WorldWideScience

Sample records for heavy target nuclei

  1. Interactions of 10.6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion

    International Nuclear Information System (INIS)

    Cherry, M.L.; Denes-Jones, P.

    1994-03-01

    We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criteria has been developed to distinguish between the interactions of these gold nuclei with the light (H, C, N, O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyzes of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H, C, N, O) and Au-(Ag, Br) interactions, as well as of the models of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei. (author). 14 refs, 11 figs, 1 tab

  2. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Science.gov (United States)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  3. Study of Nuclear Collisions of 86 MeV/a.m.u. $^{12}$C with Heavy Targets by Collection of the Heavy Recoil Nuclei

    CERN Multimedia

    2002-01-01

    The aim of this experiment is twofold:\\\\ \\\\ Firstly to test the possibilities of collection of the heavy recoil nuclei with the device presented schematically on the figure. The recoil nuclei escaping from the irradiated target are first thermalised in a gas (N^2). One then takes advantage of their remaining charge to collect them with an electric field on the surface of a solid state detector. Tests already performed with other beams give absolute efficiency around 5\\%. The best conditions of collections with very energetic |1|2C have first to be tested. Secondly to get some insight into nuclear reaction mechanisms induced by 86~MeV/a.m.u. |1|2C using the possibilities of this recoil chamber. Two kinds of mechanisms should occur in these interactions. If the incident energy is damped (deep inelastic reaction, fusion), the heavy nucleus will be highly excited and the residual nuclei will lie along the @G^n/@G^p~=~1~line. For heavy nuclei this line is located at about 25~mass units from the stability line. If ...

  4. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  5. Nuclear reactions of medium and heavy target nuclei with high-energy projectiles

    International Nuclear Information System (INIS)

    Kozma, P.; Damdinsuren, C.

    1988-01-01

    The cross sections of a number of target fragmentation products formed in nuclear reactions of 3.65 AGeV 12 C-ions and 3.65 GeV protons with 197 Au have been measured. The measurements have been done by direct counting of irradiated targets with Ge(Li) gamma-spectrometers. Comparison between these and other data has been used to test the hypotheses of factorization and limiting fragmentation. The total cross section for residue production in both reactions indicates that target residues are formed mainly in central collisions

  6. Nucleon transfer between heavy nuclei

    International Nuclear Information System (INIS)

    Von Oertzen, W.

    1984-02-01

    Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation

  7. Nuclei at HERA and heavy ion physics

    International Nuclear Information System (INIS)

    Gavin, S.; Strikman, M.

    1995-01-01

    Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk

  8. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei

    International Nuclear Information System (INIS)

    Khalfallah, F.

    2007-08-01

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No 256 et Rf 256 for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa 223 . The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  9. Electro-magnetic properties of heavy nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    1989-01-01

    Two topics of electro-magnetic properties of heavy nuclei are discussed. The first topic is the M1 excitation from well-deformed heavy nuclei, and the other is the sudden increase of the isotope shift as a function of N in going away from the closed shell. These problems are considered in terms of the particle-number projected (Nilsson-) BCS calculation. (author)

  10. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  11. Hot nuclei production and deexcitation in heavy ions induced reactions on medium mass targets in the 10-84 MeV/nucleon energy domain

    International Nuclear Information System (INIS)

    Lleres, A.

    1988-01-01

    Velocity, angular distributions and total cross sections for heavy residues produced in the reactions 12 C, 14 N, 20 Ne, 40 Ar + 124 Sn have been measured in the 10-84 MeV/nucleon incident energy range using catchers technique in association with off-line gamma-activity spectroscopy. The observed reaction products are interpreted as evaporation residues from equilibrated systems formed by complete or incomplete fusion of the projectile and target nuclei. From the velocities and residual masses measured at forward angles, the linear momentum transfers and excitation energies associated with the intermediate systems are estimated using simple fusion-evaporation models and are next compared to the predictions of the preequilibrium and Fermi jets models. Energy, angular, charge and charge correlation distributions for intermediate mass fragments emitted in the reaction 32 S + nat Ag at 30 MeV/nucleon were also measured using gaseous and silicon detectors. The energy and angular distributions indicate that both equilibrated and non-equilibrated emitting sources are present. The equilibrium emission is attributed to the deexcitation of systems produced by incomplete fusion of the projectile and target nuclei. The charge correlation distributions are consistent with an asymmetric fission decay process. The linear momentum transfer and excitation energy associated with the equilibrated source are estimated using a simple fusion-fission model [fr

  12. Heavy-ion targets

    International Nuclear Information System (INIS)

    Adair, H.L.; Kobisk, E.H.

    1985-01-01

    This chapter examines the characteristics of targets required in heavy-ion accelerator physics experiments. The effects of target parameters on heavy-ion experimental results are reviewed. The target fabrication and characterization techniques used to minimize experimental problems during heavy-ion bombardment are described. Topics considered include target thickness and uniformity, target lifetime, target purity, substrate materials, Doppler shift effects, metal preparations, and target preparation methods

  13. Octupole shapes in heavy nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1994-01-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets

  14. Decay of heavy and superheavy nuclei

    Indian Academy of Sciences (India)

    April 2014 physics pp. 705–715. Decay of heavy and superheavy nuclei ... study on the feasibility of observing α decay chains from the isotopes of the ... studies on 284−286115 and 288−292117 will be a guide to future experiments. .... ratio of the α decay from the ground state of the parent nucleus to the level i of the.

  15. Complete destruction of heavy nuclei by hadrons and nuclei

    International Nuclear Information System (INIS)

    Tolstov, K.D.

    1980-01-01

    The total disintegration is considered of Ag and Pb nuclei and 4 He, 12 C nuclei With a momentum of 4.5 GeV/c per nucleon. It is shown that nucleons are mainly emitted, and there is no residual nUcleus the mass of which is comparable to that of the primary nucleus. The probability of total nucleus disintegration is considered as a function of projectile energy and the mass. The multiplicity, energy and emission angle of particles are considerred as well. It is shown that the density of nuclear matter in the overlap zone of colliding nuclei exceeds the usual one by a factor of approximately 4. A comparison is made with interaction models. A conclusion is drawn of the collective interaction mechanism (perhaps, of the shock wave type) of particle ejection from the target nucleus at the first stage of interaction and of explosive decay of the residual nucleus at the next one

  16. Search for nuclei in heavy ion collisions at ultrarelativistic energies

    CERN Multimedia

    2002-01-01

    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle $(>10^{\\circ}-15^{\\circ})$ they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm$^{2}$ Au target bombarded by an $^{16}$O or $^{32}$S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from $^{16}$O incident on Au have been taken last year. The experiment is presently taking data with $^{...

  17. From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Ch

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  18. Heavy accelerated nuclei in biomedical research

    International Nuclear Information System (INIS)

    Tobias, C.A.

    1987-01-01

    Accelerated atomic nuclei in physics accelerators have been used in basic biological research and in applied medical diagnostic and therapeutic studies for the past 50 years. The passage of single heavy particles through the cell nucleus is capable of producing multiple DNA double-strand scission and chromatin breaks. According to the Repair-Misrepair model, the high biological effectiveness of high-LET particles is due to misrepair and misrejoining of the breaks. The Bragg depth ionization effect allows heavy particles to deposit considerably more energy deep in tissue than at the surface, and this property has been used for great improvements in the radiation therapy of localized tumors. Recent advances in producing radioactive beams will allow verification of therapeutic administration of such beams. The radioactive beams also open a new field of Nuclear Medicine. There is increasing interest in building special biomedical light and heavy-ion accelerators. These will be used not only for therapy but also for diagnosis, for the study of radiation hazards in space flight, and for basic molecular and cellular understanding of the mechanisms of radiation effect

  19. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  20. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    International Nuclear Information System (INIS)

    Schroeder, W. Udo

    2016-01-01

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the ''boiling'' and ''vaporization'' of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, ''head-on'' collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (''neck'') between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  1. Heavy quarkonium production and propagation in nuclei

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1997-01-01

    In the search for the quark-gluon plasma, it has been suggested that the production of charmonium will be suppressed in a quark-gluon plasma because of the screening of the interaction between c and anti c. To extract information on the suppression due to the quark-gluon plasma, it is necessary to study the suppression of J/ψ production by sources different from the quark-gluon plasma. It is therefore useful to examine the mechanism of heavy quarkonium production and its propagation in nuclei. The authors describe a precursor in heavy quarkonium production in terms of a coherent admixture of states of different color, spin, and angular momentum quantum numbers, and obtain the production amplitudes for different quarkonium bound states by projecting out this precursor state onto these bound states. The precursor is absorbed in its passage through a nucleus in a pA reaction, and the total cross section between this precursor with a nucleon can be calculated with the two-gluon model of the Pomeron. Such a description of coherent precursors and their subsequent interactions with nucleons can explain many salient features of J/ψ and ψ' production in pA collisions

  2. Deep inelastic collisions between very heavy nuclei

    International Nuclear Information System (INIS)

    Sann, H.; Olmi, A.; Civelekoglu, Y.

    1977-01-01

    A systematic survey of deep inelastic reactions was performed for colliding nuclei of masses between 80 and 240 amu. The application of large surface detectors and, particularly, of a position sensitive ionization chamber, has proved to be very effective and appropriate for this type of investigation. The Wilczynski diagrams describing the relative motion between the colliding objects shows a gradual trend as a function of growing masses of target and projectile where the trajectories lead the particles not toward negative scattering angles but increasingly into the direction around and above the grazing angle. This behavior is attributed to a delicate balance between Coulomb and nuclear forces. The energy dumping as a function of the mass transfer strength matches a general law between total kinetic energy loss and the variance of the proton number distribution. For the partly damped component this relation seems to hold independently from the choice of ingoing channel and bombarding energy. The dissipation of the kinetic energy does not depend only on the relative velocity of the impinging nuclei, and the simple friction model is not appropriate to describe these processes. The γ-multiplicity measurement displays a rapid increase as a function of scattering angle and total kinetic energy loss, which give new insights to the process and indicate the necessity of microscopic quantum mechanical calculations of the interaction. In the U-U collision large mass transfers are present which possibly populate with relatively large cross sections the transuranic elements. In the Pb-Pb reaction the mass transfer is more restricted. The decay probability by fission of the primary masses increases strongly for growing masses and excitation energies

  3. Decay of giant resonance E2 isoscalar in heavy nuclei

    International Nuclear Information System (INIS)

    Herdade, S.B.

    1980-01-01

    In this work, it is made a study of the giant resonance E2 isoscalar, in heavy nuclei. Fission probabilities for this resonance were determined by various authors, in different experiments, for 238 U. (A.C.A.S.) [pt

  4. Cluster radioactivity of Z=125 super heavy nuclei

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Seenappa, L.

    2015-01-01

    For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8 Be, 10 Be, 12 C, 14 C, 16 C, 18 O, 20 O, 22 Ne, 24 Ne, 25 Ne, 26 Ne, 28 Mg, 30 Mg, 32 Si, 34 Si, 36 Si, 40 S, 48 Ca, 50 Ca and 52 Ti from the super heavy nuclei Z=125

  5. Observation of the Antimatter Nuclei in Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Yoo, I.-K.

    2013-01-01

    Recently antimatter hyper-triton nuclei ( 3 Λ¯ H ¯) and antimatter helium nuclei ( 4 2 He ¯ ) are discovered with the Solenoidal Tracker At RHIC detector in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) (STAR Collaboration in Science 328(5974):58-62, 2010; STAR Collaboration in Nature 473:353-356, 2011). In this presentation, discoveries of antimatter particle are historically scanned and the recent observations at RHIC are reported in details as well as potential possibilities of discovery of antimatter nuclei at ALICE. (author)

  6. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    Science.gov (United States)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  7. A note on total muon capture rates in heavy nuclei

    International Nuclear Information System (INIS)

    Parthasarathy, R.

    1978-03-01

    The results of calculations of the total capture rates in heavy nuclei, into account the nucleon velocity-dependent terms in the Fujii-Primakoff Hamiltonian and the effective mass of nucleons inside the nucleus, are presented along with the recent experimental data. The results are in general agreement with experiment. However, they indicate a possible deviation from SU(4) symmetry and, in some nuclei, support the Salam-Strathdee idea of the vanishing of the Cabibbo angle at large magnetic fields.

  8. Interactions of 400 GeV proton with Different target nuclei in emulsion

    International Nuclear Information System (INIS)

    El-Nadi, M.; Abdel-Halim, S.M.; Yasin, M.N.; El-Nagdy, M.S.

    1995-01-01

    The interaction characteristics of 400 GeV proton with emulsion nuclei were studied and discussed. The multiplicity distributions of secondary charged particles have been measured for 480 inelastic events and are compared with the results obtained in p-emulsion collisions at different energies. The integral distribution of the number of disintegrated particles from the target nuclei N h are used to separate the number of the inelastic interactions of proton with light (Cno) and heavy (Ag Br) nuclei in the emulsion. The interaction characteristics of proton (400 GeV) with different groups of target nuclei have been investigated

  9. Interactions of 400 GeV protons with different target nuclei in emulsion

    International Nuclear Information System (INIS)

    El-Nadi, M.; Abdel Halim, S.M.; Yasin, M.N.; El-Nagdy, M.S.

    1996-01-01

    The interaction characteristics of 400 GeV protons with emulsion nuclei were studied and discussed. The multiplicity distributions of secondary charged particles have been measured for 480 inelastic events and are compared with the results obtained in p-emulsion (P-Em) collisions at different energies. The integral distribution of the number of disintegrated particles from the target nuclei N h is used to separate the number of the inelastic interactions of proton with light (CNO) and heavy (AgBR) nuclei in the emulsion. The interaction characteristics of protons (400 GeV) with different groups of target nuclei have been investigated. (author)

  10. On deuteron break-up at interaction with heavy nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Nemets, O.F.; Struzhko, B.G.

    1975-01-01

    The aim of the paper is the study of the nuclear boundary diffusivity during disintegration of a deutron on heavy nuclei for various combinations of neutron and proton emission angles. The formulae has obtained for the cross section and the amplitude of nuclear interaction. The calculation of angular correlations between emission directions of deutron disintegration products and energy spectra of released protons depending on the nuclear boundary diffusivity is made. It is shown that the differential cross sections of deutron fission disintegration decrease with increasing nuclear boundary diffusivity. This effect may serve a qualitative explanation for observed differences in the deutron disintegration cross sections on heavy nuclei

  11. Kinematic separation and mass analysis of heavy recoiling nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Eremin, A.V.; Belozerov, A.V.

    2002-01-01

    Within the past twelve years, the recoil separator VASSILISSA has been used for investigation of evaporation residues produced in heavy-ion induced complete-fusion reactions. In the course of the experimental work in the region of the elements with 92 ≤ Z ≤ 94, fourteen new isotopes have been identified by the parent-daughter correlations. The study of the decay properties and formation cross sections of the isotopes of elements 110, 112, and 114 was performed with the use of the high intensity 48 Ca beams; 232 Th, 238 U and 242 Pu targets were used in the experiments. At the beam energies corresponding to the calculated cross-section maxima of the 3n evaporation channels, the isotopes 277 110, 283 112, and 287 114 were produced and identified. For further experiments aimed at the synthesis of the superheavy element isotopes (Z ≥ 110) with the intensive 48 Ca extracted beams, the improvements in the ion optical system of the separator and of the focal plane detector system have been made. As a result, for heavy recoiling nuclei with masses A ∼ 250, the mass resolution of about 2.5 % was achieved with a good energy and position resolutions of the focal plane detectors

  12. Heavy nuclei, from RHIC to the cosmos

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2003-01-01

    Ultra-relativistic heavy ion collisions produce a high-temperature, thermalized system that may mimic the conditions present shortly after the big bang. This writeup will given an overview of early results from the Relativistic Heavy Ion Collider (RHIC), and discuss what we have learned about hot, strongly interacting nuclear systems. The thermal and chemical composition of the system will be discussed, along with observables that are sensitive to the early evolution of the system. I will also discuss the implications of the RHIC results for cosmic ray air showers

  13. Photofissility of heavy nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Arruda Neto, J.D.T.; Likhachev, V.P.; Goncalves, M.

    2002-10-01

    We use the recently developed MCMC/MCEF (Multi Collisional Monte Carlo plus Monte Carlo for Evaporation-Fission calculations) model to calculate the photo fissility and the photofission cross section at intermediate energies for the 243 Am and for 209 Bi, and compare them to results obtained for other actinides and to available experimental data. As expected, the results for 243 Am are close to those for 237 Np. The fissility for pre actinide nuclei is nearly one order of magnitude lower than that for the actinides. Both fissility and photofission cross section for 209 Bi are in good agreement with the experimental data. (author)

  14. French contribution to the super-heavy nuclei discovery

    International Nuclear Information System (INIS)

    Nifenecker, H.; Asghar, M.

    1999-01-01

    The research on super-heavy nuclei is a science in full operation for which the Berkeley physicist give proof of perseverance. The author wonders about the french absence in this domain. He recalls the strategical decisions concerning the research programs of the period and gives outline of the future with the interest of the ECR (Electronic Cyclotron Resonance) sources. (A.L.B.)

  15. Transport theory of deep-inelastic collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Ayik, S.; Noerenberg, W.; Schuermann, B.

    1975-01-01

    In collisions between heavy nuclei, the major part of the total cross-section is due to deep-inelastic processes. These processes have been studied within a quantum-statistical approach leading to transport equations of the Fokker-Planck type (generalized diffusion equation). Transport coefficients have been studied within a model. (orig./WL) [de

  16. Recent studies of heavy nuclei far from stability at JYFL

    Energy Technology Data Exchange (ETDEWEB)

    Julin, R.; Enqvist, T.; Helariutta, K. [Univ. of Jyvaeskylae (Finland)] [and others

    1996-12-31

    The new K=130 Cyclotron + ECR facility of the Physics Department of the University of Jyvaskyla (JYFL) provides stable beams from protons up to krypton ions for nuclear structure studies. Two instruments designed especially for in-beam spectroscopic studies of heavy nuclei at JYFL are introduced in this contribution. Some results from recent measurements with them are reported.

  17. Measurements of secondary neutrons producted from thick targets bombarded by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, T.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Nakao, N.; Shibata, T.; Uwamino, Y.; Nakanishi, N.; Fukumura, A.; Kumamoto, Y.

    1997-03-01

    We measured neutron angular and energy distributions from high energy heavy ions stopping in targets of carbon, aluminum, copper and lead at HIMAC. These spectra are much harder for the lighter target nucleus like carbon. This means that the momentum transfer in the forward direction from heavy ion beam to lighter nuclei is much higher than that to heavier nuclei. (author)

  18. The resonance neutron fission on heavy nuclei

    International Nuclear Information System (INIS)

    Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.

    2001-01-01

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru

  19. Collisions between heavy nuclei near the barrier

    International Nuclear Information System (INIS)

    Henning, W.

    1988-05-01

    Detailed information has recently become available on the reaction behavior in very heavy nuclear systems close to the Coulomb barrier. Starting from an experimental study of the distribution of the reaction strength above and below the barrier, the dominant reaction channels of quasi-elastic and strongly-damped processes are examined. With decreasing incident energy, the sub-barrier collisions are increasingly dominated by quasi-elastic processes. From the division of internal excitation energy, new information is obtained on the nature of the dissipative processes. (orig.)

  20. Hadronic spectra from collisions of heavy nuclei

    International Nuclear Information System (INIS)

    Jacobs, P.

    1997-03-01

    Hadronic spectra from collisions of heavy ions at ultrarelativistic energies are discussed, concentrating on recent measurements at the SPS of central Pb+Pb collisions at 158 GeV/nucleon, which are compared to collisions of lighter ions and at lower beam energies. Baryon stopping is seen to be larger for heavier systems and lower energies. Total yields of pions and kaons scale with the number of participants in central collisions at the SPS; in particular, the K/π ratio is constant between central S+S and Pb+Pb at the SPS. Transverse mass spectra indicate significantly larger radial flow for the heavier systems. At midrapidity, an enhancement of - >/ + > and - >/ + > at low P T are best explained by final state Coulomb interaction with the residual charge of the fireball

  1. Charged particles multiplicity in interactions of 3.7 A GeV 28Si with light and heavy target nuclei in nuclear emulsions

    International Nuclear Information System (INIS)

    Singh, B.K.; Tuli, S.K.

    1998-01-01

    Results from measurement of multiplicity of different charged particles emitted from the interactions of 3.7 A GeV 28 Si with different target groups in nuclear emulsion and correlations among them are presented. The nature of the dependence of multiplicities of charged particles on the impact parameter is examined. Analysis of data in terms of specific multiplicity for different target groups is performed and the results are discussed in the light of superposition model. (author)

  2. Nuclei far from stability using exotic targets

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Bentley, C.E.; Thomas, K.E.; Brown, R.E.; Flynn, E.R.; Van der Plicht, J.; Mann, L.G.; Struble, G.L.

    1981-01-01

    The meson factories such as the Los Alamos Meson Physics Facility have made possible high fluence medium energy proton beams that can be used for spallation reactions to produce macro quantities of unstable isotopes. Targets of over 10 g/cm 2 can be exposed to total fluence approaching 1 A-hour resulting in spallation yields in the 0.01-10 mg range for many isotopes of potential interest for nuclear structure studies. With the use of hot cell facilities, chemical processing can isolate the desired material and this coupled with subsequent isotope separation can result in usable quantities of material for nuclear target applicaton. With offstable isotopes are target materials, conventional nuclear spectroscopy techniques can be employed to study nuclei far from stability. The irradiation and processing requirements for such an operation, along with the isotope production possibilities, are discussed. Also presented are initial experiments using a 148 Gd (tsub(1/2) = 75a) target to perform the (p,t) reaction to extablish levels in the proposed double magic nucleus 146 Gd. (orig.)

  3. Source spectral index of heavy cosmic ray nuclei

    International Nuclear Information System (INIS)

    Engelmann, J.J.; Ferrando, P.; Koch-Miramond, L.; Masse, P.; Soutoul, A.; Webber, W.R.

    1985-08-01

    From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, we have derived the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann et al. 1985). In the present paper we want to derive more accurate spectral indices by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul et al. this conference). Our aim is also to extend the analysis to lower energies down to 0.4 GeV/n (kinetic energy observed near earth), using data obtained by other groups. The only nuclei for which we have a good data base in a broad range of energies are O and Fe, so the present study is restricted to these two elements

  4. Problem of α-clustering levels in heavy nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, V.G.; Kadmenskij, S.G.; Kurgalin, S.D.; Furman, V.I.

    1982-01-01

    From the optical model analysis of elastic scattering and absorption cross sections of α-particles including the (n,α) reaction induced by resonance neutrons it may be concluded that the conception of black nucleus is valid for α-particles. It was shown that the magnitudes of α-particle surface spectroscopic factors did not exceed 10sup(-2) for all the known α-transitions both in spherical and deformed heavy nuclei accounting for the ambiguities of the optical model potential. The possibilities of extracting the α-particles form factors of low-lying nuclear states from α-transfer reaction data are considered. From all the data considered it is concluded that there is no evidence for the revealing of α-clustering levels in heavy nuclei. (author)

  5. Heavy ion collisions and quark distribution in nuclei

    International Nuclear Information System (INIS)

    Liu Lian-sou; Pan Ji-cai; Peng Hung-an

    1986-01-01

    Heavy-ion collisions are studied by means of two-component Fokker--Planck equations on the assumption that there exist multiquark states in nuclei. Inclusive cross sections for the production of protons are calculated in heavy-ion collisions of C+C, Ne+NaF, and Ar+KCl at 800 MeV/A; Ne+Na at 400 MeV/A, 800 MeV/A, and 2100 MeV/A. Satisfactory agreement with the experimental data near 90 degrees c.m. is obtained. The production of deuterons in the collision of C+C at 800 MeV/A is also discussed

  6. Atomic nuclei decay modes by spontaneous emission of heavy ions

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Ivascu, M.; Sandulescu, A.

    1984-01-01

    The great majority of the known nuclei, including the so-called stable nuclides, are in fact metastable with respect to several modes of spontaneous superasymmetric splitting. If the lifetime against these processes is larger than 10 30 s, the phenomenon is not detectable with available experimental techniques, hence one can admit stability from the practical point of view. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relatively to the alpha decay for these natural radioactivities. From a huge amount of systematical calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained for parent nuclei - heavy clusters leading to a magic ( 208 Pb) or almost daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-life n the 10 10 -10 30 s range. The shell structure and pairing effects are clearly manifested in these new decay modes

  7. Classically dynamical behaviour of single particle in heavy nuclei

    International Nuclear Information System (INIS)

    Gu Jianzhong; Zhuo Yizhong; Wu Xizhen

    1998-01-01

    A detailed analysis of the classically dynamical behaviour of a nucleon in heavy nuclei in terms of the TCSM (two-center shell model) is presented. Poincare section is a convenient and reliable criterion to judge the regularity (or chaoticity) of a classical system. The numerical calculations in this work are carried out for a nucleon in 238 U. The Poincare section map and the Poincare surface of section for different conditions are presented

  8. Photon strength in spherical and deformed heavy nuclei

    International Nuclear Information System (INIS)

    Grosse, E.; Junghans, A.; Birgersson, E.; Massarczyk, R.; Schramm, G.; Becvar, F.

    2010-01-01

    Information on the photon strength in heavy nuclei with mass A>150 will be given and compared to respective data. The photon strength function is a very important ingredient for statistical model calculations - especially when these are used to describe neutron capture. Several schemes for a transmutation of radioactive waste favor nuclear reactions with fast neutrons and these also influence the performance of various reactor types proposed to deliver nuclear energy together with only small quantities of such waste. Reactions with fast neutrons are far less studied as compared to those induced by thermal neutrons. As they are not easily accessible experimentally, reference is often made to calculations using the statistical model. Photon emission probabilities are needed as input to such calculations aiming for predictions on fission to capture ratios. From the favorable comparison of our parameterization to the experimental data for photon induced as well radiative capture processes in nuclei with various shapes and level densities we conclude what follows. First, the giant dipole resonance has very much the same properties in all heavy nuclei when their deformation is properly accounted for and its spreading width varies only smoothly with the resonance energies E k and not with the photon energy E γ . The radiative neutron capture results presented confirm strength data found in the literature. We also learn that our parameterization is at least a good approximation for photon energies below 4 MeV that dominate this process

  9. Heavy ions as probes of nuclei far from stability

    International Nuclear Information System (INIS)

    Moltz, D.M.; Nitschke, J.M.; Wilmarth, P.A.; Toth, K.S.

    1989-01-01

    Nuclei located far from stability provide us with an opportunity for studying nuclear matter existing under unusual conditions. In these regions of instability, radioactive decay becomes the predominant technique by which one can obtain structure information. We have been involved in the investigation of nuclear properties of nuclei close to the proton drip line. In our explorations we have utilized heavy-ion fusion, followed by particle evaporation, to produce the extremely neutron-deficient nuclei of interest. In our studies, single-particle states near the 82-neutron shell, populated in the β decay of short-lived nuclides, have been examined and their excitation energies determined. Numerous new isotopes, isomers, and β-delayed-proton and α-particle emitters have been discovered. This contribution will discuss our particle-decay investigations. These decay modes provide us with a convenient means of discovering new isotopes whose identification opens the way for further, more extensive explorations. Also, particle-decay energies in many instances can be used to determine mass differences between parent and daughter ground states. Such measurements are therefore used to test mass formulae and to obtain estimates of masses for proton rich nuclei. 19 refs., 13 figs

  10. Neutron skin studies of medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Thiel M.

    2014-06-01

    Full Text Available The recent PREX experiment at JLab has demonstrated the sensitivity of parity violating electron scattering to the neutron density, meanwhile outlining its major experimental challenges. On the other side, intermediate energy photons are an ideal probe for studying the properties of strongly interacting matter from the nuclear scale down to the sub-nuclear components of the nucleus. Among others coherent pion photoproduction can provide information on the existence and nature of neutron skins in nuclei. The simultaneous combination of different techniques allows a systematic determination across the periodic table thus benchmarking modern calculation. Recently a systematic investigation of the latter method has been exploited at MAMI (Mainz. At MESA the same setup as in the measurement of the weak mixing angle can be used to determine the parity-violating asymmetry for polarized electrons scattered on heavy nuclei with a 1% resolution. Status and prospects of the projects are presented.

  11. On peculiarities of the cascade γ decay of heavy nuclei

    International Nuclear Information System (INIS)

    Boneva, S.T.; Khitrov, V.A.; Popov, Yu.P.; Sukhovoj, A.M.; Vasil'eva, E.V.; Yazvitskij, Yu.S.

    1987-01-01

    Comparison of measured and calculated by statistical theory sums of two-quanta cascade intensities in compound-nuclei 163 ≤ A ≤ 183 points to the dependence of cascade intensity on the structure of initial and intermediate levels. The dependence of two-quanta cascade intensity sum on reduced neutron widths of compound states of even-even nuclei-targets of rare earth regions is detected. In 175 Yb and 179 Hf nuclei a considerable increase in the intensity of two-quanta cascades at the energy of their intermediate level in the range of the calculated position of one-quasiparticle states of the Saxon-Woods deformed potential is observed

  12. Scattering of mass-3 projectiles from heavy nuclei

    International Nuclear Information System (INIS)

    Mukhopadyay, S.; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    The interaction between heavy ions is a subject of great interest. It is well known that α-particle scattering shows most of the features which are observed in heavy ion scattering. In as much as mass-3 system is intermediate between heavy and light particles it will be interesting to investigate the scattering of mass-3 projectiles to see if it is possible to extend it to study the heavy ion scattering. Indeed; it has been seen that the 'molecular type' potentials, with a soft repulsive core and a shallow attractive well used for heavy ion collisions can be used to fit the elastic scattering data of mass-3 projectiles also. In the first part of this paper, a description is given of how this potential is generated with a special emphasis on saturation and second order effect through a density dependent interaction between nucleon and mass-3 projectiles. In the second part it is shown that the asymmetry dependence observed in the potential describing the scattering of mass-3 particles from heavier nuclei actually originates from the isospin interaction, when triton and helion are treated as two members of an isospin doublet. (Auth.)

  13. Manifestation of the structure of heavy nuclei in their alpha decays

    Energy Technology Data Exchange (ETDEWEB)

    Adamian, G. G., E-mail: adamian@theor.jinr.ru; Antonenko, N. V.; Bezbakh, A. N.; Malov, L. A. [Joint Institute for Nuclear Research (Russian Federation)

    2016-11-15

    Low-lying one- and two-quasiparticle states of heavy nuclei are predicted. Alpha-decay chains, including those that proceed through isomeric states, are examined on the basis of the predicted properties of superheavy nuclei.

  14. Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei

    CERN Multimedia

    2002-01-01

    % PS208 \\\\ \\\\ The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-$\\pi$ detectors: the Berlin Neutron Ball~(BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160~cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-$\\pi$ silicon ball~(BSIB) with a diameter of 20~cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.

  15. Simultaneous measurements of helium and heavy nuclei fluxes in cosmic rays over Fort Churchill

    International Nuclear Information System (INIS)

    Bhatia, V.S.; Paruthi, S.; Kainth, G.S.

    1977-01-01

    We have made simultaneous measurements of fluxes of He an heavy nuclei (Z< or =10) in primary cosmic rays at three levels of solar activity. These nuclei have been studied in three nuclear emulsion stacks exposed over Fort Churchill, Canada, in 1963, 1964, and 1967. We had earlier reported our results on the heavy nuclei at the Hobart conference (Bhatia et al., 1971). Experimental results based on 1514 He nuclei tracks that were measured in these three stacks are presented in this paper. The experimentally obtained He and heavy nuclei differential energy spectra have been compared with the theoretically calculated near-earth spectra

  16. Classically dynamical behaviour of a nucleon in heavy nuclei

    International Nuclear Information System (INIS)

    Gu Jianzhong; Zhao Enguang; Zong Hongshi; Zhuo Yizhong; Wu Xizhen

    1998-01-01

    Within the framework of the two-center shell model the classically dynamical behaviour of a nucleon in heavy nuclei is investigated systematically with the change of nuclear shape parameters for the first time. It is found that as long as the nucleonic energy 0is appreciably higher than the height of the potential barrier there is a good quantum-classical correspondence of nucleonic regular (chaotic) motion. Thus, Bohigas, Giannoni and Schmit conjecture is confirmed once again. We find that the difference between the potential barrier for prolate nuclei and that for oblate ones is reponsible for the energy-dependence difference between the nucleonic chaotic dynamics for prolate nuclei and that for oblate ones. In addition, it is suggested that nuclear dissipation is shape-dependent, and strong nuclear dissipation can be expected for medium or large separations in the presence of a considerable neck deformation built on a pronounced octupole-like deformation, which provides us a dynamical understanding of nuclear shape dependence of nuclear dissipation. (orig.)

  17. About dynamic model of limiting fragmentation of heavy nuclei

    International Nuclear Information System (INIS)

    Kuchin, I.A.

    2001-01-01

    Full text: As is known, during last years defined progress in understanding of static aspect of a dynamic structure organization of massive nuclei was reached. The offered model of a 'crystalline' structure of the nucleus generalizes drop, shell and cluster models in a natural way. Now increased interest induces the phenomenon of limiting fragmentation of heavy nuclei. There is a hope, that clearing up the general regularities of a soft disintegration of the massive nuclei on nucleons, component it, in a broad range of high energies can give a valuable information about dynamics of origin of nuclear structures and nature of their qualitative difference from a quark system structure, i.e. from nucleons. The key for understanding the indicated phenomenon can be it's study in connection with other aspects of disintegration of the nuclei - Coulomb and diffraction dissociation, fission etc. The sequential analysis of all these a processes from a single point of view is possible only within the framework of results and methods of the dynamic system theory. The purpose of the present research is clearing up a possibility to understand the nature of limiting fragmentation as a consequence of development of dynamic instability in a system of the nuclei as a result of ions interaction at high energy. In the analysis we based on data of the phenomenological analysis of heavy ion interactions at ultra-relativistic energies obtained by many authors for a number of years. As a result we came to a conclusion about general stochastic nature of an investigated phenomenon. In it development the fragmentation passes three different stages. On the first there is a process of preparation of chaos at a quantum level in an outcome of a Coulomb dissociation of the approaching nuclei and isotopic recharge of their nucleons, carrying a random character. A dominant here - viscous dissociation of nuclei under an operation of Coulomb forces. (A two body initial state). Then the multiparticle

  18. Nuclear data evaluation for medium and heavy nuclei

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1988-01-01

    Present status of nuclear data evaluation works for medium and heavy nuclei is described in this paper. These data are being prepared for JENDL-3 (Japanese Evaluated Nuclear Data Library-Version 3). At present, about a half of the data files, which are expected to be stored in the final library, has been brought into a temporary library called JENDL-3T. The remaining works and additional revisions are still needed to be made in order to finalize the data library as JENDL-3. Special emphases have been put on the high energy neutron data for which the previous JENDL-2 had some inadequacies, and gamma-ray production cross sections have been newly evaluated. Systematic and consistent evaluations have been intended for the new evaluations. (author)

  19. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  20. Fission barriers of two odd-neutron heavy nuclei

    International Nuclear Information System (INIS)

    Koh, Meng-Hock; Bonneau, L.; Nhan Hao, T. V.; Duc, Dao Duy; Quentin, P.

    2015-01-01

    The fission barriers of two odd-neutron heavy odd nuclei,namely the 235 U and 239 Pu isotopes have been calculated within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. A full account of the genuine time-reversal symmetry breaking due to the presence of an unpaired nucleon has been incorporated at the mean field level. The SIII and SkM* parametrizations of the Skyrme interaction have been retained as well as for a part a newer parametrization, SLy5*. The seniority force parameters have been fitted to reproduce experimental odd-even mass differences in the actinide region. To assess the relevance of our calculated fission barrier distribution (as a function of the quantum numbers), we have studied the quality of our results with respect to the spectroscopy of band heads (for configurations deemed to be a pure single particle character) in the ground and fission isomeric states. Fission barriers of the considered odd nuclei have been compared with what is obtained for their even-even neighbouring isotopes (namely 234 U and 236 U, 238 Pu and 240 Pu respectively) to determine the so-called specialization energies. Various corrections and associated uncertainties have been discussed in order to compare our results with available data

  1. Status and prospect of super-heavy nuclei research at IMP

    International Nuclear Information System (INIS)

    Xu Hushan; Sun Zhiyu; Zhan Wenlong; Zhou Xiaohong; Huang Wenxue; Zhang Hongbin; Gan Zaiguo; Li Junqing; Ma Xinwen; Qin Zhi; Xiao Guoqing; Guo Zhongyan; Li Zhihui; Zhang Yuhu; Jin Genming; Huang Tianheng; Hu Zhengguo; Zhang Xueheng; Zheng Chuan; Chinese Academy of Sciences, Beijing

    2006-01-01

    The history and the international status of the super-heavy nuclei synthesis are briefly described. The related research work carried out at the Institute of Modern Physics (IMP) has been reviewed. The prospect of the super-heavy nuclei research at IMP has been introduced. (authors)

  2. Transfer reaction studies in the region of heavy and superheavy nuclei at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, S; Comas, V; Hofmann, S; Ackermann, D; Heredia, J; Hessberger, F P; Khuyagbaatar, J; Kindler, B; Lommel, B; Mann, R, E-mail: s.heinz@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2011-02-01

    We studied multi-nucleon transfer reactions in the region of heavy and superheavy nuclei. The goal was to investigate these reactions as possibility to create new superheavy neutron-rich isotopes, which cannot be produced in fusion reactions. The experiments have been performed at the velocity filter SHIP at GSI. At SHIP we can detect and identify the heavy, target-like, transfer products. Due to the low background at the focal plane detector and the isotope identification via radioactive decays, the setup allows to reach an upper cross-section limit of 10 pb/sr within one day of beamtime. We investigated the systems {sup 58,64}Ni + {sup 207}Pb and {sup 48}Ca + {sup 248}Cm at beam energies below and up to 20% above the Coulomb barrier. At all energies we observed a massive transfer of protons and neutrons, where transfer products with up to eight neutrons more than the target nucleus could be identified.

  3. The mechanism of total disintegration of heavy nuclei by fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    The mechanism of the total disintegration of atomic nuclei by fast hadrons and nuclei is considered. The passage of energetic hadrons through layers of intranuclear matter, accompanied by emission of fast nucleons with kinetic energies from about 20 up to about 500 MeV from definite local small regions in the nuclei around projectile courses in them, allows one to explain simply the occurrence of the total destruction of nuclei involved in the collisions. Light nuclei may be totally disintegrated by fast hadrons and nuclei; heavier nuclei may be totally disintegrated only in central collisions of nuclei with similar mass numbers

  4. Towards a non empirical description of heavy nuclei

    International Nuclear Information System (INIS)

    Duguet, Thomas

    2012-01-01

    Since the defence of my Ph.D. thesis in September 2002, I have essentially devoted nine years of research activity to advancing the formal understanding and enhancing the predictive power of SR and MR EDF approaches to structure and reaction properties of medium-to-heavy mass nuclei. In the most recent years, I have engaged myself into developing innovative ab-initio many-body methods applicable to medium-mass open-shell nuclei. On the long term, my two main objectives are (i) to advancing many-body methods and the understanding of many-fermion systems in general and (ii) to reducing decisively the phenomenological character of methods applicable to systems made out of a few tens to a few hundreds of fermions by addressing the points raised in the above introduction. The present document does not aim at summarizing those ten years of research activity. Rather, I made the choice to report in some details on three selected topics that are somewhat representative of my overall contribution to the field. The first part (Sec. II) describes an in-depth re-analysis of the concept of single-nucleon shell structure in the context of many-fermion systems. The second part (Sec. III) summarizes recent advances towards a more rigorous formulation of the MR-EDF method and discusses the corresponding remaining difficulties as well as ways under current development to overcome them. The third part (Sec. IV) discusses the on-going quest towards a microscopic description of superfluidity in nuclei and reports on the first-ever ab-initio calculations of open-shell medium-mass nuclei based on Self-consistent Gorkov Green's function theory. Although representative, the three above topics only cover a fraction of my research activity since my Ph.D. thesis defence. Consequently several other studies I have been involved with are briefly summarized in apps. A-E. For completeness, my publication list is also provided as an appendix. Last but not least, it is essential to stress that many

  5. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in 32 S + 118,124 Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction 197 Au+ 208 Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction 209 Bi+ 136 Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral 209 Bi+ 136 Xe Collisions at E lab /A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray μ - with a Muon Telescope

  6. Fusability and survivability in reactions leading to heavy nuclei in the vicinity of the N = 126 shell

    International Nuclear Information System (INIS)

    Sagajdak, R.N.

    2008-01-01

    The production of heavy nuclei from Rn to Th around the N = 126 neutron shell in complete fusion reactions of nuclei has been considered in a systematic way in the framework of the conventional barrier-passing fusion model coupled with the Standard Statistical Model (SSM). Available data on the excitation functions for fusion and production of evaporation residues obtained in very asymmetric combinations are described with these models rather well. In the interaction of massive projectiles with heavy target nuclei quasi-fission effects appear in the entrance reaction channel. The quantity of the fusion probability introduced empirically has been used to reproduce excitation functions with the same SSM parameters (fission barriers) as those obtained in the analysis of very asymmetric combinations. A lack of stabilization against fission around N = 126 for Th nuclei was earlier explained with a reduced collective contribution to the level density in spherical nuclei. However, the present analysis shows severe inhibition for fusion, i.e., the drop in production cross sections of Th nuclei in the vicinity of N = 126 is mainly caused by entrance channel effects. The macroscopic component of fission barriers for nuclei involved in a deexcitation cascade has been derived and compared with the theoretical model predictions and available data

  7. Hot nuclei with high spin states in collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Galin, J.

    1991-01-01

    In the first part of this contribution we have shown that pretty hot nuclei could be obtained in peripheral collisions of Kr+Au. The collisions considered in the chosen example give rise to a nucleus of Z=28 with a kinetic energy of 1600 MeV (i.e. a velocity close to 27 MeV/u to be compared with the 32 MeV/u of the beam). The excitation energy deposited in the non-detected target like-nucleus, deduced from the neutron multiplicity measurements, amounts to 700 MeV (T= 6 MeV). In the second part of the contribution one used the well known properties of fission, and particularly its sensitivity to spin, to show in a qualitative way that pretty high spin values are into play. A more quantitative analysis together with additional measurements are still needed in order to infer precise figures of spin. It can be noted that for the 29 MeV/u Pb+Au reaction 1 max amounts to 1700 ℎ. If we assume that the sticking or rolling conditions can be fulfilled for initial angular momenta of about 2/3 1 max , then a projectile-like (and its target partner) could acquire an intrinsic spin of about 160 ℎ. The behavior of a Pb-like nucleus brought in such an exotic state (T=6 MeV and J=160ℎ)) is certainly worth to be studied in detail. It is also worth recalling that, when obtained in peripheral collisions, the hot nuclei thus formed do not suffer much initial compression at variance with what happens in more central collisions. There is thus an interesting field to be explored of hot, high spin but uncompressed nuclei

  8. Commissioning a Rotating Target Wheel Assembly for Heavy Element Studies

    Science.gov (United States)

    Fields, L. D.; Bennett, M. E.; Mayorov, D. A.; Folden, C. M.

    2013-10-01

    The heaviest elements are produced artificially by fusing nuclei of light elements within an accelerator to form heavier nuclei. The most direct method to increase the production rate of nuclei is to increase the beam intensity, necessitating the use of a rotating target to minimize damage to the target by deposited heat. Such a target wheel was constructed for heavy element research at Texas A&M University, Cyclotron Institute, consisting of a wheel with three banana-shaped target cutouts. The target is designed to rotate at 1700 rpm, and a fiber optic cable provides a signal to trigger beam pulsing in order to avoid irradiating the spokes between target segments. Following minor mechanical modifications and construction of a dedicated electrical panel, the rotating target assembly was commissioned for a beam experiment. A 15 MeV/u beam of 20Ne was delivered from the K500 cyclotron and detected by a ruggedized silicon detector. The beam pulsing response time was characterized as a function of the rational frequency of the target wheel. Preliminary analysis suggests that the K500 is capable of pulsing at rates of up to 250 Hz, which is sufficient for planned future experiments. Funded by DOE and NSF-REU Program.

  9. Experimental study of synthesis of heavy nuclei at JAERI

    International Nuclear Information System (INIS)

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Satou, K.

    2001-01-01

    Evaporation residue (ER) cross sections for 82 Se+ nat Ce and 76 Ge+ 150 Nd were measured in the vicinity of the Coulomb barrier, and the fusion probability was obtained with the aid of calculated survival probability. The former system represents fusion of two spherical nuclei, the latter fusion involving the pro-lately deformed target 150 Nd. The collision of 76 Ge with the side of 150 Nd is more compact in configuration at touching. The system 82 Se+ nat Ce showed fusion hindrance in form of extra-extra-push energy of 27 ± 5 MeV, whereas the system 76 Ge+ 150 Nd does not show fusion hindrance at and above the Coulomb barrier energy, suggesting that the reaction starting from the compact touching point results in a higher fusion probability. (author)

  10. Observation of heavy cluster emission from radioactive 230U nuclei

    International Nuclear Information System (INIS)

    Pan Qiangyan; Yuan Shuanggui; Yang Weifan; Li Zongwei; Ma Taotao; Guo Junsheng; Liu Mingyi; Liu Hongye; Xu Shuwei; Gan Zaiguo; Kong Dengming; Qiao Jimin; Luo Zihua; Zhang Mutian; Wang Shuhong

    1999-01-01

    230 Pa was produced with the reaction 232 Th (p, 3n) 230 Pa in the irradiation powder targets of ThO 2 with 35 MeV proton beam. Sources of 230 Pa→ 230 U + β - were prepared by radiochemical method. Using solid-state track registration detectors, two events of 230 U decay with heavy cluster emission have been observed. The preliminary branching ratio to α-decay comes out to be B = λ Ne /λ α = (1.3 ± 0.8) x 10 -14

  11. Exclusive description of multiple production on nuclei in the additive quark model. Multiplicity distributions in interactions with heavy nuclei

    International Nuclear Information System (INIS)

    Levchenko, B.B.; Nikolaev, N.N.

    1985-01-01

    In the framework of the additive quark model of multiple production on nuclei we calculate the multiplicity distributions of secondary particles and the correlations between secondary particles in πA and pA interactions with heavy nuclei. We show that intranuclear cascades are responsible for up to 50% of the nuclear increase of the multiplicity of fast particles. We analyze the sensitivity of the multiplicities and their correlations to the choice of the quark-hadronization function. We show that with good accuracy the yield of relativistic secondary particles from heavy and intermediate nuclei depends only on the number N/sub p/ of protons knocked out of the nucleus, and not on the mass number of the nucleus (N/sub p/ scaling)

  12. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei; Spectroscopie de noyaux tres lourds en vue de l'etude des noyaux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Khalfallah, F

    2007-08-15

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No{sup 256} et Rf{sup 256} for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa{sup 223}. The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  13. Spectroscopy of heavy nuclei: yrast states, side bands and backbending

    International Nuclear Information System (INIS)

    Sunyar, A.W.

    1979-01-01

    Some recent experimental results concerning the high spin structure of two rare earth nuclei are presented. These are 154 Er and 158 Dy. The level schemes including yrast sequences are discussed. The reactions 142 Nd( 16 O,4n) and 150 Nd( 13 C,5n) respectively, for the studied nuclei are noted. 14 references

  14. Isovector coupling channel and central properties of the charge density distribution in heavy spherical nuclei

    International Nuclear Information System (INIS)

    Haddad, S.

    2010-01-01

    The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)

  15. Transfer products from the reactions of heavy ions with heavy nuclei

    International Nuclear Information System (INIS)

    Thomas, K.E. III.

    1979-11-01

    Production of nuclides heavier than the target from 86 Kr- and 136 Xe-induced reactions with 181 Ta and 238 U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for 242 Np or 247 Pu. Estimates were made for the production of 242 Np, 247 Pu, and 248 Am from heavy-ion reactions with uranium targets. Comparisons of reactions of 86 Kr and 136 Xe ions with thick 181 Ta targets and 86 Kr, 136 Xe and 238 U ions with thick 238 U targets indicate that the most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with 248 Cm and 254 Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from 86 Kr- and 136 Xe-induced reactions with thin 181 Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables

  16. Momentum distributions in nuclei measured with relativistic heavy ions

    International Nuclear Information System (INIS)

    Hiller, B.; Huefner, J.; Heidelberg Univ.

    1982-01-01

    In a peripheral reaction between relativistic heavy ions, where one nucleon is knocked out of the projektile, the momentum distribution of the remaining fragment reflects the momentum distribution of the knocked out nucleon. This has been proven in a previous paper. Here we study how the final-state interaction between the knocked out nucleon and the observed fragment influences the result: The real part of the optical potential which describes the final-state interaction shifts the experimental momentum distribution by a value [ksub(||)] of a few tens of MeV/c and the imaginary part reduces the cross sections by a factor 2 roughly. We also derive the cross section for a proton as target. (orig.)

  17. Measurement of charge and energy spectra of heavy nuclei aboard Cosmos-936 artificial Earth satellite

    International Nuclear Information System (INIS)

    Dashin, S.A.; Marennyy, A.M.; Gertsen, G.P.

