, because of the oil crisis, the Natural Gas (NG) appeared as a fuel with a great potential for Diesel replacement in Heavy Duty Vehicles. At that time, PETROBRAS with other companies have developed partial conversion technologies from Diesel to NG, known as 'Dual Fuel'. Engine dynamometer and vehicle bus tests have been developed to verify its technical and economical viability. Because of several factors, the Dual Fuel Program did not advance and the experience was interrupted. At the same time, other experiences using NG Otto Cycle bus engines, manufactured in Brazil, have been conducted, mainly at Sao Paulo, nevertheless, without expansion. Currently, factors as increase of the NG converted light vehicles fleet; the NG excess in the National Market, which has contributed to the NG distribution net expansion; the Environmental Legislature in vigor, that continuously determine lower emission limits; the government interest in increasing the NG energy matrix share and in reducing Diesel fuel consumption, and the low NG industrial demand, compose together a great scene to the diffusion of NG as substitute to the Diesel fuel in Heavy Duty Vehicles. (author)

  1. An expert fault diagnosis system for vehicle air conditioning product development

    NARCIS (Netherlands)

    Tan, C.F.; Tee, B.T.; Khalil, S.N.; Chen, W.; Rauterberg, G.W.M.

    2015-01-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to

  2. Real-Time Vehicle Data Logging System Using GPS And GSM

    Directory of Open Access Journals (Sweden)

    Win Minn Thet

    2015-07-01

    Full Text Available Abstract This paper proposes and implements a low cost Vehicle Data Logging System using GPS and GSM. This system allows a user to trace the present and past positions recorded in SD card. This system also reads the current position of the vehicle using GPS the data is sent via GSM service from the GSM network. The vehicles position including the driving speed the UTC time and data are stored in the SD card for live and past tracking. All of that GPS data is sent to PIC 18F4520 by the Universal Asynchronous ReceiverTransmitter UART and also store in SD card. GSM also uses UART to transmit. To know the position of the vehicle the owner sends a request through a SMS. The SMS sends to the authorized person through the GSM network. The travel history of the vehicle are stored in a file on an SD card in FAT format.This system is very useful for car tracking for adolescent driver being checked by parent speed limit exceeding leaving a specific area. V The developed system is easy to use requires no additional hardware and permits the selection of the amount of data and the time intervals between the data recordings. In addition the collected data can easily be transferred to a computer via a connected serial port.

  3. System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics

    Science.gov (United States)

    France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan

    2017-11-21

    The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.

  4. A study on the Horizontal Control of a Seat for Heavy Machinery using a Phase Adjusting Technique

    Directory of Open Access Journals (Sweden)

    Kim Chae-sil.

    2016-01-01

    Full Text Available This study proposes a dynamic plant model to simulate the performance of a heavy equipment vehicle seat system. The system controls the transmission of vibration using a phase adjustment control method. First, a dynamic model for the flexible heavy equipment seat is proposed using a commercial multi-body dynamic analysis tool, ADAMS. This model is used as a plant model. Then a phase adjustment control mechanism for reducing the vibration and shock transmitted by the seat is applied to the driving dynamics control plant model. Angle control using the phase adjustment control was confirmed. This technique is expected to be the basis for a future commercial system.

  5. Novel vehicle detection system based on stacked DoG kernel and AdaBoost

    Science.gov (United States)

    Kang, Hyun Ho; Lee, Seo Won; You, Sung Hyun

    2018-01-01

    This paper proposes a novel vehicle detection system that can overcome some limitations of typical vehicle detection systems using AdaBoost-based methods. The performance of the AdaBoost-based vehicle detection system is dependent on its training data. Thus, its performance decreases when the shape of a target differs from its training data, or the pattern of a preceding vehicle is not visible in the image due to the light conditions. A stacked Difference of Gaussian (DoG)–based feature extraction algorithm is proposed to address this issue by recognizing common characteristics, such as the shadow and rear wheels beneath vehicles—of vehicles under various conditions. The common characteristics of vehicles are extracted by applying the stacked DoG shaped kernel obtained from the 3D plot of an image through a convolution method and investigating only certain regions that have a similar patterns. A new vehicle detection system is constructed by combining the novel stacked DoG feature extraction algorithm with the AdaBoost method. Experiments are provided to demonstrate the effectiveness of the proposed vehicle detection system under different conditions. PMID:29513727

  6. The Effect of Predicted Vehicle Displacement on Ground Crew Task Performance and Hardware Design

    Science.gov (United States)

    Atencio, Laura Ashley; Reynolds, David W.

