Sample records for heavy shale tar

  1. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    Murphey, P. C.; Daitch, D.; Environmental Science Division


    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future

  2. Discussion of the role of asphaltene in heavy crudes and tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.


    A discussion of the role of asphaltene in heavy crudes and tar sands covers a definition of heavy oil as a dark-colored, high-density, and high-viscosity oil, rich in heteroatom components, such as asphaltics (asphaltenes plus resin), and metallo complexes, such as vanadyl porphyrin; the classification of heavy oil into thermally transformed, biodegraded, and severely cracked oil; the structural parameters of various asphaltenes derived from petroleum, shale, and coal; and the relationship of asphaltene content in heavy oil to the metals and sulfur contents, to upgrading via thermal and hydrocracking processes, to reactivity, to mesophase growth, to enhanced oil recovery, and to weathering, which was shown in one study of an oilspill to increase the asphaltenes and carbene content.

  3. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    Energy Technology Data Exchange (ETDEWEB)

    O' Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division


    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future

  4. Trace metals in heavy crude oils and tar sand bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.


    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  5. Preliminary feasibility studies in times of rapid cost escalation. [Oil shale and tar sand industries

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, E.D.; Moll, A.J.


    Not the least of the problems delaying the development and commercialization of synthetic fuel processes has been the extraordinary escalation of cost estimates by factors of up to ten in the past eight years. This study identifies and analyzes some of the most important contributing factors that have converged in the last few years. These factors include overoptimism and ill-defined project scope in the early stages, tightening environmental controls, difficulties in obtaining raw materials and fuels, general inflationary trends, ''hyperinflation'' of the costs of critical equipment, local labor shortages, and increased times required for procurement and construction. Cost increases have been particularly dramatic for ''offsites,'' liberally defined as nonprocess related parts of projects. Case histories of oil shale and tar sand developments are analyzed. Learning curves of costs during development and commercial use are studied. The analysis suggests that the worst of the extraordinary increases (above general inflationary trends) are probably over. Criteria to judge the state of development of processes are given, and some procedures to avoid future pitfalls are suggested.

  6. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Speight, J.G.


    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  7. Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.


    The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

  8. Environmental security control of resource utilization of shale gas' drilling cuttings containing heavy metals. (United States)

    Wang, Chao-Qiang; Lin, Xiao-Yan; Zhang, Chun; Mei, Xu-Dong


    The overall objective of this research project was to investigate the heavy metals environmental security control of resource utilization of shale gas' drilling cuttings. To achieve this objective, we got through theoretical calculation and testing, ultimately and preliminarily determine the content of heavy metals pollutants, and compared with related standards at domestically and abroad. The results indicated that using the second Fike's law, the theoretical model of the release amount of heavy metal can be made, and the groundwater environmental risk as main point compared with soil. This study can play a role of standard guidance on environmental security control of drilling cuttings resource utilization by the exploration and development of shale gas in our country.

  9. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.


    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  10. The Chemical Composition and Physical Properties of the Light and Heavy Tar Resulted from Coconut Shell Pyrolysis

    Directory of Open Access Journals (Sweden)

    Uswatun Hasanah


    Full Text Available The tar resulted from pyrolysis of coconut shell is a waste. It is important to be clarified their chemical composition and physical properties in order to find out their feasibility as source of a fuel. This research was resulted two immiscible organic fractions, and these were further determined their physical properties such as water composition by using ASTM D-95 methods, ash composition (ASTM D-482, flash point C.O.C (ASTM D-92, kinematics of viscosity (ASTM D-445, and caloric valued using bomb calorimetric. In addition, tar composition was determined by gas chromatography-mass spectrometry (GCMS. The result provided oil which was categorized as light and heavy bio-oils. The light bio-oil has specific gravity 0.99, ash content 0.01%, kinematics viscosity 25.5 cSt, flash point <27 oC, pH 3 and heating value 10304 kcal/kg. On the other hand, heavy bio- oils gave specific gravity 1.13, ash 0.46%, kinematics viscosity 185 cSt, flash point 134 oC, pH 2.5 and heating value 6210 kcal/kg. Moreover, the light bio-oil contained 79 compounds which was composed of phenol 16.4%, hydrocarbon 12.4%, phenolic 27.6%, other oxygenated compounds 53.6%, and acetic acid 3%, meanwhile the heavy bio-oils contained of 18 compounds which was consisted of phenol 31.2%, lauric acid 6.0%, phenolic 27.6%, and other oxygenated compounds 35.3%, respectively. With this result, it was clarify that these bio-oils could not be used directly as a fuel for motor nor diesel machinery.

  11. Potential health impacts of heavy-metal exposure at the Tar Creek Superfund site, Ottawa County, Oklahoma. (United States)

    Neuberger, John S; Hu, Stephen C; Drake, K David; Jim, Rebecca


    The potential impact of exposure to heavy metals and health problems was evaluated at the Tar Creek Superfund site, Ottawa County, Oklahoma, USA. Observed versus expected mortality was calculated for selected conditions in the County and exposed cities. Excess mortality was found for stroke and heart disease when comparing the exposed County to the state but not when comparing the exposed cities to the nonexposed rest of the County. However, sample sizes in the exposed area were small, population emigration has been ongoing, and geographic coding of mortality data was incomplete. In an exposed community, 62.5% of children under the age of 6 years had blood lead levels exceeding 10 microg/dl. The relationships between heavy-metal exposure and children's health and chronic disease in adults are suggestive that a more thorough investigation might be warranted. A number of possible environmental and health studies are suggested, including those focusing on possible central nervous system impacts. Unfortunately, the exposed population is dispersing. One lesson learned at this site is that health studies need to be conducted as soon as possible after an environmental problem is identified to both study the impact of the most acute exposures and to maximize study sample size-including those exposed to higher doses-and minimize the loss of individuals to follow-up.

  12. Processing of a Silesian bituminous coal tar mixture at 600 atm to heavy oil excess in a 10-liter oven

    Energy Technology Data Exchange (ETDEWEB)

    Hupfer, H.


    An analysis was made of a bituminous coal tar mixture for consideration as raw material for Blechhammer. A breakdown of the composition and yield charts is provided. A table compared it to a coke tar pitch and a bituminous tar mixture from a different carbonization process and its yields were approximately between the yield values of these two. Although the sludge extraction produced sufficient yields in the experiment, the yields would not be as good within full-scale industry. A day by day progress description of the experimentation is provided including all operational details. The experimental results and the pros and cons are summarized briefly. Fifteen tables of data provide analysis of all the elements tested.

  13. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.E.


    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  14. Heavy metal removal from produced water using retorted shale; Remocao de metais pesados em aguas produzidas utilizando xisto retortado

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Patricia M.; Melo, Marcos A.F.; Melo, Dulce M.A.; Silva Junior, Carlos N.; Assuncao, Ary L.C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Anjos, Marcelino J. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia


    The Production of oil and gas is usually accompanied by the production of large volume of water that can have significant environmental effects if not properly treated. In this work, the use of retort shale was investigated as adsorbent agent to remove heavy metals in produced water. Batch adsorption studies in synthetic solution were performed for several metal ions. The efficiency removal was controlled by solution pH, adsorbent dosage, and initial ion concentration and agitation times. Two simple kinetic models were used, pseudo-first- and second-order, were tested to investigate the adsorption mechanisms. The equilibrium data fitted well with Langmuir and Freundlich models. The produced water samples were treated by retorted shale under optimum adsorption conditions. Synchrotron radiation total reflection X-ray fluorescence was used to analyze the elements present in produced water samples from oil field in Rio Grande do Norte, Brazil. The removal was found to be approximately 20-50% for Co, Ni, Sr and above 80% for Cr, Ba, Hg and Pb. (author)

  15. The Alberta Taciuk Processor (ATP System) for direct thermal processing of oil sands, oil shales and heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Rojek, L.; Odut, S. [AECOM Canada, UMATAC Industrial Processes Division, Calgary, AB (Canada)


    This presentation provided an overview of the Alberta Taciuk Processor (ATP) which improves oil recovery, reduces water use and eliminates the needs for tailings ponds that are commonly used in water based oil sand extraction processes. ATP technology has been used successfully to extract and upgrade bitumens and heavy oils. Mineable oil sands are directly processed using ATP technology to pipelineable, low viscosity crude oil. This presentation focused on major scale up achievements of the past decade and processability of the oil products. The ATP process uses a solid heat carrier in a rotating process vessel to thermally crack the hydrocarbons. The ATP also produces much of its own fuel, thereby minimizing the need to import natural gas. The UMATAC division of AECOM Canada maintains test facilities in Calgary which include a 5 ton per hour portable ATP unit. This unit has processed more than 15,000 tons of various grades of oil feeds. It is capable of processing about 60 bbl/day. The technology has also been adapted to processing oil shales in Australia and China. The increased demand for this technology can be attributed to growing environmental concerns regarding water consumption and phased elimination of tailings ponds. It was concluded that the ATP system provides a viable technology to meet these challenges with improved environmental performance. tabs., figs.

  16. Western Greece unconventional hydrocarbon potential from oil shale and shale gas reservoirs (United States)

    Karakitsios, Vasileios; Agiadi, Konstantina


    It is clear that we are gradually running out of new sedimentary basins to explore for conventional oil and gas and that the reserves of conventional oil, which can be produced cheaply, are limited. This is the reason why several major oil companies invest in what are often called unconventional hydrocarbons: mainly oil shales, heavy oil, tar sand and shale gas. In western Greece exist important oil and gas shale reservoirs which must be added to its hydrocarbon potential1,2. Regarding oil shales, Western Greece presents significant underground immature, or close to the early maturation stage, source rocks with black shale composition. These source rock oils may be produced by applying an in-situ conversion process (ICP). A modern technology, yet unproven at a commercial scale, is the thermally conductive in-situ conversion technology, developed by Shell3. Since most of western Greece source rocks are black shales with high organic content, those, which are immature or close to the maturity limit have sufficient thickness and are located below 1500 meters depth, may be converted artificially by in situ pyrolysis. In western Greece, there are several extensive areas with these characteristics, which may be subject of exploitation in the future2. Shale gas reservoirs in Western Greece are quite possibly present in all areas where shales occur below the ground-water level, with significant extent and organic matter content greater than 1%, and during their geological history, were found under conditions corresponding to the gas window (generally at depths over 5,000 to 6,000m). Western Greece contains argillaceous source rocks, found within the gas window, from which shale gas may be produced and consequently these rocks represent exploitable shale gas reservoirs. Considering the inevitable increase in crude oil prices, it is expected that at some point soon Western Greece shales will most probably be targeted. Exploration for conventional petroleum reservoirs

  17. Application des fluides supercritiques à la production d'hydrocarbures. Exploitation des gisements par récupération assistée et applications diverses : pétrole, sables, schistes, charbons Application of Supercritical Fluids to Hydrocarbon Production. Enhanced Oi Recovery and Miscellaneous Applications: Oil, Tar Sands, Shales, Coals

    Directory of Open Access Journals (Sweden)

    Behar E.


    dioxide. This article briefly describes the ranges of application and the thermodynamic mechanisms involved. Sources of available supercritical fluids in the vicinity of oil fields are quickly reviewed together with various operational problems. In addition to being used for enhanced recovery, supercritical fluids are also involved in various refining and extraction processes. The first industrial application was the process for deasphalting heavy petroleum fractions in 1956, making use of the great variations in the solvent power of a fluid in the vicinity of its critical point. This process has received revived interest in recent years because of the energy saving it entails. Likewise, oil shales, tar sands and coals, which are appreciable hydrocarbon sources for the future, are fields of potential applications for supercritical fluids. Specific processes are reviewed, most of which are undergoing pilot-plant development.

  18. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology


    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  19. The search for a source rock for the giant Tar Sand triangle accumulation, southeastern Utah (United States)

    Huntoon, J.E.; Hansley, P.L.; Naeser, N.D.


    A large proportion (about 36%) of the world's oil resource is contained in accumulations of heavy oil or tar. In these large deposits of degraded oil, the oil in place represents only a fraction of what was present at the time of accumulation. In many of these deposits, the source of the oil is unknown, and the oil is thought to have migrated over long distances to the reservoirs. The Tar Sand triangle in southeastern Utah contains the largest tar sand accumulation in the United States, with 6.3 billion bbl of heavy oil estimated to be in place. The deposit is thought to have originally contained 13-16 billion bbl prior to the biodegradation, water washing, and erosion that have taken place since the middle - late Tertiary. The source of the oil is unknown. The tar is primarily contained within the Lower Permian White Rim Sandstone, but extends into permeable parts of overlying and underlying beds. Oil is interpreted to have migrated into the White Rim sometime during the Tertiary when the formation was at a depth of approximately 3500 m. This conclusion is based on integration of fluid inclusion analysis, time-temperature reconstruction, and apatite fission-track modeling for the White Rim Sandstone. Homogenization temperatures cluster around 85-90??C for primary fluid inclusions in authigenic, nonferroan dolomite in the White Rim. The fluid inclusions are associated with fluorescent oil-bearing inclusions, indicating that dolomite precipitation was coeval with oil migration. Burial reconstruction suggests that the White Rim Sandstone reached its maximum burial depth from 60 to 24 Ma, and that maximum burial was followed by unroofing from 24 to 0 Ma. Time-temperature modeling indicates that the formation experienced temperatures of 85-90??C from about 35 to 40 Ma during maximum burial. Maximum formation temperatures of about 105-110??C were reached at about 24 Ma, just prior to unroofing. Thermal modeling is used to examine the history of potential source rocks

  20. 77 FR 67663 - Notice of Availability of the Proposed Land Use Plan Amendments for Allocation of Oil Shale and... (United States)


    ... Bureau of Land Management Notice of Availability of the Proposed Land Use Plan Amendments for Allocation of Oil Shale and Tar Sands Resources on Lands Administered by the Bureau of Land Management in...) Amendments for Allocation of Oil Shale and Tar Sands Resources on Lands Administered by the BLM in Colorado...

  1. Environmentally Friendly Cleaners for Removing Tar from Metal Surfaces (United States)


    Terpene Solvent degreaser. 11 Inland Technologies 401 East 27th Street Tacoma, WA 98421 Teksol EP Hydrotreated heavy #739 Citrol II Monocyclic Terpene Removes road tar from vehicles. 18 Selden Research Ltd Staden Business Park Staden Lane Buxton...Orange terpenes , Ethyl lacatate Removes tar Universal cleaner 26 Walter Surface Technologies J. Walter Inc. 810 Day Hill Road Windsor, CT 06095

  2. Receiving demulsifying agent from the acid tar

    Energy Technology Data Exchange (ETDEWEB)

    Nikitina, A.A.; Belyaeva, A.S.; Kunakova, R.V. [FGBIHE ' Ufa State Academy of Economics and Services' , Ufa (Russian Federation); Movsumzade, E.M. [FGBIHE ' Ufa State Petroleum Technological Univ.' , Ufa (Russian Federation); Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry


    The processing of wastes of petrochemical production makes it possible to reduce the price of produced commodity of petroleum products substantially. Bitumen, fuel oils, tars and other mixture of heavy organic compounds are widely used in road construction, in paint and cable industries, manufacture of roofing materials, are used as boiler and furnace fuel, fuel for marine diesel engines, raw material for the production of modifying additives, fillers, surfaceactive substances, etc. (orig.)

  3. Oil Shale (United States)

    Birdwell, Justin E.


    Oil shales are fine-grained sedimentary rocks formed in many different depositional environments (terrestrial, lacustrine, marine) containing large quantities of thermally immature organic matter in the forms of kerogen and bitumen. If defined from an economic standpoint, a rock containing a sufficient concentration of oil-prone kerogen to generate economic quantities of synthetic crude oil upon heating to high temperatures (350–600 °C) in the absence of oxygen (pyrolysis) can be considered an oil shale.

  4. Effect of wastewater treatment processes on the pyrolysis properties of the pyrolysis tars from sewage sludges (United States)

    Wu, Xia; Xie, Li-Ping; Li, Xin-Yu; Dai, Xiao-Hong; Fei, Xue-Ning; Jiang, Yuan-Guang


    The pyrolysis properties of five different pyrolysis tars, which the tars from 1# to 5# are obtained by pyrolyzing the sewage sludges of anaerobic digestion and indigestion from the A2/O wastewater treatment process, those from the activated sludge process and the indigested sludge from the continuous SBR process respectively, were studied by thermal gravimetric analysis at a heating rate of 10 °C/min in the nitrogen atmosphere. The results show that the pyrolysis processes of the pyrolysis tars of 1#, 2#, 3# and 5# all can be divided into four stages: the stages of light organic compounds releasing, heavy polar organic compounds decomposition, heavy organic compounds decomposition and the residual organic compounds decomposition. However, the process of 4# pyrolysis tar is only divided into three stages: the stages of light organic compounds releasing, decomposition of heavy polar organic compounds and the residual heavy organic compounds respectively. Both the sludge anaerobic digestion and the "anaerobic" process in wastewater treatment processes make the content of light organic compounds in tars decrease, but make that of heavy organic compounds with complex structure increase. Besides, both make the pyrolysis properties of the tars become worse. The pyrolysis reaction mechanisms of the five pyrolysis tars have been studied with Coats-Redfern equation. It shows that there are the same mechanism functions in the first stage for the five tars and in the second and third stage for the tars of 1#, 2#, 3# and 5#, which is different with the function in the second stage for 4# tar. The five tars are easy to volatile.

  5. Thermocatalytical processing of coal and shales

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov


    Full Text Available The article investigates the questions of thermocatalytical conversion of organic mass of coal (OMC, it is shown that in the absence of a catalyst process is carried out by a radical process. Accumulated data on the properties for radicals of different structure and therefore different reaction capacity enables us to understand and interpret the conversion of OMC. Thermal conversion of OMC regarded as a kind of depolymerization, accompanied by decomposition of the functional groups with the formation of radicals, competing for hydrogen atom. Catalyst can change the direction and conditions of the process. Modern catalysts can reduce the process pressure up to 50 atm., with a high degree of coal conversion. We consider examples of simultaneous conversion of coal and shale, shale and masut, shale and tar.

  6. Stress-related alcohol consumption in heavy drinkers correlates with expression of miR-10a, miR-21, and components of the TAR-RNA-binding protein-associated complex. (United States)

    Beech, Robert D; Leffert, Janine J; Lin, Aiping; Hong, Kwangik A; Hansen, Julie; Umlauf, Sheila; Mane, Shrikant; Zhao, Hongyu; Sinha, Rajita


    Alterations in stress-related gene expression may play a role in stress-related drinking and the risk of alcohol dependence. Microarrays were used to measure changes in gene expression in peripheral blood in nonsmoking, social drinking subjects exposed to 3 types of personalized imagery: neutral, stressful (but not alcohol related), and alcohol-related cues. Gene expression was measured at baseline, immediately after, and 1 hour after stimulus presentation. Subjects were allowed to drink up to 750 cc of beer in a "taste test" following stimulus presentation in each imagery condition, and the amount of beer consumed was recorded. Gene-expression levels were compared in 2 groups of nonsmoking subjects (n = 11/group): heavy drinkers (HD; defined as regular alcohol use over the past year of at least 8 standard drinks per week for women and at least 15 standard drinks per week for men), and moderate drinkers (MD; defined as up to 7 standard drinks per week for women and 14 standard drinks per week for men). Expression of microRNA-10a (miR-10a) and microRNA-21 (miR-21) was assessed by quantitative real-time polymerase chain reaction. After correction for multiple testing (false discovery rate 1.3-fold in the HD group, but not the MD group, following exposure to stress. No changes were observed for any of these genes in either group following exposure to neutral or alcohol-related imagery. Pathway analysis suggested that many of these genes, form part of the transactivation responsive (TAR)-RNA-binding protein (TRBP)-associated complex and are positively regulated by miR-10a and miR-21. Expression of both miR-10a and miR-21 was up-regulated following psychological stress in HD, but not MD subjects; however, the differences between groups were not statistically significant. Expression levels of both microRNAs was correlated (miR-10a, R(2)  = 0.59, miR-21 R(2)  = 0.57) with amount drunk in HD, but not MD subjects. Expression of miR-10a, miR-21, and several of their

  7. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John


    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  8. Capillary GC Detection Methods for Nitrogen and Sulfur Compounds in Shale-Derived Jet Propulsion Fuels. (United States)


    products, tar sand bitumen ), the interest in this area has grown. Several correlations have been drawn between nitrogen and sulfur contents in fuels and...poor fuel performance. Tar sand bitumens , shale oils and coal-derived liquids contain large amounts of sulfur and nitrogen compounds. Emissions from...GC detector (16). The fused silica capillary column enters the pyrolysis tube of the nitrogen analyzer from the GC oven through a heated transfer line

  9. Water issues associated with heavy oil production.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division


    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  10. Topical tar: Back to the future

    Energy Technology Data Exchange (ETDEWEB)

    Paghdal, K.V.; Schwartz, R.A. [University of Medicine & Dentistry of New Jersey, Newark, NJ (United States)


    The use of medicinal tar for dermatologic disorders dates back to the ancient times. Although coal tar is utilized more frequently in modern dermatology, wood tars have also been widely employed. Tar is used mainly in the treatment of chronic stable plaque psoriasis, scalp psoriasis, atopic dermatitis, and seborrheic dermatitis, either alone or in combination therapy with other medications, phototherapy, or both. Many modifications have been made to tar preparations to increase their acceptability, as some dislike its odor, messy application, and staining of clothing. One should consider a tried and true treatment with tar that has led to clearing of lesions and prolonged remission times. Occupational studies have demonstrated the carcinogenicity of tar; however, epidemiologic studies do not confirm similar outcomes when used topically. This article will review the pharmacology, formulations, efficacy, and adverse effects of crude coal tar and other tars in the treatment of selected dermatologic conditions.

  11. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wicakso, Doni Rahmat [Chemical Engineering Department, Faculty of Engineering, Lambung Mangkurat University, Jalan A. Yani KM. 36 Banjarbaru, 70714, South Kalimantan (Indonesia); Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Sutijan; Rochmadi [Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Budiman, Arief, E-mail: [Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Center for Energy Studies, Gadjah Mada University, Sekip K1A, Yogyakarta, 55281 (Indonesia)


    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 – 600 °C and catalyst weight between 0 – 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H{sup 2} productivity increased and calorimetric value of bio-oil increased.

  12. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst (United States)

    Wicakso, Doni Rahmat; Sutijan, Rochmadi, Budiman, Arief


    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 - 600 °C and catalyst weight between 0 - 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H2 productivity increased and calorimetric value of bio-oil increased.

  13. Oil shale, shale oil, shale gas and non-conventional hydrocarbons (United States)

    Clerici, A.; Alimonti, G.


    In recent years there has been a world "revolution" in the field of unconventional hydrocarbon reserves, which goes by the name of "shale gas", gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also "oil shales" (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil), extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  14. The Devonian Marcellus Shale and Millboro Shale (United States)

    Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.


    The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.

  15. Oil shale, shale oil, shale gas and non-conventional hydrocarbons

    Directory of Open Access Journals (Sweden)

    Clerici A.


    Full Text Available In recent years there has been a world “revolution” in the field of unconventional hydrocarbon reserves, which goes by the name of “shale gas”, gas contained inside clay sediments micropores. Shale gas finds particular development in the United States, which are now independent of imports and see a price reduction to less than one third of that in Europe. With the high oil prices, in addition to the non-conventional gas also “oil shales” (fine-grained sedimentary rocks that contain a large amount of organic material to be used both to be directly burned or to extract liquid fuels which go under the name of shale oil, extra heavy oils and bitumen are becoming an industrial reality. Both unconventional gas and oil reserves far exceed in the world the conventional oil and gas reserves, subverting the theory of fossil fuels scarcity. Values and location of these new fossil reserves in different countries and their production by comparison with conventional resources are presented. In view of the clear advantages of unconventional fossil resources, the potential environmental risks associated with their extraction and processing are also highlighted.

  16. Gasification of municipal solid waste in a downdraft gasifier: Analysis of tar formation

    Directory of Open Access Journals (Sweden)

    Tabitha Geoffrey Etutu


    Full Text Available In this study, municipal solid waste (MSW from a dumpsite was converted into refuse derived fuel (RDF and used as feedstock for an air-blown gasification process. The gasification process was conducted in a 10 -1 downdraft gasifier at different air flow rates of 300, 350, 400, 450 and 550 NL.min1 at atmospheric pressure in order to investigate the quantity and quality of tar formed. It was shown that the increase in the air flow rate from 300 NL.min1 to 550 NL.min1 led to an increase in the oxidation temperature from 719°C to 870°C and an increase in the reduction temperature from 585°C to 750°C, respectively. Tar was reduced from 15 g.Nm3 to 4.7 g.Nm3 respectively. Heavy tar compounds (>C17 e.g. pyrene and phenathrene, decreased with the increase in the light tar compounds (tar reduction through a tar cracking process.

  17. The decomposition of Posidonia Shale and Green River Shale kerogens using microscale sealed vessel (MSSV) pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Horsfield, B.; Dueppenbecker, S.J. (Kernforschungsanlage Juelich GmbH (Germany, F.R.))


    Microscale sealed vessel (MSSV) pyrolysis was used to simulate the compositional evolution of products generated from Posidonia Shale and Green River Shale kerogens with increasing maturity. Conversion was measured using a pseudo-Rock-Eval approach. Temperatures in the range 300-350{degree}C and heating times between 1 and 10 days resulted in a 10-90% conversion of Posidonia Shale kerogen and 3-60% conversion of Green River Shale kerogen into volatile products. Single step GC analysis (C{sub 1}-C{sub 30} range) revealed the presence of aliphatic hydrocarbons, aromatic hydrocarbons, sulphur-containing compounds and a complex mixture of unresolved components. The Posidonia Shale kerogen was inferred to have generated mainly heavy bitumen for all low temperature (300{sup 0}C) experiments and for higher temperature experiments of short duration. At higher temperatures and longer heating times this material, possibly derived from alkyl-substituted naphthenoaromatic units in the kerogen, decomposed to yield products, detectable by gas chromatography, with an enhanced gas to oil ratio. Bitumen generated from Green River Shale appears to have a lower average molecular weight and/or polarity. Normal alkanes with a fixed chain length distribution were generated from what appears to be biopolymeric structures in both kerogen types. 9 figs., 52 refs.

  18. Tar reduction in pyrolysis vapours from biomass over a hot char bed. (United States)

    Gilbert, P; Ryu, C; Sharifi, V; Swithenbank, J


    The behaviour of pyrolysis vapours over char was investigated in order to maximise tar conversion for the development of a new fixed bed gasifier. Wood samples were decomposed at a typical pyrolysis temperature (500 degrees C) and the pyrolysis vapours were then passed directly through a tar cracking zone in a tubular reactor. The product yields and properties of the condensable phases and non-condensable gases were studied for different bed lengths of char (0-450 mm), temperatures (500-800 degrees C), particle sizes (10 and 15 mm) and nitrogen purge rates (1.84-14.70 mm/s). The carbon in the condensable phases showed about 66% reduction by a 300 mm long char section at 800 degrees C, compared to that for pyrolysis at 500 degrees C. The amount of heavy condensable phase decreased with increasing temperature from about 18.4 wt% of the biomass input at 500 degrees C to 8.0 wt% at 800 degrees C, forming CO, H(2) and other light molecules. The main mode of tar conversion was found to be in the vapour phase when compared to the results without the presence of char. The composition of the heavy condensable phase was simplified into much fewer secondary and tertiary tar components at 800 degrees C. Additional measures were required to maximise the heterogeneous effect of char for tar reduction.

  19. Sydney Tar Ponds Remediation: Experience to China (United States)

    Liu, Fan; Bryson, Ken A.


    The infamous "Sydney Tar Ponds" are well known as one of the largest toxic waste sites of Canada, due to almost 100 years of steelmaking in Sydney, a once beautiful and peaceful city located on the east side of Cape Breton Island, Nova Scotia. This article begins with a contextual overview of the Tar Ponds issue including a brief…

  20. Common clay and shale (United States)

    Virta, R.L.


    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  1. Coal tar: past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Thami, G.P.; Sarkar, R. [Government Medical College & Hospital, Chandigarh (India). Dept. of Dermatology & Venerology


    Crude coal tar has been used in the treatment of dermatoses for many decades. In the last few years its use has been limited to skin diseases such as psoriasis and chronic dermatitis. Newer topical modalities for psoriasis are being used increasingly for treatment, but have failed to replace crude coal tar as a first-line treatment of psoriasis. The authors review the pharmacology, chemistry and use of crude coal tar in order to reappraise its role as a therapeutic agent in dermatology.

  2. Cancer fear over coal tar products

    Energy Technology Data Exchange (ETDEWEB)



    Discusses a report by Dutch researchers which suggests that the regular use of coal tar shampoos may significantly increase the risk of cancer due to the high levels of polynuclear aromatic hydrocarbons (PAHs) in the products. The PAH exposure of volunteers using a coal tar anti-dandruff shampoo was studied by measuring the amount of hydroxypyrene, a PAH breakdown product in their urine. Volunteers who had used the shampoo excreted high levels of hydroxypyrene the day after exposure. Excretion by the control group using a non-coal tar anti-dandruff shampoo remained constant. 1 ref., 1 fig.

  3. Chattanooga Shale conference

    Energy Technology Data Exchange (ETDEWEB)


    Seven papers are included, relating to the exploitation of the uranium contained in shales. One of these papers discusses the IGT Hytort process, and was previously abstracted. Separate abstracts were prepared for the remaining six papers. (DLC)

  4. Characterization of acid tar waste from benzol purification | Danha ...

    African Journals Online (AJOL)

    The use of concentrated sulphuric acid to purify benzene, toluene and xylene produces acidic waste known as acid tar. The characterization of the acid tar to determine the composition and physical properties to device a way to use the waste was done. There were three acid tars two from benzene (B acid tar), toluene and ...

  5. Shale oil specialty markets: Screening survey for United States applications

    Energy Technology Data Exchange (ETDEWEB)


    EG and G requested J. E. Sinor Consultants Inc. to carry out an initial screening study on the possibilities for producing specialty chemicals from oil shale. Raw shale oil is not an acceptable feedstock to refineries and there are not enough user of heavy fuel oil in the western oil shale region to provide a dependable market. The only alternatives are to hydrotreat the oil, or else ship it long distances to a larger market area. Either of these alternatives results in a cost penalty of several dollars per barrel. Instead of attempting to enter the large-volume petroleum products market, it was hypothesized that a small shale oil facility might be able to produce specialty chemicals with a high enough average value to absorb the high costs of shipping small quantities to distant markets and still provide a higher netback to the plant site than sales to the conventional petroleum products market. This approach, rather than attempting to refine shale oil or to modify its characteristics to satisfy the specifications for petroleum feedstocks or products, focuses instead on those particular characteristics which distinguish shale oil from petroleum, and attempts to identify applications which would justify a premium value for those distinctive characteristics. Because byproducts or specialty chemicals production has been a prominent feature of oil shale industries which have flourished for periods of time in various countries, a brief review of those industries provides a starting point for this study. 9 figs., 32 tabs.

  6. Laboratory evaluation of selected tar sand asphalts

    Energy Technology Data Exchange (ETDEWEB)

    Button, J.W.; Epps, J.A.; Gallaway, B.M.


    Three tar sand asphalts of similar grades prepared from one syncrude by three different refining methods were characterized by tests commonly used to specify paving asphalts together with certain special tests. Asphalt-aggregate mixtures were prepared using these asphalts and tested in the laboratory to determine strength stiffness stability, tensile properties, temperature effects and water susceptibility. Comparison of the tar sand asphalt properties to conventional petroleum asphalt properties reveal no striking differences.

  7. Wet separation processes as method to separate limestone and oil shale (United States)

    Nurme, Martin; Karu, Veiko


    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 and the project B36 Extraction and processing of rock with selective methods -;

  8. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Thomas; Pugmire, Ronald


    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  9. Unconventional pilot steam drive, tar V sand, Long Beach unit, Wilmington Field, CA

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K.D.


    This paper reviews the design, implementation and history of the unconventional pilot steam drive (greater than 2,500 ft measured depth) that has been underway since December 24, 1980 in the Tar reservoir in the Long Beach Unit, Wilmington Field, Los Angeles County, California. This paper describes the project through November 30, 1983. The Tar V reservoir is a series of interbedded sands, siltstones and shales in the Middle Repetto formation of lower Pliocene age. The Tar V reservoir in the Long Beach Unit is approximately 200 acres in areal extent, has a vertical gross thickness of 185 ft and a maximum vertical net oil sand thickness of 90 ft comprised of 8 to 10 separate sand units. Oil in place is estimated at 27 MMbbl of stock tank oil. The study area is 9.2 acres in areal extent with an average net oil sand thickness of 81.7 ft. The pilot steam drive was originally installed as an isolated 5.6 acre inverted 5-spot pattern.

  10. Tar Management and Recycling in Biomass Gasification and Syngas Purification (United States)

    McCaffrey, Zach

    Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.


    Directory of Open Access Journals (Sweden)

    Dewi Selvia Fardhyanti


    Full Text Available Coal tar is a liquid by-product of coal pyrolysis processes. This liquid oil mixture contains various kind of useful compounds such as benzoic aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. The coal tar was collected by pyrolysis process of coal obtained from PT Kaltim Prima Coal and Arutmin-Kalimantan. The experiments typically occurred at the atmospheric pressure in a laboratory furnace at temperatures ranging from 300 to 550oC with a heating rate of 10oC/min and a holding time of 1 hour at the pyrolysis temperature. The Gas Chromatography-Mass Spectroscopy (GCMS was used to analyze the coal tar components. The obtained coal tar has the viscosity of 3.12 cp, the density of 2.78 g/cm3, the calorific value of 11,048.44 cal/g, and the molecular weight of 222.67. The analysis result showed that the coal tar contained more than 78 chemical compounds such as benzene, cresol, phenol, xylene, naphtalene, etc. The total phenolic compounds contained in coal tar is 33.25% (PT KPC and 17.58% (Arutmin-Kalimantan. The total naphtalene compounds contained in coal tar is 14.15% (PT KPC and 17.13% (ArutminKalimantan.

  12. Utah Heavy Oil Program

    Energy Technology Data Exchange (ETDEWEB)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel


    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  13. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.


    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  14. The influence of hurricanes upon the quiet depositional conditions in the Lower Emsian La Vid shales of Colle (NW Spain)

    NARCIS (Netherlands)

    Stel, Jan H.


    The author supposes that the fossil content of thin carbonate units in the Upper La Vid shales (Lower Devonian) of Colle was influenced by heavy storms like hurricanes. Apart from microplankton (Cramer, 1964) no fossils are found in the shales. Together with the very well developed fissility of the

  15. Commentary: Human papillomavirus and tar hypothesis for ...

    Indian Academy of Sciences (India)


    Aug 9, 2010 ... Home; Journals; Journal of Biosciences; Volume 35; Issue 3. Commentary: Human papillomavirus and tar hypothesis for squamous cell cervical cancer. Christina Bennett Allen E Kuhn Harry W Haverkos. Volume 35 Issue 3 September 2010 pp 331-337 ...

  16. Assessment of potential shale-oil and shale-gas resources in Silurian shales of Jordan, 2014 (United States)

    Schenk, Christopher J.; Pitman, Janet K.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Nelson, Philip H.; Brownfield, Michael E.; Pawlewicz, Mark J.; Wandrey, Craig J.


    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 11 million barrels of potential shale-oil and 320 billion cubic feet of shale-gas resources in Silurian shales of Jordan.

  17. TAR-RNA recognition by a novel cyclic aminoglycoside analogue. (United States)

    Raghunathan, Devanathan; Sánchez-Pedregal, Víctor M; Junker, Jochen; Schwiegk, Claudia; Kalesse, Markus; Kirschning, Andreas; Carlomagno, Teresa


    The formation of the Tat-protein/TAR-RNA complex is a crucial step in the regulation of human immunodeficiency virus (HIV)-gene expression. To obtain full-length viral transcripts the Tat/TAR complex has to recruit the positive transcription elongation factor complex (P-EFTb), which interacts with TAR through its cyclin T1 (CycT1) component. Mutational studies identified the TAR hexanucleotide loop as a crucial region for contacting CycT1. Interfering with the interaction between the Tat/CycT1 complex and the TAR-RNA is an attractive strategy for the design of anti-HIV drugs. Positively charged molecules, like aminoglycosides or peptidomimetics, bind the TAR-RNA, disrupting the Tat/TAR complex. Here, we investigate the complex between the HIV-2 TAR-RNA and a neooligoaminodeoxysaccharide by NMR spectroscopy. In contrast to other aminoglycosides, this novel aminoglycoside analogue contacts simultaneously the bulge residues required for Tat binding and the A35 residue of the hexanucleotide loop. Upon complex formation, the loop region undergoes profound conformational changes. The novel binding mode, together with the easy accessibility of derivatives for the neooligoaminodeoxysaccharide, could open the way to the design of a new class of TAR-RNA binders, which simultaneously inhibit the formation of both the Tat/TAR binary complex and the Tat/TAR/CycT1 ternary complex by obstructing both the bulge and loop regions of the RNA.

  18. Phase-equilibria for design of coal-gasification processes: dew points of hot gases containing condensible tars. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, J.M.


    This research is concerned with the fundamental physical chemistry and thermodynamics of condensation of tars (dew points) from the vapor phase at advanced temperatures and pressures. Fundamental quantitative understanding of dew points is important for rational design of heat exchangers to recover sensible heat from hot, tar-containing gases that are produced in coal gasification. This report includes essentially six contributions toward establishing the desired understanding: (1) Characterization of Coal Tars for Dew-Point Calculations; (2) Fugacity Coefficients for Dew-Point Calculations in Coal-Gasification Process Design; (3) Vapor Pressures of High-Molecular-Weight Hydrocarbons; (4) Estimation of Vapor Pressures of High-Boiling Fractions in Liquefied Fossil Fuels Containing Heteroatoms Nitrogen or Sulfur; and (5) Vapor Pressures of Heavy Liquid Hydrocarbons by a Group-Contribution Method.

  19. Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.


    The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

  20. Oil shales and tar sands: a bibliography. Supplement 2, Parts 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Grissom, M.C. (ed.)


    This bibliography includes 4715 citations arranged in the broad subject categories: reserves and exploration; site geology and hydrology; drilling, fracturing, and mining; oil production, recovery, and refining; properties and composition; direct uses and by-products; health and safety; marketing and economics; waste research and management; environmental aspects; regulations; and general. There are corporate, author, subject, contract number, and report number indexes.

  1. Oil shale hydro cracking; Hidrocraqueamento de oleo de xisto

    Energy Technology Data Exchange (ETDEWEB)

    Silva, M.I.P. da; Souza, G.L.M. de; Schmal, M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia


    Diesel production from alternative feedstocks becomes increasingly important as our country struggles to reduce oil imports. This paper reports on the development of a catalytic hydro treatment process, aimed at the cracking of heavy oils derived from shale oil with a Co Mo/Al{sub 2} O{sub 3} catalyst. A significant increase of yield in diesel with respect to the load was observed. Temperature seemed to exert the greatest influence over the process. (author). 2 figs., 8 refs., 6 tabs

  2. Fire and explosion hazards of oil shale

    Energy Technology Data Exchange (ETDEWEB)


    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  3. Demonstration of Tar Removal from Paving Equipment and Ground Vehicles (United States)


    wiping. BUILDING STRONG®4 Problem/Relevance Several ground vehicles need tar removal as part of the regular maintenance at depots. Oil/ bitumen ...includes demonstration of the cleaning process to remove tar, asphalt and bitumen from the road paving spreaders and military ground vehicles at the...River Army Depot (TARDEC/TACOM), August 2010 Citrus-King Performed Better Simple Green foamed , effective in removing oils, grease and paint, but not tar


    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja


    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  5. Acid Tar Lagoons: Management and Recovery (United States)

    Bohers, Anna; Hroncová, Emília; Ladomerský, Juraj


    This contribution presents the issue with possibility of definitive removal of dangerous environmental burden in Slovakia - serious historical problem of two acid tar lagoons. In relation to their removal, no technology has been found so far - technologically and economically suitable, what caused problems with its management. Locality Predajná is well known in Slovakia by its character of contrasts: it is situated in the picturesque landscape of National Park buffer zone of Nízke Tatry, on the other site it is contaminated by 229 211m3 of acid tar with its characteristics of toxicity, carcinogenicity, teratogenicity, mutagenicity and toxicity especially for animals and plants. Acid tar in two landfills with depth of 1m in case of the first lagoon and 9,5m in case of the second lagoon is a waste product derived from operation of Petrochema Dubová - refinery and petrochemical plant whose activity was to process the crude oil through processes of sulfonation and adsorption technology for producing lubricating and special oils, synthetic detergents and special white oils for cosmetic and medical purposes. A part of acid tar was incinerated in two incineration plats. Concentration of SO2 in combustion gases was too high and it was not possible to decrease it under the value of 2000 [LADOMERSKÝ, J. - SAMEŠOVÁ, D.: Reduction in sulfur dioxide emissions waste gases of incineration plant. Acta facultatis ecologiae. 1999, p. 217-223]. That is why it was necessary to put them out of operation. Later, because of public opposition it was not possible to build a new incineration plat corresponding to the state of the art. Even though actual Slovak and European legislative for protection of environment against such impacts, neither of tried methods - bio or non-biologic treatment methods - was proved as suitable for processing or for recovery in the reason of different factors admission: i.e. strong aggressivity, difficulty with handling because of its sludgy and

  6. Solvent extraction of Southern US tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Penney, W.R.


    The Department of Chemical Engineering at the University of Arkansas, in association with Diversified Petroleum Recovery, Inc. (DPR) of Little Rock, Arkansas, has been developing a solvent extraction process for the recovery of bitumen from tar sands for the past five years. The unique feature of the process is that the bitumen is recovered from the solvent by contacting with a co-solvent, which causes the bitumen to precipitate. The overall purpose of this project is to study both the technical and economic feasibility of applying this technology for recovery of bitumen from tar sands by (1) investigating the socioeconmic factors which affect (a) plant siting and (b) the market value of recovered bitumen; (2) operating a process demonstration unit at the rate of 1 lb/hr recovered bitumen while producing clean sand and recyclable solvents; and (3) determine the economic conditions which will make a bitumen recovery project economical. DPR has analyzed the historical trends of domestic production, consumption, discoveries and reserves of crude oil. They have started an investigation of the volatility in the price of crude oil and of gasoline prices and of the differential between gasoline and crude oil. DPR continues to analyze the geographical movement and demand for asphalt products. Utah does not appear economically attractive as a site for a bitumen from tar sands asphalt plant. Oklahoma sites are now being studied. This report also contains the quarterly progress report from a University of Nevada study to determine bitumen composition, oxygen uptake rates, and viscosities of Alabama and Utah bitumens. Both reports have been indexed separately for inclusion on the data base.