    1982-07-01

    Charge and energy spectra of heavy charged particles were measured. Measurements were performed by a package of dielectric track detectors mounted behind the shield of 60-80 kg m to the minus second power thick. The charge of nuclei was determined from the complete track length. A group of 1915 tracks of nuclei with Z 6 in the energy range 100-450 MeV/nuclon were identified. The differential charge spectrum of nuclei with 6 Z 28 and the energy spectrum of nuclei of the iron group were built

  18. Microscopic study of proton emission from heavy nuclei

    International Nuclear Information System (INIS)

    Sahu, B.B.; Patra, S.K.; Agarwalla, S.K.

    2011-01-01

    In recent years many theoretical calculations have been employed to explain the observed lifetimes of proton radioactivity and alpha decay processes in the region of proton rich nuclei. These data are very promising for the analysis of possible irregularities in the structure of these proton-rich nuclei. They are also of great interest in rapid proton capture processes. Some new results for proton radioactivity in this region of proton-rich nuclei have indicated that the proton emission mode is rather competitive with the alpha decay one. In the energy domain of radioactivity, proton can be considered as a point charge having highest probability of being present in the parent nucleus

  19. Heavy ion interactions of deformed nuclei. Progress report, May 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1984-11-01

    This progress report describes the main topics that were investigated during the reporting period: (a) a new microscopic approach to the calculation of heavy ion interaction potentials; (b) the dynamical orientation of deformed heavy nuclei near the distance of closest approach; and (c) the theory of Coulomb fission (project finished in Sept.)

  20. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  1. Targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Clauser, M.J.

    1978-01-01

    This paper describes some of the basic principles of fusion target implosions, using some simple targets designed for irradiation by ion beams. Present estimates are that ion beams with 1-5 MJ, and 100-500 TW will be required to ignite high gain targets. (orig.) [de

  2. Introduction to the study of collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Bayman, B.F.

    1980-01-01

    Current investigations concerning the collisions of nuclei governed by small de Broglie wavelengths are reviewed. The wave packets localize nuclei in regions small compared to their diameters. Cross sections are examined for potential scattering, elastic scattering, quasi-molecular states, peripheral particle-transfer reactions, fusion, and deep inelastic collisions. Theories of fusion and deep inelastic collisions are summarized. This paper is in the nature of a review-tutorial. 45 references, 51 figures, 2 tables

  3. Method of measurement of cross sections of heavy nuclei fission induced by intermediate energy protons

    International Nuclear Information System (INIS)

    Kotov, Alexander; Chtchetkovski, Alexander; Fedorov, Oleg; Gavrikov, Yuri; Chestnov, Yuri; Poliakov, Vladimir; Vaishnene, Larissa; Vovchenko, Vil; Fukahori, Tokio

    2003-01-01

    The purpose of this work is experimental studies of the energy dependence of the fission cross sections of heavy nuclei, nat Pb, 209 Bi, 232 Th, 233 U, 235 U, 238 U, 237 Np and 239 Pu, by protons at the energies from 200 to 1000 MeV. At present experiment the method based on use of the gas parallel plate avalanche counters (PPACs) for registration of complementary fission fragments in coincidence and the telescope of scintillation counters for direct counting of the incident protons on the target has been used. First preliminary results of the energy dependences of proton induced fission cross sections for nat Pb, 209 Bi, 235 U and 238 U are reported. (author)

  4. Survivability and Fusibility in Reactions Leading to Heavy Nuclei in the Vicinity of the N=126 Closed Shell

    International Nuclear Information System (INIS)

    Sagaidak, R. N.

    2009-01-01

    Nuclear fission is well suited to study the dynamic properties and dissipative processes in cold and moderately excited nuclei. It is also a unique tool to explore level density and shell effects at an extreme deformation. Despite the significant progress in the fission studies, the isospin dependence of fission properties and, in particular, of fission barrier heights still remains an open problem. Theoretical fission model parameters are tuned by using the experimental nuclear and fission data close to stability [1]. The models provide a reasonable description of the fission barriers close to the stability line. However, large deviations are observed between predictions of different models for the fission barriers of very neutron-deficient and neutron-rich nuclei. These discrepancies (by as much as 20-30 MeV, see, e.g. [2]) become especially important in the r-process calculations for extremely neutron-rich nuclei, whose fission barriers determine the termination of the r-process by fission [3]. Unfortunately, such neutron-rich nuclei will probably not become accessible in the nearest experiments. Therefore, fission properties of exotic nuclei and especially their isospin dependence can be investigated in alternative regions of the Nuclide Chart, which are accessible for such studies now. Fusion-evaporation cross sections for heavy fissile nuclei obtained in heavy ion induced reactions as well as their fission cross sections are mainly determined by statistical properties of decaying compound nuclei (CN) and first of all by the fission-barrier heights of nuclei involved in the de-excitation chains leading to observable evaporation residues (ER). At the same time, the ER production and fission in nearly symmetric projectile-target fusion reactions leading to the most neutron-deficient CN could be strongly suppressed due to the quasi-fission (QF) effect [4], as observed recently in the 4 8C a induced reactions leading to Ra [5] and Pb [6] CN. The production of

  5. Breakdown of NpNn scheme in very heavy nuclei

    International Nuclear Information System (INIS)

    Varshney, A.K.; Singh, M.; Kumar, Rajesh; Gupta, K.K.; Gupta, D.K.

    2016-01-01

    The proton neutron interaction has been considered the key ingredient in the development of configuration mixing, collectivity and ultimately deformation in atomic nuclei for over five decades. Phenomenologically, the correlation of the integrated valance p - n interaction with the onset of collectivity and deformation has been described in terms of NpNn scheme

  6. Dynamic deformation theory of spherical and deformed light and heavy nuclei with A = 12-240

    International Nuclear Information System (INIS)

    Kumar, Krishna.

    1979-01-01

    Deformation dependent wave functions are calculated for different types of even-even nuclei (spherical, transitional, deformed; light, medium, heavy) without any fitting parameters. These wave functions are employed for the energies, B(E2)'s, quadrupole and magnetic moments of selected nuclei with A = 12-240 (with special emphasis on 56 Fe, 154 Gd), and for neutron cross sections of 148 Sm, 152 Sm

  7. Charge-exchange resonances and restoration of Wigner’s supersymmetry in heavy and superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lutostansky, Yu. S., E-mail: lutostansky@yandex.ru; Tikhonov, V. N. [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    Various facets of the question of whether Wigner’s supersymmetry [SU(4) symmetry] may be restored in heavy and superheavy nuclei are analyzed on the basis of a comparison of the results of calculations with experimental data. The energy difference between the giant Gamow–Teller resonance and the analog resonance (the difference of E{sub G} and E{sub A}) according to calculations based on the theory of finite Fermi systems is presented for the case of 33 nuclei for which experimental data are available. The calculated difference ΔE{sub G–A} of E{sub G} and E{sub A} tends to zero in heavier nuclei, showing evidence of the restoration of Wigner’s SU(4) symmetry. Also, the isotopic dependence of the Coulomb energy difference between neighboring isobaric nuclei is analyzed within the SU(4) approach for more than 400 nuclei in the mass-number range of A = 5–244. The restoration of Wigner’s SU(4) symmetry in heavy nuclei is confirmed. It is shown that the restoration of SU(4) symmetry is compatible with the possible existence of the stability island in the region of superheavy nuclei.

  8. Nucleosynthesis of neutron-rich heavy nuclei during explosive helium burning in massive stars

    International Nuclear Information System (INIS)

    Blake, J.B.; Woosley, S.E.; Weaver, T.A.; Schramm, D.N.

    1981-01-01

    The production of heavy nuclei during explosive helium burning has been calculated using a hydrodynamical model of a 15 M/sub sun/ (Type II) supernovae and a n-process nuclear reaction network. The resulting neutron-rich heavy nuclei are not produced in the relative abundances of solar-system r-process material, especially in the vicinity of Pt, nor are any actinides produced. These deficiencies reflect an inadequate supply of neutrons. However, some neutron-rich isotopes, normally associated with the r-process, are produced which may be significant for the production of isotopic anomalies in meteorites

  9. Quantum electrodynamic effects for light and heavy nuclei

    International Nuclear Information System (INIS)

    Anon.

    1973-01-01

    The autoionization of positrons and the problem of vacuum polarization are discussed within the framework of quantum field theory. Various possible heavy ion experiments to check on the nonlinearity of electrodynamics are described. (8 figures) (U.S.)

  10. Cluster aspects of alpha decay of heavy spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Furman, V.I.; Kholan, S.; Khlebostroev, V.G.

    1975-01-01

    On the basis of the non-R-Matrix approach to the α-decay theory the surface α-cluster model of α-decay is introduced. In the frame of this model evidence is obtained about an important contribution of the peripherical region of parent nuclei for the absolute α-decay widths. A classification of the α-transitions following the values of experimental probabilities for the existence of α-particles at the nuclear surface is performed

  11. Fission mass yields of excited medium heavy nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.

    1985-01-01

    The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells

  12. Collectivity in heavy nuclei in the shell model Monte Carlo approach

    International Nuclear Information System (INIS)

    Özen, C.; Alhassid, Y.; Nakada, H.

    2014-01-01

    The microscopic description of collectivity in heavy nuclei in the framework of the configuration-interaction shell model has been a major challenge. The size of the model space required for the description of heavy nuclei prohibits the use of conventional diagonalization methods. We have overcome this difficulty by using the shell model Monte Carlo (SMMC) method, which can treat model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We identify a thermal observable that can distinguish between vibrational and rotational collectivity and use it to describe the crossover from vibrational to rotational collectivity in families of even-even rare-earth isotopes. We calculate the state densities in these nuclei and find them to be in close agreement with experimental data. We also calculate the collective enhancement factors of the corresponding level densities and find that their decay with excitation energy is correlated with the pairing and shape phase transitions. (author)

  13. Revision of heavy nuclei data in JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Advanced Energy Engineering Science, Kasuga, Fukuoka (Japan)

    2000-03-01

    In order to deal with problems concerning the data of heavy nuclides in JENDL-3.2, a working group was organized to update the evaluated nuclear data of Uranium, Plutonium, and Thorium isotopes. The current status of the working group is reviewed, and some results about resonance parameters, secondary neutron energy spectra, fission cross sections, and direct/semidirect capture process are shown. (author)

  14. Revision of heavy nuclei data in JENDL-3.2

    International Nuclear Information System (INIS)

    Kawano, Toshihiko

    2000-01-01

    In order to deal with problems concerning the data of heavy nuclides in JENDL-3.2, a working group was organized to update the evaluated nuclear data of Uranium, Plutonium, and Thorium isotopes. The current status of the working group is reviewed, and some results about resonance parameters, secondary neutron energy spectra, fission cross sections, and direct/semidirect capture process are shown. (author)

  15. Decay of the giant monopole resonance in heavy nuclei

    International Nuclear Information System (INIS)

    Brandenburg, S.

    1985-01-01

    In this thesis an experimental study of the properties of the giant monopole resonance (GMR) in nuclei is described. The main subject is the study of the neutron decay of the GMR in 208 Pb, and the fission decay of the GMR in 238 U. Furthermore the strength distribution and decay properties of the monopole strength in 24 Mg and 40 Ca were studied. The strength distribution of the isoscalar monopole (and also of the isoscalar dipole) strength as obtained from the angular distribution of the excited strength at small scattering angles are discussed. For the excitation of the GMR inelastic scattering at very small scattering angles, including 0 0 , of 120 MeV α-particles was employed. The experimental technique for performing this type of measurements at the KVI was developed in the course of this study and is the subject of a separate chapter. (Auth.)

  16. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Shun; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Suzuki, Hideyuki, E-mail: furusawa@heap.phys.waseda.ac.jp [Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to {approx}1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  17. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    International Nuclear Information System (INIS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2013-01-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ∼1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes

  18. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    Science.gov (United States)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  19. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.; Huizenga, J.R.

    1991-08-01

    The development of the ''cold-fusion'' episode is reviewed. Ongoing studies of compound-nucleus formation and decay via the neutron multiplicity distribution confirm the validity of conventional statistical theory. The excitation energy partition in near-barrier damped 58 Ni + 208 Pb collisions is found to be largely independent of the direction of net mass transfer, supporting a diffusion-like nucleon-exchange mechanism. Exclusive experiments on the heavy reaction systems 197 Au + 208 Pb and 209 Bi + 136 Xe in the Fermi-energy domain have revealed important new insights into the reaction mechanism, which is found to be dominated by damped, binary processes. The effectiveness of the neutron multiplicity as an impact-parameter filter is demonstrated. It is shown that very-heavy-ion reactions lead to transient nuclear systems with temperatures in excess of τ = 6 MeV and transfer of large, aligned spins to reaction fragments. The first measurements of neutrons in coincidence with kinematically identified reaction fragments provide evidence for the binary, sequential character of dissipative collisions in the Fermi-energy domain. Also for the first time, a full event characterization was achieved for nuclear reactions in terms of neutrons and charged particles. Technical information on this experiment is provided. First results yield strong evidence for dominantly binary primary reaction dynamics of even highly dissipative 209 Bi + (28MeV/u) 136 Xe collisions, associated with several intermediate-mass fragments

  20. Studies of the giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    Experimental measurements of the eletrodisintegration cross section in 181 Ta, 208 Pb and 209 Bi nuclei are made in the Linear Accelerator of the IFUSP-Brazil. The cross section is obtained by the direct counting of the emitted neutrons, in an electron excitation energy range between 8 to 22 MeV. The experimental data are analysed throught the virtual photon method, with the aim of obtaining the isoscalar and isovectorial electric quadrupole giant resonance (E2GR) intensities, as well as the magnetic dipole intensity. For each studied nucleus the results obtained for the E2GR, isoscalar and isovectorial, are compared with the photodisintegration cross section measured by the Saclay and Livermore laboratories. From this comparison, it is observed that the photodisintegration cross sections are compatibles with the existence of an isovector E2GR, located between 120 to 130 A -1/3 Mev and which exhaust around 100% of the Energy-Weighted Sum rules (EWSR). (L.C.) [pt

  1. Two-neutron transfer reactions with heavy-deformed nuclei

    International Nuclear Information System (INIS)

    Price, C.; Landowne, S.; Esbensen, H.

    1988-01-01

    In a recent communication we pointed out that one can combine the macroscopic model for two-particle transfer reactions on deformed nuclei with the sudden limit approximation for rotational excitation, and thereby obtain a practical method for calculating transfer reactions leading to high-spin states. As an example, we presented results for the reaction 162 Dy( 58 Ni, 60 Ni) 160 Dy populating the ground-state rotational band up to the spin I = 14 + state. We have also tested the validity of the sudden limit for the inelastic excitation of high spin states and we have noted how the macroscopic model may be modified to allow for more microscopic nuclear structure effects in an application to diabolic pair-transfer processes. This paper describes our subsequent work in which we investigated the systematic features of pair-transfer reactions within the macroscopic model by using heavier projectiles to generate higher spins and by decomposing the cross sections according to the multipolarity of the transfer interaction. Particular attention is paid to characteristic structures in the angular distributions for the lower spin states and how they depend on the angular momentum carried by the transferred particles. 11 refs., 3 figs

  2. Target design for heavy ion beam fusion

    International Nuclear Information System (INIS)

    Meyer-ter-Vehn, J.; Metzler, N.

    1981-07-01

    Target design for Heavy Ion Beam Fusion and related physics are discussed. First, a modified version of the Kidder-Bodner model for pellet gain is presented and is used to define the working point (Esub(beam) = 4.8 MJ, Gain 83) for a reactor size target. Secondly, stopping of heavy ions in hot dense plasma is investigated and numerical results for stopping powers and ranges of 10 GeV Bi-ions in Pb, Li, and PbLi-alloy are given. Finally, results of an explicit implosion calculation, using the 1-D code MINIHY, are discussed in detail. The hydrodynamic efficiency is found to be about 5%. Special attention is given to the shock sequence leading to the ignition configuration. Also the growth of Rayleigh-Taylor instability at the absorber-pusher interface is estimated. (orig.)

  3. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    Science.gov (United States)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  4. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  5. Scaling laws for simple heavy ion targets

    International Nuclear Information System (INIS)

    Gula, W.P.; Magelssen, G.R.

    1981-01-01

    We have examined the behavior of single shell DT gas filled spherical targets irradiated by a constant power heavy ion beam pulse. For targets in which the ion range is less than the shell thickness, our computational results suggest that the target can be divided into three regions: (1) the absorber (100 to 400 eV for the energies we have considered), (2) the cold pusher (a few eV), and (3) the DT gas fuel. We have examined the pusher collapse time, velocity, and maximum kinetic energy variations as functions of the various target parameters and ion beam energy. The results are expressed in analytic terms and verified by computer simulation

  6. Highly multiplexed targeted DNA sequencing from single nuclei.

    Science.gov (United States)

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  7. Detection of heavy nuclei in the plastic track detector CR-39

    International Nuclear Information System (INIS)

    Fumuro, F.; Ihara, R.; Ohta, I.; Sato, Y.; Tezuka, I.; Tasaka, S.; Sugimoto, H.

    1982-01-01

    Relativistic cosmic ray nuclei were detected in an emulsion chamber composed of a pile of solid state track detectors (CR-39) and the emulsion plates. The 460 heavy nuclei were observed by scanning of emulsion and CR-39 plastic plates. The normalized track etch rate (Vsub(t)/Vsub(b))-1 for relativistic iron group was measured as 1.3+-0.05 and bulk etch rate Vsub(b) as 1.63+-0.08 μm/hour after 32 hours etch in 6.8 N NaOH at 70 0 C. The charge detection threshold was obtained to be Z=6 for β=1 with the dip angle larger than 75 degrees. The charge resolution was estimated to be Δ Z=0.7 for iron, and Δ Z=0.4 for magnesium and silicon nuclei

  8. Systematical calculations on the ground state properties of heavy and superheavy nuclei

    International Nuclear Information System (INIS)

    Ren, Z.Z.; Center of Theoretical Nuclear Physics, Lanzhou; Mao, Y.C.; Zhi, Q.J.; Xu, C.; Dong, T.K.

    2007-01-01

    The synthesis of superheavy elements is now a hot topic in nuclear physics. Alpha-decay and spontaneous fission are two main decay modes in heavy and superheavy regions. Theoretical studies on alpha radioactivity and spontaneous fission can provide useful information for experiments. We investigate the alpha-decay and spontaneous fission of heavy and superheavy nuclei with different models. This includes the alpha-decay energies, alpha decay half-lives, and half-lives of spontaneous fission. The theoretical alpha-decay half-lives are in good agreement with experimental ones. The calculated half-lives of spontaneous fission are in reasonable agreement with present data. The properties of unknown nuclei are predicted. (author)

  9. Search for magnetic dipole strength and giant spin-flip resonances in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Horen, D. J. [Oak Ridge National Lab., TN (USA); Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    A description is given of the use of high resolution (n, n) scattering and the (p, n) reaction as tools to investigate highly excited states with emphasis on information pertaining to magnetic dipole strength and giant spin-flip resonances in heavy nuclei. It is shown how the ability to uniquely determine the spins and parities of resonances observed in neutron scattering has been instrumental to an understanding of the distribution of M1 strength in sup(207,208)Pb. Some recent results of (p, n) studies with intermediate energy protons are discussed. Energy systematics of the giant Gamow-Teller (GT) resonance as well as a new ..delta..l = 1, ..delta..S = 1 resonance with J sup(..pi..) = (1,2)/sup -/ are presented. It is shown how the (p, n) reaction might be useful to locate M1 strength in heavy nuclei.

  10. GALS – setup for production and study of heavy neutron rich nuclei

    Directory of Open Access Journals (Sweden)

    Zemlyanoy Sergey

    2015-01-01

    Full Text Available The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below 208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion–fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  11. GALS – setup for production and study of heavy neutron rich nuclei

    CERN Document Server

    Zemlyanoy, Sergey; Kozulin, Eduard; Kudryavtsev, Yury; Fedosseev, Valentin; Bark, Robert; Janas, Zenon; Othman, Hosam

    2015-01-01

    The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below ^208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of ^136Xe with ^208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  12. New semi-empirical formula for α-decay half-lives of the heavy and superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First Grade College, Department of Physics, Kolar, Karnataka (India)

    2017-07-15

    We have succesfully formulated the semi-empirical formula for α-decay half-lives of heavy and superheavy nuclei for different isotopes of the wide atomic-number range 94 < Z < 136. We have considered 2627 isotopes of heavy and superheavy nuclei for the fitting. The value produced by the present formula is compared with that of experiments and other eleven models, i.e. ImSahu, Sahu, Royer10, VS2, UNIV2, SemFIS2, WKB. Sahu16, Densov, VSS and Royer formula. This formula is exclusively for heavy and superheavy nuclei. α-decay is one of the dominant decay mode of superheavy nucleus. By identifying the α-decay mode superheavy nuclei can be detected. This formula helps in predicting the α-decay chains of superheavy nuclei. (orig.)

  13. Contributions to the theory of alpha disintegration of heavy and superheavy nuclei

    International Nuclear Information System (INIS)

    Tarnoveanu, G.I.

    1977-01-01

    Alpha disintegration of heavy and super-heavy spherical nuclei is studied. When the new calculation technique for alpha intensities dependent on the shell-model has been applied, a technique which allows the use of a more complex structure of the alpha particle, the detailed calculation of the alpha half-times is performed for both radioactive alpha nuclei in the lead area and for the super-heavy nuclei, by using the R matrix theory of alpha disintegration independent of the channel radius. The relative values of overlap integrals calculated by means of the intrinsic function for the Gauss and Moshinsky type alpha particle are presented, as well as a comparison between them and the experiment values for 8.6, 9.00 and 9.6 fm channel radii in the case of Po, Ra, Rn and Th isotopes. Original contributions to the alpha disintegration theory are represented by the generalization of the Taylor series method expressing the transformations to the centre of mass, and the relative distance from two particles to four particles in the same harmonic oscillator potential, and by the development of the R matrix theory for alpha disintegration independent of the channel radius in the case of complex structured alpha particles. (author)

  14. Near-Barrier Fusion of Heavy Nuclei. Coupling of the Channels

    CERN Document Server

    Zagrebaev, V I

    2003-01-01

    The problem of quantum description of near-barrier fusion of heavy nuclei taking place under strong coupling of relative motion with rotation of deformed nuclei and with dynamic deformations of their surfaces is studied in the paper. A new effective method is proposed for numerical solution of a set of coupled Schrodinger equations with boundary conditions corresponding to a full absorption of the flux penetrated through the multi-dimensional Coulomb barrier. The method has no limitation on the number of coupled channels and allows one to calculate fusion cross-sections of very heavy nuclei used for synthesis of super-heavy elements. A combined analysis of the multi-dimensional potential energy surface relief and the multi-channel wave function in the vicinity of the Coulomb barrier gives a clear interpretation of near-barrier fusion dynamics. Comparison with experimental data and with semi-empirical model calculations is performed. The computing codes are allocated at the web-server http://nrv.jinr.ru/nrv/ w...

  15. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    Science.gov (United States)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  16. Electromagnetic Dissociation of Target Nuclei by $^{208}$Pb Projectiles

    CERN Multimedia

    Petridis, A; Wohn, F K

    2002-01-01

    % NA53 \\\\ \\\\ The purpose of this experiment is to study the process of electromagnetic dissociation (ED) that occurs at impact parameters large enough so that there is no nuclear interaction. In these cases strong electromagnetic fields are produced for a short time at the nucleus. For large charges and ultrarelativistic energies, the intense electromagnetic pulse produces cross-sections much larger than the total hadronic cross-section. These effects place significant constraints on the storage times of the heavy ion beams planned for RHIC and LHC.\\\\ \\\\In this experiment we measure the cross-sections for the one- and two-neutron removal processes resulting from the interaction of 160 and 40~GeV/nucleon Pb beams on Au and Co targets. Thin Au targets were bombarded in the beam line of the NA50 experiment. Gamma rays from the residual nuclides produced in the bombardment were measured to determine the saturation activities of $^{196}$Au and $^{195}$Au resulting from ED of the Au target. This along with cross-se...

  17. Decay of giant resonance E2 isoscalar in heavy nuclei. Decaimento da ressonancia gigante E2 isoescalar em nucleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Herdade, S B [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1980-01-01

    In this work, it is made a study of the giant resonance E2 isoscalar, in heavy nuclei. Fission probabilities for this resonance were determined by various authors, in different experiments, for {sup 238}U. (A.C.A.S.).

  18. Rotating target wheel system for super-heavy element production at ATLAS

    CERN Document Server

    Greene, J P; Falout, J; Janssens, R V F

    2004-01-01

    A new scattering chamber housing a large diameter rotating target wheel has been designed and constructed in front of the Fragment Mass Analyzer (FMA) for the production of very heavy nuclei (Z greater than 100) using beams from the Argonne Tandem Linear Accelerator System (ATLAS). In addition to the target and drive system, the chamber is extensively instrumented in order to monitor target performance and deterioration. Capabilities also exist to install rotating entrance and exit windows for gas cooling of the target within the scattering chamber. The design and initial tests are described.

  19. Population and particle decay of isobaric analog states in medium heavy nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1980-05-01

    The systematic features of proton stripping and neutron pick-up reactions to Isobaric Analog States in medium heavy nuclei are presented. The ( 3 He,d) reaction investigated at high incident energy is shown to selectively excite high-spin particle-analog states. Similarly the ( 3 He,α) reaction populates hole-analog states. The recent results related to such highly excited states in a wide range of nuclei ( 48 Ca to 208 Pb) are discussed in the framework of the DWBA theory of direct reactions with special emphasis on the treatment of unbound proton states or deeply-bound neutron hole states. The particle decay of Isobaric Analog States are investigated using the ( 3 He,d p) and ( 3 He, α p) sequential processes. The experimental method developed at Orsay (0 0 detection) for particle-particle angular correlations is presented. The advantage and the limits of such approach are illustrated by typical examples of particle decays: core-excited states, neutron particle-hole multiplets and the first observation of the proton emission of hole-analog levels. In conclusion new experimental approaches such as asymmetry measurements for analog states observed in transfer reactions or possible population of double analog states in heavy nuclei are discussed

  20. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Science.gov (United States)

    Oganessian, Yu. Ts.; Shchepunov, V. A.; Dmitriev, S. N.; Itkis, M. G.; Gulbekyan, G. G.; Khabarov, M. V.; Bekhterev, V. V.; Bogomolov, S. L.; Efremov, A. A.; Pashenko, S. V.; Stepantsov, S. V.; Yeremin, A. V.; Yavor, M. I.; Kalimov, A. G.

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  1. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    CERN Document Server

    Oganessian, Yu T; Dmitriev, S N; Itkis, M G; Gulbekyan, G G; Khabarov, M V; Bekhterev, V V; Bogomolov, S L; Efremov, A A; Pashenko, S V; Stepantsov, S V; Yeremin, A V; Yavor, M I; Kalimov, A G

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 sup - sup 3. The set up can work in the wide mass range from A approx 20 to A approx 500, its mass acceptance is as large as +-2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considere...

  2. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Oganessian, Yu.Ts.; Shchepunov, V.A.; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G.

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3 . The set up can work in the wide mass range from A∼20 to A∼500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given

  3. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts.; Shchepunov, V.A. E-mail: shchepun@sunhe.jinr.rushchepun@cv.jinr.ru; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10{sup -3}. The set up can work in the wide mass range from A{approx}20 to A{approx}500, its mass acceptance is as large as {+-}2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  4. Mechanism of f-decay - spontaneous emission of fragments by heavy nuclei

    International Nuclear Information System (INIS)

    Rubchenya, V.A.; Ehjsmont, V.P.; Yavshits, S.G.

    1987-01-01

    A new type of model of radioactive decay - spontaneous emission of fragments by heavy nuclei, for which f-decay has been suggested, is formulated. The consideration is based on representation about a disintegrating configuration, for which the probability of f-cluster formation is close to 1. The moments method is used to determine the parameters of the disintegrating configuration. The probability of disintegrating configuration formation is determined by collective properties of a disintegrating nucleus. Effect of nucleon shells of the daughter nucleus and fragment leads to more compact disintegrating configuration and to decay energy increase, that's why at f-decay magic nuclei are formed. Probable spontaneous f-decay values calculated agree satisfactorily with experimental data. The calculational results testify to considerable decrease of f-decay probability at Z≥94

  5. Photo-disintegration of heavy nuclei at the core of Cen A

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Esha [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Gupta, Nayantara, E-mail: esha.kundu@gmail.com, E-mail: nayan@rri.res.in [Raman Research Institute, Sadashiva Nagar, Bangalore 560080 (India)

    2014-04-01

    Fermi LAT has detected gamma ray emissions from the core of Cen A. More recently, a new component in the gamma ray spectrum from the core has been reported in the energy range of 4 GeV to tens of GeV. We show that the new component and the HESS detected spectrum of gamma rays from the core at higher energy have possibly a common origin in photo-disintegration of heavy nuclei. Assuming the cosmic rays are mostly Fe nuclei inside the core and their spectrum has a low energy cut-off at 52 TeV in the wind frame moving with a Doppler factor 0.25 with respect to the observer on earth, the cosmic ray luminosity required to explain the observed gamma ray flux above 1 GeV is found to be 1.5 × 10{sup 43} erg/sec.

  6. Formation of heavy compound nuclei, their survival and correlation with longtime-scale fission

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Yakushev, A.B.

    2006-01-01

    Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reactions for the synthesis of Z c 110-118 nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like 94 Kr or 100 Sr. Thus, the cold fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at the final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed

  7. Uncertainties and understanding of experimental and theoretical results regarding reactions forming heavy and superheavy nuclei

    Science.gov (United States)

    Giardina, G.; Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; Fazio, G.

    2018-02-01

    Experimental and theoretical results of the PCN fusion probability of reactants in the entrance channel and the Wsur survival probability against fission at deexcitation of the compound nucleus formed in heavy-ion collisions are discussed. The theoretical results for a set of nuclear reactions leading to formation of compound nuclei (CNs) with the charge number Z = 102- 122 reveal a strong sensitivity of PCN to the characteristics of colliding nuclei in the entrance channel, dynamics of the reaction mechanism, and excitation energy of the system. We discuss the validity of assumptions and procedures for analysis of experimental data, and also the limits of validity of theoretical results obtained by the use of phenomenological models. The comparison of results obtained in many investigated reactions reveals serious limits of validity of the data analysis and calculation procedures.

  8. Accumulation of Long-lived activity in heavy metal liquid targets

    International Nuclear Information System (INIS)

    Shubin, Y. N.; Gai, E. V.; Ignatyuk, A. V.; Lunev, V. P.

    1997-01-01

    The calculations and analysis of the accumulation of radioactive nuclei and long-lived activity in heavy metal liquid targets were performed. The dominating contributions to the total radioactivity of radionuclides resulting from fission, spallation reactions and radiative capture by target nuclei for various irradiation and cooling times were calculated and analyzed. The most important parts of neutron and proton spectra were determined that give the dominant contributions to the total and partial activity of the targets. The contributions of fission products to the target activity and partial activities of main long-lived fission products were evaluated. The results of the calculations are compared with the data on Energy Amplifier Project. (Author) 12 refs

  9. Production of nuclei far from the beta stability line using intermediate-energy heavy ions

    International Nuclear Information System (INIS)

    Guerreau, D.

    1986-05-01

    The production of far unstable nuclei using heavy ion accelerators in the intermediate energy domain is reviewed. The various mechanisms responsible for the production of exotic species, mainly the projectile fragmentation and transfer reactions, are discussed, and the first experimental results presented. Results can be summarized as follows: existence of 4 new isotopes 22 C, 23 N, 29 Ne, 30 Ne; indication of bound character of 71 Ni, 72 Ni; clear evidence for bound character of 23 Si, 27 S, 31 Ar, 35 Ca; indications of bound character of 43 V, 46 Mn, 47 Mn, 48 Fe, 50 Co, 52 Co, 52 Ni, 55 Cu, 56 Cu

  10. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  11. In-target rare nuclei production rates with EURISOL single-stage configuration

    CERN Document Server

    Chabod, S P; Ene, D; Doré, D; Blideanu, V; David, J.-Ch; Ridikas, D

    2010-01-01

    We conducted calculations of exotic nuclei production rates for 320 configurations of EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility) direct spallation targets. The nuclei yields were evaluated using neutron generation-transport codes, completed with evolution calculations to account for nuclei decays and low energy neutron interactions. The yields were optimized for 11 selected elements (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Sn, Hg, Fr) and 23 of their isotopes, as function of the target compositions and geometries as well as the incident proton beam energies. For the considered elements, we evaluated the yield distributions as functions of the charge and mass numbers using two different spallation models.

  12. Axial asymmetry of excited heavy nuclei as essential feature for the prediction of level densities

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Eckart [Institute of Nuclear and Particle Physics, Technische Universitaet Dresden (Germany); Junghans, Arnd R. [Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Massarczyk, Ralph [Los Alamos National Laboratory, New Mexico (United States)

    2016-07-01

    In previous studies a considerable improvement of predictions for neutron resonance spacings by a modified back-shifted Fermi-gas model (BSFM) was found. The modifications closely follow the basic principles for a gas of weakly bound Fermions as given in text books of statistical physics: (1) Phase transition at a temperature defined by theory, (2) pairing condensation independent of A, and (3) proportionality of entropy to temperature (and thus the level density parameter) fixed by the Fermi energy. For finite nuclei we add: (4) the back-shift energy is defined by shell correction and (5) the collective enhancement is enlarged by allowing the axial symmetry to be broken. Nearly no parameter fitting is needed to arrive at a good reproduction of level density information obtained by various methods for a number of nuclei in a wide range of A and E. To that end the modified BSFM is complemented by a constant temperature approximation below the phase transition point. The axial symmetry breaking (5), which is an evidently essential feature, will also be regarded with respect to other observables for heavy nuclei.

  13. Studies of heavy-ion reactions and transuranic nuclei: Progress report, September 1, 1987--August 31, 1988

    International Nuclear Information System (INIS)

    Schroeder, W.U.; Huizenga, J.R.

    1988-08-01

    The effect of successively increasing gradients of the potential energy surface on mass and charge transport was studied experimentally and theoretically with a series of damped reactions induced by 48 Ca, 64 Ni, 58 Ni, and 40 Ca projectiles on 238 U targets. Combined transport-evaporation calculations that were performed for the interpretation of data demonstrate a systematic deficiency of quantitative reaction theory. A new type of experimental method has been employed to study several moments of the energy partition in damped reactions, measuring multiplicity correlations of neutrons emitted from the asymptotic fragments with a specially designed, directionally sensitive multiplicity counter. First results indicate significant departures of damped reaction systems from thermal equilibrium. Employing realistic Monte Carlo simulation of published experiments, it was demonstrated that the directions of net mass transfer and energy deposit are uncorrelated in damped reactions. Evaporative and preequilibrium neutron emission has been studied for the asymmetric heavy-ion system 139 La + 40 Ar. The disequilibrium energy transport phenomena observed in the experiment are quantitatively reproduced by model calculations. A strong impact-parameter dependence of preequilibrium emission is demonstrated. The emission patterns of α particles evaporated from high spin compound nuclei, previously attributed to exotic nuclear shapes, have been explained in realistic statistical model calculations for nuclei with conventional shapes. A new octal digital delay module has been designed and tested

  14. Effect of broken axial symmetry on the electric dipole strength and the collective enhancement of level densities in heavy nuclei

    Science.gov (United States)

    Grosse, E.; Junghans, A. R.; Wilson, J. N.

    2017-11-01

    The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.

  15. On the production of shower particles from light (Cno) and heavy (Ag Br) emulsion nuclei at Dubna energy

    International Nuclear Information System (INIS)

    EI-Nagdy, M.S.; Abdel-Waged, Kh; Abdel-Halim, S.M.; Khalil, E.I.

    2000-01-01

    The reaction cross sections for p, d, He, C, Mg and S beams with different chemical components of emulsion nuclei at 4.5 A GeV/c have been studied with high statistics, and were compared with the calculations according to Glauber model. The multiplicity distributions of shower produced particles from these interactions with light and heavy emulsion nuclei are analyzed in terms of the negative binomial and Poisson distribution laws

  16. Analysis of Central Events in the Interactions of Relativistic Heavy Ions with Emulsion Nuclei at 118.4 GeV

    International Nuclear Information System (INIS)

    EL-Falaky, E.

    2007-01-01

    Data on the multiplicity of the secondary produced particles in the central events from the interactions of 32S with AgBr nuclei at 118.4 GeV. A different selection criteria of the central collision in heavy ion interactions was investigated. The multiplicity distributions of the different produced shower particles (mainly pions) in the central events for each criteria was studied. The multiplicity distributions of the target fragments emitted in the central events was fitted by a Gaussian distribution. The target analysis of the experimental data shows agreement with the limiting fragmentation hypothesis

  17. Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei

    Science.gov (United States)

    Saleh Ahmed, Saad M.

    2017-06-01

    The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.

  18. Interpretation of the mechanism of spontaneous fission of heavy nuclei in the framework of dinuclear system conception

    International Nuclear Information System (INIS)

    Volkov, V.V.; Cherepanov, E.A.; Kalandarov, Sh.A.

    2016-01-01

    A new approach to the interpretation of the process of spontaneous fission of heavy nuclei is suggested. It is based on nuclear physics data which are obtained in heavy ion collisions. The process of spontaneous fission consists of three sequential stages: clusterization of the valent nucleons of a heavy nucleus into a light nucleus-cluster, which leads to the formation of a dinuclear system; evolution of the dinuclear system which proceeds by nucleon transfer from the heavy to light nucleus; and decay of the dinuclear system from the equilibrium configuration into two fragments. [ru

  19. Stopped pion absorption by medium and heavy nuclei in the cascade-exciton model

    International Nuclear Information System (INIS)

    Mashnik, S.G.

    1992-03-01

    A large variety of experimental data on stopped negative pion absorption by nuclei from C to Bi (energy spectra and multiplicities of n, p, d, t, 3 He and 4 He; angular correlations of two secondary particles; spectra of the energy release in the ''live'' 28 Si target on recording protons, deuterons and tritons in the energy range 40-70 MeV, 30-60 MeV and 30-50 MeV, respectively; isotope yields; momentum and angular momentum distributions of residual nuclei) are analyzed within the framework of the cascade-exciton model of nuclear reactions. Comparison is made with other up-to-date models of the process. The contributions of different pion absorption mechanisms and the relative role of different particle production mechanisms in these reactions are discussed. (author). 59 refs, 13 figs, 4 tabs

  20. Fragmentation cross sections of relativistic 8436Kr and 10947Ag nuclei in targets from hydrogen to lead

    International Nuclear Information System (INIS)

    Nilsen, B.S.; Waddington, C.J.; Cummings, J.R.; Garrard, T.L.; Klarmann, J.

    1995-01-01

    With the addition of krypton and silver projectiles we have extended our previous studies of the fragmentation of heavy relativistic nuclei in targets ranging in mass from hydrogen to lead. These projectiles were studied at a number of discrete energies between 450 and 1500A MeV. The total and partial charge-changing cross sections were determined for each energy, target, and projectile, and the values compared with previous predictions. A new parametrization of the dependence of the total charge-changing cross sections on the target and projectile is introduced, based on nuclear charge radii derived from electron scattering. We have also parametrized the energy dependence of the total cross sections over the range of energies studied. New parameters were found for a previous representation of the partial charge-changing cross sections in hydrogen and a new parametrization has been introduced for the nonhydrogen targets. The evidence that limiting fragmentation has been attained for these relatively light projectile nuclei at Bevalac energies is shown to be inconclusive, and further measurements at higher energies will be needed to address this question

  1. Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei

    International Nuclear Information System (INIS)

    Chen Liewen; Ko Che Ming; Xu Jun; Li Baoan

    2010-01-01

    Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Δr np of Sn isotopes give an important constraint on the symmetry energy E sym (ρ 0 ) and its density slope L at saturation density ρ 0 . Combining these constraints with those from recent analyses of isospin diffusion and the double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on L approximately independent of E sym (ρ 0 ). The implication of these new constraints on the Δr np of 208 Pb as well as the core-crust transition density and pressure in neutron stars is discussed.

  2. Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, E.; Massarczyk, R. [Technische Universitaet Dresden, Institute of Nuclear and Particle Physics, Dresden (Germany); Junghans, A.R. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Dresden (Germany)

    2017-11-15

    A recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated in energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected. (orig.)

  3. Application of the interacting boson model to collective states in medium heavy nuclei

    International Nuclear Information System (INIS)

    Kaup, U.

    1983-01-01

    In the framework of the interacting boson model a systematic description of even-even isotopes of the medium heavy elements selenium, krypton, and strontium is given. The number of the free parameters could be kept very small by the determination of the physically relevant terms of the general model Hamiltonian. The variation of the collectivity from spherical to deformed, γ-soft nuclei could be mainly derived from the influence of the number of valence nucleons. All model parameters vary smoothly as function of the valence particle number and in qualitative agreement with predictions of a simplified microscopical model. Odd nuclei were studied in the framework of the interacting boson-fermion model. Beside the phenomenological description of odd-even rubidium, technetium, and silver isotope this part of the thesis is occupied mainly by the microscopical theory of the boson-fermion model. The effect of the antisymmetrization of the last, odd particle with the core nucleons is discussed. The microscopic theory is supplemented by the derivation of the so called Pauli term from the interaction of identical nucleons. (orig./HSI) [de

  4. Review of even element super-heavy nuclei and search for element 120

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Barth, W.; Burkhard, H.G.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Schoett, H.J.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Muenzenberg, G. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Manipal University, Manipal Centre for Natural Sciences, Manipal, Karnataka (India); Antalic, S.; Saro, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbuilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-06-15

    The reaction {sup 54}Cr + {sup 248}Cm was investigated at the velocity filter SHIP at GSI, Darmstadt, with the intention to study production and decay properties of isotopes of element 120. Three correlated signals were measured, which occurred within a period of 279ms. The heights of the signals correspond with the expectations for a decay sequence starting with an isotope of element 120. However, a complete decay chain cannot be established, since a signal from the implantation of the evaporation residue cannot be identified unambiguously. Measured properties of the event chain are discussed in detail. The result is compared with theoretical predictions. Previously measured decay properties of even element super-heavy nuclei were compiled in order to find arguments for an assignment from the systematics of experimental data. In the course of this review, a few tentatively assigned data could be corrected. New interpretations are given for results which could not be assigned definitely in previous studies. The discussion revealed that the cross-section for production of element 120 could be high enough so that a successful experiment seems possible with presently available techniques. However, a continuation of the experiment at SHIP for a necessary confirmation of the results obtained in a relatively short irradiation of five weeks is not possible at GSI presently. Therefore, we decided to publish the results of the measurement and of the review as they exist now. In the summary and outlook section we also present concepts for the continuation of research in the field of super-heavy nuclei. (orig.)

  5. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Kai-Jia Sun

    2017-11-01

    Full Text Available Based on the coalescence model for light nuclei production, we show that the yield ratio Op-d-t=NH3Np/Nd2 of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn=〈(δn2〉/〈n〉2 at kinetic freeze-out. From recent experimental data in central Pb+Pb collisions at sNN=6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS, we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at sNN=8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ∼144 MeV and baryon chemical potential of ∼385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.

  6. Charm production yield from target nuclei filtering intrinsic projectile charm

    International Nuclear Information System (INIS)

    Quack, E.; Nemes, M.C.

    1990-01-01

    Estimating the process of filtering an intrinsic projectile charm component by a target nucleus as proposed earlier, we obtain upper limits for the cross sections of open charm and J/Ψ. Comparing with experiment, we conclude that this filtering mechanism is not sufficient to explain the observed A α-dependence at large final state momenta. (author)

  7. Resonance scattering of 12C nuclei on protons in the Maya active target

    CERN Document Server

    Khodery, Mohammad

    This work is related to the realm of exotic nuclei. These are nuclei that exist far from the valley of stability. Study of these nuclei introduced many interesting phenomena and changed our understanding about the nuclear structure. As exotic nuclei are very short lived, their study has to be at the time of their production using radioactive beams of the exotic nuclei. The goal of the experiment was to study the $^{13}$Be low-lying energy levels. The experiment was performed at ISOLDE at CERN as $^{12}$Be beams are produced at this facility with suitable intensity and energy. The method used to study $^{13}$Be was elastic resonance reactions. This is a powerful tool to study unbound states. This thesis concentrates on the $^{12}$C nuclei that are present in the beam as isobaric contamination. $^{12}$C in the beam is scattered on the protons which is the target. The protons are introduced in the form of isobutene gas. The aim of this work is to prove the principle of the technique of elastic resonance scatteri...

  8. Heavy-ion interactions of deformed nuclei. Progress report and final report, January 1, 1985-December 31, 1985

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1985-09-01

    This Progress Report describes the main topics that were investigated during the reporting period: (1) a new microscopic approach (many-body theory with two-center shell model basis) to the calculation of heavy-ion interaction potentials, primarily for heavy systems; (2) dynamic alignment of deformed nuclei during heavy-ion collisions; (3) the role of shell effects, static deformation and dynamic alignment in heavy-ion fusion reactions; (4) giant nuclear quasimolecules and the positron problem. The proposed research has direct relevance to experimental programs supported by DOE, e.g. the Holifield Heavy-Ion Research Facility (HHIRF) at Oak Ridge, the ATLAS accelerator at Argonne National Laboratory, the Double MP Tandem at Brookhaven and some of the smaller University-based accelerators. A discussion of a review article on Coulomb fission is presented. 36 refs., 7 figs

  9. Direct-driven target implosion in heavy ion fusion

    International Nuclear Information System (INIS)

    Noguchi, K.; Suzuki, T.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A. I.

    2016-01-01

    In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. A fuel target alignment error would happen in a fusion reactor; the target alignment error induces heavy ion beam illumination non-uniformity on a target. On the other hand, heavy ion beam accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. First we study the effect of driver irradiation non-uniformity induced by the target alignment error (dz) on the target implosion. We found that dz should be less than about 130 μm for a sufficient fusion energy output. We also optimize the wobbling scheme. The spiral wobbling heavy ion beams would provide a promissing scheme to the uniform beam illumination. (paper)

  10. Actinide targets for the synthesis of super-heavy elements

    International Nuclear Information System (INIS)

    Roberto, J.B.; Alexander, C.W.; Boll, R.A.; Burns, J.D.; Ezold, J.G.; Felker, L.K.; Hogle, S.L.; Rykaczewski, K.P.

    2015-01-01

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of "4"8Ca beams on actinide targets. These target materials, including "2"4"2Pu, "2"4"4Pu, "2"4"3Am, "2"4"5Cm, "2"4"8Cm, "2"4"9Cf, and "2"4"9Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including "2"4"9Bk, "2"5"1Cf, and "2"5"4Es are described.

  11. The energy overcompensating disintegrations of residual target nuclei damaged in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1995-01-01

    Massive target nuclei damaged in hadron-nucleus collisions at high energies are used to disintegrate into nuclear fragments. In many cases such breakup is egzoergic - some portion of nuclear energy is released; this portion should be overcompensating the energy used for the nuclear damage, in some cases. 30 refs

  12. Stopping and energy deposition of hadrons in target nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1983-01-01

    In an analysis of pion-xenon nucleus collisions at 2.34-9 GeV/c momentum events are identified in which incident pions were completely stopped and deposited their energy in target nucleus. Probability of appearance of such ''stopped'' events among any-type pion-xenon collision events depends on the incident pion momentum and is: approximately 0.15 at 2.34 GeV/c, approximately 0.02 at 3.5 GeV/c, and approximately 0 at higher momenta. Formula expressing probability of appearance of the ''stopped'' events is derived. Range-energy relation in nuclear matter for pions and protons is given

  13. Target fragmentation in deep inelastic scattering of 14.5 GeV electrons from nuclei

    International Nuclear Information System (INIS)

    Degtyarenko, P.; Gavrilov, V.; Shuvalov, S.

    1993-01-01

    Results will be presented for inclusive pion, kaon, proton and deuteron electroproduction from light nuclei (mainly 12 C and 16 O) of the residual gas in the beam pipe of the TPC/2γ detector at SLAC. Counter-circulating beams of 14.5 GeV electrons and positrons were used. Comparison will be made with the fragmentation of 2 H, 40 Ar, and Xe target nuclei in several regions of Q 2 and ν. The dependence of the hadron production on the hadron's kinetic energy, emission angle, and x f will be presented. The results will be compared with models of nuclear fragmentation

  14. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum

    International Nuclear Information System (INIS)

    Bonneau, L.

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J 2 in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J 2 operator. (A.C.)

  15. The SU(3) structure of rotational states in heavy deformed nuclei

    International Nuclear Information System (INIS)

    Jarrio, M.; Wood, J.L.; Rowe, D.J.

    1991-01-01

    The SU(3) coupling scheme provides an informative basis for the expansion of shell-model wave functions and their interpretation in collective-model terms. We show in this paper that it is possible, using the coupled-rotor-vibrator model, to infer averages of the distributions of SU(3) representation labels in heavy rotational nuclei by direct interpretation of physically observed E2 transition rates and quadrupole moments. We find that the distributions of SU(3) representation labels have nearly constant average values for states belonging to some well-defined rotational bands. These are bands of states having B(E2) values and quadrupole moments that follow the predictions of the rotor model. Such bands are interpreted as soft SU(3) bands in parallel with the concept of a soft rotor band with vibrational-shape fluctuations. The concept of a soft SU(3) band and its implications for beta-vibrational excited bands is developed. The average SU(3) representation labels inferred from experiment are interpreted by calculating those implied by the Nilsson model. An analysis of the SU(3) content of Nilsson wave functions also leads to two remarkable predictions. The first is that, in the asymptotic limit, the Nilsson model implies intrinsic states for a rotor band that are beta rigid. The second is that, although the intrinsic Nilsson state is axially symmetric, it generates a sequence of K=0, 2, 4,...bands. (orig.)