    2011-01-01

    NASA continues to explore new launch vehicle concepts that will carry astronauts to low- Earth orbit to replace the soon-to-be retired Space Transportation System (STS) shuttle. A tall vertically stacked launch vehicle (> or =300 ft) is exposed to the natural environment while positioned on the launch pad. Varying directional winds and vortex shedding cause the vehicle to sway in an oscillating motion. Ground crews working high on the tower and inside the vehicle during launch preparations will be subjected to this motion while conducting critical closeout tasks such as mating fluid and electrical connectors and carrying heavy objects. NASA has not experienced performing these tasks in such environments since the Saturn V, which was serviced from a movable (but rigid) service structure; commercial launchers are likewise attended by a service structure that moves away from the vehicle for launch. There is concern that vehicle displacement may hinder ground crew operations, impact the ground system designs, and ultimately affect launch availability. The vehicle sway assessment objective is to replicate predicted frequencies and displacements of these tall vehicles, examine typical ground crew tasks, and provide insight into potential vehicle design considerations and ground crew performance guidelines. This paper outlines the methodology, configurations, and motion testing performed while conducting the vehicle displacement assessment that will be used as a Technical Memorandum for future vertically stacked vehicle designs.

  7. Vacuum system control for the Heavy Ion Transport Line

    International Nuclear Information System (INIS)

    Stattel, P.; Feigenbaum, I.; Hseuh, H.C.; Robinson, T.; Skelton, R.; Wong, V.

    1987-01-01

    The Brookhaven AGS, 807 m in circumference, and the Tandem Van de Graaff are now joined together by a transport line, 600 m in length. This now allows heavy ions from the Tandem, up to fully stripped sulfur (M = 32) to be transported into the AGS and accelerated to 15 GeV/A. With the addition of a booster between the Tandem and the AGS in the near future, heavy ions such as gold (M = 200) can be accelerated to 30 Z/A GeV/A. This paper describes the HITL (Heavy Ion Transport Line) vacuum control system design and implementation

  8. An energetic analysis in a heavy commercial vehicle with regard to thermal recuperation measures; Energetische Analyse im schweren Nutzfahrzeug im Hinblick auf thermische Rekuperationsmassnahmen

    Energy Technology Data Exchange (ETDEWEB)

    Bernath, Michael; Wachtmeister, Georg [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Swoboda, Jan; Karl, Christian [MAN Trucks and Bus AG, Muenchen (Germany); Sterzenbach, Marcel [Modelon GmbH, Gilching (Germany)

    2012-11-01

    Due to the expected end of fossil resources and the associated increase in price, the spent fuel energy in vehicles needs to be used more efficiently in future. Today's commercial vehicles emit more than 50% of the fuel energy as waste heat into the environment. Two thirds are lost through the engine cooling system and one third through the exhaust gas system. Thermal heat recuperation is a potential solution to increase the total efficiency of a commercial vehicle. In order to achieve optimum recuperation of the waste heat, a detailed energy balance of the vehicle needs to be established together with the analysis of back coupling effects. Simulation tools are used to control the complex interactions between vehicle and cooling system, efficiently. In this case, a simulation model for longitudinal vehicle dynamics is coupled with a 1D-model, which describes the heat and mass flows in the cooling system. Based on this the most profitable sources for heat recuperation are identified and quantified with an energy analysis. Furthermore analysing the total vehicle system helps to observe back coupling effects of the heat recuperation system. These include particularly the additional heat flow in the cooling system and the increased exhaust gas back pressure. A transient analysis of the vehicle with the recuperation system can predict the maximum achievable fuel saving potentials. The analysis of the total vehicle system allows a comprehensive contemplation and evaluation of the implemented measures. The understanding of the total vehicle system is enhanced and conclusions can be drawn on the potentials of considered approaches for heat recuperation. This approach is the first step towards the optimal utilization of thermal recuperation in commercial vehicles. (orig.)

  9. A Vehicle Steering Recognition System Based on Low-Cost Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Xinhua Liu

    2017-03-01

    Full Text Available Recognizing how a vehicle is steered and then alerting drivers in real time is of utmost importance to the vehicle and driver’s safety, since fatal accidents are often caused by dangerous vehicle maneuvers, such as rapid turns, fast lane-changes, etc. Existing solutions using video or in-vehicle sensors have been employed to identify dangerous vehicle maneuvers, but these methods are subject to the effects of the environmental elements or the hardware is very costly. In the mobile computing era, smartphones have become key tools to develop innovative mobile context-aware systems. In this paper, we present a recognition system for dangerous vehicle steering based on the low-cost sensors found in a smartphone: i.e., the gyroscope and the accelerometer. To identify vehicle steering maneuvers, we focus on the vehicle’s angular velocity, which is characterized by gyroscope data from a smartphone mounted in the vehicle. Three steering maneuvers including turns, lane-changes and U-turns are defined, and a vehicle angular velocity matching algorithm based on Fast Dynamic Time Warping (FastDTW is adopted to recognize the vehicle steering. The results of extensive experiments show that the average accuracy rate of the presented recognition reaches 95%, which implies that the proposed smartphone-based method is suitable for recognizing dangerous vehicle steering maneuvers.