  7. Síndrome TAR con tetrafocomelia


    Miscione, H.; Primono, C.


    El síndrome TAR es un estigma genético recesivo de baja incidencia dentro de la patología ortopédica infantil general. El objetivo de este trabajo es la presentación de aquellos pacientes en donde la impregnación del síndrome es completa. Estos niños tienen en común la trombocitopenia intensa durante los primeros años de la vida, la amelia bilateral de sus miembros superiores, la fusión femorotibial y la agenesia de tibia de distinto grado. A estos síntomas se suman algunas otr...

  8. Heating tar sands formations while controlling pressure (United States)

    Stegemeier, George Leo [Houston, TX; Beer, Gary Lee [Houston, TX; Zhang, Etuan [Houston, TX


    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  9. BLM Colorado Oil Shale Leases (United States)

    Department of the Interior — KMZ File Format –This data set contains the Oil Shale Leases for the State of Colorado, derived from Legal Land Descriptions (LLD) contained in the US Bureau of Land...

  10. Selected constituents in the smoke of domestic low tar cigarettes

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W. H.; Quincy, R. B.; Guerin, M. R.


    Thirty-two brands of domestic commercial low tar and nicotine cigarettes were analyzed for their production of tar, nicotine, nitrogen oxides (as nitric oxide), hydrogen cyanide, acrolein, carbon monoxide and carbon dioxide under standard analytical smoking conditions. Results are compared with published data for certain brands.

  11. The extraction of bitumen from western tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.


    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  12. The extraction of bitumen from western tar sands. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.


    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  13. 48 CFR Appendix to Part 1252 - Tar Matrix (United States)


    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Tar Matrix Appendix to Part 1252 Federal Acquisition Regulations System DEPARTMENT OF TRANSPORTATION CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Pt. 1252, App. Appendix to Part 1252—Tar Matrix ER27DE05.000...

  14. Evaluation of Gravimetric Tar Determination in Particle Samples

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik B.; Bentzen, Jens Dall


    A comparison of tar determination of particles from a down-draft gasifier using soxhlet extractions (with anisole, dichloromethane and acetone) and pyrolysis of the particles.......A comparison of tar determination of particles from a down-draft gasifier using soxhlet extractions (with anisole, dichloromethane and acetone) and pyrolysis of the particles....

  15. Tar Removal from Biomass Producer Gas by Using Biochar

    DEFF Research Database (Denmark)

    Ravenni, Giulia; Henriksen, Ulrik Birk; Ahrenfeldt, Jesper


    The biomass-derived char (biochar) produced in the gasifier as a residue, is a potential solution for removing tars from producer gas. This work investigates the interaction between tar compounds and biochar. Residual biochar from a TwoStage gasifier was tested as bed material in a laboratory setup...


    Directory of Open Access Journals (Sweden)

    Mateusz Wnukowski


    Full Text Available The paper refers to the main problem connected with biomass gasification - a presence of tar in a product gas. This paper presents preliminary results of tar decomposition in a microwave plasma reactor. It gives a basic insight into the construction and work of the plasma reactor. During the experiment, researches were carried out on toluene as a tar surrogate. As a carrier gas for toluene and as a plasma agent, nitrogen was used. Flow rates of the gases and the microwave generator’s power were constant during the whole experiment. Results of the experiment showed that the decomposition process of toluene was effective because the decomposition efficiency attained above 95%. The main products of tar decomposition were light hydrocarbons and soot. The article also gives plans for further research in a matter of tar removal from the product gas.


    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara


    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  18. LLNL oil shale project review

    Energy Technology Data Exchange (ETDEWEB)

    Cena, R.J. (ed.)


    Livermore's oil shale project is funded by two budget authorities, two thirds from base technology development and one third from environmental science. Our base technology development combines fundamental chemistry research with operation of pilot retorts and mathematical modeling. We've studied mechanisms for oil coking and cracking and have developed a detailed model of this chemistry. We combine the detailed chemistry and physics into oil shale process models (OSP) to study scale-up of generic second generation Hot-Recycled-Solid (HRS) retorting systems and compare with results from our 4 tonne-per-day continuous-loop HRS pilot retorting facility. Our environmental science program focuses on identification of gas, solid and liquid effluents from oil shale processes and development of abatement strategies where necessary. We've developed on-line instruments to quantitatively measure trace sulfur and nitrogen compounds released during shale pyrolysis and combustion. We've studied shale mineralogy, inorganic and organic reactions which generate and consume environmentally sensitive species. Figures, references, and tables are included with each discussion.

  19. Impact of Shale Gas Development on Water Resource in Fuling, China (United States)

    Yang, Hong; Huang, Xianjin; Yang, Qinyuan; Tu, Jianjun


    As a low-carbon energy, shale gas rapidly developed in U.S. in last years due to the innovation of the technique of hydraulic fracture, or fracking. Shale gas boom produces more gas with low price and reduced the reliance on fuel import. To follow the American shale gas success, China made an ambitious plan of shale gas extraction, 6.5 billion m3 by 2015. To extract shale gas, huge amount water is needed to inject into each gas well. This will intensify the competition of water use between industry, agricultural and domestic sectors. It may finally exacerbate the water scarcity in China. After the extraction, some water was returned to the ground. Without adequate treatment, the flowback water can introduce heavy metal, acids, pesticides, and other toxic material into water and land. This may inevitably worsen the water and land contamination. This study analysed the potential water consumption and wastewater generation in shale gas development in Fuling, Southwest China. The survey found the average water consumption is 30,000 cubic meter for one well, higher than shale well in U.S. Some 2%-20% water flowed back to the ground. The water quality monitoring showed the Total Suspended Solid (TSS) and Chemical Oxygen Demand (COD) were the main factors above those specified by China's water regulation. Shale gas is a lower-carbon energy, but it is important to recognize the water consuming and environmental pollution during the fracking. Strict monitoring and good coordination during the shale gas exploitation is urgently needed for the balance of economic development, energy demand and environmental protection.

  20. Final Safety Assessment of Coal Tar as Used in Cosmetics

    Energy Technology Data Exchange (ETDEWEB)



    Coal Tar is a semisolid by-product obtained in the destructive distillation of bituminous coal, which functions in cosmetic products as a cosmetic biocide and denaturant-antidandruff agent is also listed as a function, but this is considered an over-the-counter (OTC) drug use. In 2002, Coal Tar was reported to the Food and Drug Administration (FDA) to be used in four formulations, all of which appear to be OTC drug products. Coal Tar is monographed by the FDA as Category I (safe and effective) OTC drug ingredient for use in the treatment of dandruff, seborrhoea, and psoriasis. Coal Tar is absorbed through the skin of animals and humans and is systemically distributed. Although the Cosmetic Ingredient Review (CIR) Expert Panel believes that Coal Tar use as an antidandruff ingredient in OTC drug preparations is adequately addressed by the FDA regulations, the Panel also believes that the appropriate concentration of use of Coal Tar in cosmetic formulations should be that level that does not have a biological effect in the user. Additional data needed to make a safety assessment include product types in which Coal Tar is used (other than as an OTC drug ingredient), use concentrations, and the maximum concentration that does not induce a biological effect in users.

  1. Atmospheric tar balls: aged primary droplets from biomass burning? (United States)

    Tóth, A.; Hoffer, A.; Nyirő-Kósa, I.; Pósfai, M.; Gelencsér, A.


    Atmospheric tar balls are particles of special morphology and composition that are fairly abundant in the plumes of biomass smoke. These particles form a specific subset of brown carbon (BrC) which has been shown to play a significant role in atmospheric shortwave absorption and, by extension, climate forcing. Here we suggest that tar balls are produced by the direct emission of liquid tar droplets followed by heat transformation upon biomass burning. For the first time in atmospheric chemistry we generated tar-ball particles from liquid tar obtained previously by dry distillation of wood in an all-glass apparatus in the laboratory with the total exclusion of flame processes. The particles were perfectly spherical with a mean optical diameter of 300 nm, refractory, externally mixed, and homogeneous in the contrast of the transmission electron microscopy (TEM) images. They lacked any graphene-like microstructure and exhibited a mean carbon-to-oxygen ratio of 10. All of the observed characteristics of laboratory-generated particles were very similar to those reported for atmospheric tar-ball particles in the literature, strongly supporting our hypothesis regarding the formation mechanism of atmospheric tar-ball particles.

  2. Ensilin Tests on Selected Clays and Shales (United States)


    are one of the most difficult formations to drill effectively. Shales are sedimentary rocks deposited in a marine environment that contain silt and...minerals are exposed to water in drilling fluids, they swell, disperse and eventually cause wellbore instabilities. This leads to many problems in...of the numerous works on shale classification and shale control. 2.1 Clays In order to understand shale instability, one must first look at the

  3. Selective isolation of mammalian genes by TAR cloning. (United States)

    Kouprina, Natalay; Larionov, Vladimir


    Transformation-associated recombination (TAR) cloning provides a unique tool for selective isolation of desired chromosome segments and full-size genes from complex genomes in the form of a circular yeast artificial chromosome (YAC) up to 250 kb in size. The method has a broad application for structural and functional genomics, long-range haplotyping, mutational analysis of gene families, characterization of chromosomal rearrangements, and evolutionary studies. This unit describes a procedure for gene isolation by TAR as well as a method for conversion of YAC-TAR isolates into a bacterial artificial chromosome (BAC) form.

  4. Upgrading of western shale oil by hydropyrolysis and hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Bunger, J.W.; Russell, C.P.; Jeong, Soon-Yong; Pu, J.


    A proof-of-concept study for a new shale oil upgrading and refining process was undertaken. This project is aimed at reducing upgrading costs, thereby malting shale oil development more feasible for commercialization. Raw shale oil was topped to remove the most volatile components. The topped shale oil was distilled into three narrow boiling cuts, representing of 175--275{degrees}C, 275--365{degrees}C, and 365--455{degrees}C, and a residue portion (>455{degrees}C). The distillate cuts were used to study molecular weight effects, and the residue was used to test the performance of hydropyrolysis. Hydropyrolysis converts the heavy residue into lower boiling point materials which can be more easily hydrotreated. In the experiment to test molecular weight effects, it was found that geometric hindrance accounts for the inhibition effect. Diffusion limitation and inhibition by competitive adsorption are not strong effects. These results imply that there is no process substitute for the requirement of molecular weight reduction. In the experiment to test the performance of hydropyrolysis, average molecular weight is reduced from 495 to 359 at moderate severities. In HDN of the hydropyrolized residue, however, high process severities are still required to remove nitrogen to the level of refinery-acceptable-feed (< 0.15 wt %). Based on experimental data, the product slate is 1.9 wt % gas, 13.1 wt % gasoline, 27.3 wt % kerosene, 55.6 wt % total gas oil, 1.3 wt % vacuum residue, and 0.8 wt % coke with 1376 scf/bbl total hydrogen consumption. The removal of sulfur is 96%, and that of nitrogen is 84%. The concentration of sulfur in the final product is 0.038 wt %, and that of nitrogen in final product is 0.26%. The conversion of heavy residue to atmospheric distillate is 47%. However, the remaining residue is partially upgraded as a refinery feed.

  5. Fourier Transform Infrared Spectroscopic Determination of Shale ...

    African Journals Online (AJOL)


    The presence of gas in place requires adequate gas generative organic matter to generate either biogenic or thermogenic gas, and to retain significant gas. The shale gas petroleum system is self- contained. Shales act as the critical lithological units for most or all the key components of the shale gas petroleum system.

  6. Maquoketa Shale Caprock Integrity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Leetaru, Hannes


    The Knox Project objective is to evaluate the potential of formations within the Cambrian-Ordovician strata above the Mt. Simon Sandstone (St. Peter Sandstone and Potosi Dolomite) as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. The suitability of the St. Peter Sandstone and Potosi Dolomite to serve as reservoirs for CO2 sequestration is discussed in separate reports. In this report the data gathered from the Knox project, the Illinois Basin – Decatur Project (IBDP) and Illinois Industrial Carbon Capture and Sequestration project (IL-ICCS) are used to make some conclusions about the suitability of the Maquoketa shale as a confining layer for CO2 sequestration. These conclusions are then upscaled to basin-wide inferences based on regional knowledge. Data and interpretations (stratigraphic, petrophysical, fractures, geochemical, risk, seismic) applicable to the Maquoketa Shale from the above mentioned projects was inventoried and summarized. Based on the analysis of these data and interpretations, the Maquoketa Shale is considered to be an effective caprock for a CO2 injection project in either the Potosi Dolomite or St. Peter Sandstone because it has a suitable thickness (~200ft. ~61m), advantageous petrophysical properties (low effective porosity and low permeability), favorable geomechanical properties, an absence of observable fractures and is regionally extensive. Because it is unlikely that CO2 would migrate upward through the Maquoketa Shale, CO2, impact to above lying fresh water aquifers is unlikely. Furthermore, the observations indicate that CO2 injected into the St. Peter Sandstone or Potosi Dolomite may never even migrate up into the Maquoketa Shale at a high enough concentrations or pressure to threaten the integrity of the caprock. Site specific conclusions were reached by unifying the data and conclusions from the IBDP, ICCS and the Knox projects. In the Illinois Basin, as one looks further away from

  7. Environmental Forensics : Compound Specific Isotope Analysis Of PAHs. Study Of A Former Coal Tar Plant. (United States)

    Assal, A.; Doherty, R.; Dickson, K.; Kalin, R. M.


    Stable carbon isotopic fingerprints of PAHs obtained by GC-IRMS have often been used in source apportionment studies. The use of PAHs in environmental forensics relies on the assumption that carbon isotopic fractionation caused by microbial degradation is less significant for these heavy molecular weight compounds than for lighter molecules such as chlorinated solvents or BTEX. Carbon isotopic fractionation of PAHs during degradation is still not well understood. The aim of this study was to assess the potential of CSIA of PAHs for environmental forensics applications at a complex (hydrogeology affected by tidal fluxes) former coal tar plant. In this work, soil samples from a tar works site were analyzed. The tar works operated on the site over a period of sixty years. A source apportionment study was first carried out based on 90 target PAHs quantified by GC-MS. These results were then compared to carbon isotope fingerprints. The separation of compounds of interest from co-extracted interfering peaks is a crucial prerequisite of CSIA by GC-IRMS. Hence, a sample preparation method which allowed the determination of precise carbon isotope signatures for up to 35 compounds per soil extract was developed, validated and applied to the samples previously analyzed by GC- MS. Although most soil samples were shown to be related to the point source tar contamination, PAHs ratios and principal component analysis of abundances highlighted some samples with unusual patterns, suggesting the input of a second source of contaminants. However, no statistically significant variation of the isotopic fingerprints of heavy molecular weight PAHs of these samples was observed. This was inconsistent with the first diagnosis. Since evidence was provided that most samples were only affected by a single source of contaminants, carbon isotopic fractionation was investigated in-situ. Importantly, naphthalene and 2- and 1- methylnaphthalenes isotopic fractionation was observed in a vertical

  8. Tar mats and residual oil distribution in a giant oil field offshore Abu Dhabi

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, Bernard [Institut Francais du Petrole and 4 Av. de Bois Preau, 92852 Rueil-Malmaison Cedex (France); Arab, Hani [ZADCO P.O. Box 46808, Abu Dhabi(United Arab Emirates); Pluchery, Eric; Chautru, Jean-Marc [Beicip-Franlab 232, Av. Napoleon Bonaparte, BP 213, 92502 Rueil-Malmaison Cedex (France)


    This paper describes how geochemical data (Rock Eval analysis, SARA composition) combined with wireline log interpretation allows for the recognition of the distribution and continuity of bitumens in a main reservoir of an offshore giant field in Abu Dhabi. The integration of new geochemical data with data and field information provided by the oil company ZADCO allows for the recognition of two types of bitumen rich levels in the main reservoir of the field: (a) one corresponding to bitumen rich main reservoir intervals associated with high resistivity and high oil saturation, these intervals can be called 'tar mats', (b) the other corresponding to low oil saturated intervals, and can be classified as 'heavy residual oil'. In terms of lateral and vertical distribution, the tar mats are found at the crestal area of the Present-day structure and are located at the base of the reservoir unit above a tight limestone which plays a role of being a vertical permeability barrier. The tar mats seem to be independent of the Present-day OWC and are not related to biodegradation processes. The heavy residual oil is mainly located in the Northeast and the Southeast parts of the field and close to the OWC but it is also present all around the field except (1) in the west, in the area of the spill point and (2) in the Northwest area where direct contact between mobile oil and water is detected. Study of the structural evolution demonstrates that a tilting of the field began at Dammam age time (Eocene). The tilting of the structure led to a reduction of the structural closure in the West followed by the leakage of part of the originally trapped oil. Numerical modeling of such a geological scenario leads to a distribution of fluids (water, movable oil and residual oil) very close to the one observed at Present-day time in the field. This modeling allows a prediction of the extension and distribution of the residual heavy oil within the studied reservoir and can

  9. Denitrification in marine shales in northeastern Colorado (United States)

    McMahon, P.B.; Böhlke, J.K.; Bruce, B.W.


    Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is electron donors for denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO3/- and to measure denitrification rates in the shale. Measured values of NO3/-, N2, NH4/+, ??15[NO3/-], ??15N[N2], and ??15N[NH4/+] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO3/-. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO3/- transport (possibly by diffusion) into the shale. The apparent in situ first-order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04-0.4 yr-1, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr-1. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO3/- input to the alluvial aquifer. However, the relatively large potential first-order rate constant for denitrification in the shale indicated that the percentage of NO3/- uptake by the shale could be considerably larger in areas where NO3/- is transported more rapidly into the shale by advection.


    Directory of Open Access Journals (Sweden)

    Anna Kwiecińska


    Full Text Available Gasification of solid fuels is an alternative process for energy production using conventional and renewable fuels. Apart from desired compounds, i.e. carbon oxide, hydrogen and methane, the produced gas contains complex organic (tars and inorganic (carbonizate, ammonia contaminants. Those substances, together with water vapor, condensate during cooling of the process gas, what results in the formation of aqueous-tar condensate, which requires proper methods of utilization. The management of this stream is crucial for commercialization and application of the gasification technology. In the paper the treatment of aqueous-tar condensates formed during biomass gasification process is discussed. The removal of tars from the stream was based on their spontaneous separation. The aqueous stream was subjected to ultrafiltration operated at different pressures. Such a treatment configuration enabled to obtain highly concentrated retentate, which could be recycled to the gasifier, and filtrate, which could be subjected to further treatment.

  11. Source identification of a tar residue from Mumbai Beach

    Digital Repository Service at National Institute of Oceanography (India)

    Kadam, A; Rokade, M.A

    A tar residue from Mumbai Beach, Maharashtra, India was matched with the suspected source sample from a tanker using UV, IR and GLC techniques. Negligible differences in several ratios of UV absorbances and ratios of infrared transmittances...

  12. Biomass Gasification — Primary Methods for Eliminating Tar

    Directory of Open Access Journals (Sweden)

    Martin Lisý


    Full Text Available This present paper deals with primary methods for reducing tar in biomass gasification, namely by feeding a natural catalyst into a fluidized bed. This method is verified using an experimental pilot plant.

  13. Biogeochemical gradients above a coal tar DNAPL

    Energy Technology Data Exchange (ETDEWEB)

    Scherr, Kerstin E., E-mail: [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Backes, Diana [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Scarlett, Alan G. [University of Plymouth, Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom); Lantschbauer, Wolfgang [Government of Upper Austria, Directorate for Environment and Water Management, Division for Environmental Protection, Kärntner Strasse 10-12, 4021 Linz (Austria); Nahold, Manfred [GUT Gruppe Umwelt und Technik GmbH, Ingenieurbüro für Technischen Umweltschutz, Plesching 15, 4040 Linz (Austria)


    Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography–mass spectrometry (GC × GC–MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares – Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H’ and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are

  14. Vapor pressures and heats of vaporization of primary coal tars. Quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Suuberg, E.M.; Oja, V.; Lilly, W.D.


    As the world continues to deplete its petroleum reserves, then heavy crude oil, coal liquids, and other heavy fossil fuels may be required to meet the world energy needs. Heavy fossil fuels contain molecules that are large and more aromatic and that contain more heteroatoms than those found in liquid crude oil. There is also significant current interest in general area of coal pyrolysis, particularly with respect to comprehensive models of this complicated phenomenon. This interest derives from central role of pyrolysis in all thermally driven coal conversion processes - gasification, combustion, liquefaction, mild gasification, or thermal beneficiation. There remain several key data needs in these application areas. Among them is a need for a more reliable correlation for prediction of the vapor pressures of heavy, primary coal tars. Such information is important in design of all coal conversion processes, in which the volatility of tarry products is of major concern. This paper presents work on the vapor pressures of coal tars using the continuous knudsen effusion technique.

  15. Zero VOC, Coal Tar Free Splash Zone Coating (SZC) (United States)


    volatile organic compounds (VOC) content, hazardous air pollutants (HAP), and may also include hazardous pigment content. The coal tar epoxy also...VOCs, HAPs of methyl isobutyl ketone (MIBK) and xylene, and the pigment chromium oxide. Each coat of SSPC PS 11.01 contains 30% by weight coal tar...marketed a millable gum polysulfide known as the first synthetic rubber commercially made in the United States. Today, there are several liquid

  16. Atmospheric tar balls: Particles from biomass and biofuel burning (United States)

    Pósfai, MiháLy; GelencséR, AndráS.; Simonics, RenáTa; Arató, Krisztina; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.


    "Tar balls" are amorphous, carbonaceous spherules that occur in the tropospheric aerosol as a result of biomass and biofuel burning. They form a distinct group of particles with diameters typically between 30 and 500 nm and readily identifiable with electron microscopy. Their lack of a turbostratic microstructure distinguishes them from soot, and their morphology and composition (˜90 mol % carbon) renders them distinct from other carbonaceous particles. Tar balls are particularly abundant in slightly aged (minutes to hours old) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. The material of tar balls is initially hygroscopic; however, the particles become largely insoluble as a result of free radical polymerization of their organic molecules. Consequently, tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When tar balls coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may contain organic compounds that absorb sunlight. They are an important, previously unrecognized type of carbonaceous (organic) atmospheric particle.

  17. Absorptive removal of biomass tar using water and oily materials. (United States)

    Phuphuakrat, Thana; Namioka, Tomoaki; Yoshikawa, Kunio


    Water is the most common choice of absorption medium selected in many gasification systems. Because of poor solubility of tar in water, hydrophobic absorbents (diesel fuel, biodiesel fuel, vegetable oil, and engine oil) were studied on their absorption efficiency of biomass tar and compared with water. The results showed that only 31.8% of gravimetric tar was removed by the water scrubber, whereas the highest removal of gravimetric tar was obtained by a vegetable oil scrubber with a removal efficiency of 60.4%. When focusing on light PAH tar removal, the absorption efficiency can be ranked in the following order; diesel fuel>vegetable oil>biodiesel fuel>engine oil>water. On the other hand, an increase in gravimetric tar was observed for diesel fuel and biodiesel fuel scrubbers because of their easy evaporation. Therefore, the vegetable oil is recommended as the best absorbent to be used in gasification systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Health effects research in oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, T.W.; Witschi, H.; Smith, L.H.; Haschek, W.M.; Holland, J.M.; Epler, J.L.; Fry, R.J.M.; Rao, T.K.; Larimer, F.W.; Dumont, J.N.


    This task includes the testing of primary effluents and products of oil shales to determine the risk posed to the shale oil industrial worker as well as consumer. Paraho/Sohio Shale Oil was found to be mutagenic in the Ames assay and confirmed in the yeast system. After chemical fractionation of the crude shale oil, it was found that the mutagenic activity was contributed by the organic constituents of the basic and neutral fractions. Hydrotreatment of the shale oil abolished the detectable mutagenic activity and also reduced the cytotoxicity as measured in cellular systems. Refined shale oil, jet fuel, and diesel fuel marine samples were not mutagenic. The samples rank for their mutagenic activity as coal oils > shale oil > natural petroleum crudes and only qualitatively agree with carcinogenic activity. Acute toxicity of Paraho Crude Shale Oil and its upgraded derivatives does not appear to be a problem of immediate concern. The data obtained in the lung adenoma bioassay suggest that Crude Shale Oil has tumorigenic potential. Paraho shale oil is carcinogenic in mouse skin. Hydrotreatment reduces but does not eliminate skin carcinogenicity and appreciable carcinogenic activity remains in the residue material. Kidney injury was noted following chronic dermal exposure to shale and petroleum derived middle distillates.

  19. New Albany shale group of Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Cluff, R.M.; Reinbold, M.L.; Lineback, J.A.


    The Illinois basin's New Albany shale group consists of nine formations, with the brownish-black laminated shales being the predominant lithology in southeastern Illinois and nearby parts of Kentucky where the group reaches its maximum thickness of 460 ft. A second depositional center lies in west-central Illinois and southeastern Iowa, where the group is about 300 ft thick and the predominant lithology is bioturbated olive-gray to greenish-gray shale. A northeast-trending area of thin strata (mostly interfingering gray and black shales) separates these two depocenters. The distribution and types of lithofacies in the New Albany suggest that the shale was deposited across a shelf-slope-basin transition in a marine, stratified anoxic basin. The record of depositional events in the shale group could serve as a baseline for interpreting the history of tectonically more complex sequences such as the Appalachian basin's Devonian shales.

  20. Structure and Mechanism of Staphylococcus aureus TarS, the Wall Teichoic Acid β-glycosyltransferase Involved in Methicillin Resistance.

    Directory of Open Access Journals (Sweden)

    Solmaz Sobhanifar


    Full Text Available In recent years, there has been a growing interest in teichoic acids as targets for antibiotic drug design against major clinical pathogens such as Staphylococcus aureus, reflecting the disquieting increase in antibiotic resistance and the historical success of bacterial cell wall components as drug targets. It is now becoming clear that β-O-GlcNAcylation of S. aureus wall teichoic acids plays a major role in both pathogenicity and antibiotic resistance. Here we present the first structure of S. aureus TarS, the enzyme responsible for polyribitol phosphate β-O-GlcNAcylation. Using a divide and conquer strategy, we obtained crystal structures of various TarS constructs, mapping high resolution overlapping N-terminal and C-terminal structures onto a lower resolution full-length structure that resulted in a high resolution view of the entire enzyme. Using the N-terminal structure that encapsulates the catalytic domain, we furthermore captured several snapshots of TarS, including the native structure, the UDP-GlcNAc donor complex, and the UDP product complex. These structures along with structure-guided mutants allowed us to elucidate various catalytic features and identify key active site residues and catalytic loop rearrangements that provide a valuable platform for anti-MRSA drug design. We furthermore observed for the first time the presence of a trimerization domain composed of stacked carbohydrate binding modules, commonly observed in starch active enzymes, but adapted here for a poly sugar-phosphate glycosyltransferase.

  1. Shale play politics: the intergovernmental Odyssey of American shale governance. (United States)

    Rabe, Barry G


    Intergovernmental responsibility for policy development for shale gas is concentrated primarily at the state level, given multiple statutory and political constraints on potential federal engagement. This opens the question of how a large subset of American states might craft shale policies, amid competing scholarly views on the commitment of states to environmental protection when energy development opportunities arise in the absence of applicable federal authority. The article examines recent trends in state political economy that may shape policy development and capacity, considers the heterogeneous pattern of policy emerging thus far, and draws preliminary lessons from the very small set of states that have enacted far-reaching new state legislation. It also offers early discussion of cross-border issues that may trigger multistate, regional, or ultimately federal engagement as well as growing signs of volatility in policy development in some states.

  2. Shale Oil Value Enhancement Research

    Energy Technology Data Exchange (ETDEWEB)

    James W. Bunger


    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  3. Probing interaction of a fluorescent ligand with HIV TAR RNA (United States)

    Qi, Liang; Zhang, Jing; He, Tian; Huo, Yuan; Zhang, Zhi-Qi


    Trans-activator of Transcription (Tat) antagonists could block the interaction between Tat protein and its target, trans-activation responsive region (TAR) RNA, to inhibit Tat function and prevent human immunodeficiency virus type 1 (HIV-1) replication. For the first time, a small fluorescence ligand, ICR 191, was found to interact with TAR RNA at the Tat binding site and compete with Tat. It was also observed that the fluorescence of ICR 191 could be quenched when binding to TAR RNA and recovered when discharged via competition with Tat peptide or a well-known Tat inhibitor, neomycin B. The binding parameters of ICR 191 to TAR RNA were determined through theoretical calculations. Mass spectrometry, circular dichroism and molecular docking were used to further confirm the interaction of ICR 191 with TAR RNA. Inspired by these discoveries, a primary fluorescence model for the discovery of Tat antagonists was built using ICR 191 as a fluorescence indicator and the feasibility of this model was evaluated. This ligand-RNA interaction could provide a new strategy for research aimed at discovering Tat antagonists.

  4. Thermocatalytic treatment of biomass tar model compounds via radio frequency. (United States)

    Anis, Samsudin; Zainal, Z A; Bakar, M Z A


    A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Field and Lab-Based Microbiological Investigations of the Marcellus Shale (United States)

    Wishart, J. R.; Neumann, K.; Edenborn, H. M.; Hakala, A.; Yang, J.; Torres, M. E.; Colwell, F. S.


    The recent exploration of shales for natural gas resources has provided the opportunity to study their subsurface geochemistry and microbiology. Evidence indicates that shale environments are marked by extreme conditions such as high temperature and pressure, low porosity, permeability and connectivity, and the presence of heavy metals and radionuclides. It has been postulated that many of these shales are naturally sterile due to the high pressure and temperature conditions under which they were formed. However, it has been shown in the Antrim and New Albany shales that microbial communities do exist in these environments. Here we review geochemical and microbiological evidence for the possible habitation of the Marcellus shale by microorganisms and compare these conditions to other shales in the U.S. Furthermore, we describe the development of sampling and analysis techniques used to evaluate microbial communities present in the Marcellus shale and associated hydraulic fracturing fluid. Sampling techniques thus far have consisted of collecting flowback fluids from wells and water impoundments and collecting core material from previous drilling expeditions. Furthermore, DNA extraction was performed on Marcellus shale sub-core with a MoBio PowerSoil kit to determine its efficiency. Assessment of the Marcellus shale indicates that it has low porosity and permeability that are not conducive to dense microbial populations; however, moderate temperatures and a natural fracture network may support a microbial community especially in zones where the Marcellus intersects more porous geologic formations. Also, hydraulic fracturing extends this fracture network providing more environments where microbial communities can exist. Previous research which collected flowback fluids has revealed a diverse microbial community that may be derived from hydrofrac fluid production or from the subsurface. DNA extraction from 10 g samples of Marcellus shale sub-core were unsuccessful

  6. Review of Underground Construction Methods and Opening Stability for Repositories in Clay/Shale Media

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Ernest [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)


    This report reviews the art and practice of excavating and constructing underground facilities in clay/shale media, as part of a multi-year evaluation of the technical feasibility of direct disposal of spent nuclear fuel (SNF) in dual-purpose canisters (DPCs). The purpose is to review worldwide examples of large-scale excavations in clay/shale media, the methods used for excavation and constructi on, and the costs. It is anticipated that this information will help to show the feasibility of construction for a deep geologic respository for (on the order of) 10,000 large, heavy, heat-generating waste packages. This report will refine the clay/shale disposal concept for DPC -based waste packages, in support of future studies that include cost estimation.

  7. Interactive Matching between the Temperature Profile and Secondary Reactions of Oil Shale Pyrolysis

    DEFF Research Database (Denmark)

    Zhang, Yu; Han, Zhennan; Wu, Hao


    degrees C and a shale char bed operating at different temperatures. At low temperatures (550 degrees C), severe cracking occurred, converting both heavy and light oil to carbon and gas. The desirably matched reactor temperature profile for high oil yield is discussed via analysis of the tendency......This article investigates the effect of the reactor temperature profile on the distribution and characteristics of the products from fixed-bed pyrolysis of oil shale. Experiments were performed in a one-stage fixed-bed reactor and in a two-stage fixed-bed reactor. In the one-stage reactor......, the shale oil yield reached 7.40 wt % with a reactor temperature profile from 900 to 550 degrees C and decreased to 2.23 wt % with the reverse temperature profile. The effect of the temperature profile was investigated further in the two-stage fixed-bed reactor combining a pyrolysis stage operating at 550...

  8. A perspective on Canadian shale gas

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Mike; Davidson, Jim; Mortensen, Paul


    In a relatively new development over just the past few years, shale formations are being targeted for natural gas production. Based on initial results, there may be significant potential for shale gas in various regions of Canada, not only in traditional areas of conventional production but also non-traditional areas. However, there is much uncertainty because most Canadian shale gas production is currently in experimental or early developmental stages. Thus, its full potential will not be known for some time. If exploitation proves to be successful, Canadian shale gas may partially offset projected long-term declines in Canadian conventional natural gas production.

  9. Treating tar sands formations with dolomite (United States)

    Vinegar, Harold J.; Karanikas, John Michael


    A method for treating a karsted formation containing heavy hydrocarbons and dolomite includes providing heat to at least part of one or more karsted layers in the formation from one or more heaters located in the karsted layers. A temperature in at least one of the karsted layers is allowed to reach a decomposition temperature of dolomite in the formation. The dolomite is allowed to decompose and at least some hydrocarbons are produced from at least one of the karsted layers of the formation.

  10. Inhibition of intercellular communication by condensates of high and low tar cigarettes

    DEFF Research Database (Denmark)

    Vang, Ole; Wallin, Håkan; Autrup, Herman


    condensates (CSC) and CSC fractions from high and low tar cigarettes was tested. CSC of both high and low tar cigarettes and fractions thereof contained tumor promoting activity. The tar yield of the cigarettes did not closely reflect the effects in the GJIC assay and the major constituent nicotine had...

  11. Experimental comparison of biomass chars with other catalysts for tar reduction

    NARCIS (Netherlands)

    Abu El-Rub, Ziad; Bramer, Eduard A.; Brem, Gerrit


    In this paper the potential of using biomass char as a catalyst for tar reduction is discussed. Biomass char is compared with other known catalysts used for tar conversion. Model tar compounds, phenol and naphthalene, were used to test char and other catalysts. Tests were carried out in a fixed bed

  12. Uptake of pyrene in a breast-fed child of a mother treated with coal tar.

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Houtum, J.L.M. van; Anzion, R.B.M.; Harder, R.; Bos, R.P.; Valk, P.G.M. van der


    A woman was treated for atopic dermatitis with coal tar containing ointments. Coal tar containing ointments contain genotoxic polycyclic aromatic hydrocarbons. Over a period of 50 days the accumulated dose of different coal tar containing ointments treatments corresponded to 993 mg of pyrene and 464

  13. Compaction Characteristics of Igumale Shale | Iorliam | Global ...

    African Journals Online (AJOL)

    This paper reports the outcome of an investigation into the effect of different compactive energies on the compaction characteristics of Igumale shale, to ascertain its suitability as fill material in highway construction. Tests were conducted on specimen of Igumale shale, which included classification, compaction using three ...

  14. Introduction to special section: China shale gas and shale oil plays (United States)

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng


    In the last 10 years, the success of shale gas and shale oil productions as a result of technological advances in horizontal drilling, hydraulic fracturing and nanoscale reservoir characterization have revolutionized the energy landscape in the United States. Resource assessment by the China Ministry of Land and Resources in 2010 and 2012 and by the U.S. Energy Information Administration in 2011 and 2013 indicates China’s shale gas resource is the largest in the world and shale oil resource in China is also potentially significant. Inspired by the success in the United States, China looks forward to replicating the U.S. experience to produce shale gas to power its economy and reduce greenhouse gas emissions. By 2014, China had drilled 400 wells targeting marine, lacustrine, and coastal swamp transitional shales spanning in age from the Precambrian to Cenozoic in the last five years. So far, China is the leading country outside of North America in the viable production of shale gas, with very promising prospects for shale gas and shale oil development, from the Lower Silurian Longmaxi marine shale in Fuling in the southeastern Sichuan Basin. Geological investigations by government and academic institutions as well as exploration and production activities from industry indicate that the tectonic framework, depositional settings, and geomechanical properties of most of the Chinese shales are more complex than many of the producing marine shales in the United States. These differences limit the applicability of geologic analogues from North America for use in Chinese shale oil and gas resource assessments, exploration strategies, reservoir characterization, and determination of optimal hydraulic fracturing techniques. Understanding the unique features of the geology, shale oil and gas resource potential, and reservoir characteristics is crucial for sweet spot identification, hydraulic fracturing optimization, and reservoir performance prediction.

  15. Thermomechanical properties of selected shales

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, F.D.; Vogt, T.J.


    The experimental work discussed in this report is part of an ongoing program concerning evaluation of sedimentary and other rock types as potential hosts for a geologic repository. The objectives are the development of tools and techniques for repository characterization and performance assessment in a diversity of geohydrologic settings. This phase of the program is a laboratory study that investigates fundamental thermomechanical properties of several different shales. Laboratory experiments are intrinsically related to numerical modeling and in situ field experiments, which together will be used for performance assessment.

  16. The Shale Gas in Europe project (GASH) (United States)

    Schulz, Hans-Martin; Horsfield, Brian; Gash-Team


    At the present time no shale gas play has been brought to the production level in Europe. While the opportunities appear abundant, there are still many challenges to be overcome in Europe such as land access and environmental issues. Costs per well are still higher than in the US, and mining regulations are tighter. As yet it remains unclear whether European shales can support commercial shale gas production. First, it will be essential to test the sub-surface and the potential deliverability of wells, supported by basic research. GASH is the first major scientific initiative in Europe that is focussed on shale gas; it is ambitious in that it is broad ranging in scientific scope and that it unites leading European research groups and geological surveys with industry. US know-how is also integrated into the programme to avoid reinventing the wheel, or, still worse, the flat tyre. GASH is currently funded by eight companies, and comprises two main elements: compilation of a European Black Shale Database (EBSD) and focussed research projects that are based on geochemical, geophysical and geomechanical investigations. The EBSD is being built by a team of more than 20 geological surveys, extending from Sweden in the north, through western Europe and the Baltic states down to southern Europe, and over to Romania, Hungary and the Czech Republic in the east. The research projects apply numerical modelling, process simulations and laboratory analyses to selected regional study areas or "natural laboratories" from both Europe and the USA - the goal: to predict gas-in-place and fracability based on process understanding. The European black shales selected as natural shale gas laboratories are the Cambrian Alum Shale from Sweden and Denmark, the Lower Jurassic Posidonia Shale from Central Germany, and Carboniferous black shales from the UK in the west via the Netherlands to Germany in the east. Fresh core material for detailed investigations will be recovered during the mid

  17. Different Methods of Predicting Permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Krogsbøll, Anette

    Permeability is often very difficult to measure or predict in shale lithology. In this work we are determining shale permeability from consolidation tests data using Wissa et al., (1971) approach and comparing the results with predicted permeability from Kozeny’s model. Core and cuttings materials...... in shale useful in assessing their integrity for CO2 storage, gas shale exploitation and other engineering applications....... were obtained from Fjerritslev shale Formation in Juassic interval of Stenlille and Vedsted on-shore wells of Danish basin. The calculated permeability from specific surface and porosity vary from 0.09 to 48.53 μD while that calculated from consolidation tests data vary from 1000 μD at a low vertical...

  18. Intelligent fracture creation for shale gas development

    KAUST Repository

    Douglas, Craig C.


    Shale gas represents a major fraction of the proven reserves of natural gas in the United States and a collection of other countries. Higher gas prices and the need for cleaner fuels provides motivation for commercializing shale gas deposits even though the cost is substantially higher than traditional gas deposits. Recent advances in horizontal drilling and multistage hydraulic fracturing, which dramatically lower costs of developing shale gas fields, are key to renewed interest in shale gas deposits. Hydraulically induced fractures are quite complex in shale gas reservoirs. Massive, multistage, multiple cluster treatments lead to fractures that interact with existing fractures (whether natural or induced earlier). A dynamic approach to the fracturing process so that the resulting network of reservoirs is known during the drilling and fracturing process is economically enticing. The process needs to be automatic and done in faster than real-time in order to be useful to the drilling crews.

  19. Literature Review on Possible Alternatives to Tar for Antiskid Layers

    NARCIS (Netherlands)

    Xiao, Y.


    In airports, there are different areas such as runways, taxiways, aprons and parking areas. For runways, good skid resistance and water drainage of the surface layer is necessary. Tar, because of its good adhesion properties and other advantages as mentioned above, is widely used in thin, high skid

  20. Extraction of Coal-tar Pitch by Supercritical Carbon Dioxide ...

    African Journals Online (AJOL)

    Several extractions of coal-tar pitch were performed using supercritical fluid carbon dioxide. The relationships between extraction yield during supercritical fluid extraction (SFE) and the variables temperature, pressure and extraction time were investigated. For qualitative and quantitative identification of organic compounds, ...

  1. Literature Review on Possible Alternatives to Tar for Antiskid Layers

    NARCIS (Netherlands)

    Xiao, Y.

    In airports, there are different areas such as runways, taxiways, aprons and parking areas. For runways, good skid resistance and water drainage of the surface layer is necessary. Tar, because of its good adhesion properties and other advantages as mentioned above, is widely used in thin, high skid

  2. Physical and chemical characterization of acid tar waste from crude ...

    African Journals Online (AJOL)

    Chemical analysis indicated the presence calcium, phosphorus and iron at 56.3, 15.7 and 11.3 ppm respectively with trace concentrations of lead, zinc, manganese and chromium. Organic analysis of the aromatic fraction of the acid tar waste by GC-MS revealed a wide range of compounds, including polycyclic aromatic ...

  3. Traditional African Religions (TARs): on HIV/AIDS, health and ...

    African Journals Online (AJOL)

    TARS being the custody of the survival strategies of living healthily on the. African continent, disregarding them, means that the African system of self-governance is destroyed. As a result, people do not seem to know how to handle their lives and are vulnerable to a lot of social evils, HIV/AIDS inclusive. This is because the ...


    African Journals Online (AJOL)

    GC/MS ANALYSIS OF COAL TAR COMPOSITION PRODUCED FROM COAL PYROLYSIS. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, and work ...

  5. Pyrolysis kinetics of phenols from lignite semicoking tar

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Polovetskaya, O.S.; Proskuryakov, V.A.; Shavyrina, O.A. [Leo Tolstoy Tula State Pedag University, Tula (Russian Federation)


    The features of pyrolysis of phenols from lignite semicoking tar were studied. The activation energy and order of the reactions of accumulation of methane, hydrogen, carbon monoxide and dioxide, naphthalene and its methyl homologs, phenols, and isomeric cresols and dimethylphenols were determined.