  16. Search for short-lived particles produced on nuclei with a heavy liquid mini bubble chamber

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to search for short-lived particles produced in hadronic interactions on nuclei with our high resolution heavy liquid mini bubble chamber BIBC, aiming to establish the cross-section for associated production in hadron-nucleus collisions, its $A$-dependence and an approximate value of the lifetime. The chamber will be operated at a bubble density of 290 bubbles/cm and with an apparent bubble size of 30 $\\mu$m in real space. In test runs at CERN we measured detection efficiencies which, together with simulations of $D\\bar{D}$ production and decay, lead to a sensitivity of 0.25 events/($\\mu$b/N) per day if the lifetime is of the order of $5\\times10^{-13}$s. A null result after 10 days running time would set an upper limit on the production cross section to $3 \\mu$b. \\\\ \\\\ In order to measure the momenta of charged decay products of short-lived particles, the bubble chamber will be placed 1.80 m upstream of the streamer chamber of the NA5 experiment (MPI). The geometrical acceptance ...

  17. Search for shot-time growths of flares od cosmic heavy nuclei according to measurement data at ''Prognoz'' satellites

    International Nuclear Information System (INIS)

    Volodichev, N.N.; Savenko, I.A.; Suslov, A.A.

    1983-01-01

    Surch for short-time growths of fluxes of mainly cosmic heavy nuclei with the energy epsilon > or approximately 500 MeV/nucleon according to measurement data at ''Prognoz-2'' and ''Prognoz-3'' satellites is undertaken. Such growths have been recorded during the flights of the first soviet cosmic rockets, spacecraft-satellites, ''Electron'', ''Molnia-1'' satellites. At the ''Prognoz'' satellite such growth have not been observed. Moreover, the 2.1.1974 growth found at the ''Molnia-1'' satellite by the telescope of scintillation and Cherenkov counters has not been recorded by the analogous device at ''Prognoz-3'' satellite. Therefore, the problem on the nature of short-time growths of the heavy nuclei fluxes remains unsolved

  18. Study of Doubly Charged Delta Baryons in Collisions of Copper Nuclei at the Relativistic Heavy Ion Collider

    Science.gov (United States)

    2017-05-22

    connecting the three quarks. Composite particles composed of partons are known as “hadrons” and must have a neutral color charge. There are six... neutral charge of neutrons. The up quark has positive charge equivalent to two-thirds the charge of an electron, and the down quark has negative...known as “heavy ions.” An ion is an atom or molecule with net electric charge, bare nuclei have a large positive charge due to the absence of

  19. Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rajni; Sharma, Ishita; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India); Jain, Deepika [Mata Gujri College, Department of Physics, Fatehgarh Sahib (India)

    2017-10-15

    The Skyrme energy density formalism is employed to explore the effect of spin-orbit interaction potential by considering a two nucleon transfer process via various entrance channels such as {sup 23}Na + {sup 49}V, {sup 25}Mg + {sup 47}Ti, {sup 27}Al + {sup 45}Sc, {sup 29}Si + {sup 43}Ca and {sup 31}P + {sup 41}K, all forming the same compound system {sup 72}Se*, using both spherical as well as quadrupole deformed (β{sub 2}) nuclei. For spherical nuclei, the spin-orbit density part V{sub J} of nuclear potential remains unaffected with the transfer of two nucleons from the target to the projectile, however, show notable variation in magnitude after inclusion of deformation effects. Likewise, deformations play an important role in the spin-orbit density independent part V{sub P}, as the fusion pocket start appears, which otherwise diminish for the spherical nuclei. Further, the effect of an increase in the N/Z ratio of Se is explored on V{sub J} as well as V{sub P} and results are compared with transfer channels. In addition to this, the role of double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}) with relative contribution of the isoscalar and isovector parts of spin-orbit strength is explored in view of SkI2, SkI3 and SkI4 Skyrme forces. Beside this, the decay path of {sup 72}Se* nucleus formed in {sup 27}Al + {sup 45}Sc reaction is investigated within the framework of dynamical cluster decay model (DCM), where the nuclear proximity potential is obtained by both Skyrme energy density formalism (SEDF) and proximity pocket formula. The fusion hindrance in the {sup 27}Al + {sup 45}Sc reaction is also addressed via the barrier lowering parameter ΔV{sub B}. Finally, the contribution of spin-orbit density dependent interaction potential is estimated for the {sup 27}Al + {sup 45}Sc reaction using single (W{sub 0} or W{sub 0}{sup '}) and double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}). (orig.)

  20. Fast neutron dose equivalent rates in heavy ion target areas

    International Nuclear Information System (INIS)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas

  1. Fast neutron dose equivalent rates in heavy ion target areas

    Energy Technology Data Exchange (ETDEWEB)

    Fulmer, C.B.; Butler, H.M.; Ohnesorge, W.F.; Mosko, S.W.

    1978-01-01

    At heavy ion accelerators, personnel access to areas near the target is sometimes important for successful performance of experiments. Radiation levels determine the amount of time that can be spent in these areas without exceeding maximum permissible exposures. Inasmuch as the fast neutrons contribute the major part of the Rem dose rates in these areas, knowledge of the fast neutron levels is important for planning permissive entry to target areas. Fast neutron dose rates were measured near thick medium mass targets bombarded with beams of C, N, O, and Ne ions. beam energies ranged from 3 to 16 MeV/amu. Dose rates (mrem/h) 1 meter from the target 90 degrees from the beam direction range from approx. 0.05 at MeV/amu to approx. 50 at 16 MeV/amu. These data should be helpful in planning permissive entry to heavy ion target areas.

  2. Heavy quarks and nuclei, or the charm & beauty of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Kharzeev, D.

    1997-09-22

    This report contains viewgraphs on the following: why heavy quarks? Heavy quarkonium in QCD vacuum and in matter; Phenomenology of quarkonium production; Induced decay of QCD vacuum in heavy ion collisions? Implications for quarkonium production; and Outlook.

  3. Independent yields of Kr and Xe isotopes in the photofission of heavy nuclei

    International Nuclear Information System (INIS)

    Gangrsky, Yu.P.; Zhemenik, V.I.; Maslova, N.Yu.; Mishinsky, G.V.; Penionzhkevich, Yu.E.; Szoelloes, O.

    2003-01-01

    The yields of Kr (A = 87-93) and Xe (A = 138-143) primary fission fragments produced in 232 Th, 238 U, and 244 Pu photofission upon the scission of a target nucleus and neutron emission were measured in an experiment with bremsstrahlung from electrons accelerated to 25 MeV by a microtron, and the results of these measurements are presented. The experimental procedure used involved the transportation of fragments that escaped from the target by a gas flow through a capillary and the condensation of Kr and Xe inert gases in a cryostat at liquid-nitrogen temperature. The fragments of all other elements were retained with a filter at the capillary inlet. The isotopes of Kr and Xe were identified by the γ spectra of their daughter products. The mass-number distributions of the independent yields of Kr and Xe isotopes are obtained and compared with similar data on fission induced by thermal and fast neutrons; the shifts of the fragment charges with respect to the undistorted charge distribution are determined. Prospects for using photofission fragments in studying the structure of highly neutron-rich nuclei are discussed

  4. Resolving key heavy-ion fusion target issues with relativistic heavy-ion research accelerators

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1988-01-01

    Heavy-ion accelerators designed for relativistic nuclear research experiments can also be adapted for target research in heavy-ion driver inertial fusion. Needle-shaped plasmas can be created that are adequate for studying basic properties of matter at high energy density. Although the ion range is very long, the specific deposited power nevertheless increases with kinetic energy, as the focus spot can be made smaller and more ions can be accumulated in larger rings

  5. Traces of heavy and superheavy cosmic nuclei in olivins of extraterrestial origin

    International Nuclear Information System (INIS)

    Ignatova, R.; Taneva, T.

    1982-01-01

    The paths of traces of WH nuclei from cosmic rays have been measured in olivines from the meteorites Maryalakhti, Eagle Stein, Liposki khutor with radiation ages 175, 45 and 220 million years respectively. 3 cm 3 olivines of these meteorites have been examined and more than 500 traces of nuclei with Z(>=)90 have been found measured including 3 traces 1.5-1.8 times longer than the traces created by the uranium and thorium nuclei. These traces may be left by nuclei with Z(>=)110. The crystals were chosen from localizations situated at 2-7 cm, 8-9 cm and 10-12 cm from the outside atmospheric surface of the meteorite. The abundancy of the Z(>=)50 nuclei in gigantic cosmic rays, averaged for a period of ( =)110 in galactic cosmic rays. It is 1.4 x 10 -9 from that of the iron group nuclei. (authors)

  6. High-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei by pion-transfer reactions of inverse kinematics using the GSI cooler ring ESR

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1991-02-01

    Many studies published in the past are reviewed first in relation to high-resolution spectroscopy of deeply-bound pionic atoms in heavy nuclei. The report then describes a procedure for applying the method of inverse kinematics to the case of (d, 3 He) reactions. The (d, 3 He) reaction in inverse kinematics is feasible from practical viewpoints. Thus a discussion is made of the inverse kinematics in which a heavy-ion beam ( 208 Pb for instance) with a projectile kinetic energy hits a deuteron target and ejected recoil 3 He nuclei are measured in the forward direction. The recoil momentum is calculated as a function of the Q value. Analysis shows that the recoil spectroscopy with inverse kinematics can be applied to the case of (d, 3 He) reaction, which will yield a very high mass resolution. The experimental setup for use in the first stage is then outlined, and a simple detector configuration free of magnetic field is discussed. These investigations demonstrate that the (d, 3 He) reaction in inverse kinematics provides a promising tool for obtaining high-resolution spectra of deeply-bound pionic atoms. (N.K.)

  7. Energy changes in massive target-nuclei, induced by high-energy hadronic projectiles

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1997-01-01

    Now it turned out that it is real to estimate by experiments the energy changes in massive target-nuclei, induced by high-energy hadronic projectiles. The subject matter in this work is to present results of the quantitative estimations of the energy changes in intranuclear matter at various stages of hadron-nucleus collision reactions. Appropriate formulas are proposed for the energy balances - as following from the experimentally based mechanism of the hadron-nucleus collision reactions

  8. Heavy ion particle beam interaction with a hot ionized target

    International Nuclear Information System (INIS)

    Dei-Cas, R.; Bardy, J.; Beuve, M.A.; Laget, J.P.; Menier, A.; Renaud, M.

    1983-03-01

    The present status of the experimental facility consisting of a heavy ion beam travelling through a laser created plasma target is described. Some aspects such as laser-tandem coupling, beam performances, constraints on the plasma parameter ranges, plasma and beam diagnostics are analyzed

  9. Recent heavy flavor physics results from fixed target experiments

    International Nuclear Information System (INIS)

    Spiegel, L.

    1991-11-01

    Recent results from fixed target experiments in the field of heavy quark flavors, as published or otherwise disseminated in the last year, are reviewed. Emphasis is placed on distilling the main conclusions from these results. 35 refs., 5 figs., 4 tabs

  10. Recent heavy flavor physics results from fixed target experiments

    Energy Technology Data Exchange (ETDEWEB)

    Spiegel, L.

    1991-11-01

    Recent results from fixed target experiments in the field of heavy quark flavors, as published or otherwise disseminated in the last year, are reviewed. Emphasis is placed on distilling the main conclusions from these results. 35 refs., 5 figs., 4 tabs.

  11. Ionization of heavy targets by impact of relativistic projectiles

    International Nuclear Information System (INIS)

    Deco, G.R.; Fainstein, P.D.; Comision Nacional de Energia Atomica, San Carlos de Bariloche; Rivarola, R.D.

    1988-01-01

    Electron ejection from atomic targets by impact of bare heavy projectiles at relativistic collision energies is studied theoretically. First-order Born calculations are presented by using initial Darwin and final Sommerfeld-Maue wavefunctions. Comparisons with other calculations and experimental data are given. (orig.)

  12. Development of a new scanning method for solid states track detector in the heavy nuclei explorer experiment (HNX-ECCO)

    International Nuclear Information System (INIS)

    Yasuda, N.; Sekiguchi, M.; Nakamura, S.; Kitamura, T.; Tawara, H.; Doke, T.

    2001-01-01

    The HNX (Heavy Nuclear eXplorer) project has been tentatively accepted as one of the NASA's Small Explorer (SMEX) Program. Purpose of this project is the measurement of abundances for heavy nuclei in galactic cosmic rays (GCRs). This information will contribute to get a great knowledge for the origin of GCR. HNX has two large and high sensitive detectors, ENTICE (Energetic Trans-Ion Composition Experiment) and ECCO (Extremely Heavy Cosmic-ray Composition Observer). ECCO experimental module consists the large BP-1 glass detectors (total area; 23 m 2 ), will collect the GCRs (∼2,000 events for Pt-group and ∼100 events for actinide) with its high charge resolution (<0.35 e) in space at least 3 years. We report the outline of HNX project and the new techniques for the measurement of large glass detectors. (author)

  13. Charge and velocity resolution of Cerenkov counters in a beam of accelerated heavy nuclei

    International Nuclear Information System (INIS)

    Cantin, M.; Goret, P.; Jorrand, J.; Jouan, R.; Juliusson, E.; Koch, L.; Maubras, Y.; Mestreau, P.; Petrou, N.; Rio, Y.; Soutoul, A.; Cawood, P.; Linney, A.

    1975-01-01

    The response of various Cerenkov radiators to oxygen and nitrogen nuclei with energies ranging between 2.1GeV/n and 300MeV/n is presented. The velocity and charge resolutions are analyzed in relation to the possible use of these counters for chemical and isotopic analysis of the primary cosmic ray nuclei [fr

  14. Resonant heavy-ion elastic scattering from s-d shell nuclei

    International Nuclear Information System (INIS)

    DeVries, R.M.

    1978-01-01

    Angular distributions at angles 130 less than theta/sub cm/ less than 180 0 were measured for 12 C + 28 Si, 32 S, 40 Ca as well as 9 Be, 13 C + 28 Si in the energy range 20 MeV less than or equal to E/sub cm/ less than or equal to 35 MeV. Cross sections rising towards 180 0 are observed for all reactions. Excitation functions for the back-angle enhancement show distinct structures, most pronounced for 12 C + 28 Si. Angular distributions for 12 C, especially those corresponding to peaks in the excitation function show oscillations of the type vertical bar P/sub J/(cos theta) vertical bar 2 . The 12 C back-angle enhancement decreases with target mass. Backscattering of the nonalpha nuclei 9 Be and 13 C is reduced by about two orders of magnitude in comparison with 12 C. Similar measurements for the 28 Si( 12 C, 16 O) 24 Mg reaction and 16 O + 24 Mg elastic scattering allow comparison of reaction data with the corresponding entrance and exit channel data. Standard theoretical approaches fail to explain all the observed effects

  15. Vertex detector working as an active target in multihadron production on nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Albini, E [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Brescia Univ. (Italy). Ist. di Matematica); Artuso, M; Bacchiocchi, G; D' Angelo, P; Moroni, L; Ragusa, F; Rancoita, P G; Sala, S [Istituto Nazionale di Fisica Nucleare, Milan (Italy); Bellini, G

    1980-12-01

    In this paper a vertex detector working as active target is described. It consists of a telescope of nuclear targets surrounded by two coaxial cylindrical MWPCs, working in the proportional regime. The energy loss in the two 6 mm gaps of the chambers is measured with an accuracy better than 18%. The coordinates of the track along the sense wires are measured using the charge division method with an accuracy of 0.5-1.0%. The efficiency is about 99.5%. This device is used in an experiment concerned with multihadron production on nuclei, coupled with a forward spectrometer in order to detect and recognize grey, black and shower secondary particles.

  16. Measurements of neutron yields and radioactive isotope transmutation in collisions of relativistic ions with heavy nuclei

    International Nuclear Information System (INIS)

    Brandt, R.

    1999-01-01

    The paper is based on the report presented at the 85th Session of the JINR Scientific Council. Some aspects of experimental studies of the problem of reprocessing radioactive wastes by means of transmutation in the fields of neutrons generated by relativistic particle beams are discussed. Research results on measurement of neutron yields in heavy targets irradiated with protons at energies up to 3.7 GeV as well as transmutation cross sections of some fission products (I-129) and actinides (Np-237) using radiochemical methods, activation detectors, solid state nuclear track detectors and other methods are presented. Experiments have been performed at the accelerator complex of the Laboratory of High Energies, JINR. Analogous results obtained by other research groups are also discussed

  17. Studies of heavy ion reactions and transuranic nuclei. Progress report, August 1, 1979-July 31, 1980

    International Nuclear Information System (INIS)

    Huizenga, J.R.

    1980-07-01

    The study of heavy-ion reaction mechanisms at the SuperHILAC and LAMPF is reported. Preprints of five articles and manuscripts of four recent conference papers are given, along with complete citations of publications and a list of personnel. Significant work was performed in the following areas: the bombarding energy dependence of the 209 Bi + 136 Xe reaction; the fragment yields for specific Z and A for projectile-like fragments produced in the reaction of 8.3-MeV/u 56 Fe ions with targets of 56 Fe, 165 Ho, 209 Bi, and 238 U; and time distributions of fragments from delayed fission after muon capture for muonic 235 U, 238 U, 237 Np, 239 Pu, and 242 Pu

  18. Heavy-Quark Production in the Target Fragmentation Region

    CERN Document Server

    Graudenz, Dirk

    1997-01-01

    Fixed-target experiments permit the study of hadron production in the target fragmentation region. It is expected that the tagging of specific particles in the target fragments can be employed to introduce a bias in the hard scattering process towards a specific flavour content. The case of hadrons containing a heavy quark is particularly attractive because of the clear experimental signatures and the applicability of perturbative QCD. The standard approach to one-particle inclusive processes based on fragmentation functions is valid in the current fragmentation region and for large transverse momenta $p_T$ in the target fragmentation region, but it fails for particle production at small $p_T$ in the target fragmentation region. A collinear singularity, which cannot be absorbed in the standard way into the phenomenological distribution functions, prohibits the application of this procedure. This situation is remedied by the introduction of a new set of distribution functions, the target fragmentation function...

  19. Evaluation of the (n,xn) and (n,xnf) cross sections for heavy nuclei with the statistical model

    International Nuclear Information System (INIS)

    Jary, J.

    1975-01-01

    A method was presented to calculate the (n,xn) and (n,xnf) cross sections for the heavy nuclei having mass numbers of 232 1) without fission, according to the law of conventional statistical models, in the (n,xn) process. Fission can also compete with the emission of neutrons and γ-ray for the nuclei and the excitation energy considered. The fission cross sections of 235 U and 238 U recently evaluated by Sowerby and the fission cross section of 236 U have been used to determine the other parameters needed in the calculation. The fission widths of 239 U and 238 U have been obtained by fitting the first-chance and second-chance fission plateaus of the 238 U cross section. For the fission width of 238 U, good agreement was observed between the authors' results and Landrum and others' experimental data. (Iwase, T.)

  20. Interactions of relativistic heavy ions in thick heavy element targets and some unresolved problems

    International Nuclear Information System (INIS)

    Brandt, R.; Ditlov, V.A.; Pozharova, E.A.; Smirnitskij, V.A.

    2005-01-01

    Interactions of relativistic heavy ions with total energies above 30 GeV in thick Cu and Pb targets (≥2 cm) have been studied with various techniques. Radiochemical irradiation experiments using thick Cu targets, both in a compact form or as diluted '2π-Cu targets' have been carried out with several relativistic heavy ions, such as 44 GeV 12 C (JINR, Dubna) and 72 GeV 40 Ar (LBL, Berkeley, USA). Neutron measuring experiments using thick targets irradiated with various relativistic heavy ions up to 44 GeV 12 C have been performed at JINR. In addition, the number of 'black prongs' in nuclear interactions (due to protons with energies less than 30 MeV and emitted from the target-like interaction partner at rest) produced with 72 GeV 22 Ne ions in nuclear emulsion plates has been measured in the first nuclear interaction of the primary 22 Ne ion and in the following second nuclear interaction of the secondary heavy (Z>1) ion. Some essential results have been obtained. 1) Spallation products produced by relativistic secondary fragments in interactions ([44 GeV 12 C or 72 GeV 40 Ar]+Cu) within thick copper yield less products close to the target and much more products far away from the target as compared to primary beam interactions. This applies also to secondary particles emitted into large angles (Θ>10deg). 2) The neutron production of 44 GeV 12 C within thick Cu and Pb targets is beyond the estimated yield as based on experiments with 12 GeV 12 C. These rather independent experimental results cannot be understood with well-accepted nuclear reaction models. They appear to present unresolved problems

  1. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    OpenAIRE

    Mishustin, Igor; Malyshkin, Yury; Pshenichnov, Igor; Greiner, Walter

    2014-01-01

    A possibility of synthesizing neutron-reach super-heavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to Bk-249 can be produced in multiple neutron capture reactions in macroscopic quantities. Howeve...

  2. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  3. Role of compound nuclei in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-05-01

    Hot compound nuclei are frequently produced in intermediate-energy reactions through a variety of processes. Their decay is shown to be an important and at times dominant source of complex fragments, high energy-gamma rays, and even pions

  4. Compound nuclei, binary decay, and multifragmentation in intermediate-energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-07-01

    Hot compound nuclei, frequently produced in intermediate-energy reactions through a variety of processes, are shown to be an important and at times dominant source of complex fragments. 13 refs., 12 figs

  5. Measurements of double differential cross sections (DDX) for several medium-weight and heavy nuclei at 15 MeV

    International Nuclear Information System (INIS)

    Iwasaki, Shin

    1984-01-01

    Measurements of double differential cross sections (DDX) for several intermediate and heavy nuclei have been performed at 15 MeV in the Dynamitron Laboratory at Tohoku University. Comparison of the experimental data with the evaluated nuclear data file, ENDF/B-IV revealed that the data file could not reproduce the experimental ones, particularly in the angular distributions. Nuclear model calculation showed that the preequilibrium process was important in the present incident energy region. Measurements have been performed for titanium, niobium, molybdenum, lead, and thorium (in progress), including the light elements, carbon and aluminum. (author)

  6. New possibilities for improving the accuracy of parameter calculations for cascade gamma-ray decay of heavy nuclei

    International Nuclear Information System (INIS)

    Sukhovoj, A.M.; Khitrov, V.A.; Grigor'ev, E.P.

    2002-01-01

    The level density and radiative strength functions which accurately reproduce the experimental intensity of two- step cascades after thermal neutron capture and the total radiative widths of the compound states were applied to calculate the total γ-ray spectra from the (n,γ) reaction. In some cases, analysis showed far better agreement with experiment and gave insight into possible ways in which these parameters need to be corrected for further improvement of calculation accuracy for the cascade γ-decay of heavy nuclei. (author)

  7. Investigation of the energy-averaged double transition density of isoscalar monopole excitations in medium-heavy mass spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gorelik, M.L.; Shlomo, S. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Tulupov, B.A. [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation); Institute for Nuclear Research, RAS, Moscow 117312 (Russian Federation); Urin, M.H., E-mail: urin@theor.mephi.ru [National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)

    2016-11-15

    The particle–hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in {sup 208}Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron–nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.

  8. Repulsive four-body interactions of α particles and quasistable nuclear α -particle condensates in heavy self-conjugate nuclei

    Science.gov (United States)

    Bai, Dong; Ren, Zhongzhou

    2018-05-01

    We study the effects of repulsive four-body interactions of α particles on nuclear α -particle condensates in heavy self-conjugate nuclei using a semianalytic approach, and find that the repulsive four-body interactions could decrease the critical number of α particles, beyond which quasistable α -particle condensate states can no longer exist, even if these four-body interactions make only tiny contributions to the total energy of the Hoyle-like state of 16O. Explicitly, we study eight benchmark parameter sets, and find that the critical number Ncr decreases by |Δ Ncr|˜1 -4 from Ncr˜11 with vanishing four-body interactions. We also discuss the effects of four-body interactions on energies and radii of α -particle condensates. Our study can be useful for future experiments to study α -particle condensates in heavy self-conjugate nuclei. Also, the experimental determination of Ncr will eventually help establish a better understanding on the α -particle interactions, especially the four-body interactions.

  9. Multiple parton scattering in nuclei: heavy quark energy loss and modified fragmentation functions

    International Nuclear Information System (INIS)

    Zhang Benwei; Wang, Enke; Wang Xinnian

    2005-01-01

    Multiple scattering, induced radiative energy loss and modified fragmentation functions of a heavy quark in nuclear matter are studied within the framework of generalized factorization in perturbative QCD. Modified heavy quark fragmentation functions and energy loss are derived in detail with illustration of the mass dependencies of the Landau-Pomeranchuk-Migdal interference effects and heavy quark energy loss. Due to the quark mass dependence of the gluon formation time, the nuclear size dependencies of nuclear modification of the heavy quark fragmentation function and heavy quark energy loss are found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss of the heavy quark is also significantly suppressed due to limited cone of gluon radiation imposed by the mass. Medium modification of the heavy quark fragmentation functions is found to be limited to the large z region due to the form of heavy quark fragmentation functions in vacuum

  10. Complete disintegration of heavy nuclei induced by 340 GeV negative pions

    International Nuclear Information System (INIS)

    Ahmad, T.; Tariq, M.; Irfan, M.; Zafar, M.; Ahsan, M.Z.; Shafi, M.

    1989-01-01

    The total disintegration of AgBr nuclei caused by 340 GeV negative pions is investigated. The probability of this phenomena depends on the energy of the pion projectile. The angular distributions of grey and black tracks are investigated. Results for the rapidity gap correlation in these catastrophic destructions are also presented. (author). 17 refs., 5 tabs., 9 figs

  11. Choice of the density-dependent effective interaction and alpha decay of heavy spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Ratis, Yu.L.; Rybak, K.S.; Furman, V.I.

    1978-01-01

    The parameters of density-dependent effective interaction are studied for some nuclei in the vicinity of a 208 Pb double-magic nucleus. Both nuclei having two nucleons (holes) over magic core and some superfluid nuclei are considered. It is found that the magnitudes of the matrix elements for the zero-range forces (delta forces) are more than three times larger in comparison with the case of the finite-range forces (f forces). Sets of parameters for the effective interaction, which does not lead to the superfluidity of nuclear matter are obtained. Besides, these parameters depend weakly on mass number. It is shown that the attractive part of interaction is substantially larger for the case of f forces than for the delta forces. The theoretical enhancement coefficients for the favoured α decay of 210 Po, 210 Pb and 224 Th nuclei are calculated. For the case of f forces a tendency to saturation of the enhancement coefficients with the increase of the shell-model basis is found

  12. The radiative capture of fast nucleons in the mass area of medium and heavy nuclei

    International Nuclear Information System (INIS)

    Rigaud, F.

    1978-01-01

    The radiative capture of 14 MeV neutrons cross-sections on the 59 Co, 93 Nb, 103 Rh, 133 Cs, 139 La, Ce and 159 Tb nuclei were investigated by the integration method and by the activation method on the 27 Al, 50 Ti, 51 V, 103 Rh, 127 I and 139 La nuclei. The gamma-ray spectra following the capture of 8-22 MeV protons on 110 Cd and 115 In nuclei were measured and the single-particle states capture cross-sections deduced. The 110 Cd(p,γ 0 ) 111 In angular distribution was also measured at 13 MeV. The direct and semi-direct processes explained the experimental results. The volume form of the coupling interaction was adequate to account the neutrons results and the surface form to account the 110 Cd(p,γ 0 ) 111 In results. The 110 Cd nuclei electric quadrupole excitation was formed negligible compared with the electric dipole excitation which is adequate to explain the 110 Cd(p,γ 0 ) 111 In excitation function [fr

  13. Heavy ion fusion targets; issues for fast ignition

    International Nuclear Information System (INIS)

    Bangerter, Roger O.

    2014-01-01

    During the last 36 years researchers have suggested and evaluated a large number of target designs for heavy ion inertial fusion. The different target designs can be classified according to their mode of ignition, their method of implosion, and their size. Ignition modes include hot-spot ignition and fast ignition. Methods of implosion include direct drive and indirect drive. Historically there has been significant work on indirectly driven targets with hot-spot ignition. Recently there has been increasing interest in directly driven targets with ion driven fast ignition. In principle, fast ignition might lead to improved target performance. On the other hand, fast ignition imposes stringent requirements on accelerators and beam physics. Furthermore, fast ignition magnifies the importance of a number of traditional target physics issues associated with ion beam energy deposition and fuel preheat. This paper will discuss the advantages and disadvantages of the various classes of targets. It will also discuss some issues that must be resolved to assess the feasibility of ion fast ignition

  14. Neutron pre-emission at the fusion of 11 Li halo nuclei with Si targets

    International Nuclear Information System (INIS)

    Petrascu, M.; Isbasescu, A.; Petrascu, H.; Bordeanu, C.; David, I.; Lazar, I.; Mihai, I.; Vaman, G.; Tanihata, I.; Kobayashi, T.; Korsheninnikov, A.; Fukuda, S.; Kumagai, H.; Momota, S.; Ozawa, A.; Yoshida, K.; Nikolski, E.; Giurgiu, M.

    1997-01-01

    In this contribution, the first experiment on fusion of 11 Li halo nuclei with Si targets is reported. A novel effect consisting of a large neutron pre-emission probability in the fusion process was observed. The neutron halo nuclei are characterized by very large matter radii, small separation energy and small internal momentum of the valence neutrons. Until now, the halo nuclei were investigated mostly by elastic, inelastic scattering and breakup processes. It was recently predicted that due to the very large dimension of 11 Li, one may expect, that in a fusion experiment on a light target, the valence neutrons will not be absorbed together with the 9 Li core, but will be emitted in the early stage of the reaction process. The experiment aiming to check this expectation, performed at RIKEN-RIPS facility, is described. In the experimental arrangement, three main parts are present: the first part contains the detectors used for the control, identification and determination of the beam characteristics; the second part consists of a Multiple Sampling Ionisation Chamber (MUSIC), used for identification of the inclusive evaporation residue spectra produced in the detector-target; the third part consists of two wall neutron detectors, each made up of 15 plastic scintillators. This detector was used for the energy and position determination of the neutrons originating from the target. The projectile energy range was 11.2 - 15.2 AMeV, centered at 13 AMeV. The neutrons resulting from the reaction were measured by time-of-light technique. The position on the 'wall' of the detected neutrons could be also determined. The measured neutron spectra from 11 Li and 9 Li are shown. A marked different between the two spectra was found and it is explained by the contribution of a large amount of pre-emission (breakup) processes, in case of 11 Li projectiles. The position spectra point out the evaporation origin of the neutrons in case of 9 Li projectiles while for 11 Li only the

  15. New beam for the CERN fixed target heavy ion programme

    CERN Document Server

    Hill, C E; O'Neill, M

    2002-01-01

    The physicists of the CERN heavy ion community (SPS fixed target physics) have requested lighter ions than the traditional lead ions, to scale their results and to check their theories. Studies have been carried out to investigate the behaviour of the ECR4 for the production of an indium beam. Stability problems and the low melting point of indium required some modifications to the oven power control system which will also benefit normal lead ion production. Present results of the source behaviour and the ion beam characteristics will be presented.

  16. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    CERN Document Server

    Grosse, Eckart; Massarczyk, Ralph

    2014-01-01

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  17. Studies of the shapes of heavy pear-shaped nuclei at ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P. A., E-mail: peter.butler@liverpool.ac.uk [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2016-07-07

    For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a ”pear-shape” in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that will exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.

  18. Possibilities of determining the main peculiarities of γ-decay cascades in heavy nuclei. Vol. 2

    International Nuclear Information System (INIS)

    Ali, M.A.; Khitrov, V.A.; Sukhovoj, A.M.; Vojnov, A.V.

    1996-01-01

    The main results of an analysis of the average parameters for γ-decay cascades of compound states in complex nuclei, after thermal neutron capture are presented. The experimental data of nuclear level densities, for certain Jπ, at excitation energies above 2 MeV are compared with that predicted by two different theoretical models. Cascade intensities measured over the entire excitation energy range, from the ground state up to the neutron binding energy, are compared with different model predictions. Conclusions about the radiative partial width enhancements for transitions between the compound state and high-lying excited states are given. The problems of estimating the actual temperature of excited nuclei, and of the experimental possibilities to observe phase transitions and their influence on gamma-decay modes are discussed. 12 figs., 2 tabs

  19. Possibilities of determining the main peculiarities of {gamma}-decay cascades in heavy nuclei. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M A [Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt); Khitrov, V A; Sukhovoj, A M; Vojnov, A V [Joint Institute for Nuclear Research Frank Laboratory of Neutron Physics, Dubna, (Russian Federation)

    1996-03-01

    The main results of an analysis of the average parameters for {gamma}-decay cascades of compound states in complex nuclei, after thermal neutron capture are presented. The experimental data of nuclear level densities, for certain J{pi}, at excitation energies above 2 MeV are compared with that predicted by two different theoretical models. Cascade intensities measured over the entire excitation energy range, from the ground state up to the neutron binding energy, are compared with different model predictions. Conclusions about the radiative partial width enhancements for transitions between the compound state and high-lying excited states are given. The problems of estimating the actual temperature of excited nuclei, and of the experimental possibilities to observe phase transitions and their influence on gamma-decay modes are discussed. 12 figs., 2 tabs.

  20. Electron-positron pairs in physics and astrophysics: From heavy nuclei to black holes

    Science.gov (United States)

    Ruffini, Remo; Vereshchagin, Gregory; Xue, She-Sheng

    2010-02-01

    Due to the interaction of physics and astrophysics we are witnessing in these years a splendid synthesis of theoretical, experimental and observational results originating from three fundamental physical processes. They were originally proposed by Dirac, by Breit and Wheeler and by Sauter, Heisenberg, Euler and Schwinger. For almost seventy years they have all three been followed by a continued effort of experimental verification on Earth-based experiments. The Dirac process, e+e-→2γ, has been by far the most successful. It has obtained extremely accurate experimental verification and has led as well to an enormous number of new physics in possibly one of the most fruitful experimental avenues by introduction of storage rings in Frascati and followed by the largest accelerators worldwide: DESY, SLAC etc. The Breit-Wheeler process, 2γ→e+e-, although conceptually simple, being the inverse process of the Dirac one, has been by far one of the most difficult to be verified experimentally. Only recently, through the technology based on free electron X-ray laser and its numerous applications in Earth-based experiments, some first indications of its possible verification have been reached. The vacuum polarization process in strong electromagnetic field, pioneered by Sauter, Heisenberg, Euler and Schwinger, introduced the concept of critical electric field Ec=me2c3/(eħ). It has been searched without success for more than forty years by heavy-ion collisions in many of the leading particle accelerators worldwide. The novel situation today is that these same processes can be studied on a much more grandiose scale during the gravitational collapse leading to the formation of a black hole being observed in Gamma Ray Bursts (GRBs). This report is dedicated to the scientific race. The theoretical and experimental work developed in Earth-based laboratories is confronted with the theoretical interpretation of space-based observations of phenomena originating on cosmological

  1. Isospin asymmetry dependence of the α spectroscopic factor for heavy nuclei

    International Nuclear Information System (INIS)

    Seif, W. M.; Shalaby, M.; Alrakshy, M. F.

    2011-01-01

    Both the valence nucleons (holes) and the isospin asymmetry dependencies of the preformation probability of an α-cluster inside parents radioactive nuclei are investigated. The calculations are employed in the framework of the density-dependent cluster model of an α-decay process for the even-even spherical parents nuclei with protons number around the closed shell Z 0 = 82 and neutrons number around the closed shells Z 0 = 82 and Z 0 = 126. The microscopic α-daughter nuclear interaction potential is calculated in the framework of the Hamiltonian energy density approach based on the SLy4 Skyrme-like effective interaction. Also, the calculations based on the realistic effective M3Y-Paris nucleon-nucleon force have been used to confirm the results. The calculations then proceed to find the assault frequency and the α penetration probability within the WKB approximation. The half-lives of the different mentioned α decays are then determined and have been used in turn to find the α spectroscopic factor. We found that the spectroscopic factor increases with increasing the isospin asymmetry of the parent nuclei if they have valence protons and neutrons. When the parent nuclei have neutron or proton holes in addition to the valence protons or neutrons, then the spectroscopic factor is found to decrease with increasing isospin asymmetry. The obtained results show also that the deduced spectroscopic factors follow individual linear behaviors as a function of the multiplication of the valence proton (N p ) and neutron (N n ) numbers. These linear dependencies are correlated with the closed shells core (Z 0 ,N 0 ). The same individual linear behaviors are obtained as a function of the multiplication of N p N n and the isospin asymmetry parameter, N p N n I. Moreover, the whole deduced spectroscopic factors are found to exhibit a nearly general linear trend with the function N p N n /(Z 0 +N 0 ).

  2. The study of initial conditions in collisions of light, intermediate and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Loctionov A.A.

    2017-01-01

    Full Text Available The system size dependence for multiparticle processes has been recognized in both cosmic ray (“Stratosphere” collaboration and at accelerator (“EMU” collaboration experiments. The strong enhancement in multiplicity fluctuations for the most central light-light – (C, O, Ne + (C/N/O – collisions has been revealed at JINR-AGS-SPS energies. The sharp difference of light nuclear interactions are interpreted as the sign of intrinsic alpha-clustering in light nuclei.

  3. Influence of proton-skin thickness on the {{\\alpha }} decays of heavy nuclei

    Science.gov (United States)

    Seif, W. M.; Abdurrahman, A.

    2018-01-01

    We investigate the effect of proton-skin thickness on the α decay process. We consider 188 neutron-deficient nuclei belonging to the isotopic chains from Te (Z = 52) to Pb (Z = 82). The calculations of the half-life are carried out in the framework of the preformed cluster model, with the Wentzel-Kramers-Brillouin penetration probability and assault frequency. It is shown that the proton-skin thickness ({\\varDelta }{{p}}) of the daughter nucleus gives rise to a total α- daughter nucleus interaction potential of relatively wide deep internal pocket and a thinner Coulomb barrier of less height. This increases the penetration probability but decreases the assault frequency. The overall impact of the proton-skin thickness appears as a decrease in the decay half-life. The proton-skin thickness decreases the stability of the nucleus. The half-lives of the proton-skinned isotopes along the isotopic chain decrease exponentially with increasing the proton-skin thickness, whereas the {Q}α -value increases with {\\varDelta }{{p}}. α-decay manifests itself as the second favorite decay mode of neutron-deficient nuclei, next to the {β }+-decay and before proton-decay. It is indicated as main, competing, and minor decay mode, at 21%, 7%, and 57%, respectively, of the investigated nuclei.

  4. Heavy water jet target and a beryllium target for production of fast neutrons

    International Nuclear Information System (INIS)

    Logan, C.M.; Anderson, J.D.; Barschall, H.H.; Davis, J.C.

    1975-01-01

    A limitation on the neutron flux obtainable from proton or deuteron induced reactions is the heating of the target by the accelerated charged particles. The heat can be removed more easily if the target moves. The possibility of using a rotating Be target and a heavy water jet as a target for bombardment by 35-MeV deuterons was studied. In a thick Be metal target moving at 10 m/sec through such a beam of 1 cm diameter a temperature pulse of about 300 0 C will be produced by the 0.3 MW beam. The Be target should be able to withstand such a temperature pulse. A Be target suitable for 3 MW of power in a 1 cm diameter beam would require internal cooling and a higher velocity. A free jet of heavy water is also a possible target. Laser photographs of water jets in vacuum show small angles of divergence. The effect of heating by a 0.3 MW beam is probably not important because the temperature rise produced by the beam is small compared to the absolute temperature of the unheated jet. (auth)

  5. Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei

    International Nuclear Information System (INIS)

    Li Baoan; Das, Champak B.; Das Gupta, Subal; Gale, Charles

    2004-01-01

    Using an isospin- and momentum-dependent transport model we study effects of the momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. It is found that symmetry potentials with and without the momentum-dependence but corresponding to the same density-dependent symmetry energy E sym (ρ) lead to significantly different predictions on several E sym (ρ)-sensitive experimental observables especially for energetic nucleons. The momentum- and density-dependence of the symmetry potential have to be determined simultaneously in order to extract the E sym (ρ) accurately. The isospin asymmetry of midrapidity nucleons at high transverse momenta is particularly sensitive to the momentum-dependence of the symmetry potential. It is thus very useful for investigating accurately the equation of state of dense neutron-rich matter

  6. Description of spherical heavy nuclei in a model of interacting quasi particles. Application to tin isotopes

    International Nuclear Information System (INIS)

    Arvieu, Robert

    1963-01-01

    This research thesis deals with nuclear physics theory, and more particularly with the issues of collective states and matching properties. In a first part, the author presents the formalism and approximations used to obtain individual states and collective states of spherical nuclei, notably by studying the Bogoliubov-Valatin transformation and how it is possible to report matching phenomena, and then by introducing collective modes by means of an approximate diagonalization and of the 'quasi bosons' method. The phenomenon mechanism is described on a simple example, and, in a second part, the theory is applied to the detailed description of tin isotopes by means of finite range interaction

  7. Contributions to the study of heavy and superheavy nuclei stability in alpha-decay

    International Nuclear Information System (INIS)

    Silisteanu, I.

    1978-01-01

    Alpha-decay is treated in this work on the complete analogy of transfer reactions by means of nuclear shell models with continuous spectrum nucleons. Certain phenomenologically obtained or microscope evaluated data on low energy interactions between alpha-particles and nuclei, when related to nuclear structure data within the unified theory of nuclear reactions, allow of an improved accuracy in determining the alpha-particle wave function as well as of an estimation of alpha-probabilities in good keeping with experimental ones. The problem of alpha lifetimes thus narrows to the resolution of some homogeneous and inhomogeneous differential equations systems including the optic potential and the alpha formfactors. (author)

  8. Hot nuclei and search for multifragmentation in medium-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Doubre, H.

    1988-01-01

    Some recent determinations of the excitation energies and temperatures of composite systems formed in intermediate-energy heavy-ion collisions are described and the issue of a limiting temperature is discussed. Several examples of experimental investigations of an eventual occurrence of a multifragmentation process are also described

  9. E2 and M1 transition strengths in heavy deformed nuclei revisited

    International Nuclear Information System (INIS)

    Draayer, J.P.; Popa, G.; Hirsch, J.G.; Vargas, C.E.

    2003-01-01

    An update on the status of pseudo-SU(3) shell-model calculations in strongly deformed nuclei in the rare earth region is presented. Representative results for energy levels as well as E2 (quadrupole) and M1 (scissors) transitions strengths in 162 Dy (even-even) and 163 Dy (odd-mass) are given. The calculations use realistic single-particle energies and quadrupole-quadrupole and pairing interaction strengths fixed from systematics. The strengths of rotor-like terms included in the Hamiltonian- all small relative to the other terms in the interaction were adjusted to give an overall best fit to the energy spectra. The results present a paradox: for even-even nuclei (integer angular momentum) non-zero pseudo-spin configurations seems to be unimportant while for the odd-mass systems (half-integer angular momentum) pseudo-spin mixing is essential as spin-flip couplings appear to dominate the M1 transition strengths. (Author)

  10. Heavy nuclei far from stability in the N < 126, Z > 82 region

    Energy Technology Data Exchange (ETDEWEB)

    Back, B.B.; Blumenthal, D.J.; Carpenter, M.P. [and others

    1995-08-01

    There are long-standing calculations suggesting that nuclei in the N < 126, Z > 82 region far from stability exhibit deformation effects. Away from stability an observable permanent quadrupole deformation should be achieved but, as yet, there is no experimental evidence for such an effect. A series of experiments was performed to assess the production of nuclei in this region and to study their structure. These experiments were performed using gamma-ray spectroscopy to investigate the low-lying level schemes and alpha-particle spectroscopy in order to isolate fine structure in the decay. The low-lying level structure of the neutron-deficient isotope {sup 202}Rn was studied, for the first time, using the {sup 181}Ta({sup 27}Al,6n) and {sup 192}Pt({sup 16}O,6n) reactions. Gamma-ray transitions between excited states in {sup 202}Rn were identified by mass tagging the Fragment Mass Analyzer and by observation of coincident X rays. Transitions in {sup 203}Rn were also identified. The level scheme deduced from these data is consistent with the systematics of light radon isotopes below the N = 126 shell closure and with theoretical calculations indicating that the ground-state shape should not be strongly deformed at N = 116.

  11. I. Exchange currents in electron scattering from light nuclei. II. Heavy-ion scattering at intermediate and high energy

    International Nuclear Information System (INIS)

    Dubach, J.F.

    1976-01-01

    The purpose of this work is to develop a formalism that will allow one to search the wide variety of transitions presented by nuclei in order to locate situations in which the exchange-current effects are important or dominant and thus allow one to study the contributions of the meson exchanges to the electromagnetic densities within the nucleus. The nuclei studied are assumed to be described in a shell model using harmonic oscillator wave functions. The formalism needed to allow one to do a multipole analysis of these exchange currents within 1s and 1p nuclei is developed. This formalism is then applied to an examination of electron scattering from a series of light nuclei: 3 He, 6 Li, 7 Li, 9 Be, and 10 B. Three significant effects due to the inclusion of exchange currents are seen: (1) The exchange currents can often introduce new structure into the form factors. (2) At larger momentum transfer (700 to 1000 MeV/c) the exchange current contributions to the form factor dominate the simpler one-body form factor by a few orders of magnitude. (3) The exchange currents can excite E4 and M5 multipoles in the p shell which are forbidden to the simpler one-body currents. The elastic scattering of two heavy ions at intermediate and high energies (compared to the Coulomb barrier) is examined in the formalism of the WKB and ''Glauber theory'' approximations. As a concrete example, the scattering of 16 O from 60 Ni is studied assuming an optical-model potential that fits elastic scattering data at low energies. One immediate result is that the WKB approximation agrees quite well with ''exact'' numerical calculations at energies as low as 60 MeV. The Glauber theory fails below about 1 GeV but correction terms are developed that can extend the usefulness of the Glauber theory to much lower energies. The model problem of scattering from a black-sphere model of the nucleus is briefly examined

  12. Mechanism of collective interaction in disintegration of heavy nuclei by protons with the energy of 1 GeV

    International Nuclear Information System (INIS)

    Birbrair, B.L.; Gridnev, A.B.; Il'in, A.I.

    1984-01-01

    A two-shoulder time-of-flight spectrometer has been used to investigate deep inelastic disintegration of heavy nuclei by 1 GeV protons. Masses, kinetic energies and momenta of two additional massive fragments dispersing perpendicularly to a primary proton beam were measured in the experiment. Events with essential nucleon losses (up to 100 a.u.m.) are stated to be characterized by increased total kinetic energy of fragments and noticeable value of transferred and transverse momenta as well (up to 2-3 GeV/c). These kinematic peculiarities testify to presence of a special mechanism of heavy nucleus disintegration followed by essential nucleon losses. The threshold value of nucleon losses (45+-5) a.u.m. corresponding to transition from ordinary high-energy pressure after intranuclear cascade to a new mechanism of nuclear reaction is determined. The main peculiarity of the new mechanism is that a group of nucleons receiving essential part of energy and momentum of an incident particle is separated inside the nucleus. The physical reason for this collective mechanism of interaction can be associated with production of pion bubbles inside the nucleus under pion interaction with a nucleus regarded as a relativistic nucleon system

  13. Study of the energetic proton production in relativistic heavy ions Ne + nuclei collisions, using Diogene detector. Hadronic matter temperature

    International Nuclear Information System (INIS)

    Rahmani, A.

    1988-12-01

    The study of the proton's production differential cross sections, in the collision of relativistic heavy ions, allows to obtain the nuclear-matter temperature and gives information about the nucleons large burst pulses in the nucleus. The chosen thermodynamic model is a generalized approach of the R. Hagedorn model, applied to heavy ions collisions: the nuclear matter is divided in volume elements δV assumed to be in thermal and chemical equilibrium and emitting particles and fragments isotropically, inside their own system. The applied nuclear-matter velocity distribution depended only on the impact parameter and on the relationship between the chemical potential and the temperature. The predictions of this thermodynamic model were compared to the Saturne experimental results, using Diogene detector. The obtained temperature values are similar to those given by D. Hahn and H. Stoker. The proton production cross sections were measured for backward emitting angles. A relationship between the cross sections and the burst pulse distribution in the nuclei was settled [fr

  14. Studies of heavy-ion reactions and transuranic nuclei. Progress report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in {sup 32}S + {sup 118,124}Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction {sup 197}Au+{sup 208}Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction {sup 209}Bi+{sup 136}Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral {sup 209}Bi+{sup 136}Xe Collisions at E{sub lab}/A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray {mu}{sup {minus}} with a Muon Telescope.

  15. High mass asymmetry in spontaneous and induced desintegration of heavy nuclei

    International Nuclear Information System (INIS)

    Tavares, O.A.P.