  10. Investigation of the heavy water distillation system at the RA reactor

    International Nuclear Information System (INIS)

    Zecevic, V.; Badrljica, R.

    1963-01-01

    The heavy water distillation system was tested because this was not done before the reactor start-up. Detailed inspection of the system components showed satisfactory results. Leak testing was done as well as the testing of the instrumentation which enables reliable performance of the system. Performance testing was done with ordinary water and later 2700 l of heavy water from the reactor was purified, decreasing the activity by 45%

  11. Heavy-Lift for a New Paradigm in Space Operations

    Science.gov (United States)

    Morris, Bruce; Burkey, Martin

    2010-01-01

    NASA is developing an unprecedented heavy-lift capability to enable human exploration beyond low Earth orbit (LEO). This capability could also significantly enhance numerous other missions of scientific, national security, and commercial importance. That capability is currently configured as the Ares V cargo launch vehicle. This capability will eclipse the capability the United States lost with the retirement of the Saturn V. It is capable of launching roughly 53 percent more payload mass to trans lunar injection (TLI) and 30 percent more payload mass to LEO than its Apollo Program predecessor. Ares V is a major element of NASA's Constellation Program, which also includes the Ares I crew launch vehicle (CLV), Orion crew exploration vehicle (CEV), and a lunar lander for crew and cargo. As currently configured, Ares V will be capable of launching 413,800 pounds (187.7 mT) to LEO, 138,500 pounds (63 mT) direct to the Moon or 156,700 pounds (71.1 mT) in its dual-launch architecture role with Ares I. Its 33-foot (10 m) shroud provides unprecedented payload volume. Assessment of astronomy and planetary science payload requirements since spring 2008 has indicated that a Saturn V-class heavy-lift vehicle has the potential to support a range of payloads and missions. This vehicle configuration enables some missions previously considered difficult or impossible and enhances many others. Collaborative design/architecture inputs, exchanges, and analyses have already begun between scientists and payload developers. This early dialogue between NASA engineers and payload designers allows both communities to shape their designs and operational concepts to be mutually supportive to the extent possible with the least financial impact. This paper provides an overview of the capabilities of a heavy-lift vehicle to launch payloads with increased mass and/or volume and reduce technical and cost risk in both design and operations.

  12. A Preliminary Version of Heavy Ion Treatment Planning System at IMP

    International Nuclear Information System (INIS)

    Liu Xinguo; Dai Zhongying; Ye Fei; Wu Qingfeng; Li Ping; Li Qiang; Jin Xiaodong; Du Xiaogang; WangYangping; Dang Jianwu

    2010-01-01

    Based on the Heavy Ion Research Facility in Lanzhou (HIRFL/HIRFL-CSR), clinical trials of heavy ion radiotherapy are being conducted at the Institute of Modern Physics (IMP), Chinese Academy of Sciences, where two-dimensional(2D) layer-stacking conformal irradiation method in a passive beam delivery system was applied. To make better use of the biophysical advantages of heavy ion beams and ensure success of the clinical trials, a preliminary version of heavy ion treatment planning system (TPS) has been developed at IMP. The TPS was designed in a manner to adapt to the 2D layer-stacking conformal irradiation method. The architecture and function of the TPS software and the implementation of dose calculation algorithm in the TPS were introduced in this paper.The deviation between the doses planned by the TPS and measured through an anthropomorphous phantom was verified to be less than 5%. Finally,the pending issues for developing a sophisticated treatment planning system at IMP were discussed. (authors)

  13. Economic and Environmental Evaluation of a Brick Delivery System Based on Multi-Trip Vehicle Loader Routing Problem for Small Construction Sites

    Directory of Open Access Journals (Sweden)