  6. Phytotoxicity and Plant Productivity Analysis of Tar-Enriched Biochars (United States)

    Keller, M. L.; Masiello, C. A.; Dugan, B.; Rudgers, J. A.; Capareda, S. C.


    Biochar is one of the three by-products obtained by the pyrolysis of organic material, the other two being syngas and bio-oil. The pyrolysis of biomass has generated a great amount of interest in recent years as all three by-products can be put toward beneficial uses. As part of a larger project designed to evaluate the hydrologic impact of biochar soil amendment, we generated a biochar through fast pyrolysis (less than 2 minutes) of sorghum stock at 600°C. In the initial biochar production run, the char bin was not purged with nitrogen. This inadvertent change in pyrolysis conditions produced a fast-pyrolysis biochar enriched with tars. We chose not to discard this batch, however, and instead used it to test the impact of tar-enriched biochars on plants. A suite of phytotoxicity tests were run to assess the effects of tar-rich biochar on plant germination and plant productivity. We designed the experiment to test for negative effects, using an organic carbon and nutrient-rich, greenhouse- optimized potting medium instead of soil. We used Black Seeded Simpson lettuce (Lactuca sativa) as the test organism. We found that even when tars are present within biochar, biochar amendment up to 10% by weight caused increased lettuce germination rates and increased biomass productivity. In this presentation, we will report the statistical significance of our germination and biomass data, as well as present preliminary data on how biochar amendment affects soil hydrologic properties.

  7. Optimizing tars valorization; Optimiser la valorisation des goudrons

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, V.


    BEFS-PEC, the engineering daughter company of IRH Environnement group (Mulhouse, France) has sold its tars distillation process, named Proabd, to the Chinese iron and steel company Shanxi Coking. This technology generates less pollution and reduces the energy consumption by 20%. Short paper. (J.S.)

  8. Brown carbon in tar balls from smoldering biomass combustion (United States)

    R. K. Chakrabarty; H. Moosmuller; L.-W. A. Chen; K. Lewis; W. P. Arnott; C. Mazzoleni; M. K. Dubey; C. E. Wold; W. M. Hao; S. M. Kreidenweis


    We report the direct observation of laboratory production of spherical, carbonaceous particles - "tar balls" - from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Angstrom coefficients (AAC) indicate that a class of light absorbing organic carbon (OC) with wavelength dependent...

  9. Wet scrubbing of biomass producer gas tars using vegetable oil (United States)

    Bhoi, Prakashbhai Ramabhai

    The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale

  10. Monitoring of tar contents in gases. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Finn [ChimneyLab Europe ApS, Hadsten (Denmark); Houmann Jakobsen, H. [BioSynergi Proces ApS, Hoersholm (Denmark)


    The purpose of this project is to develop and test a relative cheap and simple online tar measuring method, which can monitor the tar content in product gas from thermal gasification. The measuring principle is absorption of tar from sample gas in Isopropanol (IPA), and measuring on this solution by UV-spectrophotometer. Continuous sampling of tar containing producer gas turned out to be a larger problem than earlier foreseen. The best solution was decided to be sampling with higher flows, and afterwards cleaning the IPA in activated carbon. The ambitions for continuous sampling had to be decreased to 1 week, where the IPA and the activated carbon is contaminated by tar and has to be replaced. However this requires larger amounts of IPA and activated carbon. For IPA the weekly consumption was 12-15 Litres and for activated carbon 10 Litres. The whole analyzer unit turned out to be more complex than first projected, mainly because of the increased amounts of IPA. The best mist filter, with respect to pressure drop, efficiency and retention time is a combination of glass wool and quarts wool. The unit has been tested on gas; 20 kW pellets burner for 116 hours. Harbooere updraft gasifier for 519 hours. Skive fluid bed gasifier for 879 hours. There have during the project period been several simple practical problems such as bubbles in the IPA, increasing pressure drop over the activated carbon bed, dropout of UV data acquisition program and increasing baseline. The principle showed from the beginning some good results, with the limitation of 1 week continuous operation, but at the 5. period in Skive the baseline was increasing all the time, and it was not possible to solve this problem. (LN)

  11. Ensamblajes urbanos: la TAR y el examen de la ciudad

    Directory of Open Access Journals (Sweden)

    Ignacio Farías


    Full Text Available Este artículo presenta nuevas perspectivas de investigación y desafíos analíticos que la teoría del actor-red (TAR abre para los estudios urbanos. En primer lugar, se revisan cómo los principios de relacionalidad híbrida y asociatividad plana de la TAR están siendo adoptados en los estudios urbanos para ampliar simétricamente la ecología urbana a no-humanos e impugnar concepciones escalares del espacio y economías urbanas. A continuación, se propone que la TAR trae consigo un desafío más fundamental relativo a la concepción de la ciudad como objeto de estudio. Mientras su comprensión habitual como objeto espacial, entidad político-económica y/o forma sociocultural subraya su carácter singular, estable y delimitado, la TAR permite pensar la ciudad como un objeto múltiple y decentrado. La noción de ensamblajes urbanos se introduce entonces para dar cuenta de la circulación y devenir de la ciudad en múltiples redes híbridas y translocales. El artículo concluye sopesando algunas de las consecuencias de este exámen de la ciudad, especialmente el reposicionamiento del problema de la complejidad, urbana en este caso, como punto, si no de partida, entonces al menos de llegada para la TAR.

  12. Analysis of the environmental control technology for tar sand development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Glenne, B.; Bryner, C.


    The environmental technology for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the waste tar sand were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. Currently there are two large-scale plants producing liquid fuels from tar sands in Alberta, Canada which use similar technology involving surface mining, hot water extraction, and surface disposal of waste sand. These projects all meet the Canadian environmental control regulations in force at the time they began. The largest US deposits of tar sands are much smaller than the Canadian; 95 percent are located in the state of Utah. Their economics do not appear as attractive as the Canadian deposits. The environmental control costs are not large enough to make an otherwise economic project uneconomic. The most serious environmental conflict likely to occur over the recovery of liquid fuels from the US deposits of tar sands is that caused by the proximity of the deposits to national parks, national monuments, and a national recreation area in Utah. These areas have very stringent air pollution requirements; and even if the air pollution control requirements can be met, there may still be adequate opposition to large-scale mining ventures in these areas to prevent their commercial exploitation. Another environmental constraint may be water rights availability.Essentially all of the water running in the Colorado river basin is now legally allocated. Barring new interpretations of the legality of water rights purchase, Utah tar sands developments should be able to obtain water by purchasing existing irrigation water rights.

  13. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    Energy Technology Data Exchange (ETDEWEB)


    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  14. The Thermal Cracking Experiment Research of Tar from Rice Hull Gasification for Power Generation (United States)

    Wu, Z. S.; Mi, T.; We, Q. X.; Chen, Y. F.; Li, X. H.

    the tar from rice hull gasification for power generation which is cracked in high temperature is studied in this paper, the results reveal the part of compositions which have smaller RT in tar is first cracked into H2, CO2 and carbon, and then carbon react with H2 and CO2, and CH4, CO are formed; the cracked efficiency of tar can reach 28.66%, the carbon deposit among cracked tar can reach 12.76%, the results of the GC-MS analysis showed the aromatic extent of with tar cracking reaction carrying out in high temperature.

  15. Addressing airborne pollutant exposure at the source: an example of coal tar pitch volatiles (CTPV)

    CSIR Research Space (South Africa)

    Pretorius, Cecilia J


    Full Text Available (a)pyrene, Chrysene, Coal tar, Phenanthrene, pyrene • Terms may include: coal tar, coal tar pitch, and creosote to be coal tar products 3 BACKGROUND: PAHs • Largest portion of CTPV consist of polycyclic aromatic hydrocarbons (PAHs) • PAH content of coal tars... increases with increasing carbonisation temperature 4 BACKGROUND: PAHs 5 BACKGROUND: BaP • Benzo(a)pyrene: most toxic PAHs • Formed during incomplete combustion of coal, oil, gas, wood etc. • Previously used as marker for PAHs. Recently individual...

  16. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions. (United States)

    Nduagu, Experience I; Gates, Ian D


    Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4-21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller.

  17. Effect of Transport and Aging Processes on Metal Speciation in Iron Oxyhydroxide Aggregates, Tar Creek Superfund Site, Oklahoma (United States)

    Estes, E. R.; Schaider, L. A.; Shine, J. P.; Brabander, D. J.


    Following the cessation of mining activity in the late 20th century, Tar Creek Superfund Site was left highly contaminated by Pb, Zn, and Cd. Tar Creek, which flows through the site and into the Neosho River, has been studied extensively because of its potential to transport metals from the mining site to downstream communities. Previous research identified aggregated iron oxyhydroxide material, which forms when mine seepage mixes with Tar Creek surface water, as a major transport vector of metals. Frequent flooding in Tar Creek deposits aggregates on downstream floodplains, where wetting and drying processes alter the speciation of iron and other metals. This study seeks to better quantify those changes and to determine how transport and aging affects the human and ecological health risk. Sequential extractions of aggregate samples collected from the creek demonstrate that Fe is present in both amorphous (10-35% of Fe extracted) and more crystalline (8-23% of Fe extracted) phases. Substantial portions of heavy metals sorb to amorphous iron oxyhydroxide phases (accounting for 10-30% of Pb and Zn extracted) but are not associated with more crystalline iron oxide phases (representing only 1% or less of the Pb and Zn extracted). Samples have a high organic matter content (18-25% mass loss on ignition), but only Fe was significantly extracted by the oxidizing step targeting organic matter (1-2% of Pb and Zn extracted, but 10-26% of Fe extracted). The majority of metals were extracted by the soluble or residual steps. If metals and organic matter inhibit transformation of amorphous iron oxyhydroxide material to nano and crystalline iron oxides, then a steady-state volume of amorphous iron oxyhydroxide material with a high total sorption capacity may exist within Tar Creek, enhancing the metal flux accommodated by this transport mechanism. Once transported downstream and deposited on floodplains, however, it is hypothesized that repeated changes in soil matrix

  18. The influence of partial oxidation mechanisms on tar destruction in TwoStage biomass gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Egsgaard, Helge; Stelte, Wolfgang


    TwoStage gasification of biomass results in almost tar free producer gas suitable for multiple end-use purposes. In the present study, it is investigated to what extent the partial oxidation process of the pyrolysis gas from the first stage is involved in direct and in-direct tar destruction....... The resulting PAH tar compounds are readily converted in the subsequent char-bed of the TwoStage gasification process and the partial oxidation process thus contributes directly as well as in-directly to the overall tar destruction. A high temperature and excess air ratios contribute positively to the direct...... tar destruction and a high moisture content of the biomass enhances the decomposition of phenol and inhibits the formation of naphthalene. This enhances tar conversion and gasification in the char-bed, and thus contributes in-directly to the tar destruction....

  19. Source Zone Remediation of Tars at Former Manufactured Gas Plants Using Phyiscochemical Methods to Promote Mobilization (United States)

    Birak, P. S.; Hauswirth, S.; Miller, C. T.


    Tars are a byproduct from gas manufacturing that are present in the subsurface at many former manufactured gas plants (FMGPs). These dense non-aqueous phase liquids are largely composed of polycyclic aromatic compounds, including several known carcinogens. Once below the water table, tars are particularly difficult to remediate due to their viscous nature and ability to alter system wettability. For this study, we investigate the feasibility of mobilizing tars as a means of source zone remediation. Tar samples were obtained from two FMGPs. We measured tar viscosity as a function of temperature using a rotational viscometer. Viscosity was found to be very sensitive to temperature and decreased by orders of magnitude from 5 to 80 degrees C. In one-dimensional column experiments, we examined the removal efficiency of tar by thermal methods and alkaline flushing, as well as, using a combination of methods. Sodium hydroxide solutions effectively mobilized the majority of the tar mass as a continuous phase.

  20. Geochemical evaluation of the eastern gas shales. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Mclver, R.D.; Zielinski, R.E.


    Work devoted to assessment of Eastern gas shales is reported. It is noted that although the Late Devonian-age dark shales of the Eastern Interior Basins are thought to be uniformly gassy, organic geochemical studies in the Appalachian and Illinois Basins show that the gas is not uniformly distributed and that most of the gas is probably sourced and largely retained in thin, organic-rich zones that were deposited in restricted marine environments. As the Devonian-age basins filled, the environments of deposition of the Appalachian Basin and Illinois Basin became nonmarine more and more northerly and northwestwardly, respectively. Heavy hydrocarbon-to-organic carbon ratios show that the organic matter associated with the restricted marine environments is different in the two basins. During virtually the entire period in question, the Appalachian Basin had a direct connection; the Illinois Basin was somewhat isolated by the already developing Cincinnati Arch on the east and the Kankakee or Wabash Arch on the north. However, the differences in organic matter noted in this study suggest a northwest connection of the Illinois Basin to a different ocean mass than that which supplied marine waters to the Appalachian Basin. As a fossil fuel resource, certain facies within the dark Devonian-age shale are much richer gas sources than others. The most prolific potential reservoirs (naturally occurring or induced) should be sought or located in the geologic section containing orcontiguous to the richest organic source intervals; i.e., rocks deposited in restricted marine environments. The amount of gas in rocks of each interval depends directly on the amount of detrital organic matter. Virtually all the gas as well as virtually all the liquid hydrocarbons are retained in the rock where they were generated.

  1. The temporal relationship between advertising and sales of low‐tar cigarettes (United States)

    Reed, Mark B; Anderson, Christy M; Burns, David M


    Objective and hypothesis To determine whether a temporal relationship exists between the advertising and sales of low‐tar cigarettes. It was hypothesised that increases in the advertising of low‐tar cigarettes would precede increases in sales for these cigarettes. Methods The themes of cigarette advertisements were reviewed and coded for 20 low‐tar cigarette brands advertised in 13 widely read magazines in the US between 1960 and 1996. These 20 brands represented most of the low‐tar cigarette advertisements and cigarette sales from 1967 to 1996. Cigarette sales data were obtained from the 1994 Maxwell report that summarises all cigarette sales from 1925 to 1990. If the advertisement referred to the low‐tar attributes of the cigarette advertised, the advertisement was coded as having a low‐tar theme and was included in the analysis. Results Five different graphical presentations of the relationship between the advertising and sales of the 20 low‐tar cigarette brands showed a temporal relationship between low‐tar advertising and sales for these brands. This relationship was observed for brands that introduced a low‐tar alternative into an existing brand family (eg, Marlboro Light) and for new exclusively low‐tar brands (eg, Carlton). Despite large increases in the advertising for the exclusively low‐tar brands, sales of these brands remained low relative to sales of the low‐tar alternative brands. Conclusions Increases in print advertising of 20 of the most popular low‐tar cigarette brands were followed by increases in sales for these cigarettes. Despite increases in the advertising of exclusively low‐tar brands in the mid‐1970s and early 1980s, the sales of these brands never matched the sales of the low‐tar alternative brands. This suggests that it may have been easier to get smokers to switch to low‐tar brands within a brand family compared with entirely new low‐tar brands. Over the past 30 years, the marketing of low‐tar

  2. The temporal relationship between advertising and sales of low-tar cigarettes. (United States)

    Reed, Mark B; Anderson, Christy M; Burns, David M


    To determine whether a temporal relationship exists between the advertising and sales of low-tar cigarettes. It was hypothesised that increases in the advertising of low-tar cigarettes would precede increases in sales for these cigarettes. The themes of cigarette advertisements were reviewed and coded for 20 low-tar cigarette brands advertised in 13 widely read magazines in the US between 1960 and 1996. These 20 brands represented most of the low-tar cigarette advertisements and cigarette sales from 1967 to 1996. Cigarette sales data were obtained from the 1994 Maxwell report that summarises all cigarette sales from 1925 to 1990. If the advertisement referred to the low-tar attributes of the cigarette advertised, the advertisement was coded as having a low-tar theme and was included in the analysis. Five different graphical presentations of the relationship between the advertising and sales of the 20 low-tar cigarette brands showed a temporal relationship between low-tar advertising and sales for these brands. This relationship was observed for brands that introduced a low-tar alternative into an existing brand family (eg, Marlboro Light) and for new exclusively low-tar brands (eg, Carlton). Despite large increases in the advertising for the exclusively low-tar brands, sales of these brands remained low relative to sales of the low-tar alternative brands. Increases in print advertising of 20 of the most popular low-tar cigarette brands were followed by increases in sales for these cigarettes. Despite increases in the advertising of exclusively low-tar brands in the mid-1970s and early 1980s, the sales of these brands never matched the sales of the low-tar alternative brands. This suggests that it may have been easier to get smokers to switch to low-tar brands within a brand family compared with entirely new low-tar brands. Over the past 30 years, the marketing of low-tar cigarettes as a healthier alternative to higher-tar cigarettes has resulted in these brands

  3. Carbon nanotubes (CNT) for enhanced oil production from shales


    Hussain, Aqeel


    The shale gas production has brought a revolution in US energy market and the global prospect of shale gas production is on continuous increase. The advancements in hydraulic fracturing made it possible to extract very low permeability shale gas through fracturing the shale rock. The once fractured shale rock is kept open with the induction of spherical particles known as proppants. The performance of proppants is crucial for oil & gas production. Therefore, the prospect of applic...

  4. Mechanism for Burgess Shale-type preservation

    DEFF Research Database (Denmark)

    Gaines, Robert R.; Hammarlund, Emma U.; Hou, Xianguang


    soft-bodied fossil assemblages has remained enigmatic since Walcott's initial discovery in 1909. Here, we demonstrate the mechanism of Burgess Shale-type preservation using sedimentologic and geochemical data from the Chengjiang, Burgess Shale, and five other principal Burgess Shale-type deposits....... Sulfur isotope evidence from sedimentary pyrites reveals that the exquisite fossilization of organic remains as carbonaceous compressions resulted from early inhibition of microbial activity in the sediments by means of oxidant deprivation. Low sulfate concentrations in the global ocean and low...

  5. Method for retorting oil shale (United States)

    Shang, Jer-Yu; Lui, A.P.


    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  6. Micro mechanical study of shales (United States)

    Bonnelye, Audrey; Picard, David; Gharbi, Hakim; Dimanov, Alexandre; Bornert, Michel; Conil, Nathalie


    In the following years, the French nuclear wastes will be buried in the underground repository in shales, that will be excavated at 490 m in depth, within the Callovo Oxfordian (Cox) argillaceous formation. The hydro-mechanical behavior of the argillaceous rock is complex, like the multiphase and multi-scale structured material itself. The argilaceous matrix is composed of interstratified Illite-Smectite particles, it contains detritic quartz and calcite, accessory pyrite, and the rock porosity ranges from micrometre to nanometre scales. Besides the bedding anisotropy, structural variabilities exist at all scales, from the decametric-metric scales of the geological formation to the respectively millimetric and micrometric scales of the aggregates of particles and clay particles Our study aims at understanding the complex mechanisms which are activated at the micro-scale and are involved in the macroscopic inelastic deformation of such a complex material.An experimental protocol was developed in order to perform uniaxial deformation experiment at controlled displacement rate, inside an environmental scanning electron microscope (ESEM), under controlled relative humidity, in order to preserve as much as possible the natural state of saturation of shales. Three sample orientations (90°, 45° and 0°) were used in order to characterize the mechanical anisotropy and the mechanisms involved in the deformation. The observed smple surfaces were polished by broad ion beam in order to reveal the fine microstructures of the argillaceous matrix. Digital images were acquired at different loading stages during the deformation process and Digital Image Correlation Technique (DIC) was applied in order to retrieve full strain fields at various scales from sample scale to microstructure scale. The analysis allows for identification of the active mechanisms, their relationships to the microstructure and their interactions.

  7. Tar Creek study, Sargent oil field, Santa Clara County, California (United States)

    Wagner, David L.; Fedasko, Bill; Carnahan, J.R.; Brunetti, Ross; Magoon, Leslie B.; Lillis, Paul G.; Lorenson, T.D.; Stanley, Richard G.


    Field work in the Tar Creek area of Sargent oil field was performed June 26 to 28, 2000. The Santa Clara County study area is located in Sections, 30, 31, and 32, Township 11 South, Range 4 East, M.D.B&M; and in Sections 25 and 36, Township 11 South, Range 3 East, M.D.B.&M., north and south of Tar Creek, west of Highway 101. The work was a cooperative effort of the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources (DOGGR), California Geological Survey (CGS), and the United States Geological Survey (USGS). The purpose of the project was to map the stratigraphy and geologic structure (David Wagner, CGS); sample oil for age dating (Les Magoon, USGS); and search for undocumented wells plus conduct a GPS survey of the area (Bill Fedasko, J.P. Carnahan, and Ross Brunetti, DOGGR)

  8. Quantitative analysis of phenol and alkylphenols in Brazilian coal tar

    Directory of Open Access Journals (Sweden)

    Elina Bastos Caramão


    Full Text Available The main purpose of this work is the identification and quantification of phenolic compounds in coal tar samples from a ceramics factory in Cocal (SC, Brazil. The samples were subjected to preparative scale liquid chromatography, using Amberlyst A-27TM ion-exchange resin as stationary phase. The fractions obtained were classified as "acids" and "BN" (bases and neutrals. The identification and quantification of phenols, in the acid fraction, was made by gas chromatography coupled to mass spectrometry (GC/MS. Nearly twenty-five phenols were identified in the samples and nine of them were also quantified. The results showed that coal tar has large quantities of phenolic compounds of industrial interest.

  9. Evaluation of different oxygen carriers for biomass tar reforming

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Johansen, Joakim Myung; Utrilla, Rubén


    This work is a continuation of a previous paper by the authors [1] which analyzed the suitability of the Chemical Looping technology in biomass tar reforming. Four different oxygen carriers were tested with toluene as tar model compound: 60% NiO/MgAl2O4 (Ni60), 40% NiO/NiAl2O4 (Ni40), 40% Mn3O4/Mg......–ZrO2 (Mn40) and FeTiO3 (Fe) and their tendency to carbon deposition was analyzed in the temperature range 873–1073K. In the present paper, the reactivity of these carriers to other compounds in the gasification gas is studied, also with special emphasis on the tendency to carbon deposition. Experiments...

  10. Evaluation of different oxygen carriers for biomass tar reforming

    DEFF Research Database (Denmark)

    Mendiara, Teresa; Johansen, Joakim Myung; Utrilla, Rubén


    , in a concentration of 600–2000ppmv, was chosen as a tar model compound. Experiments were performed in a TGA apparatus and a fixed bed reactor. Four oxygen carriers (60% NiO/MgAl2O4 (Ni60), 40% NiO/NiAl2O4 (Ni40), 40% Mn3O4/Mg–ZrO2 (Mn40) and FeTiO3 (Fe)) were tested under alternating reducing/oxidizing cycles....... Several variables affecting the reducing cycle were analyzed: temperature, time for the reduction step and H2O/C7H8 molar ratio. Ni40 and Mn40 presented interesting characteristics for CLR of biomass tar. Both showed stable reactivity to C7H8 after a few cycles. Ni40 showed a high tendency to carbon...

  11. Cold Preparation of Heroin in a Black Tar Market. (United States)

    Roth, Alexis M; Armenta, Richard F; Wagner, Karla D; Strathdee, Steffanie A; Goldshear, Jesse L; Cuevas-Mota, Jazmine; Garfein, Richard S


    Black tar heroin is typically prepared for injection with heat which decreases the risk of HIV transmission by inactivating the virus. We received reports that persons who inject drugs (PWID) in Tijuana, Baja California, Mexico, a black tar heroin market, were using only water to dissolve heroin. Because Tijuana abuts San Diego County, CA, United States, we undertook the present analyses to determine the prevalence of this practice among PWID in San Diego, California. PWID completed quarterly behavioral assessments and serological testing for blood-borne viruses. Bivariate and multivariable logistic regression models were constructed to assess for individual, social, and structural correlates of preparing heroin without heat within the preceding 6 months. Nearly half of black tar heroin users (149/305) reported they had prepared heroin without heat within 6 months. In multivariable analysis, cold preparation was independently associated with younger age (10 year decrease; AOR = 1.25; 95% CI 1.03, 1.53), more drug injecting acquaintances (per 5 acquaintance increase; AOR = 1.05; 95% CI 1.01, 1.09) and prefilled syringe use (injecting drugs from syringes that are already filled with drugs before purchase; AOR = 1.86; 95% CI 1.14, 3.02). Conclusions/Importance: To our knowledge, this is the first paper to report that PWID living in a black tar heroin market are preparing heroin without heat. Additional research is needed to determine whether this is an endemic practice or PWID are engaging in new forms of drug preparation in response to changes in the environment.

  12. Zero VOC, Coal Tar Free Splash Zone Coating (SZC) (United States)


    Operating Salt Spray (Fog) Apparatus D 476 Classification for Dry Pigmentary Titanium Dioxide Pigments D 512 Test Methods for Chloride Ion...system options include high VOC content, Hazardous Air Pollutants (HAP’s) and may also include hazardous pigment content. The coal tar epoxy also...Organic Compounds (VOC’s), Hazardous Air Pollutants (HAP’s) of Methyl Isobutyl Ketone (MIBK) and Xylene, and the pigment Chromium Oxide. Each coat of

  13. Black shale studies in Kentucky. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)


    This document presents a compilation of geochemical data for the eastern Kentucky outcrop belt. It also reports on data collection activities for the EGSP (Eastern Gas Shales Project) data bank. (DLC)

  14. Phase Equilibrium Modeling for Shale Production Simulation

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando

    simulator, which was then used to assess the impact of the capillary pressure on phase behavior in oil and gas production from tight reservoirs. Since capillary pressure and adsorption occur simultaneously in shale, its combined effect was studied. A model comparison for high-pressure adsorption in shale...... is presented. The adsorption data in shale is generally scarce, therefore, additional capabilities besides the accuracy were considered in the comparison. The multicomponent potential theory of adsorption yields the best results. Moreover, it shows to be useful to extrapolate adsorption data for hydrocarbons...... calculation tools for phase equilibrium in porous media with capillary pressure and adsorption effects. Analysis using these tools have shown that capillary pressure and adsorption have non-negligible effects on phase equilibrium in shale. As general tools, they can be used to calculate phase equilibrium...


    Directory of Open Access Journals (Sweden)

    Lidiya Parkhomchik


    Full Text Available The article considers the primary evaluation of the shale gas resource potential in Kazakhstan, as well as defines the most problematic issues for the large-scale shale gas production over the state. The authors pay special attention to the national strategy of the Kazakhstani government in the sphere of the unconventional energy sources production, defining the possible technological and environmental problems for the shale gas extraction. The article also notes that implementation of the fracking technologies in the country could cause both positive and negative effects on the economy of Kazakhstan. Therefore, further steps in this direction should be based on the meaningful and comprehensive geological data regarding the shale gas potential.

  16. Important geological properties of unconventional resource shales (United States)

    Slatt, Roger


    The revelation of vast global quantities of potentially productive gas and oil-prone shales has led to advancements in understanding important geological properties which impact reservoir performance. Based upon research on a variety of shales, several geological properties have been recognized as being common and important to hydrocarbon production. (1) transport/depositional processes include hemipelagic `rain', hyperpycnal flows, turbidity current flows, tempestites, wave-reworking, and contour currents in both shallow and deep water settings. (2) Common shale minerals include clays, quartz, calcite, dolomite, apatite, and pyrite; organic constituents include spores (Tasmanites), plant remains, biogenic quartz and calcite, and arenaceous foraminifera. (3) Porosity and permeability are characteristically low with pore sizes ranging down to the nanoscale. Main pore types include intergranular (including pores within clay floccules), porous organic matter, porous fecal pellets, and microfractures. (4) Important geochemical characteristics include organic richness (>3%), maturity (>1.1%Ro for shale gas and 0.6-0.9% for shale oil) and type (I-IV), in addition to certain biomarkers which are indicators of bottom water oxicity during deposition. Remaining hydrocarbon potential [RHP = (S1 + S2)/TOC] also reflects temporal environmental changes. `Isotopic reversals' can be used to detect best producing areas in shale-gas plays. (5) Lithofacies stacking patterns and sequence stratigraphy are the result of eustatic depositional history. A general sequence stratigraphic model is presented here that highlights this commonality. (6) Geomechanical properties are key to drilling, fracturing and production of hydrocarbons. Brittle-ductile couplets at several scales occur in shale sequences. (7) Geophysical properties, when calibrated to rock properties, provide a means of regionally to locally mapping the aforementioned properties. (8) Economic and societal considerations in the

  17. Coal-tar based pavement sealant toxicity to freshwater macroinvertebrates. (United States)

    Bryer, Pamela J; Scoggins, Mateo; McClintock, Nancy L


    Non-point-source pollution is a major source of ecological impairment in urban stream systems. Recent work suggests that coal-tar pavement sealants, used extensively to protect parking areas, may be contributing a large portion of the polycyclic aromatic hydrocarbon (PAH) loading seen in urban stream sediments. The hypothesis that dried coal-tar pavement sealant flake could alter the macroinvertebrate communities native to streams in Austin, TX was tested using a controlled outdoor laboratory type approach. The treatment groups were: control, low, medium, and high with total PAH concentrations (TPAH = sum of 16 EPA priority pollutant PAHs) of 0.1, 7.5, 18.4, & 300 mg/kg respectively. The low, medium, and high treatments were created via the addition of dried coal-tar pavement sealant to a sterile soil. At the start of the 24-day exposure, sediment from a minimally impacted local reference site containing a community of live sediment-dwelling benthic macroinvertebrates was added to each replicate. An exposure-dependent response was found for several stream health measures and for several individual taxa. There were community differences in abundance (P = 0.0004) and richness (P pavement sealants contain bioavailable PAHs that may harm aquatic environments. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Brown carbon in tar balls from smoldering biomass combustion (United States)

    Chakrabarty, R. K.; Moosmüller, H.; Chen, L.-W. A.; Lewis, K.; Arnott, W. P.; Mazzoleni, C.; Dubey, M. K.; Wold, C. E.; Hao, W. M.; Kreidenweis, S. M.


    We report the direct observation of laboratory production of spherical, carbonaceous particles - "tar balls" - from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Ångström coefficients (AAC) indicate that a class of light absorbing organic carbon (OC) with wavelength dependent imaginary part of its refractive index - optically defined as "brown carbon" - is an important component of tar balls. The spectrum of the imaginary parts of their complex refractive indices can be described with a Lorentzian-like model with an effective resonance wavelength in the ultraviolet (UV) spectral region. Sensitivity calculations for aerosols containing traditional OC (no absorption at visible and UV wavelengths) and brown carbon suggest that accounting for near-UV absorption by brown carbon leads to an increase in aerosol radiative forcing efficiency and increased light absorption. Since particles from smoldering combustion account for nearly three-fourths of the total carbonaceous aerosol mass emitted globally, inclusion of the optical properties of tar balls into radiative forcing models has significance for the Earth's radiation budget, optical remote sensing, and understanding of anomalous UV absorption in the troposphere.

  19. Brown carbon in tar balls from smoldering biomass combustion

    Directory of Open Access Journals (Sweden)

    R. K. Chakrabarty


    Full Text Available We report the direct observation of laboratory production of spherical, carbonaceous particles – "tar balls" – from smoldering combustion of two commonly occurring dry mid-latitude fuels. Real-time measurements of spectrally varying absorption Ångström coefficients (AAC indicate that a class of light absorbing organic carbon (OC with wavelength dependent imaginary part of its refractive index – optically defined as "brown carbon" – is an important component of tar balls. The spectrum of the imaginary parts of their complex refractive indices can be described with a Lorentzian-like model with an effective resonance wavelength in the ultraviolet (UV spectral region. Sensitivity calculations for aerosols containing traditional OC (no absorption at visible and UV wavelengths and brown carbon suggest that accounting for near-UV absorption by brown carbon leads to an increase in aerosol radiative forcing efficiency and increased light absorption. Since particles from smoldering combustion account for nearly three-fourths of the total carbonaceous aerosol mass emitted globally, inclusion of the optical properties of tar balls into radiative forcing models has significance for the Earth's radiation budget, optical remote sensing, and understanding of anomalous UV absorption in the troposphere.

  20. Legal Regime of Shale Gas Extraction


    Ovidiu – Horia Maican


    Some countries with large reserves intend to promote shale gas production, in order to reduce their dependency on imported gas. Shale gas will be an important new aspect in the world energy scene, with many effects. European Union wants secure and affordable sources of energy. Natural gas is the cleanest fossil fuel and a vital component of European Union's energy strategy. One of the most important aspects is that gas produces significantly cleaner energy than other fossil fuels. From a lega...

  1. The influence of shale gas on steamcracking

    Energy Technology Data Exchange (ETDEWEB)

    Rupieper, A. [Linde Engineering Dresden GmbH, Dresden (Germany)


    US shale gas reserves with more than 860 TCF (Source: U.S. Energy Information Administration study World Shale Gas Resources) account for 2 of the global largest reserves after China. In 7 areas of the US, these reserves are systematically explored, providing a significant amount of cheap natural gas source for decades. The ethane share, carried by such shale gas, can reach up to 16%. Ethane has been already in the past 2 most important feedstock for Steamcrackers, being the backbone of the Petrochemical Industry. Due to availability of vast shale gas, the US steamcracker industry is facing a shift from naphtha to shale gas ethane, as the margin of Ethylene produced from shale gas ethane is significantly larger than that of naphtha based Ethylene (app. + 630 USD/t Ethylene). As a consequence shale gas is ''the magic bullet'' incinerating investments into Steamcrackers and downstream plants for U.S petrochemical industry. Steamcracker Projects with an additional ethylene production capacity of more than 17 million tons/a by 2020 are announced or already under construction. Investments into downstream plants refining the C2 derivatives will follow or are already in planning/engineering phase. But the US market cannot absorb all related products, causing a significant export exposure, which will influence global trade flows for C2 derivatives and affect prices. This article presents the impact of shale gas ethane cracking on: - Trade flow of C2 derivatives; - By-product deficits; - Alternate C3+ derivative production routes; - Challenges related to engineering requirements and project execution for Steamcracker projects. (orig.)

  2. Environmental control costs for oil shale processes

    Energy Technology Data Exchange (ETDEWEB)



    The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

  3. heavy metal pollution asse al pollution assessment in the sediments

    African Journals Online (AJOL)


    ABSTRACT. Sediments were collected from Dumba and to assess the pollution statusof the sedim. Cadmium (Cd), Chromium (Cr), Copper (Cu. (Zn) and Arsenic (As) were analysed using concentration of heavy metals varies bet with standard average shale to assess pollution in Dumba and KwataYobe sedi assessed ...

  4. Assessment of undiscovered shale gas and shale oil resources in the Mississippian Barnett Shale, Bend Arch–Fort Worth Basin Province, North-Central Texas (United States)

    Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.


    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.

  5. A New Insight into Shale-Gas Accumulation Conditions and Favorable Areas of the Xinkailing Formation in the Wuning Area, North-West Jiangxi, China

    Directory of Open Access Journals (Sweden)

    Shangru Li


    Full Text Available In north-west Jiangxi, China, most shale-gas exploration has been focused on the Lower Cambrian Hetang and Guanyintang formations, whereas the Upper Ordovician Xinkailing formation shale has been ignored for years due to heavy weathering. This study systematically analyzed gas source conditions, reservoir conditions and gas-bearing ability in order to reveal the shale-gas accumulation conditions of the Xinkailing formation. The results show that the Xinkailing formation is characterized by thick deposition of black shale (10–80 m, high organic content (with total organic carbon between 1.18% and 3.11%, on average greater than 2%, relatively moderate thermal evolution (with vitrinite reflectance between 2.83% and 3.21%, high brittle-mineral content (greater than 40%, abundant nanopores and micro-fractures, very good adsorption ability (adsorption content between 2.12 m3/t and 3.47 m3/t, on average about 2.50 m3/t, and strong sealing ability in the underlying and overlying layers, all of which favor the generation and accumulation of shale gas. The Wuning-Lixi and Jinkou-Zhelin areas of the Xinkailing formation were selected as the most realistic and favorable targets for shale-gas exploration and exploitation. In conclusion, the Wuning area has great potential and can provide a breakthrough in shale gas with further investigation.

  6. Metal catalysts for steam reforming of tar derived from the gasification of lignocellulosic biomass. (United States)

    Li, Dalin; Tamura, Masazumi; Nakagawa, Yoshinao; Tomishige, Keiichi


    Biomass gasification is one of the most important technologies for the conversion of biomass to electricity, fuels, and chemicals. The main obstacle preventing the commercial application of this technology is the presence of tar in the product gas. Catalytic reforming of tar appears a promising approach to remove tar and supported metal catalysts are among the most effective catalysts. Nevertheless, improvement of catalytic performances including activity, stability, resistance to coke deposition and aggregation of metal particles, as well as catalyst regenerability is greatly needed. This review focuses on the design and catalysis of supported metal catalysts for the removal of tar in the gasification of biomass. The recent development of metal catalysts including Rh, Ni, Co, and their alloys for steam reforming of biomass tar and tar model compounds is introduced. The role of metal species, support materials, promoters, and their interfaces is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Heavy Chain Diseases (United States)

    ... heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy chain ... disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy chain ...

  8. Pembelajaran Ritme Menggunakan Alat Musik Tar Pada Siswa Kelas IX Di Mts Negeri 2 Pontianak


    Wahyudi, Deki; Ghozali, Imam; Wartiningsih, Agus


    Rhythm Learning by Using Musical Instruments Tar. The background of this research is that many teachers have difficulty in selecting appropriate learning media in lesson learning the art of music, especially rhythm objective of these problems is the description of the application of learning rhythm using musical instruments tar in Class IX in MTs N 2 Pontianak, as well as knowing the results achieved in learning rhythm using musical instruments tar in Class IX MTs N 2 Pontianak. This type of ...

  9. Comprehensive database of Manufactured Gas Plant tars. Part B. Aliphatic and aromatic compounds. (United States)

    Gallacher, Christopher; Thomas, Russell; Lord, Richard; Kalin, Robert M; Taylor, Chris


    Coal tars are a mixture of organic and inorganic compounds that were produced as a by-product from the manufactured gas and coke making industries. The composition of the tar produced varies depending on many factors; these include the temperature of production and the type of retort used. As different production processes produce different tars, a comprehensive database of the compounds present within coal tars from different production processes is a valuable resource. Such a database would help to understand how their chemical properties differ and what hazards the compounds present within these tars might pose. This study focuses on the aliphatic and aromatic compounds present in a database of 16 different tars from five different production processes. Samples of coal tar were extracted using accelerated solvent extraction (ASE) and derivatised post-extraction using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS). The derivatised samples were analysed using two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GCxGC/TOFMS). A total of 198 individual aliphatic and 951 individual aromatic compounds were detected within 16 tar samples produced by five different production processes. The polycyclic aromatic hydrocarbon (PAH) content of coal tars varies greatly depending on the production process used to obtain the tars and this is clearly demonstrated within the results. The aliphatic composition of the tars provided an important piece of analytical information that would have otherwise been missed with the detection of petrogenic compounds such as alkyl cyclohexanes. The aromatic compositions of the tar samples varied greatly between the different production processes investigated and useful analytical information was obtained about the individual production process groups. Alkyl cyclohexanes were detected in all samples from sites known to operate Carbureted Water Gas plants and not detected in

  10. Thermal Cracking of Tars in a Continuously Fed Reactor with Steam (United States)


    coal and biomass) Oxygenated compounds (phenols and acids) TAR, oil, Naptha Pyrolysis gases (CO, H2, CH4, H2O, etc.) CHAR (carbon and inorganics...For updraft gasifiers or pyrolysis systems (usually high tar concentrations), it is possible to treat, reduce or convert these tars to more...13 min), 530 oC Where: X = 1- W / Wo Wo = Original wt. of sample (dry basis) W = Instantaneous wt. Bonus Slide – Pyrolysis of Paper

  11. Heavy crude oils - From Geology to Upgrading - An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Huc, A.Y.


    Heavy oils, extra-heavy oils and tar sands are major players for the future of energy. They represent a massive world resource, at least the size of conventional oils. They are found all over the world but Canada and Venezuela together account, by themselves, for more than half of world deposits. They share the same origin as the lighter conventional oils, but their geological fate drove them into thick, viscous tar-like crude oils. Most of them result from alteration processes mediated by microbial degradation. They are characterized by a low content of lighter cuts and a high content of impurities such as sulfur and nitrogen compounds and metals; so, their production is difficult and deployment of specific processes is required in order to enhance their transportability and to upgrade them into valuable products meeting market needs, and honouring environmental requirements. Although these resources are increasingly becoming commercially producible, less than 1% of total heavy crude oil deposits worldwide are under active development. The voluntarily wide scope of this volume encompasses geology, production, transportation, upgrading, economics and environmental issues of heavy oils. It does not pretend to be exhaustive, but to provide an authoritative view of this very important energy resource. Besides presenting the current status of knowledge and technology involved in exploiting heavy oils, the purpose is to provide an insight into technical, economic and environmental challenges that should be taken up in order to increase the efficiency of production and processing, and finally to give a prospective view of the emerging technologies which will contribute to releasing the immense potential reserves of heavy oil and tar deposits. Contents: Part 1. Heavy Crude Oils.1. Heavy Crude Oils in the Perspective of World Oil Demand. 2. Definitions and Specificities. 3. Geological Origin of Heavy Crude Oils. 4. Properties and composition. Part 2. Reservoir Engineering

  12. Assessment of ground-water contamination by coal-tar derivatives, St. Louis Park area, Minnesota (United States)

    Hult, M.F.


    Operation of a coal-tar distillation and wood-preserving facility in St. Louis Park, Minnesota, during 1918-72 contaminated ground water with coal-tar derivatives and inorganic chemicals. Coal-tar derivatives entered the groundwater system through three major paths: (1) Spills and drippings that percolated to the water table, (2) surface runoff and plant process water that was discharged to wetlands south of the former plant site, and (3) movement of coal tar directly into bedrock aquifers through a multiaquifer well on the site.

  13. Study on Tar Generated from Downdraft Gasification of Oil Palm Fronds (United States)

    Atnaw, Samson Mekbib; Kueh, Soo Chuan; Sulaiman, Shaharin Anwar


    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study. PMID:24526899

  14. Dermal uptake of polycyclic aromatic hydrocarbons after hairwash with coal-tar shampoo

    Energy Technology Data Exchange (ETDEWEB)

    Schooten, F.-J. van; Moonen, E.J.C.; Rhijnsburger, E.; Agen, B. van; Thijssen, H.H.W.; Kleinjans, J.C.S. [University of Limburg, Maastricht (Netherlands). Dept. of Health Risk Analysis and Toxicology


    Describes an experiment to assess the dermal uptake of polycyclic aromatic hydrocarbons (PAHs) after hairwashing with coal tar antidandruff shampoo. The urinary excretion of 1-hydroxypyrene (1-OH-P), a PAH metabolile was used to assess internal dose of PAH. A single use of coal tar shampoo resulted in increased 1-OH-P excretion in all members of the experimental group compared with the control group using a non-coal tar antidandruff shampoo. It is suggested that repeated use of coal tar shampoo would result in a high internal dose of carcinogenic PAH. 5 refs., 1 fig.