    1978-01-01

    The experimental and theoretical results related to a new rupture mode of heavy ions (A>230) in mass fragments more different than ordinary ission products, are presented and disussed. Experiences of long exposure time by nuclear emulsion technique, show that, the U 238 is also a spontaneous emitter of ions with mass number between 20 and 70. The results are interpreted as a high mass asymmetry in fission process or as a nucleon cluster emission mechanism by potential barrier penetration. Preliminary estimation show good agreement with experimental results for U 238 . Glass laminas with uranium thin films prepared 16 years ago, are also analysed aiming to confirm these results. Several experiences with nuclear emulsions and mica sandwich, and radiochemical data show to be possible heavy ion emission from U 238 induced by photons of low energy as well as neutrons of reactor (M.C.K.) [pt

  16. Low energy level density and surface instabilities in heavy transition nuclei

    International Nuclear Information System (INIS)

    Wieclawik, W. de; Foucher, R.; Dionisio, J.S.; Vieu, C.; Hoglund, A.; Watzig, W.

    1975-01-01

    A statistical analysis of Au, Pt, Hg nuclear levels was performed with Ericson's method. The odd mass gold experimental number of levels distributions are compared to the theoretical distributions corresponding to vibrational (Alaga and Kisslinger-Sorensen) and rotational (Stephens, Meyer-ter-Vehn) models. The Alaga model gives the most complete description of 193 Au, 195 Au levels and fits the lowest part of Gilbert-Cameron high energy distributions (deduced from the statistical model and neutron capture data). The Ericson's method shows other interesting features of Pt and Hg isotopes (i.e. level density dependence on nuclear shape and pairing correlations, evidence for phase transitions). Consequently, this method is a useful tool for guiding experimental as well as theoretical investigations of transition nuclei [fr

  17. High energy collisions of nuclei: experiments

    International Nuclear Information System (INIS)

    Heckman, H.H.

    1977-09-01

    Heavy-ion nuclear reactions with projectile energies up to 2.1 GeV/A are reviewed. The concept of ''rapidity'' is elucidated, and the reactions discussed are divided into sections dealing with target fragmentation, projectile fragmentation, and the intermediate region, with emphasis on the production of light nuclei in high-energy heavy-ion collisions. Target fragmentation experiments using nuclear emulsion and AgCl visual track detectors are also summarized. 18 figures

  18. The boson expansion theory as the nuclear structure theory for the heavy nuclei

    International Nuclear Information System (INIS)

    Kim, H.B.

    1987-01-01

    Sometime sago, Kishimoto and Tamura developed a formalism of boson expansion theory (BET), and then Weeks and Tamura showed that it fitted many experimental data of collective nuclei. This formalism has recently been simplified significantly be Pedrocchi, Jamaluddin and Tamura. The new and old theories are very closely related but are not exactly the same. It has thus been desired to see whether the new theory can also fit data, and to show that it indeed works well constitutes a major part of this thesis. It is in fact seen that a number of data of Sm, Os and Pt isotopes are explained nicely. Since the new form of the theory is rather simple, it permits us to take into account easily the effects of noncollective states to the behavior of collective states. This thesis shows that are remarkably improved fit to data of magnetic moments of SM isotopes is achieved in this way. The thesis discusses one additional subject. It is a result of an effort made to improve the BET by removing as much as possible the error due to the use of the BCS theory. This was done by applying a method developed by Li to the Dyson form of BET. A way to develop this work further is suggested

  19. Deep-hole and high-lying particle states in heavy nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1985-01-01

    Our present knowledge on single-particle strength functions from one nucleon transfer reactions is reviewed. Results on deeply-bound neutron hole states in the Sn and Pb region are discussed with emphasis on the investigation of a very large excitation energy range. The first measurements on the γ-decay of deeply-bound hole states in the Sn isotopes are reported. High energy neutron and proton stripping reactions are used to study the particle response function. These reactions are particularly well suited to the study of high-spin outer subshells. For the proton states, the behaviour of the 1h 11/2 and 1i 13/2 strength distributions, as a function of deformation in the Sm region, is discussed. Strong transitions to high-lying neutron states are observed in the 112, 116, 118, 120, 122, 124 Sn and 208 Pb nuclei. The empirical systematics for both proton and neutron particle strength distributions are compared to the predictions from the quasi particle-phonon and the single-particle vibration coupling nuclear models. (orig.)

  20. The proton-neutron symmetry in collective excitation of medium-heavy nuclei

    International Nuclear Information System (INIS)

    Frank, W.

    1990-01-01

    In the present thesis explicit formulas were given, which allow the projection of arbitrary one- and two-particle IBM-2 operators to IBM-1 operators, i.e. the results are not confined to the usual sd or sdg space, but are valid for arbitrary spatial multipolarities of the bosons. By this projection of the Hamiltonian and the transition operators could be derived. Explicitely the sd and sdg Hamiltonian were treated. By the projection formalism the dependence of the M1 and E2 matrix elements on the boson numbers N π and N ν could be determined if their sum is constant. The nuclei with constant total boson number form a F-spin multiplet. The results were applied to the A ≅ 50 region. In order to test the correctness of the projection formulae comprehensive, numerical tests for the sd case were performed. The projection method is valid for practical application, as far as the F spin is a good quantum number. A large number of experimental data shows that the F spin is approximatively conserved. As example served the analysis of 58 Fe. (orig./HSI) [de

  1. TIMS-1: a processing code for production of group constants of heavy resonant nuclei

    International Nuclear Information System (INIS)

    Takano, Hideki; Ishiguro, Yukio; Matsui, Yasushi.

    1980-09-01

    The TIMS-1 code calculates the infinitely dilute group cross sections and the temperature dependent self-shielding factors for arbitrary values of σ 0 and R, where σ 0 is the effective background cross section of potential scattering and R the ratio of the atomic number densities for two resonant nuclei if any. This code is specifically programmed to use the evaluated nuclear data file of ENDF/B or JENDL as input data. In the unresolved resonance region, the resonance parameters and the level spacings are generated by using Monte Carlo method from the Porter-Thomas and Wigner distributions respectively. The Doppler broadened cross sections are calculated on the ultra-fine lethargy meshes of about 10 -3 -- 10 -5 using the generated and resolved resonance parameters. The effective group constants are calculated by solving the neutron slowing down equation with the use of the recurrence formula for the neutron slowing down source. The output of the calculated results is given in a format being consistent with the JAERI-Fast set (JFS) or the Standard Reactor Analysis Code (SRAC) library. Both FACOM 230/75 and M200 versions of TIMS-1 are available. (author)

  2. Dynamic polarization of radioactive nuclei

    International Nuclear Information System (INIS)

    Kiselev, Yu.F.; Lyuboshits, V.L.; )

    2001-01-01

    Radioactive nuclei, embedded into a frozen polarized proton target, atr proposed to polarize by means of some dynamic polarization methods. Angular distributions of γ-quanta emitted ny 22 Na(3 + ) in the cascade β-γ-radiation are calculated. It is shown that this distribution does not depend on the spin temperature sing at the Boltzmann distribution of populations among the Zeeman magnetic substates, whereas the tensor polarization of quadrupole nuclei, placed in the electric field of the crystal, causes the considerable sing dependence. The new method promises wide opportunities for the magnetic structure investigations as well as for the study of spin-spin interaction dynamics of rare nuclei in dielectrics. Physical-technical advantages and disadvantages of the given method are discussed for the polarization of heavy nuclei in the on-line implantation mode [ru

  3. Opioid precursor protein isoform is targeted to the cell nuclei in the human brain

    DEFF Research Database (Denmark)

    Kononenko, Olga; Bazov, Igor; Watanabe, Hiroyuki

    2017-01-01

    to the cell nuclei in a model cellular system. This may be driven by bipartite nuclear localization signal (NLS) that is cryptic in the full-length PDYN molecule and becomes functional when signal peptide is truncated. Nuclear PDYN isoform was identified by western blot and radioimmunoassay in neuronal nuclei...

  4. Two-proton decays from light to heavy nuclei - Comparison of theory and experiment

    International Nuclear Information System (INIS)

    Grigorenko, L. V.; Zhukov, M. V.

    2009-01-01

    Two-proton (2p) radioactivity was predicted by V.I. Goldansky in 1960 [1] as an exclusively quantum-mechanical phenomenon. True three-body decay, in his terms, is a situation where the sequential emission of the particles is energetically prohibited from the ground state of a nucleus and all the final-state fragments are emitted simultaneously. Since the experimental discovery of the 4 6F e two-proton radioactivity in 2002 [2,3], this field has made fast progress. New cases of 2p radioactivity were found for 6 4Z n [4], 1 9M g [5], and, maybe, 4 8N i [6]. The 2p correlations were recently measured for the ground state decays of 4 6F e [7], 1 9M g [5,8], 1 6N e [8], and 6 B e [9]. All these decays exhibit complex correlation patterns. These correlation patterns are well described within the three-cluster theory of two-proton radioactivity (see Ref. [9] and Refs. therein); the example of the 6 B e ground state decay is provided in Fig. 1. The correlations are shown to be sensitive to the details of structure and nuclear interactions. Thus experimental studies of correlations can provide important information about the structure of decaying nuclei. With lifetimes and correlations well described by the theory in a broad range of nuclear masses (6 B e, 1 9M g, and 4 6F e belong to p, s-d, and p-f shells respectively) understanding of the nature of 2p radioactivity is getting now a solid empirical support. This is specially important in the view of astrophysical implementations of the three-body decay theory for the inverse processes of the three-body radiative capture in astrophysics, which seem to be not completely understood so far.(author)

  5. Geometrical-optics phenomena in the elastic scattering of fictitious heavy neutral nuclei by absorbing potentials

    International Nuclear Information System (INIS)

    Anni, R.; Taffara, L.

    1976-01-01

    A fictitious scattering phenomenon between neutral heavy particles is analysed by using both the square-well and trapezoidal complex potentials. After a preliminary phenomenological discussion based on the behaviour of the exact scattering matrix and the trajectories of Regge poles and zeros as continuous functions of the imaginary part of the potential, the contributions to the scattering amplitude from the external and multiple internal reflections and from the ''surface waves'' are separated by using the Debye expansion of the S(lambda)-matrix. The most important first two terms of this expansion are then compared with the exact behaviour of both the partial-wave scattering amplitude and cross-section, and the results are discussed. In particular, for potentials with large imaginary parts, the first term of the Debye expansion, which is associated with the rays directly reflected by the surface, well approximates the exact scattering matrix for all angular momenta. In these cases, by applying to this first term the Watson transformation, one is able to separate the contributions from the reflected rays (saddle-point contribution in the background integral)from that of the surface waves(surface pole contribution) which are responsible for the diffraction phenomenon. Studies are in progress in order to extend this approach to the Saxon-Wood potential with Coulomb interaction

  6. LOW-FIDELITY COVARIANCES FOR NEUTRON CROSS SECTIONS ON 57 STRUCTURAL AND 31 HEAVY NUCLEI IN THE FAST REGION

    International Nuclear Information System (INIS)

    PIGNI, M.T.; HERMAN, M.; OBLOZINSKY, P.

    2008-01-01

    We produced a large set of neutron cross section covariances in the energy range of 5 keV-20 MeV. The present set of data on 57 structural materials and 31 heavy nuclei follows our earlier work on 219 fission product materials and completes our extensive contribution to the low-fidelity covariance project (307 materials). This project aims to provide initial, low-fidelity yet consistent estimates of covariance data for nuclear criticality safety applications. The evaluation methodology combines the nuclear reaction model code EMPIRE which calculates sensitivity to nuclear reaction model parameters, and the Bayesian code KALMAN that propagates uncertainties of the model parameters to cross sections. Taking into account the large scale of the project, only marginal reference to experimental data was made. The covariances were derived from the perturbation of several key model parameters selected by the sensitivity analysis. These parameters refer to the optical model potential, the level densities and the strength of the pre-equilibrium emission. This work represents the first attempt ever to generate nuclear data covariances on such a large scale

  7. Photon and proton induced fission on heavy nuclei at intermediate energies

    Directory of Open Access Journals (Sweden)

    Andrade-II E.

    2014-04-01

    Full Text Available We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on 241Am, 238U, and 237Np targets and the Bremmstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on 232Th and 238U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments.

  8. Photon and proton induced fission on heavy nuclei at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Andrade-II, E.; Karapetyan, G.S.; Deppman, A.; Guimaraes, V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Instituto de Fisica; Balabekyan, A.R. [Yerevan State University, Alex Manoogian 1, Yerevan (Armenia); Demekhina, N.A. [Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan (Armenia); Joint Institute for Nuclear Research (JINR), Flerov Laboratory of Nuclear Reactions (LNR), Moscow (Russian Federation)

    2014-07-01

    We present an analysis of fission induced by intermediate energy protons or photons on actinides. The 660 MeV proton induced reactions are on {sup 241}Am, {sup 238}U, and {sup 237}Np targets and the Bremsstrahlung-photons with end-point energies at 50 MeV and 3500 MeV are on {sup 232}Th and {sup 238}U targets. The study was performed by means of the Monte Carlo simulation code CRISP. A multimodal fission extension was added to the code within an approach which accounts for the contribution of symmetric and asymmetric fission. This procedure allowed the investigation of fission cross sections, fissility, number of evaporated nucleons and fission-fragment charge distributions. The comparison with experimental data show a good agreement between calculations and experiments. (author)

  9. Analysis of the dependence parametrization of the allocations of heavy ions on light nuclei elastic scattering diffraction maxima from the projectile energy

    Directory of Open Access Journals (Sweden)

    O. A. Ponkratenko

    2015-10-01

    Full Text Available Diffraction range of available experimental differential cross sections of heavy ions on light nuclei elastic scattering for 17 pairs of the interacting nuclei with 4 ≤ А ≤ 20 have been analyzed in the projectile energy wide interval from 1 to 100 МеV/nucleon. Diffraction maxima and minima positions in the transferred momentum coordinates depending on projectile energy demonstrate smooth behavior at energies higher 2 - 4 МeV/nucleon, and practically do not depend on energy at energies up to 30 - 40 МеV/nucleon. These energy dependences of maxima (minima positions can be parameterized by simple functions. It was found the suitable approximations that describe reasonably the energy dependence of the maxima (minima positions of the experimental elastic scattering differential cross sections. These approximations were evaluated with the same parameters for all colliding nuclei groups.

  10. Analysis of the dependence parametrization of the allocations of heavy ions on light nuclei elastic scattering diffraction maxima from the projectile energy

    International Nuclear Information System (INIS)

    Ponkratenko, O.A.; Pyirnak, Val. M.; Rudchik, A.A.; Stepanenko, Yu.M.; Uleshchenko, V.V.; Shirma, Yu.O.

    2015-01-01

    Diffraction range of available experimental differential cross sections of heavy ions on light nuclei elastic scattering for the interactive nuclei 17 pairs with 4 ≤ A ≤ 20 have been analyzed in the projectile energy wide interval from 1 to 100 MeV/nucleon. Diffraction maxima and minima positions in the transferred momentum coordinates depending on projectile energy demonstrate smooth behavior at energies higher 2 - 4 MeV/nucleon and at energies to 30 - 40 MeV/nucleon - practically does not depend on energy. These energy dependences of maxima (minima) position. can be parameterized by simple functions. It was found the suitable approximations that describe reasonable the energy dependence of the maxima (minima) positions of the experimental elastic scattering differential cross sections. These approximations were evaluated with the same parameters for all colliding nuclei groups

  11. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)

    2016-01-15

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)

  12. A novel experimental scheme of electron scattering off unstable nuclei with a self-confining radioactive ion target (SCRIT)

    International Nuclear Information System (INIS)

    Wakasugi, Masanori

    2005-01-01

    We proposed a new experimental scheme of an electron scattering off unstable nuclei using a Self-Confining Radioactive Ion Target (SCRIT). The SCRIT is an unstable ion target formed in the electron storage ring, and is based on completely new idea. We constructed prototype of the SCRIT device and installed it in the electron storage ring KSR in Kyoto University. In the test experiment, 10 7 -Cs ions are confined in the SCRIT with the lifetime of about 2 s and the feasibility of the SCRIT as the target has been confirmed. (author)

  13. Study of fusion probabilities with halo nuclei using different proximity based potentials

    International Nuclear Information System (INIS)

    Kumari, Raj

    2013-01-01

    We study fusion of halo nuclei with heavy targets using proximity based potentials due to Aage Winther (AW) 95, Bass 80 and Proximity 2010. In order to consider the extended matter distribution of halo nuclei, the nuclei radii borrowed from cross section measurements are included in these potentials. Our study reveals that the barrier heights are effectively reduced and fusion cross sections are appreciably enhanced by including extended radii of these nuclei. We also find that the extended sizes of halos contribute towards enhancement of fusion probabilities in case of proton halo nuclei, but, contribute to transfer or break-up process rather than fusion yield in case of neutron halo nuclei

  14. Projectile fragmentation of neutron-rich nuclei on light target (momentum distribution and nucleon-removal cross section)

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tanihata, I.; Suzuki, T.

    1992-01-01

    Transverse momentum distributions of the projectile fragments from β-unstable nuclei have been measured with various projectile and target combinations. The momentum correlation of two neutrons in the neutron halo is extracted from the P c t distribution of 9 Li and hat of the neutrons. It is found that the two neutrons are moving in the same direction on average and thus strongly suggests the formation of a di-neutron in 11 Li. (Author)

  15. The PSIMECX medium-energy neutron activation cross-section library. Part III: Calculational methods for heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.

    1998-09-01

    The PSIMECX library contains calculated nuclide production cross-sections from neutron-induced reactions in the energy range about 2 to 800 MeV in the following 72 stable isotopes of 24 elements: {sup 12}C, {sup 13}C, {sup 16}O, {sup 17}O, {sup 18}O, {sup 23}Na, {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 27}Al, {sup 28}Si, {sup 29}Si, {sup 30}Si, {sup 31}P, {sup 32}S, {sup 33}S, {sup 34}S, {sup 36}S, {sup 35}Cl, {sup 37}Cl, {sup 39}K, {sup 40}K, {sup 41}K, {sup 40}Ca, {sup 42}Ca, {sup 43}Ca, {sup 44}Ca, {sup 46}Ca, {sup 48}Ca, {sup 46}Ti, {sup 47}Ti, {sup 48}Ti, {sup 49}Ti, {sup 50}Ti, {sup 50}V, {sup 51}V, {sup 50}Cr, {sup 52}Cr, {sup 53}Cr, {sup 54}Cr, {sup 55}Mn, {sup 54}Fe, {sup 56}Fe, {sup 57}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 61}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 66}Zn, {sup 67}Zn, {sup 68}Zn, {sup 70}Zn, {sup 92}Mo, {sup 94}Mo, {sup 95}Mo, {sup 96}Mo, {sup 97}Mo, {sup 98}Mo, {sup 100}Mo, {sup 121}Sb, {sup 123}Sb, {sup 204}Pb, {sup 206}Pb, {sup 207}Pb, {sup 208}Pb, {sup 232}Th and {sup 238}U. The energy range covers essentially all transmutation channels other than capture. The majority of the selected elements are main constituents of normal materials of construction used in and around accelerator facilities and the library is, first and foremost, designed to be a tool for the estimation of their activation in wide-band neutron fields. This third report describes and discusses the calculational methods used for the heavy nuclei. The library itself has been described in the first report of this series and the treatment for the medium and light mass nuclei is given in the second. (author)

  16. The peculiarities of the production and decay of super heavy nuclei

    International Nuclear Information System (INIS)

    Itkis, M.G.

    2005-01-01

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions 12 C+ 204 Pb, 48 Ca+ 144,154 Sm, 168 Er, 208 Pb, 238 U, 244 Pu, 248 Cm; 58 Fe+ 208 Pb, 244 Pu, 248 Cm, and 64 Ni+ 186 W, 242 Pu are presented. The choice of the above-mentioned reactions was inspired by the experiments on the production of the isotopes 283 112, 289 114 and 283 116 at Dubna using the same reactions. The 58 Fe and 64 Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET and the neutron multi-detector DEMON. The role of shell effects and the influence of the entrance channel asymmetry and the deformations of colliding nucleus on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed.

  17. Independent yields of Kr and Xe isotopes for the photofission of heavy nuclei

    CERN Document Server

    Gangrskij, Y P; Mishinskij, G V; Penionzhkevich, Yu E; Szoelloes, O; Zhemenik, V I

    2002-01-01

    Presented are the yields of primary fission fragments (produced in the process of the rupture of the nucleus) of Kr (A = 87- 93) and Xe (A 148-143) for the photofission of sup 2 sup 3 sup 2 Th, sup 2 sup 3 sup 8 U and sup 2 sup 4 sup 4 Pu, which were measured using Bremsstrahlung from a microtron, the energy of accelerated electrons being 25 MeV. A technique was used that includes transportation of fragments escaped from the target with a gas flow through a capillary and the condensation of Kr and Xe inert gases in a cryostat at the temperature of liquid nitrogen. Fragments of all the other elements were retained with a filter at the entrance of the capillary. Kr and Xe isotopes were identified by the gamma spectra of their daughter products. The mass number distributions are obtained of the independent yields of Kr and Xe isotopes, which are compared with the similar characteristics for the fission induced by thermal and fast neutrons; the charge shifts for the fragments under study relative to the unchanged...

  18. Independent Yields of Kr and Xe Isotopes for the Photofission of Heavy Nuclei

    CERN Document Server

    Gangrsky, Yu P; Maslova, N Yu; Penionzhkevich, Yu E; Szöllös, O; Zhemenik, V I

    2002-01-01

    Presented are the yields of primary fission fragments (produced in the process of the rupture of the nucleus) of Kr (A=87-93) and Xe (A=148-143) for the photofission of ^{232}Th, ^{238}U and ^{244}Pu, which were measured using bremsstrahlung from a microtron, the energy of accelerated electrons being 25 MeV. A technique was used that includes transportation of fragments escaped from the target with a gas flow through a capillary and the condensation of Kr and Xe inert gases in a cryostat at the temperature of liquid nitrogen. Fragments of all the other elements were retained with a filter at the entrance of capillary. Kr and Xe isotopes were identified by the gamma-spectra of their daughter products. The mass number distributions are obtained of the independent yields of Kr and Xe isotopes, which are compared with the similar characteristics for the fission induced by thermal and fast neutrons; the charge shifts for the fragments under study relative to the unchanged charge distribution are determined. The pe...

  19. Shell effects in fission and quasi-fission of heavy and superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Itkis, M.G. E-mail: itkis@flnr.jinr.ru; Aeystoe, J.; Beghini, S.; Bogachev, A.A.; Corradi, L.; Dorvaux, O.; Gadea, A.; Giardina, G.; Hanappe, F.; Itkis, I.M.; Jandel, M.; Kliman, J.; Khlebnikov, S.V.; Kniajeva, G.N.; Kondratiev, N.A.; Kozulin, E.M.; Krupa, L.; Latina, A.; Materna, T.; Montagnoli, G.; Oganessian, Yu.Ts.; Pokrovsky, I.V.; Prokhorova, E.V.; Rowley, N.; Rubchenya, V.A.; Rusanov, A.Ya.; Sagaidak, R.N.; Scarlassara, F.; Stefanini, A.M.; Stuttge, L.; Szilner, S.; Trotta, M.; Trzaska, W.H.; Vakhtin, D.N.; Vinodkumar, A.M.; Voskressenski, V.M.; Zagrebaev, V.I

    2004-04-05

    Results of the experiments aimed at the study of fission and quasi-fission processes in the reactions {sup 12}C+{sup 204}Pb, {sup 48}Ca+{sup 144,154}Sm, {sup 168}Er, {sup 208}Pb, {sup 244}Pu, {sup 248}Cm; {sup 58}Fe+{sup 208}Pb, {sup 244}Pu, {sup 248}Cm, and {sup 64}Ni+{sup 186}W, {sup 242}Pu are presented in the work. The choice of the above-mentioned reactions was inspired by recent experiments on the production of the isotopes {sup 283}112, {sup 289}114 and {sup 283}116 at Dubna [1],[2] using the same reactions. The {sup 58}Fe and {sup 64}Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia), the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) and the Accelerator of the Laboratory of University of Jyvaskyla (JYFL, Finland) using the time-of-flight spectrometer of fission fragments CORSET[3] and the neutron multi-detector DEMON[4],[5]. The role of shell effects and the influence of the entrance channel on the mechanism of the compound nucleus fusion-fission and the competitive process of quasi-fission are discussed.

  20. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  1. Targeting heavy rare earth elements in carbonatite complexes

    Science.gov (United States)

    Broom-Fendley, S.; Wall, F.; Gunn, A. G.; Dowman, E.

    2012-04-01

    The world's main sources of the rare earth elements (REE) are concentrated in carbonatite complexes. These have the advantages of high grade and tonnage, combined with low thorium contents, yet they are generally enriched in light rare earths (LREE). The heavy rare earths (HREE, which include Eu-Lu and Y) are more highly sought after because of their role in new and green technologies. HREE are predominantly extracted from ion-adsorption clays in China. These are small, low grade deposits, which are often illegally mined by artisans. Increased government control, environmental legislation and local demand for REE in China have led to high prices and global concerns about the security of supply of the HREE. Alternative sources of the HREE are poorly documented. We present a review of such targets, including: (1) 'abnormal' carbonatites; (2) areas around LREE-rich complexes such as breccia, fenite and latter stage veins; and (3) weathered carbonatites. At Lofdal, Namibia, carbonatite dykes contain xenotime-(Y) together with LREE minerals. The original chemistry of the carbonatite magma, coupled with late-stage magma and fluid evolution, seem to be controlling factors [1, 2]. The Khibina carbonatite, Kola Peninsula, Russia, is an example of where early LREE carbonatites become increasing HREE-enriched as magmas evolve to carbo-hydrothermal fluids [3]. Around carbonatite complexes in Malawi HREE enrichment can be found in breccia and in fenite. Breccia around Songwe shows areas with high Y/La ratios within the matrix caused by narrow zones of xenotime enrichment. Fenite around Kangankunde and Chilwa Island has higher HREE:LREE ratios than the carbonatite [4]. At weathered complexes, such as at Mount Weld in Western Australia, changes in both HREE concentration and LREE:HREE ratios are observed. In currently unworked sections of the deposit, the HREE mineral churchite (YPO4.H2O) has formed concentrations due to groundwater flow [5]. These areas of enrichment are

  2. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  3. Preliminary results from collisions between 3.2-TeV 16O and target nuclei of C, Cu, and Au

    International Nuclear Information System (INIS)

    Plasil, F.; Albrecht, R.; Awes, T.C.

    1987-01-01

    Preliminary data is presented for the interactions of oxygen 16 with carbon, copper, and gold at 60 and 200 GeV/nucleon. This preliminary data included total charged-particle multiplicity distributions and transverse energy distributions. Ranges of transverse momentum per particle and of possible energy densities were discussed. The ultimate goal of the experiment was to search for the transition from hadronic matter to deconfined quark matter. Such a transition may occur in the finite volume of hadronic matter that is formed with high energy density in very high energy nucleus-nucleus collisions. It is estimated that the required critical energy density may be reached in central collisions between sufficiently large nuclei, provided that the degree of nuclear stopping is high enough to concentrate a large fraction of the available center of mass energy at mid-rapidity. Thus the immediate goal of the experiment was to study the extent of stopping and the nature of the baryon-poor excited nuclear matter in the rapidity range intermediate between the projectile and the target rapidities. The experiment also sought to investigate the fragmentation region associated with the target remnants. The experimental arrangement consisted of the following detector systems: the Plastic Ball, several charged-particle multiplicity arrays, the Wall Calorimeter, SAPHIR (Single-Arm Photon Detector for Heavy Ion Reactions), the time-of-flight wall, and the Zero-Degree Calorimeter. 15 refs., 3 figs

  4. Uranium targets sandwiched between carbon layers for use on target wheels and on a Wobbler in heavy-ion bombardments

    International Nuclear Information System (INIS)

    Folger, H.; Hartmann, W.; Klemm, J.; Thalheimer, W.

    1989-01-01

    Uranium layers of ≅ 0.4 mg/cm 2 are evaporated by means of a 6 kW electron-beam gun onto 0.04 mg/cm 2 thick carbon films in a high-vacuum process; a protecting layer of ≅ 0.01 mg/cm 2 of carbon is added in the same vacuum cycle. The evaporation- and deposition yields are discussed and measurements of target characteristics are described. C/U/C sandwich targets in the shape of a sector of an annulus are prepared for use on rotating target wheels of 155 mm radius to be bombarded with a pulsed beam of heavy ions. One type of circular targets of 20 mm in diameter is mounted to a target wobbler. Both, wheel and wobbler, distribute the intensity of the heavy-ion beam to a larger area to reduce radiation damages. Examples of target applications will be mentioned. (orig.)

  5. Slow, target associated particles produced in ultrarelativistic heavy-ion interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Anson, Z V; Arora, R; Avetyan, F A; Badyal, S K; Basova, E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bogdanov, V G; Bubnov, V I; Burnett, T H; Cai, X; Chasnikov, I Y; Chernova, L P; Chernyavsky, M M; Dressel, B; Eligbaeva, G Z; Eremenko, L E; Friedlander, E M; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V; Heckman, H H; Huang, H; Jakobsson, B; Judek, B; Kachroo, S; Kadyrov, F G; Kalyachkina, G S; Kanygina, E K; Karabova, M; Kaul, G L; Kaur, M; Kharlamov, S P; Koss, Y; Krasnov,; Kumar,; Lal, P; Larionova,; Lepetan,; Lindstrom,; Liu,; Lokanathan, S; Lord, J; Lukicheva, N S; Luo, S B; Mangotra, L K; Marutyan,; Maslennikova, N V; Mittra, I S; Mookerjee, S; Mueller, C; Nasrulaeva, H; Nasyrov, S H; Navotny, V S; Orlova, G I; Otterlund, I; Palsania, H S; Peresadko, N G; Petrov, N V; Plyushchev, V A; Qian, W Y; Raniwala,; EMU01 Collaboration

    1991-06-20

    The slow, target associated particles produced in ultrarelativistic heavy-ion interactions are a quantitative probe of the cascading processes in the spectator parts of the target nucleus. These processes are directly influenced by the proper timescale for the formation of hadronic matter. In this letter we show experimental data on singly and multiply charged particles, with velocities smaller than 0.7c, produced in ultrarelativistic heavy-ion interactions in nuclear emulsion. (orig.).

  6. Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause

    Science.gov (United States)

    Bigg, E. K.; Soubeyrand, S.; Morris, C. E.

    2015-03-01

    Rainfall is one of the most important aspects of climate, but the extent to which atmospheric ice nuclei (IN) influence its formation, quantity, frequency, and location is not clear. Microorganisms and other biological particles are released following rainfall and have been shown to serve as efficient IN, in turn impacting cloud and precipitation formation. Here we investigated potential long-term effects of IN on rainfall frequency and quantity. Differences in IN concentrations and rainfall after and before days of large rainfall accumulation (i.e., key days) were calculated for measurements made over the past century in southeastern and southwestern Australia. Cumulative differences in IN concentrations and daily rainfall quantity and frequency as a function of days from a key day demonstrated statistically significant increasing logarithmic trends (R2 > 0.97). Based on observations that cumulative effects of rainfall persisted for about 20 days, we calculated cumulative differences for the entire sequence of key days at each site to create a historical record of how the differences changed with time. Comparison of pre-1960 and post-1960 sequences most commonly showed smaller rainfall totals in the post-1960 sequences, particularly in regions downwind from coal-fired power stations. This led us to explore the hypothesis that the increased leaf surface populations of IN-active bacteria due to rain led to a sustained but slowly diminishing increase in atmospheric concentrations of IN that could potentially initiate or augment rainfall. This hypothesis is supported by previous research showing that leaf surface populations of the ice-nucleating bacterium Pseudomonas syringae increased by orders of magnitude after heavy rain and that microorganisms become airborne during and after rain in a forest ecosystem. At the sites studied in this work, aerosols that could have initiated rain from sources unrelated to previous rainfall events (such as power stations) would

  7. Spallation Neutron Emission Spectra in Some Amphoter Target Nuclei by Proton Beam Up to 140 MeV Energy

    International Nuclear Information System (INIS)

    Yildirim, G.

    2008-01-01

    In the present study, the (p,xn) reaction neutron-emission spectra for some amphoter target nuclei as 27 A l, 64 Z n, 120 S n, and 208 P b were investigated up to 140 MeV incident proton energy. The pre-equilibrium calculations were calculated by using the hybrid model, the geometry dependent hybrid model, the full exciton model and the cascade exciton model. The reaction equilibrium component was calculated with a traditional compound nucleus model developed by Weisskopf Ewing. Calculation results have been discussed and compared with the available experimental data in literature

  8. The Fragmentation of Heavy Nuclei by 13.8 GeV/c Protons as a Contribution to the Study of the Interaction Mechanism and Nuclear Structure

    International Nuclear Information System (INIS)

    Gil Perez, D.

    1967-01-01

    We present he re an global study of the interaction between high- energy particles and heavy nuclei, an interaction which holds obvious interest in relation to the problems of nuclear fragmentation and which, up lo now has only been studied piecemeal. We have used three stacks of photographic emulsions which were irradiated by 13.8 GeV/c protons, 17 GeV/c negative pions and 24 GeV/c protons. All three irradiations took place in a 180 K.G. magnetic field using CERN beams. (Author) 20 refs

  9. Review of target studies for heavy ion fusion

    International Nuclear Information System (INIS)

    Lindl, J.D.; Bangerter, R.D.; Mark, J.W.K.; Pan, Y.L.

    1986-01-01

    We present an updated set of gain curves for radiation driven ion beam targets. The improved target performance calculated with nuclear spin polarized fuel will also be discussed. We discuss the conditions required for efficient conversion to x-rays of ion beam energy. These requirements are compared with those obtained for lasers. Recent results on symmetry requirements for direct drive ion beam targets are presented

  10. Collective and single-particle excitations in the heavy deformable nuclei 234U, 233U, 231Th, 230Pa and 232Pa

    International Nuclear Information System (INIS)

    Kotthaus, Tanja

    2010-01-01

    In this thesis five heavy deformed isotopes from the mass region A≥230, namely 234 U, 233 U, 231 Th, 230 Pa and 232 Pa, were investigated by means of deuteron-induced neutron transfer reactions. The even-even isotope 234 U has been studied with the 4π-γ-spectrometer MINIBALL at the Cologne Tandem accelerator. Excited nuclei in the isotope 234 U were produced using the reaction 235 U(d,t) at a beam energy of 11 MeV. The target thickness was 3.5 mg/cm 2 . The analysis of the γγ-coincidence data yielded a reinterpretation of the level scheme in 12 cases. Considering its decay characteristics, the 4 + state at an excitation energy of 1886.7 keV is a potential candidate for a two-phonon vibrational state. The isotopes 233 U, 231 Th, 230 Pa and 232 Pa were investigated at the Munich Q3D spectrometer. For each isotope an angular distribution with angles between 5 and 45 were measured. In all four cases the energy of the polarized deuteron beam (vector polarization of 80%) was 22 MeV. As targets 234 U (160 μg/cm 2 ), 230 Th (140 μg/cm 2 ) and 231 Pa (140 μg/cm 2 ) were used. The experimental angular distributions were compared to results of DWBA calculations. For the odd isotope 233 U spin and parity for 33 states are assigned and in the other odd isotope 231 Th 22 assignments are made. The excitation spectra of the two odd-odd isotopes 230 Pa and 232 Pa were investigated for the first time. For the isotope 230 Pa 63 states below an excitation energy of 1.5 MeV are identified. Based on the new experimental data the Nilsson configuration of the ground state is either 1/2[530] p -5/2[633] n or 1/2[530] p +3/2[631] n . In addition 12 rotational bands are proposed and from this six values for the GM splitting energy are deduced as well as two new values for the Newby shift. In the other odd-odd isotope 232 Pa 40 states below an excitation energy of 850 keV are observed and suggestions for the groundstate band and its GM partner are made. From this one GM splitting

  11. Substantial reductions of input energy and peak power requirements in targets for heavy ion fusion

    International Nuclear Information System (INIS)

    Mark, J.W.K.; Pan, Y.L.

    1986-01-01

    Two ways of reducing the requirements of the heavy ion driver for inertial confinement fusion (ICF) target implosion are described. Compared to estimates of target gain not using these methods, the target input energy and peak power may be reduced by about a factor of two with the use of the hybrid-implosion concept. Another factor of two reduction in input energy may be obtained with the use of spin-polarized DT fuel in the ICF target

  12. Excitation of swift heavy ions in foil targets IV

    International Nuclear Information System (INIS)

    Bridwell, L.B.; Pender, L.F.; Sofield, C.J.; Hay, H.J.; Treacy, P.B.

    1988-05-01

    Studies have been made of the approach to energy-loss and charge-state equilibrium of initially pure charge states of ions, transmitted through thin carbon targets. Ions of Li, F and Cl at 3 MeV per AMU were used. Detailed observations were made of outgoing energy losses and charge-state distributions, for outgoing charges equal to those ingoing. A Monte Carlo analysis is made of the charge-changing processes, which allows calculation of energy losses due to projectile charge exchange. The residual electronic target-ionisation loss is analysed to predict in-target charge states of the projectile ions. Using these, a comparison is made between the in-target effective charge for target ionisation, and the averaged ionic charge which fits charge-exchange data

  13. Electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with many-electron atomic targets

    International Nuclear Information System (INIS)

    Mueller, C.; Gruen, N.; Voitkiv, A.B.

    2002-01-01

    We study single- and double-electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with neutral many-electron target atoms. The simultaneous interaction of the target with two projectile electrons is found to be the dominant process in the double-electron loss provided the atomic number of the projectile, Z p , that of the target, Z t , and the collision velocity, v, satisfy the condition Z p Z t /v>0.4. It is shown that for a wide range of projectile and target atomic numbers the asymptotic double-to-single loss ratio strongly depends on the target atomic number but is nearly independent of the nuclear charge of the projectile. It is also demonstrated that many-photon exchange between the target and each of the projectile electrons considerably influences the double loss in collisions with very heavy targets

  14. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  15. The salient features of charge density distributions of medium and heavy even-even nuclei determined from a systematic analysis of elastic electron scattering from factors

    International Nuclear Information System (INIS)

    Friedrich, J.; Voegler, N.

    1982-01-01

    All available information on charge distributions of even-even nuclei is analysed systematically. For medium and heavy nuclei five general features of p(r) are investigated: (i) The extension for which we discuss several different definitions. The measured extension together with experimental binding energies allows a determination of nuclear compressibility within the framework of the droplet model, the resulting value being K = 165 +- 10 MeV. (ii) The surface thickness. Here too, several definitions are discussed. A close relationship between the surface thickness and binding energies is demonstrated. (iii) The average slope in the inner part of the nucleus. A method is formulated to separate this slope from the oscillations observed. All nuclei show a positive slope of comparable size. (iv) The oscillations on p(r). They are related to an abrupt breakdown in the form factor around q = 2.25 fm -1 . This effect seems to be closely related to the fact that p(r) is built up out of single particles, details however being unimportant. (v) The high-q components of the form factor are indicative for a scattering mechanism involving pairs of nucleons. (orig.)

  16. Stability and production of superheavy nuclei

    International Nuclear Information System (INIS)

    Moeller, P.; Los Alamos National Lab., NM; Nix, J.R.

    1997-01-01

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond 208 Pb, that is, at proton number Z 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation

  17. Review of high excitation energy structures in heavy ion collisions: target excitations and three body processes

    International Nuclear Information System (INIS)

    Frascaria, N.

    1987-09-01

    A review of experimental results on high excitation energy structures in heavy ion inelastic scattering is presented. The contribution to the spectra of the pick-up break-up mechanism is discussed in the light of the data obtained with light heavy ion projectiles. Recent results obtained with 40 Ar beams at various energies will show that target excitations contribute strongly to the measured cross section

  18. Ultrarelativistic heavy-ion collisions. Proceedings of the International Workshop XXX on Gross Properties of Nuclei and Nuclear Excitations

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2002-01-01

    The following topics were dealt with: Experimental results on ultrarelativistic heavy ion collisions, QCD thermodynamics, equilibration in relativistic heavy ion collisions, lattice QCD, space- time evolution and Hanbury-Brown-Twiss correlations, vector meson production, high-p T and small-x physics. (HSI)

  19. Structure of the β-strength function in heavy nuclei and its influence on the β-delayed fission

    International Nuclear Information System (INIS)

    Wene, C.O.; Isosimow, I.N.; Naumow, Y.W.; Klapdor, H.V.

    1978-01-01

    The shape of the beta strength function Ssub(β) for neutron-rich nuclei is discussed. The structure of Ssub(β) is calculated microscopically for the GT-β-decay of 236 , 238 Pa and is shown to be decisive for the probability for β-delayed fission. (orig.) [de

  20. Report of the fixed target heavy quark working group

    International Nuclear Information System (INIS)

    Appel, J.A.; Butler, J.N.; Christian, D.; Cooper, P.; Errede, D.; Garbincius, P.; Gourlay, S.; Guttierez, G.; James, C.; Kasper, P.; Kreymer, A.; Lach, J.; Murphy, T.; Rameika, G.; Speigel, L.; Summers, D.; Berger, E.; Bigi, I.; Busenitz, J.; Cox, B.; Cumalat, J.; Dunlea, J.; Thorndike, E.; Escobar, C.; Gouffon, P.; Kapoor, V.; Kaplan, D.M.; Knapp, B.; Wiencke, L.; Judd, D.; Wagonner, D.; Newsom, C.; Pedrini, D.; Potter, D.; Russ, J.; Purohit, M.; Selove, W.; Van Berg, R.; Shepard, P.; Yager, P.

    1989-01-01

    The status of Fixed Target experiments to study charm and bottom is reviewed. The physics motivation for further high statistics studies of charm and bottom is presented. The technical challenges which will be encountered in doing very high sensitivity studies are described, some possible solutions are offered, and areas where additional research and development are required and identified. 38 refs., 8 figs., 9 tabs

  1. Survey on neutron pre-emission at the fusion of 11 Li halo nuclei with light targets

    International Nuclear Information System (INIS)

    Petrascu, M.

    1999-01-01

    The neutron halo nuclei characterized by very large matter radii, small separation energy and small internal momentum of the valence neutrons, were discovered by Tanihata and co-workers. Until now, the halo nuclei were investigated mostly by elastic, inelastic scattering and breakup processes. It was recently predicted, that due to the very large dimension of 11 Li, one may expect, that in a fusion experiment on a light target, the valence neutrons will not be absorbed together with the 9 Li core, but will be emitted in the early stage of the reaction process. The first experiment aiming to check this expectation, was performed at the RIKEN-RIPS facility. In the experimental setup, the MUSIC chamber, achieved in the frame of IFIN-HH - RIKEN cooperation, played an important role. The obtained results confirm the prediction, indicating to a novel pre-emission effect (near 40 %, for one or two neutrons). The pre-emission of neutron pairs was investigated by time-position coincidences. It is considered that the pre-emission of neutron pairs is responsible for the experimentally observed strong neutron focusing effect. An experiment aiming to a large number of n-n coincidences, based on a new neutron array detector built in the frame of IFIN-HH - RIKEN cooperation, is in preparation. A model for the pre-emission probabilities calculations has been also worked out. Good agreement with the experimental data has been obtained. (author)

  2. Experimental and theoretical study of the yields of residual product nuclei produced in thin targets irradiated by 100-2600 MeV protons

    CERN Document Server

    Titarenko, Y E; Karpikhin, E I

    2003-01-01

    The objective of the project is measurements and computer simulations of independent and cumulative yields of residual product nuclei in thin targets relevant as target materials and structure materials for hybrid accelerator-driven systems coupled to high-energy proton accelerators. The yields of residual product nuclei are of great importance when estimating such basic radiation-technology characteristics of hybrid facility targets as the total target activity, target 'poisoning', buildup of long-lived nuclides that, in turn, are to be transmuted, product nuclide (Po) alpha-activity, content of low-pressure evaporated nuclides (Hg), content of chemically-active nuclides that spoil drastically the corrosion resistance of the facility structure materials, etc. In view of the above, radioactive product nuclide yields from targets and structure materials were determined by an experiment using the ITEP U-10 proton accelerator in 51 irradiation runs for different thin targets: sup 1 sup 8 sup 2 sup , sup 1 sup 8 ...

  3. Parasubthalamic and calbindin nuclei in the posterior lateral hypothalamus are the major hypothalamic targets for projections from the central and anterior basomedial nuclei of the amygdala.

    Science.gov (United States)

    Barbier, Marie; Chometton, Sandrine; Peterschmitt, Yvan; Fellmann, Dominique; Risold, Pierre-Yves

    2017-09-01

    The parasubthalamic nucleus (PSTN) and the ventrally adjacent calbindin nucleus (CbN) form a nuclear complex in the posterior lateral hypothalamic area (LHA), recently characterized as connected with the central nucleus of the amygdala (CEA). The aim of the present work is to analyze in detail the projections from the amygdala into the PSTN/CbN, also focusing on pathways into the LHA. After fluorogold injections into the PSTN/CbN, the medial part of the CEA (CEAm) appears to be the main supplier of projections from the CEA. Other amygdalar nuclei contribute to the innervation of the PSTN/CbN complex, including the anterior part of the basomedial nucleus (BMAa). Injections of the anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHAL), into the CEAm and BMAa revealed that projections from the CEAm follow two pathways into the LHA: a dorsal pathway formed by axons that also innervate the paraventricular hypothalamic nucleus, the anterior perifornical LHA and the PSTN, and a ventral pathway that runs laterally adjacent to the ventrolateral hypothalamic tract (vlt) and ends in the CbN. By contrast, the BMAa and other telencephalic structures, such as the fundus striatum project to the CbN via the ventral pathway. Confirming the microscopic observation, a semi-quantitative analysis of the density of these projections showed that the PSTN and the CbN are the major hypothalamic targets for the projections from the CEAm and the BMAa, respectively. PSTN and CbN receive these projections through distinct dorsal and ventral routes in the LHA. The ventral pathway forms a differentiated tract, named here the ventrolateral amygdalo-hypothalamic tract (vlah), that is distinct from, but runs adjacent to, the vlt. Both the vlt and the vlah had been previously described as forming an olfactory path into the LHA. These results help to better characterize the CbN within the PSTN/CbN complex and are discussed in terms of the functional organization of the network involving the

  4. Contribution to the study of deformed heavy nuclei by means of nuclear reactions; Contribution a l'etude des noyaux lourds deformes au moyen de reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Gastebois, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The experimental results obtained in the study of the (d,p) reactions, at E{sub d} = 12 MeV, on the three even-even deformed nuclei {sup 170}Yb, {sup 172}Yb and {sup 174}Yb have been analysed in terms of DWBA calculations. The spectroscopic information relative to the odd final nuclei have been compared with the predictions of the collective model and of the Nilsson's model. The effect of various parameters used in the DWBA analysis (form factors, optical wave functions) has been carefully studied. The observed differences between the three final nuclei are qualitatively reproduced in the experimental study of resonances, seen in excitation functions of elastically and inelastically scattered protons on the same target nuclei, and corresponding to analogue states in the three nuclei {sup 171}Lu, {sup 173}Lu and {sup 175}Lu. (author) [French] Les resultats experimentaux de l'etude des reactions (d.p) a E{sub d} = 12 MeV, sur les noyaux deformes pairs-pairs {sup 170}Yb, {sup 172}Yb et {sup 174}Yb ont ete interpretes dans le cadre de l'approximation de Born des ondes deformees. Les informations spectroscopiques relatives aux noyaux impairs finals ont ete comparees aux predictions du modele collectif et du modele de Nilsson, apres avoir examine avec soin l'influence des differents parametres (facteurs de forme, fonctions d'onde 'optiques') utilises lors de l'analyse. Les differences observees entre les trois noyaux finals sont qualitativement reproduites par les resultats experimentaux de l'etude de resonances dans les fonctions d'excitation de diffusion elastique et inelastique de protons sur les memes noyaux-cibles, lors de la recherche d'etats analogues dans les noyaux {sup 171}Lu, {sup 173}Lu et {sup 175}Lu. (auteur)

  5. Automated recognition of cell phenotypes in histology images based on membrane- and nuclei-targeting biomarkers

    International Nuclear Information System (INIS)

    Karaçalı, Bilge; Vamvakidou, Alexandra P; Tözeren, Aydın

    2007-01-01

    Three-dimensional in vitro culture of cancer cells are used to predict the effects of prospective anti-cancer drugs in vivo. In this study, we present an automated image analysis protocol for detailed morphological protein marker profiling of tumoroid cross section images. Histologic cross sections of breast tumoroids developed in co-culture suspensions of breast cancer cell lines, stained for E-cadherin and progesterone receptor, were digitized and pixels in these images were classified into five categories using k-means clustering. Automated segmentation was used to identify image regions composed of cells expressing a given biomarker. Synthesized images were created to check the accuracy of the image processing system. Accuracy of automated segmentation was over 95% in identifying regions of interest in synthesized images. Image analysis of adjacent histology slides stained, respectively, for Ecad and PR, accurately predicted regions of different cell phenotypes. Image analysis of tumoroid cross sections from different tumoroids obtained under the same co-culture conditions indicated the variation of cellular composition from one tumoroid to another. Variations in the compositions of cross sections obtained from the same tumoroid were established by parallel analysis of Ecad and PR-stained cross section images. Proposed image analysis methods offer standardized high throughput profiling of molecular anatomy of tumoroids based on both membrane and nuclei markers that is suitable to rapid large scale investigations of anti-cancer compounds for drug development

  6. Investigations of charge-changing processes for light proton-rich nuclei on carbon and solid-hydrogen targets

    Energy Technology Data Exchange (ETDEWEB)

    Sawahata, K. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Ozawa, A., E-mail: ozawa@tac.tsukuba.ac.jp [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Saito, Y.; Abe, Y.; Ichikawa, Y.; Inaba, N.; Ishibashi, Y. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Kitagawa, A. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Matsunaga, S. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Moriguchi, T.; Nagae, D.; Okada, S. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Sato, S. [National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Suzuki, S. [Institute of Physics, University of Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T.; Takeuchi, Y.; Yamaguchi, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Zenihiro, J. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan)

    2017-05-15

    We investigated charge-changing processes (total charge-changing cross sections and partial charge-changing cross sections) for light proton-rich nuclei ({sup 34–36}Ar, {sup 33}Cl, {sup 25–28}Si) at around 300A MeV on carbon and solid-hydrogen targets. We estimated the nuclear proton point radii of {sup 33}Cl and {sup 25,26,27}Si from the observed total charge-changing cross sections by using Glauber-model calculations with a phenomenological correction factor. Furthermore, we estimated the proton skin thickness for {sup 33}Cl coupled with its previously observed matter radius. From investigations of the partial charge-changing cross sections, clear zigzag pattern was observed for all isotopes. The present studies suggest that the pattern may be common in the proton-rich side, and depends on the odd–even nature of the fragment charge.