    Heungjo An

    2018-05-01

    Full Text Available While large construction sites have on-site loaders to handle heavy and large packages of bricks, small brick manufacturers employ a truck-mounted loader or sometimes deploy a loader truck to accompany normal brick delivery trucks to small construction sites lacking on-site loaders. It may be very challenging for small contractors to manage a sustainable delivery system that is both cost-effective and environmentally friendly. To address this issue, this paper proposes to solve a multi-trip vehicle loader routing problem by uniquely planning routes and schedules of several types of vehicles considering their synchronized operations at customer sites and multi trips. This paper also evaluates the sustainability of the developed model from both economic and environmental perspectives. Case studies based on small construction sites in the Middle East demonstrate applications of the proposed model to make the most economical plans for delivering bricks. Compared to the single-trip vehicle loader routing problem, the proposed model reduces, on average, 18.7% of the total delivery cost while increasing CO2 emission negligibly. The economic benefit is mainly achieved by reducing the required number of vehicles. Brick plant managers can use the proposed mathematical model to plan the most cost-effective delivery schedules sustainably while minimizing negative environmental effects.

  14. Design of Heavy Metals Monitoring System in Water Based on WSN and GPRS

    Directory of Open Access Journals (Sweden)

    Ke Lin

    2014-04-01

    Full Text Available In order to realize the real-time monitoring of heavy metals in water environment, a new type of heavy metal monitoring system was developed. The system was composed of monitoring terminal, gateway, GPRS network and upper computer monitoring center. The system detected the heavy metal ion concentrations by ion-selective electrode array and came into the system error automatic compensation method in the detection process. The collecting data was transported to the monitoring center through the cooperation between the wireless sensor network constituted by CC2530 and General Packet Radio Service network. The test result shows that the system can increased precision dramatically and strengthens the real-time transmission capacity effectively. The system is reliable in transmission, high real-time performance, flexible in networking and can be applied to continuous remote monitoring of heavy metals pollution.

  15. Heavy Ion Fusion Systems Assessment study

    International Nuclear Information System (INIS)

    Dudziak, D.J.; Herrmannsfeldt, W.B.

    1986-07-01

    The Heavy Ion Fusion Systems Assessment (HIFSA) study was conducted with the specific objective of evaluating the prospects of using induction linac drivers to generate economical electrical power from inertial confinement fusion. The study used algorithmic models of representative components of a fusion system to identify favored areas in the multidimensional parameter space. The resulting cost-of-electricity (COE) projections are comparable to those from other (magnetic) fusion scenarios, at a plant size of 100 MWe

  16. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    Science.gov (United States)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  17. Natural gas vehicles : Status, barriers, and opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Rood Werpy, M.; Santini, D.; Burnham, A.; Mintz, M.; Energy Systems

    2010-11-29

    In the United States, recent shale gas discoveries have generated renewed interest in using natural gas as a vehicular fuel, primarily in fleet applications, while outside the United States, natural gas vehicle use has expanded significantly in the past decade. In this report for the U.S. Department of Energy's Clean Cities Program - a public-private partnership that advances the energy, economic, and environmental security of the U.S. by supporting local decisions that reduce petroleum use in the transportation sector - we have examined the state of natural gas vehicle technology, current market status, energy and environmental benefits, implications regarding advancements in European natural gas vehicle technologies, research and development efforts, and current market barriers and opportunities for greater market penetration. The authors contend that commercial intracity trucks are a prime area for advancement of this fuel. Therefore, we examined an aggressive future market penetration of natural gas heavy-duty vehicles that could be seen as a long-term goal. Under this scenario using Energy Information Administration projections and GREET life-cycle modeling of U.S. on-road heavy-duty use, natural gas vehicles would reduce petroleum consumption by approximately 1.2 million barrels of oil per day, while another 400,000 barrels of oil per day reduction could be achieved with significant use of natural gas off-road vehicles. This scenario would reduce daily oil consumption in the United States by about 8%.

  18. Vehicle fault diagnostics and management system

    Science.gov (United States)

    Gopal, Jagadeesh; Gowthamsachin

    2017-11-01

    This project is a kind of advanced automatic identification technology, and is more and more widely used in the fields of transportation and logistics. It looks over the main functions with like Vehicle management, Vehicle Speed limit and Control. This system starts with authentication process to keep itself secure. Here we connect sensors to the STM32 board which in turn is connected to the car through Ethernet cable, as Ethernet in capable of sending large amounts of data at high speeds. This technology involved clearly shows how a careful combination of software and hardware can produce an extremely cost-effective solution to a problem.