  15. Study on tar generated from downdraft gasification of oil palm fronds. (United States)

    Atnaw, Samson Mekbib; Kueh, Soo Chuan; Sulaiman, Shaharin Anwar


    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study.

  16. Study on Tar Generated from Downdraft Gasification of Oil Palm Fronds

    Directory of Open Access Journals (Sweden)

    Samson Mekbib Atnaw


    Full Text Available One of the most challenging issues concerning the gasification of oil palm fronds (OPF is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3 in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study.

  17. Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. (United States)

    Kouprina, Natalay; Larionov, Vladimir


    Transformation-associated recombination (TAR) cloning represents a unique tool for isolation and manipulation of large DNA molecules. The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. So far, TAR cloning is the only method available to selectively recover chromosomal segments up to 300 kb in length from complex and simple genomes. In addition, TAR cloning allows the assembly and cloning of entire microbe genomes up to several Mb as well as engineering of large metabolic pathways. In this review, we summarize applications of TAR cloning for functional/structural genomics and synthetic biology.

  18. Hydrocarbon distribution in the Irati shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, J.C.; Schmal, M.; Cardoso, J.N. [Federal University of Rio de Janeiro, Rio de Janeiro (Brazil)


    This work reports a detailed characterization of the various hydrocarbon structures present in a sample of the Irati shale oil (Sao Mateus do Sul, Parana), obtained by the Petrosix Process, by means of a combination of gas chromatography-mass spectrometry (g.c.-m.s.), co-injection with authentic standards, and retention time data of model compounds. Hydrocarbon structures, the main constituents of the shale oil ({approximately} 38 wt%), include: linear, branched and isoprenoidal alkanes, linear and isoprenoidal alkenes, alkycyclopentanes and cyclohexanes, alkylcycloalkenes, hopanes, hopenes and steranes. Linear structures are dominant (43% of the total hydrocarbons), followed by isoprenoidal skeletons. Saturated compounds strongly predominate over their unsaturated counterparts. The use of several maturity parameters attested to the immaturity of the sediment. Data further suggested a predominant algal/microbial origin and a basic lacustrine depositional environment to the Irati shale, probably under a moderate oxidative condition, thus confirming previous conclusions obtained via analysis of the Irati bitumen and the shale rock. Additionally, the data confirmed the usual classification of this shale as containing Type-II kerogen. 34 refs., 2 tabs.

  19. Production from multiple zones of a tar sands formation

    Energy Technology Data Exchange (ETDEWEB)

    Karanikas, John Michael; Vinegar, Harold J


    A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat is allowed to transfer from the heaters to at least a portion of the formation. Fluids are produced from the formation through at least one production well that is located in at least two zones in the formation. The first zone has an initial permeability of at least 1 darcy. The second zone has an initial of at most 0.1 darcy. The two zones are separated by a substantially impermeable barrier.

  20. Methanogenic archaea in marcellus shale: a possible mechanism for enhanced gas recovery in unconventional shale resources. (United States)

    Tucker, Yael Tarlovsky; Kotcon, James; Mroz, Thomas


    Marcellus Shale occurs at depths of 1.5-2.5 km (5000 to 8000 feet) where most geologists generally assume that thermogenic processes are the only source of natural gas. However, methanogens in produced fluids and isotopic signatures of biogenic methane in this deep shale have recently been discovered. This study explores whether those methanogens are indigenous to the shale or are introduced during drilling and hydraulic fracturing. DNA was extracted from Marcellus Shale core samples, preinjected fluids, and produced fluids and was analyzed using Miseq sequencing of 16s rRNA genes. Methanogens present in shale cores were similar to methanogens in produced fluids. No methanogens were detected in injected fluids, suggesting that this is an unlikely source and that they may be native to the shale itself. Bench-top methane production tests of shale core and produced fluids suggest that these organisms are alive and active under simulated reservoir conditions. Growth conditions designed to simulate the hydrofracture processes indicated somewhat increased methane production; however, fluids alone produced relatively little methane. Together, these results suggest that some biogenic methane may be produced in these wells and that hydrofracture fluids currently used to stimulate gas recovery could stimulate methanogens and their rate of producing methane.

  1. Hydrogeological aspects of shale gas extraction in the UK


    Stuart, Marianne


    UK shale gas exploitation currently at a very early stage. Potentially significant quantities but resources are not yet proven. In the UK a number of the potentially exploitable shales are below important aquifers.Water demand for shale gas production may not be significant relative to other uses but local needs must be considered carefully. Shale gas extraction will use/mobilise potential pollutants. Risks must be fully assessed and managed effectively – through to post abandonment. The most...

  2. Perspectives and Problems related to the Shale Gas Production

    Directory of Open Access Journals (Sweden)

    D. P. Gerish


    Full Text Available This article describes the main aspects of shale gas production, its origin and properties. The particular issues related to the shale gas production, as well as the public and official attitude to the perspectives of its usage in Russian Federation are analyzed. The general problems of the shale gas exploration and production in the Russian Federation are discussed. The current and prognostic rates of shale gas production in USA are shown.

  3. PFB air gasification of biomass. Investigation of product formation and problematic issues related to ammonia, tar and alkali

    Energy Technology Data Exchange (ETDEWEB)

    Padban, Nader


    -aromatics in the product gas. There is an indication that the tars are the products of the stepwise destruction of the primary structure of the biomass. Increased temperature favours dissociation of the heavy tar compounds to lighter structures. During gasification a part of the fuel-bound nitrogen (fb-N) converts to ammonia which forms NO{sub x} in the following combustion steps of the product gas. The degree of conversion to ammonia is dependent on the process parameters and generally increases with increasing ER and temperature until a total carbon conversion is achieved. The mechanisms of the release of the fb-N and also the routes to minimise the ammonia in the product gas are discussed. In a gasification plant alkali metals can be the reason beyond problems such as agglomeration of the bed material, deposit formation on cold surfaces and erosion and corrosion of the ceramic and metallic parts. The experimental results show that the type of alkali from the fuel has a crucial importance in causing the alkali-related problems.

  4. A terrestrial analog for transverse aeolian ridges (TARs): Environment, morphometry, and recent dynamics (United States)

    Hugenholtz, Chris H.; Barchyn, Thomas E.


    Transverse aeolian ridges (TARs) are a distinct aeolian bedform found on Mars. The formative processes, evolution, and geological significance of TARs is poorly understood. Fundamentally, it is unknown whether TARs are dunes, mega-ripples, or another bedform type. We examined aeolian bedforms in the Lut Desert of Iran as a terrestrial analog for Martian TARs. From an objective sampling strategy with high-resolution satellite imagery, we developed a large morphometric dataset for comparison with existing Martian TARs. We also examined the dynamics of the Lut bedforms between 2004 and 2012 to determine if they were static or migrating. Results indicate that the range in the dimensions (length, width, height, and wavelength) of the Lut bedforms and Martian TARs overlap, suggesting Lut bedforms are a viable terrestrial TAR analog. Our sample yielded median values of 55.18 m, 9.80, 1.02 m, and 20 m for length (longest planview axis), width (shortest planview axis), height, and wavelength, respectively. Cumulative log-frequency plots of morphometric parameters suggest the sample is from a single population and process mechanism. Although the vast majority of Lut bedforms examined were static between 2004 and 2012, some migrated up to 0.09 myr-1 on average. This is much slower than nearby dunes (4-12 myr-1), but is explained by the existence of a surface lag of coarse particles on the TAR-like bedforms. The combination of morphometry, surface sedimentology, and slow migration rate indicate the Lut bedforms are mega-ripples, which provides evidence supporting interpretation of Martian TARs as mega-ripples. Testing the mega-ripple hypothesis for Martian TARs requires measurements of their sedimentology, which may be possible with the Mars Science Laboratory rover Curiosity, as well as expanded measurements of TAR morphometry to constrain their size, shape, and scaling.

  5. Turbine Fuels from Tar Sands Bitumen and Heavy Oil. Phase I. Preliminary Process Analysis. (United States)


    attractive feed to the FCC, as gasoline yields are low and dry gas yields are high. Therefore, gas oil pre- treater effluent is distilled to prepare a >650°F...gasoline blending or aromatics production, in addition to the JP-8. Figure 11 represents the principal flow scheme for the naphtha hydro- treaters ...and ammonia, may in- clude a significant amount of hydrogen. In addition, the light hydro- carbons - methane through propane - can be converted to

  6. Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 3. Laboratory Sample Production. (United States)


    OF temperature, degrees Fahrenheit FCC fluid catalytic cracker or cracking FOE fuel oil equivalent gm gram Hg mercury Hr hour IBP initial boiling...DILUENT PREPARATION - BLENDED GAS OIL/BITUMEN CRACKING RESULTS.........8 3. DILUENT PREPARATION HYDROTREATING SUMMARY..................10 4. LOOP 1...18 10. LOOP 2 HYDROTREATER RESULTS SUMMARY. .......... 19 11. DIOLEFIN SATURATION - HYDROTREATMENT OF THE LIGHT NAPHTHA ........... 23 12. JP-8

  7. Turbine Fuels from Tar Sands Bitumen and Heavy Oil. Part 2. Phase II. Laboratory Sample Production. (United States)


    catalytic hydrotreating or hydrocracking of the resultant naphtha or distillate fractions. Four different feed- stocks were employed; two were bituoiens...process and two hydrogen addition type processes: 3) hydrovisbreaking and 4) fixed bed catalytic hydro- cracking . Refining processes employed to achieve...turbine fuels includes several catalytic processes in the downstream section of the refinery. As shown in Figure 1, the naphtha fraction undergoes

  8. Multiphysical Testing of Soils and Shales

    CERN Document Server

    Ferrari, Alessio


    Significant advancements in the experimental analysis of soils and shales have been achieved during the last few decades. Outstanding progress in the field has led to the theoretical development of geomechanical theories and important engineering applications. This book provides the reader with an overview of recent advances in a variety of advanced experimental techniques and results for the analysis of the behaviour of geomaterials under multiphysical testing conditions. Modern trends in experimental geomechanics for soils and shales are discussed, including testing materials in variably saturated conditions, non-isothermal experiments, micro-scale investigations and image analysis techniques. Six theme papers from leading researchers in experimental geomechanics are also included. This book is intended for postgraduate students, researchers and practitioners in fields where multiphysical testing of soils and shales plays a fundamental role, such as unsaturated soil and rock mechanics, petroleum engineering...

  9. Quantifying porosity, compressibility and permeability in Shale

    DEFF Research Database (Denmark)

    Mbia, Ernest Ncha; Fabricius, Ida Lykke; Frykman, Peter

    The Fjerritslev Formation in the Norwegian-Danish Basin forms the main seal to Upper Triassic-Lower Jurassic sandstone reservoirs. In order to estimate rock properties Jurassic shale samples from deep onshore wells in Danish basin were studied. Mineralogical analysis based on X-ray diffractometry...... (XRD) of shale samples show about 50% silt and high content of kaolinite in the clay fraction when compared with offshore samples from the Central Graben. Porosity measurements from helium porosimetry-mercury immersion (HPMI), mercury injection capillary pressure (MICP) and nuclear magnetic resonance...... (NMR) show that, the MICP porosity is 9-10% points lower than HPMI and NMR porosity. Compressibility result shows that deep shale is stiffer in situ than normally assumed in geotechnical modelling and that static compressibility corresponds with dynamic one only at the begining of unloading stress...

  10. Screening restimulation candidates in the Antrim Shale

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, C.W.; Frantz, J.H. Jr.; Tatum, C.L.; Hill, D.G.


    This paper describes a simple method to identify, prioritize, and evaluate restimulation candidates in the Antrim Shale of the Michigan Basin. This work is being performed as part of an ongoing field-based Gas Research Institute (GRI) project investigating the Antrim Shale. There are between 500 and 1,000 Antrim Shale wells which could be candidates for restimulation due to previous screenouts and/or flowback problems, when sand consolidation material was not used. However, all of these wells might not benefit from restimulation, due to either poor reservoir quality or because the wells are already effectively stimulated. Based on historical results, the authors estimate the increase in reserves from restimulation could be between 50 and 400 MMscf per well, which could add 50 to 200 Bscf in future reserves from the 500--1,000 candidate wells.

  11. Assessment of potential unconventional lacustrine shale-oil and shale-gas resources, Phitsanulok Basin, Thailand, 2014 (United States)

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.; Brownfield, Michael E.


    Using a geology-based assessment methodology, the U.S. Geological Survey assessed potential technically recoverable mean resources of 53 million barrels of shale oil and 320 billion cubic feet of shale gas in the Phitsanulok Basin, onshore Thailand.

  12. Shales: A review of their classifications, properties and importance ...

    African Journals Online (AJOL)

    Shales are fine-grained, laminated or fissile clastic sedimentary rocks with predominance of clay and silt as the detrital components. They may be classified as clayey, silty or sandy shales on the basis of texture. Other criteria used in the classification of shales include mineralogical composition, cementing materials, organic ...

  13. Rapid gas development in the Fayetteville shale basin, Arkansas (United States)

    Advances in drilling and extraction of natural gas have resulted in rapid expansion of wells in shale basins. The rate of gas well installation in the Fayetteville shale is 774 wells a year since 2005 with thousands more planned. The Fayetteville shale covers 23,000 km2 although ...

  14. Kinetic simulation model for steam pyrolysis of shale oil feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Kavianian, H.R.; Yesavage, V.F.; Dickson, P.F.; Peters, R.W. (Argonne National Lab., Argonne, IL (US))


    Steam pyrolysis of shale oil feedstocks for the production of chemical intermediates was studied in a bench-scale tubular reactor. The results have been correlated as a function of temperature, residence time, and pyrolysis severity. The experimental results obtained upon pyrolysis of shale oil indicate that shale oil should make an excellent feedstock for steam pyrolysis.

  15. Flowback patterns of fractured shale gas wells

    Directory of Open Access Journals (Sweden)

    Naizhen Liu


    Full Text Available Shale gas reservoirs generally need to be fractured massively to reach the industrial production, however, the flowback ratio of fractured shale gas wells is low. In view of this issue, the effects of natural fracture spacing, fracture conductivity, fracturing scale, pressure coefficient and shut-in time on the flowback ratio were examined by means of numerical simulation and experiments jointly, and the causes of flowback difficulty of shale gas wells were analyzed. The results show that the flowback ratio increases with the increase of natural fracture spacing, fracture conductivity and pressure coefficient and decreases with the increase of fracturing scale and shut-in time. From the perspective of microscopic mechanism, when water enters micro-cracks of the matrix through the capillary self-absorbing effect, the original hydrogen bonds between the particles are replaced by the hydroxyl group, namely, hydration effect, giving rise to the growth of new micro-cracks and propagation of main fractures, and complex fracture networks, so a large proportion of water cannot flow back, resulting in a low flowback ratio. For shale gas well fracturing generally has small fracture space, low fracture conductivity and big fracturing volume, a large proportion of the injected water will be held in the very complex fracture network with a big specific area, and unable to flow back. It is concluded that the flowback ratio of fractured shale gas wells is affected by several factors, so it is not necessary to seek high flowback ratio deliberately, and shale gas wells with low flowback ratio, instead, usually have high production.

  16. Acute toxicity of birch tar oil on aquatic organisms

    Directory of Open Access Journals (Sweden)



    Full Text Available Birch tar oil (BTO is a by-product of processing birch wood in a pyrolysis system. Accumulating evidence suggests the suitability of BTO as a biocide or repellent in terrestrial environments for the control of weeds, insects, molluscs and rodents. Once applied as biocide, BTO may end up, either through run-off or leaching, in aquatic systems and may have adverse effects on non-target organisms. As very little is known about the toxicity of BTO to aquatic organisms, the present study investigated acute toxicity (LC50/EC50 of BTO for eight aquatic organisms. Bioassays with the Asellus aquaticus (crustacean, Lumbriculus variegatus (oligochaeta worm, Daphnia magna (crustacean, Lymnea sp. (mollusc, Lemna minor (vascular plant, Danio rerio (fish, Scenedesmus gracilis (algae, and Vibrio fischeri (bacterium were performed according to ISO, OECD or USEPA-guidelines. The results indicated that BTO was practically nontoxic to most aquatic organisms as the median effective BTO concentrations against most organisms were >150 mg L-1. In conclusion, our toxicity tests showed that aquatic organisms are to some extent, invariably sensitive to birch tar oil, but suggest that BTO does not pose a severe hazard to aquatic biota. We deduce that, unless BTOs are not applied in the immediate vicinity of water bodies, no special precaution is required.;

  17. Geology and resources of the Tar Sand Triangle, southeastern Utah

    Energy Technology Data Exchange (ETDEWEB)

    Dana, G.F.; Oliver, R.L.; Elliott, J.R.


    The Tar Sand Triangle is located in southeastern Utah between the Dirty Devil and Colorado Rivers and covers an area of about 200 square miles. The geology of the area consists of gently northwest dipping strata exposed in the box canyons and slopes of the canyonlands morphology. Strata in the area range in age from Jurassic to Permian. The majority of tar sand saturation is found in the Permian White Rim Sandstone Member of the Cutler Formation. The White Rim Sandstone Member consists of a clean, well-sorted sandstone which was deposited in a shallow marine environment. Resources were calculated from analytical data from the three coreholes drilled by the Laramie Energy Technology Center and other available data. The total in-place resources, determined from this study, are 6.3 billion barels. Previous estimates ranged from 2.9 to 16 million barrels. More coring and analyses will be necessary before a more accurate determination of resources can be attempted. 8 references, 11 figures, 7 tables.

  18. Quantitative group-type analysis of coal-tar pitches

    Energy Technology Data Exchange (ETDEWEB)

    Membrado, L.; Cebolla, V.L.; Vela, J. [Instituto de carboquimica, Zaragoza (Spain)


    Preparative liquid chromatographic (LC) and related techniques (e.g.., extrography) are mostly used for quantitative compound class or group-type analysis of coal-tar pitches. TLC-FID has hardly been used for this purpose because of the time-consuming calibration steps required. As the FID response of each peak depends on its nature, the classical approach in fossil fuel analysis to a quantitative analysis is the absolute calibration using fractions derived from the fossil fuel itself (previously isolated by LC) as external standards. An added problem is the isolation of these fractions with the required purity. A TLC-FID system has previously been described in this issue, which gives adequate repeatability and precision, and gives a quantitative FID response. In this work, a rapid calibration procedure which allows a quantitative group-type analysis of a whole coal-tar pitch (without any prefractionation) using TLC-FID is presented as an alternative to absolute calibration. This method considerably reduces the total time of analysis. Likewise, the use of TLC-FID as a monitoring technique to improve the classical absolute calibration is also proposed. Pros and cons of group-type analysis techniques are finally discussed with regard to TLC-FID.

  19. Catalytic Steam Reforming of Gasifier Tars: On-Line Monitoring of Tars with a Transportable Molecular-Beam Mass Spectrometer; Milestone Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.; Ratcliff, M.; Dayton, D.


    A method for evaluating catalytic tar decomposition in real time is presented. The effectiveness of two catalysts are compared. A key technical and economic barrier to commercialization of biomass gasification technologies is the removal of tars that are unavoidably formed in this thermochemical process. Tars contain fuel value; however, they are problematic in gas engines (both reciprocating and turbine) because they condense in the fuel delivery system, forming deposits that negatively affect operation and efficiency. These tars also combust with high luminosity, potentially forming soot particles. The conventional technology for tar removal is wet scrubbing. Although this approach has shown some success, there are significant equipment and operating costs associated with it. In order to prevent the generation of toxic wastewater, the tars must be separated and either disposed as hazardous waste or, preferably, combusted in the gasification plant. A conceptually better approach is catalytic steam reforming of the tars to hydrogen and carbon monoxide (CO), effectively increasing the gasification efficiency and eliminating the problems mentioned above. In FY2000, Battelle Columbus Laboratories attempted to demonstrate integrated gasification-gas turbine operation using catalytic steam reforming of tars. NREL participated in those tests using the transportable molecular-beam mass spectrometer (TMBMS) to monitor the catalytic reactor's performance on-line [10]. Unfortunately, the pilot plant tests encountered operational problems that prevented conclusive determination of the efficacy of the selected catalyst (Battelle's DN34). In FY2001, NREL performed on-site tar steam reforming tests using a slip-stream of hot pyrolysis gas from the Thermochemical Process Development Unit (TCPDU), which was directed to a bench-scale fluidized bed reactor system designed expressly for this purpose. Supporting this effort, the TMBMS was employed to provide on-line analysis

  20. A baseline assessment of beach debris and tar contamination in Bonaire, Southeastern Caribbean

    NARCIS (Netherlands)

    Debrot, A.O.; Rijn, van J.; Bron, P.S.; Leon, R.


    Data on beach debris and tar contamination is provided for 21 natural beach sites in Bonaire, Southeastern Caribbean. Transects amounting to a combined length of 991 m were sampled March–May 2011 and a total of 8960 debris items were collected. Highest debris and tar contamination were found on the

  1. Relationship Between the Composition and Interfacial Tension of Former Manufactured Gas Plant Tars (United States)

    Hauswirth, S.; Birak, P. S.; Miller, C. T.


    Former manufactured gas plant (FMGP) tars pose significant environmental hazards and present a challenge to regulators and industry professionals. The tars, which were produced as a byproduct of the gas manufacturing process, were frequently released into the environment through improper disposal or leaks in plant infrastructure. The interfacial tension (IFT) is a primary factor controlling the mobility of tars in porous media, and is therefore important to understand for both predicting the migration of tars and designing remediation strategies. In this study, we characterized nine field-collected FMGP tars and a commercially available coal tar by means of chemical extractions (asphaltenes, resins, acids, and bases), gas chromatography-mass spectrometry (GC-MS), and Fourier transform infrared (FTIR) spectroscopy. Additionally, the IFT and contact angle of each tar was determined for a pH range of 3-11. The IFT was found to be similar for all tars at pH 5 and 7 regardless of composition. Slight decreases in IFT at lower pH were correlated with higher concentrations of extractable bases, which consisted primarily of nitrogen-containing heterocyclic aromatic compounds. Much greater reductions of IFT were observed at high pH. These reductions were found to be associated with the presence of carbonyl or carboxyl groups in the asphaltenes. It is likely that the larger size of the asphaltene molecules (as compared to the extractable compounds) resulted in species with greater surface activity when ionized.

  2. No increased risk of cancer after coal tar treatment in patients with psoriasis or eczema.

    NARCIS (Netherlands)

    Roelofzen, J.H.J.; Aben, K.K.H.; Oldenhof, U.T.H.; Coenraads, P.J.; Alkemade, J.A.C.; Kerkhof, P.C.M. van de; Valk, P.G.M. van der; Kiemeney, L.A.L.M.


    Coal tar is an effective treatment for psoriasis and eczema, but it contains several carcinogenic compounds. Occupational and animal studies have shown an increased risk of cancer after exposure to coal tar. Many dermatologists have abandoned this treatment for safety reasons, although the risk of

  3. No Increased Risk of Cancer after Coal Tar Treatment in Patients with Psoriasis or Eczema

    NARCIS (Netherlands)

    Roelofzen, Judith H. J.; Aben, Katja K. H.; Oldenhof, Ursula T. H.; Coenraads, Pieter-Jan; Alkemade, Hans A.; van de Kerkhof, Peter C. M.; van der Valk, Pieter G. M.; Kiemeney, Lambertus A. L. M.

    Coal tar is an effective treatment for psoriasis and eczema, but it contains several carcinogenic compounds. Occupational and animal studies have shown an increased risk of cancer after exposure to coal tar. Many dermatologists have abandoned this treatment for safety reasons, although the risk of

  4. Biomass Gasifier ''Tars'': Their Nature, Formation, and Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Milne, T. A.; Evans, R. J. (National Renewable Energy Laboratory); Abatzaglou, N. (Kemestrie, Inc.)


    The main purpose of this review is to update the information on gasification tar, the most cumbersome and problematic parameter in any gasification commercialization effort. The work aims to present to the community the scientific and practical aspects of tar formation and conversion (removal) during gasification as a function of the various technological and technical parameters and variables.

  5. The Legend of Hot Tar or Pitch as a Defensive Weapon

    DEFF Research Database (Denmark)

    Atzbach, Rainer


    production and use during the Middle Ages will be discussed with special focus on the application of tar pitch as an ingredient in medieval and post-medieval thermal weapons (especially Greek Fire, the firebomb and the fire arrow). The punishment of tarring and feathering will also be considered...

  6. Dissolution and transport of coal tar compounds in fractured clay-rich residuum

    DEFF Research Database (Denmark)

    Vulava, Vijay M.; McKay, Larry D.; Broholm, Mette Martina


    We investigated the dissolution and transport of organic contaminants from a crude coal tar mixture in a monolith of fractured clay-rich residuum. An electrolyte solution was eluted through the residuum monolith containing a small emplaced source of coal tar under biologically inhibited and mildly...

  7. 21 CFR 740.18 - Coal tar hair dyes posing a risk of cancer. (United States)


    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Coal tar hair dyes posing a risk of cancer. 740.18 Section 740.18 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) COSMETICS COSMETIC PRODUCT WARNING STATEMENTS Warning Statements § 740.18 Coal tar hair dyes...

  8. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen


    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make

  9. Cigarette tar content and symptoms of chronic bronchitis: results of the Scottish Heart Health Study. (United States)

    Brown, C A; Crombie, I K; Smith, W C; Tunstall-Pedoe, H


    The aim was to determine if there was a relationship between cigarette tar yield and rates of chronic cough and chronic phlegm. 22 districts across Scotland were used for the Scottish Heart Health Study (SHHS) which was conducted between 1984 and 1986 and from which the data for this analysis were obtained. 10,359 men and women aged 40-59 years were studied. Of these, 2801 current cigarette smokers whose brand of cigarette smoked was known were selected. Data on self reported smoking habits and prevalence of chronic cough and chronic phlegm were obtained from the SHHS. Tar yield was divided into three groups: low (less than or equal to 12 mg/cigarette); middle (13-14 mg/cigarette); high (greater than or equal to 15 mg/cigarette). The average tar yield consumed per person was 13.2 mg/cigarette. Women in the middle and high tar groups had smoked for longer and had significantly higher breath carbon monoxide levels, serum thiocyanate levels, serum cotinine levels, and daily cigarette consumption than the women in the low tar group. This pattern was not seen in men for any of these five smoking variables. Rates of chronic cough and chronic phlegm were higher with higher tar yield of cigarettes smoked for women (low tar v high tar: p less than 0.001) but not for men. Daily cigarette consumption and the number of years of smoking were the most significant risk factors for chronic cough and chronic phlegm for both men and women. Tar was still a significant risk factor (p less than 0.05) for women after controlling for these two risk factors and social class. Both sexes show strong effects of daily cigarette consumption and years of smoking on respiratory symptoms; women show an additional effect of cigarette tar content while men do not. The spread of tar yield in both sexes was small but there were more women on low tar cigarettes and this may have enabled a weak effect of tar to be seen better in them. On the other hand, tar level in women was confounded with other

  10. Influence of Pyrolysis Temperature on Rice Husk Char Characteristics and Its Tar Adsorption Capability

    Directory of Open Access Journals (Sweden)

    Anchan Paethanom


    Full Text Available A biomass waste, rice husk, was inspected by thermoanalytical investigation to evaluate its capability as an adsorbent medium for tar removal. The pyrolysis process has been applied to the rice husk material at different temperatures 600, 800 and 1000 °C with 20 °C/min heating rate, to investigate two topics: (1 influence of temperature on characterization of rice husk char and; (2 adsorption capability of rice husk char for tar removal. The results showed that subsequent to high temperature pyrolysis, rice husk char became a highly porous material, which was suitable as tar removal adsorbent with the ability to remove tar effectively. In addition, char characteristics and tar removal ability were significantly influenced by the pyrolysis temperature.

  11. Task 3.9 -- Catalytic tar cracking. Semi-annual report, January 1--June 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Young, B.C.; Timpe, R.C.


    Tar produced in the gasification of coal is deleterious to the operation of downstream equipment including fuel cells, gas turbines, hot-gas stream cleanup filters, and pressure swing adsorption systems. Catalytic cracking of tars to smaller hydrocarbons can be an effective means to remove these tars from gas streams and, in the process, generate useful products, e.g., methane gas, which is crucial to the operation of molten carbonate fuel cells. The objectives of this project are to investigate whether gasification tars can be cracked by synthetic nickel-substituted micamontmorillonite, zeolite, or dolomite material; and whether the tars can be cracked selectively by these catalysts to produce a desired liquid and/or gas stream. Results to date are presented in the cited papers.

  12. Uluslararası ticari boyutuyla organik tarım ve devlet destekleri


    İpek, Selçuk; Çil, Gözde Yaşar


    Küresel düzeyde yaşanan çevre kirliliği ve buna bağlı olarak doğal dengenin korunması ihtiyacı, beraberinde bazı alternatif üretim şekillerini de gündeme getirmiştir. Bu üretim şekillerinin tarımsal alana yansıması organik tarım şeklinde olmuştur. Toplumlarda çevre ve sağlığa ilişkin bilinç düzeyiyle birlikte organik tarıma ilgi artmakta ve dünyada organik tarım pazarı artan oranlarda genişlemektedir. Organik tarım açısından gelişmiş ülkeler kendi iç taleplerini ka...

  13. Fourier Transform Infrared Spectroscopic Determination of Shale ...

    African Journals Online (AJOL)

    The CLS model developed was able to quantify the mineral components of independent mixtures with an absolute error between 1 to 3wt% for all the pure minerals in the mixtures. Samples from a suite of shale reservoir rocks were analysed using standard Quantitative X-Ray Diffraction (QXRD) and with FTIR. Unknown ...

  14. Paleontology: a new Burgess Shale fauna. (United States)

    Briggs, Derek E G


    A spectacular Cambrian soft bodied fauna some 40 km from Walcott's original Burgess Shale locality includes over 50 taxa, some 20% new to science. New anatomical evidence from this site will illuminate the evolution of early marine animals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. [Chemical hazards arising from shale gas extraction]. (United States)

    Pakulska, Daria


    The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extreiely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest, concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction.

  16. Chemical hazards arising from shale gas extraction

    Directory of Open Access Journals (Sweden)

    Daria Pakulska


    Full Text Available The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extremely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction. Med Pr 2015;66(1:99–117

  17. Electromagnetic De-Shaling of Coal

    NARCIS (Netherlands)

    De Jong, T.P.R.; Mesina, M.B.; Kuilman, W.


    The efficiency with which an electromagnetic sensor array is able to distinguish density and ash content of coal and shale mixtures was determined experimentally. The investigated sensor was originally designed for automatic metal detection and sorting in industrial glass recycle processing, where

  18. Technically recoverable Devonian shale gas in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Kuushraa, V.A.; Wicks, D.E.; Sawyer, W.K.; Esposito, P.R.


    The technically recoverable gas from Devonian shale (Lower and Middle Huron) in Ohio is estimated to range from 6.2 to 22.5 Tcf, depending on the stimulation method and pattern size selected. This estimate of recovery is based on the integration of the most recent data and research on the Devonian Age gas-bearing shales of Ohio. This includes: (1) a compilation of the latest geologic and reservoir data for the gas in-place; (2) analysis of the key productive mechanisms; and, (3) examination of alternative stimulation and production strategies for most efficiently recovering this gas. Beyond a comprehensive assembly of the data and calculation of the technically recoverable gas, the key findings of this report are as follows: a substantial volume of gas is technically recoverable, although advanced (larger scale) stimulation technology will be required to reach economically attractive gas production rates in much of the state; well spacing in certain of the areas can be reduced by half from the traditional 150 to 160 acres per well without severely impairing per-well gas recovery; and, due to the relatively high degree of permeability anisotropy in the Devonian shales, a rectangular, generally 3 by 1 well pattern leads to optimum recovery. Finally, although a consistent geological interpretation and model have been constructed for the Lower and Middle Huron intervals of the Ohio Devonian shale, this interpretation is founded on limited data currently available, along with numerous technical assumptions that need further verification. 11 references, 21 figures, 32 tables.

  19. Shale characterization on Barito field, Southeast Kalimantan for shale hydrocarbon exploration (United States)

    Sumotarto, T. A.; Haris, A.; Riyanto, A.; Usman, A.


    Exploration and exploitation in Indonesia now are still focused on conventional hydrocarbon energy than unconventional hydrocarbon energy such as shale gas. Tanjung Formation is a source rock of Barito Basin located in South Kalimantan that potentially as shale hydrocarbon. In this research, integrated methods using geochemical analysis, mineralogy, petrophysical analysis and seismic interpretation has been applied to explore the shale hydrocarbon potential in Barito Field for Tanjung formation. The first step is conducting geochemical and mineralogy analysis to the shale rock sample. Our analysis shows that the organic richness is ranging from 1.26-5.98 wt.% (good to excellent) with the depth of early mature window of 2170 m. The brittleness index is in an average of 0.44-0.56 (less Brittle) and Kerogen type is classified into II/III type that potentially produces oil and gas. The second step is continued by performing petrophysical analysis, which includes Total Organic Carbon (TOC) calculation and brittleness index continuously. The result has been validated with a laboratory measurement that obtained a good correlation. In addition, seismic interpretation based on inverted acoustic impedance is applied to map the distributions of shale hydrocarbon potential. Our interpretation shows that shale hydrocarbon potential is localized in the eastern and southeastern part of the study area.

  20. Oil shale development and its environmental considerations (United States)

    Stone, R.T.; Johnson, H.; Decora, A.


    The petroleum shortage recently experienced by many nations throughout the world has created an intense interest in obtaining new and supplemental energy sources. In the United States, this interest has been centered on oil shale. Any major action by the federal government having significant environmental effects requires compliance with the National Environmental Policy Act of 1969 (NEPA). Since most oil shale is found on federal lands, and since its development involves significant environmental impacts, leasing oil shale lands to private interests must be in compliance with NEPA. For oil shale, program planning began at approximately the same time that NEPA was signed into law. By structuring the program to permit a resource and technological inventory by industry and the federal agencies, the Department of the Interior was able simultaneously to conduct the environmental assessments required by the act. This required: 1. Clearly defined program objections; 2. An organization which could integrate public policy with diverse scientific disciplines and environmental concerns; and 3. Flexible decisionmaking to adjust to policy changes as well as to evolving interpretations on EPA as clarified by court decisions. This paper outlines the program, the organization structure that was created for this specific task, and the environmental concerns which were investigated. The success of the program has been demonstrated by meeting the requirements of NEPA, without court challenge, and by industry's acceptance of a leasing program that included the most stringent environmental protection provisions ever required. The need for energy development has spurred the acceptance of the program. However, by its awareness and willingness to meet the environmental challenges of the future, industry has shown a reasonable understanding of its commitments. The pros and cons of development were publicly considered in hearings and analyzed in the final environmental statement. This

  1. Leaching study of oil shale in Kentucky : with a section on Hydrologic reconnaissance of the oil shale outcrop in Kentucky (United States)

    Leung, Samuel S.; Leist, D.W.; Davis, R.W.; Cordiviola, Steven


    Oil shales in Kentucky are rocks of predominantly Devonian age. The most prominant are the Ohio, Chattanooga, and New Albany Shales. A leaching study was done on six fresh oil shale samples and one retorted oil shale sample. Leaching reagents were distilled water, 0.0005 N sulfuric acid, and 0.05 N sulfuric acid. The concentration of constituents in the leachates were highly variable. The concentration of sodium, manganese, and zinc in the retorted shale leachate was several orders of magnitude higher than those of the leachates of fresh shale samples. The major oil shale outcrop covers approximately 1,000 square miles in a horseshoe pattern from Vanceburg, Lewis County , in the east, to Louisville, Jefferson County, in the west. The Kentucky, Red, and Licking Rivers cross the outcrop belt, the Rolling Fork River flows along the strike of the shale in the southwest part of the outcrop, and the Ohio River flows past the outcrop at the ends of the horseshoe. Oil shale does not appear to significantly alter the water quality of these streams. Oil shale is not an aquifer, but seeps and springs found in the shale indicate that water moves through it. Ground water quality is highly variable. (USGS)

  2. Migration and Enrichment of Arsenic in the Rock-Soil-Crop Plant System in Areas Covered with Black Shale, Korea

    Directory of Open Access Journals (Sweden)

    Ji-Min Yi


    Full Text Available The Okchon black shale, which is part of the Guryongsan Formation or the Changri Formation of Cambro-Ordovician age in Korea provides a typical example of natural geological materials enriched with potentially toxic elements such as U, V, Mo, As, Se, Cd, and Zn. In this study, the Dukpyung and the Chubu areas were selected to investigate the migration and enrichment of As and other toxic elements in soils and crop plants in areas covered with black shale. Rock and soil samples digested in 4-acid solution (HCl+HNO3+HF+HClO4 were analyzed for As and other heavy metals by ICP-AES and ICP-MS, and plant samples by INAA. Mean concentration of As in Okchon black shale is higher than those of both world average values of shale and black shale. Especially high concentration of 23.2 mg As kg-1 is found in black shale from the Dukpyung area. Mean concentration of As is highly elevated in agricultural soils from the Dukpyung (28.2 mg kg-1 and the Chubu areas (32.6 mg kg-1. As is highly elevated in rice leaves from the Dukpyung (1.14 mg kg-1 and the Chubu areas (1.35 mg kg-1. The biological absorption coefficient (BAC of As in plant species decreases in the order of rice leaves > corn leaves > red pepper = soybean leaves = sesame leaves > corn stalks > corn grains. This indicates that leafy plants tend to accumulate As from soil to a greater degree than cereal products such as grains.

  3. Kinetics of mesophase transformation of coal tar pitch

    Energy Technology Data Exchange (ETDEWEB)

    Shui, H.; Feng, Y.; Shen, B.; Gao, J. [East China Institute of Metallurgy, Maanshan (China)


    A study on the kinetics of mesophase transformation of two coal tar pitches (CTP) with different primary quinoline-insoluble (QI) content is reported. It showed that the meosphase transformation of CTP studied was an autocatalytic type reaction. The rate law and rate constants for the mesophase transformation at holding temperature of 390{degree}C, 410{degree}C and 450{degree}C were determined and the rate constants of mesophase transformation follow the Arrhenius equation. Primary QI of CTP decreases the activation energy from 210.1 kJ/mol to 175.8 kJ/mol, and the pre-exponential factor from 2.12 x 10{sup 13} 1/h to 6.29 x 10{sup 10} 1/h; its influence on the rate constants is irregular. 8 refs., 3 figs., 3 tabs.

  4. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G. J.


    coordinated human services and programs designed to relieve stress, to provide a sense of community, and to integrate newcomers into the community may alleviate some of the negative consequences of rapid social change. In Sec. VII, we examine the factors that lead to social disruption and other negative consequences of social change in western rural communities. The importance of policy as a variable affecting social impacts is also discussed. State and local governments have recognized the need to plan for growth although there continues to be much skepticism with regard to oil shale development. The planning activities of these governments are described in Sec. VIII. In addition to the development of comprehensive land use plans, local governments have developed mechanisms to define community needs. To prepare for growth that was forecasted for the late 1970s, local governments have obtained financial assistance from state and Federal programs to upgrade existing water and sewer systems, streets, schools, and other public facilities. Consequently, some of the communities in the region have excess capacity in their water and sewage treatment facilities and in their schools. There is a great reliance on external financial assistance for the construction of major public facilities that places heavy burdens of grantsmanship on local governments.

  5. Increased traffic accident rates associated with shale gas drilling in Pennsylvania. (United States)

    Graham, Jove; Irving, Jennifer; Tang, Xiaoqin; Sellers, Stephen; Crisp, Joshua; Horwitz, Daniel; Muehlenbachs, Lucija; Krupnick, Alan; Carey, David


    We examined the association between shale gas drilling and motor vehicle accident rates in Pennsylvania. Using publicly available data on all reported vehicle crashes in Pennsylvania, we compared accident rates in counties with and without shale gas drilling, in periods with and without intermittent drilling (using data from 2005 to 2012). Counties with drilling were matched to non-drilling counties with similar population and traffic in the pre-drilling period. Heavily drilled counties in the north experienced 15-23% higher vehicle crash rates in 2010-2012 and 61-65% higher heavy truck crash rates in 2011-2012 than control counties. We estimated 5-23% increases in crash rates when comparing months with drilling and months without, but did not find significant effects on fatalities and major injury crashes. Heavily drilled counties in the southwest showed 45-47% higher rates of fatal and major injury crashes in 2012 than control counties, but monthly comparisons of drilling activity showed no significant differences associated with drilling. Vehicle accidents have measurably increased in conjunction with shale gas drilling. Copyright © 2014. Published by Elsevier Ltd.

  6. Canada's toxic tar sands : the most destructive project on earth

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, C.; Price, M. [Environmental Defence, Toronto, ON (Canada)


    This document addressed the environmental problems associated with tar sands development in Alberta, with particular reference to toxicity problems associated with global warming and the impending destruction of the boreal forest. The authors cautioned that the tar sand projects are highly destructive, leaving downstream toxics equivalent to that of a massive slow motion oil spill that has the potential to poison people. Negligent oversights by the government regarding the impact of tar sands development were also discussed, with reference to toxics on site; toxics downwind; and toxics down the pipe. The report also provided information on the future of tar sands development and global warming in Canada. It included a discussion of reverse alchemy; Canada's failed climate politics; a tar sands tax; and taking responsibility. Last, the report addressed toxic enforcement, including the Fisheries Act; Canadian Environmental Protection Act; Canadian Environmental Assessment Act; and Alberta law. It was concluded that while it is a stretch to believe the tar sands can truly be sustainable, there is a great deal that can be done to clean it up. The authors recommended that new tar sands approvals should wait until certain reform elements are implemented, such as passing a real carbon cap; using dry tailings; requiring wildlife offsets; cleaning up refineries and upgraders; ensuring Aboriginal control and benefit; and having regulation and independent monitoring. 104 refs., 6 figs.