  7. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, Igor, E-mail: mishustin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); “Kurchatov Institute”, National Research Center, 123182 Moscow (Russian Federation); Malyshkin, Yury, E-mail: malyshkin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Pshenichnov, Igor, E-mail: pshenich@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany)

    2015-04-15

    A possibility of synthesizing neutron-rich superheavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to {sup 249}Bk can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector could turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

  8. Search for supermassive nuclei in nature

    International Nuclear Information System (INIS)

    Polikanov, S.; Sastri, C.S.; Herrmann, G.; Luetzenkirchen, K.; Overbeck, M.; Trautmann, N.

    1990-11-01

    We report on a search for supermassive nuclei in nature with masses up to 10 7 amu. Such exotic nuclei might consist, for example, of stable strange matter, which comprises a mixture of up, down, and strange quarks, or of relic particles from the early Universe. The experiments are based on Rutherford backscattering of heavy ions, preferably 238 U, from various target samples. The measured parameters of a deteced particle are its time-of-flight, scattering angle, and specific ionization. From this information the mass of the target nucleus can be inferred. Upper limits for the abundance of strange supermassive nuclei with masses A ≅ 4x10 2 to 10 7 amu relative to the number of nucleons were found to be in the range 10 -11 to 10 -15 . For the narrower mass range A ≅ 10 3 to 10 4 amu the limit is 2x10 -17 . (orig.)

  9. Liquid-gas phase transition in hot nuclei: correlation between dynamical and thermodynamical signals

    Energy Technology Data Exchange (ETDEWEB)

    Rivet, M.F.; Borderie, B.; Desesquelles, P.; Galichet, E. [Institut de Physique Nucleaire, IN2P3-CNRS, 91 - Orsay (France); Bougault, R.; Le Neindre, N. [Caen Univ, LPC, IN2P3-CNRS, ISMRA, 14 - Caen (France); Galichet, E. [Conservatoire National des Arts et Metiers, 75 - Paris (France); Guiot, B.; Wieleczko, J.P. [GANIL, CEA et IN2P3-CNRS, 14 - Caen (France); Parlog, M.; Tabacaru, G. [Nat. Inst. for Physics and Nuclear Engineering, Bucharest-Magurele (Romania)

    2003-07-01

    The dynamics and thermodynamics of phase transition in hot nuclei are studied through experimental results on multifragmentation of heavy systems (A(projectile) + A(target) > 200) formed in central heavy ion collisions. Different signals such as negative heat capacity and spinodal decomposition, indicative of a phase transition studied in the INDRA collaboration are presented and their consistency is stressed. (authors)

  10. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya [Jadavpur Univ., Calcutta (India)

    1994-07-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by [sup 16]O at 2.1 GeV/nucleon and [sup 12]C and [sup 24]Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author).

  11. Non-statistical fluctuations in fragmentation of target nuclei in high energy nuclear interactions

    International Nuclear Information System (INIS)

    Ghosh, Dipak; Ghosh, Premomoy; Ghosh, Alokananda; Roy, Jaya

    1994-01-01

    Analysis of target fragmented ''black'' particles in nuclear emulsion from high energy relativistic interactions initiated by 16 O at 2.1 GeV/nucleon and 12 C and 24 Mg at 4.5 GeV/nucleon reveal the existence of non-statistical fluctuations in the azimuthal plane of interaction. The asymmetry or the non-statistical fluctuations, while found to be independent of projectile mass or incident energy, are dependent on the excitation energy of the target nucleus. (Author)

  12. Targets for high-resolution studies with heavy-ion reactions

    International Nuclear Information System (INIS)

    Erskine, J.R.

    1975-01-01

    Target problems in heavy ion reaction studies are discussed, including non-uniformity in thickness effects and the inability to fully compensate for reaction-site effects, both problems becoming more serious the heavier the ion. For the non-uniformity effects, the flatness of the target is very critical. Other problems not yet solved are beam-spot heating and the buildup of carbon

  13. Electromagnetic dissociation of target nuclei by $^{16}$O and $^{32}$S projectiles

    CERN Multimedia

    2002-01-01

    We have measured the inclusive cross sections for electromagnetic dissociation (ED) of $^{197}$Au targets by 60 and 200 GeV/nucleon $^{16}$O and $^{32}$S projectiles. This is an extension of similar measurements carried out earlier at 2 GeV/nucleon. ED is a purely electromagnetic process occuring when a virtual photon is exchanged between projectile and target. The experiment emphasized precise measurement of total one-neutron-out cross sections. A secondary goal was to test the applicability of the concepts of factorization and limiting fragmentation at ultrarelativistic energies.\\\\ \\\\ Each individual target will be irradiated upstream and parasitic to experiment NA38 on the dimuon spectrometer. Cross sections for reactions of interest will be determined by off-line counting of the appropriate residual $\\gamma$ ray activities in Ames, Iowa, USA. Preliminary results indicate an ED one-neutron removal cross section for 200 GeV/nucleon $^{16}$O projectiles on $^{197}$Au of approximately 0.45~barns. The result i...

  14. Strongly Enhanced Low Energy Alpha-Particle Decay in Heavy Actinide Nuclei and Long-Lived Superdeformed and Hyperdeformed Isomeric States

    CERN Document Server

    Marinov, Amnon; Kolb, D.; Weil, J.L.

    2001-01-01

    Relatively low energy and very enhanced alpha-particle groups have been observed in various actinide fractions produced via secondary reactions in a CERN W target which had been irradiated with 24-GeV protons. In particular, 5.14, 5.27 and 5.53 MeV alpha-particle groups with corresponding half-lives of 3.8(+ -)1.0 y, 625(+ -)84 d and 26(+ -)7 d, have been seen in Bk, Es and Lr-No sources, respectively. The measured energies are a few MeV lower than the known g.s. to g.s. alpha-decays in the corresponding neutron-deficient actinide nuclei. The half-lives are 4 to 7 orders of magnitude shorter than expected from the systematics of alpha-particle decay in this region of nuclei. The deduced evaporation residue cross sections are in the mb region, about 4 orders of magnitude higher than expected. A consistent interpretation of the data is given in terms of production of long-lived isomeric states in the second and third wells of the potential-energy surfaces of the parent nuclei, which decay to the corresponding w...

  15. Neutron Production from In-situ Heavy Ice Coated Targets at Vulcan

    Science.gov (United States)

    Morrison, John; Krygier, A. G.; Kar, S.; Ahmed, H.; Alejo, A.; Clarke, R.; Fuchs, J.; Green, A.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-01

    Laser based neutron production experiments have been performed utilizing ultra-high intensity laser accelerated ions impinging upon a secondary target. The neutron yield from such experiments may be improved if the accelerated ions were primarily deuterons taking advantage of the d-d cross section. Recent experiments have demonstrated that selective deuteron acceleration from in-situ heavy ice coating of targets can produce ion spectra where deuterons comprise > 99 % of the measured ions. Results will be presented from integrated neutron production experiments from heavy ice targets coated in-situ recently performed on the Vulcan laser at Rutherford Appleton Laboratory. We are grateful for the Staff at RAL and acknowledge funding from the US DoE. AFOSR, European Social Fund, and the Czech Republic.

  16. Fragmentation of relativistic nuclei

    International Nuclear Information System (INIS)

    Cork, B.

    1975-06-01

    Nuclei with energies of several GeV/n interact with hadrons and produce fragments that encompass the fields of nuclear physics, meson physics, and particle physics. Experimental results are now available to explore problems in nuclear physics such as the validity of the shell model to explain the momentum distribution of fragments, the contribution of giant dipole resonances to fragment production cross sections, the effective Coulomb barrier, and nuclear temperatures. A new approach to meson physics is possible by exploring the nucleon charge-exchange process. Particle physics problems are explored by measuring the energy and target dependence of isotope production cross sections, thus determining if limiting fragmentation and target factorization are valid, and measuring total cross sections to determine if the factorization relation, sigma/sub AB/ 2 = sigma/sub AA/ . sigma/sub BB/, is violated. Also, new experiments have been done to measure the angular distribution of fragments that could be explained as nuclear shock waves, and to explore for ultradense matter produced by very heavy ions incident on heavy atoms. (12 figures, 2 tables)

  17. Interactions of proton and heavy ion beams with uranium and thorium targets

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Sosnin, A.N.

    1996-01-01

    Results of Monte Carlo mathematical experiments with various homo- and heterogeneous targets are discussed. For equal projectile energy many average characteristics of an electronuclear process, in particular, its neutron yield, are weakly dependent on a type of the projectile, however, at fixed energy per nucleon the neutron yield is maximal for deuterons and decreases rapidly in the case of heavier projectiles. The time dependent nonlinear effects stipulated by an accumulation of fissile nuclei are important in subcritical reactors with large values of k eff . 5 refs., 5 figs., 3 tabs

  18. Directions for reactor target design based on the US heavy ion fusion systems assessment

    International Nuclear Information System (INIS)

    Wilson, D.C.; Dudziak, D.; Magelssen, G.; Zuckerman, D.; Dreimeyer, D.

    1986-01-01

    We studied areas of major uncertainty in target design using the cost of electricity as our figure of merit. Net electric power from the plant was fixed at 1000 MW to eliminate large effects due to economies of scale. The system is relatively insensitive to target gain. Factors of three changes in gain cause only 8 to 12% changes in electricity cost. An increase in the peak power needed to drive targets poses only a small cost risk, but requires many more beamlets be transported to the target. A shortening of the required ion range causes both cost and beamlet difficulties. A factor of 4 decrease in the required range at a fixed driver energy increases electricity cost by 44% and raises the number of beamlets to 240. Finally, the heavy ion fusion system can accommodate large increases in target costs. To address the major uncertainties, target design should concentrate on the understanding requirements for ion range and peak driver power

  19. An Induction Linac Driver For A 0.44 MJ Heavy-Ion Direct Drive Target

    International Nuclear Information System (INIS)

    Seidl, P.A.; Lee, E.P.; Bangerter, R.O.; Faltens, A.

    2010-01-01

    The conceptual design of a heavy ion fusion driver system is described, including all major components. Particular issues emerging from this exercise are identified and discussed. The most important conclusion of our study is that due to stringent requirements on ion pulse phase space, we are unable to find a credible accelerator design that meets the requirements of the example target. Either the target design must be modified to accept larger ion ranges and larger focal spot sizes, or we must consider other target options.

  20. High-power spallation target using a heavy liquid metal free surface flow

    International Nuclear Information System (INIS)

    Litfin, K.; Fetzer, J.R.; Batta, A.; Class, A.G.; Wetzel, Th.

    2015-01-01

    A prototype of a heavy liquid metal free surface target as proposed for the multi-purpose hybrid research reactor for high-tech applications in Mol, Belgium, has been set up and experimentally investigated at the Karlsruhe Liquid Metal Laboratory. A stable operation was demonstrated in a wide range of operating conditions and the surface shape was detected and compared with numerical pre-calculations employing Star-CD. Results show a very good agreement of experiment and numerical predictions which is an essential input for other windowless target designs like the META:LIC target for the European Spallation Source. (author)

  1. Effects of rotation on the stability of nuclei under fission and the possibility of fusion in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Kumar, K.

    1975-06-01

    The two-center shell model for fission is extended to include the effects of nuclear rotation or angular momentum J. The principle of minimization of total nuclear energy with respect to a constraint on J leads to an effective potential energy which depends on J as well as moment of inertia. This effective potential energy is minimized with respect to nuclear shape variables, neutron pairing energy gap, and proton pairing energy gap for each J value. The resulting potential minima, fission barriers, and moments of inertia are quite sensitive to J. Results are given for 208 82 Pb, 240 94 Pu, and for a super-heavy nucleus, 298 114 X. Microscopic calculations of the critical angular momentum (at which the fission barrier vanishes) are compared with the rotating liquid drop calculations of Cohen, Plasil, and Swiatecki. The influence of these results on the possibility of fusion in heavy-ion reactions is discussed. (5 figures, 6 tables) (U.S.)

  2. Systematics of the excitation of M1 resonances in medium heavy nuclei by 200 MeV proton inelastic scattering

    International Nuclear Information System (INIS)

    Djalali, C.; Marty, N.; Morlet, M.

    1982-01-01

    In a series of seventeen nuclei ranging from 51 V to 140 Ca, broad resonance structures are observed at energies between 8 and 10 MeV, nearly mass independent. These resonances have very forward peaked angular distributions which imply that they are populated by an angular momentum transfer of zero. This together with the observed excitation energies suggests an M1 character for these resonances. In 51 V, 58 Ni, 60 Ni, 62 Ni, a sharp peak located at an excitation energy above the threshold for neutron emission is interpreted as a part of the T 0+1 component of the M1 resonances. Cross-sections are given for all the M1 resonances. For 58 Ni, 90 Zr, 92 Mo, 120 Sn and 140 Ca, an ''attenuation'' factor for the cross-sections is extracted in a OWIA calculation assuming simple shell model structures for these resonances

  3. Implosion of multilayered cylindrical targets driven by intense heavy ion beams.

    Science.gov (United States)

    Piriz, A R; Portugues, R F; Tahir, N A; Hoffmann, D H H

    2002-11-01

    An analytical model for the implosion of a multilayered cylindrical target driven by an intense heavy ion beam has been developed. The target is composed of a cylinder of frozen hydrogen or deuterium, which is enclosed in a thick shell of solid lead. This target has been designed for future high-energy-density matter experiments to be carried out at the Gesellschaft für Schwerionenforschung, Darmstadt. The model describes the implosion dynamics including the motion of the incident shock and the first reflected shock and allows for calculation of the physical conditions of the hydrogen at stagnation. The model predicts that the conditions of the compressed hydrogen are not sensitive to significant variations in target and beam parameters. These predictions are confirmed by one-dimensional numerical simulations and thus allow for a robust target design.

  4. Radii of nuclei off stability

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo

    1982-01-01

    An experiment is proposed to determine systematically the radii of the nuclei produced through the projectile fragmentation process in high energy heavy-ion collision. The measurement of total reaction cross section using the projectile fragments of a single nuclide on a target give information about nuclear radii. The production cross section of the fragments is appreciable for many nuclides. Therefore, it is possible to map systematically the reaction radii of the nuclei which can be produced as the projectile fragments. In an experiment using the projectile fragments as the incident beam, the cross section can be expressed as a function of the radii of a projectile and a target. An experiment with He-8 produced by the fragmentation of C-12 is proposed. The He-8 has four neutrons in the p-3/2 orbit outside the He-4 core. Proton and neutron distributions for He isotopes were calculated on the basis of the Hartree-Fock method. The information related to this kind of distribution can be obtained by the proposed experiment. The nuclear structure effect is seen in the nuclear radii of other unstable nuclei. The experimental examples of the isotope shift measurement and the excitation energy are presented. (Kato, T.)

  5. Homologous recombination in hybridoma cells: heavy chain chimeric antibody produced by gene targeting.

    OpenAIRE

    Fell, H P; Yarnold, S; Hellström, I; Hellström, K E; Folger, K R

    1989-01-01

    We demonstrate that murine myeloma cells can efficiently mediate homologous recombination. The murine myeloma cell line J558L was shown to appropriately recombine two transfected DNA molecules in approximately 30% of cells that received and integrated intact copies of both molecules. This activity was then exploited to direct major reconstructions of an endogenous locus within a hybridoma cell line. Production of antigen-specific chimeric heavy chain was achieved by targeting the human IgG1 h...

  6. Investigation of the relative abundance of heavy versus light nuclei in primary cosmic rays using underground muon bundles

    International Nuclear Information System (INIS)

    Sundaralingam, N.

    1993-01-01

    We study multiple muon events (muon bundles) recorded underground at a depth of 2090 mwe. To penetrate to this depth, the muons must have energies above 0.8 TeV at the Earth's surface; the primary cosmic ray nuclei which give rise to the observed muon bundles have energies at incidence upon the upper atmosphere of 10 to 10 5 TeV. The events are detected using the Soudan 2 experiment's fine grained tracking calorimeter which is surrounded by a 14 m x10 m x 31 m proportional tube array (the ''active shield''). Muon bundles which have at least one muon traversing the calorimeter, are reconstructed using tracks in the calorimeter together with hit patterns in the proportional tube shield. All ionization pulses are required to be coincident within 3 microseconds. A goal of this study is to investigate the relative nuclear abundances in the primary cosmic radiation around the ''knee'' region (10 3 - 10 4 TeV) of the incident energy spectrum. Four models for the nuclear composition of cosmic rays are considered: The Linsley model, the Constant Mass Composition model (CMC), the Maryland model and the Proton-poor model. A Monte Carlo which incorporates one model at a time is used to simulate events which are then reconstructed using the same computer algorithms that are used for the data. Identical cuts and selections are applied to the data and to the simulated events

  7. Molecular dynamics simulations of ion range profiles for heavy ions in light targets

    Energy Technology Data Exchange (ETDEWEB)

    Lan, C. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Xue, J.M. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Zhang, Y., E-mail: Zhangy1@ornl.gov [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Morris, J.R. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zhu, Z. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Gao, Y.; Wang, Y.G.; Yan, S. [State Key Laboratory of Nuclear Physics and Technology, Peking University, 100871 (China); Weber, W.J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-09-01

    The determination of stopping powers for slow heavy ions in targets containing light elements is important to accurately describe ion-solid interactions, evaluate ion irradiation effects and predict ion ranges for device fabrication and nuclear applications. Recently, discrepancies of up to 40% between the experimental results and SRIM (Stopping and Range of Ions in Matter) predictions of ion ranges for heavy ions with medium and low energies (<{approx}25 keV/nucleon) in light elemental targets have been reported. The longer experimental ion ranges indicate that the stopping powers used in the SRIM code are overestimated. Here, a molecular dynamics simulation scheme is developed to calculate the ion ranges of heavy ions in light elemental targets. Electronic stopping powers generated from both a reciprocity approach and the SRIM code are used to investigate the influence of electronic stopping on ion range profiles. The ion range profiles for Au and Pb ions in SiC and Er ions in Si, with energies between 20 and 5250 keV, are simulated. The simulation results show that the depth profiles of implanted ions are deeper and in better agreement with the experiments when using the electronic stopping power values derived from the reciprocity approach. These results indicate that the origin of the discrepancy in ion ranges between experimental results and SRIM predictions in the low energy region may be an overestimation of the electronic stopping powers used in SRIM.

  8. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6 He and 3 H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay

  9. Studies on radiation symmetrization in heavy-ion driven hohlraum targets

    International Nuclear Information System (INIS)

    Temporal, M.; Atzeni, S.

    1993-01-01

    Radiation symmetrization within spherical, ellipsoidal and cylindral hohlraum targets for heavy ion inertial confinement fusion (ICF) is studied by means of a 3-D numerical, static model, in which realistic assumptions are made concerning the geometry of the system and, particularly, of the radiation converters. Among the systems so far studied, only spherical hohlraums with six converters achieve the illumination symmetry of the fusion capsule considered necessary for ICF applications. A parametric study of cylindrical hohlraums enlightens the effect of several parameter changes, and suggests directions for further studies, aiming at the design of two-converter targets

  10. ZIRCONIUM—HAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Akram, W.; Schönbächler, M. [School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Sprung, P. [Institut für Planetologie, Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Vogel, N. [Institute for Geochemistry and Petrology, ETH, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (≤1ε in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (∼2ε). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ≤ 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ☉}) SNII.

  11. Measurement of elliptic flow of light nuclei at √{sN N}=200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, Y.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, H.; Xu, Z.; Xu, J.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Yang, Y.; Yang, S.; Yang, C.; Yang, Y.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, Z.; Zhang, J. B.; Zhang, S.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-09-01

    We present measurements of second-order azimuthal anisotropy (v2) at midrapidity (|y |<1.0 ) for light nuclei d ,t ,3He (for √{sN N}=200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and antinuclei d ¯ (√{sN N}=200 , 62.4, 39, 27, and 19.6 GeV) and ¯3He (√{sN N}=200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The v2 for these light nuclei produced in heavy-ion collisions is compared with those for p and p ¯. We observe mass ordering in nuclei v2(pT) at low transverse momenta (pT<2.0 GeV/c ). We also find a centrality dependence of v2 for d and d ¯. The magnitude of v2 for t and 3He agree within statistical errors. Light-nuclei v2 are compared with predictions from a blast-wave model. Atomic mass number (A ) scaling of light-nuclei v2(pT) seems to hold for pT/A <1.5 GeV /c . Results on light-nuclei v2 from a transport-plus-coalescence model are consistent with the experimental measurements.

  12. Size of lethality target in mouse immature oocytes determined with accelerated heavy ions.

    Science.gov (United States)

    Straume, T; Dobson, R L; Kwan, T C

    1989-01-01

    Mouse immature oocytes were irradiated in vivo with highly charged, heavy ions from the Bevalac accelerator at the Lawrence Berkeley Laboratory. The particles used were 670-MeV/nucleon Si14+, 570-MeV/nucleon Ar18+, and 450-MeV/nucleon Fe26+. The cross-sectional area of the lethality target in these extremely radiosensitive cells was determined from fluence-response curves and information on energy deposition by delta rays. Results indicate a target cross-section larger than that of the nucleus, one which closely approximates the cross-sectional area of the entire oocyte. For 450-MeV/nucleon Fe26+ particles, the predicted target cross-sectional area is 120 +/- 16 microns2, comparing well with the microscopically determined cross-sectional area of 111 +/- 12 microns2 for these cells. The present results are in agreement with our previous target studies which implicate the oocyte plasma membrane.

  13. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    International Nuclear Information System (INIS)

    Korostiy, S.

    2007-01-01

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of 48 Ca 6+ - 48 Ca 10+ and 26 Mg 5+ ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K α spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  14. Spectroscopic investigation of the charge dynamics of heavy ions penetrating solid and gaseous targets

    Energy Technology Data Exchange (ETDEWEB)

    Korostiy, S

    2007-01-15

    This thesis presents the study of the slowing down process of fast heavy ions inside matter. In the framework of this research, the influence of the target density on the stopping process is investigated. Experiments on the interaction of {sup 48}Ca{sup 6+}-{sup 48}Ca{sup 10+} and {sup 26}Mg{sup 5+} ion beams with initial energies of 11.4 MeV/u and 5.9 MeV/u with solid and gaseous targets have been carried out. A novel diagnostic method, X-ray spectroscopy of K-shell projectile radiation, is used to determine the ion charge state in relation to its velocity during the penetration of fast heavy ions inside the stopping material. A spatially resolved analysis of the projectile and target radiation in solids is achieved for the first time. The application of low-density silica aerogels as stopping media provided a stretching of the ion stopping length by 20 - 100 times in comparison with solid quartz. The Doppler Effect observed on the projectile K-shell spectra is used to calculate the ion velocity in dependence on the ion penetration depth in the target material. A comparative analysis of K{sub {alpha}} spectra of fast heavy ions is performed in solid (silica aerogels) and gaseous targets (Ar and Ne gases) at the same ion energy. It is shown that the dominant role of collisions in dense matter leads to an increase of the effective ionization cross section at high ion velocity and suppression of the electron capture to the projectile ion excited states at low ion velocity. As a result, an increase of the ion charge state in dense matter is observed. The experimentally detected effects are interpreted with numerical calculations of the projectile population kinetics, which are in good agreement with measurements. (orig.)

  15. Continuous energy Neutron Transport Monte Carlo Simulator Project: Decomposition of the neutron energy spectrum by target nuclei tagging

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos, Luiz Felipe F.C.; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B., E-mail: luizfelipe.fcb@gmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares; Leite, Sergio Q. Bogado, E-mail: sbogado@ibest.com.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this work a Monte Carlo simulator with continuous energy is used. This simulator distinguishes itself by using the sum of three probability distributions to represent the neutron spectrum. Two distributions have known shape, but have varying population of neutrons in time, and these are the fission neutron spectrum (for high energy neutrons) and the Maxwell-Boltzmann distribution (for thermal neutrons). The third distribution has an a priori unknown and possibly variable shape with time and is determined from parametrizations of Monte Carlo simulation. It is common practice in neutron transport calculations, e.g. multi-group transport, to consider that the neutrons only lose energy with each scattering reaction and then to use a thermal group with a Maxwellian distribution. Such an approximation is valid due to the fact that for fast neutrons up-scattering occurrence is irrelevant, being only appreciable at low energies, i.e. in the thermal energy region, in which it can be regarded as a Maxwell-Boltzmann distribution for thermal equilibrium. In this work the possible neutron-matter interactions are simulated with exception of the up-scattering of neutrons. In order to preserve the thermal spectrum, neutrons are selected stochastically as being part of the thermal population and have an energy attributed to them taken from a Maxwellian distribution. It is then shown how this procedure can emulate the up-scattering effect by the increase in the neutron population kinetic energy. Since the simulator uses tags to identify the reactions it is possible not only to plot the distributions by neutron energy, but also by the type of interaction with matter and with the identification of the target nuclei involved in the process. This work contains some preliminary results obtained from a Monte Carlo simulator for neutron transport that is being developed at Federal University of Rio Grande do Sul. (author)

  16. Calculations of the main free path on neutron emission cross-section for spallation reaction of target and fuel nuclei

    International Nuclear Information System (INIS)

    Tel, E.; Kisoglu, H. F.; Topaksu, A. K.; Aydin, A.; Kaplan, A.

    2007-01-01

    There are several new technological application fields of fast neutrons such as accelerator-driven incineration/ transmutation of the long-lived radioactive nuclear wastes (in particular transuranium nuclides) to short-lived or stable isotopes by secondary spallation neutrons produced by high-intensity, intermediate-energy, charged-particle beams, prolonged planetary space missions, shielding for particle accelerators. Especially, accelerator driven subcritical systems (ADS) can be used for fission energy production and /or nuclear waste transmutation as well as in the intermediate-energy accelerator driven neutron sources, ions and neutrons with energies beyond 20 MeV, the upper limit of exiting data files that produced for fusion and fission applications. In these systems, the neutron scattering cross sections and emission differential data are very important for reactor neutronics calculations. The transition rate calculation involves the introduction of the parameter of mean free path determines the mean free path of the nucleon in the nuclear matter. This parameter allows an increase in mean free path, with simulation of effect, which is not considered in the calculations, such as conservation of parity and angular momentum in intra nuclear transitions. In this study, we have investigated the multiple preequilibrium matrix element constant from internal transition for Uranium, Thorium, (n,xn) neutron emission spectra. The neutron-emission spectra produced by (n,xn) reactions on nuclei of some target (for spallation) have been calculated. In the calculations, we have used the geometry dependent hybrid model and the cascade exciton model including the effects of the preequilibrium. The pre-equilibrium direct effects have been examined by using full exciton model. All calculated results have been compared with the experimental data. The obtained results have been discussed and compared with the available experimental data and found agreement with each other

  17. Cross-sections of residual nuclei from deuteron irradiation of thin thorium target at energy 7 GeV

    Directory of Open Access Journals (Sweden)

    Vespalec Radek

    2017-01-01

    Full Text Available The residual nuclei yields are of great importance for the estimation of basic radiation-technology characteristics (like a total target activity, production of long-lived nuclides etc. of accelerator driven systems planned for transmutation of spent nuclear fuel and for a design of radioisotopes production facilities. Experimental data are also essential for validation of nuclear codes describing various stages of a spallation reaction. Therefore, the main aim of this work is to add new experimental data in energy region of relativistic deuterons, as similar data are missing in nuclear databases. The sample made of thin natural thorium foil was irradiated at JINR Nuclotron accelerator with a deuteron beam of the total kinetic energy 7 GeV. Integral number of deuterons was determined with the use of aluminum activation detectors. Products of deuteron induced spallation reaction were qualified and quantified by means of gamma-ray spectroscopy method. Several important spectroscopic corrections were applied to obtain results of high accuracy. Experimental cumulative and independent cross-sections were determined for more than 80 isotopes including meta-stable isomers. The total uncertainty of results rarely exceeded 9%. Experimental results were compared with MCNP6.1 Monte-Carlo code predictions. Generally, experimental and calculated cross-sections are in a reasonably good agreement, with the exception of a few light isotopes in a fragmentation region, where the calculations are highly under-estimated. Measured data will be useful for future development of high-energy nuclear codes. After completion, final data will be added into the EXFOR database.

  18. Pseudomagic nuclei

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1979-01-01

    It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references

  19. Nuclear structure studies of neutron-rich heavy nuclei by mass measurements of francium and radium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbusch, Marco [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, 17487 Greifswald (Germany); Collaboration: ISOLTRAP-Collaboration

    2013-07-01

    The mass is a unique property of an atomic nucleus reflecting its binding energy and thus the sum of all interactions at work. Precise measurements of nuclear masses especially of short-lived exotic nuclides provide important input for nuclear structure, nuclear astrophysics, tests of the Standard Model, and weak interaction studies. The Penning-trap mass spectrometer ISOLTRAP at the on-line isotope separator ISOLDE/CERN has been set up for precision mass measurements and continuously improved for accessing more exotic nuclides. The mass uncertainty is typically δm / m=10{sup -8} and the accessible half-life has been reduced to about 50 ms. In this contribution, the results of a measurement campaign of neutron-rich francium and radium isotopes will be presented, i.e. the masses of the isotopic chain of {sup 224-233}Fr and {sup 233,234}Ra, one of the most neutron-rich ensemble obtainable at ISOL facilities. The mass {sup 234}Ra denotes the heaviest mass ever measured with ISOLTRAP. Experimental data in the neutron-rich, heavy mass region is of great interest for studies of structural evolution far from stability, especially because the knowledge from nuclear mass models is scarce. The impact of the new data on the physics in this mass region as well as recent technical developments of ISOLTRAP are discussed.

  20. Study of nuclear reactions involving heavy nuclei and intermediate- and high-energy protons and an application in nuclear reactor physics (ADS)

    International Nuclear Information System (INIS)

    Matuoka, Paula Fernanda Toledo

    2016-01-01

    In the present work, intermediate- and high-energy nuclear reactions involving heavy nuclei and protons were studied with the Monte Carlo CRISP (Rio - Ilheus - Sao Paulo Collaboration) model. The most relevant nuclear processes studied were intranuclear cascade and fission-evaporation competition. Preliminary studies showed fair agreement between CRISP model calculation and experimental data of multiplicity of evaporated neutrons (E 20 MeV) were emitted mostly in the intranuclear cascade stage, while evaporation presented larger neutron multiplicity. Fission cross section of 209 mb and spallation cross section of 1788 mb were calculated { both in agreement with experimental data. The fission process resulted in a symmetric mass distribution. Another Monte Carlo code, MCNP, was used for radiation transport in order to understand the role of a spallation neutron source in a ADS (Accelerator Driven System) nuclear reactor. Initially, a PWR reactor was simulated to study the isotopic compositions in spent nuclear fuel. As a rst attempt, a spallation neutron source was adapted to an industrial size nuclear reactor. The results showed no evidence of incineration of transuranic elements and modifications were suggested. (author)

  1. Study of a new magnetic dipole mode in the heavy deformed nuclei 154Sm, 156Gd, 158Gd, 164Dy, 168Er, and 174Yb by high-resolution electron spectroscopy

    International Nuclear Information System (INIS)

    Bohle, D.

    1985-01-01

    By inelastic electron scattering with high energy resolution a new magnetic dipole mode in heavy, deformed nuclei could be detected. For this the nuclei 154 Sm, 156 Gd, 158 Gd, 164 Dy, 168 Er, and 174 Yb were studied at the Darmstadt electron linear accelerator (DALINAC) at small momentum transfer q ≤ 0.6 fm -1 and low excitation energies. A collective magnetic dipole excitation could be discovered in all nuclei at an excitation energy of E x ≅ 66 δA -1/3 MeV whereby δ means the mass deformation. The transition strength extends in the mean to B(M1)↑ ≅ 1.3 μ N 2 . A systematic study of the nucleus 156 Gd yielded hints to a strong fragmentation of the magnetic dipole strength. A comparison of electron scattering, proton scattering, and nuclear resonance fluorescence experiments shows that the new mode is a pure orbital mode. (orig./HSI) [de

  2. Experimental and theoretical study of heavy ion slowing down in solid targets

    International Nuclear Information System (INIS)

    Mehana, A.

    1993-06-01

    Heavy ion energy losses in C, Al, Cu, Ag, Ta and Au solid targets have been measured at high energy (0.2 to 5 MeV/u), using the backward secondary ion technique, and at low energy (0.1 to 0.25 MeV/u) for the C, N and O ions, using the particle backscatter method. A brief review of the various matter-induced charged particle slowing down theories, and especially the Lindhard dielectric theory, is first presented. Then, the various models for the evaluation of the effective charge and of the high order correction, are discussed and compared. Experimental techniques and data processing methods are described, and the experimental results are compared to calculations derived from the dielectric theory. In particular, the effective charges and the high order corrections (Barkas-Bloch) are examined and compared to the models for the determination of the z 3 and z 4 terms for heavy ions

  3. Experimental study of energy dependence of proton induced fission cross sections for heavy nuclei in the energy range 200-1000 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, A.A.; Gavrikov, Yu.A.; Vaishnene, L.A.; Vovchenko, V.G.; Poliakov, V.V.; Fedorov, O.Ya.; Chestnov, Yu.A.; Shchetkovskiy, A.I [Petersburg Nuclear Physics Institute, Gatchina, Leningrad district, Orlova roscha 1, 188300 (Russian Federation); Fukahori, T. [Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki 319-1195 (Japan)

    2005-07-01

    The results of the total fission cross sections measurements for {sup nat}Pb, {sup 209}Bi, {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu nuclei at the energy proton range 200-1000 MeV are presented. Experiments were carried out at 1 GeV synchrocyclotron of Petersburg Nuclear Physics Institute (Gatchina). The measurement method is based on the registration in coincidence of both complementary fission fragments by two gas parallel plate avalanche counters, located at a short distance and opposite sides of investigated target. The insensitivity of parallel plate avalanche counters to neutron and light charged particles allowed us to place the counters together with target immediately in the proton beam providing a large solid angle acceptance for fission fragment registration and reliable identification of fission events. The proton flux on the target to be studied was determined by direct counting of protons by scintillation telescope. The measured energy dependence of the total fission cross sections is presented. Obtained results are compared with other experimental data as well as with calculation in the frame of the cascade evaporation model. (authors)

  4. Progress towards a high-gain and robust target design for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, Enrique; Grant Logan, B. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2012-07-15

    Recently [E. Henestroza et al., Phys. Plasmas 18, 032702 (2011)], a new inertial-fusion target configuration, the X-target, using one-sided axial illumination has been explored. This class of target uses annular and solid-profile heavy ion beams to compress and ignite deuterium-tritium (DT) fuel that fills the interior of metal cases that have side-view cross sections in the shape of an 'X.' X-targets using all-DT-filled metal cases imploded by three annular ion beams resulted in fuel densities of {approx}50 g/cm{sup 3} at peak compression, and fusion gains of {approx}50, comparable to heavy ion driven hohlraum targets [D. A. Callahan-Miller and M. Tabak, Phys. Plasmas 7, 2083 (2000)]. This paper discusses updated X-target configurations that incorporate inside the case a propellant (plastic) and a pusher (aluminum) surrounding the DT fuel. The updated configurations are capable of assembling higher fuel areal densities {approx}2 g/cm{sup 2} using two annular beams to implode the target to peak DT densities {approx}100 g/cm{sup 3}, followed by a fast-ignition solid ion beam which heats the high-density fuel to thermonuclear temperatures in {approx}200 ps to start the burn propagation, obtaining gains of {approx}300. These targets have been modeled using the radiation-hydrodynamics code HYDRA [M. M. Marinak et al., Phys. Plasmas 8, 2275 (2001)] in two- and three- dimensions to study the properties of the implosion as well as the ignition and burn propagation phases. At typical Eulerian mesh resolutions of a few microns, the aluminum-DT interface shows negligible Rayleigh-Taylor (RT) and Richtmyer-Meshkov instability growth; also, the shear flow of the DT fuel as it slides along the metal X-target walls, which drives the RT and Kelvin Helmholtz instabilities, does not have a major effect on the burning rate. An analytic estimate of the RT instability process at the Al-DT interface shows that the aluminum spikes generated during the pusher deceleration phase

  5. Collisions between complex atomic nuclei

    International Nuclear Information System (INIS)

    Vaagen, J. S.

    1977-08-01

    The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)

  6. Development of nuclear data library for nucleon-induced reactions on heavy nuclei in wide energy region. Final Project Technical Report on the work performed from 01.12.2003 to 30.04.2007

    Energy Technology Data Exchange (ETDEWEB)

    Yavshits, S G [V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2011-05-15

    scattering; - fission cross section (for heavy nuclei); - double differential cross sections of secondary protons and neutrons - multiplicities of secondary particles; - mass distribution of fission fragments. The development of model insight on reactions induced by nucleons in the intermediate energy region allows to obtain new information about fundamental processes in excited nuclei. The code developed give possibility both participants of the project and other experts to analyze new experimental data obtained after completion of the project. The libraries of nuclear data generated in the international ENDF-6 format can be directly used for design of new nuclear facilities, for calculations of radiation transport and activation in structural elements. The developed libraries will be accessible to all institutions and experts dealing with development of hybrid technologies.

  7. Study of the break reaction of Be11 on Ti48 target; the towing mode: a spectroscopic tool for the study of nuclei

    International Nuclear Information System (INIS)

    Lima, V.

    2004-10-01

    In a towing mode reaction the projectile picks up a nucleon from the target and then breaks up by emitting one nucleon. The velocity of the emitted nucleon is boosted by the projectile velocity, leading to the emission of the nucleon in a narrow cone around the direction of the scattered projectile. This work is dedicated to the towing mode in halo nuclei such as Be 11 . The experiment was performed at Ganil facility by bombarding a Ti 48 target with a 41 MeV per nucleon Be 11 beam, the reaction studied is: Ti 48 (Be 11 , Be 10 + n + γ). The first chapter reviews the various nuclear processes that take place when 2 nuclei collide with a particular attention for the towing mode. The second chapter is dedicated to solving the time dependant Schroedinger equation (TDSE) in order to assess the impact of various parameters such as incident energy, target charge or the linking energy of the nucleon, on the towing mode reaction. The third chapter deals with the experimental equipment and set-up including detectors and the data acquisition system. Computerized simulations have been performed in order to assess the efficiency of the detecting system, they are presented in the fourth chapter. A comparison between experimental data and the results from TDSE solving, concerning the energy spectra of the emitted particles, has enabled the author to deduce the spectroscopic factors for the different contributions of the fundamental state of Be 11 , they are presented in the last chapter. The cross-sections of the towing mode are of the magnitude of several tens of milli-barns in the case of weakly bound nuclei like Be 11 which make it an efficient tool to study intern structure of nuclei. (A.C.)

  8. Towards a novel laser-driven method of exotic nuclei extraction−acceleration for fundamental physics and technology

    Energy Technology Data Exchange (ETDEWEB)

    Nishiuchi, M., E-mail: sergei@jaea.go.jp; Sakaki, H.; Esirkepov, T. Zh. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Nishio, K. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Pikuz, T. A.; Faenov, A. Ya. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Skobelev, I. Yu. [Russian Academy of Sciences, Joint Institute for High Temperature (Russian Federation); Orlandi, R. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Koura, H. [Japan Atomic Energy Agency, Advanced Science Research Center (Japan); Kando, M. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); Yamauchi, T. [Graduate School of Maritime Sciences (Japan); Watanabe, Y. [Kyushu University, Interdisciplinary Graduate School of Engineering Sciences (Japan); Bulanov, S. V., E-mail: svbulanov@gmail.com; Kondo, K. [Japan Atomic Energy Agency, Kansai Photon Science Institute (Japan); and others

    2016-04-15

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction–acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  9. Population of Nuclei Via 7Li-Induced Binary Reactions

    International Nuclear Information System (INIS)

    Clark, Rodney M.; Phair, Larry W.; Descovich, M.; Cromaz, Mario; Deleplanque, M.A.; Fall on, Paul; Lee, I-Yang; Macchiavelli, A.O.; McMahan, Margaret A.; Moretto, Luciano G.; Rodriguez-Vieitez, E.; Sinha, Shrabani; Stephens, Frank S.; Ward, David; Wiedeking, Mathis

    2005-01-01

    The authors have investigated the population of nuclei formed in binary reactions involving 7 Li beams on targets of 160 Gd and 184 W. The 7 Li + 184 W data were taken in the first experiment using the LIBERACE Ge-array in combination with the STARS Si ΔE-E telescope system at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory. By using the Wilczynski binary transfer model, in combination with a standard evaporation model, they are able to reproduce the experimental results. This is a useful method for predicting the population of neutron-rich heavy nuclei formed in binary reactions involving beams of weakly bound nuclei formed in binary reactions involving beams of weakly bound nuclei and will be of use in future spectroscopic studies

  10. Uranium fluoride and metallic uranium as target materials for heavy-element experiments at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, Birgit [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany)], E-mail: b.kindler@gsi.de; Ackermann, Dieter; Hartmann, Willi; Hessberger, Fritz Peter; Hofmann, Sigurd; Huebner, Annett; Lommel, Bettina; Mann, Rido; Steiner, Jutta [Gesellschaft fuer Schwerionenforschung (GSI), Planckstrasse 1, D-64291 Darmstadt (Germany)

    2008-06-01

    In this contribution we describe the production and application of uranium targets for synthesis of heavy elements. The targets are prepared from uranium fluoride (UF{sub 4}) and from metallic uranium with thin carbon foils as backing. Targets of UF{sub 4} were produced by thermal evaporation in a similar way as the frequently applied targets out of Bi, Bi{sub 2}O{sub 3}, Pb, PbS, SmF{sub 3}, and NdF{sub 3,} prepared mostly from isotopically enriched material [Birgit Kindler, et al., Nucl. Instr. and Meth. A 561 (2006) 107; Bettina Lommel, et al., Nucl. Instr. and Meth. A 561 (2006) 100]. In order to use more intensive beams and to avoid scattering of the reaction products in the target, metallic uranium is favorable. However, evaporation of metallic uranium is not feasible at a sustainable yield. Therefore, we established magnetron sputtering of metallic uranium. We describe production and properties of these targets. First irradiation tests show promising results.

  11. Investigation of the heavy nuclei fission with anomalously high values of the fission fragments total kinetic energy

    Science.gov (United States)

    Khryachkov, Vitaly; Goverdovskii, Andrei; Ketlerov, Vladimir; Mitrofanov, Vecheslav; Sergachev, Alexei

    2018-03-01

    Binary fission of 232Th and 238U induced by fast neutrons were under intent investigation in the IPPE during recent years. These measurements were performed with a twin ionization chamber with Frisch grids. Signals from the detector were digitized for further processing with a specially developed software. It results in information of kinetic energies, masses, directions and Bragg curves of registered fission fragments. Total statistics of a few million fission events were collected during each experiment. It was discovered that for several combinations of fission fragment masses their total kinetic energy was very close to total free energy of the fissioning system. The probability of such fission events for the fast neutron induced fission was found to be much higher than for spontaneous fission of 252Cf and thermal neutron induced fission of 235U. For experiments with 238U target the energy of incident neutrons were 5 MeV and 6.5 MeV. Close analysis of dependence of fission fragment distribution on compound nucleus excitation energy gave us some explanation of the phenomenon. It could be a process in highly excited compound nucleus which leads the fissioning system from the scission point into the fusion valley with high probability.

  12. Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of 18O on a 238U target

    Science.gov (United States)

    Stefan, I.; Fornal, B.; Leoni, S.; Azaiez, F.; Portail, C.; Thomas, J. C.; Karpov, A. V.; Ackermann, D.; Bednarczyk, P.; Blumenfeld, Y.; Calinescu, S.; Chbihi, A.; Ciemala, M.; Cieplicka-Oryńczak, N.; Crespi, F. C. L.; Franchoo, S.; Hammache, F.; Iskra, Ł. W.; Jacquot, B.; Janssens, R. V. F.; Kamalou, O.; Lauritsen, T.; Lewitowicz, M.; Olivier, L.; Lukyanov, S. M.; Maccormick, M.; Maj, A.; Marini, P.; Matea, I.; Naumenko, M. A.; de Oliveira Santos, F.; Petrone, C.; Penionzhkevich, Yu. E.; Rotaru, F.; Savajols, H.; Sorlin, O.; Stanoiu, M.; Szpak, B.; Tarasov, O. B.; Verney, D.

    2018-04-01

    Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example.

  13. The Equilibrium and Pre-equilibrium Triton Emission Spectra of Some Target Nuclei for ( n, xt) Reactions up to 45 MeV Energy

    Science.gov (United States)

    Tel, E.; Kaplan, A.; Aydın, A.; Özkorucuklu, S.; Büyükuslu, H.; Yıldırım, G.

    2010-08-01

    Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, working out the systematics of ( n,t) reaction cross sections and triton emission differential data are important for the given reaction taking place on various nuclei at different energies. In this study, ( n,xt) reactions for some target nuclei as 16O, 27Al, 59Co and 209Bi have been investigated up to 45 MeV incident neutron energy. In the calculations of the triton emission spectra, the pre-equilibrium and equilibrium effects have been used. The calculated results have been compared with the experimental data taken from the literature.

  14. Emission of low-energetic electrons in collisions of heavy ions with solid targets

    International Nuclear Information System (INIS)

    Lineva, Natallia

    2008-07-01

    At the UNILAC accelerator, we have initiated a project with the objective to investigate lowenergy electrons, emitted from solid, electrically conductive targets after the impact of swift light and heavy ions. For this purposes, we have installed, optimized, and put into operation an electrostatic toroidal electron spectrometer. First, investigations of electrons, emitted from solid-state targets after the bombardment with a monochromatic electron beam from an electron gun, has been carried out. The proposed method combines the results of the measurements with the results of dedicated Monte Carlo simulations. The method has been elaborated in a case study for carbon targets. The findings have been instrumental for the interpretation of our measurements of electrons emitted in collisions of swift ions with the same carbon targets. Our investigations focused on following ion beams: protons and (H + 3 )-molecules of the same energy, as well as on carbon ions with two different energies. Thin carbon, nickel, argon and gold foils has been used as targets. Electrons in the energy range between 50 eV and 1 keV have been investigated. The measured electron distributions, both integral as well as differential with respect to the polar angle, have been compared to simple standard theories for gases as well as to the results of TRAX simulations, the latter being based on data from gaseous targets. Dedicated TRAX simulations have been performed only for the carbon targets, applying the method mentioned above. Within our experimental uncertainties, we observe a good agreement of the measured and TRAX simulated data. That leads us to the conclusion that - as a first order approximation - the electron emission pattern from ion-atom collisions in solid-state targets and the one from single collisions in gases are similar. (orig.)

  15. A mask for high-intensity heavy-ion beams in the MAYA active target

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Tajes, C., E-mail: rodriguez@ganil.fr [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Pancin, J.; Damoy, S.; Roger, T.; Babo, M. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Caamaño, M. [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Farget, F.; Grinyer, G.F.; Jacquot, B.; Pérez-Loureiro, D. [Grand Accélérateur National d' Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen (France); Ramos, D. [Universidade de Santiago de Compostela, E-15706 Santiago de Compostela (Spain); Suzuki, D. [Institut de Physique Nucléaire, Université Paris-Sud 11, CNRS/IN2P3, F-91406 Orsay (France)

    2014-12-21

    The use of high-intensity and/or heavy-ion beams in active targets and time-projection chambers is often limited by the strong ionization produced by the beam. Besides the difficulties associated with the saturation of the detector and electronics, beam-related signals may hide the physical events of interest or reduce the detector performance. In addition, space-charge effects may deteriorate the homogeneity of the electric drift field and distort the subsequent reconstruction of particle trajectories. In anticipation of future projects involving such conditions, a dedicated beam mask has been developed and tested in the MAYA active target. Experimental results with a {sup 136}Xe beam are presented.