  19. Visual tracking strategies for intelligent vehicle highway systems

    Science.gov (United States)

    Smith, Christopher E.; Papanikolopoulos, Nikolaos P.; Brandt, Scott A.; Richards, Charles

    1995-01-01

    The complexity and congestion of current transportation systems often produce traffic situations that jeopardize the safety of the people involved. These situations vary from maintaining a safe distance behind a leading vehicle to safely allowing a pedestrian to cross a busy street. Environmental sensing plays a critical role in virtually all of these situations. Of the sensors available, vision sensors provide information that is richer and more complete than other sensors, making them a logical choice for a multisensor transportation system. In this paper we present robust techniques for intelligent vehicle-highway applications where computer vision plays a crucial role. In particular, we demonstrate that the controlled active vision framework can be utilized to provide a visual sensing modality to a traffic advisory system in order to increase the overall safety margin in a variety of common traffic situations. We have selected two application examples, vehicle tracking and pedestrian tracking, to demonstrate that the framework can provide precisely the type of information required to effectively manage the given situation.

  20. Safety system in a heavy water detritiation plant

    International Nuclear Information System (INIS)

    Balteanu, O.; Stefan, I.; Retevoi, C.

    2003-01-01

    In a CANDU 6 type reactor a quantity of 55·10 15 Bq/year of tritium is generated, 95% being in the D 2 O moderator which can achieve a radioactivity of 2.5-3.5·10 12 Bq/kg. Tritium in heavy water contributes with 30-50% to the doses received by operation personnel and up to 20% to the radioactivity released in the environment. The large quantity of heavy water used in this type of reactors (500 tones) make storage very difficult, especially for environment. The extraction of tritium from tritiated heavy water of CANDU reactors solve the following problems: the radiation level in the operation area, the costs of maintenance and repair reduction due to reduction of personnel protection measures, the increase of NPP utilisation factor by shutdown time reduction for maintenance and repair, use the extracted tritium for fusion reactors and not for the last, lower costs and risk for storage heavy water waste. Heavy water detritiation methods, which currently are used in the industrial or experimental plant, are based on catalytic isotope exchange or electrolysis followed cryogenic distillation or permeation. The technology developed at Institute of Cryogenics and Isotope Separation is based upon catalytic exchange between tritiated water and deuterium, followed by cryogenic distillation of hydrogen isotopes. The nature of the fluids that are processed in detritiation requires the operation of the plant in safety conditions. The paper presents the safety system solution chose in order to solve this task, as well as a simulation of an incident and safety system response. The application software is using LabView platform that is specialised on control and factory automation applications. (author)

  1. 76 FR 19829 - Clean Alternative Fuel Vehicle and Engine Conversions

    Science.gov (United States)

    2011-04-08

    ... INFORMATION CONTACT: Amy Bunker, Compliance and Innovative Strategies Division, U.S. Environmental Protection... Vehicle/Engine Selection D. Mixed-Fuel and Dual-Fuel Conversions E. Vehicle/Engine Labels, Packaging Labels, and Marketing F. Compliance 1. Emission Standards a. Light-Duty and Heavy-Duty Chassis Certified...

  2. ac propulsion system for an electric vehicle

    Science.gov (United States)

    Geppert, S.

    1980-01-01

    It is pointed out that dc drives will be the logical choice for current production electric vehicles (EV). However, by the mid-80's, there is a good chance that the price and reliability of suitable high-power semiconductors will allow for a competitive ac system. The driving force behind the ac approach is the induction motor, which has specific advantages relative to a dc shunt or series traction motor. These advantages would be an important factor in the case of a vehicle for which low maintenance characteristics are of primary importance. A description of an EV ac propulsion system is provided, taking into account the logic controller, the inverter, the motor, and a two-speed transmission-differential-axle assembly. The main barrier to the employment of the considered propulsion system in EV is not any technical problem, but inverter transistor cost.

  3. Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Swami [Eaton Corporation, Menomonee Falls, WI (United States)

    2015-10-01

    Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.

  4. An operating system for future aerospace vehicle computer systems

    Science.gov (United States)

    Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.

    1984-01-01

    The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.

  5. Fragmentation in central collisions of heavy systems

    International Nuclear Information System (INIS)

    Claesson, G.; Doss, K.G.R.; Ferguson, R.