    Directory of Open Access Journals (Sweden)

    Lenka Jílková


    Full Text Available The liquid organic fraction of pyrolytic tar has a high energy value which makes possible its utilization as an energy source. However, before utilization, it is crucial to remove water from the liquid fraction. The presence of water reduces the energy value of pyrolytic tars. Water separation from the organic tar fraction is a complex process, since an emulsion can be readily formed. Therefore, after phase separation, it is important to know the residual water content in the organic phase and whether it is necessary to further dry it. The results presented in this manuscript focus on a water determination in liquid products from coal and biomass pyrolysis by a coulometric Karl‑Fischer titration. The Coulometric Karl‑Fischer titration is often used for a water content determination in gaseous, liquid and solid samples. However, to date, this titration method has not been used for a water determination in tars. A new water determination method, which has been tested on different types of tar, has been developed. The Coulometric Karl‑Fischer titration is suitable for tar samples with a water content not greater than 5 wt. %. The obtained experimental results indicate that the new introduced method can be used with a very good repeatability for a water content determination in tars.

  8. Catalytic Tar Reduction for Assistance in Thermal Conversion of Space Waste for Energy Production (United States)

    Caraccio, Anne Joan; Devor, Robert William; Hintze, Paul E.; Muscatello, Anthony C.; Nur, Mononita


    The Trash to Gas (TtG) project investigates technologies for converting waste generated during spaceflight into various resources. One of these technologies was gasification, which employed a downdraft reactor designed and manufactured at NASA's Kennedy Space Center (KSC) for the conversion of simulated space trash to carbon dioxide. The carbon dioxide would then be converted to methane for propulsion and water for life support systems. A minor byproduct of gasification includes large hydrocarbons, also known as tars. Tars are unwanted byproducts that add contamination to the product stream, clog the reactor and cause complications in analysis instrumentation. The objective of this research was to perform reduction studies of a mock tar using select catalysts and choose the most effective for primary treatment within the KSC downdraft gasification reactor. Because the KSC reactor is operated at temperatures below typical gasification reactors, this study evaluates catalyst performance below recommended catalytic operating temperatures. The tar reduction experimentation was observed by passing a model tar vapor stream over the catalysts at similar conditions to that of the KSC reactor. Reduction in tar was determined using gas chromatography. Tar reduction efficiency and catalyst performances were evaluated at different temperatures.

  9. Sampling of benzene in tar matrices from biomass gasification using two different solid-phase sorbents. (United States)

    Osipovs, Sergejs


    Biomass tar mainly consists of stable aromatic compounds such as benzene and polyaromatic hydrocarbons, benzene being the biggest tar component in real biomass gasification gas. For the analysis of individual tar compounds, the solid-phase adsorption method was chosen. According to this method, tar samples are collected on a column with an amino-phase sorbent. With a high benzene concentration in biomass tar, some of the benzene will not be collected on the amino-phase sorbent. To get over this situation, we have installed another column with activated charcoal which is intended for collection of volatile organic compounds, including benzene, after the column with the amino-phase sorbent. The study of maximal adsorption amounts of various compounds on both adsorbents while testing different sampling volumes led to the conclusion that benzene is a limiting compound. The research proved that the use of two sorbents (500 mg + 100 mg) connected in series allows for assessment of tar in synthesis gas with a tar concentration up to 30-40 g m(-3), which corresponds to the requirements of most gasifiers.

  10. Understanding the stability of pyrolysis tars from biomass in a view point of free radicals. (United States)

    He, Wenjing; Liu, Qingya; Shi, Lei; Liu, Zhenyu; Ci, Donghui; Lievens, Caroline; Guo, Xiaofen; Liu, Muxin


    Fast pyrolysis of biomass has attracted increasing attention worldwide to produce bio-tars that can be upgraded into liquid fuels and chemicals. However, the bio-tars are usually poor in quality and stability and are difficult to be upgraded. To better understand the nature of the bio-tars, this work reveals radical concentration of tars derived from pyrolysis of two kinds of biomass. The tars were obtained by condensing the pyrolysis volatiles in 3s. It shows that the tars contain large amounts of radicals, at a level of 10(16)spins/g, and are able to generate more radicals at temperatures of 573K or higher, reaching a level of 10(19)spins/g at 673K in less than 30min. The radical generation in the tar samples is attributed to the formation of THF insoluble matters (coke), which also contain radicals. The radical concentrations of the aqueous liquids obtained in pyrolysis are also studied. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Opening of the TAR hairpin in the HIV-1 genome causes aberrant RNA dimerization and packaging

    Directory of Open Access Journals (Sweden)

    Das Atze T


    Full Text Available Abstract Background The TAR hairpin is present at both the 5′ and 3′ end of the HIV-1 RNA genome. The 5′ element binds the viral Tat protein and is essential for Tat-mediated activation of transcription. We recently observed that complete TAR deletion is allowed in the context of an HIV-1 variant that does not depend on this Tat-TAR axis for transcription. Mutations that open the 5′ stem-loop structure did however affect the leader RNA conformation and resulted in a severe replication defect. In this study, we set out to analyze which step of the HIV-1 replication cycle is affected by this conformational change of the leader RNA. Results We demonstrate that opening the 5′ TAR structure through a deletion in either side of the stem region caused aberrant dimerization and reduced packaging of the unspliced viral RNA genome. In contrast, truncation of the TAR hairpin through deletions in both sides of the stem did not affect RNA dimer formation and packaging. Conclusions These results demonstrate that, although the TAR hairpin is not essential for RNA dimerization and packaging, mutations in TAR can significantly affect these processes through misfolding of the relevant RNA signals.

  12. Processing of bituminous coal tar at high temperature with bituminous coal additive

    Energy Technology Data Exchange (ETDEWEB)

    von Hartmann, G.B.; Hupfer, H.; Leonhardt, P.


    In short tests, results of the effects of a bituminous coal addition to the processing of tar and pitch were obtainable. Coal used was that from the Heinitz Mines (Upper Silesian), saturated with 1--1.2% iron sulphate. On a mixture of bituminous coal tar residue and tar oil, with a relatively low level of solids and asphalt, a substitution was made for the addition of 2% alkalized iron-grude-catalyst with 20% coal. The same yield was reached using a straight-run procedure. The coal gave somewhat more gasification and additional asphalt in the sludge without increasing the solids content correspondingly. In spite of this, the carbonization results were somewhat improved, which led one to conclude that the coal addition fostered the decomposition of the tar asphalt, and, that the asphalt from the coal could be better carbonized than that out of the tar. One found, also, that the tar mixture with coal additive permitted trouble-free hydrogenation to gasoline and middle oil. Still another short test met with success. A bituminous coal tar pitch containing 24% benzene solids and 36% asphalt, which could not be processed with iron catalyst or even molybdenum-grude, was hydrogenated to gasoline and middle oil with a usable yield of .25 by a 20--25% addition of coal. Here too, the carbonization results were good. The addition of coal had no notable influence on the properties of the resulting oils. The document included test procedures. 11 tables.

  13. Natural attenuation of aged tar-oil in soils: A case study from a former gas production site (United States)

    Ivanov, Pavel; Eickhorst, Thilo; Wehrer, Markus; Georgiadis, Anna; Rennert, Thilo; Eusterhues, Karin; Totsche, Kai Uwe


    Contamination of soils with tar oil occurred on many industrial sites in Europe. The main source of such contamination has been former manufactured gas plants (MGP). As many of them were destroyed during the World War II or abandoned in the second half of the XXth century, the contamination is depleted in volatile and degradable hydrocarbons (HC) but enriched in the heavy oil fractions due to aging processes. We studied a small tar-oil spill in a former MGP reservoir basin. The tar-oil had a total petroleum hydrocarbon (TPH) content of 245 mg/g. At the margin of the spill, vegetation has started to overgrow and intensively root the tar-oil layer. This zone comprised the uppermost 5-7 cm of our profile and contained 28 mg/g of TPH (A-layer)- The layer below the root zone (7-15 cm) was the most contaminated, with 90 mg/g TPH (B-layer). The layer underneath (15-22 cm) had smaller concentrations of 16 mg/g TPH (C-layer). Further down in the profile (D-layer) we found only slightly higher TPH content than in the control samples (1,4 mg/g vs 0,6 mg/g). The polycyclic aromatic hydrocarbons analysis showed the same distribution throughout all layers with highest contents of the PAHs with 4-6 condensed aromatic rings. Direct cell count and extraction of microbial biomass showed that the highly contaminated soil layers A and B had 2-3 times more bacteria than the control soils. CARD-FISH analysis revealed that in samples from layers A and B Archaea were more abundant (12% opposing to 6-7% in control soil). Analysis of bacteria (tested for Alpha-, Beta-, Gamma- and Epsilonproteobacteria and Actinobacteria) showed the dominance of Alphaproteobacteria in the layer A and C both beneath and above the most contaminated layer B. The primers covered the whole microbial consortia in these two layers, leaving almost no unidentified cells. In the most contaminated layer B Alphaproteobacteria amounted only to 20% of the microbial consortium, and almost 40% of the cells remained

  14. Carbazole is a naturally occurring inhibitor of angiogenesis and inflammation isolated from antipsoriatic coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Jack L. Arbiser; Baskaran Govindarajan; Traci E. Battle; Rebecca Lynch; David A. Frank; Masuko Ushio-Fukai; Betsy N. Perry; David F. Stern; G. Tim Bowden; Anquan Liu; Eva Klein; Pawel J. Kolodziejski; N. Tony Eissa; Chowdhury F. Hossain; Dale G. Nagle [Emory University School of Medicine, Atlanta, GA (United States). Department of Dermatology


    Coal tar is one of the oldest and an effective treatment for psoriasis. Coal tar has been directly applied to the skin, or used in combination with UV light as part of the Goeckerman treatment. The use of coal tar has caused long-term remissions in psoriasis, but has fallen out of favor because the treatment requires hospitalization and coal tar is poorly acceptable aesthetically to patients. Thus, determining the active antipsoriatic component of coal tar is of considerable therapeutic interest. We fractionated coal tar into its components, and tested them using the SVR angiogenesis inhibitor assay. Treatment of SVR endothelial cells with coal tar fractions resulted in the isolation of a single fraction with antiangiogenic activity. The active antiangiogenic compound in coal tar is carbazole. In addition to antiangiogenic activity, carbazole inhibited the production of inflammatory IL-15 by human mononuclear cells. IL-15 is elevated in psoriasis and is thought to contribute to psoriatic inflammation. Carbazole treatment also reduced activity of inducible nitric oxide synthase (iNOS), which is proinflammatory and elevated in psoriasis. The effect of carbazole on upstream pathways in human psoriasis was determined, and carbazole was shown to inhibit signal transducer and activator of transcription (stat)3-mediated transcription, which has been shown to be relevant in human psoriasis. IL-15, iNOS, and stat3 activation require the activation of the small GTPase rac for optimal activity. Carbazole was found to inhibit rac activation as a mechanism for its inhibition of downstream inflammatory and angiogenic pathways. Given its antiangiogenic and anti-inflammatory activities, carbazole is likely a major component of the antipsoriatic activity of coal tar. Carbazole and derivatives may be useful in the therapy of human psoriasis.

  15. Shale gas development impacts on surface water quality in Pennsylvania. (United States)

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J


    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  16. Water management practices used by Fayetteville shale gas producers.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A. (Environmental Science Division)


    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least three states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.

  17. A comparison of thermal conversion process for several coal tar pitches

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y.; Shui, H.; Yuan, X. [East China Metallurgical Institute, Ma`anshan (China)


    The property and constituents of coal tar pitch are of great importance to the production of raw material for needle coke. Structural constituents of five coal tar pitches were determined using {sup 1}H-NMR. Besides, thermal conversion process of these pitches in which primary quinoline in soluble fraction was removed by centrifugal separation method was also investigated. The experimental results show Baogang (I) and Meishan coal tar pitches meet the requirements of raw material for needle coke. The thermal conversion data was correlated with structural parameters. 6 refs.,1 fig., 1 tab.

  18. The extraction of bitumen from western tar sands. Annual report, July 1990--July 1991

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.


    Contents of this report include the following: executive summary; characterization of the native bitumen from the Whiterocks oil sand deposit; influence of carboxylic acid content on bitumen viscosity; water based oil sand separation technology; extraction of bitumen from western oil sands by an energy-efficient thermal method; large- diameter fluidized bed reactor studies; rotary kiln pyrolysis of oil sand; catalytic upgrading of bitumen and bitumen derived liquids; ebullieted bed hydrotreating and hydrocracking; super critical fluid extraction; bitumen upgrading; 232 references; Appendix A--Whiterocks tar sand deposit bibliography; Appendix B--Asphalt Ridge tar sand deposit bibliography; and Appendix C--University of Utah tar sands bibliography.

  19. GC/MS analysis of coal tar composition produced from coal pyrolysis

    Directory of Open Access Journals (Sweden)

    Jianfang Jiang


    Full Text Available Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization. Using a combined method of planigraphy-gas chromatograph/mass spectroscopy (GC/MS, this work presents a composition analysis on the coal tar generated in the experiment. The analysis gives a satisfactory result, which offers a referable theoretical foundation for the further processing and utilization of coal tar.

  20. Pyrolysis products from different biomasses: application to the thermal cracking of tar

    Energy Technology Data Exchange (ETDEWEB)

    Fagbemi, L.; Khezami, L.; Capart, R. [Universite de Technologie de Compiegne, Dept. de Genie Chimique, Compiegne, 60 (France)


    The purpose of this study was to evaluate the amounts of various pyrolysis products (gases, water, tar and charcoal) from three biomasses (wood, coconut shell and straw) and to suggest a kinetic equation for the thermal cracking of tar at temperatures varying from 400 to 900 deg C. From the results, a comparative analysis is done for the biomasses, and a kinetic model of thermal cracking of tar is proposed for a residence time ranging from zero to 4s. This can be applied to the purification of gasification gases used as a feed gas to a combustion engine, and so contributes to the design of gasifiers. (Author)

  1. Remedial processing of oil shale fly ash (OSFA) and its value-added conversion into glass-ceramics. (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin


    Recently, various solid wastes such as sewage sludge, coal fly ash and slag have been recycled into various products such as sintered bricks, ceramics and cement concrete. Application of these recycling approaches is much better and greener than conventional landfills since it can solve the problems of storage of industrial wastes and reduce exploration of natural resources for construction materials to protect the environment. Therefore, in this study, an attempt was made to recycle oil shale fly ash (OSFA), a by-product obtained from the extracting of shale oil in the oil shale industry, into a value-added glass-ceramic material via melting and sintering method. The influence of basicity (CaO/SiO2 ratio) by adding calcium oxide on the performance of glass-ceramics was studied in terms of phase transformation, mechanical properties, chemical resistances and heavy metals leaching tests. Crystallization kinetics results showed that the increase of basicity reduced the activation energies of crystallization but did not change the crystallization mechanism. When increasing the basicity from 0.2 to 0.5, the densification of sintering body was enhanced due to the promotion of viscous flow of glass powders, and therefore the compression strength and bending strength of glass-ceramics were increased. Heavy metals leaching results indicated that the produced OSFA-based glass-ceramics could be taken as non-hazardous materials. The maximum mechanical properties of compression strength of 186 ± 3 MPa, bending strength of 78 ± 6 MPa, good chemical resistances and low heavy metals leaching concentrations showed that it could be used as a substitute material for construction applications. The proposed approach will be one of the potential sustainable solutions in reducing the storage of oil shale fly ash as well as converting it into a value-added product. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Quantifying shale weathering by Li isotopes at the Susquehanna Shale Hills Critical Zone Observatory (United States)

    Steinhoefel, Grit; Fantle, Matthew S.; Brantley, Sue L.


    Lithium isotopes have emerged as a powerful tool to investigate abiotic weathering processes because isotope fraction is controlled by silicate weathering depending on the weathering rate. In this study, we explore Li isotopes as a proxy for shale weathering in the well-investigated Susquehanna Shale Hills Critical Zone Observatory (USA), which is a first-order catchment in a temperate climate in the Appalachian Mountain. Groundwater, soil and stream water reveal large variation in δ7Li (14.5 to 40.0‰) controlled by variable but high degrees of Li retention by kaolinite and vermiculite formation. Parental shales, bulk soils and stream sediments reveal similar isotope signatures with little variations giving average δ7Li values of -0.6, 0.5 and -0.3‰, respectively which is in the typical range for shales dominated by structural-bound Li and consistent with high Li retention. An isotope mass balance approach reveal that Li is virtually quantitatively exported by erosional weathering from the system. This result is consisted with a high depletion of Li along with clay minerals in soils whereas both is enriched in stream sediments. Overall shale weathering is dominated by clay transformation forming kaolinite through intermediate phases under highly incongruent weathering conditions followed by preferentially loss of fine-grained weathering products, a processes which is likely an important mechanism in the modern global Li cycle.

  3. Environmental contamination due to shale gas development. (United States)

    Annevelink, M P J A; Meesters, J A J; Hendriks, A J


    Shale gas development potentially contaminates both air and water compartments. To assist in governmental decision-making on future explorations, we reviewed scattered information on activities, emissions and concentrations related to shale gas development. We compared concentrations from monitoring programmes to quality standards as a first indication of environmental risks. Emissions could not be estimated accurately because of incomparable and insufficient data. Air and water concentrations range widely. Poor wastewater treatment posed the highest risk with concentrations exceeding both Natural Background Values (NBVs) by a factor 1000-10,000 and Lowest Quality Standards (LQSs) by a factor 10-100. Concentrations of salts, metals, volatile organic compounds (VOCs) and hydrocarbons exceeded aquatic ecotoxicological water standards. Future research must focus on measuring aerial and aquatic emissions of toxic chemicals, generalisation of experimental setups and measurement technics and further human and ecological risk assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Modeling an oil shale fluid bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vasalos, I.A.; Lefkopoulos, A.; Georgiadou, M.


    Oil shale retorting involves heating of solid particles and pyrolysis of the organic matter to produce hydrocarbon liquid shale oil. During the pyrolysis process, part of the organic material remains in the inorganic matrix as coke residue. Combustion of the coke residue can provide the energy necessary for retorting. In this paper the use of a fluid bed combustor to burn the coke residue is examined. The basis for predicting the performance of the fluid bed combustor is the application of the two-phase theory of fluidization. The carbon burning efficiency was calculated as a function of temperature, pressure, and bubble size. For the same conditions, the carbonate decomposition and the associated energy loss were also established. Conditions were found which make feasible complete carbon combustion with minimum carbonate decomposition.

  5. Modeling an oil shale fluid bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vasalos, I.A.; Lefkopoulos, A.; Georgiadou, M.


    Oil shale retorting involves heating of solid particles and pyrolysis of the organic matter to produce hydrocarbon liquid--shale oil. During the pyrolysis process part of the organic material remains in the inorganic matrix as coke residue. Combustion of the coke residue can provide the energy necessary for retorting. In this paper the use of a fluid bed combustor to burn the coke residue is examined. The basis for predicting the performance of the fluid bed combustor is the application of the two-phase theory of fluidization. The carbon burning efficiency was calculated as a function of temperature, pressure, and bubble size. For the same conditions the carbonate decomposition and the associated energy loss was also established.

  6. Oxygen compounds in the Irati Shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, J.C.; Schmal, M. (Federal Univ. of Rio de Janeiro, COPPE/EQ/UFRJ, C.P. 68502, 21945 Rio de Janeiro (Brazil)); Cardoso, J.N. (Inst. of Chemistry/UFRJ, Centro de Technologia, Bloco A, Sala A-603, 21901 Rio de Janeiro (Brazil))


    This paper reports the principal alkylphenols (4 wt %) and carboxylic acids (1.2 wt %) present in the Irati Shale oil S[tilde a]o Mateus do Sul, Paran acute (a) by means of a combination of gas chromatography-mass spectrometry (GC-MS) and retention time-data of standard compounds. it appears that the phenols are essentially monocyclic in nature with methyl groups as the main substituents. Carboxylic acids are principally linear and predominantly of the range C[sub 14]--C[sub 20]. After catalytic hydrotreatment (400 [degrees]C, 125 atm) high hydrodeoxygenation levels were obtained (87 wt %) for phenols and carboxylic acids, although the relative distribution of the various compounds was not significantly changed. Oxygen is present in the carbonaceous residue as several functionalities xanthenes, phenols, aryl ethers, carbonyl compounds, and furanic structures. The remaining acidic compounds may cause instability of the treated shale oil.

  7. Shale and the US Economy: Three Counterfactuals


    Arora, Vipin


    I use three different—and simple—counterfactuals to approximate the real GDP and employment effects of US oil and gas production from shale over the 2011 to 2015 period. Real GDP growth would have been 0.7 to 0.2 percentage points lower on average each year over that period without such increases; employment growth 0.5 to 0.1 percentage points lower.

  8. Generic Argillite/Shale Disposal Reference Case


    Zheng, Liange


    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005...

  9. Comparative study on direct burning of oil shale and coal (United States)

    Hammad, Ahmad; Al Asfar, Jamil


    A comparative study of the direct burning processes of oil shale and coal in a circulating fluidized bed (CFB) was done in this study using ANSYS Fluent software to solve numerically the governing equations of continuity, momentum, energy and mass diffusion using finite volume method. The model was built based on an existing experimental combustion burner unit. The model was validated by comparing the theoretical results of oil shale with proved experimental results from the combustion unit. It was found that the temperature contours of the combustion process showed that the adiabatic flame temperature was 1080 K for oil shale compared with 2260 K for coal, while the obtained experimental results of temperatures at various locations of burner during the direct burning of oil shale showed that the maximum temperature reached 962 K for oil shale. These results were used in economic and environmental analysis which show that oil shale may be used as alternative fuel for coal in cement industry in Jordan.

  10. Shale gas. Opportunities and challenges for European energy markets

    Energy Technology Data Exchange (ETDEWEB)

    De Joode, J.; Plomp, A.J.; Ozdemir, O. [ECN Policy Studies, Petten (Netherlands)


    The outline of the presentation shows the following elements: Introduction (Shale gas revolution in US and the situation in the EU); What could be the impact of potential shale gas developments on the European gas market?; How may shale gas developments affect the role of gas in the transition of the power sector?; and Key messages. The key messages are (1) Prospects for European shale gas widely differ from US case (different reserve potential, different competition, different market dynamics); (2) Shale gas is unlikely to be a game changer in Europe; and (3) Impact of shale gas on energy transition in the medium and long term crucially depends on gas vs. coal prices and the 'penalty' on CO2 emissions.

  11. Plan for addressing issues relating to oil shale plant siting

    Energy Technology Data Exchange (ETDEWEB)

    Noridin, J. S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L. W.; James, R.; Berdan, G.


    The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.


    Directory of Open Access Journals (Sweden)

    Sebastian Werle


    Full Text Available The paper presents the results of basic physico-chemical properties of solid (ash and liquid (tar waste products of the gasification process of the heavy metal contaminated energy crops. The gasification process has carried out in a laboratory fixed bed reactor. Three types of energy crops: Miscanthus x giganteus, Sida hermaphrodita and Spartina Pectinata were used. The experimental plots were established on heavy metal contaminated arable land located in Bytom (southern part of Poland, Silesian Voivodship.

  13. Geomechanical Properties of Unconventional Shale Reservoirs

    Directory of Open Access Journals (Sweden)

    Mohammad O. Eshkalak


    Full Text Available Production from unconventional reservoirs has gained an increased attention among operators in North America during past years and is believed to secure the energy demand for next decades. Economic production from unconventional reservoirs is mainly attributed to realizing the complexities and key fundamentals of reservoir formation properties. Geomechanical well logs (including well logs such as total minimum horizontal stress, Poisson’s ratio, and Young, shear, and bulk modulus are secured source to obtain these substantial shale rock properties. However, running these geomechanical well logs for the entire asset is not a common practice that is associated with the cost of obtaining these well logs. In this study, synthetic geomechanical well logs for a Marcellus shale asset located in southern Pennsylvania are generated using data-driven modeling. Full-field geomechanical distributions (map and volumes of this asset for five geomechanical properties are also created using general geostatistical methods coupled with data-driven modeling. The results showed that synthetic geomechanical well logs and real field logs fall into each other when the input dataset has not seen the real field well logs. Geomechanical distributions of the Marcellus shale improved significantly when full-field data is incorporated in the geostatistical calculations.

  14. Analysis of Applicability of Oil Shale for in situ Conversion


    Martemyanov, Sergey Mikhailovich; Bukharkin, Andrey Andreevich; Koryashov, Iliya Aleksandrovich; Ivanov, Aleksey Alekseevich


    There are only a few substantial oil shale industries in the world, mainly because of the high cost of oilshale development relative to coal, oil and natural gas. Innovative approaches to oil shale processing could change this situation. Underground (or in situ) conversion could become a very useful technology, once an efficient way is found to prepare oil shale deposits for heating and to transfer heat into them. A new electrophysical method, which uses electrical treeing breakdown and resis...

  15. Military Fuels Refined from Paraho-II Shale Oil. (United States)


    Laboratories showed that growth of Cladosporium resinae was supported by the shale-derived JP-5 and DFM. 1t The performances of shale fuels in a turbine...27 11 Corrosion Tendencies of Shale Fuels ............................. 28 12 Growth Rating of Cladosporium Resinae in Tubes After Days of...screw cap test tubes and overlayed with 3 ml of the test fuel. Each tube was inoculated with one drop of a spore suspension of Cladosporium resinae , QM

  16. Optimal Pretreatment System of Flowback Water from Shale Gas Production


    Carrero-Parreño, Alba; Onishi, Viviani C.; Salcedo Díaz, Raquel; Ruiz-Femenia, Rubén; Fraga, Eric S.; Caballero, José A.; Reyes-Labarta, Juan A.


    Shale gas has emerged as a potential resource to transform the global energy market. Nevertheless, gas extraction from tight shale formations is only possible after horizontal drilling and hydraulic fracturing, which generally demand large amounts of water. Part of the ejected fracturing fluid returns to the surface as flowback water, containing a variety of pollutants. For this reason, water reuse and water recycling technologies have received further interest for enhancing overall shale gas...

  17. Fugitive Emissions from the Bakken Shale Illustrate Role of Shale Production in Global Ethane Shift (United States)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.


    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2 sigma) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  18. Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift (United States)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.


    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 ± 0.07 (2σ) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  19. Secondary reactions of tar during thermochemical biomass conversion[Dissertation 14341

    Energy Technology Data Exchange (ETDEWEB)

    Morf, P.O.


    This dissertation submitted to the Swiss Federal Institute of Technology in Zurich presents and discusses the results obtained during the examination of the processes involved in the formation and conversion of tar in biomass gasification plant. Details are given on the laboratory reactor system used to provide separated tar production and conversion for the purposes of the experiments carried out. The results of analyses made of the tar and the gaseous products obtained after its conversion at various temperatures are presented. The development of kinetic models using the results of the experiments that were carried out is described. The results of the experiments and modelling are compared with the corresponding results obtained using a full-scale down-draft, fixed-bed gasifier. The author is of the opinion that the reaction conditions found in full-scale gasifiers can be well simulated using heterogeneous tar conversion experiments using the lab reactor system.

  20. Dermatological exposure to coal tar and bladder cancer risk: a case-control study

    NARCIS (Netherlands)

    Roelofzen, J.H.; Aben, K.K.H.; Kerkhof, P.C.M. van de; Valk, P.G. van der; Kiemeney, L.A.L.M.


    OBJECTIVE: Coal tar ointments are used as treatment of various skin diseases, especially psoriasis and eczema. These ointments contain several carcinogenic polycyclic aromatic hydrocarbons. Metabolites of these polycyclic aromatic hydrocarbons are excreted in the urine and therefore, dermatological

  1. Effects of Syngas Cooling and Biomass Filter Medium on Tar Removal

    Directory of Open Access Journals (Sweden)

    Sunil Thapa


    Full Text Available Biomass gasification is a proven technology; however, one of the major obstacles in using product syngas for electric power generation and biofuels is the removal of tar. The purpose of this research was to develop and evaluate effectiveness of tar removal methods by cooling the syngas and using wood shavings as filtering media. The performance of the wood shavings filter equipped with an oil bubbler and heat exchanger as cooling systems was tested using tar-laden syngas generated from a 20-kW downdraft gasifier. The tar reduction efficiencies of wood shavings filter, wood shavings filter with heat exchanger, and wood shavings filter with oil bubbler were 10%, 61%, and 97%, respectively.

  2. Study of catalytic upgrading of biomass tars using Indonesian iron ore (United States)

    Wicakso, Doni Rahmat; Sutijan, Rochmadi, Budiman, Arief


    Catalytic decomposition is a promising way for chemical upgrading process of low quality oil such as biomass tars. In this experiment, catalytic decomposition of biomass tars was performed over Indonesian low grade iron ore catalyst. This process is carried out in a fixed bedreactor which is equipped with preheater to convert the tars into vapor form. The reaction was studied at the temperature range of 500 - 700°C. The kinetic study of catalytic decomposition of biomass tars is represented using first order reaction. The results show that value of constant of chemical reaction is in range 0.2514 - 0.9642 with value of the frequency factor (A) and the activation energy (E) are 48.98 min-1 and 5724.94 cal.mol-1, respectively.

  3. Thatcheri tütar avalikustas Raudse Leedi nõdrameelsuse / Sandra Maasalu

    Index Scriptorium Estoniae

    Maasalu, Sandra


    Ilmunud ka: Postimees : na russkom jazõke 26. aug. 2008, lk. 9. Suurbritannia endise peaministri Margaret Thatcheri tütar Carol Thatcher kirjutab peatselt ilmuvas mälestusteraamatus oma ema dementsusest

  4. Review of the Literature on Catalytic Biomass Tar Destruction: Milestone Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    Dayton, D.


    A summary of literature pertaining to catalytic biomass gasification''tar'' destruction, an overview of catalysts studied, and an evaluation of the future potential for this gas cleaning technology.

  5. National Assessment of Oil and Gas Project - Uinta-Piceance Province (020) Tar Sand Deposits (United States)

    U.S. Geological Survey, Department of the Interior — Tar sands represent a significant source of hydrocarbons in the United States. Also known by several other names including bitumen-bearing rocks, natural asphalt,...

  6. Upgrading producer gas quality from rubber wood gasification in a radio frequency tar thermocatalytic treatment reactor. (United States)

    Anis, Samsudin; Zainal, Z A


    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Light absorption properties of laboratory generated tar ball particles (United States)

    Hoffer, A.; Tóth, A.; Nyirő-Kósa, I.; Pósfai, M.; Gelencsér, A.


    Tar balls (TBs) are a specific particle type which is abundant in the global troposphere, in particular in biomass smoke plumes. These particles belong to the family of atmospheric brown carbon (BrC) which can absorb light in the visible range of the solar spectrum. Albeit TBs are typically present as individual particles in biomass smoke plumes, their absorption properties have been only indirectly inferred from field observations or calculations based on their electron energy-loss spectra. This is because in biomass smoke TBs coexist with various other particle types (e.g. organic particles with inorganic inclusions and soot, the latter is emitted mainly during flaming conditions) from which they cannot be physically separated; thus, a direct experimental determination of their absorption properties is not feasible. Very recently we have demonstrated that TBs can be generated in the laboratory from droplets of wood tar that resemble atmospheric TBs in all of their observed properties. As a follow-up study we have installed on-line instruments to our laboratory set-up generating pure TB particles to measure the absorption and scattering, as well as size distribution of the particles. In addition, samples were collected for transmission electron microscopy (TEM) and total carbon (TC) analysis. The effects of experimental parameters were also studied. The mass absorption coefficients of the laboratory generated TBs were found to be in the range of 0.8-3.0 m2 g-1 at 550 nm, with absorption Ångström exponents (AAE) between 2.7 and 3.4 (average 2.9) in the wavelength range 467-652 nm. The refractive index of TBs as derived from Mie calculations was about 1.84-0.21i at 550 nm. In the brown carbon continuum these values fall closer to those of soot than to other light-absorbing species such as humic-like substances (HULIS). Considering the abundance of TBs in biomass smoke and the global magnitude of biomass burning emissions, these findings may have substantial

  8. Light absorption properties of laboratory-generated tar ball particles

    Directory of Open Access Journals (Sweden)

    A. Hoffer


    Full Text Available Tar balls (TBs are a specific particle type that is abundant in the global troposphere, in particular in biomass smoke plumes. These particles belong to the family of atmospheric brown carbon (BrC, which can absorb light in the visible range of the solar spectrum. Albeit TBs are typically present as individual particles in biomass smoke plumes, their absorption properties have been only indirectly inferred from field observations or calculations based on their electron energy-loss spectra. This is because in biomass smoke TBs coexist with various other particle types (e.g., organic particles with inorganic inclusions and soot, the latter emitted mainly during flaming conditions from which they cannot be physically separated; thus, a direct experimental determination of their absorption properties is not feasible. Very recently we have demonstrated that TBs can be generated in the laboratory from droplets of wood tar that resemble atmospheric TBs in all of their observed properties. As a follow-up study, we have installed on-line instruments to our laboratory set-up, which generate pure TB particles to measure the absorption and scattering, as well as the size distribution of the particles. In addition, samples were collected for transmission electron microscopy (TEM and total carbon (TC analysis. The effects of experimental parameters were also studied. The mass absorption coefficients of the laboratory-generated TBs were found to be in the range of 0.8–3.0 m2 g−1 at 550 nm, with absorption Ångström exponents (AAE between 2.7 and 3.4 (average 2.9 in the wavelength range 467–652 nm. The refractive index of TBs as derived from Mie calculations was about 1.84 − 0.21i at 550 nm. In the brown carbon continuum, these values fall closer to those of soot than to other light-absorbing species such as humic-like substances (HULIS. Considering the abundance of TBs in biomass smoke and the global magnitude of biomass burning

  9. Thermal evolution and shale gas potential estimation of the Wealden and Posidonia Shale in NW-Germany and the Netherlands: A 3D basin modelling study

    NARCIS (Netherlands)

    Bruns, B.; Littke, R.; Gasparik, M.; Wees, J.D. van; Nelskamp, S.


    Sedimentary basins in NW-Germany and the Netherlands represent potential targets for shale gas exploration in Europe due to the presence of Cretaceous (Wealden) and Jurassic (Posidonia) marlstones/shales as well as various Carboniferous black shales. In order to assess the regional shale gas

  10. Thermal evolution and shale gas potential estimation of the Wealden and Posidonia Shale in NW-Germany and the Netherlands : a 3D basin modelling study

    NARCIS (Netherlands)

    Bruns, B.; Littke, R.; Gasparik, M.; van Wees, J.-D.; Nelskamp, S.

    Sedimentary basins in NW-Germany and the Netherlands represent potential targets for shale gas exploration in Europe due to the presence of Cretaceous (Wealden) and Jurassic (Posidonia) marlstones/shales as well as various Carboniferous black shales. In order to assess the regional shale gas

  11. Low-temperature gas from marine shales: wet gas to dry gas over experimental time. (United States)

    Mango, Frank D; Jarvie, Daniel M


    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 degrees below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100 degrees C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  12. Low-temperature gas from marine shales: wet gas to dry gas over experimental time

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M


    Full Text Available Abstract Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1 to predominantly light hydrocarbons (56% C1, 8% C5, the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  13. Dry Volume Fracturing Simulation of Shale Gas Reservoir (United States)

    Xu, Guixi; Wang, Shuzhong; Luo, Xiangrong; Jing, Zefeng


    Application of CO2 dry fracturing technology to shale gas reservoir development in China has advantages of no water consumption, little reservoir damage and promoting CH4 desorption. This paper uses Meyer simulation to study complex fracture network extension and the distribution characteristics of shale gas reservoirs in the CO2 dry volume fracturing process. The simulation results prove the validity of the modified CO2 dry fracturing fluid used in shale volume fracturing and provides a theoretical basis for the following study on interval optimization of the shale reservoir dry volume fracturing.

  14. Developments in production of synthetic fuels out of Estonian shale

    Energy Technology Data Exchange (ETDEWEB)

    Aarna, Indrek


    Estonia is still the world leader in utilization of oil shale. Enefit has cooperated with Outotec to develop a new generation of solid heat carrier technology - Enefit280, which is more efficient, environmentally friendlier and has higher unit capacity. Breakeven price of oil produced in Enefit280 process is competitive with conventional oils. The new technology has advantages that allow easy adaptation to other oil shales around the world. Hydrotreated shale oil liquids have similar properties to crude oil cuts. Design for a shale oil hydrotreater unit can use process concepts, hardware components, and catalysts commercially proven in petroleum refining services.

  15. Geothermal alteration of clay minerals and shales: diagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.E.


    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes.

  16. Selected constituents in the smokes of foreign commercial cigaretts: tar, nicotine, carbon monoxide, and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Quincy, R.B.; Guerin, M.R.


    The tar, nicotine, carbon monoxide, and carbon dioxide contents of the smokes of 220 brands of foreign commercial cigarettes are reported. In some instances, filter cigarettes of certain brands were found to deliver as much or more smoke constituents than their nonfilter counterparts. Also, data indicated that there can be a great variation in the tar, nicotine, or carbon monoxide content of the smoke of samples of a given brand of cigarettes, depending on the nation in which they are purchased. 24 tables.

  17. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark


    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification. Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a critical



    A Akinmosin; O.O. Osinowo


    Particle size distribution of some Afowo tar sands as well as mineralogical and bitumen saturation analyses were carried out with the aim of elucidating the sedimentological properties of the deposits. Fifty samples of tar sands of the Afowo Formation in parts of south western Nigeria were subjected to granulometric and petrological analyses to determine the particle size distribution as well as other textural characteristics. Three of the samples were analyzed for phase identification using ...

  19. Criteria for selection of dolomites and catalysts for tar elimination from biomass gasification gas. Kinetic constants

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Madrid Univ. (Spain). Dept. of Chem. Eng.


    Calcined dolomites and commercial steam reforming catalysts are used downstream biomass gasifiers for hot catalytic raw gas cleaning. To further compare these solids under a rigorous basis, a reaction network and a kinetic model are presented. The apparent kinetic constant for the tar reduction is here proposed as a basis of comparison. Tar sampling and analysis, and the units used for the space-time in the catalytic reactor affect the kinetic constants observed. (author) (2 refs.)

  20. Water Resources Management for Shale Energy Development (United States)

    Yoxtheimer, D.


    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  1. Acidization of shales with calcite cemented fractures (United States)

    Kwiatkowski, Kamil; Szymczak, Piotr; Jarosiński, Marek


    Investigation of cores drilled from shale formations reveals a relatively large number of calcite-cemented fractures. Usually such fractures are reactivated during fracking and can contribute considerably to the permeability of the resulting fracture network. However, calcite coating on their surfaces effectively excludes them from production. Dissolution of the calcite cement by acidic fluids is investigated numerically with focus on the evolution of fracture morphology. Available surface area, breakthrough time, and reactant penetration length are calculated. Natural fractures in cores from Pomeranian shale formation (northern Poland) were analyzed and classified. Representative fractures are relatively thin (0.1 mm), flat and completely sealed with calcite. Next, the morphology evolution of reactivated natural fractures treated with low-pH fluids has been simulated numerically under various operating conditions. Depth-averaged equations for fracture flow and reactant transport has been solved by finite-difference method coupled with sparse-matrix solver. Transport-limited dissolution has been considered, which corresponds to the treatment with strong acids, such as HCl. Calcite coating in reactivated natural fractures dissolves in a highly non-homogeneous manner - a positive feedback between fluid transport and calcite dissolution leads to the spontaneous formation of wormhole-like patterns, in which most of the flow is focused. The wormholes carry reactive fluids deeper inside the system, which dramatically increases the range of the treatment. Non-uniformity of the dissolution patterns provides a way of retaining the fracture permeability even in the absence of the proppant, since the less dissolved regions will act as supports to keep more dissolved regions open. Evolution of fracture morphology is shown to depend strongly on the thickness of calcite layer - the thicker the coating the more pronounced wormholes are observed. However the interaction between

  2. Impact of genetic variants on haematopoiesis in patients with thrombocytopenia absent radii (TAR) syndrome. (United States)

    Manukjan, Georgi; Bösing, Hendrik; Schmugge, Markus; Strauß, Gabriele; Schulze, Harald


    Thrombocytopenia absent radii (TAR) syndrome is clearly defined by the combination of radial aplasia and reduced platelet counts. The genetics of TAR syndrome has recently been resolved and comprises a microdeletion on Chromosome 1 including the RBM8A gene and a single nucleotide polymorphism (SNP) either at the 5' untranslated region (5'UTR) or within the first intron of RBM8A. Although phenotypically readily diagnosed after birth, the genetic determination of particular SNPs in TAR syndrome harbours valuable information to evaluate disease severity and treatment decisions. Here, we present clinical data in a cohort of 38 patients and observed that platelet counts in individuals with 5'UTR SNP are significantly lower compared to patients bearing the SNP in intron 1. Moreover, elevated haemoglobin values could only be assessed in patients with 5'UTR SNP whereas white blood cell count is unaffected, indicating that frequently observed anaemia in TAR patients could also be SNP-dependent whereas leucocytosis does not correlate with genetic background. However, this report on a large cohort provides an overview of important haematological characteristics in TAR patients, facilitating evaluation of the various traits in this disease and indicating the importance of genetic validation for TAR syndrome. © 2017 John Wiley & Sons Ltd.

  3. Dissolution and transport of coal tar compounds in fractured clay-rich residuum. (United States)

    Vulava, Vijay M; McKay, Larry D; Broholm, Mette M; McCarthy, John F; Driese, Steven G; Sayler, Gary S


    We investigated the dissolution and transport of organic contaminants from a crude coal tar mixture in a monolith of fractured clay-rich residuum. An electrolyte solution was eluted through the residuum monolith containing a small emplaced source of coal tar under biologically inhibited and mildly acidic conditions. Concentrations of 10 coal tar compounds, representing mono-, poly-, and heterocyclic aromatic hydrocarbons that constitute crude coal tar were monitored in the effluent over a period of 377 days. Most compounds appeared in the effluent within the first 0.1 pore volume eluted indicating the importance of rapid dissolution and transport through the fracture networks. The concentrations continued to rise but did not reach the corresponding effective solubility limit in most cases. Compounds that were less soluble and those that were more susceptible to sorption or matrix diffusion eluted at a much slower rate. Analysis of contaminant concentrations in microcore residuum samples indicated that all 10 compounds had spread throughout the entire monolith and had diffused into the fine-grained matrix between fractures. These data suggest that the predominantly fine pore structure did not appear to inhibit coal tar dissolution and subsequent transport, even though only a small portion of tar was in direct contact with fractures and macropores that control most flow. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Reduced tar, nicotine, and carbon monoxide exposure while smoking ultralow- but not low-yield cigarettes

    Energy Technology Data Exchange (ETDEWEB)

    Benowitz, N.L.; Jacob, P. III; Yu, L.; Talcott, R.; Hall, S.; Jones, R.T.