  16. Structures excited by heavy ions in 208Pb target. Interpretation involving giant resonances and multiphonon excitations

    International Nuclear Information System (INIS)

    Chomaz, P.

    1984-01-01

    Kinetic energy spectra of heavy fragments from the 36Ar+208Pb reaction at 11 MeV/n and 20 Ne+ 208 Pb at 30 MeV/n have been measured with a time of flight spectrometer. Numerous structures ranging up to 100 MeV excitation energy are observed in the inelastic and few nucleon transfer channels. These structures are shown to be due to an excitation of the 208 Pb target nucleus and not to decay products of excited ejectiles. Positions of low lying structures (E* 208 Pb. The linear response of the target nucleus to the external field created by the projectile is calculated microscopically in the Random Phase Approximation resolved using the Green's function method in coordinate space with a Skyrme interaction. In the independant quasi-boson approximation multiple phonon excitations reproduce the main features of the experimental data and appear as a plausible interpretation of the observed structures. The theoretical calculations and experimental observations suggest that multiphonon excitations play an important role in heavy ion reactions and contribute strongly to the kinetic energy dissipation [fr

  17. Target design for the cylindrical compression of matter driven by heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A.R. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)]. E-mail: roberto.piriz@uclm.es; Temporal, M. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Lopez Cela, J.J. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Grandjouan, N. [LULI, UMR 7605, Ecole Polytechnique-CNRS-CEA-Universite Paris VI, Palaiseau (France); Tahir, N.A. [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany); Serna Moreno, M.C. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Portugues, R.F. [E. T. S. I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Hoffmann, D.H.H. [GSI Darmstadt, Plankstrasse 1, 64291 Darmstadt (Germany)

    2005-05-21

    The compression of a cylindrical sample of hydrogen contained in a hollow shell of Pb or Au has been analyzed in the framework of the experiments to be performed in the heavy ion synchrotron SIS100 to be constructed at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. The target implosion is driven by an intense beam of heavy ions with a ring-shaped focal spot. We report the results of a parametric study of the final state of the compressed hydrogen in terms of the target and beam parameters. We consider the generation of the annular heated region by means of a radio-frequency wobbler that rotates the beam at extremely high frequencies in order to accommodate symmetry constraints. We have also studied the hydrogen conditions that can be achieved with a non-rotating beam with Gaussian focal spot and the possibility to use a beam stopper as an alternative way to avoid the direct heating of the sample. Finally, we report the analysis of the hydrodynamic instabilities that affect the implosion and the mitigating effects of the elastoplastic properties of the shell.

  18. Target design for the cylindrical compression of matter driven by heavy ion beams

    International Nuclear Information System (INIS)

    Piriz, A.R.; Temporal, M.; Lopez Cela, J.J.; Grandjouan, N.; Tahir, N.A.; Serna Moreno, M.C.; Portugues, R.F.; Hoffmann, D.H.H.

    2005-01-01

    The compression of a cylindrical sample of hydrogen contained in a hollow shell of Pb or Au has been analyzed in the framework of the experiments to be performed in the heavy ion synchrotron SIS100 to be constructed at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. The target implosion is driven by an intense beam of heavy ions with a ring-shaped focal spot. We report the results of a parametric study of the final state of the compressed hydrogen in terms of the target and beam parameters. We consider the generation of the annular heated region by means of a radio-frequency wobbler that rotates the beam at extremely high frequencies in order to accommodate symmetry constraints. We have also studied the hydrogen conditions that can be achieved with a non-rotating beam with Gaussian focal spot and the possibility to use a beam stopper as an alternative way to avoid the direct heating of the sample. Finally, we report the analysis of the hydrodynamic instabilities that affect the implosion and the mitigating effects of the elastoplastic properties of the shell

  19. Calculation of the radii of neutron rich light exotic nuclei

    International Nuclear Information System (INIS)

    Charagi, S.K.; Gupta, S.K.

    1991-01-01

    The interaction cross section of a few unstable neutron rich nuclei have been measured using exotic isotope beams produced through the projectile fragmentation process in high energy heavy-ion collisions. Interaction cross section of He, Li, Be and B isotope projectiles with Be, C and Al targets have thus been measured at 790 MeV/nucleon. We have made a comprehensive analysis of the data on the interaction cross section, to extract the radii of these neutron rich light nuclei. 7 refs., 1 fig., 3 tabs

  20. Study on decay of rare earth nuclei produced by fission

    Energy Technology Data Exchange (ETDEWEB)

    Kawade, Kiyoshi; Yamamoto, Hiroshi; Shibata, Michihiro; Asai, Masato [Nagoya Univ. (Japan); Tsukada, Kazuaki; Osa, Akihiko; Shinohara, Nobuo; Iimura, Hideki

    1996-01-01

    JAERI-ISOL utilizes charge particle induced fission by proton and heavy proton produced by the tandem type accelerator (JAERI). To study the decay mechanism and nuclei structure of neutron and excess nuclei produced by actinoid fission, JAERI-ISOL was improved by developing the multilayer target tank. So that, the intensity of mass separated ion beam increased enough to use. New 76.6 KeV {gamma}-ray with about 10s of half life was found in the preliminary experiment. (S.Y.)

  1. Imaging of Nuclear Fragmentation in Nuclear Track Emulsion Relativistic Nuclei

    International Nuclear Information System (INIS)

    Zarubina, I.G. JINR

    2011-01-01

    The method of nuclear track emulsion provides a uniquely complete observation of multiple fragment systems produced in dissociation of relativistic nuclei. The most valuable events of coherent dissociation of nuclei in narrow jets of light and the lightest nuclei with a net charge as in the initial nucleus, occurring without the production of fragments of the target nuclei and mesons (the so-called w hite s tars), comprise a few percent among the observed interactions. The data on this phenomenon are fragmented, and the interpretation is not offered. The dissociation degree of light O, Ne, Mg and Si, and as well as heavy Au, Pb and U nuclei may reach a complete destruction to light and the lightest nuclei and nucleons, resulting in cluster systems of an unprecedented complexity. Studies with relativistic neutron-deficient nuclei have special advantages due to more complete observations. An extensive collection of macro videos of such interactions in nuclear track emulsion gathered by the Becquerel collaboration is presented

  2. Numerical simulation of performance of heavy ion inertial confinement fusion target with ellipsoidal chamber

    International Nuclear Information System (INIS)

    Basin, A.A.; Vatulin, V.V.; Vakhlamova, L.L.; Vinokurov, P.A.; Dement'ev, Yu.A.; Eliseev, G.M.; Ermolovich, V.F.; Morenko, L.Z.; Morenko, A.I.; Remizov, G.N.; Romanov, Yu.A.; Ryabikina, N.A.; Skrypnik, S.I.; Skidan, G.I.; Tikhomirov, B.P.; Shagaliev, R.M.

    1996-01-01

    To solve the design problem of an inertial thermonuclear fusion facility requires the united efforts of scientists in various countries. In the field of heavy ion fusion a collaboration between scientists in Germany and Russia is under successful development. VNIIEF possesses advanced software for numerical simulation of the processes in thermonuclear target operation. This paper describes a target design suggested and being studied by scientists of Frankfurt University and GSI which is based on 2D non-stationary calculation of the X-ray energy transport and capsule compression. The target consists of a spherical capsule with DT fuel and an ellipsoidal chamber containment. The ion beam energy is released in two fixed converters located on the chamber axis symmetricall with respect to the capsule. The X-ray field is formed on the capsule surface with a set of special shields. The basic aim of our research is to estimate the effect of gas dynamic expansion of the chamber walls, shields and capsule on the target operation. To increase the reliability of the obtained results and the assessment of probable errors in predicting radiation field parameters and the capsule state, the calculations were accomplished in a kinetic arrangement with various techniques. (orig.)

  3. Decay patterns of target-like and projectile-like nuclei in 84Kr+197Au, natU reactions at E/A=150 MeV

    International Nuclear Information System (INIS)

    Quednau, B.M.; Galin, J.; Ledoux, X.; Crema, E.; Gebauer, B.; Hilscher, D.; Jahnke, U.; Jacquet, D.; Leray, S.; and others.

    1996-01-01

    The reactions 84 Kr+ 197 Au and 84 Kr+ nat U were studied at E/A=150 MeV employing the large-volume neutron multiplicity filter ORION at SATURNE. The observed correlations between the atomic number of projectile-like nuclei and neutron multiplicity indicate large excitation energies in the primary projectile- and target-like fragments. Angular correlations between the fission fragments of the U-like nucleus and the projectile-like fragments show a memory of the reaction plane, however no indications of spin effects are found. (author)

  4. Heavy ion and fixed target physics at LHCb: results and prospects

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In 2015, the LHCb collaboration endorsed the proposal to pursue an ambitious heavy ion physics program. In 2013, LHCb has demonstrated its capabilities to operate successfully in p-Pb and Pb-p collisions, leading already to several important publications in the field. The measurements of the nuclear modification factors and forward-backward production of prompt and displaced J/psi, psi(2S) and Upsilon states, as well as the production of prompt D0 mesons, have allowed to extend the knowledge of Cold Nuclear Matter effects on open heavy flavours and quarkonium production. The measurement of Z-boson production, important to constrain nuclear PDFs, and the measurement of two-particle angular correlations, probing collective effects in the dense environment of high energy collisions, have also been performed. Furthermore, LHCb is the only experiment at the LHC that can be operated in fixed-target mode, owing to the injection of a small amount of gas inside the LHCb collision area. There have been several p-gas an...

  5. Experimental fusion excitation functions and derived barrier distributions for heavy ion systems involving prolate and oblate target nuclei

    International Nuclear Information System (INIS)

    Bierman, J.D.; Chan, P.; Liang, J.F.; Kelly, M.P.; Sonzogni, A.A.; Vandenbosch, R.

    1996-01-01

    Fusion excitation functions spanning the entire barrier region in 1 MeV energy steps for the two systems 40 Ca + 192 Os, 194 Pt are presented. The results of fission fragment angular distribution measurements for fusion-fission of 40 Ca + 197 Au at several projectile energies within the barrier region are also presented. The fusion data is of high enough precision to allow for extraction of the distribution of fusion barriers from the second differential of the product of E and σ. Basic coupled channels calculations which are in quite good agreement with the data are shown and discussed

  6. Parametrization of the cross sections for complete disintegration of nuclei at relativistic energies

    International Nuclear Information System (INIS)

    Bogdanov, V.G.; Plyushchev, V.A.; Solov'eva, Z.I.

    1988-01-01

    A phenomenological analysis of observations of the complete disintegration of target nuclei in emulsions in relativistic heavy-ion reactions is given. On the basis of the probability of complete disintegration obtained from the observations it is possible to determine the value of the disintegration cross sections. A parametrizatio of these inelastic cross sections is formulated

  7. Exotic nuclei

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    1990-01-01

    The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)

  8. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  9. Perspectives of Super-Heavy Nuclei research with the upcoming separator-spectrometer setup S3 at GANIL/SPIRAL2 - The VAMOS Gas-Filled separator and AGATA

    Science.gov (United States)

    Theisen, Christophe

    2017-11-01

    Several facilities or apparatus for the synthesis and spectroscopy of the Super-Heavy Nuclei (SHN) are presently under construction in the world, which reflect the large interest for this region of extreme mass and charge, but also for the need of even more advanced research infrastructures. Among this new generation, the GANIL/SPIRAL2 facility in Caen, France, will soon deliver very high intense ion beams of several tens of particle μA. The Super Separator Spectrometer S3 has been designed to exploit these new beams for the study of SHN after separation. It will provide the needed beam rejection, mass selection and full arsenal of state-of-the art detection setups. Still at GANIL, the AGATA new generation gamma-ray tracking array is being operated. The VAMOS high acceptance spectrometer is being upgraded as a gas-filled separator. Its coupling with AGATA will lower the spectroscopic limits for the prompt gamma-ray studies of heavy and super-heavy nuclei. In this proceeding, these new devices will be presented along with a selected physics case.

  10. Covalent binding of benzo(a)pyrene-diol-epoxide to histone H2A in rat liver nuclei: target site specificity

    International Nuclear Information System (INIS)

    Kurokawa, M.; MacLeod, M.C.

    1986-01-01

    The authors have recently found that 7r,8t-dihydroxy-9t,10t-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene (BPDE-I), a strong carcinogen, binds selectively to histone H2A-2 variant in rat liver nuclei, using a high performance liquid chromatography (HPLC) system which can separate H4, H2B, 3 different fractions of H2A variants and 3 different H3 variants in an hour. Here the authors examined the binding site of BPDE-I to the H2A-2 variant. The H2A-2 variants were purified from the acid extracted core histones of rat liver nuclei treated with ( 3 H)-BPDE-I by the HPLC system with a semi-preparative Aquapore RP-300 column. HPLC analysis of cyanogen bromide treated-H2A-2, which has one methionine residue, showed that the binding site is located in C-terminal half of H2A-2. In addition, digestions with V8-protease, trypsin and different types of carboxypeptides suggested that there are some target amino acid residues for BPDE-I in the V8-proteolytic C-terminal octapeptide which contains 2 histadine and 3 lysine residues. Currently identification of the target amino acid is proceeding, using amino acid-BPDE adducts prepared in vitro

  11. Considerations about projectile and target X-rays induced during heavy ion bombardment

    Science.gov (United States)

    Fernandes, F.; Bauer, D. V.; Duarte, A.; Ferrari, T. M.; Niekraszewicz, L. A. B.; Amaral, L.; Dias, J. F.

    2018-02-01

    In this work we present some results concerning the X-rays emitted by heavy ions during target bombardment. In this case, Cl4+ and Cl5+ ions with energies from 4 MeV to 10 MeV were employed to irradiate vitreous carbon planchets. Moreover, total X-ray production cross sections of titanium X-rays induced by chlorine ions were obtained as well for the same energy range. Only inner shell transitions were considered in the present work. The titanium target consisted of a thin film deposited over vitreous carbon planchets. The results indicate that the projectile X-ray yields increase as a function of the bombarding energy for the present energy range. Effects due to projectile charge state appears to be of minor importance at these low ion velocities. It is shown that a simple exponential function can represent the continuum background of such complex spectra. The chlorine transition rates Kβ/Kα obtained from chlorine acting as a projectile interacting with a carbon target are about half the value when compared to the chlorine Kβ/Kα ratios obtained when a LiCl target is bombarded with C+ and C3+ ions with energies from 2 MeV to 6 MeV. As far as the total X-ray production cross sections of Ti induced by chlorine ions are concerned, the ECPSSR theory underestimates the Ti total X-rays production cross sections by several orders of magnitude. The role of electron capture and possible mechanisms responsible for these effects are discussed.

  12. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  13. Nuclear-breakup mechanisms in the interaction of relativistic projectiles with heavy targets

    International Nuclear Information System (INIS)

    Steinberg, E.P.

    1982-01-01

    The breakup of a Au nucleus under bombardment with relativistic p, α, and 20 Ne has been investigated in an extensive, multi-detector study. The present discussion addresses some of the many aspects of the experimental results. A broad distribution of coincident fragment masses is observed, with the total fragment kinetic energy being higher than expected for a fission mechanism for total fragment mass less than or equal to 120. The formation of light fragments is shown to be inconsistent with a binary breakup mechanism, and a multi-fragment target breakup is suggested. In general, the results indicate a broad spectrum of violence in the collisions, from gentle, leading to the production of heavy spallation products and fission, to essentially explosive, leading to multi-fragment breakup into light mas products. These aspects of the reactions represent a late-stage breakup of the target residues and are positively correlated with the violence of the initial fast stage of the collision as measured by the charged particle multiplicity

  14. Systematic analysis of neutron yields from thick targets bombarded by heavy ions and protons with moving source model

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takashi; Kurosawa, Tadahiro; Nakamura, Takashi E-mail: nakamura@cyric.tohoku.ac.jp

    2002-03-21

    A simple phenomenological analysis using the moving source model has been performed on the neutron energy spectra produced by bombarding thick targets with high energy heavy ions which have been systematically measured at the Heavy-Ion Medical Accelerator (HIMAC) facility (located in Chiba, Japan) of the National Institute of Radiological Sciences (NIRS). For the bombardment of both heavy ions and protons in the energy region of 100-500 MeV per nucleon, the moving source model incorporating the knock-on process could be generally successful in reproducing the measured neutron spectra within a factor of two margin of accuracy. This phenomenological analytical equation is expressed having several parameters as functions of atomic number Z{sub p}, mass number A{sub p}, energy per nucleon E{sub p} for projectile, and atomic number Z{sub T}, mass number A{sub T} for target. By inputting these basic data for projectile and target into this equation we can easily estimate the secondary neutron energy spectra at an emission angle of 0-90 deg. for bombardment with heavy ions and protons in the aforementioned energy region. This method will be quite useful to estimate the neutron source term in the neutron shielding design of high energy proton and heavy ion accelerators.

  15. Simulations of intense heavy ion beams propagating through a gaseous fusion target chamber

    International Nuclear Information System (INIS)

    Welch, D.R.; Rose, D.V.; Oliver, B.V.; Genoni, T.C.; Clark, R.E.; Olson, C.L.; Yu, S.S.

    2002-01-01

    In heavy-ion inertial confinement fusion (HIF), an ion beam is transported several meters through the reactor chamber to the target. This standoff distance mitigates damage to the accelerator from the target explosion. For the high perveance beams and millimeter-scale targets under consideration, the transport method is largely determined by the degree of ion charge and current neutralization in the chamber. This neutralization becomes increasingly difficult as the beam interacts with the ambient chamber environment and strips to higher charge states. Nearly complete neutralization permits neutralized-ballistic transport (main-line HIF transport method), where the ion beam enters the chamber at roughly 3-cm radius and focuses onto the target. In the backup pinched-transport schemes, the beam is first focused outside the chamber before propagating at small radius to the target. With nearly complete charge neutralization, the large beam divergence is contained by a strong magnetic field resulting from roughly 50-kA net current. In assisted-pinched transport, a preformed discharge channel provides the net current and the discharge plasma provides nearly complete charge and current neutralization of the beam. In self-pinched transport, the residual net current results solely from the beam-driven breakdown of the ambient gas. Using hybrid particle-in-cell simulation codes, the behavior of HIF driver-scale beams in these three transport modes is examined. Simulations of neutralized ballistic transport, at a few-mTorr flibe pressure, show excellent neutralization given a preformed or photoionized (from the heated target) plasma. Two- and three-dimensional simulations of assisted-pinch transport in roughly 1-Torr Xe show the importance of attaining >1-μs magnetic diffusion time to limit self-field effects and achieve good transport efficiency. For Xe gas pressures ranging from 10-150 mTorr, calculations predict a robust self-magnetic force sufficient for self

  16. Study of Reaction Mechanism in the Interaction 86 MeV/A $^{12}$C with Heavy Targets

    CERN Multimedia

    2002-01-01

    Using the thin target-thin catcher techniques and the off-line analysis of the activities induced in the irradiated foils by means of singles and coincidences spectra recorded with Ge(Li) @g-rays and Si X-rays detectors, we will measure: 1) The target fragment mass and charge distribution from the interact 2) 86 MeV/A |1|2C with silver, tin and gold. 3) The target fragment average kinetic energy. 4) The target fragment angular and differential kinetic energy distributions. These measurements should allow us to better understand the heavy ion reaction mechanisms at intermediate energy.

  17. Fission from Fe and Nb reactions with heavy targets at 50--100 MeV/nucleon

    International Nuclear Information System (INIS)

    Begemann-Blaich, M.; Blaich, T.; Fowler, M.M.; Wilhelmy, J.B.; Britt, H.C.; Fields, D.J.; Hansen, L.F.; Lanier, R.G.; Massoletti, D.J.; Namboodiri, M.N.; Remington, B.A.; Sangster, T.C.; Struble, G.L.; Webb, M.L.; Chan, Y.D.; Dacal, A.; Harmon, A.; Pouliot, J.; Stokstad, R.G.; Kaufman, S.; Videbaek, F.; Fraenkel, Z.

    1992-01-01

    Cross sections, parallel and perpendicular momentum transfers, charge loss, and velocity systematics are presented for fission following reactions of Fe and Nb projectiles at 50--100 MeV/nucleon on targets of Ta, Au, and Th. Data are compared to simple models for peripheral heavy ion collisions

  18. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  19. Heavy ion physics

    International Nuclear Information System (INIS)

    Kalpakchieva, R.; Cherepanov, E.A.

    1993-01-01

    The international school-seminar on heavy ion physics had been organized in Dubna in may of 1993. The scientific program of reports covers the following main topics: synthesis and properties of heavy nuclei; synthesis and investigation of properties of exotic nuclei; experiments with radioactive nuclear beams; interaction between complex nuclei at low and intermediate energies. It also includes reports on laser spectroscopy and exotic nuclear beams, on some application of heavy ion beams for the problems of solid state physics, on construction of multidetector facilities and on developing of heavy ion accelerator complexes. Short communication

  20. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    International Nuclear Information System (INIS)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV 36 Ar + 27 Al, 112 Sn, 124 Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the 36 Ar + 27 Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution

  1. Exploring halo effects in the scattering of $^{11}$Be on heavy targets at REX-ISOLDE

    CERN Multimedia

    2002-01-01

    We propose to measure the scattering of $^{11}$Be on heavy targets at energies around the Coulomb barrier with the aim to study the effect of the neutron halo on the reaction mechanisms. We expect to see deviations of the elastic cross sections with respect to Rutherford, even at energies below the barrier, due to the effect of dipole polarizability. We also expect to observe the inelastic excitation from the 1/2$^{+}$ ground state to the 1/2$^{-}$ excited state. One neutron transfer, as well as break-up cross sections will be obtained from the analysis of the $^{10}$Be fragments produced in the collision. We expect to obtain information on the B(E1) distribution in the low energy continuum of $^{11}$Be. \\\\ \\\\In a previous experiment, $^{11}$Be was produced and accelerated at REX-ISOLDE with an intensity of 10$^{5}$ pps. This beam intensity would allow us to measure the scattered fragments, at forward and backward angles, with a detector array based on silicon strip detectors. We ask for a total of 27 shift...

  2. On the possibility of using lithium-6 deuteride, irradiated with gas discharge plasma in a target with polarized nuclei of deuterium and lithium

    International Nuclear Information System (INIS)

    Bunyatova, E.I.; Bubnov, N.N.; Solodovnikov, S.P.

    1991-01-01

    A target with polarized nuclei made on the basis of irradiated lithium-6 deuteride is of great interest for carrying out investigations in elementary particle physics. Up to now high-energy electrons have been used for generation of F-centers in 6 LiD. It is shown that one can, in principle, use ultraviolet irradiation and gas discharge plasma for generation of F-centers in 6 LiD. Both types of irradiation cause electron paramagnetic resonance signals from conductance electrons of lithium and form F-centers in 6 LiD. It seems possible to obtain the necessary samples by exposing 6 LiD to the gas discharge plasma. 9 refs.; 2 figs

  3. Release studies of a thin foil tantalum target for the production of short-lived radioactive nuclei

    CERN Document Server

    Bennett, J R J; Drumm, P V; Lettry, Jacques; Nilsson, T; Catherall, R; Jonsson, O C; Ravn, H L; Simon, H

    2002-01-01

    Measurements have been made at ISOLDE, of the release curves and yields of radioactive beams of lithium, sodium and beryllium from a target constructed from 2 $\\mu$m thick foils. The release curves have been analysed by fitting to a mathematical model to determine the coefficients of diffusion of the particles in the foils and effusion through the target and ionizer at several temperatures. Through a better understanding of the rate of transport of the particles, it is possible to design targets and ionizers with improved yields. This is most important for the rare, short-lived isotopes in which there is considerable interest for physics experiments. This target has demonstrated large increases in the yields of $^{11}$Li and $^{12}$Be, in agreement with the predictions of the model. (11 refs).

  4. Experimental and theoretical studies of the yields of residual product nuclei produced in thin Pb and Bi targets irradiated by 40 - 2600 MeV protons

    International Nuclear Information System (INIS)

    Titarenko, Yu. E.; Batyaev, V.F.; Karpikhin, E.I.; Zhivun, V.M.; Ignatyuk, A.V.; Lunev, V.P.; Titarenko, N.N.; Shubin, Yu.N.; Barashenkov, V.S.

    2009-10-01

    The Project is aimed at experimental determining and computer-aided theoretical simulating the independent and cumulative yields of residual radioactive product nuclei in high-energy protonirradiated thin targets made of high-isotopic and natural lead ( 206 Pb, 207 Pb, 208 PB, natPb) and bismuth ( 209 Bi) that are the most probable choice to be the target materials in the acceleratordriven (hybrid) systems (ADS) coupled to a high-current proton accelerator. The yields of residual product nuclei are of great importance when estimating such basic radiation-technology characteristics of the hybrid facility targets as the total target activity, the target 'poisoning', the buildup of long-lived nuclides, the α-activity, the content of low-pressure evaporated nuclides (Hg), the content of the chemically-active nuclides that drastically spoil the corrosion resistance of the facility structure materials, etc. In view of the above, the radioactive product nuclide yields from targets materials were experimentally determined using the ITEP U-10 proton accelerator in 55 measurement runs using the monoisotopic and natural lead ( 206 Pb, 207 Pb, 208 PB, natPb) and bismuth ( 209 Bi) targets within the proton energy range fractionated minutely, namely at 0.04, 0.07, 0.10, 0.8, 1.2, 1.4, 1.6, and 2.6 GeV to cover the entire range of the internuclear hadron cascading. As a result, 5972 cumulative and independent yields of residual radioactive product nuclei, whose lifetimes range from 8 minutes to 32 years, have been measured. Besides, the cross sections for the 27 Al(p,x) 24 Na and 27 Al(p,x)7Be monitor reactions have been measured at the same proton energies together with the 27 Al(n,p) 27 Mg reaction rate that characterizes the neutron background contributions in each experiment. The experimental nuclide yields are determined by the direct γ-spectrometry method. The γ-spectrometer resolution is 1.8 keV in the 1332 keV 60 Co γ-line. The experimental γ-spectra are processed by

  5. The PRESPEC liquid-hydrogen target for in-beam gamma spectroscopy of exotic nuclei at GSI

    International Nuclear Information System (INIS)

    Louchart, C.; Gheller, J.M.; Chesny, Ph.; Authelet, G.; Rousse, J.Y.; Obertelli, A.; Boutachkov, P.; Pietri, S.; Ameil, F.; Audirac, L.; Corsi, A.; Dombradi, Z.; Gerl, J.; Gillibert, A.; Korten, W.; Mailleret, C.; Merchan, E.; Nociforo, C.; Pietralla, N.; Ralet, D.

    2014-01-01

    We report on a new liquid hydrogen and deuterium target dedicated to in-beam γ spectroscopy experiments in inverse kinematics at relativistic incident energies at GSI/FAIR. Target thicknesses from 10 to 80 mm can be achieved for an effective diameter of 60 mm. The target-cell and entrance window are maded of 200μm thick Mylar. The design has the advantage of being free of absorbing material at forward angles and 90°, allowing the detection of photons in a wide angular range. A commissioning experiment with a 54 Cr beam at 130 MeV/nucleon has been performed at GSI, using the Rare Isotopes INvestigation at GSI (RISING) detectors. The target has been shown to behave as expected and is ready for experiments at fragmentation Radioactive-Ion Beam Facilities. -- Highlights: • We report on a new liquid hydrogen target for gamma spectroscopy experiments at FAIR. • A commissioning experiment has been performed at GSI, using the RISING detectors. • The target behaves as expected and is ready for experiments

  6. A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions

    Directory of Open Access Journals (Sweden)

    Colin Barschel

    2015-01-01

    Full Text Available We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The target provides a high areal density at minimum gas input, which may be polarized 1H, 2H, or 3He gas or heavy inert gases in a wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 1033/cm2 s can be produced with existing techniques.

  7. Peculiarities of the excited J{sup p} = 1{sub +} states in heavy nuclei from two-step gamma-decay cascades. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ali, M A [Nuclear Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt); Sukhovoj, A M; Khitrov, V A [Joint institute for nuclear research Frank laboratory of Neutron physics, Dubna, (Russian Federation)

    1996-03-01

    The compound state gamma-decays, after thermal neutron capture, in the {sup 156,158} Gd, {sup 164} Dy, and {sup 174} Yb deformed nuclei and the {sup 196} Pt transitional nucleus were measured and analysed in a search for giant magnetic dipole resonances (GMDR) levels built on the ground states of these nuclei. The two-step cascade intensities for these nuclei are given and the level densities are deduced. The results obtained are compared with theoretical predictions. For the deformed nuclei, the analysis shows that these GMDR levels built on the ground state are not or probably very weakly populated. The enhancements experimentally observed in the two-step gamma-decay of the compound state of the {sup 196} Pt nucleus to its ground state can be explained qualitatively by the presence of GMDR states at an energy of about 2.8 MeV, with a full width at half maximum of about 1 MeV. 3 tabs.

  8. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei

    International Nuclear Information System (INIS)

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta; Schmitt, Eberhard; Hausmann, Michael

    2016-01-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with at least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.

  9. PNA-COMBO-FISH: From combinatorial probe design in silico to vitality compatible, specific labelling of gene targets in cell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Patrick; Rößler, Jens; Schwarz-Finsterle, Jutta [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg (Germany); Schmitt, Eberhard, E-mail: eschmitt@kip.uni-heidelberg.de [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg (Germany); University of Göttingen, Institute for Numerical and Applied Mathematics, Lotzestraße 16-18, D-37083 Göttingen (Germany); Hausmann, Michael, E-mail: hausmann@kip.uni-heidelberg.de [University of Heidelberg, Kirchhoff Institute for Physics, Im Neuenheimer Feld 227, D-69120 Heidelberg (Germany)

    2016-07-01

    Recently, advantages concerning targeting specificity of PCR constructed oligonucleotide FISH probes in contrast to established FISH probes, e.g. BAC clones, have been demonstrated. These techniques, however, are still using labelling protocols with DNA denaturing steps applying harsh heat treatment with or without further denaturing chemical agents. COMBO-FISH (COMBinatorial Oligonucleotide FISH) allows the design of specific oligonucleotide probe combinations in silico. Thus, being independent from primer libraries or PCR laboratory conditions, the probe sequences extracted by computer sequence data base search can also be synthesized as single stranded PNA-probes (Peptide Nucleic Acid probes). Gene targets can be specifically labelled with at least about 20 PNA-probes obtaining visibly background free specimens. By using appropriately designed triplex forming oligonucleotides, the denaturing procedures can completely be omitted. These results reveal a significant step towards oligonucleotide-FISH maintaining the 3D-nanostructure and even the viability of the cell target. The method is demonstrated with the detection of Her2/neu and GRB7 genes, which are indicators in breast cancer diagnosis and therapy. - Highlights: • Denaturation free protocols preserve 3D architecture of chromosomes and nuclei. • Labelling sets are determined in silico for duplex and triplex binding. • Probes are produced chemically with freely chosen backbones and base variants. • Peptide nucleic acid backbones reduce hindering charge interactions. • Intercalating side chains stabilize binding of short oligonucleotides.

  10. Quest for superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Heenen, P.H. [Universite Libre de Bruxelles, Service de Physique Nucleaire Theorique (Belgium); Nazarewicz, W. [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics; Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej

    2002-02-01

    This article draws the long history of the discovery of new heavy nuclei since its beginning in 1940 when neptunium was found, and presents the current status of research in this field. The last 3 years have brought a number of experimental surprises which have truly rejuvenated the field. In January 1999, scientists from Dubna (Russia) reported the synthesis of 1 atom of element 114 ({sup 298}Uuq) in a hot fusion reaction between a {sup 48}Ca beam and a {sup 244}Pu target. This discovery was followed by 3 other reports from Dubna. First using the {sup 242}Pu({sup 48}Ca,3n) reaction, they produced {sup 287}Uuq. In 1999 the synthesis of another isotope of Z=114, the even-even {sup 288}Uuq was reported. The element Z=116 ({sup 292}Uuh) was discovered as a product of the {sup 248}Cm({sup 48}Ca,4n) reaction. The GSI (Germany) group found a new even isotope of the element 110: {sup 270}Uun and also {sup 272}Uuu (element 111) and {sup 277}Uub (element 112). 2 new isotopes of the element 107: {sup 266}Bh and {sup 267}Bh have been found at Berkeley (Usa). The synthesis of the new element Z=118 ({sup 293}Uuo) announced in 1999 by the Berkeley group was retracted 2 years later. The lifetimes reported for the elements {sup 284}Uub and {sup 280}Uun are by many orders of magnitude longer than those of the isotopes with Z{<=}112 previously discovered at GSI. (A.C.)

  11. Development of Detector Systems for Internal and Fixed Target Heavy Ion Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Golubev, Pavel

    2003-04-01

    This thesis deals with intermediate energy heavy ion reactions with the particular aim to study the nuclear matter equation of state which defines the relation between statistical parameters of a fermionic system. The development of equipment for two experiments, CA47 at The Svedberg Laboratory in Uppsala, Sweden and R16 at Kernfysisch Versneller Inst. (KVI), Groningen, The Netherlands, are described. CA47 contains the CHICSi detector, a modular, ultra-high vacuum (UHV) compatible, multi-detector system, covering a solid angle of 3pi sr around the collision point. Together with two auxiliary detector systems CHICSi is placed at the cluster-jet target chamber of the CELSIUS storage ring. This thesis gives a technical overview of the detector and the development carried out in order to achieve the desired detection performance. Some laboratory and in-beam tests are described and the analysis of the first experimental results is discussed. The nuclear intensity interferometry experiment (R16) was performed in a dedicated beam-line of the AGOR superconducting cyclotron. Small-angle two-particle correlations were measured for the E/A = 61 MeV {sup 36}Ar + {sup 27}Al, {sup 112}Sn, {sup 124}Sn reactions, together with singles spectra. The experimental energy distributions of neutrons and light charged particles for the {sup 36}Ar + {sup 27}Al reaction have been analyzed with a Maxwellian multi-source prescription. These results, together with correlation function data, are used to extract information on the size of the emitting sources and their time evolution.

  12. Limited-area short-range ensemble predictions targeted for heavy rain in Europe

    Directory of Open Access Journals (Sweden)

    K. Sattler

    2005-01-01

    Full Text Available Inherent uncertainties in short-range quantitative precipitation forecasts (QPF from the high-resolution, limited-area numerical weather prediction model DMI-HIRLAM (LAM are addressed using two different approaches to creating a small ensemble of LAM simulations, with focus on prediction of extreme rainfall events over European river basins. The first ensemble type is designed to represent uncertainty in the atmospheric state of the initial condition and at the lateral LAM boundaries. The global ensemble prediction system (EPS from ECMWF serves as host model to the LAM and provides the state perturbations, from which a small set of significant members is selected. The significance is estimated on the basis of accumulated precipitation over a target area of interest, which contains the river basin(s under consideration. The selected members provide the initial and boundary data for the ensemble integration in the LAM. A second ensemble approach tries to address a portion of the model-inherent uncertainty responsible for errors in the forecasted precipitation field by utilising different parameterisation schemes for condensation and convection in the LAM. Three periods around historical heavy rain events that caused or contributed to disastrous river flooding in Europe are used to study the performance of the LAM ensemble designs. The three cases exhibit different dynamic and synoptic characteristics and provide an indication of the ensemble qualities in different weather situations. Precipitation analyses from the Deutsche Wetterdienst (DWD are used as the verifying reference and a comparison of daily rainfall amounts is referred to the respective river basins of the historical cases.

  13. Design of a distributed radiator target for inertial fusion driven from two sides with heavy ion beams

    International Nuclear Information System (INIS)

    Tabak, M.; Callahan-Miller, D.

    1997-01-01

    We describe the status of a distributed radiator heavy ion target design. In integrated calculations this target ignited and produced 390-430 MJ of yieldwhen driven with 5.8-6.5 MJ of 3-4 GeV Pb ions. The target has cylindrical symmetry with disk endplates. The ions uniformly illuminate these endplates in a 5mm radius spot. We discuss the considerations which led to this design together with some previously unused design features: low density hohlraum walls in approximate pressure balance with internal low-Z fill materials, radiationsymmetry determined by the position of the radiator materials and particle ranges, and early time pressure symmetry possibly influenced by radiation shims. We discuss how this target scales to lower input energy or to lower beam power. Variant designs with more realistic beam focusing strategies are also discussed. We show the tradeoffs required for targets which accept higher particle energies

  14. Nuclei at the limits of particle stability

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab

  15. Calculation of the total potential between two deformed heavy ion nuclei using the Monte Carlo method and M3Y nucleon-nucleon forces

    International Nuclear Information System (INIS)

    Ghodsi, O. N.; Zanganeh, V.

    2009-01-01

    In the current study, a simulation technique has been employed to calculate the total potential between two deformed nuclei. It has been shown that this simulation technique is an efficient one for calculating the total potential for all possible orientations between the symmetry axes of the interacting nuclei using the realistic nuclear matter density and the M3Y nucleon-nucleon effective forces. The analysis of the results obtained for the 48 Ca+ 238 U, 46 Ti+ 46 Ti, and 27 Al+ 70 Ge reactions reveal that considering the density dependent effects in the M3Y forces causes the nuclear potential to drop by an amount of 0.4 MeV.

  16. Massive target nuclei as disc-shaped slabs and spherical objects of intranuclear matter in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Zewislawski, Z.; Strugalski, Z.; Mausa, M.

    1990-01-01

    It has been found experimentally that a definite number of emitted nucleons corresponds to a definite impact parameter in hadron-nucleus collisions. This finding allows one: to treat the massive target nucleus as a piece of intranuclear matter of a definite thickness; to treat a numerous sample of collisions of monoenergetic identical hadrons with the nucleus as collection of interactions of a homogeneous beam of hadrons with disc-shaped slabs of intranuclear matter of definite thicknesses. 17 refs.; 1 fig

  17. Incident energy and target dependence of interaction cross sections and density distribution of neutron drip-line nuclei

    International Nuclear Information System (INIS)

    Shimoura, S.

    1992-01-01

    The relation between nuclear density distribution and interaction cross section is discussed in terms of Glauber model. Based on the model, density distribution of neutron drip-line nucleus 11 Be and 11 Li is determined experimentally from incident energy dependence of interaction cross sections of 11 Be and 11 Li on light targets. The obtained distributions have long tails corresponding to neutron halos of loosely bound neutrons. (Author)

  18. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  19. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  20. Static and dynamical properties of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.

    1990-01-01

    We briefly review our understanding of the formation of excited/hot nuclei in heavy-ion collisions at some tens of MeV/A. We recall the major theoretical frameworks used for describing as well the entrance channel of the reaction as the structure properties of hot nuclei. We finally focus on multifragmentation within insisting upon the theoretical challenge it does represent

  1. Fragmentation and Multifragmentation of 10.6 A GeV Gold Nuclei

    CERN Document Server

    Adamovich, M I

    1999-01-01

    We present the results of a study performed on the interactions of 10.6A GeV gold nuclei in nuclear emulsions. In a minimum bias sample of 1311 interac- tions, 5260 helium nuclei and 2622 heavy fragments were observed as Au projec- tile fragments. The experimental data are analyzed with particular emphasis of target separation interactions in emulsions and study of criticalexponents. Multiplicity distributions of the fast-moving projectile fragments are inves- tigated. Charged fragment moments, conditional moments as well as two and three -body asymmetries of the fast moving projectile particles are determined in terms of the total charge remaining bound in the multiply charged projectile fragments. Some differences in the average yields of helium nuclei and heavier fragments are observed, which may be attributed to a target effect. However, two and three-body asymmetries and conditional moments indicate that the breakup mechanism of the projectile seems to be independent of target mass. We looked for evidenc...

  2. Improved Deep Belief Networks (IDBN Dynamic Model-Based Detection and Mitigation for Targeted Attacks on Heavy-Duty Robots

    Directory of Open Access Journals (Sweden)

    Lianpeng Li

    2018-04-01

    Full Text Available In recent years, the robots, especially heavy-duty robots, have become the hardest-hit areas for targeted attacks. These attacks come from both the cyber-domain and the physical-domain. In order to improve the security of heavy-duty robots, this paper proposes a detection and mitigation mechanism which based on improved deep belief networks (IDBN and dynamic model. The detection mechanism consists of two parts: (1 IDBN security checks, which can detect targeted attacks from the cyber-domain; (2 Dynamic model and security detection, used to detect the targeted attacks which can possibly lead to a physical-domain damage. The mitigation mechanism was established on the base of the detection mechanism and could mitigate transient and discontinuous attacks. Moreover, a test platform was established to carry out the performance evaluation test for the proposed mechanism. The results show that, the detection accuracy for the attack of the cyber-domain of IDBN reaches 96.2%, and the detection accuracy for the attack of physical-domain control commands reaches 94%. The performance evaluation test has verified the reliability and high efficiency of the proposed detection and mitigation mechanism for heavy-duty robots.

  3. Study of nuclear effects in the determination of nucleon structure functions with heavy targets

    International Nuclear Information System (INIS)

    Benvenuti, A.S.; Bollini, D.; Camporesi, T.

    1984-01-01

    Results of the experiment on deep inelastic scattering of 280 GeV muons on deuterium, nitrogen and iron nuclei are presented. The purpose of the measurements was to compare the Bjorken variable dependence of nucleon structure functions obtained in experiments on different nuclei and also Q 2 -dependence (Q- four-momentum transfer) of structure functions. The results of the experiments do not indicate any Q 2 -dependence of the Fsub(2)sup(Fe)/Fsub(2)sup(Dsub(2)) and Fsub(2)sup(Nsub(2))Fsub(2)sup(Dsub(2)) ratios. These ratios depend linearly on the parameter x: R=a+bx. The parameters of the linear fit for the iron/deuterium ratio are a=1.16+-0.03, b=-0.56+-0.08; and for the. ni;rogen/deuterium ratio, a=1.10+-0.04, anti b=-0.39+-0.09

  4. Secondary ions produced from condensed rare gas targets under highly charged MeV/amu heavy ion bombardment

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Matsuo, T.

    1994-01-01

    Secondary ions produced from condensed rare gas targets are observed under MeV/amu, highly charged, heavy ion impact. The intensities of the observed cluster ions decrease smoothly as the cluster sizes become large but show some discontinuities at particular sizes of cluster ions. This seems to be closely related to the stabilities of cluster ion structures. It is also noted that very few doubly charged or practically no triply/higher charged ions have been observed, in sharp contrast to that of some condensed molecular targets. (orig.)

  5. Superdeformed nuclei

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Khoo, T.L.

    1991-01-01

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  6. Inelastic cross sections and π- -meson production in relativistic nuclear collisions induced by p, d, 4He and 12C on 12C and 181Ta target-nuclei

    International Nuclear Information System (INIS)

    Chasnikov, I.Ya.; Izbasarov, M.I.; Vinitsky, A.Kh.; Abdinov, O.B.; Agakishiev, G.N.; Backovic, S.; Damianovich, V.; Drndarevic, S.; Krmpotic, D.; Krpic, D.

    1981-12-01

    Experimental data on inelastic cross sections and PI - -meson production in interactions initiated by protons with the incident momentum in the range (2-10) GeV/c and by deuterons, alphas and carbon nuclei with the incident momentum per nucleon in the range (2-5) GeV/c on carbon and tantalum target-nuclei are presented. The experimental data have been obtained using the 2 m propane bubble chamber. The analysis of the experimental data has been made in the framework of various theoretical models. (authors)

  7. Study of the interactions of 13.8 GeV/c protons with the heavy nuclei of the emulsions exposed in magnetic fuel of 170 kgauss

    International Nuclear Information System (INIS)

    Gomez Aleixandre, J. L.

    1967-01-01

    145 stars with N h >8 produced by the interactions of 13.8 GeV/c protons with Ag and Br nuclei have been analysed. The emulsion stack was irradiated in a 170 K gauss magnetic field. Statistical results concerning the main characteristics of the different particles emitted are given and the energy balance is evaluated. The main features of both 24 GeV/c protons and 17 GeV/c π- interactions are compared with those we have found for 13.8 GeV/c protons interactions. (Author) 27 refs

  8. Correction of effects due to reactions on complex nuclei in a sample of hydrogen-like antiproton annihilations from a heavy liquid bubble chamber experiment

    International Nuclear Information System (INIS)

    Fett, E.; Haatuft, A.; Olsen, J.M.

    1977-01-01

    A method is presented, which has been used to determine the pion multiplicity distributions for antiproton annihilations on free protons from a sample of events obtained in a heavy liquid bubble chamber experiment. The method uses data obtained in the experiment in question together with the usual invariance principles satisfied by strong interactions. Furthermore no particular nuclear model is assumed

  9. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  10. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    CERN Document Server

    Umarov, F F; Kudryashova, L B; Krylov, N M

    2002-01-01

    In the present work, an experimental study of low-energy (E sub 0 =20-500 eV) heavy Cs sup + ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E sub 0 (E sub 0) for Si (E sub b =4.64 eV/atom) and Ni (E sub b =4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E sub b are approximately equal to each other. It is found that the scattering angles of Cs sup + ions considerably exceed a limiting scattering angle theta sub l sub i sub m in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle inter...

  11. Determination of the electromagnetic dipole strength distribution in medium-heavy atomic nuclei by means of nuclear resonance fluorescence; Bestimmung der elektromagnetischen Dipolstaerkeverteilung in mittelschweren Atomkernen mittels Kernresonanzfluoreszenz

    Energy Technology Data Exchange (ETDEWEB)

    Massarczyk, Ralph Jens

    2011-01-17

    During the last hundred years several models were developed to describe the configuration of nuclei. These models have to make predictions, which should be comparable with experiments. As a standard type of experiment the nuclear resonance fluorescence was established. A nucleus is excited by irradiation with photons. By emitting one or more photons the nucleus decays back to the ground state. With this method it is possible to measure energy levels and to determine the strength of their excitation. A continuum of unresolved peaks gives additional strength. The existing setup at the linear electron accelerator ELBE of the Forschungszentrum Dresden-Rossendorf uses bremsstrahlung, produced as a secondary beam in a thin Niobium foil. During the years 2008/09 experiments on the nuclei of {sup 86}Kr and {sup 136}Ba took place there. In this work they will be analyzed. Photon flux and efficiency determination have been done as well as simulations on detector response and non-nuclear scattered background events. For this purpose the GEANT4 package was used. Finally the resulting cross sections were corrected for branching and feeding.

  12. Nuclear structure studies on medium-heavy mass nuclei using the method of nuclear resonance fluorescence; Kernstrukturuntersuchungen in mittelschweren Atomkernen mit der Methode der Kernresonanzfluoreszenz

    Energy Technology Data Exchange (ETDEWEB)

    Zweidinger, Markus

    2016-06-22

    In the present work the dipole strength distribution in the stable even-even isotopes {sup 92}Zr and {sup 94}Zr is investigated. To excite the nuclei from the ground state to an excited state, real photons are used. This method is called Nuclear Resonance Fluorescence. The measurements were performed at two different setups. The first one is the Darmstadt High Intensity Photon Setup (DHIPS). At DHIPS the measurements yield information about the spin quantum number and the integrated cross section. The second part of the experiments took place at the High Intensity γ-ray Source (HIγS). Here, information about the parity quantum number and the averaged branching ratio of the excited state is accessible. In total, 105 dipole excited states in the nucleus {sup 92}Zr and 124 in the isotope {sup 94}Zr are observed, most of them for the first time. The extracted dipole strength distribution is investigated for the existence of the pygmy dipole resonance that was observed in neighboring nuclei. Furthermore, in previously performed experiments on the isotope {sup 90}Zr, the spin-flip M1 resonance was observed as well. Therefore, also the magnetic dipole strength is investigated. Further, by comparison with global systematics, the two-phonon state is identified. Additionally, the averaged branching ratio is compared to the results of theoretical calculations in the framework of the statistical model.

  13. SSNTD studies of lead nuclei fission induced by relativistic p, d, He and sup 1 sup 2 C projectiles inside massive Pb and U targets

    CERN Document Server

    Perelygin, V P; Krivopustov, M I; Petrova, R I; Abdullaev, I G; Bradnova, V; Knjazeva, G P; Brandt, R; Ochs, M; Wan, J S; Vater, P

    1999-01-01

    A series of experiments was carried out with relativistic protons, deuterons, helium and carbon-12 projectiles accelerated at SYNCHOPHASOTRON LHE, Dubna which hit massive Pb and U targets. The beam profiles and intensities of both primary particles and secondary fast neutrons were measured using plastic SSNTD inside the massive cylinder blocks of Cu, Pb and U by counting of fission fragment tracks due to the induced fission of Pb nuclei. The beam diameter increases typically by 20-30% at the depth 10 and 20 cm. With increasing the energy of projectiles the number of secondary neutrons rises with the depth for protons, deuterons and helium ions. Nevertheless, for sup 1 sup 2 C ions beams with changing the energy from 18 GeV to 44 GeV we first observe the effect of significant increase both the yield of secondary fast neutrons and the half-width of the beam. The observed enhanced yield of secondary fast neutrons confirms unusual behavior of nuclear interaction cross section of 44 GeV sup 1 sup 2 C ions observed...