    1987-01-01

    One of the goals of heavy ion reaction studies is to understand the fragmentation of hot nuclei. The LBL/GSI Plastic Ball detector system has been used to achieve a very high solid angle for detection of light and medium-heavy fragments emitted in 200 Mev/A Au + Au and Au + Fe reactions. The simultaneous measurement of almost all of the nucleons and nuclei resulting from each collision allows an estimation of the total charged particle multiplicity and hence the impact parameter. By choosing subsets of the data corresponding to a peripheral or central collision, the assumptions inherent in various models of nuclear fragmentation can be tested. 3 refs., 3 figs

  6. Energy intensity in road freight transport of heavy goods vehicles in Spain

    International Nuclear Information System (INIS)

    Andrés, Lidia; Padilla, Emilio

    2015-01-01

    This paper examines the factors that have influenced the energy intensity trend of the Spanish road freight transport of heavy goods vehicles over the period 1996–2012. This article aims to contribute to a better understanding of these factors and to inform the design of measures to improve energy efficiency in road freight transport. The paper uses both annual single-period and chained multi-period multiplicative LMDI-II decomposition analysis. The results suggest that the decrease in the energy intensity of Spanish road freight in the period is explained by the change in the real energy intensity index (lower energy consumption per tonne-kilometre transported), which is partially offset by the behaviour of the structural index (greater share in freight transport of those commodities the transportation of which is more energy intensive). The change in energy intensity is analysed in more depth by quantifying the contribution of each commodity through the attribution of changes in Divisia indices. -- Highlights: •We examine energy intensity of Spanish road freight transport over 1996–2012. •We employ single-period and chained multi-period multiplicative LMDI-II decomposition. •Energy intensity reduction is explained by the change in real energy intensity index. •This is partially offset by the behaviour of the structural index. •The attribution of Divisia indices changes gives the contribution of each commodity

  7. SMART VIDEO SURVEILLANCE SYSTEM FOR VEHICLE DETECTION AND TRAFFIC FLOW CONTROL

    Directory of Open Access Journals (Sweden)

    A. A. SHAFIE

    2011-08-01

    Full Text Available Traffic signal light can be optimized using vehicle flow statistics obtained by Smart Video Surveillance Software (SVSS. This research focuses on efficient traffic control system by detecting and counting the vehicle numbers at various times and locations. At present, one of the biggest problems in the main city in any country is the traffic jam during office hour and office break hour. Sometimes it can be seen that the traffic signal green light is still ON even though there is no vehicle coming. Similarly, it is also observed that long queues of vehicles are waiting even though the road is empty due to traffic signal light selection without proper investigation on vehicle flow. This can be handled by adjusting the vehicle passing time implementing by our developed SVSS. A number of experiment results of vehicle flows are discussed in this research graphically in order to test the feasibility of the developed system. Finally, adoptive background model is proposed in SVSS in order to successfully detect target objects such as motor bike, car, bus, etc.

  8. PHITS-a particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji; Sato, Tatsuhiko; Iwase, Hiroshi; Nose, Hiroyuki; Nakashima, Hiroshi; Sihver, Lembit

    2006-01-01

    The paper presents a summary of the recent development of the multi-purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS. In particular, we discuss in detail the development of two new models, JAM and JQMD, for high energy particle interactions, incorporated in PHITS, and show comparisons between model calculations and experiments for the validations of these models. The paper presents three applications of the code including spallation neutron source, heavy ion therapy and space radiation. The results and examples shown indicate PHITS has great ability of carrying out the radiation transport analysis of almost all particles including heavy ions within a wide energy range

  9. Wireless alerting system using vibration for vehicles dashboard

    Science.gov (United States)

    Raj, Sweta; Rai, Shweta; Magaramagara, Wilbert; Sivacoumar, R.

    2017-11-01

    This paper aims at improving the engine life of any vehicle through a continuous measurement and monitoring of vital engine operational parameters and providing an effective alerting to drivers for any abnormality. Vehicles currently are using audio and visible alerting signals through alarms and light as a warning to the driver but these are not effective in noisy environments and during daylight. Through the use of the sense of feeling a driver can be alerted effectively. The need to no other vehicle parameter needs to be aided through the mobile display (phone).Thus a system is designed and implements to measure engine temperature, RPM, Oil level and Coolant level using appropriate sensors and a wireless communication (Bluetooth) is established to actuate a portable vibration control device and to read the different vehicle sensor readings through an android application for display and diagnosis.

  10. Reliability prediction for the vehicles equipped with advanced driver assistance systems (ADAS and passive safety systems (PSS

    Directory of Open Access Journals (Sweden)

    Balbir S. Dhillon

    2012-10-01

    Full Text Available The human error has been reported as a major root cause in road accidents in today’s world. The human as a driver in road vehicles composed of human, mechanical and electrical components is constantly exposed to changing surroundings (e.g., road conditions, environmentwhich deteriorate the driver’s capacities leading to a potential accident. The auto industries and transportation authorities have realized that similar to other complex and safety sensitive transportation systems, the road vehicles need to rely on both advanced technologies (i.e., Advanced Driver Assistance Systems (ADAS and Passive Safety Systems (PSS (e.g.,, seatbelts, airbags in order to mitigate the risk of accidents and casualties. In this study, the advantages and disadvantages of ADAS as active safety systems as well as passive safety systems in road vehicles have been discussed. Also, this study proposes models that analyze the interactions between human as a driver and ADAS Warning and Crash Avoidance Systems and PSS in the design of vehicles. Thereafter, the mathematical models have been developed to make reliability prediction at any given time on the road transportation for vehicles equipped with ADAS and PSS. Finally, the implications of this study in the improvement of vehicle designs and prevention of casualties are discussed.