    An unresolved public health issue is whether some modern cigarettes are less hazardous than other and whether patients who cannot stop smoking should be advised to switch to lower-yield cigarettes. The authors studied tar (estimated by urine mutagenicity), nicotine, and carbon monoxide exposure in habitual smokers switched from their usual brand to high- (15 mg of tar), low- (5 mg of tar), or ultralow-yield (1 mg of tar) cigarettes. There were no differences in exposure comparing high- or low-yield cigarettes, but tar and nicotine exposures were reduced by 49% and 56%, respectively, and carbon monoxide exposure by 36% while smoking ultralow-yield cigarettes. Similarly, in 248 subjects smoking their self-selected brand, nicotine intake, estimated by blood concentrations of its metabolite continine, was 40% lower in those who smoked ultralow but no different in those smoking higher yields of cigarettes. The data indicate that ultralow-yield cigarettes do deliver substantial doses of tar, nicotine, and carbon monoxide, but that exposure are considerably less than for other cigarettes.

  5. Porous Carbon Nanofibers from Electrospun Biomass Tar/Polyacrylonitrile/Silver Hybrids as Antimicrobial Materials. (United States)

    Song, Kunlin; Wu, Qinglin; Zhang, Zhen; Ren, Suxia; Lei, Tingzhou; Negulescu, Ioan I; Zhang, Quanguo


    A novel route to fabricate low-cost porous carbon nanofibers (CNFs) using biomass tar, polyacrylonitrile (PAN), and silver nanoparticles has been demonstrated through electrospinning and subsequent stabilization and carbonization processes. The continuous electrospun nanofibers had average diameters ranging from 392 to 903 nm. The addition of biomass tar resulted in increased fiber diameters, reduced thermal stabilities, and slowed cyclization reactions of PAN in the as-spun nanofibers. After stabilization and carbonization, the resultant CNFs showed more uniformly sized and reduced average diameters (226-507 nm) compared to as-spun nanofibers. The CNFs exhibited high specific surface area (>400 m(2)/g) and microporosity, attributed to the combined effects of phase separations of the tar and PAN and thermal decompositions of tar components. These pore characteristics increased the exposures and contacts of silver nanoparticles to the bacteria including Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli, leading to excellent antimicrobial performances of as-spun nanofibers and CNFs. A new strategy is thus provided for utilizing biomass tar as a low-cost precursor to prepare functional CNFs and reduce environmental pollutions associated with direct disposal of tar as an industrial waste.

  6. Topical tazarotene vs. coal tar in stable plaque psoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, U.; Kaur, I.; Dogra, S.; De, D.; Kumar, B. [Postgraduate Institute of Medical Education & Research, Chandigarh (India)


    The efficacy of topical tazarotene has not previously been compared with the conventional topical treatment of crude coal tar (CCT) in stable plaque psoriasis. In this nonblinded side-to-side comparison study, patients with chronic stable plaque psoriasis, who had bilaterally symmetrical plaques on the limbs, applied 0.1% tazarotene gel on the right side and 5% CCT ointment on the left side once daily for 12 weeks followed by an 8-week treatment-free follow up period. Severity of psoriatic lesions and response to treatment was evaluated by scoring erythema, scaling and induration (ESI). Of 30 patients recruited, 27 could be assessed. In the per-protocol analysis, the mean percentage reduction in ESI score at the end of the treatment period was 74.15% {+-} 9.43 and 77.37% {+-} 10.93 with tazarotene and CCT, respectively (P {gt} 0.05). A reduction in ESI score of {gt} 75% was seen in 11 (40.74%) and 16 (59.26%) patients with tazarotene and CCT, respectively, at the end of 12 weeks. Side-effects were seen in 48.14% of patients treated with tazarotene, but in no patient treated with CCT. Tazarotene 0.1% gel has comparable clinical efficacy to CCT 5% ointment. CCT ointment remains a cost-effective therapy for plaque psoriasis.

  7. Tar sands : dirty oil and the future of a continent

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforuk, A.


    This book exposes the environmental, social and political costs of oil sands development in Alberta's Athabasca Deposit. It argues that the earth-destroying production methods of bitumen cost nearly 20 times more than conventional crude to produce and upgrade. Most of the tar sands lie in such deep formations that bitumen must be steamed out of the ground using an array of pumps, pipes and horizontal wells. Steam assisted gravity drainage (SAGD), which is the most popular in situ technology used to recover oil sands can have detrimental effects on the boreal forests, wildlife and their habitat. The book emphasized the high greenhouse gas emissions, high energy consumption and suspected health problems associated with oil sands development. It also highlighted the industry's poor record on reclamation. Although some industry players have taken measures to reduce water consumption, more will have to be done to treat and reuse water. The author advocates that changes must be made in order to ensure sustainable development. refs., figs.

  8. Kinetics of co-pyrolysis of sawdust, coal and tar. (United States)

    Montiano, M G; Díaz-Faes, E; Barriocanal, C


    Two coals, sawdust and coal tar were selected to prepare briquettes. Thermogravimetric analyses at three heating rates (i.e. 10, 20 and 30°C/min) and up to 1000°C were carried out with the briquette components. Four blends were prepared and the experimental decomposition profiles were compared with the calculated data taking into account the amount of each component in the blend. No interaction was found when comparing the experimental and calculated decomposition profiles of the blends. Isoconversional models OFW (Ozawa-Flynn-Wall) and KAS (Kissinger-Akahira-Sunose) were used to obtain the activation energies of the blend components. The activation energies obtained were introduced in the Coats-Redfern (CR) model to derive the pre-exponential factors. The thermal decomposition profiles calculated using the kinetic parameters were in good agreement with the experimental results in the case of the briquette components, but worse results were obtained in the case of the blends due to their greater complexity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Organoporosity Evaluation of Shale: A Case Study of the Lower Silurian Longmaxi Shale in Southeast Chongqing, China

    Directory of Open Access Journals (Sweden)

    Fangwen Chen


    Full Text Available The organopores play an important role in determining total volume of hydrocarbons in shale gas reservoir. The Lower Silurian Longmaxi Shale in southeast Chongqing was selected as a case to confirm the contribution of organopores (microscale and nanoscale pores within organic matters in shale formed by hydrocarbon generation to total volume of hydrocarbons in shale gas reservoir. Using the material balance principle combined with chemical kinetics methods, an evaluation model of organoporosity for shale gas reservoirs was established. The results indicate that there are four important model parameters to consider when evaluating organoporosity in shale: the original organic carbon (w(TOC0, the original hydrogen index (IH0, the transformation ratio of generated hydrocarbon (F(Ro, and the organopore correction coefficient (C. The organoporosity of the Lower Silurian Longmaxi Shale in the Py1 well is from 0.20 to 2.76%, and the average value is 1.25%. The organoporosity variation trends and the residual organic carbon of Longmaxi Shale are consistent in section. The residual organic carbon is indicative of the relative levels of organoporosity, while the samples are in the same shale reservoirs with similar buried depths.

  10. THE SHALE SOLUTION -How the Economic Growth Shale Gas Production in Pennsylvania has Contributed to can be Maintained, Even After the Gas is Depleted.


    Akselsen, Anniken Berg


    The emergence of hydrocarbon energy extracted from shale has been nicknamed the Shale Gas Revolution , due to its implications for the American society, geo-politics and economy. This thesis will explain how the economic growth shale gas production in Pennsylvania so far has contributed to can be maintained, also for the future, when shale gas is no longer produced or depleted. By focusing on Pennsylvania, which has the nation s highest shale gas production growth rate, this thesis will exam...

  11. Heavy metal

    African Journals Online (AJOL)

    niloticus after exposure to sublethal concentrations of heavy metals such as copper, lead and zinc for a 12-week period, using static renewable toxicity tests. The concentrations of the metals accumulated in the tissue of exposed fish were about 3-5 times higher than the concentrations detected in control fish.

  12. Menorrhagia (Heavy Menstrual Bleeding) (United States)

    Menorrhagia (heavy menstrual bleeding) Overview Menorrhagia is the medical term for menstrual periods with abnormally heavy or prolonged bleeding. Although heavy menstrual bleeding is a common concern, ...

  13. Properties of Silurian shales from the Barrandian Basin, Czech Republic (United States)

    Weishauptová, Zuzana; Přibyl, Oldřich; Sýkorová, Ivana


    Although shale gas-bearing deposits have a markedly lower gas content than coal deposits, great attention has recently been paid to shale gas as a new potential source of fossil energy. Shale gas extraction is considered to be quite economical, despite the lower sorption capacity of shales, which is only about 10% of coal sorption capacities The selection of a suitable locality for extracting shale gas requires the sorption capacity of the shale to be determined. The sorption capacity is determined in the laboratory by measuring the amount of methane absorbed in a shale specimen at a pressure and a temperature corresponding to in situ conditions, using high pressure sorption. According to the principles of reversibility of adsorption/desorption, this amount should be roughly related to the amount of gas released by forced degassing. High pressure methane sorption isotherms were measured on seven representative samples of Silurian shales from the Barrandian Basin, Czech Republic. Excess sorption measurements were performed at a temperature of 45oC and at pressures up to 15 MPa on dry samples, using a manometric method. Experimental methane high-pressure isotherms were fitted to a modified Langmuir equation. The maximum measured excess sorption parameter and the Langmuir sorption capacity parameter were used to study the effect of TOC content, organic maturity, inorganic components and porosity on the methane sorption capacity. The studied shale samples with random reflectance of graptolite 0.56 to 1.76% had a very low TOC content and dominant mineral fractions. Illite was the prevailing clay mineral. The sample porosity ranged from 4.6 to 18.8%. In most samples, the micropore volumes were markedly lower than the meso- and macropore volumes. In the Silurian black shales, the occurrence of fractures parallel with the original sedimentary bending was highly significant. A greater proportion of fragments of carbonaceous particles of graptolites and bitumens in the

  14. Trace elements in oil shale. Progress report, 1979-1980

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W R


    The purpose of this research program is to understand the potential impact of an oil shale industry on environmental levels of trace contaminants in the region. The program involves a comprehensive study of the sources, release mechanisms, transport, fate, and effects of toxic trace chemicals, principally the trace elements, in an oil shale industry. The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements by shale and oil production and use. The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. Leachate studies show that significant amounts of B, F, and Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements are not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. Many of the so-called standard methods for analyzing trace elements in oil shale-related materials are inadequate. A sampling manual is being written for the environmental scientist and practicing engineer. A new combination of methods is developed for separating the minerals in oil shale into different density fractions. Microbial investigations have tentatively identified the existence of thiobacilli in oil shale materials such as leachates. (DC)

  15. Windfall Wealth and Shale Development in Appalachian Ohio: Preliminary Results (United States)

    Bates, James S.; Loy, Polly Wurster


    The response by agriculture/natural resources and community development Extension educators to shale development in Ohio has been proactive. There is a need, however, to understand the impact that shale development is having broadly on families and communities and specifically as it relates to lease payments and the perceptions and realities of…

  16. Palaeoclimatic Control on the Composition of Palaeozoic Shales ...

    African Journals Online (AJOL)

    The abundant plagioclase in the lowest two formations could, therefore, be due to less pervasive chemical weathering rather than erosion of a distinct source. In this paper, geochemical data for fine-grained sedimentary rocks of the Ajua Shale and the Takoradi Shale (that overlie the Elmina Sandstone) formations are used ...

  17. Multivariate analysis relating oil shale geochemical properties to NMR relaxometry (United States)

    Birdwell, Justin E.; Washburn, Kathryn E.


    Low-field nuclear magnetic resonance (NMR) relaxometry has been used to provide insight into shale composition by separating relaxation responses from the various hydrogen-bearing phases present in shales in a noninvasive way. Previous low-field NMR work using solid-echo methods provided qualitative information on organic constituents associated with raw and pyrolyzed oil shale samples, but uncertainty in the interpretation of longitudinal-transverse (T1–T2) relaxometry correlation results indicated further study was required. Qualitative confirmation of peaks attributed to kerogen in oil shale was achieved by comparing T1–T2 correlation measurements made on oil shale samples to measurements made on kerogen isolated from those shales. Quantitative relationships between T1–T2 correlation data and organic geochemical properties of raw and pyrolyzed oil shales were determined using partial least-squares regression (PLSR). Relaxometry results were also compared to infrared spectra, and the results not only provided further confidence in the organic matter peak interpretations but also confirmed attribution of T1–T2 peaks to clay hydroxyls. In addition, PLSR analysis was applied to correlate relaxometry data to trace element concentrations with good success. The results of this work show that NMR relaxometry measurements using the solid-echo approach produce T1–T2 peak distributions that correlate well with geochemical properties of raw and pyrolyzed oil shales.

  18. The Geopolitical Impact of Shale Gas : The Modelling Approach

    NARCIS (Netherlands)

    Auping, W.L.; De Jong, S.; Pruyt, E.; Kwakkel, J.H.


    The US’ shale gas revolution, a spectacular increase in natural gas extraction from previously unconventional sources, has led to considerable lower gas prices in North America. This study focusses on consequences of the shale gas revolution on state stability of traditional oil and gas exporting

  19. Updated methodology for nuclear magnetic resonance characterization of shales (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.


    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  20. Weathering characteristics of the Lower Paleozoic black shale in ...

    Indian Academy of Sciences (India)

    The northwestern Guizhou in the Yangtze Craton of south China has a tremendous potential of shale gas resource. In this paper, we present results from major and trace elements, total organic carbon, mineralogical composition analysis and petrophysical parameters to characterise shale weathering features. Further, the ...

  1. Chemically assisted in situ recovery of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Ramierz, W.F.


    The purpose of the research project was to investigate the feasibility of the chemically assisted in situ retort method for recovering shale oil from Colorado oil shale. The chemically assisted in situ procedure uses hydrogen chloride (HCl), steam (H{sub 2}O), and carbon dioxide (CO{sub 2}) at moderate pressure to recovery shale oil from Colorado oil shale at temperatures substantially lower than those required for the thermal decomposition of kerogen. The process had been previously examined under static, reaction-equilibrium conditions, and had been shown to achieve significant shale oil recoveries from powdered oil shale. The purpose of this research project was to determine if these results were applicable to a dynamic experiment, and achieve penetration into and recovery of shale oil from solid oil shale. Much was learned about how to perform these experiments. Corrosion, chemical stability, and temperature stability problems were discovered and overcome. Engineering and design problems were discovered and overcome. High recovery (90% of estimated Fischer Assay) was observed in one experiment. Significant recovery (30% of estimated Fischer Assay) was also observed in another experiment. Minor amounts of freed organics were observed in two more experiments. Penetration and breakthrough of solid cores was observed in six experiments.

  2. Shale Gas in Europe: pragmatic perspectives and actions

    Directory of Open Access Journals (Sweden)

    Horsfield B.


    Full Text Available Natural gas will continue to play a key role in the EU’s energy mix in the coming years, with unconventional gas’ role increasing in importance as new resources are exploited worldwide. As far as Europe’s own shale gas resources are concerned, it is especially the public’s perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project “Gas Shales in Europe” (GASH and the shale gas activities of “GeoEnergie” (GeoEn are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP brings these issues into the public domain.

  3. Market analysis of shale oil co-products. Appendices

    Energy Technology Data Exchange (ETDEWEB)


    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  4. Implementation of an anisotropic mechanical model for shale in Geodyn

    Energy Technology Data Exchange (ETDEWEB)

    Attia, A; Vorobiev, O; Walsh, S


    The purpose of this report is to present the implementation of a shale model in the Geodyn code, based on published rock material models and properties that can help a petroleum engineer in his design of various strategies for oil/gas recovery from shale rock formation.

  5. Shales: A review of their classifications, properties and importance ...

    African Journals Online (AJOL)

    Generally, shales have moderate to high clay content (average, 57%), low strength (range, 5-30MPa), low permeability(range, 1 x 10-6 - 10-12 m/s) and are water sensitive(susceptible to hydration and swelling when in contact with water). Shales are important to the petroleum industry because of their usefulness as source ...

  6. Shale gas wastewater management under uncertainty. (United States)

    Zhang, Xiaodong; Sun, Alexander Y; Duncan, Ian J


    This work presents an optimization framework for evaluating different wastewater treatment/disposal options for water management during hydraulic fracturing (HF) operations. This framework takes into account both cost-effectiveness and system uncertainty. HF has enabled rapid development of shale gas resources. However, wastewater management has been one of the most contentious and widely publicized issues in shale gas production. The flowback and produced water (known as FP water) generated by HF may pose a serious risk to the surrounding environment and public health because this wastewater usually contains many toxic chemicals and high levels of total dissolved solids (TDS). Various treatment/disposal options are available for FP water management, such as underground injection, hazardous wastewater treatment plants, and/or reuse. In order to cost-effectively plan FP water management practices, including allocating FP water to different options and planning treatment facility capacity expansion, an optimization model named UO-FPW is developed in this study. The UO-FPW model can handle the uncertain information expressed in the form of fuzzy membership functions and probability density functions in the modeling parameters. The UO-FPW model is applied to a representative hypothetical case study to demonstrate its applicability in practice. The modeling results reflect the tradeoffs between economic objective (i.e., minimizing total-system cost) and system reliability (i.e., risk of violating fuzzy and/or random constraints, and meeting FP water treatment/disposal requirements). Using the developed optimization model, decision makers can make and adjust appropriate FP water management strategies through refining the values of feasibility degrees for fuzzy constraints and the probability levels for random constraints if the solutions are not satisfactory. The optimization model can be easily integrated into decision support systems for shale oil/gas lifecycle

  7. Epistemic values in the Burgess Shale debate

    DEFF Research Database (Denmark)

    Baron, Christian


    Focusing primarily on papers and books discussing the evolutionary and systematic interpretation of the Cambrian animal fossils from the Burgess Shale fauna, this paper explores the role of epistemic values in the context of a discipline (paleontology) striving to establish scientific authority...... in defending the privileged historical perspective of paleontology have been disparate and, to an extent contradictory, each impinges on the acceptance of a specific epistemic ideal or set of values and success or failure of each depends on the compatibility of this ideal with the surrounding community...

  8. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)


    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  9. Engineering New Catalysts for In-Process Elimination of Tars

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Larry G. [Gas Technology Inst., Des Plaines, IL (United States)


    The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposed surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported

  10. Studies of RF sheaths and diagnostics on IShTAR

    Energy Technology Data Exchange (ETDEWEB)

    Crombé, K., E-mail: [Department of Applied Physics, Ghent University, Ghent (Belgium); LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Devaux, S.; Faudot, E.; Heuraux, S.; Moritz, J. [YIJL, UMR7198 CNRS-Université de Lorraine, Nancy (France); D’Inca, R.; Faugel, H.; Fünfgelder, H.; Jacquot, J.; Ochoukov, R. [Max-Planck-Institut für Plasmaphysik, Garching (Germany); Louche, F.; Tripsky, M.; Van Eester, D.; Wauters, T. [LPP-ERM/KMS, Royal Military Academy, Brussels (Belgium); Noterdaeme, J.-M. [Department of Applied Physics, Ghent University, Ghent (Belgium); Max-Planck-Institut für Plasmaphysik, Garching (Germany)


    IShTAR (Ion cyclotron Sheath Test ARrangement) is a linear magnetised plasma test facility for RF sheaths studies at the Max-Planck-Institut für Plasmaphysik in Garching. In contrast to a tokamak, a test stand provides more liberty to impose the parameters and gives better access for the instrumentation and antennas. The project will support the development of diagnostic methods for characterising RF sheaths and validate and improve theoretical predictions. The cylindrical vacuum vessel has a diameter of 1 m and is 1.1 m long. The plasma is created by an external cylindrical plasma source equipped with a helical antenna that has been designed to excite the m=1 helicon mode. In inductive mode, plasma densities and electron temperatures have been characterised with a planar Langmuir probe as a function of gas pressure and input RF power. A 2D array of RF compensated Langmuir probes and a spectrometer are planned. A single strap RF antenna has been designed; the plasma-facing surface is aligned to the cylindrical plasma to ease the modelling. The probes will allow direct measurements of plasma density profiles in front of the RF antenna, and thus a detailed study of the density modifications induced by RF sheaths, which influences the coupling. The RF antenna frequency has been chosen to study different plasma wave interactions: the accessible plasma density range includes an evanescent and propagative behaviour of slow or fast waves, and allows the study of the effect of the lower hybrid resonance layer.

  11. Atmospheric tar balls from biomass burning in Mexico (United States)

    Adachi, Kouji; Buseck, Peter R.


    Atmospheric tar balls (TBs) are spherical, organic aerosol particles that occur in smoke from biomass burning (BB). They absorb sunlight and thereby cause warming of the atmosphere. This study reports a transmission electron microscope (TEM) study of TBs from BB smoke samples collected within minutes to hours from emission in a tropical area of Mexico. Their spherical shapes as seen in both scanning electron microscope images and with electron tomography indicate that they were solid when collected. They consist of C and minor O, S, K, and N. The hygroscopic growth factor for our relatively fresh TBs is 1.09 ± 0.04 at a relative humidity of 100%. In samples 1.6 km from the fire, an average of ˜1 and 14%, respectively, of particles with aerodynamic diameter from 50 to 300 nm consisted of TBs. For the latter, more aged samples, the total volume was roughly double that of soot, and their total calculated light absorption at a wavelength of 550 nm was between 74 and 96% that of soot, with the exact amount depending on the size, shape, and coating of the soot. In general, the TBs that we analyzed were similar to those from North America, southern Africa, and Europe in terms of size, external mixing, relative freedom of inclusions, and composition. This and previous studies show that TBs result from a range of biomass fuels. Their distribution from various regions across the globe, combined with their optical properties, suggests they have important effects on regional and perhaps global climate.

  12. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N., E-mail: [Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495 (Japan)


    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  13. Clay squirt: Local flow dispersion in shale-bearing sandstones

    DEFF Research Database (Denmark)

    Sørensen, Morten Kanne; Fabricius, Ida Lykke


    Dispersion of elastic-wave velocity is common in sandstone and larger in shaly sandstone than in clean sandstone. Dispersion in fluid-saturated shaly sandstone often exceeds the level expected from the stress-dependent elastic moduli of dry sandstone. The large dispersion has been coined clay...... squirt and is proposed to originate from a pressure gradient between the clay microporosity and the effective porosity. We have formulated a simple model that quantifies the clay-squirt effect on bulk moduli of sandstone with homogeneously distributed shale laminae or dispersed shale. The model...... predictions were compared with the literature data. For sandstones with dispersed shale, agreement was found, whereas other sandstones have larger fluid-saturated bulk modulus, possibly due to partially load-bearing shales or heterogeneous shale distribution. The data that agree with the clay-squirt model...

  14. Assessment of industry needs for oil shale research and development

    Energy Technology Data Exchange (ETDEWEB)

    Hackworth, J.H.


    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  15. Selected constituents in the smokes of U. S. commercial cigaretts: tar, nicotine, carbon monoxide and carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, R.A.; Quincy, R.B.; Guerin, M.R.


    One hundred twenty-one brands of United States commercial cigarettes were analyzed for their deliveries of tar, nicotine, carbon monoxide, and carbon dioxide under standard analytical smoking conditions. The sample included both filter and nonfilter cigarettes. Comparisons of carbon monoxide deliveries over the range of observed tar deliveries indicated a very high correlation between CO and tar for filter cigarettes, but nonfilter cigarettes tended to produce much less CO than would have been predicted from their tar deliveries. Comparison of ORNL nicotine values for specific brands with those determined by the Federal Trade Commission yield no statistically significant differences between laboratories. 4 figures, 6 tables.

  16. Iron(II) supramolecular helicates interfere with the HIV-1 Tat-TAR RNA interaction critical for viral replication (United States)

    Malina, Jaroslav; Hannon, Michael J.; Brabec, Viktor


    The interaction between the HIV-1 transactivator protein Tat and TAR (transactivation responsive region) RNA, plays a critical role in HIV-1 transcription. Iron(II) supramolecular helicates were evaluated for their in vitro activity to inhibit Tat-TAR RNA interaction using UV melting studies, electrophoretic mobility shift assay, and RNase A footprinting. The results demonstrate that iron(II) supramolecular helicates inhibit Tat-TAR interaction at nanomolar concentrations by binding to TAR RNA. These studies provide a new insight into the biological potential of metallosupramolecular helicates.

  17. Use of mineral oil Fleet enema for the removal of a large tar burn: a case report. (United States)

    Carta, Tricia; Gawaziuk, Justin; Liu, Song; Logsetty, Sarvesh


    Extensive hot tar burns are relatively uncommon. Management of these burns provides a significant clinical challenge especially with respect to tar removal involving a large total body surface area (TBSA), without causing further tissue injury. We report a case of an over 40-year old male construction worker who was removing a malfunctioning cap from broken valve. This resulted in tar spraying over the anterior surface of his body including legs, feet, chest, abdomen, arms, face and oral cavity (80% TBSA covered in tar resulting in a 50% TBSA burn injury). Initially, petrolatum-based, double antibiotic ointment was used to remove the tar, based on our previous experience with small tar burns. However, this was time-consuming and ineffective. The tar was easily removed with mineral oil without irritation. In order to meet the demand for quantity of mineral oil, the pharmacy suggested using mineral oil Fleet enema (C.B. Fleet Company, Inc., Lynchburg, Virginia, USA). The squeezable bottle and catheter tip facilitated administration of oil into the patient's construction boots and under clothing that was adhered to the patient's skin. Tar removal requires an effective, non-toxic and non-irritating agent. Mineral oil is such an agent. For patients that may present with a large surface area tar burn, using mineral oil Fleet enema is a viable option that facilitates application into difficult areas. Grant Support: The Firefighters' Burn Fund (Manitoba) supported this project. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  18. Tripeptides from synthetic amino acids block the Tat-TAR association and slow down HIV spread in cell cultures. (United States)

    Ludwig, Verena; Krebs, Andreas; Stoll, Michaela; Dietrich, Ursula; Ferner, Jan; Schwalbe, Harald; Scheffer, Ute; Dürner, Gerd; Göbel, Michael W


    Non-natural amino acids with aromatic or heteroaromatic side chains were incorporated into tripeptides of the general structure Arg-X-Arg and tested as ligands of the HIV RNA element TAR. Some of these compounds could compete efficiently with the association of TAR and Tat and downregulated a TAR-controlled reporter gene in HeLa cells. Peptide 7, which contains a 2-pyrimidinyl-alkyl chain, also inhibited the spread of HIV-1 in cell cultures. NMR studies of 7 bound to HIV-2-TAR gave evidence for contacts in the bulge region.


    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain


    Full Text Available A more sensitive GC-MS method has been established for the determination of some carcinogenic polycyclic aromatic hydrocarbons (PAHs in vehicles exhaust tar samples. The tar samples were extracted using dichloromethane (DMC: n-hexane solvent mixture. A multi-layer clean-up (silica gel/sodium sulphate column was used, followed by glass fiber filter (GFF paper. The method was successfully applied to determine a number of PAHs present in exhaust tar sample of different vehicles of the Atomic Energy Centre, Dhaka, Bangladesh.   Keywords: Carcinogenic polycyclic aromatic hydrocarbons, vehicles tar samples, identification, GC-MS/MS

  20. Geomechaical Behavior of Shale Rocks Under High Pressure and Temperature (United States)

    Villamor Lora, R.; Ghazanfari, E.


    The mechanical properties of shale are demanding parameters for a number of engineering and geomechanical purposes. Borehole stability modeling, geophysics, shale oil and shale gas reservoirs, and underground storage of CO2 in shale formations are some of these potential applications to name a few. The growing interest in these reservoirs, as a source for hydrocarbons production, has resulted in an increasing demand for fundamental rock property data. These rocks are known to be non-linear materials. There are many factors, including induced cracks and their orientation, partial saturation, material heterogeneity and anisotropy, plasticity, strain rate, and temperature that may have an impact on the geomechanical behaviour of these shales.Experimental results and theoretical considerations have shown that the elastic moduli are not single-value, well-defined parameters for a given rock. Finding suitable values for these parameters is of vital importance in many geomechanical applications. In this study, shale heterogeneity and its geomechanical properties are explored through an extensive laboratory experimental program. A series of hydrostatic and triaxial tests were performed in order to evaluate the elasticity, viscoplasticity, yielding and failure response of Marcellus shale samples as a function of pressure and temperature. Additional characterization includes mineralogy, porosity, and permeability measurements. The shale samples were taken from a Marcellus outcrop at State Game Lands 252, located in Lycoming and Union counties, Allenwood, Pennsylvania. Laboratory experiments have shown that creep behaviour is highly sensitive to temperature. Furthermore, the non-linear nature of these rocks reveals interesting behaviour of the elastic moduli highly dependent on stress history of the rock. Results from cyclic triaxial tests point out the different behaviour between 1st-loading and unloading-reloading cycles. Experimental results of these Marcellus shales are

  1. Current status of the production of chemicals from oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.; Griswold, C.F.; Dickson, P.F.


    An alternate use of shale oil is as a feedstock for chemical intermediates (ethylene, propylene, benzene, toluene, and xylene (BTX)) production. The most extensively used method for production of petrochemical intermediates is by steam pyrolysis of a hydrocarbon feed. Steam pyrolysis is generally directed towards maximizing ethylene production while producing other olefins and aromatics as salable by-products. Crude shale oil has a high content of organic nitrogen (2% by weight), which acts as a catalyst poison, contains a large residuum fraction (20 to 50% by weight) and has a high pour point (generally > 40/sup 0/). Thus, it has generally been considered necessary to prerefine crude shale oil to produce a synthetic crude compatible with typical refineries. The prerefinery steps generally consist either of a delayed coking step on the crude shale oil or residuum fraction, followed by one or several hydrogenation steps, or of direct hydrogenation of crude shale oil at more severe conditions. These hydrogenation steps must generally be accomplished under severe operating conditions (750/sup 0/F, 2000 psia hydrogen partial pressure and up to 2000 Scf/bbl hydrogen uptake). Since such severe prerefining of crude shale oil may not be required for the utilization of shale oil as a steam pyrolysis feedstock, use of shale oil as a petrochemical feedstock offers a potential advantage over usage for a refinery feedstock. Studies made by the US Bureau of Mines, the Institute of Gas Technology, and the Colorado School of Mines on the conversion of shale oil to petrochemicals are summarized. A comparison is made between shale oil and petroleum oil pyrolysis. (DMC)

  2. Texture and anisotropy analysis of Qusaiba shales

    KAUST Repository

    Kanitpanyacharoen, Waruntorn


    Scanning and transmission electron microscopy, synchrotron X-ray diffraction, microtomography and ultrasonic velocity measurements were used to characterize microstructures and anisotropy of three deeply buried Qusaiba shales from the Rub\\'al-Khali basin, Saudi Arabia. Kaolinite, illite-smectite, illite-mica and chlorite show strong preferred orientation with (001) pole figure maxima perpendicular to the bedding plane ranging from 2.4-6.8 multiples of a random distribution (m.r.d.). Quartz, feldspars and pyrite crystals have a random orientation distribution. Elastic properties of the polyphase aggregate are calculated by averaging the single crystal elastic properties over the orientation distribution, assuming a nonporous material. The average calculated bulk P-wave velocities are 6.2 km/s (maximum) and 5.5 km/s (minimum), resulting in a P-wave anisotropy of 12%. The calculated velocities are compared with those determined from ultrasonic velocity measurements on a similar sample. In the ultrasonic experiment, which measures the effects of the shale matrix as well as the effects of porosity, velocities are smaller (P-wave maximum 5.3 km/s and minimum 4.1 km/s). The difference between calculated and measured velocities is attributed to the effects of anisotropic pore structure and to microfractures present in the sample, which have not been taken into account in the matrix averaging. © 2011 European Association of Geoscientists & Engineers.

  3. Anisotropic Thermoplasticty and Strain Localization in Shale (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.


    Sedimentary rocks such as shale are inherently anisotropic due to their layered structure, and sensitive to temperature changes caused by various engineering applications e.g. carbon sequestration, waste disposal, wellbore drilling, as well as geothermal and heat storage applications. These materials are also prone to strain localization in the form of a shear band when subjected to critical loads. Strain localization is generally considered as a manifestation of material instability, which has been linked traditionally to failure of materials. While isotropic material models simplify the modeling process, they fail to accurately describe the mechanical behavior and onset of instability in anisotropic rocks. We present a thermo-plastic framework for modeling the coupled thermo-mechanical response and for predicting the inception of a shear band in shale using the general framework of critical state plasticity and the specific framework of modified Cam-Clay model. Under the assumption of infinitesimal deformation, the formulation incorporates anisotropy in both elastic and plastic responses. The model is first calibrated using experimental data from triaxial tests to demonstrate its capability in capturing anisotropy in the mechanical response. Subsequently, stress-point simulations of strain localization are carried out under two different conditions, namely, isothermal localization and adiabatic localization. The adiabatic formulation investigates the effect of temperature on localization via thermo-mechanical coupling. Numerical simulations are presented to demonstrate the effect of anisotropy, hardening, and thermal softening on strain localization.


    Directory of Open Access Journals (Sweden)

    Dwi Retno Nurotul Wahidiyah


    Full Text Available Application of activated zeolite (ZAA as molecular sieve to separate compounds of coal tar from vaccum fractional distillation, have been done. The size of zeolite was 10-20 mesh and used as solid phase in column chromatography with length of 30 cm. The first step of the research was coal pyrolisis and the product (tar was distillated by fractional column and vaccum system at reduced pressure 44 cmHg and maximum temperature at 200 oC. The distillate from this procedure was flowed to the column chromatography of zeolite (ZAA. The compound absorbed by zeolite was eluted with varying solvents, i.e: CCl4, acetone and ethanol. Each fraction was then analyzed by gas chromatography. The results showed, zeolite have a capability to separate the compounds of tar and it tends to absorb medium hydrocarbon. The nonpolar eluent [CCl4] gives the better result in eluting tar compound than polar (ethanol or medium polar eluents (acetone.   Keywords: zeolite, coal tar, column chromatography

  5. Syngas production from tar reforming by microwave plasma jet at atmospheric pressure: power supplied influence (United States)

    de Souza Medeiros, Henrique; Justiniano, Lucas S.; Gomes, Marcelo P.; Soares da Silva Sobrinho, Argemiro; Petraconi Filho, Gilberto


    Now a day, scientific community is searching for new fuels able to replace fossil fuels with economic and environment gains and biofuel play a relevant rule, mainly for the transport sector. A major process to obtaining such type of renewable resource is biomass gasification. This process has as product a gas mixture containing CO, CH4, and H2 which is named synthesis gas (syngas). However, an undesirable high molecular organic species denominated tar are also produced in this process which must be removed. In this work, results of syngas production via tar reforming in the atmospheric pressure microwave discharge having as parameter the power supply. Argon, (argon + ethanol), and (argon + tar solution) plasma jet were produced by different values of power supplied (from 0.5 KW to 1.5 KW). The plasma compounds were investigated by optical spectroscopy to each power and gas composition. The main species observed in the spectrum are Ar, CN, OII, OIV, OH, H2, H(beta), CO2, CO, and SIII. This last one came from tar. The best value of the power applied to syngas production from tar reforming was verified between 1.0 KW and 1.2 KW. We thank the following institutions for financial support: CNPq, CAPES, and FAPESP.

  6. Decomposition of tar in gas from updraft gasifier by thermal cracking

    DEFF Research Database (Denmark)

    Brandt, Peder; Henriksen, Ulrik Birk


    Continuing earlier work with tar reduction by partial oxidation of pyrolysis gas [1] thermal cracking has been evaluated as a gas cleaning process. The work has been focusing on cleaning gas from updraft gasifiers, and the long term purpose is to develop a tar cleaning unit based on thermal...... cracking. An experimental set-up has been built, in which a flow of contaminated gas can be heated up to 1290°C in a reactor made of pure Al2O3. Four measurements were made. Three with gas from a pyrolysis unit simulating updraft gasifier, and one with gas from an updraft gasifier. Cracking temperatures...... was 1200, 1250 and 1290°C, and the residence time at this temperature was 0.5 second. The measurements show that at the selected residence time of 0.5 second, the gas flow in a thermal tar cracking unit has to be heated to at least 1250°C to achieve sufficient tar cleaning. At 1290°C, a tar content as low...

  7. Suggestions on the development strategy of shale gas in China

    Directory of Open Access Journals (Sweden)

    Dazhong Dong


    Full Text Available From the aspects of shale gas resource condition, main exploration and development progress, important breakthrough in key technologies and equipment, this paper systematically summarized and analyzed current situation of shale gas development in China and pointed out five big challenges such as misunderstandings, lower implementation degree and higher economic uncertainty of shale gas resource, and still no breakthrough in exploration and development core technologies and equipment for shale gas buried depth more than 3500 m, higher cost and other non-technical factors that restrict the development pace. Aiming at the above challenges, we put forward five suggestions to promote the shale gas development in China: (1 Make strategies and set goals according to our national conditions and exploration and development stages. That is, make sure to realize shale gas annual production of 20 × 109 m3, and strives to reach 30 × 109 m3. (2 Attach importance to the research of accumulation and enrichment geological theory and exploration & development key engineering technologies for lower production and lower pressure marine shale gas reservoir, and at the same time orderly promote the construction of non-marine shale gas exploration & development demonstration areas. (3 The government should introduce further policies and set special innovation funds to support the companies to carry out research and development of related technologies and equipment, especially to strengthen the research and development of technology, equipment and process for shale gas bellow 3500 m in order to achieve breakthrough in deep shale gas. (4 Continue to promote the geological theory, innovation in technology and management, and strengthen cost control on drilling, fracturing and the whole process in order to realize efficient, economic and scale development of China's shale gas. (5 Reform the mining rights management system, establish information platform of shale

  8. The Lower Jurassic Posidonia Shale in southern Germany: results of a shale gas analogue study (United States)

    Biermann, Steffen; Schulz, Hans-Martin; Horsfield, Brian


    The shale gas potential of Germany was recently assessed by the Federal Institute for Geosciences and Natural Resources (2012 NiKo-Project) and is - in respect of the general natural gas occurrence in Germany - regarded as a good alternative hydrocarbon source. The Posidonia Shale in northern and southern Germany is one of the evaluated rock formation and easily accessible in outcrops in the Swabian Alps (southern Germany). The area of interest in this work is located in such an outcrop that is actively used for open pit mining next to the town of Dotternhausen, 70 km southwest of Stuttgart. 31 samples from the quarry of Dotternhausen were analyzed in order to characterize the immature Posidonia Shale (Lower Toarcian, Lias ɛ) of southern Germany as a gas shale precursor. Methods included are Rock Eval, Open Pyrolysis GC, SEM, Mercury Intrusion Porosimetry, XRD, and other. The samples of Dotternhausen contain exclusively type II kerogen. The majority of the organic matter is structureless and occurs in the argillaceous-calcareous matrix. Structured organic matter appears predominantly as alginite, in particular the algae "tasmanite" is noticeable. The TOC content ranges up to 16 wt% with a high bitumen content. The mineral content characterizes the Posidonia Shale as a marlstone or mudstone with varying clay-calcite ratios. The quartz and pyrite content reaches up to 20 wt% and 9 wt%, respectively. The rock fabric is characterized by a fine grained and laminated matrix. The mean porosity lies between 4 and 12 %. Fractures other than those introduced by sample preparation were not observed. The Posidonia Shale is predicted to have an excellent source rock potential and will generate intermediate, P-N-A low wax oil when exposed to higher P-T-conditions ("oil kitchen"). Contact surfaces between the kerogen and matrix will be vulnerable to pressure induced fracturing caused by hydrocarbon formation. Additional porosity will be formed during maturation due to the

  9. A Geochemical Method for Determining Heat History of Retorted Shale Oil. (United States)


    porphyrin fraction from oil shale bitumen and the total retorted shale oil. The demetallated porphyrins were separated into etio and phyllo series by silica ...PAGE I. Yield of Porphyrin Fraction from GPC. ..... ...... 9 Il. High Resolution Mass Spectroscopic Results f or Oil Shale Bitumen ...13 Ill. Mass Spectroscopic Data for Shale Oil Bitumen . .. ..... 14 - __ , : , v. =- , . .= 7- , 4 =-- . -.. : -=? - L : T , LIST OF FIGURES

  10. Perform research in process development for hydroretorting of Eastern oil shales: Volume 2, Expansion of the Moving-Bed Hydroretorting Data Base for Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)


    An extensive data base was developed for six Eastern oil shales: Alabama Chattanooga, Indiana New Albany, Kentucky Sunbury, Michigan Antrim, Ohio Cleveland, and Tennessee Chattanooga shales. The data base included the hydroretorting characteristics of the six shales, as well as the retorting characteristics in the presence of synthesis gas and ionized gas. Shale gasification was also successfully demonstrated. Shale fines (20%) can produce enough hydrogen for the hydroretorting of the remaining 80% of the shale. The amount of fines tolerable in a moving bed was also determined. 16 refs., 59 figs., 43 tabs.

  11. Technological changes illustrated by the coal tar and tar dye industry; Die Wandlung der Technik am Beispiel der Steinkohlenteer- und Teerfarben-Chemie

    Energy Technology Data Exchange (ETDEWEB)

    Collin, G. [Deutsche Gesellschaft fuer Chemisches Apparatewesen, Chemische Technik und Biotechnologie e.V. (DECHEMA), Frankfurt am Main (Germany)


    Coal tar was detected in the 17th century in laboratory experiments based on empirical knowledge. In the 18th century industrial revolution, coal tar was an undesired by-product of iron production and coking plants. It was first used in the 19th century for impregnating railway sleepers. Later developments in atomic theory, new chemical symbols and organic element analysis provided the basis for discovering and chemical characterisation of coal tar constituents. Laboratory experiments with these tar constituents resulted in the first synthetic dyes, the postulation of tetravalent carbon and the resulting structural theory in organic chemistry for systematic synthesis of many tar dyes to substitute natural dyes in the textile industry. The technical application of these syntheses was part 2 of the industrial revolution and the foundation of the chemical industry in Germany, which developed rapidly in the 2nd half of the 19th century. Tar dye chemistry has made a significant contribution to Germany's economic growth and the change from an agricultural to an industrialized country. [German] Die Entdeckung des Steinkohlenteers im 17. Jahrhundert basiert auf durch Erfahrungswissen gepraegten Laboratoriumsexperimenten. Im Verlauf der 'Industriellen Revolution' des 18. Jahrhunderts ist der Steinkohlenteer zunaechst ein laestiges Abfallprodukt der Eisengewinnung im Kokshochofen und der Leuchtgasherstellung durch Kohlenverkokung. Erste technische Applikation finden Steinkohlenteeroele im 19. Jahrhundert durch den Eisenbahnbau zur Langzeit-Konservierung der dafuer benoetigten Holzschwellen. Die wissenschaftlichen Erfkenntnisse zur Atomtheorie, eine neue chemische Zeichensprache und die organische Elementaranalyse werden Voraussetzungen zur Entdeckung und chemischen Charakterisierung der Hauptinhaltsstoffe des Steinkohlenteers. Laboratoriumsexperimente mit den entdeckten Teerinhaltsstoffen fuehren zur Erfindung der ersten synthetischen Farbstoffe, die

  12. A comprehensive environmental impact assessment method for shale gas development

    Directory of Open Access Journals (Sweden)

    Renjin Sun


    Full Text Available The great success of US commercial shale gas exploitation stimulates the shale gas development in China, subsequently, the corresponding supporting policies were issued in the 12th Five-Year Plan. But from the experience in the US shale gas development, we know that the resulted environmental threats are always an unavoidable issue, but no uniform and standard evaluation system has yet been set up in China. The comprehensive environment refers to the combination of natural ecological environment and external macro-environment. In view of this, we conducted a series of studies on how to set up a comprehensive environmental impact assessment system as well as the related evaluation methodology and models. First, we made an in-depth investigation into shale gas development procedures and any possible environmental impacts, and then compared, screened and modified environmental impact assessment methods for shale gas development. Also, we established an evaluating system and assessment models according to different status of the above two types of environment: the correlation matrix method was employed to assess the impacts on natural ecological environment and the optimization distance method was modified to evaluate the impacts on external macro-environment. Finally, we substitute the two subindexes into the comprehensive environmental impact assessment model and achieved the final numerical result of environmental impact assessment. This model can be used to evaluate if a shale gas project has any impact on environment, compare the impacts before and after a shale gas development project, or the impacts of different projects.