  14. On mechanism of low-energy heavy ions scattering on a target surface with small atomic mass

    Energy Technology Data Exchange (ETDEWEB)

    Umarov, F.F. E-mail: farid1945@yahoo.com; Bazarbaev, N.N.; Kudryashova, L.B.; Krylov, N.M

    2002-11-01

    In the present work, an experimental study of low-energy (E{sub 0}=20-500 eV) heavy Cs{sup +} ions scattering on target surfaces with small atomic masses (Al, Si, Ni) has been performed for more accurate definition of mechanism of scattering and evaluation of an opportunity for use of heavy ions scattering as a tool of surface layer analysis. It is shown that the dependence of the relative energies of scattered ions versus the initial energy E/E{sub 0} (E{sub 0}) for Si (E{sub b}=4.64 eV/atom) and Ni (E{sub b}=4.43 eV/atom) approximately coincide despite the fact that the mass of Ni atom is twice as large as that of the Si atom mass. At the same time their binding energies E{sub b} are approximately equal to each other. It is found that the scattering angles of Cs{sup +} ions considerably exceed a limiting scattering angle {theta}{sub lim} in a single collision. It has been established that the scattering of low-energy heavy ions by light targets is described by a non-binary mechanism of many-particle interactions (simultaneous ion interaction with several target atoms). It has been shown that during the many-particle interactions the structure of energy spectra disappears; high relative energy of scattering ions and their dependence on energy of bombardment is observed. It has been found that the energy of scattered ions depends on binding energy, melting temperature and packing density of target atoms.

  15. Reaction Dynamics and Nuclear Structure Studies of n-Rich Nuclei Around 48Ca via Deep Inelastic Collisions with Heavy-Ions

    International Nuclear Information System (INIS)

    Leoni, S.

    2011-01-01

    The population and γ decay of neutron rich nuclei around 48 Ca has been measured at Legnaro National Laboratory with the PRISMA-CLARA setup, using deep-inelastic collisions on 64 Ni, at 5.9 MeV/A. The reaction properties of the main products are investigated, focusing on total cross-sections and energy integrated angular distributions. Gamma spectroscopy studies are also performed for the most intense transfer channels, making use of angular distributions and polarization measurements to firmly establish spin and parity of the excited states. In the case of 49 Ca candidates for particle-core couplings are investigated and interpreted on basis of lifetime measurements and comparison with model predictions. (author)

  16. Hadron chemistry in heavy ion collisions

    International Nuclear Information System (INIS)

    Montvay, I.; Zimanyi, J.

    1978-06-01

    In the models for energetic heavy ion reactions it is assumed that during the reaction a hot and dense nuclear matter, a fireball is formed from all or a part of nucleons of the target and projectile nuclei. The process is similar to the chemical processes leading to dynamical equilibrium. The relaxation times necessary to establish ''chemical'' equilibrium among different hadrons in hot, dense hadronic matter is deducted in a statistical model. Consequences for heavy ion collisions are discussed. The possibility of Bose-Einstein pion condensation around the break-up time of the nuclear fireball is pointed out. (D.P.)

  17. How far are we on the way to the superheavy nuclei?

    International Nuclear Information System (INIS)

    Muenzenberg, G.

    1989-10-01

    The discovery of the elements 107, 108, and 109 in a region of dominating shell stabilization is the most important step on the way to the superheavy nuclei in recent years. These experiments leading to the presently upper end of the periodic table were possible with the velocity filter SHIP to separate the heavy nuclei produced in complete fusion reactions of heavy ions. The identification of the unknown nuclei was established by α-α mother-daughter correlation of the nuclei decaying after the implantation into position sensitive surface-barrier detectors. With this method it is possible to identify even single nuclei of unknown isotopes unambiguously. The limits of sensitivity are production cross-sections of a few picobarns and about 2 μs of nuclear lifetime. With this method the elements 107, 108, and 109 were observed for the first time by their α-decay and identified unambiguously. For element 107 the isotopes with masses 261 and 262, for the element 108 the isotopes with masses 264 and 265, and for element 109 the isotope with mass 266 were found. The halflives range from 0.1 ms to 0.1 s. The highly fissile transactinide nuclei were produced in cold fusion of heavy ions using 207,208 Pb and 209 Bi targets, respectively, and 50 Ti, 54 Cr, or 58 Fe beams. The evaluation of the excitation functions for the production of very heavy evaporation residues shows a strong decrease above 25 MeV excitation energy caused by a destruction of the groundstate shell effects at high excitation energies. The strong competition of barrier transmission and survival probability results in rather narrow excitation functions and small production cross sections. The maximum cross section is observed close to the Coulomb barrier and corresponding to projectile energies near 5 MeV/u. (orig.) [de

  18. Secondary beams and the synthesis of exotic nuclei

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1985-09-01

    With the advent of modern fast cycling synchrotrons capable of delivering high intensity heavy ion beams up to uranium, the production of secondary radioactive ion beams (RIBs) with sufficient intensity has become feasible. The basic production mechanism is the fragmentation of near relativistic heavy ion beams on light targets. The physical facts underlying the efficient conversion of stable beams into RIBs are: (1) at beam energies of several 100 MeV/A thick conversion targets (1 to 10 g/cm 2 ) can be used, which, for nuclei near stability, convert on the order of .1 to 1% of the primary beam into secondary beams, (2) the secondary beams are emitted into a narrow phase space (small transverse and longitudinal emittances), and (3) these emittances are of the correct magnitude to match the acceptances of suitably designed storage and accumulator rings. 14 refs

  19. Recent US target-physics-related research in heavy-ion inertial fusion: simulations for tamped targets and for disk experiments in accelerator test facilities

    International Nuclear Information System (INIS)

    Mark, J.W.K.

    1982-01-01

    Within the last few years, there have also appeared in the Heavy-Ion Fusion literature several studies of targets which have outer tampers. One-dimensional simulations indicate higher target gains with a judicious amount of tamping. But for these targets, a full investigation has not been carried through in regards to conservative criteria for fluid instabilities as well as reasonable imperfections in target fabrication and illumination symmetry which all affect target ignition and burn. Comparisons of these results with the gain survey of Part I would have to be performed with care. These calculations suggest that experiments relating to high temperature disk heating, as well as beam deposition, focusing and transport can be performed within the context of current design proposals for accelerator test-facilities. Since the test-facilities have lower ion kinetic energy and beam pulse power as compared to reactor drivers, we achieve high-beam intensities at the focal spot by using short focal distance and properly designed beam optics

  20. Exotic Nuclei Arena in JHP

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-12-01

    The Exotic Nuclei Arena planned in Japanese Hadron Project aims to accelerate various unstable nuclei produced in 1-GeV proton-induced reactions up to 6.5 MeV/u by means of heavy-ion linacs. The present status of research and development for the Earena is briefly reported. The construction of the prototype facility to accelerate unstable beams up to 0.8 MeV/u is planned in 1992-94, in which the existing cyclotron in INS is used as the primary accelerator. (author)

  1. Are there superheavy atomic nuclei

    International Nuclear Information System (INIS)

    Herrmann, G.

    1982-04-01

    The author presents a populary introduction to the formation of nuclei with special regards to superheavy nuclei. After a general description of the methods of physics the atomic hypothesis is considered. Thereafter the structure of the nucleus is discussed, and the different isotopes are considered. Then radioactivity is described as an element transmutation. Thereafter the thermonuclear reactions in the sun are considered. Then the synthesis of elements using heavy ion reactions is described. In this connection the transuranium elements and the superheavy elements are considered. (orig./HSI) [de

  2. Monte Carlo simulation for neutron yield produced by bombarding thick targets with high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Yoon, Moo Hyun; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2013-04-15

    One of radiation shielding issues at heavy-ion accelerator facilities is to estimate neutron production by primary heavy ions. A few Monte Carlo transport codes such as FLUKA and PHITS can work with primary heavy ions. Recently IBS/RISP((Rare Isotope Science Project) started to design a high-energy, high-power rare isotope accelerator complex for nuclear physics, medical and material science and applications. There is a lack of experimental and simulated data about the interaction of major beam, {sup 238}U with materials. For the shielding design of the end of first accelerating section section, we calculate a differential neutron yield using the FLUKA code for the interaction of 18.5 MeV/u uranium ion beam with thin carbon stripper of 1.3 μm). The benchmarking studies were also done to prove the yield calculation for 400 MeV/n {sup 131}Xe and other heavy ions. In this study, the benchmarking for Xe-C, Xe-Cu, Xe-Al, Xe-Pb and U-C, other interactions were performed using the FLUKA code. All of results show that the FLUKA can evaluate the heavy ion induced reaction with good uncertainty. For the evaluation of neutron source term, the calculated neutron yields are shown in Fig. 2. The energy of Uranium ion beam is only 18.5 MeV/u, but the energy of produced secondary neutrons was extended over 100 MeV. So the neutron shielding and the damage by those neutrons is expected to be serious. Because of thin stripper, the neutron intensity at forward direction was high. But the the intensity of produced secondary photons was relatively low and mostly the angular property was isotropic. For the detail shielding design of stripper section of RISP rare istope accelerator, the benchmarking study and preliminary evaluation of neutron source term from uranium beam have been carried out using the FLUKA code. This study is also compared with the evaluation results using the PHITS code performed coincidently. Both studies shows that two monte carlo codes can give a good results for

  3. Collisions with nuclei

    International Nuclear Information System (INIS)

    Gulamov, K.G.

    1987-01-01

    It is well known that interactions of high energy particles with nuclei, owing to possible intranuclear rescatterings, may provide information about the space-time behaviour of the production process. Therefore the main goals of these investigations are related with the attempts to study the space-time process of hadronization of coloured quarks and gluons produced at the initial stage of an interaction to white final state particles and to clarify the influence of composite quark-gluon structure of both the projectile and target on features of the production mechanisms. Since in both the initial and final states of these reactions the authors have strongly interacting multiparticle systems, it is of importance to study the collective properties of these systems. The questions to the point are: what is the degree of collectivization of particles newly produced in collisions with nuclei and what is the influence of the collective nature of a nucleus itself on the production mechanisms, in particular, what are the manifestations of possible multinucleon (multiquark) configurations in nuclei? It is obvious that the reductability of, say, hadron-nucleus (hA) interaction to hadron-nucleon (hN) collisions is directly related to the above problems. Due to time limitations the author discusses here only a few aspects of low p/sub t/ hA interactions which in his opinion are of importance for better understanding of general regularities of collisions with nuclei and for further investigations of the above problems

  4. Chaotic behavior in nuclei

    International Nuclear Information System (INIS)

    Mitchel, G.; Shriner, J.

    2005-01-01

    Although the predictions of Random Matrix Theory (RMT) were available by the early 1960s, data of sufficiently high quality to adequately test the theory were only obtained a decade later by Rainwater. It was another decade later that Bohigas, Haq and Pandey combined the best available nuclear resonance data - the Columbia neutron resonances in heavy nuclei and the TUNL proton resonances in lighter nuclei - to form the Nuclear Data Ensemble. They obtained excellent agreement for the level statistics with the RMT predictions. The expected Porter-Thomas (PT) distribution was considered very early. However, since the widths (amplitudes squared) are measured, the predicted Gaussian distribution for the amplitudes was only qualitatively confirmed. A much more sensitive test was performed by measuring two widths and the relative phase between the two amplitudes. By comparison of the width and amplitude correlations, the Gaussian distribution was confirmed at the 1% level. Following the Bohigas conjecture - that quantum analogs of classically chaotic systems obey RMT - there was an explosion of activity utilizing level statistics in many different quantum systems. In nuclei the focus was verifying the range of applicability of RMT. Of particular interest was the effect of collectivity and of excitation energy on statistical properties. The effect of symmetry breaking on level statistics was examined and early predictions by Dyson were confirmed. The effect of symmetry breaking on the width distribution was also measured for the first time. Although heuristic arguments predicted no change from the PT distribution, experimentally there was a large deviation from the PT prediction. Later theoretical efforts were consistent with this result. The stringent conditions placed on the experiments - for eigenvalue tests the data need to be essentially perfect (few or no missing levels or mis assigned quantum numbers) - has limited the amount of suitable experimental data. The

  5. On the distribution of quarks in nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Panebrattsev, V.S.; Stavinskij, V.S.

    1984-01-01

    On the basis of the data on cumulative proton, deuteron and nuclear fragment production in hadr on-nucleon reactions and deep inelastic muon-nucleon scattering quark distributions in light, intemediate and heavy nuclei have been investigated. Conditions of limiting fragmentation of hadrons and nuclei in the studied processes have been investigated to obtain quark-parton structure functions (Gs 2 ) of the studied hadrons or nuclei. Invariant differential cross sections of π + , π - , K + meson production on aluminium, deuterium and lead nuclei and their dependence on scale variable at the transverse momentum value Psub(T) approximately 0 have been obtained. Properties of structure functions G 2 and behaviour of different nuclei differential cross sections of limiting fragmentation have been investigated. It is concluded that considered regularities testify to the presence of multiquark states in nuclei, different by its structure from nUcleons

  6. Effects of locally targeted heavy-ion and laser microbeam on root hydrotropism in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Miyazawa, Yutaka; Sakashita, Tetsuya; Funayama, Tomoo

    2008-01-01

    Classical studies on root hydrotropism have hypothesized the importance of columella cells as well as the de novo gene expression, such as auxin-inducible gene, at the elongation zone in hydrotropism; however, there has been no confirmation that columella cells or auxin-mediated signaling in the elongation zone are necessary for hydrotropism. We examined the role of root cap and elongation zone cells in root hydrotropism using heavy-ion and laser microbeam. Heavy-ion microbeam irradiation of the elongation zone, but not that of the columella cells, significantly and temporarily suppressed the development of hydrotropic curvature. However, laser ablation confirmed that columella cells are indispensable for hydrotropism. Systemic heavy-ion broad-beam irradiation suppressed de novo expression of INDOLE ACETIC ACID 5 gene, but not MIZU-KUSSEI1 gene. Our results indicate that both the root cap and elongation zone have indispensable and functionally distinct roles in root hydrotropism, and that de novo gene expression might be required for hydrotropism in the elongation zone, but not in columella cells. (author)

  7. Pre-equilibrium decay processes in energetic heavy ion reactions

    International Nuclear Information System (INIS)

    Blann, M.

    1986-01-01

    The Boltzmann master equation (BME) is defined for application to precompound decay in heavy ion reactions in the 10 100 MeV/nucleon regime. Predicted neutron spectra are compared with measured results for central collisions of 20 Ne and 12 C with 165 Ho target nuclei. Comparisons are made with subthreshold π 0 yields in heavy ion reactions between 35 and 84 MeV/nucleon, and with the π 0 spectra. The BME is found to be an excellent tool for investigating these experimentally observed aspects of non-equilibrium heavy ion reactions. 18 refs., 8 figs

  8. Exotic nuclei arena in Japanese Hadron Project

    International Nuclear Information System (INIS)

    Nomura, T.

    1990-04-01

    A description is given on the radioactive beam facility proposed as one of the research arenas in Japanese Hadron Project. The facility consists of a 1 GeV proton linac, an isotope separator on-line (ISOL) and a series of heavy-ion (HI) linacs. Various exotic nuclei produced by 1 GeV proton beam mainly via spallation processes of a thick target, are mass-separated by the ISOL with a high mass-resolving power and are injected into the HI linac with the energy of 1 keV/u. The acceleration is made in three stages using different types of linacs, i.e., split-coaxial RFQ. Interdigital-H, and Alvarez, the maximum energy in each stage being 0.17, 1.4 and 6.5 MeV/u, respectively. A few examples of scientific interests realized in this facility will be briefly discussed. (author)

  9. Fusion probability and survivability in estimates of heaviest nuclei production

    International Nuclear Information System (INIS)

    Sagaidak, Roman

    2012-01-01

    . Examples of the P fus values derived with the capture-fission and ER cross-sections obtained recently for asymmetric projectile-target systems are shown. Data on the ER production in different fusion-evaporation reactions leading to the very heavy compound nuclei with ZCN ≥ 100 are considered and discussed in detail. Considering the fusion probability and survivability for the heaviest nuclei with Z > 108, one should bear in mind that the macroscopic component of fission barriers disappears as the shell-stabilized SHE region is approached. Thus the calculated survivability of nuclei produced in the 48 Ca reactions induced on actinide targets depends mainly on the microscopic (shell) corrections to nuclear masses used in calculations

  10. Cumulation of light nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Bondarev, V.K.; Golovanov, L.B.

    1977-01-01

    Limit fragmentation of light nuclei (deuterium, helium) bombarded with 8,6 GeV/c protons was investigated. Fragments (pions, protons and deuterons) were detected within the emission angle 50-150 deg with regard to primary protons and within the pulse range 150-180 MeV/c. By the kinematics of collision of a primary proton with a target at rest the fragments observed correspond to a target mass upto 3 GeV. Thus, the data obtained correspond to teh cumulation upto the third order

  11. Heavy ion inertial fusion: interface between target gain, accelerator phase space and reactor beam transport revisited

    International Nuclear Information System (INIS)

    Barletta, W.A.; Fawley, W.M.; Judd, D.L.; Mark, J.W.K.; Yu, S.S.

    1984-01-01

    Recently revised estimates of target gain have added additional optimistic inputs to the interface between targets, accelerators and fusion chamber beam transport. But it remains valid that neutralization of the beams in the fusion chamber is useful if ion charge state Z > 1 or if > 1 kA per beamlet is to be propagated. Some engineering and economic considerations favor higher currents

  12. Primordial nuclei

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to

  13. Charge states of fast heavy ions in solids; target atomic number dependence

    International Nuclear Information System (INIS)

    Shima, Kunihiro

    1985-01-01

    Discussions were carried out on the origin of Z 2 (atomic number) dependent charge states with respect to projectile electron loss and capture process, and on relationship between the Z 2 dependence and that of mean charge states for heavy ions of 1 MeV/u energy region. Present and previously reported results were examined on the equilibrium charge distributions, 9-bar, of 120 MeV 63 Cu, 25 and 40 MeV 35 Cl, 109 MeV Si and 59 MeV F ions. It was clarified that 9-bar became generally higher for lower Z 2 depending on increasing energy, and osillatory behavior with energy-depending amplitude was seen in 9-bar vs Z 2 . Discussions were carrid out on these phenomena and related matters. Z 2 oscillations of 9-bar of fast heavy ions might be due to those of electron capture cross section into projectile K and L vacancies for high and intermediate charge states, respectively. A quantitative interpretation of the Z 2 -dependent 9-bar values is in progress based on collision process and observation of projectile x-ray. The 9-bar value dependency on Z 2 in ion passing foils and decrease of Z 2 oscillation amplitude with increasing collision energy were quite similar to the Z 2 dependence in stopping powers or in effective charge states estimated from stopping powers. But there was some discrepancies in the Z 2 oscillation of 9-bar and that of stopping powers. (Takagi, S.)

  14. Fast helium production in interactions of 3.7 A GeV 24Mg with emulsion nuclei

    International Nuclear Information System (INIS)

    Jilany, M.A.

    2004-01-01

    We have studied the properties of the relativistic helium fragments emitted from the projectile in the interactions of 24 Mg ions accelerated at an energy of 3.7 A GeV with emulsion nuclei. The total, partial nuclear cross-sections and production rates of helium fragmentation channels in relativistic nucleus-nucleus collisions and their dependence on the mass and energy of the incident projectile nucleus are investigated. The yields of multiple helium projectile fragments disrupted from the interactions of 24 Mg projectile nuclei with hydrogen H, light CNO and heavy AgBr groups of target emulsion nuclei are discussed and they indicate that the breakup mechanism of the projectile seems to be independent of the target mass. Limiting fragmentation behavior of fast-moving helium fragments is observed in both the projectile and target nuclei. The multiplicity distributions of helium projectile fragments emitted in the interactions of 24 Mg projectile nuclei with the different target nuclei of the emulsion are well described by the KNO scaling presentation. The mean multiplicities of the different charged secondary particles, normally defined shower, grey and black (left angle n s right angle, left angle n g right angle and left angle n b right angle) emitted in the interactions of 3.7 A GeV 24 Mg with the different groups of emulsion nuclei at different ranges of projectile fragments are decreasing when the number of He fragments stripped from projectile increases. These values of left angle n i right angle (i=s, g, band h particles) in the events where the emission of fast helium fragments were accompanied by heavy fragments having Z≥3 seem to be constant as the He multiplicity increases, and exhibit a behavior independent of the He multiplicity. (orig.)

  15. Thermal hydraulic numerical investigation of the heavy liquid metal free surface of MYRRHA spallation target experimental

    International Nuclear Information System (INIS)

    Batta, A.; Class, A.

    2015-01-01

    The first advanced design of accelerator-driven systems (ADS) is currently being built in SCK-CEN (Mol, Belgium): MYRRHA (Multi-purpose hybrid research reactor for high-tech applications). The experiment investigates the free surface design of the MYRRHA target. The free surface lead-bismuth eutectic (LBE) liquid metal experiment is a full-scale model of the concentric MYRRHA target. The design of the target is combined with CFD simulations using a volume of fluid method accounting for mass transfer across the free surface. The model used has been validated with water experimental results. The design of the target enables a high fluid velocity and a stable surface at the beam entry. In the current work, we present numerical results of Star- CD simulations employing a high-resolution interface-capturing scheme in conjunction with the cavitation model for the nominal operation conditions. Thermal hydraulic of the target is considered for the nominal flow rate and nominal heat load. Results show that the target has a very stable free surface configuration for the considered flow rate and heat load

  16. Structural integrity of heavy liquid-metal target installed in spallation neutron facility. Part 4: Consideration by fracture mechanics of target container window

    International Nuclear Information System (INIS)

    Ishikura, Syuichi; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kikuchi, Kenji; Haga, Katsuhiro; Kaminaga, Masanori; Hino, Ryutaro

    2004-01-01

    Developments of the neutron scattering facility is carried out under the high-intensity proton accelerator project promoted by JAERI and KEK. To estimate the structural integrity of the heavy liquid-metal (mercury) target used as a spallation neutron source in a MW-class neutron scattering facility, static and dynamic stress (including pressure wave in mercury) behaviors due to the incident of 1MW-pulsed proton beam (Maximum heat density is 461W/cc) were analyzed. In the analyses, two type target containers with semi-cylindrical type and flat-type beam windows were used as analytical models. As a result, it is confirmed that the stress generated by the pressure wave becomes the largest at the center of the beam window, and the flat-type beam window is more advantageous from the structural viewpoint than the semi-cylindrical type beam window. It has been understood that the stress generated in the beam window by the pressure wave can be treated as the secondary stress. Then, it has been understood that the stress and the stress range generated in the target window were bellow the allowable stress level defined by the standard of JIS on the maximum stress and fatigue strength. It has been experimentally confirmed that a cavitation was generated by generating the negative pressure in mercury near the target beam window and a collapse of cavitation damaged to the target container material, as pits. Then, the fracture mechanical analyses were carried out on the pit and a crack on pit tip. Consequently, it was clarified that the crack would not propagate because the inner surface of the beam window was become the compressive stress field due to the steady state thermal stress. Moreover, the evaluation technique of the cavitation which would be needed in the future was summarized. (author)

  17. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.

    1989-01-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  18. Genetic stability of gene targeted immunoglobulin loci. I. Heavy chain isotype exchange induced by a universal gene replacement vector.

    Science.gov (United States)

    Kardinal, C; Selmayr, M; Mocikat, R

    1996-11-01

    Gene targeting at the immunoglobulin loci of B cells is an efficient tool for studying immunoglobulin expression or generating chimeric antibodies. We have shown that vector integration induced by human immunoglobulin G1 (IgG1) insertion vectors results in subsequent vector excision mediated by the duplicated target sequence, whereas replacement events which could be induced by the same constructs remain stable. We could demonstrate that the distribution of the vector homology strongly influences the genetic stability obtained. To this end we developed a novel type of a heavy chain replacement vector making use of the heavy chain class switch recombination sequence. Despite the presence of a two-sided homology this construct is universally applicable irrespective of the constant gene region utilized by the B cell. In comparison to an integration vector the frequency of stable incorporation was strongly increased, but we still observed vector excision, although at a markedly reduced rate. The latter events even occurred with circular constructs. Linearization of the construct at various sites and the comparison with an integration vector that carries the identical homology sequence, but differs in the distribution of homology, revealed the following features of homologous recombination of immunoglobulin genes: (i) the integration frequency is only determined by the length of the homology flank where the cross-over takes place; (ii) a 5' flank that does not meet the minimum requirement of homology length cannot be complemented by a sufficient 3' flank; (iii) free vector ends play a role for integration as well as for replacement targeting; (iv) truncating recombination events are suppressed in the presence of two flanks. Furthermore, we show that the switch region that was used as 3' flank is non-functional in an inverted orientation.

  19. A novel approach to the island of stability of super-heavy elements search

    Directory of Open Access Journals (Sweden)

    Wieloch A.

    2016-01-01

    Full Text Available It is expected that the cross section for super-heavy nuclei production of Z > 118 is dropping into the region of tens of femto barns. This creates a serious limitation for the complete fusion technique that is used so far. Moreover, the available combinations of the neutron to proton ratio of stable projectiles and targets are quite limited and it can be difficult to reach the island of stability of super heavy elements using complete fusion reactions with stable projectiles. In this context, a new experimental investigation of mechanisms other than complete fusion of heavy nuclei and a novel experimental technique are invented for our search of super- and hyper-nuclei. This contribution is focused on that technique.

  20. Spallation reactions and energy deposition in heavy target materials comparison of measurements and MC-calculations

    International Nuclear Information System (INIS)

    Filges, D.; Enke, M.; Galin, J.

    2001-01-01

    A renascence of interest for energetic proton induced production of neutrons originates recently by the inception of new projects for target stations of intense spallation neutron sources (like the planned European Spallation Source ESS), accelerator-driven nuclear reactors, nuclear waste transmutation and also the application for radioactive beams. Here we verify the predictive power of transport codes currently on the market by confronting observables and quantities of interest with an exhaustive matrix of benchmark data essentially coming from two experiments being performed at the Cooler Synchrotron COSY at Juelich. Program packages like HERMES, LCS or MCNPX master the prevision of reaction cross sections, hadronic interaction lengths, averaged neutron multiplicities and neutron multiplicity distributions in thick and thin(!) targets for a wide spectrum of incident proton energies, geometrical shapes and materials of the target. While also the observables related to the energy deposition in thick targets are in a good agreement with the model predictions, the production cross section measurements however for light charged particles on thin targets point out that problems exist within these models. (author)

  1. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum; Fission des noyaux lourds: etude microscopique des barrieres de fission et du moment angulaire des fragments

    Energy Technology Data Exchange (ETDEWEB)

    Bonneau, L

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)

  2. Fission of heavy nuclei: microscopic study of fission barriers and fragments angular momentum; Fission des noyaux lourds: etude microscopique des barrieres de fission et du moment angulaire des fragments

    Energy Technology Data Exchange (ETDEWEB)

    Bonneau, L

    2003-11-01

    A lot of experimental data on nuclear fission has been being collected for the last 65 years, allowing theoreticians to confront their models with reality. The first part of this work is dedicated to the computation of fission barriers. We have extended the HF + BCS (Hartree Fock + Bandeen-Cooper-Schrieffer) method in order to include a new set of polynomials on which wave functions can be broken to, more accurately than on Hermite's polynomials in the 2 fragment configuration. The fission barriers of 26 heavy nuclei from Thorium-230 to Nobelium-256 have been assessed and compared to experimental data, it appears that differences are no greater than 1 MeV. We have discovered a neat correlation between the variation of the experimental fission lifetimes of even Fermium isotopes and the computed heights of second barriers. Moreover our model reproduces the hyper-deformed well of Thorium-230 with a good agreement on the well depth. The second part deals with the scission region. We have performed Hartree-Fock calculations in order to explore different ways of fragmentation. We have shown that the harmonic oscillator gives a valid description of such ways. In order to compute the mean value of J{sup 2} in the fragments we have been driven to propose an adequate definition of that quantity consistent with the non-locality property of the J{sup 2} operator. (A.C.)

  3. X-ray yields by low energy heavy ion excitation in alkali halide solid targets

    International Nuclear Information System (INIS)

    Kurup, M.B.; Prasad, K.G.; Sharma, R.P.

    1981-01-01

    Solid targets of the alkali halides KCl, NaCl and KBr are bombarded with ion beams of 35 Cl + , 40 Ar + and 63 Cu + in the energy range 165 keV to 320 keV. The MO and characteristic K X-ray yields resulting from the ion-atom collision have been systematically studied. Both MO and Cl K X-ray yields are enhanced by factors 3.5 and 2 respectively in KCl targets as compared to that in NaCl when bombarded with either Cl + or Ar + projectiles. An intercomparison of MO and K X-ray yields for a given projectile-target combination has shown that the latter increases ten times faster than the former as the energy of the projectile is increased from 165 to 320 keV indicating a correspondingly stronger velocity dependence of the K X-ray production process. The X-ray yields observed in the symmetric Cl-Cl collision are identical to those observed in the asymmetric Ar-Cl collision for the same projectile velocities in both KCl and NaCl targets. It is inferred that the multiple ionization of the projectile resulting in an increase in the binding energy of its inner shells offsets the expected enhancement in the X-ray yields in a symmetric collision. The same projectiles, Ar or Cl, incident on KBr targets have produced only Br L X-rays. Using substantially heavier projectiles than the target atoms (Na, K and Cl), like 63 Cu + ions, the inner shell excitation by recoiling atoms is shown. (orig.)

  4. Targeted heavy-ion microbeam irradiation of the embryo but not yolk in the diapause-terminated egg of the silkworm, bombyx mori, induces the somatic mutation

    International Nuclear Information System (INIS)

    Furusawa, Toshiharu; Fukamoto, Kana; Sakashita, Tetsuya; Funayama, Tomoo; Kobayashi, Yasuhiko; Kakizaki, Takehiko; Wada, Seiichi; Hamada, Nobuyuki; Suzuki, Hiromi; Ishioka, Noriaki; Nagaoka, Shunji

    2009-01-01

    Using heavy-ion microbeam, we report target irradiation of selected compartments within the diapause-terminated egg and its mutational consequences in the silkworm, Bombyx mori. On one hand, carbon-ion exposure of embryo to 0.5-6 Gy increased the somatic mutation frequency, suggesting targeted radiation effects. On the other, such increases were not observed when yolk was targeted, suggesting a lack of nontargeted bystander effect. (author)

  5. Hot nuclei, limiting temperatures and excitation energies

    International Nuclear Information System (INIS)

    Peter, J.

    1986-09-01

    Hot fusion nuclei are produced in heavy ion collisions at intermediate energies (20-100 MeV/U). Information on the maximum excitation energy per nucleon -and temperatures- indicated by the experimental data is compared to the predictions of static and dynamical calculations. Temperatures around 5-6 MeV are reached and seem to be the limit of formation of thermally equilibrated fusion nuclei

  6. Proton radioactivity from proton-rich nuclei

    International Nuclear Information System (INIS)

    Guzman, F.; Goncalves, M.; Tavares, O.A.P.; Duarte, S.B.; Garcia, F.; Rodriguez, O.

    1999-03-01

    Half-lives for proton emission from proton-rich nuclei have been calculated by using the effective liquid drop model of heavy-particle decay of nuclei. It is shown that this model is able to offer results or spontaneous proton-emission half-life-values in excellent agreement with the existing experimental data. Predictions of half-life-values for other possible proton-emission cases are present for null orbital angular momentum. (author)

  7. Nuclei far off the stability line

    International Nuclear Information System (INIS)

    Fenyes, T.

    1978-01-01

    Theoretical and experimental aspects of the formation of some ''exotic'' nuclei far off the stability line were reviewed in addition to the relevant results of research in this field. Results in beta- and gamma-ray spectroscopy, heavy-ion-spectroscopy, achievements in the fields of measuring the atomic mass, the moment, and the radius of the nuclei as well as some astronomical aspects were described. (Z.P.)

  8. Stability of superheavy nuclei

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.

  9. Neutron production in lead targets by high-energy light-mass heavy ions

    International Nuclear Information System (INIS)

    Daniehl', A.V.; Lyapin, V.S.; Tsvetkov, I.O.

    1992-01-01

    The characteristics of the time-of-flight spectrometer and the double different distributions of neutrons and secondary charged particles produced by 2 GeV protons and 1 GeVXA d,α, 6 Li and 12 C ions bombarding lead targets are described. Experimental data are compared with the results of calculations by codes SITHA. 17 refs.; 10 figs.; 1 tab

  10. Collectivity of neutron rich Zn nuclei by lifetime measurement with the AGATA demonstrator. Development of a hydrogen target and physics at relativistic energies

    International Nuclear Information System (INIS)

    Louchart, C.

    2012-01-01

    Spectroscopy of exotic nuclei has allowed numerous discoveries in nuclear structure: the shell structure changes and the magic numbers are not persistent when moving toward the drip lines. The study of exotic nuclei requires experimental spectroscopic data which give information on the deformation and the nature of excited states of the studied nucleus. Around 68 Ni, which presents signs of shell closure at N=40 (high excitation energy of the 2 + 1 and low B(E2; 2 + →0 + ) exotic nuclei, like Cr, Fe, Zn and Ge, present deformation and recent experiments point to a rapid development of collectivity. The experiment done at LNL (Laboratori Nazionali di Legnaro) on 70,72,74 Zn isotopes concluded a surprisingly long life time for the 4 + states of 74 Zn, leading to a ratio of B(E2; 4 + → 2 + ) to B(E2; 2 + → 0 + ) very low, not explained by calculations beyond mean field or shell models. This experiment was one of the first with the AGATA demonstrator. Two types of direct reactions are used to extract spectroscopic factors: knockout and low energy transfer reactions. The experimental values are not consistent between the two case s for the removal of one deeply bound nucleon in the nuclei. This difference could come from an incorrect modeling of the reaction mechanism of knockout reactions. Calculations based on intra-nuclear cascade followed by an evaporation phase show weaknesses in the sudden approximation. (author) [fr

  11. Structure and clusters of light unstable nuclei

    International Nuclear Information System (INIS)

    En'yo, Yoshiko

    2010-01-01

    As it is known, cluster structures are often observed in light nuclei. In the recent evolution of unstable nuclear research (on nuclei having unbalanced number of neutron and proton) further new types of clusters are coming to be revealed. In this report, structures of light unstable nuclei and some of the theoretical models to describe them are reviewed. The following topics are picked up. 1. Cluster structure and theoretical models, 2. Cluster structure of unstable nuclei (low excited state). 3. Cluster structure of neutron excess beryllium isotopes. 4. Cluster gas like state in C isotope. 5. Dineutron structure of He isotopes. Numbers of strange nuclear structures of light nuclei are illustrated. Antisymmetrized molecular dynamics (AMD) is the recently developed theoretical framework which has been successfully used in heavy ion reactions and nuclear structure studies. Successful application of AMD to the isotopes of Be, B and C are illustrated. (S. Funahashi)

  12. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains eight separate records on the interaction of high energy Λ 6 He hypernuclear beams with atomic nuclei, the position-sensitive detector of a high spatial resolution on the basis of a multiwire gas electron multiplier, pseudorapidity hadron density at the LHC energy, high precision laser control of the ATLAS tile-calorimeter module mass production at JINR, a new approach to ECG's features recognition involving neural network, subcriticity of a uranium target enriched in 235 U, beam space charge effects in high-current cyclotron injector CI-5, a homogeneous static gravitational field and the principle of equivalence

  13. Hot nuclei: high temperatures, high angular momenta

    International Nuclear Information System (INIS)

    Guerreau, D.

    1991-01-01

    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  14. Heavy particle atomic collisions in astrophysics: Beyond H and He targets

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, P.C.; Krstic, P.S.; Schultz, D.R.

    1998-06-01

    The physical conditions relating to the emission of x-rays from Jovian and cometary atmospheres and to supernova ejecta are briefly described. Emphasis is placed on elucidating the relevance and importance of atomic collision processes, the availability of data, and the outstanding data needs for modeling these environments. Some preliminary theoretical studies of electron capture for important collisions systems, involving molecular and atomic metal targets, are presented.

  15. Fast-ignition heavy-ion fusion target by jet impact

    International Nuclear Information System (INIS)

    Velarde, P.; Ogando, F.; Eliezer, S.; Martinez-Val, J.M.

    2005-01-01

    A new target design for HIF, based on the fast-ignition principles, is proposed. Unlike the previous designs proposed so far, in this case just one energy source is needed to drive the whole process to ignition. The ultra-fast deposition of energy onto the compressed core is produced in this case by hypervelocity jets generated during the process. The collision of jets converts their kinetic energy into thermal energy of the nuclear fuel, which is expected to produce ignition under proper design. The process is studied in this paper, describing its most relevant features like jet production and later collision

  16. Near target residues from the peripheral interaction of relativistic heavy ions with bismuth

    International Nuclear Information System (INIS)

    Aleklett, K.; Morrissey, D.J.; Loveland, W.; Moody, K.; Seaborg, G.T.

    1979-01-01

    Isotopic distributions for the near target residues Au and Tl were measured radioanalytically for the reaction of 8.0-GeV 20 Ne ions with 209 Bi. The isotopic production cross section for Au and Tl isotopes were calculated by using a macroscopic abrasion-ablation model and a microscopic intranuclear cascade-evaporation model. The importance of the neutron skin in determining the yield of these products from the peripheral interactions was also explored in the framework of the macroscopic model. 3 figures

  17. Measurement of the Barkas effect around the stopping-power maximum for light and heavy targets

    International Nuclear Information System (INIS)

    Moeller, S.P.; Knudsen, H.; Mikkelsen, U.; Paludan, K.; Morenzoni, E.

    1997-01-01

    The first direct measurements of antiproton stopping powers around the stopping power maximum are presented. The LEAR antiproton-beam of 5.9 MeV is degraded to 50-700 keV, and the energy-loss is found by measuring the antiproton velocity before and after the target. The antiproton stopping powers of Si and Au are found to be reduced by 30 and 40% near the electronic stopping power maximum as compared to the equivalent proton stopping power. The Barkas effect, that is the stopping power difference between protons and antiprotons, is extracted and compared to theoretical estimates. (orig.)

  18. Source-to-target simulation of simultaneous longitudinal and transverse focusing of heavy ion beams

    Directory of Open Access Journals (Sweden)

    D. R. Welch

    2008-06-01

    Full Text Available Longitudinal bunching factors in excess of 70 of a 300-keV, 27-mA K^{+} ion beam have been demonstrated in the neutralized drift compression experiment [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005PRLTAO0031-900710.1103/PhysRevLett.95.234801] in rough agreement with particle-in-cell source-to-target simulations. A key aspect of these experiments is that a preformed plasma provides charge neutralization of the ion beam in the last one meter drift region where the beam perveance becomes large. The simulations utilize the measured ion source temperature, diode voltage, and induction-bunching-module voltage waveforms in order to determine the initial beam longitudinal phase space which is critical to accurate modeling of the longitudinal compression. To enable simultaneous longitudinal and transverse compression, numerical simulations were used in the design of the solenoidal focusing system that compensated for the impact of the applied velocity tilt on the transverse phase space of the beam. Complete source-to-target simulations, that include detailed modeling of the diode, magnetic transport, induction bunching module, and plasma neutralized transport, were critical to understanding the interplay between the various accelerator components in the experiment. Here, we compare simulation results with the experiment and discuss the contributions to longitudinal and transverse emittance that limit the final compression.

  19. Inner shell ionization by incident nuclei

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1974-10-01

    The atomic Coulomb excitation process induced by impinging heavy charged particles such as protons, deuterons, α-particles and complex heavy ions is reviewed. Recent experimental and theoretical efforts have led toimproved understanding of the atomic Coulomb excitation as well as to discovery of new types of ionization mechanisms. The following models are mentioned: the Plane Wave Born Approximation (PWBA); theeeeeeeeeeeee modified PWBA model; the Binary Encounter Approximation (BEA); the Semi-Classical Approximation (SCA); the Perturbed-Stationary-State model (PSS). The structure of the SCA model is more thoroughly treated. Experimental results on single Coulomb ionizations of the K-, L-, and M-shells, and of the connected sub-shells by protons are compared with predictions. Most calculations are based on straight line projectile paths and non-relativistic hydrogen-like target electron wave functions. The BEA model and the SCA model seem to work reasonably well for multiple Coulomb ionizations by stripped light ions. Background effects in ion-atom collisions are commented upon. Future aspects of atomic Coulomb excitation by incident nuclei and ions are discussed. The interplay between Coulomb induced processes and united atom phenomena is especially mentioned. The simple ionization models have yielded valuable insights but it is suggested that this branch of collision physics has reached a turning point where new and more advanced and unifying models are needed. (JIW)

  20. Damage induced by swift heavy ions in a pure metallic target: iron. Experimental results and numerical simulation

    International Nuclear Information System (INIS)

    Legrand, P.

    1993-01-01

    The damage induced when a high energy deposition occurs in the electronic system of a pure metal (Ag, Co, Fe, Ni, Pd, Pt, Ti, W, Zr) has been investigated using two methods: low temperature swift heavy ion (O, Ar, Kr, Xe, Pb, u) irradiations and computer simulations by molecular dynamics. Irradiations reveal that up to now, it is only in iron, titanium, cobalt and zirconium targets that high levels of energy deposition in electronic excitations lead to a new mechanism of defect creation in addition to the effects of elastic collisions. This mechanism might be the Coulomb explosion: the incident ion creates in its wake a cylinder of highly ionized matter; Coulomb repulsions of short duration in metallic targets could then set a great number of neighbouring atoms into motion and lead to permanent atomic displacements. Using molecular dynamics, we confirm that atomic displacements can indeed occur when neighbouring perturbated atoms receive even a very small amount of kinetic energy (≤ 1 eV). This happens only if the repulsive movements are collective and coherent. Defect creation and annealing of preexisting defects which occur in iron at different energy deposition levels are successfully simulated. An original empirical N-body potential, allowing a realistic description of the bulk properties of the body centered cubic iron, is used. (author). refs., figs., tabs

  1. Atomic displacement distributions for light energetic atoms incident on heavy atom targets

    International Nuclear Information System (INIS)

    Brice, D.K.

    1975-01-01

    The depth distributions of atomic displacements produced by 4 to 100 keV H, D, and He ions incident on Cr, Mo, and W targets have been calculated using a sharp displacement threshold, E/sub d/ = 35 eV, and a previously described calculational procedure. These displacement depth distributions have been compared with the depth distributions of energy deposited into atomic processes to determine if a proportionality (modified Kinchin--Pease relationship) can be established. Such a relationship does exist for He ions and D ions incident on these metals at energies above 4 keV and 20 keV, respectively. For H ions the two distributions have significantly different shapes at all incident energies considered

  2. Bremsstrahlung from Relativistic Heavy Ions in a Fixed Target Experiment at the LHC

    International Nuclear Information System (INIS)

    Mikkelsen, Rune E.; Uggerhøj, Ulrik I.; Sørensen, Allan H.

    2015-01-01

    We calculate the emission of bremsstrahlung from lead and argon ions in ultraperipheral collisions in a fixed target experiment (AFTER) that uses the LHC beams. With nuclear charges of Ze equal to 82e and 18e, respectively, these ions are accelerated to energies of 7 Tev × Z. The bremsstrahlung peaks around ≈100 GeV and the spectrum exposes the nuclear structure of the incoming ion. The peak structure is significantly different from the flat power spectrum pertaining to a point charge. Photons are predominantly emitted within an angle of 1/γ to the direction of ion propagation. Our calculations are based on the Weizsäcker-Williams method of virtual quanta with application of existing experimental data on photonuclear interactions.

  3. Density effects in heavy ion charge-exchange processes in gaseous and solid targets

    International Nuclear Information System (INIS)

    Teplova, Ya.A.; Dmitriev, I.S.; Belkova, Yu.A.

    2000-01-01

    Experimental results on the pre-equilibrium and equilibrium charge distributions in celluloid films for incident Be, B, C, N, O ions are analyzed in order to obtain charge-exchange cross-sections. The determined 'effective' cross-sections of electron capture and loss in celluloid together with earlier measured analogous cross-sections in nitrogen allow us to calculate charge fractions F i (t) depending on the target thickness in solid (celluloid) and gaseous (nitrogen) matter. The absolute values and the ratios A cap =σ g i,i-1 /σ s i,i-1 and A loss =σ g i-1,i /σ s i-1,i of electron capture and loss cross-sections in {s} solids (celluloid, carbon) and {g} gases (nitrogen) are under consideration

  4. Ultra-low energy electrons from fast heavy-ion helium collisions: the `target Cusp`

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, W. [Freiburg Univ. (Germany)]|[Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Moshammer, R.; Kollmus, H.; Ullrich, J. [Freiburg Univ. (Germany); O`Rourke, F.S.C. [Queen`s Univ., Belfast, Northern Ireland (United Kingdom); Sarkadi, L. [Magyar Tudomanyos Akademia, Debrecen (Hungary). Atommag Kutato Intezete; Mann, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Hagmann, S. [Kansas State Univ., Manhattan, KS (United States). J.R. MacDonald Lab.; Olson, R.E. [Missouri Univ., Rolla, MO (United States). Dept. of Physics

    1998-09-01

    Doubly differential cross sections d{sup 2}{sigma}/dv {sub parallel} dv {sub perpendicular} {sub to} have been obtained by mapping the 3-dimensional velocity space of ultra-low and low-energy electrons (1.5 meV{<=} E{sub e}{<=}100 eV) emitted in singly ionizing 3.6 MeV/u Au{sup 53+} on helium collisions. A sharp ({Delta}E{sub e} {sub perpendicular} {sub to} {sup FWHM} {<=} 22 meV) asymmetric peak centered at vertical stroke anti {nu} vertical stroke =0 is observed to emerge at ultra-low energies from the strongly forward shifted low-energy electron velocity distribution. The shape of this ``target cusp``, which is very sensitive on the details of the two-center potential, is in excellent accord with theoretical CTMC and CDW-EIS predictions. (orig.)

  5. A study of charge-pickup interactions by (158A GeV) Pb nuclei

    International Nuclear Information System (INIS)

    Sher, G.; Shahzad, M.I.

    2012-01-01

    Study of the relativistic heavy-ion collision is important to focus on probing phase transitions between hadrons and quark-gluon phases in the extreme conditions of temperature and density of nuclear matter formed in the collisions. These states of nuclear matter are expected to be created in relativistic nuclear collisions with large overlap of interacting nuclei, the Lorentz-boosted Coulomb potential Vc proportional to alpha gamma Z/b of a partner with charge Z is very strong, where b is impact parameter and is the fine structure constant. Either one or both nuclei may be disintegrated by the electromagnetic forces in ultra-peripheral collisions at b = R1 + R2, where R1 and R2 are the nuclear radii. This distinct feature of electromagnetic dissociation makes it possible to study the behavior of nuclear matter under electromagnetic fields. The nuclear charge-pickup ( delta Z = +1) by Pb projectiles at energy 158A GeV interacting with targets Bi, Pb, Cu and Al was investigated using CR39 nuclear track detectors. The target-detector stacks were exposed at CERN SPS beam facility. The projectile and fragments charge states have been identified using the etch-cone lengths for charge-pickup at Z = 83 of residual nuclei. Our measured charge-pickup cross sections (delta Z = +1) are shown. It was observed that for the heavy targets the increase in the cross section is anticipated by substantial contribution of electromagnetic dissociation process of production by virtual photons which is almost negligible at 10.6A GeV. In the light target region, our measured cross sections and charge-pickup cross sections reported at energy 10.6A GeV show dominant nuclear contribution and very small contribution of electromagnetic dissociation term. A strong dependence of charge-pickup cross sections on the target mass number was observed particularly in the heavy targets. (orig./A.B.)

  6. The creation of new nuclei

    International Nuclear Information System (INIS)

    Armbruster, P.; Hessberger, F.P.

    1998-01-01

    In the last 60 years physicists have created 20 artificial elements beyond uranium. In 1934 Enrico Fermi predicted the creation of new elements by bombarding atoms with neutrons. This method led to the discovery of neptunium (Z=93), plutonium, americium, curium, berkelium, californium, einsteinium and fermium (Z=100). In fact the capture of a neutron is followed by a beta-decay which increases the atomic number (Z) by one unit. Beyond Z=100 beta-decay no more occurs so a new approach was necessary. Between the American Lawrence Berkeley Laboratory and the Russian Dubna Institute a fierce competition broke out to produce new elements by bombarding transuranium nuclei with light elements such as helium, carbon, nitrogen. This new method required heavy equipment: ion accelerator and detectors but led to the creation of all the elements from Z=101 to Z=106. A new idea was to provoke the fusion of heavy nuclei such as lead and bismuth with colliding argon, nickel or zinc ion beams. This method called 'cold fusion' opened the way to reach the nuclei beyond Z=107. In 1996 the element Z=112 was the last discovered. The next step could be the element Z=114 for which a particular stability is expected. (A.C.)

  7. Thermodynamical description of excited nuclei

    International Nuclear Information System (INIS)

    Bonche, P.

    1989-01-01

    In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core

  8. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    Science.gov (United States)

    Velarde, G.; Perlado, J. M.; Alonso, E.; Alonso, M.; Domínguez, E.; Rubiano, J. G.; Gil, J. M.; Gómez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martínez-Val, J. M.; Mínguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P.