  11. Influences of braking system faults on the vehicle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Straky, H.; Kochem, M.; Schmitt, J.; Hild, R.; Isermann, R. [Technische Univ., Darmstadt (Germany). Inst. of Automatic Control

    2001-07-01

    From a safety point of view the braking system is, besides the driver, one of the key subsystems in a car. The driver, as an adaptive control system, might not notice small faults in the hydraulic part of the braking system and sooner or later critical braking situations, e.g. due to a brake-circuit failure, may occur. Most of the drivers are not capable to deal with such critical situations. Therefore this paper investigates the influence of faults in the braking system on the dynamic vehicle behavior and the steering inputs of the driver to keep the vehicle on the desired course. (orig.)

  12. Prioritization and selection of electrical vehicle systems to improve its performances: An AHP approach

    Energy Technology Data Exchange (ETDEWEB)

    Larrode, E.; Muerza, V.; Arroyo, J.B.

    2016-07-01

    In the study of the improvement of urban transport in terms of energy efficiency and environmental improvement, one of the best options is the use of electric vehicles for both passengers and freight distribution. Depending on the type of transport operation to be performed, it is necessary to select the most appropriate vehicle that meets the necessary requirements, so that the result is an improvement in energy efficiency and low environmental impact. It is therefore necessary to design architectures for electric vehicles, specially adapted to the different scenarios in which are to be used, and where they can optimize the transport operation in both reducing energy consumption and reducing emissions, maintaining a cost competitive with current vehicle operation. The electrical vehicles (EV) are composed of different systems. A typical EV structure involves five subsystems: (i) drive system, (ii) power system, (iii) control system, (iv) vehicle structure and (v) auxiliary systems. This paper focuses on the development of a multicriteria decision procedure based on the use of the Analytic Hierarchy Process (AHP), to prioritize among the five vehicle systems, in which the design efforts should be guided to improve the vehicle. (Author)

  13. Research of braking process of transport vehicle with hydraulic brake system parameters

    OpenAIRE

    Vladimirov, Oleg

    2005-01-01

    Emergency braking of a vehicle is bound with many factors, such as the behaviour of the driver, the drive of the vehicle braking system, the braking mechanisms, the condition of the tyres, and the properties of the pavement. This process involves all parameters of the system “the driver – the vehicle – the road”. In order to investigate the efficiency of braking process upon specific conditions, it is necessary to examine all physical processes that take place in the vehicle on pressing the b...

  14. Food Delivery System with the Utilization of Vehicle Using Geographical Information System (GIS) and A Star Algorithm

    Science.gov (United States)

    Siregar, B.; Gunawan, D.; Andayani, U.; Sari Lubis, Elita; Fahmi, F.

    2017-01-01

    Food delivery system is one kind of geographical information systems (GIS) that can be applied through digitation process. The main case in food delivery system is the way to determine the shortest path and food delivery vehicle movement tracking. Therefore, to make sure that the digitation process of food delivery system can be applied efficiently, it is needed to add shortest path determination facility and food delivery vehicle tracking. This research uses A Star (A*) algorithm for determining shortest path and location-based system (LBS) programming for moving food delivery vehicle object tracking. According to this research, it is generated the integrated system that can be used by food delivery driver, customer, and administrator in terms of simplifying the food delivery system. Through the application of shortest path and the tracking of moving vehicle, thus the application of food delivery system in the scope of geographical information system (GIS) can be executed.

  15. Heavy Lift for National Security: The Ares V

    Science.gov (United States)

    Sumrall, Phil

    2009-01-01

    The NASA Ares Projects Office is developing the launch vehicles to move the United States and humanity beyond low earth orbit. Ares I is a crewed vehicle, and Ares V is a heavy lift vehicle being designed to launch cargo into LEO and transfer cargo and crews to the Moon. This is a snapshot of development and capabilities. Ares V is early in the requirements formulation stage of development pending the outcome of the Review of U.S. Human Space Flight Plans Committee and White House action. The Ares V vehicle will be considered a national asset, creating unmatched opportunities for human exploration, science, national security, and space business.