    Directory of Open Access Journals (Sweden)

    Borivoje Pašić


    Full Text Available Wellbore instability appears to be a serious problem during drilling process through shale. Shales instability cause basically comes out of its mineralogical composition (especially clay minerals content and physico-chemical properties. Many research activities about shale instability causes and shale properties (affecting shale behavior during interaction with water phase of different drilling muds definition have been carried out by now. In these laboratory tests were used original shales samples given by coring process or collecting shale cuttings from shale shakers, and different shale samples from outcrop. From this reason is very difficult compare laboratory tests results given by different authors. Possible solution is use artificial shale samples (pellets with exact mineralogical composition, enabling extensive laboratory tests and tests results comparison. In this paper presented laboratory tests of pellets swelling in inhibitive muds (the paper is published in Croatian.

  14. Element Distribution and Multiplicity of Heavy Fragments

    CERN Multimedia


    This experiment will measure the energy and angular distribution of heavy fragments produced in the reactions of |1|2C on several targets between |2|7Al and |2|3|8U at 86~MeV/u. The systematic investigation of a highly excited interaction region (fireball) by means of a clean N and Z identification of heavy tar fragments, may result in a better understanding of temperature concept and of the degree of equilibration of the local interaction region with respect to the total system. For this investigation a large-area position sensitive ionization chamber of 50~msr solid angle in conjunction with a time-of-flight telescope consisting of parallel-plate detectors will be used. \\\\ \\\\ In order to get information on the transverse momentum transfer and the inelasticity of the collision, the energy of the PROJECTILE-FRAGMENTS will be measured at forward angles with a plastic scintillator hodoscope. In addition to this inclusive measurement correlations between heavy fragments will be investigated by means of three pos...

  15. Microplastic and tar pollution on three Canary Islands beaches: An annual study. (United States)

    Herrera, A; Asensio, M; Martínez, I; Santana, A; Packard, T; Gómez, M


    Marine debris accumulation was analyzed from three exposed beaches of the Canary Islands (Lambra, Famara and Las Canteras). Large microplastics (1-5mm), mesoplastics (5-25mm) and tar pollution were assessed twice a month for a year. There was great spatial and temporal variability in the Canary Island coastal pollution. Seasonal patterns differed at each location, marine debris concentration depended mainly of local-scale wind and wave conditions. The most polluted beach was Lambra, a remote beach infrequently visited. The types of debris found were mainly preproduction resin pellets, plastic fragments and tar, evidencing that pollution was not of local origin, but it cames from the open sea. The levels of pollution were similar to those of highly industrialized and contaminated regions. This study corroborates that the Canary Islands are an area of accumulation of microplastics and tar rafted from the North Atlantic Ocean by the southward flowing Canary Current. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Coal tar creosote abuse by vapour inhalation presenting with renal impairment and neurotoxicity: a case report

    Directory of Open Access Journals (Sweden)

    Hiemstra Thomas F


    Full Text Available Abstract A 56 year old aromatherapist presented with advanced renal failure following chronic coal tar creosote vapour inhalation, and a chronic tubulo-interstitial nephritis was identified on renal biopsy. Following dialysis dependence occult inhalation continued, resulting in seizures, ataxia, cognitive impairment and marked generalised cerebral atrophy. We describe for the first time a case of creosote abuse by chronic vapour inhalation, resulting in significant morbidity. Use of the polycyclic aromatic hydrocarbon-containing wood preservative coal tar creosote is restricted by many countries due to concerns over environmental contamination and carcinogenicity. This case demonstrates additional toxicities not previously reported with coal tar creosote, and emphasizes the health risks of polycyclic aromatic hydrocarbon exposure.

  17. Numerical simulation of vortex pyrolysis reactors for condensable tar production from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.S.; Bellan, J. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.


    A numerical study is performed in order to evaluate the performance and optimal operating conditions of vortex pyrolysis reactors used for condensable tar production from biomass. A detailed mathematical model of porous biomass particle pyrolysis is coupled with a compressible Reynolds stress transport model for the turbulent reactor swirling flow. An initial evaluation of particle dimensionality effects is made through comparisons of single- (1D) and multi-dimensional particle simulations and reveals that the 1D particle model results in conservative estimates for total pyrolysis conversion times and tar collection. The observed deviations are due predominantly to geometry effects while directional effects from thermal conductivity and permeability variations are relatively small. Rapid ablative particle heating rates are attributed to a mechanical fragmentation of the biomass particles that is modeled using a critical porosity for matrix breakup. Optimal thermal conditions for tar production are observed for 900 K. Effects of biomass identity, particle size distribution, and reactor geometry and scale are discussed.

  18. Synthesis of organic soluble poly(substituted-aniline) from 2-methyl-6-ethylaniline tar (United States)

    Liu, Yuan; Li, Shu-Bai; Yao, Pei; Zhang, Qi-Meng


    Organic soluble poly(substituted-aniline) was synthesized by chemical oxidative polymerization from 2-methyl-6-ethylaniline tar. The structural information of samples was characterized using FT-IR and SEM techniques. The influences of acid concentration, mole ratio of oxidants to tar, reaction time and temperature were investigated. The solubility of polymers was also studied. The results indicate that the conductivity of poly(substituted-aniline) could reach 2.51 ×-4 S ṡ cm-1 under the reaction conditions with 1 mol./L hydrochloric acid, mole ratio of oxidants to tar = 1, and at 10∘C for 3 h. The polymers show better solubility than polyaniline in most organic solvents.

  19. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.


    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  20. Shale Gas Geomechanics for Development and Performance of Unconventional Reservoirs (United States)

    Domonik, Andrzej; Łukaszewski, Paweł; Wilczyński, Przemysław; Dziedzic, Artur; Łukasiak, Dominik; Bobrowska, Alicja


    Mechanical properties of individual shale formations are predominantly determined by their lithology, which reflects sedimentary facies distribution, and subsequent diagenetic and tectonic alterations. Shale rocks may exhibit complex elasto-viscoplastic deformation mechanisms depending on the rate of deformation and the amount of clay minerals, also bearing implications for subcritical crack growth and heterogeneous fracture network development. Thus, geomechanics for unconventional resources differs from conventional reservoirs due to inelastic matrix behavior, stress sensitivity, rock anisotropy and low matrix permeability. Effective horizontal drilling and hydraulic fracturing technologies are required to obtain and maintain high performance. Success of these techniques strongly depends on the geomechanical investigations of shales. An inelastic behavior of shales draws increasing attention of investigators [1], due to its role in stress relaxation between fracturing phases. A strong mechanical anisotropy in the vertical plane and a lower and more variable one in the horizontal plane are characteristic for shale rocks. The horizontal anisotropy plays an important role in determining the direction and effectiveness of propagation of technological hydraulic fractures. Non-standard rock mechanics laboratory experiments are being applied in order to obtain the mechanical properties of shales that have not been previously studied in Poland. Novel laboratory investigations were carried out to assess the creep parameters and to determine time-dependent viscoplastic deformation of shale samples, which can provide a limiting factor to tectonic stresses and control stress change caused by hydraulic fracturing. The study was supported by grant no.: 13-03-00-501-90-472946 "An integrated geomechanical investigation to enhance gas extraction from the Pomeranian shale formations", funded by the National Centre for Research and Development (NCBiR). References: Ch. Chang M. D

  1. Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): Multivariate Statistical Analysis approach. (United States)

    Rakotondrabe, Felaniaina; Ndam Ngoupayou, Jules Remy; Mfonka, Zakari; Rasolomanana, Eddy Harilala; Nyangono Abolo, Alexis Jacob; Ako Ako, Andrew


    The influence of gold mining activities on the water quality in the Mari catchment in Bétaré-Oya (East Cameroon) was assessed in this study. Sampling was performed within the period of one hydrological year (2015 to 2016), with 22 sampling sites consisting of groundwater (06) and surface water (16). In addition to measuring the physicochemical parameters, such as pH, electrical conductivity, alkalinity, turbidity, suspended solids and CN-, eleven major elements (Na+, K+, Ca2+, Mg2+, NH4+, Cl-, NO3-, HCO3-, SO42-, PO43- and F-) and eight heavy metals (Pb, Zn, Cd, Fe, Cu, As, Mn and Cr) were also analyzed using conventional hydrochemical methods, Multivariate Statistical Analysis and the Heavy metal Pollution Index (HPI). The results showed that the water from Mari catchment and Lom River was acidic to basic (5.4050mg NO3-/L. This water was found as two main types: calcium magnesium bicarbonate (CaMg-HCO3), which was the most represented, and sodium bicarbonate potassium (NaK-HCO3). As for trace elements in surface water, the contents of Pb, Cd, Mn, Cr and Fe were higher than recommended by the WHO guidelines, and therefore, the surface water was unsuitable for human consumption. Three phenomena were responsible for controlling the quality of the water in the study area: hydrolysis of silicate minerals of plutono-metamorphic rocks, which constitute the geological basement of this area; vegetation and soil leaching; and mining activities. The high concentrations of TSS and trace elements found in this basin were mainly due to gold mining activities (exploration and exploitation) as well as digging of rivers beds, excavation and gold amalgamation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Preparation of spherical activated phenol-formaldehyde beads from bamboo tar for adsorption of toluene. (United States)

    Huang, Ying-Pin; Hsi, Hsing-Cheng; Liu, Szu-Chen


    Bamboo tar is a waste by-product from the process of bamboo charcoal production. After distillation under reduced pressure, bamboo tar becomes a highly viscous liquid containing phenolic compounds at more than 70 wt%. Therefore, bamboo tar could be an excellent replacement for the phenolic compounds produced by the decomposition of petroleum. In this study, bamboo tar was mixed with formalin under a weak alkaline condition to form cured phenol-formaldehyde (PF) beads through suspension polymerization. In total, 35% of the obtained PF resin produced spherical beads with a particle size ranging from 9 to 16 mesh. The char yield after 500 degrees C carbonization was 60.4 wt%, according to thermogravimetric analysis. This high char yield is advantageous for the subsequent activation process. After physical activation using CO2 at 900 degrees C for 2 hr the carbide yield was up to 73.0 wt%. The specific surface area of activated PF beads was dependent on the activation time and temperature. Toluene adsorption results suggest that the activated PF beads are applicable to the adsorption and recovery of VOC gases. Monolayer adsorption may limit the VOC adsorption with activated PF beads because the adsorption isotherms were better fitted with the Langmuir model. Bamboo tar is shown to be a good replacement for the phenolic compounds from decomposition of petroleum to form activated phenol-formaldehyde (PF) beads. Toluene adsorption tests suggest that the activated PF beads have potential to adsorb and recover VOC gases. Nevertheless, due to the low specific surface area of the activated PF beads from bamboo tar, a further enhancement in both meso- and microporosity is needed in the future experiments. The experimental data provide a contribution to better understanding the possibility of resource recovery of waste agricultural by-products and their potential application in environment protection.

  3. Heavy oil processing impacts refinery and effluent treatment operations

    Energy Technology Data Exchange (ETDEWEB)

    Thornthwaite, P. [Nalco Champion, Northwich, Cheshire (United Kingdom)


    Heavy oils are becoming more common in Europe. The processing of heavier (opportunity or challenge) crudes, although financially attractive, introduce additional challenges to the refiner. These challenges are similar whether they come from imported crudes or in the future possibly from shale oils (tight oils). Without a strategy for understanding and mitigating the processing issues associated with these crudes, the profit potential may be eroded by decreased equipment reliability and run length. This paper focuses on the impacts at the desalter and how to manage them effectively while reducing the risks to downstream processes. Desalters have to deal with an increased viscosity, density (lower API gravity), higher solids loading, potential conductivity issues, and asphaltene stability concerns. All these factors can lead to operational problems impacting downstream of the desalter, both on the process and the water side. The other area of focus is the effluent from the desalter which can significantly impact waste water operations. This can take the form of increased oil under-carry, solids and other contaminants originating from the crudes. Nalco Champion has experience in working with these challenging crudes, not only, Azeri, Urals and African crudes, but also the Canadian oil sands, US Shale oil, heavy South American crudes and crudes containing metal naphthenates. Best practices will be shared and an outlook on the effects of Shale oil will be given. (orig.)

  4. Shale: an overlooked option for US nuclear waste disposal (United States)

    Neuzil, Christopher E.


    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  5. Shale gas production: potential versus actual greenhouse gas emissions


    O'Sullivan, Francis Martin; Paltsev, Sergey


    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately ...

  6. Shale Gas and Oil in Germany - Resources and Environmental Impacts (United States)

    Ladage, Stefan; Blumenberg, Martin; Houben, Georg; Pfunt, Helena; Gestermann, Nicolai; Franke, Dieter; Erbacher, Jochen


    In light of the controversial debate on "unconventional" oil and gas resources and the environmental impacts of "fracking", the Federal Institute for Geosciences and Natural Resources (BGR) conducted a comprehensive resource assessment of shale gas and light tight oil in Germany and studied the potential environmental impacts of shale gas development and hydraulic fracturing from a geoscientific perspective. Here, we present our final results (BGR 2016), incorporating the majority of potential shale source rock formations in Germany. Besides shale gas, light tight oil has been assessed. According to our set of criteria - i.e. thermal maturity 0.6-1.2 %vitrinite reflectance (VR; oil) and >1.2 % VR (gas) respectively, organic carbon content > 2%, depth between 500/1000 m and 5000 m as well as a net thickness >20 m - seven potentially generative shale formations were indentified, the most important of them being the Lower Jurassic (Toarcian) Posidonia shale with both shale gas and tight oil potential. The North German basin is by far the most prolific basin. The resource assessment was carried out using a volumetric in-place approach. Variability inherent in the input parameters was accounted for using Monte-Carlo simulations. Technically recoverable resources (TRR) were estimated using recent, production-based recovery factors of North American shale plays and also employing Monte-Carlo simulations. In total, shale gas TRR range between 320 and 2030 bcm and tight oil TRR between 13 and 164 Mio. t in Germany. Tight oil potential is therefore considered minor, whereas the shale gas potential exceeds that of conventional resources by far. Furthermore an overview of numerical transport modelling approaches concerning environmental impacts of the hydraulic fracturing is given. These simulations are based on a representative lithostratigraphy model of the North-German basin, where major shale plays can be expected. Numerical hydrogeological modelling of frac fluid

  7. Update: refiners' and marketers' perspectives what the crash of 1986 did to heavy crude economics and marketing

    Energy Technology Data Exchange (ETDEWEB)

    Lundenberg, T.

    This paper examines the rise and fall of the light-heavy crude price differential in light of refining and marketing developments around the time of the 1986 oil price crash. Refining economics were thrown into disarray, affecting the planning process. Various industry activities in trade and investment robbed heavy crude and tar sands of developmental impetus. Enviromental protection compliance hindered the use of heavy crude and non-conventional feedstocks. Development prospects of heavy crude were damaged by public championing of non-petroleum alternatives, while all but ignoring nearer-term feasibility of heavy crude and tar sands. The shakeout among higher- vs. lower-technology refineries with respect to heavy oil conversion has been interrupted, but if conventional crude supplies tighten and heavy crude economics improve, that shake out will return with a vengeance. Later oil price shocks brought a new age for heavier crudes and non-conventional petroleum. The incentive for such resource and processing development was provided by higher oil prices and strong demand. The third oil price shock, in 1986, marked the contemporary market environment wherein the competitiveness of heavy crude and non-conventionals has faded. The disincentive to market and refine heavy crude was provided by lower crude oil prices and weak demand. Despite obvious benefits, this situation threatens the energy industry's future ability to make a smooth transition to heavy and synthetic crudes dependency. 10 figs., 1 tab.

  8. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database (United States)

    Brantley, S.; Pollak, J.


    The Shale Network's extensive database of water quality observations in the Marcellus Shale region enables educational experiences about the potential impacts of resource extraction and energy production with real data. Through tools that are open source and free to use, interested parties can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. With these tools and data, the Shale Network team has engaged high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in educational settings, and the resources available to learn more.

  9. TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution. (United States)

    Kouprina, Natalay; Larionov, Vladimir


    The structural and functional analysis of mammalian genomes would benefit from the ability to isolate from multiple DNA samples any targeted chromosomal segment that is the size of an average human gene. A cloning technique that is based on transformation-associated recombination (TAR) in the yeast Saccharomyces cerevisiae satisfies this need. It is a unique tool to selectively recover chromosome segments that are up to 250 kb in length from complex genomes. In addition, TAR cloning can be used to characterize gene function and genome variation, including polymorphic structural rearrangements, mutations and the evolution of gene families, and for long-range haplotyping.

  10. Pyrolysis of automotive shredder residue light fraction: maximization of the tar yield using design of experiment (United States)

    Anzano, Manuela; Collina, Elena; Piccinelli, Elsa; Lasagni, Marina


    The general aim of this study is the valorisation of Automotive Shredder Residue (ASR) via pyrolysis. Tar, the condensable gases obtained in the pyrolysis process, is an interesting alternative fuel. Thus, the pyrolysis process was investigated in order to maximize the tar yield. The design of experiment approach was used to plan a series of experiments and to identify which operating variables influence the yield of the process. Temperature and carrier gas flow proved to be significant factors affecting the yield, while the influence of ASR light fraction amount pyrolysed was negligible. In the experimental domain, the maximum response was obtained at 500 °C and 100 mL/min.

  11. In situ heat treatment of a tar sands formation after drive process treatment (United States)

    Vinegar, Harold J.; Stanecki, John


    A method for treating a tar sands formation includes providing a drive fluid to a hydrocarbon containing layer of the tar sands formation to mobilize at least some hydrocarbons in the layer. At least some first hydrocarbons from the layer are produced. Heat is provided to the layer from one or more heaters located in the formation. At least some second hydrocarbons are produced from the layer of the formation. The second hydrocarbons include at least some hydrocarbons that are upgraded compared to the first hydrocarbons produced by using the drive fluid.

  12. The Potential of Ketungau and Silat Shales in Ketungau and Melawi Basins, West Kalimantan: For Oil Shale and Shale Gas Exploration

    Directory of Open Access Journals (Sweden)

    Lauti Dwita Santy


    Full Text Available DOI: 10.17014/ijog.v8i1.154The Ketungau and Melawi Basins, in West Kalimantan, are Tertiary intramontane basins of which the potential for economic conventional oil and gas discoveries have not previously been confirmed. The Ketungau Basin is bordered by the Melawi Basin in the south. Besides non-ideal trapping mechanisms, another major problem in these basins is source rock maturation. Nevertheless, both basins are promising to be explored for oil shale and shale gas energy resources. Therefore, the aim of this paper is to give some perspectives on their source rocks, as an input for the evaluation of the potential of unconventional oil and gas. About twenty samples collected from the Ketungau and Melawi Basins were analyzed using pyrolysis and organic petrographic methods. The results show a poor to good quality of source rock potential. The Ketungau shale, which is the main source rock in the Ketungau Basin, is dominated by type III, immature, and gas prone kerogen. The Silat shale, which is the main source rock in the Melawi Basin, is dominated by type II, immature to early mature, mixed gas, and oil prone kerogen. In the field, Ketungau and Silat Formations have a widespread distribution, and are typically 900 m to 1000 m thick. Both the Ketungau and Silat shales occur within synclinal structures, which have a poor trapping mechanism for conventional oil or gas targets, but are suitable for oil shale and shale gas exploration. This early stage of research clearly shows good potential for the future development of unconventional energy within the Ketungau and Melawi Basins.

  13. Assessing the adsorption properties of shales (United States)

    Pini, Ronny


    Physical adsorption refers to the trapping of fluid molecules at near liquid-like densities in the pores of a given adsorbent material. Fine-grained rocks, such as shales, contain a significant amount of nanopores that can significantly contribute to their storage capacity. As a matter of fact, the current ability to extract natural gas that is adsorbed in the rock's matrix is limited, and current technology focuses primarily on the free gas in the fractures (either natural or stimulated), thus leading to recovery efficiencies that are very low. Shales constitute also a great portion of so-called cap-rocks above potential CO2 sequestration sites; hereby, the adsorption process may limit the CO2 mobility within the cap-rock, thus minimizing the impact of leakage on the whole operation. Whether it is an unconventional reservoir or a cap-rock, understanding and quantifying the mechanisms of adsorption in these natural materials is key to improve the engineering design of subsurface operations. Results will be presented from a laboratory study that combines conventional techniques for the measurement of adsorption isotherms with novel methods that allows for the imaging of adsorption using x-rays. Various nanoporous materials are considered, thus including rocks, such as shales and coals, pure clay minerals (a major component in mudrocks) and engineered adsorbents with well-defined nanopore structures, such as zeolites. Supercritical CO2 adsorption isotherms have been measured with a Rubotherm Magnetic Suspension balance by covering the pressure range 0.1-20~MPa. A medical x-ray CT scanner has been used to identify three-dimensional patterns of the adsorption properties of a packed-bed of adsorbent, thus enabling to assess the spatial variability of the adsorption isotherm in heterogeneous materials. The data are analyzed by using thermodynamically rigorous measures of adsorption, such as the net- and excess adsorbed amounts and a recently developed methodology is

  14. Iron isotope biogeochemistry of Neoproterozoic marine shales (United States)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.


    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by water column processes, namely the degree of oxidation of the ferrous seawater iron reservoir, control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a decreasing supply of Fe

  15. Low-temperature gas from marine shales (United States)


    Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas). Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen) in a Mississippian marine shale decomposed to gas (C1–C5). The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour), nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock) than at 350°C by thermal cracking (12 μg C1–C5/g rock). The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible. PMID:19236698

  16. Low-temperature gas from marine shales

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M


    Full Text Available Abstract Thermal cracking of kerogens and bitumens is widely accepted as the major source of natural gas (thermal gas. Decomposition is believed to occur at high temperatures, between 100 and 200°C in the subsurface and generally above 300°C in the laboratory. Although there are examples of gas deposits possibly generated at lower temperatures, and reports of gas generation over long periods of time at 100°C, robust gas generation below 100°C under ordinary laboratory conditions is unprecedented. Here we report gas generation under anoxic helium flow at temperatures 300° below thermal cracking temperatures. Gas is generated discontinuously, in distinct aperiodic episodes of near equal intensity. In one three-hour episode at 50°C, six percent of the hydrocarbons (kerogen & bitumen in a Mississippian marine shale decomposed to gas (C1–C5. The same shale generated 72% less gas with helium flow containing 10 ppm O2 and the two gases were compositionally distinct. In sequential isothermal heating cycles (~1 hour, nearly five times more gas was generated at 50°C (57.4 μg C1–C5/g rock than at 350°C by thermal cracking (12 μg C1–C5/g rock. The position that natural gas forms only at high temperatures over geologic time is based largely on pyrolysis experiments under oxic conditions and temperatures where low-temperature gas generation could be suppressed. Our results indicate two paths to gas, a high-temperature thermal path, and a low-temperature catalytic path proceeding 300° below the thermal path. It redefines the time-temperature dimensions of gas habitats and opens the possibility of gas generation at subsurface temperatures previously thought impossible.

  17. Sweet spot identification and smart development -An integrated reservoir characterization study of a posidonia shale of a posidonia shale outcrop analogue

    NARCIS (Netherlands)

    Veen, J.H. ten; Verreussel, R.M.C.H.; Ventra, D.; Zijp, M.H.A.A.


    Shale gas reservoir stimulation procedures (e.g. hydraulic fracturing) require upfront prediction and planning that should be supported by a comprehensive reservoir characterization. Therefore, understanding shale depositional processes and associated vertical and lateral sedimentological

  18. Sweet spot identification in underexplored shales using multidisciplinary reservoir characterization and key performance indicators : Example of the Posidonia Shale Formation in the Netherlands

    NARCIS (Netherlands)

    Ter Heege, Jan; Zijp, Mart; Nelskamp, Susanne; Douma, Lisanne; Verreussel, Roel; Ten Veen, Johan; de Bruin, Geert; Peters, Rene


    Sweet spot identification in underexplored shale gas basins needs to be based on a limited amount of data on shale properties in combination with upfront geological characterization and modelling, because actual production data is usually absent. Multidisciplinary reservoir characterization and

  19. Sweet spot identification in underexplored shales using multidisciplinary reservoir characterization and key performance indicators: example of the Posidonia Shale Formation in the Netherlands

    NARCIS (Netherlands)

    Heege, J.H. ter; Zijp, M.H.A.A.; Nelskamp, S.; Douma, L.A.N.R.; Verreussel, R.M.C.H.; Veen, J.H. ten; Bruin, G. de; Peters, M.C.A.M.


    Sweet spot identification in underexplored shale gas basins needs to be based on a limited amount of data on shale properties in combination with upfront geological characterization and modelling, because actual production data is usually absent. Multidisciplinary reservoir characterization and

  20. Shale Gas characteristics of Permian black shales (Ecca group, Eastern Cape, South Africa) (United States)

    Geel, Claire; Booth, Peter; Schulz, Hans-Martin; Horsfield, Brian; de Wit, Maarten


    This study involves a comprehensive and detailed lithological, sedimentalogical, structural and geochemical description of the lower Ecca Group in the Eastern Cape, South Africa. The Ecca group hosts a ~ 245 million year old organic-rich black shale, which has recently been the focus of interest of petroleum companies worldwide. The shale was deposited under anoxic conditions in a setting which formed as a consequence of retro-arc foreland basin development related to the Cape Fold Belt. This sedimentary/tectonic environment provided the conditions for deeply buried black shales to reach maturity levels for development in the gas window. The investigation site is called the Greystone Area and is situated north of Wolwefontein en route to Jansenville. The area has outcrops of the Dwyka, the Ecca and the lower Beaufort Groups. The outcrops were mapped extensively and the data was used in conjunction with GIS software to produce a detailed geological map. North-south cross sections were drawn to give indication of bed thicknesses and formation depths. Using the field work, data two boreholes were accurately sited on the northern limb of a shallow easterly plunging syncline. The first borehole reached 100m and the second was drilled to 292m depth (100m percussion and 192m core). The second borehole was drilled 200m south of the first, to penetrate the formations at a greater depth and to avoid surface weathering. Fresh core from the upper Dwyka Group, the Prince Albert Formation, the Whitehill Formation, Collingham Formation and part of the Ripon Formation were successfully extracted and a detailed stratigraphic log has been drawn up. The core was sampled during extraction and the samples were immediately sent to the GFZ in Potsdam, Germany, for geochemical analyses. As suspected the black shales of the the Whitehill Formation are high in organic carbon and have an average TOC value of 4.5%, whereas the Prince Albert and Collingham Formation are below 1%. Tmax values

  1. Geochemical Features of Shale Hydrocarbons of the Central Part of Volga-Ural Oil and Gas Province (United States)

    Nosova, Fidania F.; Pronin, Nikita V.; Plotnikova, Irina N.; Nosova, Julia G.


    This report contains the results of the studies of shale hydrocarbons from carbonate-siliceous rocks on the territory of South-Tatar arch of Volga-Ural oil and gas province of the East European Platform. The assessment of the prospects of shale hydrocarbon in Tatarstan primarily involves finding of low permeable, poor-porous shale strata that would be rich in organic matter. Basing on the analysis of the geological structure of the sedimentary cover, we can distinguish three main objects that can be considered as promising targets for the study from the point of the possible presence of shale hydrocarbons: sedimentary deposits Riphean- Vendian; Domanicoid high-carbon rocks of Devonian time; sedimentary strata in central and side areas of Kama-Kinel deflection system. The main object of this study is Domanicoid high-carbon rocks of Devonian time. They are mainly represented by dark gray, almost black bituminous limestones that are interbedded with calcareous siliceous shales and cherts. Complex studies include the following: extraction of bitumen from the rock, determination of organic carbon content, determination of the group and elemental composition of the bitumen, gas chromatographic studies of the alkanoic lube fractions of bitumoid and oil, gas chromato-mass spectrometry of the naphthenic lube fractions of bitumoid and oil, pyrolysis studies of the rock using the Rock -Eval method (before and after extraction), study of trace-element composition of the rocks and petrologen, comparison in terms of adsorbed gas and studying of the composition of adsorbed gases. Group and elemental analyses showed that hydrocarbons scattered in the samples contain mainly resinous- and asphaltene components, the share lube fraction is smaller. The terms sediment genesis changed from weakly to strongly reducing. According to the results of gas chromatography, no biodegradation processes were observed. According to biomarker indicators in the samples studied there is some certain

  2. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing


    Fluorides are widely used to improve vanadium extraction from shale in China. Sulfuric acid baking-leaching (SABL) was investigated as a means of recovering vanadium which does not require the use of fluorides and avoids the productions of harmful fluoride-containing wastewater. Various effective factors were systematically studied and the experimental results showed that 90.1% vanadium could be leached from the shale. On the basis of phase transformations and structural changes after baking the shale, a mechanism of vanadium extraction from shale via SABL was proposed. The mechanism can be described as: (1) sulfuric acid diffusion into particles; (2) the formation of concentrated sulfuric acid media in the particles after water evaporation; (3) hydroxyl groups in the muscovite were removed and transient state [SO4 2-] was generated; and (4) the metals in the muscovite were sulfated by active [SO4 2-] and the vanadium was released. Thermodynamics modeling confirmed this mechanism.

  3. Permeability prediction in shale gas reservoirs using Neural Network (United States)

    Aliouane, Leila; Ouadfeul, Sid-Ali


    Here, we suggest the use of the artificial neural network for permeability prediction in shale gas reservoirs using artificial neural network. Prediction of Permeability in shale gas reservoirs is a complicated task that requires new models where Darcy's fluid flow model is not suitable. Proposed idea is based on the training of neural network machine using the set of well-logs data as an input and the measured permeability as an output. In this case the Multilayer Perceptron neural network machines is used with Levenberg Marquardt algorithm. Application to two horizontal wells drilled in the Barnett shale formation exhibit the power of neural network model to resolve such as problem. Keywords: Artificial neural network, permeability, prediction , shale gas.

  4. Petroleum potential of campano-maastrichtian shales of Anambra ...

    African Journals Online (AJOL)

    lithologies) of campano – Maastrichtian age has been recorded in the Anambra basin. These shale/siltstones lithologies have been reported to be rich in organic matter and had fulfilled other relevant condition for hydrocarbon source rock potential.

  5. Well Planning and Construction Haynesville Shale - East Texas (United States)

    This paper will focus on the well planning and construction techniques Devon uses in the Haynesville Shale. It will briefly cover issues that are related to designing and drilling the well safely and protecting subsurface drinking water sources.

  6. Environmental baselines: preparing for shale gas in the UK (United States)

    Bloomfield, John; Manamsa, Katya; Bell, Rachel; Darling, George; Dochartaigh, Brighid O.; Stuart, Marianne; Ward, Rob


    Groundwater is a vital source of freshwater in the UK. It provides almost 30% of public water supply on average, but locally, for example in south-east England, it is constitutes nearly 90% of public supply. In addition to public supply, groundwater has a number of other uses including agriculture, industry, and food and drink production. It is also vital for maintaining river flows especially during dry periods and so is essential for maintaining ecosystem health. Recently, there have been concerns expressed about the potential impacts of shale gas development on groundwater. The UK has abundant shales and clays which are currently the focus of considerable interest and there is active research into their characterisation, resource evaluation and exploitation risks. The British Geological Survey (BGS) is undertaking research to provide information to address some of the environmental concerns related to the potential impacts of shale gas development on groundwater resources and quality. The aim of much of this initial work is to establish environmental baselines, such as a baseline survey of methane occurrence in groundwater (National methane baseline study) and the spatial relationships between potential sources and groundwater receptors (iHydrogeology project), prior to any shale gas exploration and development. The poster describes these two baseline studies and presents preliminary findings. BGS are currently undertaking a national survey of baseline methane concentrations in groundwater across the UK. This work will enable any potential future changes in methane in groundwater associated with shale gas development to be assessed. Measurements of methane in potable water from the Cretaceous, Jurassic and Triassic carbonate and sandstone aquifers are variable and reveal methane concentrations of up to 500 micrograms per litre, but the mean value is relatively low at values compare with much higher levels of methane in aquicludes and thermal waters, for example

  7. Trace elements in oil shale. Progress report, 1976--1979

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W.R.


    The overall objective of the program is to evaluate the environmental and health consequences of the release of toxic trace elements (As, B, F, Mo, Se) by shale oil production and use. Some of the particularly significant results are: The baseline geochemical survey shows that stable trace elements maps can be constructed for numerous elements and that the trends observed are related to geologic and climatic factors. Shale retorted by above-ground processes tends to be very homogeneous (both in space and in time) in trace element content. This implies that the number of analytical determinations required of processed shales is not large. Leachate studies show that significant amounts of B, F, And Mo are released from retorted shales and while B and Mo are rapidly flushed out, F is not. On the other hand, As, Se, and most other trace elements ae not present in significant quantities. Significant amounts of F and B are also found in leachates of raw shales. Very large concentrations of reduced sulfur species are found in leachates of processed shale. Upon oxidation a drastic lowering in pH is observed. Preliminary data indicates that this oxidation is catalyzed by bacteria. Very high levels of B and Mo are taken up in some plants growing on processed shale with and without soil cover. These amounts depend upon the process and various site specific characteristics. In general, the amounts taken up decrease with increasing soil cover. On the other hand, we have not observed significant uptake of As, Se, and F into plants. There is a tendency for some trace elements to associate with specific organic fractions, indicating that organic chelation or complexation may play an important role. In particular, most of the Cd, Se, and Cr in shale oil is associated with the organic fraction containing most of the nitrogen-containing compounds.

  8. Rehabilitation potential and practices of Colorado oil shale lands

    Energy Technology Data Exchange (ETDEWEB)

    Sims, P.L.; Redente, E.F.


    Considering the problems associated with rehabilitating oil shale disturbed lands in Colorado, a research grant was awarded to Colorado State University by US ERDA. The goal of this research program is to define the rehabilitation potential and practices of Colorado Oil Shale lands. Rehabilitation guidelines are presently being formulated through the study of long-term fertility requirements, soil microorganism dynamics and activity, rate and direction of secondary plant succession, and selection and improvement of plant materials.

  9. Blind Politics of Ambition: Shale Gas in Poland


    Niemuth, Stephanie; Westphal, Sophie


    Ever since the impacts of the shale gas revolution in the US have unfolded their measurable effects – as significantly declining natural gas prices – impressive euphoria among those states which are identified to bear high potentials of unconventional gas is widely spread. As for Poland, essentially linked to the hope of profitably producing shale gas is the political will to strive for independence from Russian energy supply and thus, enhance energy supply security. Hence, liberalizing its g...

  10. United States Air Force Shale Oil to Fuels. Phase II. (United States)


    There is no attempt to recover propane , and the light end hydrocarbons are taken to the fuel gas system for feed to the hydrogen plant. Part of the...shale oil charged from the high pressure hydro- treater separator. The hydrotreated shale oil charge stock is combined with the recycle hydrogen rich gas...sulfide and ammonia are steam stripped from the water. The clean water is returned to the refinery and the gas is sent to the amine treater for

  11. Energy Return on Investment (EROI of Oil Shale

    Directory of Open Access Journals (Sweden)

    Peter A. O’Connor


    Full Text Available The two methods of processing synthetic crude from organic marlstone in demonstration or small-scale commercial status in the U.S. are in situ extraction and surface retorting. The considerable uncertainty surrounding the technological characterization, resource characterization, and choice of the system boundary for oil shale operations indicate that oil shale is only a minor net energy producer if one includes internal energy (energy in the shale that is used during the process as an energy cost. The energy return on investment (EROI for either of these methods is roughly 1.5:1 for the final fuel product. The inclusions or omission of internal energy is a critical question. If only external energy (energy diverted from the economy to produce the fuel is considered, EROI appears to be much higher. In comparison, fuels produced from conventional petroleum show overall EROI of approximately 4.5:1. “At the wellhead” EROI is approximately 2:1 for shale oil (again, considering internal energy and 20:1 for petroleum. The low EROI for oil shale leads to a significant release of greenhouse gases. The large quantities of energy needed to process oil shale, combined with the thermochemistry of the retorting process, produce carbon dioxide and other greenhouse gas emissions. Oil shale unambiguously emits more greenhouse gases than conventional liquid fuels from crude oil feedstocks by a factor of 1.2 to 1.75. Much of the discussion regarding the EROI for oil shale should be regarded as preliminary or speculative due to the very small number of operating facilities that can be assessed.

  12. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.


    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  13. Microbial Deterioration of Marine Diesel Fuel from Oil Shale. (United States)


    eesar mnd Identify by block rumlber) Microbial deterioration DFM Cladosporium resinae Oil shale Synthetic fuel *QNjd&Sp. ACoal Fungi Seawater Petroleum...well in the synthetic fuel as in fuel derived from petroleum. Growth of certain strains of the fungus, Cladosporium resinae , was initially... resina ., and a yeast (Candida sp.) but no inhibition was noted with another shale oil fuel from which the nitrogen constituents ware almost completely

  14. The Influence Factors Analysis and Characteristics Research of Shale Wettability (United States)

    Su, Siyuan; jiang, Zhenxue


    Shales have become one of the leading unconventional oil and gas resources in the world today. The wettability is an important indicator of the rock that reflects the lipophilic and hydrophilic which not only affect oil and water distribution but also can affect the capillary pressure, relative permeability and irreducible water saturation. We present a study of shale wettability using Nuclear Magnetic Resonance (NMR) to monitor sequential imbibition of brine and oil (Dodecane).A total of eleven shale samples of Jiyang Depression of China were analyzed and compared abundance of organic matter, the movable hydrocarbon content, clay content and carbonate content with different wettability. The results showed that the contents of total organic carbon (TOC) with mixed wetting characteristic of shale samples are greater than just water wetting characteristic of shale samples that shows with the increase of TOC content, porosity can be convert into oil wetting by water wetting and the inorganic pores convert into organic pores. It indicates the presence of organic matter is the root cause of mix wettability with the organics contributing mainly to the oil-wetness of the shale samples. The samples that have oil-wetness are higher than the samples only water wetting on movable hydrocarbon contents and clay contents which shows the organic matters are accompanied with clay in the study area. But the samples that only for water wetting have the higher carbonate contents than the oil-wetness samples which indicate the inorganic pores are mainly formed by carbonate rocks. In summary, the shale reservoirs with mix wettability can be used as shale oil enriched favorable exploration targets.

  15. Sweet spots for hydraulic fracturing oil or gas production in underexplored shales using key performance indicators: Example of the Posidonia Shale formation in the Netherlands

    NARCIS (Netherlands)

    Heege, J.H. ter; Zijp, M.H.A.A.; Nelkamp, S.


    While extensive data and experiences are available for hydraulic fracturing and hydrocarbon production from shales in the U.S.A., such a record is lacking in many underexplored shale basins worldwide. As limited data is usually available in these basins, analysis of shale prospectivity and

  16. Life-cycle analysis of shale gas and natural gas.

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.E.; Han, J.; Burnham, A.; Dunn, J.B.; Wang, M. (Energy Systems); ( EVS)


    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results show that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.

  17. Mechanical Properties of Gas Shale During Drilling Operations (United States)

    Yan, Chuanliang; Deng, Jingen; Cheng, Yuanfang; Li, Menglai; Feng, Yongcun; Li, Xiaorong


    The mechanical properties of gas shale significantly affect the designs of drilling, completion, and hydraulic fracturing treatments. In this paper, the microstructure characteristics of gas shale from southern China containing up to 45.1% clay were analyzed using a scanning electron microscope. The gas shale samples feature strongly anisotropic characteristics and well-developed bedding planes. Their strength is controlled by the strength of both the matrix and the bedding planes. Conventional triaxial tests and direct shear tests are further used to study the chemical effects of drilling fluids on the strength of shale matrix and bedding planes, respectively. The results show that the drilling fluid has a much larger impact on the strength of the bedding plane than that of the shale matrix. The impact of water-based mud (WBM) is much larger compared with oil-based mud. Furthermore, the borehole collapse pressure of shale gas wells considering the effects of drilling fluids are analyzed. The results show that the collapse pressure increases gradually with the increase of drilling time, especially for WBM.

  18. Climate impact of potential shale gas production in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Forster, D.; Perks, J. [AEA Technology plc, London (United Kingdom)


    Existing estimates of GHG emissions from shale gas production and available abatement options were used to obtain improved estimates of emissions from possible shale gas exploitation in the EU. GHG emissions per unit of electricity generated from shale gas were estimated to be around 4 to 8% higher than for electricity generated by conventional pipeline gas from within Europe. These additional emissions arise in the pre-combustion stage, predominantly in the well completion phase when the fracturing fluid is brought back to the surface together with released methane. If emissions from well completion are mitigated, through flaring or capture, and utilised, then this difference is reduced to 1 to 5%. The analysis suggests that the emissions from shale gas-based power generation (base case) are 2 to 10% lower than those from electricity generated from sources of conventional pipeline gas located outside of Europe (in Russia and Algeria), and 7 to 10% lower than those from electricity generated from LNG imported into Europe. However, under our 'worst case' shale gas scenario, where all flow back gases at well completion are vented, emissions from electricity generated from shale gas would be similar to the upper emissions level for electricity generated from imported LNG and for gas imported from Russia.