    2001-05-01

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT x fuel with a small tritium initial content ( x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures (≫100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower Te and to enhance radiation losses, reducing the plasma temperature, Ti. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination barriers in Si

  9. Advances in implosion physics, alternative targets design, and neutron effects on heavy ion fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Velarde, G.; Perlado, J.M. E-mail: mperlado@denim.upm.es; Alonso, E.; Alonso, M.; Dominguez, E.; Rubiano, J.G.; Gil, J.M.; Gomez del Rio, J.; Lodi, D.; Malerba, L.; Marian, J.; Martel, P.; Martinez-Val, J.M.; Minguez, E.; Piera, M.; Ogando, F.; Reyes, S.; Salvador, M.; Sanz, J.; Sauvan, P.; Velarde, M.; Velarde, P

    2001-05-21

    The coupling of a new radiation transport (RT) solver with an existing multimaterial fluid dynamics code (ARWEN) using Adaptive Mesh Refinement named DAFNE, has been completed. In addition, improvements were made to ARWEN in order to work properly with the RT code, and to make it user-friendlier, including new treatment of Equations of State, and graphical tools for visualization. The evaluation of the code has been performed, comparing it with other existing RT codes (including the one used in DAFNE, but in the single-grid version). These comparisons consist in problems with real input parameters (mainly opacities and geometry parameters). Important advances in Atomic Physics, Opacity calculations and NLTE atomic physics calculations, with participation in significant experiments in this area, have been obtained. Early published calculations showed that a DT{sub x} fuel with a small tritium initial content (x<3%) could work in a catalytic regime in Inertial Fusion Targets, at very high burning temperatures ({>=}100 keV). Otherwise, the cross-section of DT remains much higher than that of DD and no internal breeding of tritium can take place. Improvements in the calculation model allow to properly simulate the effect of inverse Compton scattering which tends to lower T{sub e} and to enhance radiation losses, reducing the plasma temperature, T{sub i}. The neutron activation of all natural elements in First Structural Wall (FSW) component of an Inertial Fusion Energy (IFE) reactor for waste management, and the analysis of activation of target debris in NIF-type facilities has been completed. Using an original efficient modeling for pulse activation, the FSW behavior in inertial fusion has been studied. A radiological dose library coupled to the ACAB code is being generated for assessing impact of environmental releases, and atmospheric dispersion analysis from HIF reactors indicate the uncertainty in tritium release parameters. The first recognition of recombination

  10. The Peculiarities of the Production and Decay of Superheavy Nuclei

    International Nuclear Information System (INIS)

    Itkis, M. G.; Bogachev, A. A.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rusanov, A. Ya.; Sagaidak, R. N.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Behera, B. R.; Corradi, L.; Fioretto, E.

    2006-01-01

    The interest in the study of the fission process of superheavy nuclei mainly deals with the opportunity to obtain information about the cross-section of the compound nucleus (CN) formation at excitation energies E*≅15-30 MeV. It allows one to estimate the survival probability of the superheavy composite system after evaporation of 1-3 neutrons, i.e. in 'cold' or 'warm' fusion reactions. However, in order to solve this problem deeper understanding of the coalescence processes between colliding nuclei, the competition between fusion-fission and quasi-fission processes is needed. The characteristics of both processes, their manifestation in the experimental observables and the relative contribution to the capture cross-section in dependence on the excitation energies, reaction entrance channel etc were investigated for a wide range of target-projectile combinations. Results of the experiments devoted to the study of the fusion-fission and quasi-fission processes in the reactions of the formation of the superheavy nuclei with Z = 102-122 are presented. The heavy ions 26Mg, 48Ca, 50Ti, 58Fe and 64Ni were used as projectiles. The choice of the reactions with 48Ca and actinide-targets was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 in Dubna using the same reactions. The 50Ti, 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia) and the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) using the time-of-flight spectrometer of fission fragments CORSET. The role of the shell effects, the influence of the entrance channel asymmetry and the deformations of colliding nuclei on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed. The recent results on synthesis of

  11. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  12. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  13. Clusters in nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Beck, Christian

    2010-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is presently one of the domains of heavy-ion nuclear physics facing both the greatest challenges and opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physics decided to team up in producing a comprehensive collection of lectures and tutorial reviews covering the field. This first volume, gathering seven extensive lectures, covers the follow topics: - Cluster Radioactivity - Cluster States and Mean Field Theories - Alpha Clustering and Alpha Condensates - Clustering in Neutron-rich Nuclei - Di-neutron Clustering - Collective Clusterization in Nuclei - Giant Nuclear Molecules By promoting new ideas and developments while retaining a pedagogical nature of presentation throughout, these lectures will both serve as a reference and as advanced teaching material for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  14. Improving the Calculation of The Potential Between Spherical and Deformed Nuclei

    International Nuclear Information System (INIS)

    Ismail, M.; Ramadan, Kh.A.

    2000-01-01

    The Heavy Ion (HI) interaction potential between spherical and deformed nuclei is improved by calculating its exchange part using finite range nucleon-nucleon (NN) force. We considered U 238 as a target nucleus and seven projectile nuclei to show the dependence of the HI potential on both the energy and orientation of the deformed target nucleus. The effect of finite range NN force has been found to produce significant changes in the HI potential. The variation of the barrier height V B , its thickness and its position R B due to the use of finite range NN force are significant. Such variation enhance the fusion cross-section at energy values just below the Coulomb barrier by a factor increasing with the mass number of projectile nucleus. (author)

  15. Radiation assisted thermonuclear burn wave dynamics in heavy ion fast ignition of cylindrical deuterium-tritium fuel target

    International Nuclear Information System (INIS)

    Rehman, S.; Kouser, R.; Nazir, R.; Manzoor, Z.; Tasneem, G.; Jehan, N.; Nasim, M.H.; Salahuddin, M.

    2015-01-01

    Dynamics of thermonuclear burn wave propagation assisted by thermal radiation precursor in a heavy ion fast ignition of cylindrical deuterium-tritium (DT) fuel target are studied by two dimensional radiation hydrodynamic simulations using Multi-2D code. Thermal radiations, as they propagate ahead of the burn wave, suffer multiple reflections and preheat the fuel, are found to play a vital role in burn wave dynamics. After fuel ignition, the burn wave propagates in a steady state manner for some time. Multiple reflection and absorption of radiation at the fuel-tamper interface, fuel ablation and radial implosion driven by ablative shock and fast fusion rates on the fuel axis, at relatively later times, result into filamentary wave front. Strong pressure gradients are developed and sausage like structures behind the front are appeared. The situation leads to relatively reduced and non-uniform radial fuel burning and burn wave propagation. The fuel burning due to DD reaction is also taken into account and overall fusion energy and fusion power density, due to DT and DD reactions, during the burn wave propagation are determined as a function of time. (authors)

  16. Electron scattering studies of selected electric and magnetic dipole and quadrupole transitions in light and heavy nuclei, the new multipole giant resonances and atomic transitions - recent results from the DALINAC

    International Nuclear Information System (INIS)

    Richter, A.

    1977-01-01

    Recent experimental work from the Darmstadt electron linear accelerator (DALINAC) is briefly summarized. Particular emphasis is given to the following topics: high resolution inelastic electron scattering (ΔE approximately 30 keV FWHM) has been used to study the radiative width and magnetization density of the 2 + , T = 1 state at 16.11 MeV in 12 C, E2 strength distribution in 28 Si below an excitation energy of 13 MeV and the isospin forbidden E1 electroexcitation of the 1 - , T = 0 state at 6.95 MeV in 40 Ca. High resolution inelastic electron scattering was also employed to determine certain M1 transitions in 14 N, 28 Si, 39 K, 58 Ni, 90 Zr and 208 Pb and the M2 strength distribution in the two heaviest nuclei. At medium energy resolution (ΔE approximately 200 keV FWHM) spectra at various angles and bombarding energies have been measured from (4-31) MeV for 208 Pb. They are being analyzed in order to determine E0, E1, E2, E3 and M1 giant resonance strength in the continuum. The Z and E dependence and the scaling behaviour of the atomic inner shell ionization cross section at relativistic electron impact is studied on gaseous and solid targets. (orig./BJ) [de

  17. Study of the two body dissociation of light nuclei in nuclear fields. Progress report, January 1, 1976--December 31, 1976

    International Nuclear Information System (INIS)

    Kirk, P.N.; Huggett, R.W.

    The object of the experiment is to measure the frequency with which nucleons within a parent nucleus coalesce into clusters. The experiment is being carried out at the Bevatron with heavy ion beams of 2.1 GeV kinetic energy per nucleon. The extracted heavy ion beam is directed onto a target in which many interactions occur. The interactions of interest are those in which the incident nucleus fragments into two daughter nuclei. These events are selected from the background by scintillation counters and associated fast electronics

  18. Quark distribution distortion in heavy nuclei

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1984-10-01

    Further consequences of sea-quark pairing are studied by looking at the underlying collective phenomena. We are led to variations of the quark distribution of single protons due to nuclear binding. A new prediction, subject to experimental verification, is discussed. (author)

  19. Study of giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    The electrodisintegration cross section for 181 Ta, 208 Pb and 209 Bi was measured by counting the emitted neutrons, with incident electrons in the energy range 8-22 MeV. The data was analysed using the virtual photon method, in order to obtain a multipole decomposition and the intensities of Magnetic Dipole and Electric Quadrupole, isoscalar and isovector, in the Giant Resonance. The results obtained for the isovector Giant Quadrupole Resonance are compared with the measured photodisintegration cross section, using data from Saclay and Livermore. This comparision indicates that the photodisintegration data can be well explained assuming an isovector E2 Resonance located between 120 and 130 A -1/3 MeV, with an intensity of one isovector E2 sum. (author) [pt

  20. Borromean structures in medium-heavy nuclei

    DEFF Research Database (Denmark)

    Hove, Dennis; Fedorov, Dmitri Vladimir; Fynbo, Hans Otto Uldall

    2014-01-01

    Borromean nuclear cluster structures are expected at the corresponding driplines. We locate the regions in the nuclear chart with the most promising constituents, it being protons and alpha-particles and investigate in details the properties of the possible borromean two-alpha systems in medium h...... 134Te−α−α structure in its ground state and low-lying spectrum....

  1. submitter Scattering of halo nuclei on heavy targets at energies around the Coulomb barrier: The case of $^{11}$Be on $^{197}$Au

    CERN Document Server

    Pesudo, V; Moro, A M; Lay, J A; Nácher, E; Gómez-Camacho, J; Tengblad, O; Acosta, L; Alcorta, M; Alvarez, M A G; Andreoiu, C; Bender, P C; Braid, R; Cubero, M; Di Pietro, A; Fernández-García, J P; Figuera, P; Fisichella, M; Fulton, B R; Garnsworthy, A B; Hackman, G; Hager, U; Kirsebom, O S; Kuhn, K; Lattuada, M; Marquínez-Durán, G; Martel, I; Miller, D; Moukaddam, M; O'Malley, P D; Perea, A; Rajabali, M M; Sánchez-Benítez, A M; Sarazin, F; Scuderi, V; Svensson, C E; Unsworth, C; Wang, Z M

    2017-01-01

    This work reports on the scattering of $^{11}$Be on $^{197}$Au at energies around and below the Coulomb barrier. By experimentally identifying the elastic scattering, inelastic scattering and breakup channels, and comparing them with different calculations, valuable information on the $^{11}$Be structure and its $B(E1$) distribution to the continuum are obtained. On top of that, a deeper understanding of the scattering process at low energies is achieved for reactions of this kind, making these studies extendable to other loosely-bound systems like $^{17,19}$C.

  2. Inelastic collisions of neon-22 nuclei with nuclei in photoemulsion at 90 GeV/c momentum

    International Nuclear Information System (INIS)

    Vokalova, A.; Krasnov, S.A.; Tolstov, K.D.

    1985-01-01

    The experimental data obtained according to the analysis of 4303 inelastic interactions of the relativistic neon-22 nuclei with the nuclei in photoemulsion are presented. The multiplicities and angular distributions are shown as the functions of the disintegration degree of the colliding nuclei. It is shown that the same number of interacting nucleons of the projectile neon and carbon nuclei are connected with the different impact parameters with the target nucleus

  3. Source dimensions in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Herrmann, M.; Bertsch, G.F.

    1994-01-01

    Recent experiments on pion correlations, interpreted as interferometric measurements of the collision zone, are compared with models that distinguish a prehadronic phase and a hadronic phase. The models include prehadronic longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and rescattering of the produced hadrons. The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a heavy target require the existence of a prehadronic phase which converts to the hadronic phase at densities around 0.8 GeV/fm 3 . The transverse radii cannot be reproduced without introducing more complex dynamics into the transverse expansion

  4. Antideuteron annihilation on nuclei

    International Nuclear Information System (INIS)

    Cugnon, J.

    1992-01-01

    An investigation of antideuteron annihilation on nuclei within an intranuclear cascade (INC) model is presented. Two models are set up to describe the annihilation itself, which either implies the antideuteron as a whole and occurs at a single point, or which may be considered as two independent nucleon-antinucleon annihilation occurring at different points and different times. Particular attention is paid to the energy transferred from the pions issued from the annihilation to the nuclear system and to the possibility of having a multifragmentation of the target. The latter feature is investigated within a percolation model. The pion distribution and the energy distribution are also discussed. Predictions of proton multiplicity distributions are compared with experiment. (orig.)

  5. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on the integral representation for structure functions and target mass effects, multiscale properties of DNA primary structure including cross-scale correlations, dissipative evolution of the elementary act, the fine structure of the M T =1 Gamow-Teller resonance in 147g Tb→ 147 Gd β + /EC decay, the behaviour of the TVO temperature sensors in the magnetic fields, a fast method for searching for tracks in multilayer drift chambers of HADES spectrometer, a novel approach to particle track etching including surfactant enhanced control of pore morphology, azimuthal correlations of secondary particles in 32 S induced interactions with Ag(Br) nuclei at 4.5 GeV/ c/ nucleon

  6. The autonomic higher order processing nuclei of the lower brain stem are among the early targets of the Alzheimer's disease-related cytoskeletal pathology.

    Science.gov (United States)

    Rüb, U; Del Tredici, K; Schultz, C; Thal, D R; Braak, E; Braak, H

    2001-06-01

    The nuclei of the pontine parabrachial region (medial parabrachial nucleus, MPB; lateral parabrachial nucleus, LPB; subpeduncular nucleus, SPP) together with the intermediate zone of the medullary reticular formation (IRZ) are pivotal relay stations within central autonomic regulatory feedback systems. This study was undertaken to investigate the evolution of the Alzheimer's disease-related cytoskeletal pathology in these four sites of the lower brain stem. We examined the MPB, LPB, SPP and IRZ in 27 autopsy cases and classified the cortical Alzheimer-related cytoskeletal anomalies according to an established staging system (neurofibrillary tangle/neuropil threads [NFT/NT] stages I-VI). The lesions were visualized either with the antibody AT8, which is immunospecific for the abnormally phosphorylated form of the cytoskeletal protein tau, or with a modified Gallyas silver iodide stain. The MPB, SPB, and IRZ display cytoskeletal pathology in stage I and the LPB in stage II, whereby bothstages correspond to the preclinical phase of Alzheimer's disease (AD). In stages III-IV (incipient AD), the MPB and SPP are severely affected. In all of the stage III-IV cases, the lesions in the LPB and IRZ are well developed. In stages V and VI (clinical phase of AD), the MPB and SPP are filled with the abnormal intraneuronal material. At stages V-VI, the LPB is moderately involved and the IRZ shows severe damage. The pathogenesis of the AD-related cytoskeletal lesions in the nuclei of the pontine parabrachial region and in the IRZ conforms with the cortical NFT/NT staging sequence I-VI. In the event that the cytoskeletal pathology observed in this study impairs the function of the nerve cells involved, it is conceivable that autonomic mechanisms progressively deteriorate with advancing cortical NFT/NT stages. This relationship remains to be established, but it could provide insights into the illusive correlation between the AD-related cytoskeletal pathology and the function of

  7. Experimental Cross Sections for Reactions of Heavy Ions and 208Pb, 209Bi, 238U, and 248Cm Targets

    International Nuclear Information System (INIS)

    Patin, Joshua B.

    2002-01-01

    The study of the reactions between heavy ions and 208 Pb, 209 Bi, 238 U, and 248 Cm targets was performed to look at the differences between the cross sections of hot and cold fusion reactions. Experimental cross sections were compared with predictions from statistical computer codes to evaluate the effectiveness of the computer code in predicting production cross sections. Hot fusion reactions were studied with the MG system, catcher foil techniques and the Berkeley Gas-filled Separator (BGS). 3n- and 4n-exit channel production cross sections were obtained for the 238 U( 18 O,xn) 256-x Fm, 238 U( 22 Ne,xn) 260-x No, and 248 Cm( 15 N,xn) 263-x Lr reactions and are similar to previous experimental results. The experimental cross sections were accurately modeled by the predictions of the HIVAP code using the Reisdorf and Schaedel parameters and are consistent with the existing systematics of 4n exit channel reaction products. Cold fusion reactions were examined using the BGS. The 208 Pb( 48 Ca,xn) 256-x No, 208 Pb( 50 Ti,xn) 258-x Rf, 208 Pb( 51 V,xn) 259-x Db, 209 Bi( 50 Ti,xn) 259-x Db, and 209 Bi( 51 V,xn) 260-x Sg reactions were studied. The experimental production cross sections are in agreement with the results observed in previous experiments. It was necessary to slightly alter the Reisdorf and Schaedel parameters for use in the HIVAP code in order to more accurately model the experimental data. The cold fusion experimental results are in agreement with current 1n- and 2n-exit channel systematics

  8. Evolution of direct mechanisms with incident energy from the Coulomb-barrier to relativistic energies. - Two-center effects in nucleon transfer between nuclei. - Signatures of nucleon promotion in heavy ion reactions at barrier energies

    International Nuclear Information System (INIS)

    Oertzen, W. von; Voit, H.; Imanishi, B.

    1988-10-01

    This report contains a review article considering the evolution of direct mechanisms with incident energy in heavy ion reactions and two theoretical articles concerning two-center effects in transfer reactions between heavy ions and the nucleon promotion in heavy ion reactions. See hints under the relevant topics. (HSI)

  9. The Fragmentation of Heavy Nuclei by 13.8 GeV/c Protons as a Contribution to the Study of the Interaction Mechanism and Nuclear Structure; Fragmentacion de nucleos pesados por protones de 13'8 GeV/c, como contribucion al estudio del mecanismo de interaccion y estructura nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Gil Perez, D.

    1967-07-01

    We present here an global study of the interaction between high- energy particles and heavy nuclei, an interaction which holds obvious interest in relation to the problems of nuclear fragmentation and which, up lo now has only been studied piecemeal. We have used three stacks of photographic emulsions which were irradiated by 13.8 GeV/c protons, 17 GeV/c negative pions and 24 GeV/c protons. All three irradiations took place in a 180 K.G. magnetic field using CERN beams. (Author) 20 refs.

  10. The Fragmentation of Heavy Nuclei by 13.8 GeV/c Protons as a Contribution to the Study of the Interaction Mechanism and Nuclear Structure; Fragmentacion de nucleos pesados por protones de 13'8 GeV/c, como contribucion al estudio del mecanismo de interaccion y estructura nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Gil Perez, D

    1967-07-01

    We present here an global study of the interaction between high- energy particles and heavy nuclei, an interaction which holds obvious interest in relation to the problems of nuclear fragmentation and which, up lo now has only been studied piecemeal. We have used three stacks of photographic emulsions which were irradiated by 13.8 GeV/c protons, 17 GeV/c negative pions and 24 GeV/c protons. All three irradiations took place in a 180 K.G. magnetic field using CERN beams. (Author) 20 refs.

  11. Collisions of deformed nuclei and superheavy-element production

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Moeller, P.; Univ. of Aizu, Fukushima; P. Moller Scientific Computing and Graphics, Inc., Los Alamos, NM; Los Alamos National Lab., NM; Nix, J.R.; Sagawa, Hiroyuki, Sagawa

    1995-01-01

    A detailed understanding of complete fusion cross sections in heavy-ion collisions requires a consideration of the effects of the deformation of the projectile and target. The aim here is to show that deformation and orientation of the colliding nuclei have a very significant effect on the fusion-barrier height and on the compactness of the touching configuration. To facilitate discussions of fusion configurations of deformed nuclei, the authors develop a classification scheme and introduce a notation convention for these configurations. They discuss particular deformations and orientations that lead to compact touching configurations and to fusion-barrier heights that correspond to fairly low excitation energies of the compound systems. Such configurations should be the most favorable for producing superheavy elements. They analyze a few projectile-target combinations whose deformations allow favorable entrance-channel configurations and whose proton and neutron numbers lead to compound systems in a part of the superheavy region where a half-lives are calculated to be observable, that is, longer than 1 micros

  12. Dipole cluster states in light, medium heavy and heavy nuclei

    International Nuclear Information System (INIS)

    Gai, Moshe

    1984-01-01

    Tests of the Vibron cluster model in sup(18)O, sup(218)Ra and sup(156)Yb are reported, as well as a test in progress in sup(52)Ti. Low lying negative parity states which appear to be members of rotational bands of alternating parity states with enhanced B(E1) intraband deexcitation rates are found. The cluster band, within the model framework, is also characterized by large alpha decay widths and enhanced radiative deexcitation widths of several multipolarities B(E1), B(E2), B(E3). A discussion of the model and the underlying, newly suggested dipole degree of freedom is presented. (author)

  13. On the semiclassical description of rotating nuclei

    International Nuclear Information System (INIS)

    Durand, M.; Kunz, J.; Schuck, P.

    1983-01-01

    The technique of partial h-resummation is used to obtain semiclassical, i.e. average current distributions in the body fixed system of heavy nuclei. It thereby turns out that this average intrinsic current only flows in the nuclear surface. A Strutinsky smoothing of the current is also performed and gives nice agreement with the semiclassical results. We also show how one can incorporate superfluidity into the semiclassical treatment. To lowest order in h we find that the moment of inertia of superfluid nuclei is zero. The same result is obtained by a quantum mechanical calculation if the gap goes to infinity. The importance of including n-corrections is pointed out

  14. Investigations of nuclei-products formation in target and construction materials of electro-nuclear installations irradiated by 1.5 GeV and 130 MeV photons

    International Nuclear Information System (INIS)

    Titarenko, Y.E.; Karpihin, E.I.; Smolyakov, A.F.

    1996-01-01

    Different versions of installations for transmutation or incineration of actinides and long-lived fission products are being considered nowadays; the source of neutrons in these installations is supposed to be a nuclon-meson cascade arising under interaction of 0.8--1.5 GeV proton beam and the substance of a target. ''Heavy'' materials: eutectics of lead and bismuth or tangsten, are supposed to be used as targets. In correspondence with this, measurements of the cross sections of spallation of nuclides of these materials under impact of the protons of different energies are going on in ITEP. Nuclides used as construction materials for the accelerator are also being measured. Numerical simulation of experimental results with utilization of the codes HETC, INUCLE, CEM95 capable to calculate the process of nuclon- meson cascade in the investigated targets is being carried out

  15. Studies of exotic nuclei

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1997-01-01

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed

  16. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    2000-01-01

    Complete text of publication follows. The uncharted regions of the (N,Z) plane contain information that can answer many questions of fundamental importance for science: How many protons and neutrons can be clustered together by the strong interaction to form a bound nucleus? What are the proton and neutron magic numbers of the exotic nuclei? What are the properties of very short-lived exotic nuclei with extreme neutron-to-proton ratios? What is the effective nucleon-nucleon interaction in a nucleus that has a very large neutron excess? Nuclear life far from stability is different from that around the stability line; the promised access to completely new combinations of proton and neutron numbers offers prospects for new structural phenomena. The main objective of this talk is to discuss some of the challenges and opportunities of research with exotic nuclei. The covered topics will include: Theoretical challenges; Skins and halos in heavy nuclei; Shape coexistence in exotic nuclei; Beta-decays of neutron-rich nuclei. (author)

  17. Survival and compound nucleus probability of super heavy element Z = 117

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First grade College, Department of Physics, Kolar, Karnataka (India)

    2017-05-15

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of {sup 289-297}Ts, we have calculated the transmission probability (T{sub l}), compound nucleus formation probabilities (P{sub CN}) and survival probability (P{sub sur}) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of {sup 289-297}Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei {sup 289-297}Ts are worked out and listed explicitly. We have also studied the variation of P{sub CN} and P{sub sur} with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  18. Survival and compound nucleus probability of super heavy element Z = 117

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Sridhar, K.N.

    2017-01-01

    As a part of a systematic study for predicting the most suitable projectile-target combinations for heavy-ion fusion experiments in the synthesis of "2"8"9"-"2"9"7Ts, we have calculated the transmission probability (T_l), compound nucleus formation probabilities (P_C_N) and survival probability (P_s_u_r) of possible projectile-target combinations. We have also studied the fusion cross section, survival cross section and fission cross sections for different projectile-target combination of "2"8"9"-"2"9"7Ts. These theoretical parameters are required before the synthesis of the super heavy element. The calculated probabilities and cross sections show that the production of isotopes of the super heavy element with Z = 117 is strongly dependent on the reaction systems. The most probable reactions to synthetize the super heavy nuclei "2"8"9"-"2"9"7Ts are worked out and listed explicitly. We have also studied the variation of P_C_N and P_s_u_r with the mass number of projectile and target nuclei. This work is useful in the synthesis of the super heavy element Z = 117. (orig.)

  19. Studies of yrast and continuum states in A = 140 to 160 nuclei. Progress report for 1983

    International Nuclear Information System (INIS)

    Daly, P.J.

    1983-12-01

    The structure of nuclei, principally in the A-150 region, has been studied by in-beam γ-ray spectroscopy using heavy ion beams from the Argonne Tandem/Linac. New structural information was obtained for many shell model nuclei around 146 Gd, for the shape transitional nuclei 153 Dy and 154 Dy, and for the nuclei 147 Gd, 186 Hg, and 187 Hg at high-spin

  20. Yields of nuclear fragments in the interactions of carbon nuclei with a beryllium target at a projectile energy of 0.6 GeV per nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, B. M.; Alexeev, P. N.; Borodin, Yu. A.; Bulychjov, S. A. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics (Russian Federation); Gudima, K. K. [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Dukhovskoy, I. A.; Krutenkova, A. P., E-mail: anna.krutenkova@itep.ru; Kulikov, V. V.; Martemianov, M. A.; Matsyuk, M. A. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics (Russian Federation); Mashnik, S. G. [Los Alamos National Laboratory (United States); Turdakina, E. N.; Khanov, A. I. [National Research Center Kurchatov Institute, Institute for Theoretical and Experimental Physics (Russian Federation)

    2016-09-15

    The yields of long-lived nuclear fragments at an angle of 3.5° that originate fromthe fragmentation of carbon ions with an energy of T{sub 0} = 0.6 GeV per nucleon on a berylliumtarget were measured in the FRAGMexperiment at the ITEP TWA heavy-ion accelerator. The momentum spectra of these fragments cover both the fragmentation-maximum region and the cumulative region. The respective differential cross sections change by about five orders of magnitude. The momentum distributions of fragments in the laboratory frame and their kinetic-energy distributions in the rest frame of the fragmenting nucleus are used to test the predictions of four models of ion–ion interactions: BC, INCL++, LAQGSM03.03, and QMD.

  1. Various processes occurring in strong interactions between heavy ions: Compound nucleus formation, incomplete fusion, and quasifission

    International Nuclear Information System (INIS)

    Lefort, M.

    1975-01-01

    This paper deals with the problem of various deep processes occurring when two complex nuclei enter in collision. It is suggested that very deep inelastic processes may lead to either a compound nucleus or a composite system which shortly decays into two fission fragments (quasifission process). Particularly for heavy projectiles and targets, the predominant Coulomb potential inhibits the compound nucleus formation for low l waves. Then a critical angular momentum can be defined as the limit below which both processes (quasifission and compound nucleus formation) occur. For the heaviest nuclei, nearly all l waves below l) contribute to the quasifission phenomenon

  2. Neutron and Proton Diffusion in Fusion Reactions for the Synthesis of Superheavy Nuclei

    International Nuclear Information System (INIS)

    Ming-Hui, Huang; Zai-Guo, Gan; Zhao-Qing, Feng; Xiao-Hong, Zhou; Jun-Qing, Li

    2008-01-01

    The restriction of the one dimensional (1D) master equation (ME) with the mass number of the projectile-like fragment as a variable is studied, and a two-dimensional (2D) master equation with the neutron and proton numbers as independent variables is set up, and solved numerically. Our study showed that the 2D ME can describe the fusion process well in all projectile-target combinations. Therefore the possible channels to synthesize super-heavy nuclei can be studied correctly in wider possibilities. The available condition for employing 1D ME is pointed out

  3. Relativistic hydrodynamic theory of heavy-ion collisions

    International Nuclear Information System (INIS)

    Amsden, A.A.; Bertsch, G.F.; Harlow, F.H.; Nix, J.R.

    1975-01-01

    By use of finite-difference methods the classical relativistic equations of motion for the head-on collision of two heavy nuclei are solved. For 16 O projectiles incident onto various targets at laboratory bombarding energies per nucleon less than or equal to2.1 GeV, curved shock waves develop. The target and projectile are deformed and compressed into crescents of revolution. This is followed by rarefaction waves and an overall expansion of the matter into a moderately wide distribution of angles

  4. Towards Superheavies: Spectroscopy of 94 < Z < 98, 150 < N < 154 Nuclei

    Directory of Open Access Journals (Sweden)

    Chowdhury P.

    2016-01-01

    nuclear structure studies are important testing grounds for theoretical models that aim to describe superheavy nuclei. To study the highest neutron orbitals (150 ≤ N ≤ 154, we have populated high angular momentum states in a series of Pu (Z = 94, Cm (Z = 96 and Cf (Z = 98 nuclei, via inelastic and transfer reactions, with heavy beams on long-lived radioactive actinide targets. Multiple collective excitation modes and structures were identified, and their configurations deduced. Quasiparticle alignments are mapped, with odd-A band structures helping identify specific orbital contributions via blocking arguments. Higher-order multipole shapes are observed to play a significant role in disentangling competing neutron and proton alignments. The N > 152 data provide new perspectives on physics beyond the N = 152 sub-shell gap.

  5. Multifragmentation of nuclei induced by relativistic light ions. FAZA-2 project

    International Nuclear Information System (INIS)

    Karnaukhov, V.A.; Avdeev, S.P.; Kuznetsov, V.D.

    1996-01-01

    In this work the project of the further development of 4π-multidetector device FAZA-2 is represented. The device is designed for the research of the highly excited nuclei decay that appears in the interactions of the light relativistic ions (p, 4 He, 12 C) with a heavy target (Au). Here is the review of new data obtained with the working FAZA device. Additional development of the functional possibilities is discussed, the ones that allow: to analyze the acquainted quantities in dependence of the impact parameter; to research the correlation function within the small angle; to measure the nuclear temperature of the nuclei-spectator. For these purposes in the working device the following parts will be embedded: light charged particles multiplicity detector, telescope module that consists of 32 ΔExE-telescope-spectrometer, precision telescope-spectrometer. (author). 8 refs., 11 figs

  6. Isospin mixing in light nuclei

    International Nuclear Information System (INIS)

    Ludwig, E.J.; Clegg, T.B.; Fauber, R.E.; Karwowski, H.J.; Mooney, T.M.; Thompson, W.J.

    1985-01-01

    This program has provided accurate measurements of isospin mixing (ΔT = 1,2) in proton elastic scattering on even-even target nuclei up to A = 40. In order to improve experimental results and to test the hypothesis that isospin mixing is dominated by mixing in the target ground state (as opposed to mixing in the compound system) the authors have undertaken to (1) extend the proton scattering results to additional T = 3/2 states in certain compound systems and (2) examine processes which can proceed by only isotensor mixing (ΔT = 2) in order to isolate the effects of that contribution

  7. Heavy ions

    CERN Multimedia

    CERN. Geneva; Antinori, Federico

    2001-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  8. Heavy ions

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Colliding two heavy nuclei at ultrarelativistic energies allows to create in the laboratory a bulk system with huge density, pressure and temperature and to study its properties. It is estimated that in Pb-Pb collisions at CERN-SPS we reach over an appreciable volume an energy density which exceeds by more than a factor 20 that of normal nuclear matter. At such densities, the hadrons are so closely packed that they interpenetrate; novel physics phenomena are expected to appear. QCD predicts that under such conditions a phase transition from a system composed of colourless hadrons to a Quark-Gluon Plasma (QGP) should occur. A rich ultrarelativistic heavy-ion physics programme is under way both at BNL-AGS and at CERN-SPS since 1986. The results obtained so far have led CERN to officially announce evidence for a new state of matter last year. A long-range programme of heavy-ion physics at higher energies is under way (BNL-RHIC) and in preparation (CERN-LHC). These lectures are meant as an introduction to the phy...

  9. Nuclei and quantum worlds

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2000-01-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  10. Pairing correlations in nuclei

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1988-01-01

    There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs

  11. Influence of fragment deformation and orientation on compact configuration of odd-Z superheavy nuclei

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-01-01

    The synthesis of heavy and superheavy nuclei is generally carried out by using hot and cold fusion reaction mechanisms. It has been noticed that, the cold fusion reactions occur at relatively low excitation energies (E*_C_N ∼ 10-20 MeV) whereas, the hot fusion reactions occur at excitation energies of E*_C_N ∼ 30- 50 MeV. The fusion mechanism is quite different in both the processes. In the cold fusion process, the interaction of spherical targets (Pb and Bi) with deformed light mass projectiles occurs. On the other hand, the fusion of deformed actinide targets with spherical "4"8Ca projectile characterize the hot interaction processes. Hence the deformations and orientations of targets and projectiles play extremely important role in the superheavy fusion process. The present analysis is carried out to aggrandize the work of which illustrate the role of deformations and orientations on even superheavy nuclei. Here, we extend this analysis for odd superheavy nuclei. It is relevant to note that the temperature and angular momentum effects are not included in the present analysis

  12. Accumulation of the Hf-178m2 isomeric nuclei through spallation with internediate-energy protons of tantalum and rhenium targets

    Czech Academy of Sciences Publication Activity Database

    Karamian, S. A.; Adam, Jindřich; Filossov, DV.; Henzlová, D.; Henzl, V.; Kalinnikov, V. B.; Lebedev, NA.; Novgorodov, A. F.; Collins, CB.; Popescu, II.; UR, CA.

    2002-01-01

    Roč. 489, 1/3 (2002), s. 448-468 ISSN 0168-9002 R&D Projects: GA AV ČR KSK2067107 Keywords : protons * spallation * target activation * radionuclides * isomers * cross-section * multistep model Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.167, year: 2002

  13. Investigation of the formation of residual nuclei from the radiactive .sup.237 Np and .sup.241 Am targets in the reaction with 660-MeV protons

    Czech Academy of Sciences Publication Activity Database

    Adam, Jindřich; Balabekyan, A. R.; Brandt, R.; Dzhelepov, V. P.; Gustov, S. A.; Kalinnikov, V. G.; Krivopustov, M. I.; Mirokhin, I. V.; Mrázek, Jaromír; Odoj, R.

    2002-01-01

    Roč. 65, č. 5 (2002), s. 797-809 ISSN 0044-0027 R&D Projects: GA AV ČR KSK1048102 Keywords : protons * spallation * target activation * radionuclides Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  14. Nuclear treasure island [superheavy nuclei

    CERN Document Server

    CERN. Geneva

    1999-01-01

    Summary form only given. Soon after the experiments at Dubna, which synthesized element 114 and made the first footprints on the beach of the "island of nuclear stability", two new superheavy elements have been discovered at the Lawrence Berkeley National Laboratory. Element 118 and its immediate decay product, element 116, were manufactured at Berkeley's 88 inch cyclotron by fusing targets of lead-208 with an intense beam of 449 MeV krypton-86 ions. Although both new nuclei almost instantly decay into lighter ones, the decay sequence is consistent with theories that have long predicted the island of stability for nuclei with approximately 114 protons and 184 neutrons. Theorist Robert Smolanczuk, visiting from the Soltan Institute for Nuclear Studies in Poland, had calculated that this reaction should have particularly favourable production rates. Now that this route has been signposted, similar reactions could be possible: new elements and isotopes, tests of nuclear stability and mass models, and a new under...

  15. Heavy fragment production cross sections from 1.05 GeV/nucleon 56Fe in C, Al, Cu, Pb, and CH2 targets

    Science.gov (United States)

    Zeitlin, C.; Heilbronn, L.; Miller, J.; Rademacher, S. E.; Borak, T.; Carter, T. R.; Frankel, K. A.; Schimmerling, W.; Stronach, C. E.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    We have obtained charge-changing cross sections and partial cross sections for fragmentation of 1.05 GeV/nucleon Fe projectiles incident on H, C, Al, Cu, and Pb nuclei. The energy region covered by this experiment is critical for an understanding of galactic cosmic ray propagation and space radiation biophysics. Surviving primary beam particles and fragments with charges from 12 to 25 produced within a forward cone of half-angle 61 mrad were detected using a silicon detector telescope to identify their charge and the cross sections were calculated after correction of the measured yields for finite target thickness effects. The cross sections are compared to model calculations and to previous measurements. Cross sections for the production of fragments with even-numbered nuclear charges are seen to be enhanced in almost all cases.

  16. Mass balance approaches to assess critical loads and target loads of heavy metals for terrestrial and aquatic ecosystems

    NARCIS (Netherlands)

    Vries, de W.; Groenenberg, J.E.; Posch, M.

    2015-01-01

    Critical loads of heavy metals address not only ecotoxicological effects on organisms in soils and surface waters, but also food quality in view of public health. A critical load for metals is the load resulting at steady state in a metal concentration in a compartment (e.g. soil solution, surface

  17. A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein.

    Science.gov (United States)

    Majer, Eszter; Navarro, José-Antonio; Daròs, José-Antonio

    2015-09-01

    Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rotating bubble and toroidal nuclei and fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Haddad, F.; Jouault, B.

    1995-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy-ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. The potential barriers standing in these exotic deformation paths are compared with the three dimensional and plane fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localised below the plane fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension. (author)

  19. Spectroscopic Studies of Exotic Nuclei at ISOLDE

    CERN Multimedia

    2002-01-01

    Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...

  20. Nuclei with exotic constituents

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-08-01

    We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)

  1. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  2. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  3. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  4. Eta mesons in nuclei

    International Nuclear Information System (INIS)

    Liu, L.C.

    1987-01-01

    The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model

  5. Study of the two-body dissociation of light nuclei in nuclear fields. Progress report, January 1, 1975--December 31, 1975

    International Nuclear Information System (INIS)

    Kirk, P.N.; Huggett, R.W.

    1975-01-01

    The objective of the experiment is to measure the frequency with which nucleons within a parent nucleus coalesce into clusters. The experiment will be carried out at the Bevatron with heavy ion beams of 2.1 GeV per nucleon. The extracted heavy ion beam will be directed onto a target in which many interactions will occur. The interactions of interest will be those in which the incident nucleus fragments into two daughter nuclei. These events will be selected from the background by scintillation counters and associated fast electronics. A list of projects started or completed at LSU the past year is given

  6. Excitation of the Δ resonance in heavy ion charge exchange reactions

    International Nuclear Information System (INIS)

    Roy-Stephan, M.

    1987-06-01

    Results on the Δ excitation by heavy ion charge exchange are presented. 900 MeV per nucleon 12 C, 16 0, 20 Ne and 1100 MeV per nucleon 12 C have been used. The Δ excitation strength depends on the projectile - ejectile nature and on the incident energy. The role of the target mass is also discussed. The peak for the Δ in nuclei is energy shifted from the free Δ peak

  7. Scaling of nuclear modification factors for hadrons and light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C.S. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); Ma, Y.G. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); ShanghaiTech University, Shanghai (China); Zhang, S. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China)

    2016-12-15

    The number of constituent quarks (NCQ) scaling for hadrons and the number of constituent nucleons (NCN) scaling for light nuclei are proposed for nuclear modification factors (R{sub cp}) of hadrons and light nuclei, respectively, according to the experimental investigations in relativistic heavy-ion collisions. Based on the coalescence mechanism the scalings are performed for pions and protons at the quark level, and for light nuclei d(anti d) and {sup 3}He at the nucleonic level, respectively, formed in Au+Au and Pb+Pb collisions, and a nice scaling behaviour emerges. The NCQ or NCN scaling law of R{sub cp} can be, respectively, taken as a probe for the quark or nucleon coalescence mechanism for the formation of hadron or light nuclei in relativistic heavy-ion collisions. (orig.)

  8. Studies of pear-shaped nuclei using accelerated radioactive beams

    CERN Document Server

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-01-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  9. Heavy ion scattering; a fixed energy inverse problem

    International Nuclear Information System (INIS)

    Amos, K.

    1993-01-01

    Heavy ion scattering has been studied quite intensively in the last decade and central in most analyses of data from such experiments be they on fusion, particle transfer or internal state excitations of the colliding pair, is the inter-ion interaction affecting their relative motion. It is customary to use the elastic scattering data to constrain solutions of the (nonrelativistic) Schroedinger equation to ascertain the character of that (central and complex) heavy ion potential. These matters for projectiles ranging from the lightest 'heavy' ion, a proton, to Oxygen nuclei are considered in brief herein. The targets range from 12 C to 208 Pb. The central entity in the analyses to be discussed will be the S-function, and so for completeness, the simple potential scattering theory details are presented that specify the S-function and relate it to measured cross-sections. 20 refs., 18 figs

  10. Electromagnetic excitation of 136Xe in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.D.

    1991-11-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR at the Society for Heavy Ion Research in Darmstadt a detector system for relativistic neutrons was developed, constructed, and applied in first experiments. An essential research aim is the study of collective states after electromagnetic excitation in relativistic heavy ion collisions. In peripheral collisions high-energy virtual photons are exchanged. This leads to the excitation of giant resonances, especially of the giant dipole and quadrupole resonance. An essential decay channel of giant resonances in heavy nuclei is the emission of neutrons, followed by the emission of γ radiation below the particle threshold. These decay channels were studied with the detector system developed by the LAND collaboration. A first experiment on the electromagnetic excitation was performed with a 136 Xe beam at an energy of 700 MeV/u and Pb respectively C targets. (orig./HSI) [de

  11. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chiping Chen

    2006-10-26

    Under the auspices of the research grant, the Intense Beam Theoretical Research Goup at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; Development of elliptic beam theory; (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX).

  12. Investigation of Generation, Acceleration, Transport and Final Focusing of High-Intensity Heavy Ion Beams from Sources to Targets

    International Nuclear Information System (INIS)

    Chiping Chen

    2006-01-01

    Under the auspices of the research grant, the Intense Beam Theoretical Research Group at Massachusetts Institute of Technology's Plasma Science and Fusion Center made significant contributions in a number of important areas in the HIF and HEDP research, including: (a) Derivation of rms envelope equations and study of rms envelope dynamics for high-intensity heavy ion beams in a small-aperture AG focusing transport systems; (b) Identification of a new mechanism for chaotic particle motion, halo formation, and beam loss in high-intensity heavy ion beams in a small-aperture AG focusing systems; (c) Development of elliptic beam theory; and (d) Study of Physics Issues in the Neutralization Transport Experiment (NTX)

  13. Nuclear-physical investigations with oriented nuclei and polarized neutrons

    International Nuclear Information System (INIS)

    Alfimenkov, V.P.; Pikel'ner, L.B.; Sharapov, Eh.I.

    1980-01-01

    Several experiments with oriented nuclei and polarized neutrons are considered, as well as some methods of polarization of neutrons and nuclei. Experiments on the study of spin dependence of neutron cross sections for fissionable and nonfissionable nuclei interaction of polarized neutrons with polarized nuclei as well as measurement of magnetic momenta of compound-states of rare-earth nuclei. Described are some investigations with thermal neutrons: study on spin dependence of neutron scattering length with nuclei and gamma radiation of neutron radiation capture. Difficulties of production of high-intensive polarized neutron beams and construction of oriented targets are noted. Neutron polarization by transmission of them through a polarized proton target is the most universal method (out of existing methods) in the energy range under consideration [ru

  14. Measurement of recoil nuclei of Ta photofission

    International Nuclear Information System (INIS)

    Amroyan, K.A.; Barsegyan, S.A.; Demekhina, N.A.

    1993-01-01

    The results of measuring the characteristics of nuclei leaving the Ta target bombarded by 4,5 GeV bremsstrahlung photons are presented. The thick-target-trap technique is used. The radioactive residual nuclei were detected by the induced activity with the help of the Ge(Li) detector. The forward-backward nucleus ratio is measured, and the kinematical characteristics are calculated in the framework of the two-step vector model of velocities. The data analysis and systematization is carried out in comparison with the results of hardon-nuclear interactions

  15. Preliminary results from collisions between 3.2-TeV 16O and target nuclei of C, Cu, and Au

    International Nuclear Information System (INIS)

    1987-01-01

    We have presented preliminary WA80 data from interactions of 16 O with C, Cu, and Au at 60 and 200 GeVnucleon. These have included total charged-particle multiplicity distributions and transverse energy distributions. Ranges of transverse momentum per particle and of possible energy densities were discussed. Some of the unique features of WA80 were stressed. These are: complete coverage of the target rapidity region, complete coverage of charged-particle multiplicity measurement, and measurement of intrinsic photons. WA80 was the only experiment with no magnetic analysis and the only large-scale experiment to obtain production data during the 1986 run which did not involve, primarily, the reconfiguration of an existing SPS experiment

  16. Proposal for an experiment at the SIN: contribution on πE3-beam dosimetry. Measurement of particle spectra after pion absorption in biologically interesting nuclei

    International Nuclear Information System (INIS)

    Appel, H.; Boehmer, V.; Bueche, G.; Kluge, W.; Matthay, H.

    It is proposed to measure the energy spectra of light charged particles (protons, deuterons, tritons, 3 He- and 4 He-nuclei) and of neutrons, after the absorption of stopped pions in the biologically interesting hydrogen, oxygen, carbon, and nitrogen nuclei. In addition, the relative particle yield will be examined in tissue-like targets such as polyethylene, plexiglas, and water. Furthermore, it is proposed to measure the coincidence spectra of two particles emitted after absorption, as a function of the angle between their impulses. In the case of a pure three-body decay, these examinations may open the possibility of drawing conclusions about the heavy recoil nuclei arising during pion absorption. Particle energy and type will be determined by a combined time-of-flight/energy measurement with totally absorbent NaI or plastic detectors. The HF signal will serve as a start signal for time-of-flight measurements

  17. The dynamics of the nuclei-nuclei interactions at very high energies

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1988-01-01

    The lectures on the dynamics of nuclei-nuclei interactions at very high energies, presented in the Summer School on Nuclear Physics and Particle Physics (1988), are shown. The equation of state of the hadronic matter is analyzed, by means of simple models, and some orders of magnitude can be asserted. The main characteristics of the high energy hadronic interactions are recalled. The basis of the dynamics of the relativistic fluids are given. Applications of this dynamics in the description of the space-time evolution of a plasma, generated by heavy ions collision, are carried out [fr

  18. Nucleons in nuclei, however

    International Nuclear Information System (INIS)

    Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.

    1990-01-01

    The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr

  19. Dynamic polarisation of nuclei

    International Nuclear Information System (INIS)

    Borghini, M.; Abragam, A.

    1961-01-01

    In magnetic fields of about 13000 gauss, at a temperature of 1.5 deg. K, in samples of about 2 mm 3 , we have obtained by the 'solid effect' (application of a magnetic field at an appropriate frequency around 35000 MHz), nuclear polarizations /I of a few percent: 19 per cent for hydrogen nuclei in single crystals of La 2 Mg 3 (NO 3 ) 12 , 24H 2 O; 5 per cent for hydrogen nuclei in polystyrene; 6 per cent for fluorine nuclei in single crystals of LiF. (author) [fr

  20. Angular distribution of elastic scattering induced by 17F on medium-mass target nuclei at energies near the Coulomb barrier

    Science.gov (United States)

    Zhang, G. L.; Zhang, G. X.; Lin, C. J.; Lubian, J.; Rangel, J.; Paes, B.; Ferreira, J. L.; Zhang, H. Q.; Qu, W. W.; Jia, H. M.; Yang, L.; Ma, N. R.; Sun, L. J.; Wang, D. X.; Zheng, L.; Liu, X. X.; Chu, X. T.; Yang, J. C.; Wang, J. S.; Xu, S. W.; Ma, P.; Ma, J. B.; Jin, S. L.; Bai, Z.; Huang, M. R.; Zang, H. L.; Yang, B.; Liu, Y.

    2018-04-01

    The elastic scattering angular distributions were measured for 50- and 59-MeV 17F radioactive ion beam on a 89Y target. The aim of this work is to study the effect of the breakup of the proton halo projectile on the elastic scattering angular distribution. The experimental data were analyzed by means of the optical model with the double-folding São Paulo potential for both real and imaginary parts. The theoretical calculations reproduced the experimental data reasonably well. It is shown that the method of the data analysis is correct. In order to clarify the difference observed at large angles for the 59-MeV incident energy data, Continuum-Discretized Coupled-Channels (CDCC) calculations were performed to consider the breakup coupling effect. It is found that the experimental data show the Coulomb rainbow peak and that the effect of the coupling to the continuum states is not very significant, producing only a small hindrance of the Coulomb rainbow peak and a very small enhancement of the elastic scattering angular distribution at backward angles, suggesting that the multipole response of the neutron halo projectiles is stronger than that of the proton halo systems.