  16. On the validity of the Migdal's theorem in heavy fermion systems

    International Nuclear Information System (INIS)

    Wojciechowski, R.J.

    1996-09-01

    The interaction between phonons and electrons in strongly correlated electron systems is investigated in the context of the electron-phonon vertex correction. We preserve characteristic features of heavy fermion systems assuming a high density of states near the Fermi level and a very large effective mass m * . We have calculated the lowest-order vertex correction to the quasi particle-phonon interaction and shown that there is no Migdal's theorem for heavy fermion systems. (author). 12 refs, 1 fig

  17. The Optimal Steering Control System using Imperialist Competitive Algorithm on Vehicles with Steer-by-Wire System

    Directory of Open Access Journals (Sweden)

    F. Hunaini

    2015-03-01

    Full Text Available Steer-by-wire is the electrical steering systems on vehicles that are expected with the development of an optimal control system can improve the dynamic performance of the vehicle. This paper aims to optimize the control systems, namely Fuzzy Logic Control (FLC and the Proportional, Integral and Derivative (PID control on the vehicle steering system using Imperialist Competitive Algorithm (ICA. The control systems are built in a cascade, FLC to suppress errors in the lateral motion and the PID control to minimize the error in the yaw motion of the vehicle. FLC is built has two inputs (error and delta error and single output. Each input and output consists of three Membership Function (MF in the form of a triangular for language term "zero" and two trapezoidal for language term "negative" and "positive". In order to work optimally, each MF optimized using ICA to get the position and width of the most appropriate. Likewise, in the PID control, the constant at each Proportional, Integral and Derivative control also optimized using ICA, so there are six parameters of the control system are simultaneously optimized by ICA. Simulations performed on vehicle models with 10 Degree Of Freedom (DOF, the plant input using the variables of steering that expressed in the desired trajectory, and the plant outputs are lateral and yaw motion. The simulation results showed that the FLC-PID control system optimized by using ICA can maintain the movement of vehicle according to the desired trajectory with lower error and higher speed limits than optimized with Particle Swarm Optimization (PSO.

  18. 4g-Based Specialty Vehicles Real-Time Monitoring System Design and Implementation

    Directory of Open Access Journals (Sweden)

    Zhuang Yu-Feng

    2017-01-01

    Full Text Available In the future development of natural gas transportation industry, emerging ITS technology will be applied more and more, aiming at integrating precise positioning technology, geographic information system technology, database technology, multimedia technology and modern communication technology, sensor network technology and video capture technology, so as to achieve the transport steam (oil vehicles in real time monitoring and management. The main research content of this paper is to design and research the monitoring and locating system of luck (oil vehicle based on 4G on Android System. Real-time monitoring and alarming by sensor module, real-time video recording and uploading through camera module, real-time position recording and uploading through GPS module, vehicle navigation module and quick alarm module, which is composed of five parts. The system is the application of new intelligent transport technology in the field of special vehicle transport. It apply electronic information technology and internet of things technology to the vehicle system, so we can monitor natural gas and other special dangerous goods anytime, anywhere.

  19. State-of-the-Art System Solutions for Unmanned Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    A. E. Yilmaz

    2009-12-01

    Full Text Available Unmanned Underwater Vehicles (UUVs have gained popularity for the last decades, especially for the purpose of not risking human life in dangerous operations. On the other hand, underwater environment introduces numerous challenges in navigation, control and communication of such vehicles. Certainly, this fact makes the development of these vehicles more interesting and engineering-wise more attractive. In this paper, we first revisit the existing technology and methodology for the solution of aforementioned problems, then we try to come up with a system solution of a generic unmanned underwater vehicles.

  20. System Interface for an Integrated Intelligent Safety System (ISS for Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Mahammad A. Hannan

    2010-01-01

    Full Text Available This paper deals with the interface-relevant activity of a vehicle integrated intelligent safety system (ISS that includes an airbag deployment decision system (ADDS and a tire pressure monitoring system (TPMS. A program is developed in LabWindows/CVI, using C for prototype implementation. The prototype is primarily concerned with the interconnection between hardware objects such as a load cell, web camera, accelerometer, TPM tire module and receiver module, DAQ card, CPU card and a touch screen. Several safety subsystems, including image processing, weight sensing and crash detection systems, are integrated, and their outputs are combined to yield intelligent decisions regarding airbag deployment. The integrated safety system also monitors tire pressure and temperature. Testing and experimentation with this ISS suggests that the system is unique, robust, intelligent, and appropriate for in-vehicle applications.