  19. Water Availability for Shale Gas Development in Sichuan Basin, China. (United States)

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner


    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  20. Eastern gas shales subprogram. [Appalachia, Illinois and Michigan Basins

    Energy Technology Data Exchange (ETDEWEB)


    The goal of the Eastern Gas Shales Subprogram (EGSS) is to develop scientific and engineering knowledge and to enable the recovery of natural gas from shale formations that underlie the Appalachian, Illinois, and Michigan Basins. To pursue this goal, the geology and chemistry of gas-bearing Devonian shales was characterized early during the subprogram. As information was gathered and knowledge of the shales increased, studies of well completion and stimulation methods were conducted in the laboratory as well as in the field. Recently, the synthesis of geologic and geochemical data marked the conclusion of the resource characterization effort. Upon the completion of the resource characterization, project emphasis was directed toward understanding the fractured shale reservoir and its gas storage and production characteristics. The Meigs County, Ohio, offset well test established the directional aspects of shale gas production, providing new insight into field development. In addition, a methodology for characterizing gas flow behavior allows for the development and application of novel extraction methods to increase the otherwise poor recovery efficiency of current extraction methods.

  1. Validation Results for Core-Scale Oil Shale Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Staten, Josh; Tiwari, Pankaj


    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  2. Standardized surface engineering design of shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Guangchuan Liang


    Full Text Available Due to the special physical properties of shale gas reservoirs, it is necessary to adopt unconventional and standardized technologies for its surface engineering construction. In addition, the surface engineering design of shale gas reservoirs in China faces many difficulties, such as high uncertainty of the gathering and transportation scale, poor adaptability of pipe network and station layout, difficult matching of the process equipments, and boosting production at the late stage. In view of these problems, the surface engineering construction of shale gas reservoirs should follow the principles of “standardized design, modularized construction and skid mounted equipment”. In this paper, standardized surface engineering design technologies for shale gas reservoirs were developed with the “standardized well station layout, universal process, modular function zoning, skid mounted equipment selection, intensive site design, digitized production management” as the core, after literature analysis and technology exploration were carried out. Then its application background and surface technology route were discussed with a typical shale gas field in Sichuan–Chongqing area as an example. Its surface gathering system was designed in a standardized way, including standardized process, the modularized gathering and transportation station, serialized dehydration unit and intensive layout, and remarkable effects were achieved. A flexible, practical and reliable ground production system was built, and a series of standardized technology and modularized design were completed, including cluster well platform, set station, supporting projects. In this way, a system applicable to domestic shale gas surface engineering construction is developed.

  3. Coal-tar-based pavement sealants—a potent source of PAHs (United States)

    Mahler, Barbara J.; Van Metre, Peter C.


    P avement sealants are applied to the asphalt pavement of many parking lots, driveways, and even playgrounds in North America (Figure 1), where, when first applied, they render the pavement glossy black and looking like new. Sealant products used commercially in the central, eastern, and northern United States typically are coal-tarbased, whereas those used in the western United States typically are asphalt-based. Although the products look similar, they are chemically different. Coal-tarbased pavement sealants typically are 25-35 percent (by weight) coal tar or coal-tar pitch, materials that are known human carcinogens and that contain high concentrations of polycyclic aromatic hydrocarbons (PAHs) and related chemicals (unless otherwise noted, all Figure 1. Pavement sealant is commonly used to seal parking lots, playgrounds, and driveways throughout the United States. Sealants used in the central, northern, eastern, and southern United States typically contain coal tar or coal-tar pitch, both of which are known human carcinogens. Photos by the U.S. Geological Survey. data in this article are from Mahler et al. 2012 and references therein).

  4. Water availability for development of major tar sands areas in Utah

    Energy Technology Data Exchange (ETDEWEB)

    Keefer, T.N.; McQuivey, R.S.


    The Sutron Corporation, under contract with Colorado State University, has conducted a study for the Laramie Energy Technology Center (LETC) to determine the availability of water for future extraction of viscous petroleum (bitumen) from the six major tar sands deposits in Utah. Specifically, the areas are: Asphalt Ridge and Whiterocks, which lie immediately west of Vernal, Utah; P.R. Spring, a large area extending from the Colorado River to the White River along Utah's eastern border; Hill Creek, adjacent to P.R. Spring to the west; Sunnyside, immediately across the Green River from Hill Creek between the Price and Green Rivers; and Tar Sand Triangle, near the confluence of the Colorado and Dirty Devil Rivers. The study, conducted between September and December of 1978, was a fact-finding effort involving the compilation of information from publications of the US Geological Survey (USGS), Utah State Engineer, Utah Department of Natural Resources, and other federal and state agencies. The information covers the general physiographic and geologic features of the total area, the estimated water requirements for tar sands development, the availability of water in each of the six areas, and the legal and sociological restraints and impacts. The conclusions regarding water availability for tar sands development in each of the six areas and specific recommendations related to the development of each area are presented also.

  5. Gc/ms analysis of coal tar composition produced from coal

    African Journals Online (AJOL)


    Technology, Hubei Province, Wuhan, China. (Received November 17, 2005; revised December 22, 2006). ABSTRACT. Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization.

  6. Tar sands showdown : Canada and the new politics of oil in an age of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, T. [Polaris Institute, Ottawa, ON (Canada)


    This book outlined the social and environmental issues facing the oil sands industry in Canada, including economic sovereignty, energy security, water rights and free trade. The tar sands have become vital to the Canadian economy, as they have the potential to increase Canada's foreign oil output by 4 to 5 times in the next 15 years. The author discussed the ecological and social impact of the Alberta tar sands and the real cost of development to Albertans and Canadians. Tar sands oil production generates more than 3 times the amount of greenhouse gas emissions than conventional oil production. The industry is also becoming a prime example of the abuse of water sources. The author emphasized the need to build an alternative energy future in an age of global warming. The main objective of this book was to help stimulate a nation-wide public debate about the tar sands and the critical issues at stake regarding Canada's energy future and an environmental strategy for more sustainable development. refs., tabs., figs.

  7. Application of Cigarette Smoke Characterisation Based on Optical Aerosol Spectrometry. Dynamics and Comparisons with Tar Values

    NARCIS (Netherlands)

    Dijk, W.D. van; Cremers, R.; Klerx, W.; Schermer, T.R.J.; Scheepers, P.T.J.


    Introduction: Cigarette smoking causes devastating disease worldwide. Current cigarette classification is based on standardised tar mass values obtained from smoking-machines. However, their ability to predict disease is poor, and these mass values are primarily determined by larger particles. The

  8. gc/ms analysis of coal tar composition produced from coal pyrolysis

    African Journals Online (AJOL)

    Coal tar is a significant product generated from coal pyrolysis. A detailed analytical study on its composition and chemical structure will be of great advantage to its further processing and utilization. Using a combined method of planigraphy-gas chromatograph/mass spectroscopy (GC/MS), this work presents a composition ...

  9. Carbon deposition in an SOFC fueled by tar-laden biomass gas: a thermodynamic analysis (United States)

    Singh, Devinder; Hernández-Pacheco, Eduardo; Hutton, Phillip N.; Patel, Nikhil; Mann, Michael D.

    This work presents a thermodynamic analysis of the carbon deposition in a solid oxide fuel cell (SOFC) fueled by a biomass gasifier. Integrated biomass-SOFC units offer considerable benefits in terms of efficiency and fewer emissions. SOFC-based power plants can achieve a system efficiency of 70-80% (including heat utilization) as compared to 30-37% for conventional systems. The fuel from the biomass gasifier can contain considerable amounts of tars depending on the type of gasifier used. These tars can lead to the deposition of carbon at the anode side of SOFCs and affect the performance of the fuel cells. This paper thermodynamically studies the risk of carbon deposition due to the tars present in the feed stream and the effect various parameters like current density, steam, and temperature have on carbon deposition. Since tar is a complex mixture of aromatics, it is represented by a mixture of toluene, naphthalene, phenol, and pyrene. A total of 32 species are considered for the thermodynamic analysis, which is done by the Gibbs energy minimization technique. The carbon deposition is shown to decrease with an increase in current density and becomes zero after a critical current density. Steam in the feed stream also decreases the amount of carbon deposition. With the increase in temperature the amount of carbon first decreases and then increases.

  10. Low Temperature Particle Filtration of Wood Gas with Low Tar Content

    DEFF Research Database (Denmark)

    Hindsgaul, Claus; Henriksen, Ulrik Birk; Bentzen, Jens Dall


    Baghouse filters and cartridge filters were tested online with wood gas from a two stage down draft gasifier. The gas contained soot and very low levels (10-30 mg/Nm³) of tar. Particle collection efficiencies were above 95%. Continuous operation with cheap self cleaning baghouse filters were tested...

  11. Tar analysis from biomass gasification by means of online fluorescence spectroscopy (United States)

    Baumhakl, Christoph; Karellas, Sotirios


    Optical methods in gas analysis are very valuable mainly due to their non-intrusive character. That gives the possibility to use them for in-situ or online measurements with only optical intervention in the measurement volume. In processes like the gasification of biomass, it is of high importance to monitor the gas quality in order to use the product gas in proper machines for energy production following the restrictions in the gas composition but also improving its quality, which leads to high efficient systems. One of the main problems in the biomass gasification process is the formation of tars. These higher hydrocarbons can lead to problems in the operation of the energy system. Up to date, the state of the art method used widely for the determination of tars is a standardized offline measurement system, the so-called "Tar Protocol". The aim of this work is to describe an innovative, online, optical method for determining the tar content of the product gas by means of fluorescence spectroscopy. This method uses optical sources and detectors that can be found in the market at low cost and therefore it is very attractive, especially for industrial applications where cost efficiency followed by medium to high precision are of high importance.

  12. Gasification and effect of gasifying temperature on syngas quality and tar generation: A short review (United States)

    Guangul, Fiseha Mekonnen; Sulaiman, Shaharin Anwar; Raghavan, Vijay R.


    Corrosion, erosion and plugging of the downstream equipments by tar and ash particle and, low energy content of syngas are the main problems of biomass gasification process. This paper attempts to review the findings of literature on the effect of temperature on syngas quality, and in alleviating the tar and ash problems in the gasification process. The review of literature indicates that as the gasification temperature increases, concentration of the resulting H2 and carbon conversion efficiency increase, the amount of tar in the syngas decreases. For the same condition, CH4 and CO concentration do not show consistent trend when the feedstock and gasification process varies. These necessitate the need for conducting an experiment for a particular gasification process and feedstock to understand fully the benefits of controlling the gasification temperature. This paper also tries to propose a method to improve the syngas quality and to reduce the tar amount by using preheated air and superheated steam as a gasifying media for oil palm fronds (OPF) gasification.

  13. Influence of Operation Conditions on Carbon Deposition in SOFCs Fuelled by Tar-Containing Biosyngas

    NARCIS (Netherlands)

    Liu, M.; Millan-Agorio, M.G.; Aravind, P.V.; Brandon, N.P.


    This paper presents the influence of operation conditions including steam levels, current density and operating time on the performance of Solid Oxide Fuel Cells (SOFCs) fuelled by tar- containing biosyngas. The performance of SOFCs was evaluated by means of recording impedance spectra and

  14. On the Periphery of the Tar Sands. Documents in the Classroom. (United States)

    Hodysh, Henry W.


    Explores the diary of Karl Clark that focuses on his experiences in the Athabasca tar sands. The diary helps decipher the nature of 1920s town life and the pioneering spirit involved in exploring the oil sands. Includes background information on Clark. (CMK)

  15. 78 FR 41691 - Safety Zone; Pamlico River and Tar River; Washington, NC (United States)


    ... ``SEARCH'' box and click ``SEARCH.'' Click on Open Docket Folder on the line associated with this... display originating from latitude 35 32'25'' N, longitude 077 03'42'' W. The fireworks debris fallout area... and Tar Rivers within a 300 yards radius of latitude 35 32'25'' N, longitude 077 03'42'' W. This...

  16. Coal-tar-based pavement sealcoat, polycyclic aromatic Hydrocarbons (PAHs), and environmental health (United States)

    Mahler, B.J.; Van Metre, P.C.


    Studies by the U.S. Geological Survey (USGS) have identified coal-tar-based sealcoat-the black, viscous liquid sprayed or painted on asphalt pavement such as parking lots-as a major source of polycyclic aromatic hydrocarbon (PAH) contamination in urban areas for large parts of the Nation. Several PAHs are suspected human carcinogens and are toxic to aquatic life.

  17. Heavy flavour in ALICE

    CERN Document Server

    Pillot, Philippe


    Open heavy flavours and heavy quarkonium states are expected to provide essential informa- tion on the properties of the strongly interacting system fo rmed in the early stages of heavy-ion collisions at very high energy density. Such probes are espe cially promising at LHC energies where heavy quarks (both c and b) are copiously produced. The ALICE detector shall measure the production of open heavy flavours and heavy quarkonium st ates in both proton-proton and heavy-ion collisions at the LHC. The expected performances of ALICE for heavy flavour physics is discussed based on the results of simulation studies on a s election of benchmark channels

  18. New results of studying of the Devonian shale formation in the Volga-Ural region (United States)

    Plotnikova, Irina; Pronin, Nikita; Morozov, Vladimir; Nosova, Fidania


    The objects of the study are Upper Devonian carbonate rocks in the territory of South-Tatar arch and Melekess basin in the Volga- Urals region. We studied core material and organic matter of Domanicoid facies from the sediments of Semilukskiy and Rechitskiy (Domanik) horizons of the Upper Devonian. Basic analytical research methods included the following: study of the composition, structural and textural features of the rocks, the structure of their voids, filter and reservoir properties and composition of the fluid. The complex research consisted of macroscopic description of the core material, optical microscopy analysis, radiographical analysis, thermal analysis, x-ray tomography, electron microscopy, gas-liquid chromatography, chromate-mass spectrometry, isotopic analysis of oil and organic matter, light hydrocarbons analysis using paraphase assay, adsorbed gases analysis, and thermal vacuum degassing method. In addition, we performed isotopic studies of hydrocarbons saturating shale rocks. The study of biomarkers was carried out with the help of chromato-mass spectrometry in the Laboratory of Geochemistry of Fossil Fuels, Kazan Federal University. GC/MS method was used in oil to investigate the individual composition of naphthenic hydrocarbons, primarily steranes and terpanes and another new biological markers. In this study we used several informative parameters characterizing the depositional environment, the type of source OM and its maturity. In the evaluation of the facial conditions of sedimentation and the degree of catagenetic conversion of the OM, the quantitative characteristics based not only on the distribution of steranes and terpanes, which are related to the lithology and maturity of the OM.New biomarkers parameters (carotenoids) were used to study the conditions of formation of shale strata. Based on these new data, a new model of geological and environmental conditions for the formation of shale strata saturated bituminous matter (organic

  19. TarNet: An Evidence-Based Database for Natural Medicine Research.

    Directory of Open Access Journals (Sweden)

    Ruifeng Hu

    Full Text Available Complex diseases seriously threaten human health. Drug discovery approaches based on "single genes, single drugs, and single targets" are limited in targeting complex diseases. The development of new multicomponent drugs for complex diseases is imperative, and the establishment of a suitable solution for drug group-target protein network analysis is a key scientific problem that must be addressed. Herbal medicines have formed the basis of sophisticated systems of traditional medicine and have given rise to some key drugs that remain in use today. The search for new molecules is currently taking a different route, whereby scientific principles of ethnobotany and ethnopharmacognosy are being used by chemists in the discovery of different sources and classes of compounds.In this study, we developed TarNet, a manually curated database and platform of traditional medicinal plants with natural compounds that includes potential bio-target information. We gathered information on proteins that are related to or affected by medicinal plant ingredients and data on protein-protein interactions (PPIs. TarNet includes in-depth information on both plant-compound-protein relationships and PPIs. Additionally, TarNet can provide researchers with network construction analyses of biological pathways and protein-protein interactions (PPIs associated with specific diseases. Researchers can upload a gene or protein list mapped to our PPI database that has been manually curated to generate relevant networks. Multiple functions are accessible for network topological calculations, subnetwork analyses, pathway analyses, and compound-protein relationships.TarNet will serve as a useful analytical tool that will provide information on medicinal plant compound-affected proteins (potential targets and system-level analyses for systems biology and network pharmacology researchers. TarNet is freely available at, and detailed tutorials on the

  20. Shale gas characterization based on geochemical and geophysical analysis: Case study of Brown shale, Pematang formation, Central Sumatra Basin (United States)

    Haris, A.; Nastria, N.; Soebandrio, D.; Riyanto, A.


    Geochemical and geophysical analyses of shale gas have been carried out in Brown Shale, Middle Pematang Formation, Central Sumatra Basin. The paper is aimed at delineating the sweet spot distribution of potential shale gas reservoir, which is based on Total Organic Carbon (TOC), Maturity level data, and combined with TOC modeling that refers to Passey and Regression Multi Linear method. We used 4 well data, side wall core and 3D pre-stack seismic data. Our analysis of geochemical properties is based on well log and core data and its distribution are constrained by a framework of 3D seismic data, which is transformed into acoustic impedance. Further, the sweet spot of organic-rich shale is delineated by mapping TOC, which is extracted from inverted acoustic impedance. Our experiment analysis shows that organic materials contained in the formation of Middle Pematang Brown Shale members have TOC range from 0.15 to 2.71 wt.%, which is classified in the quality of poor to very good. In addition, the maturity level of organic material is ranging from 373°C to 432°C, which is indicated by vitrinite reflectance (Ro) of 0.58. In term of kerogen type, this Brown shale formation is categorized as kerogen type of II I III, which has the potential to generate a mixture of gasIoil on the environment.

  1. Bayesian inversion of synthetic AVO data to assess fluid and shale content in sand-shale media (United States)

    Anwer, Hafiz Mubbasher; Ali, Aamir; Alves, Tiago M.


    Reservoir characterization of sand-shale sequences has always challenged geoscientists due to the presence of anisotropy in the form of shale lenses or shale layers. Water saturation and volume of shale are among the fundamental reservoir properties of interest for sand-shale intervals, and relate to the amount of fluid content and accumulating potentials of such media. This paper suggests an integrated workflow using synthetic data for the characterization of shaley-sand media based on anisotropic rock physics (T-matrix approximation) and seismic reflectivity modelling. A Bayesian inversion scheme for estimating reservoir parameters from amplitude vs. offset (AVO) data was used to obtain the information about uncertainties as well as their most likely values. The results from our workflow give reliable estimates of water saturation from AVO data at small uncertainties, provided background sand porosity values and isotropic overburden properties are known. For volume of shale, the proposed workflow provides reasonable estimates even when larger uncertainties are present in AVO data.

  2. Slow Radio-Frequency Processing of Large Oil Shale Volumes to Produce Petroleum-Like Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A K


    A process is proposed to convert oil shale by radio frequency heating over a period of months to years to create a product similar to natural petroleum. Electrodes would be placed in drill holes, either vertical or horizontal, and a radio frequency chosen so that the penetration depth of the radio waves is of the order of tens to hundreds of meters. A combination of excess volume production and overburden compaction drives the oil and gas from the shale into the drill holes, where it is pumped to the surface. Electrical energy for the process could be provided initially by excess regional capacity, especially off-peak power, which would generate {approx}3 x 10{sup 5} bbl/day of synthetic crude oil, depending on shale grade. The electricity cost, using conservative efficiency assumptions, is $4.70 to $6.30/bbl, depending on grade and heating rate. At steady state, co-produced gas can generate more than half the electric power needed for the process, with the fraction depending on oil shale grade. This would increase production to 7.3 x 10{sup 5} bbl/day for 104 l/Mg shale and 1.6 x 10{sup 6} bbl/day for 146 l/Mg shale using a combination of off-peak power and power from co-produced gas.

  3. Western oil shale development: a technology assessment. Volume 8. Health effects of oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G.J.


    Information on the potential health effects of a developing oil shale industry can be derived from two major sources: (1) the historical experience in foreign countries that have had major industries; and (2) the health effects research that has been conducted in the US in recent years. The information presented here is divided into two major sections: one dealing with the experience in foreign countries and the second dealing with the more recent work associated with current oil shale development in the US. As a result of the study, several observations can be made: (1) most of the current and historical data from foreign countries relate to occupational hazards rather than to impacts on regional populations; (2) neither the historical evidence from other countries nor the results of current research have shown pulmonary neoplasia to be a major concern, however, certain types of exposure, particularly such mixed source exposures as dust/diesel or dust/organic-vapor have not been adequately studied and the lung cancer question is not closed; (3) the industry should be alert to the incidence of skin disease in the industrial setting, however, automated techniques, modern industrial hygiene practices and realistic personal hygiene should greatly reduce the hazards associated with skin contact; and (4) the entire question of regional water contamination and any resultant health hazard has not been adequately addressed. The industrial practice of hydrotreating the crude shale oil will diminish the carcinogenic hazard of the product, however, the quantitative reduction of biological activity is dependent on the degree of hydrotreatment. Both Soviet and American experimentalists have demonstrated a correlation betweed carcinogenicity/toxicity and retorting temperature; the higher temperatures producing the more carcinogenic or toxic products.

  4. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition. (United States)

    Haydary, J; Susa, D; Dudáš, J


    Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. In silico Analyses of Subtype Specific HIV-1 Tat-TAR RNA Interaction Reveals the Structural Determinants for Viral Activity

    Directory of Open Access Journals (Sweden)

    Larance Ronsard


    Full Text Available HIV-1 Tat transactivates viral genes through strong interaction with TAR RNA. The stem-loop bulged region of TAR consisting of three nucleotides at the position 23–25 and the loop region consisting of six nucleotides at the position 30–35 are essential for viral transactivation. The arginine motif of Tat (five arginine residues on subtype TatC is critically important for TAR interaction. Any mutations in this motif could lead to reduce transactivation ability and pathogenesis. Here, we identified structurally important residues (arginine and lysine residues of Tat in this motif could bind to TAR via hydrogen bond interactions which is critical for transactivation. Natural mutant Ser46Phe in the core motif could likely led to conformational change resulting in more hydrogen bond interactions than the wild type Tat making it highly potent transactivator. Importantly, we report the possible probabilities of number of hydrogen bond interactions in the wild type Tat and the mutants with TAR complexes. This study revealed the differential transactivation of subtype B and C Tat could likely be due to the varying number of hydrogen bonds with TAR. Our data support that the N-terminal and the C-terminal domains of Tat is involved in the TAR interactions through hydrogen bonds which is important for transactivation. This study highlights the evolving pattern of structurally important determinants of Tat in the arginine motif for viral transactivation.

  6. Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Carbognani, L.; Hazos, M.; Sanchez, V. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)); Green, J.A.; Green, J.B.; Grigsby, R.D.; Pearson, C.D.; Reynolds, J.W.; Shay, J.Y.; Sturm, G.P. Jr.; Thomson, J.S.; Vogh, J.W.; Vrana, R.P.; Yu, S.K.T.; Diehl, B.H.; Grizzle, P.L.; Hirsch, D.E; Hornung, K.W.; Tang, S.Y.


    On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt.The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, published work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degree}C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3-5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).

  7. Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum

    Energy Technology Data Exchange (ETDEWEB)



    On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt. The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, published work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degrees} C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3--5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).

  8. Potential contributions of asphalt and coal tar to black carbon quantification in urban dust, soils, and sediments (United States)

    Yang, Y.; Mahler, B.J.; Van Metre, P.C.; Ligouis, B.; Werth, C.J.


    Measurements of black carbon (BC) using either chemical or thermal oxidation methods are generally thought to indicate the amount of char and/or soot present in a sample. In urban environments, however, asphalt and coal-tar particles worn from pavement are ubiquitous and, because of their pyrogenic origin, could contribute to measurements of BC. Here we explored the effect of the presence of asphalt and coal-tar particles on the quantification of BC in a range of urban environmental sample types, and evaluated biases in the different methods used for quantifying BC. Samples evaluated were pavement dust, residential and commercial area soils, lake sediments from a small urban watershed, and reference materials of asphalt and coal tar. Total BC was quantified using chemical treatment through acid dichromate (Cr2O7) oxidation and chemo-thermal oxidation at 375??C (CTO-375). BC species, including soot and char/charcoal, asphalt, and coal tar, were quantified with organic petrographic analysis. Comparison of results by the two oxidation methods and organic petrography indicates that both coal tar and asphalt contribute to BC quantified by Cr2O7 oxidation, and that coal tar contributes to BC quantified by CTO-375. These results are supported by treatment of asphalt and coal-tar reference samples with Cr2O7 oxidation and CTO-375. The reference asphalt is resistant to Cr2O7 oxidation but not to CTO-375, and the reference coal tar is resistant to both Cr2O7 oxidation and CTO-375. These results indicate that coal tar and/or asphalt can contribute to BC measurements in samples from urban areas using Cr2O7 oxidation or CTO-375, and caution is advised when interpreting BC measurements made with these methods. ?? 2010 Elsevier Ltd.

  9. Pressurized fluidized-bed hydroretorting of Eastern oil shales

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.J.; Mensinger, M.C.; Rue, D.M.; Lau, F.S. (Institute of Gas Technology, Chicago, IL (United States)); Schultz, C.W. (Alabama Univ., University, AL (United States)); Parekh, B.K. (Kentucky Univ., Lexington, KY (United States)); Misra, M. (Nevada Univ., Reno, NV (United States)); Bonner, W.P. (Tennessee Technological Univ., Cookeville, TN (United States))


    The Devonian oil shales of the Eastern United States are a significant domestic energy resource. The overall objective of the multi-year program, initiated in October 1987 by the US Department of Energy is to perform the research necessary to develop the Pressurized Fluidized-Bed Hydroretorting (PFH) process for producing oil from Eastern oil shales. The program also incorporates research on technologies in areas such as raw shale preparation, beneficiation, product separation, and waste disposal that have the potential of improving the economics and/or environmental acceptability of recovering oil from oil shales using the PFH process. The results of the original 3-year program, which was concluded in May 1991, have been summarized in a four-volume final report published by IGT. DOE subsequently approved a 1-year extension to the program to further develop the PFH process specifically for application to beneficiated shale as feedstock. Studies have shown that beneficiated shale is the preferred feedstock for pressurized hydroretorting. The program extension is divided into the following active tasks. Task 3. testing of process improvement concepts; Task 4. beneficiation research; Task 5. operation of PFH on beneficiated shale; Task 6. environmental data and mitigation analyses; Task 7. sample procurement, preparation, and characterization; and Task 8. project management and reporting. In order to accomplish all the program objectives, the Institute of Gas Technology (IGT), the prime contractor, worked with four other institutions: the University of Alabama/Mineral Resources Institute (MRI), the University of Kentucky Center for Applied Energy Research (UK-CAER), the University of Nevada (UN) at Reno, and Tennessee Technological University (TTU). This report presents the work performed during the program extension from June 1, 1991 through May 31, 1992.

  10. Nano-Chemomechanical Assessment of Organic Rich Shales (United States)

    Abedi, S.; Slim, M. I.; Ferralis, N.; Ulm, F.


    Organic rich shales, a rapidly increasing source of fossil fuels, have recently gained significant attention from the geomechanics and geochemistry communities. Despite their importance, the chemomechanical characterization of organic rich shales remains a pressing challenge due to their highly heterogeneous microstructure, complex chemistry, and multiscale mechanical performances. Such complexity requires advanced and innovative characterization tools for a complete understanding of the role played by different constituents in the chemomechnaical properties at multiple scales. In this study, experimental and theoretical microporomechanics have been employed for assessing the microtexture and material invariant properties of clay-dominated organic rich shales at nanometer length scales. A novel experimental methodology consisting of instrumented nanoindenation experiments and Energy Dispersive X-ray Spectroscopy (EDX) is developed for the proper chemomechanical characterization of the main constituents of the composite shale material. Combining experimental characterization with micromechanical modeling, the material invariant properties and mesotexture of material main constituents are investigated. The results provide evidence that mature clay-dominated organic rich shale systems exhibit a kerogen stiffening of the mechanical properties of the elementary particles. Such a stiffening effect cannot be explained by classical micromechanics models based on mean-field theories and volume averaging where a property softening would be predicted. Furthermore, it is seen that the presence and chemical composition of organic matter affects mechanical properties of organic rich shales significantly. The role of kerogen maturity, type, and chemical composition on mechanical performance of the material is investigated by incorporating results from Raman Spectroscopy into the analysis. The results of this investigation are used to define a model of the fundamental building

  11. Black shale studies in Kentucky. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)


    Work during the quarter was devoted to final interpretation, integration, and compilation of surface stratigraphic and petrologic data into deliverable documents for DOE, MERC. As of September, two such documents have been prepared. A thesis on black-shale outcrop stratigraphy from the two eastern Kentucky outcrop belts has been completed and will be included with the annual report and a thesis on the thin-section petrology of three eastern Kentucky cores has also been completed and will be included with the annual report. Also during this quarter the transition to two new parts of the project was started including map compilation and a paleontological--paleoecological study. Compilation of isopach, lithofacies, and structural contour maps depends largely on completion of the well-log inventory from which all the data are generated. At present, well-log inventories for 37 of the 41 eastern Kentucky counties (90%) have been completed. Work has begun, however, on compiling data from the completed county inventories. Work has also begun on the paleontological--paleoecological portion of the project. A research assistant has been found to complete a thesis study on this part of the project and he is currently engaged in preliminary research.

  12. Oil shale as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    Hepbasli, A. [Ege University, Izmir (Turkey). Mechanical Engineering Dept.


    Oil shale (OS) is one of the world's most important energy resources, and its use can be traced back to ancient times. The objective of this study is to investigate many aspects of OS as an alternative energy source in Turkey, giving Turkey's OS deposits, the history of oil in Turkey, and some studies conducted to evaluate OSs. Research into the utilization of Turkish OSs has been going on since the 1970s, while OSs comprise the second largest solid fuel deposit in Turkey after lignites. OS deposits in Turkey are widely distributed in middle and western Anatolia, with an estimated current reserve of approximately 1,865 million tons. Other potential areas in the north Anatolian fault zone are also under investigation. With the continuing decline of petroleum supplies, accompanied by increasing costs of petroleum-based products, OS may present opportunities for supplying some of Turkey's fossil energy needs in the years ahead. (author)

  13. Fresh tar (from biomass gasification) destruction with downstream catalysts: comparison of their intrinsic activity with a realistic kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Complutense Univ. of Madrid (Spain). Dept. of Chemical Engineering


    A model for fresh tar destruction over catalysts placed downstream a biomass gasifier is presented. It includes the stoichio-metry and the calculation of the kinetic constants for the tar destruction. Catalysts studied include commercial Ni steam reforming catalysts and calcinated dolomites. Kinetic constants for tar destruction are calculated for several particle sizes, times- on-stream and temperatures of the catalyst and equivalence ratios in the gasifier. Such intrinsic kinetic constants allow a rigorous or scientific comparison of solids and conditions to be used in an advanced gasification process. (orig.) 4 refs.

  14. Characterization of the HIV-1 TAR RNA-Tat peptide and drug interactions by on-line acoustic wave sensor (United States)

    Tassew, Nardos Gobena

    This thesis presents the application of the thickness shear-mode (TSM) acoustic wave sensor to the study of RNA-protein and RNA-drug interactions at the solid-liquid interface. The binding of the human immunodeficiency virus-type 1 Tat protein to the trans-activation responsive RNA element (TAR) has been studied using this sensor. Data from such measurements show that the sensor is able to discriminate between different Tat peptides derived from the parent protein based on size. The effects of mutations introduced at specific sites in the protein and RNA on the TAR-Tat binding have also been examined in detail. Reduced level of response in acoustic parameters due to mutations was observed indicating that the decrease in binding in response to site specific mutations can be acoustically detected. Data from acoustic wave sensor measurements indicate that the TAR-Tat binding is also affected by ionic strength. Both the frequency and motional resistance signals show periodic responses when varying concentrations of salt are introduced on a TAR-modified surface. The binding of the two molecules seems to be a function of the response of the nucleic acid to salt concentrations. The kinetics of binding of Tat peptides to TAR RNA and to a bulge mutant analogue (MTAR) is also examined from the rate of change of the series resonant frequency. Results from such analysis illustrate longer Tat peptides formed more stable complexes with TAR RNA and exhibited increased discrimination between mutant and wild type TAR. The binding of two aminoglycoside antibiotics, neomycin and streptomycin, to TAR RNA and their effectiveness in preventing TAR-Tat complex formation has been studied in detail. Binding affinity is directly correlated with the inhibitory potency of these molecules and the TSM sensor shows that neomycin exhibits at least a ten fold greater affinity to TAR and that it is also a more potent inhibitor than streptomycin. The results from this research involving TAR-Tat and

  15. The influence of global sea level changes on European shale distribution and gas exploration

    Energy Technology Data Exchange (ETDEWEB)

    Turner, P.; Cornelius, C.T.; Clarke, H. [Cuadrilla Resources Ltd., Staffordshire (United Kingdom)


    Technological advances in directional drilling and hydraulic fracturing technology have unlocked new supplies of shale gas from reservoirs that were previously considered to be uneconomic. Several companies, both experienced majors and small independents, are currently evaluating the unconventional resource potential of mainland Europe. This paper demonstrated that global sea level changes govern the distribution of marine black shales. The Hallam Curve was used in this study to identify periods of prospective gas shale deposition. In general, these correspond to post-glacial periods of relatively high sea level. Under-filled marginal sedimentary basins are key exploration targets. The geochemical and petrophysical characteristics of the shales deposited under these conditions are often comparable to North American shales, particularly the Barnett Shale which is currently in production. Many orogenic events influence European shales in terms of organic maturity, hydrocarbon generation and fracture generation. The main prospective horizons in ascending stratigraphic sequence are the Alum Shale, Llandovery Shale, Fammenian/Frasnian Shale, Serpukhovian Shale, Toarcian Shale, Kimmeridge Clay and the Tertiary Eocene and Oligocene shales common to central Europe. This paper presented the authors initial exploration strategy, with particular focus on the Lower Palaeozoic of central Europe, the Namurian of northwest England and the Jurassic Posidonia Formation of the Roer Valley Graben in Holland. The potential obstacles to unconventional exploration in Europe include restricted access to surface locations, high water usage, a lack of convenient pipeline infrastructure, strict environmental regulations, a high population density and lack of suitable drilling rigs and well completion equipment. 13 refs., 7 figs.

  16. Influence of the presence of PAHs and coal tar on naphthalene sorption in soils (United States)

    Bayard, Rémy; Barna, Ligia; Mahjoub, Borhane; Gourdon, Rémy


    The mobility of the most water-soluble polynuclear aromatic hydrocarbons (PAHs) such as naphthalene in contaminated soils from manufactured gas plant (MGP) sites or other similar sites is influenced not only by the naturally occurring soil organic matter (SOM) but also, and in many cases mostly, by the nature and concentration of coal tar xenobiotic organic matter (XOM) and other PAH molecules present in the medium under various physical states. The objective of the present study was to quantify the effects of these factors using batch experiments, in order to simulate naphthalene transport in soil-tar-water systems using column experiments. Naphthalene sorption was studied in the presence of (i) solid coal tar particles, (ii) phenanthrene supplied as pure crystals, in the aqueous solution or already sorbed onto the soil, (iii) fluoranthene as pure crystals, and (iv) an aqueous solution of organic molecules extracted from a liquid tar. All experiments were conducted under abiotic conditions using short naphthalene/sorbent contact times of 24-60 h. Although these tests do not reflect true equilibrium conditions which usually take more time to establish, they were used to segregate relatively rapid sorption phenomena ("pseudo equilibrium") from slow sorption and other aging phenomena. For longer contact times, published data have shown that experimental biases due to progressive changes in the characteristics of the soil and the solution may drastically modify the affinity of the solutes for the soil. Slow diffusion in the microporosity and in dense organic phases may also become significant over the long term, along with some irreversible aging phenomena which have not been addressed in this work. Results showed that PAHs had no effect on naphthalene sorption when present in the aqueous solution or as pure crystals, due to their low solubility in water. Adsorbed phenanthrene was found to reduce naphthalene adsorption only when present at relatively high

  17. Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report

    Energy Technology Data Exchange (ETDEWEB)


    This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

  18. Comparison of heavy metals and uranium removal using adsorbent in soil (United States)

    Choi, Jaeyoung; Yun, Hunsik


    This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.

  19. Strengthening shale wellbore with silica nanoparticles drilling fluid

    Directory of Open Access Journals (Sweden)

    Yili Kang


    Full Text Available Nanoparticles have been widely used to reduce wellbore instability problems of shale formation. In this paper, nanoparticle-containing water-based drilling fluids (WBDFs and oil-based drilling fluids (OBDFs were evaluated by running three new tests including spontaneous imbibition, swelling rate and acoustic transit time. Results showed that, for the WBDFs, nanoparticles leaded to higher plastic viscosity (PV and yield point (YP, and lower API-filtration. Moreover, because pore throats of shale can be plugged by nanoparticles, imbibition amount, swelling rate, and Young's-modulus reduction of shale decreased significantly. Higher concentration of nanoparticles can induce better plugging effect. However, for the OBDFs, nanoparticles did not show these positive effects like the nano WBDFs, even leaded to some negative effects such as higher filtration and larger Young's-modulus reduction. The main reasons are that the silica nanoparticles can easily disperse in the WBDFs, and effectively prevent the filtrate invading into shale by plugging pore throats. But the same silica nanoparticles are difficult to disperse in OBDFs, and do not perform the expected functions. This study indicates that nano WBDFs have great potential to reduce the wellbore instability problems of shale formation.

  20. Numerical Investigation of Bedding Plane Parameters of Transversely Isotropic Shale (United States)

    Chong, Zhaohui; Li, Xuehua; Hou, Peng; Wu, Yuechao; Zhang, Ji; Chen, Tian; Liang, Shun


    Determination of the physical properties of shale is receiving more attention as the numbers of shale gas exploration projects are initiated, and as hydraulic fracturing becomes an integral exploitation method. In particular, anisotropy caused by the bedding structure of shale needs specific attention. In this paper, an anisotropic mineral brittleness-based model (AMBBM) is proposed that makes use of the discrete element method (DEM) to study shale properties, such as anisotropy of non-penetrating bedding planes and separating brittle and non-brittle minerals. Micro-parameters of the AMBBM are calibrated using uniaxial compressive strength tests and by studying the parameter gradient of smooth joints (SJ), such that the strength of SJ mainly affects the failure load in Brazilian tests (FLBT). It is found that the ratio of cohesion to tensile strength of SJ mainly affects the number of cracks formed, which further leads to different failure modes. Normal stiffness and shear stiffness of SJ exerts different effects on FLBT and stiffness in the model. However, the percentage of cracks of various minerals is less affected. The degree of anisotropy is affected by the angle range of parallel bond replaced by bedding plane. Based on the results, a new validation method for AMBBM is proposed, given that the numerical results show good agreement with experimental results, such as FLBT, splitting modulus, and failure mode. The model can thus be used to study seepage properties of shale gas exploitation and hydraulic fracturing by DEM.

  1. Environmental public health dimensions of shale and tight gas development. (United States)

    Shonkoff, Seth B C; Hays, Jake; Finkel, Madelon L


    The United States has experienced a boom in natural gas production due to recent technological innovations that have enabled this resource to be produced from shale formations. We reviewed the body of evidence related to exposure pathways in order to evaluate the potential environmental public health impacts of shale gas development. We highlight what is currently known and identify data gaps and research limitations by addressing matters of toxicity, exposure pathways, air quality, and water quality. There is evidence of potential environmental public health risks associated with shale gas development. Several studies suggest that shale gas development contributes to ambient air concentrations of pollutants known to be associated with increased risk of morbidity and mortality. Similarly, an increasing body of studies suggest that water contamination risks exist through a variety of environmental pathways, most notably during wastewater transport and disposal, and via poor zonal isolation of gases and fluids due to structural integrity impairment of cement in gas wells. Despite a growing body of evidence, data gaps persist. Most important, there is a need for more epidemiological studies to assess associations between risk factors, such as air and water pollution, and health outcomes among populations living in close proximity to shale gas operations.

  2. An apparent permeability model of shale gas under formation conditions (United States)

    Chen, Peng; Jiang, Shan; Chen, Yan; Wang, Shanshan


    There are various types of pores in shale, mainly consisting of nanopores and micropores, causing flow regime variations and apparent permeability changes during the development of the reservoir. In this paper, a Knudsen number calculation model is proposed with the actual conditions of gas in a shale reservoir. Then, based on the distribution of pores in shale, an apparent permeability model is established using hydrodynamics, and a calculation method is put forward for the actual permeability of a reservoir. Finally, the Knudsen number model and the permeability correction coefficient model are used to analyze the flow regime and permeability correction coefficients in pores during the development of the shale gas reservoir. Results show that with a decreasing of pressure, the Knudsen number increases, the flow regime changes from continuous flow and slip flow to transition flow or free molecular flow. When the Knudsen number is Kn > 0.1, and with a further increasing of Kn, gas molecule slippage greatly intensifies and the permeability correction coefficient K app/Kd significantly increases. While the Knudsen number increases, the permeability correction coefficient significantly increases in the micropores and the small pores, but this does not appear in the macropores and the mesopores. These results can be used to guide flow regime analysis and production forecasting in shale gas reservoirs.

  3. Evaluation of excavation experience: Pierre shale. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Abel, J.F. Jr.; Gentry, D.W.


    Pierre shale and its stratigraphic equivalents represent a potentially favorable geologic environment for underground storage of hazardous waste products. These rock formations cover great areal and vertical extents, and represent some of the least permeable rock formations within the continental United States. There are, however, several engineering problems associated with constructing underground openings in Pierre shale. This formation is relatively weak and tends to deteriorate rather rapidly if not protected from the mine environment. It will be necessary to place all underground openings below the surficially weathered upper 50 to 70 feet of Pierre shale which contains groundwater moving on fracture permeability. The optimum site for disposal of hazardous waste in Pierre shale, or its stratigraphic equivalents, would be a seismically stable platform bounded on all sides by faults. The optimum size of individual openings would be the minimum necessary for access, storage, and retrieval of waste components. Underground excavations in Pierre shale must be made with care, must be of limited dimensions, must be widely spaced, must be protected from prolonged contact with the mine environment, must be supported immediately after excavation, and must be sited to avoid areas of faulting and(or) intense jointing. Underground openings constructed with boring machines and supported with wet shotcrete are recommended.

  4. Ozone impacts of natural gas development in the Haynesville Shale. (United States)

    Kemball-Cook, Susan; Bar-Ilan, Amnon; Grant, John; Parker, Lynsey; Jung, Jaegun; Santamaria, Wilson; Mathews, Jim; Yarwood, Greg


    The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors. Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009-2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020.

  5. Analysis of the Energy Balance of Shale Gas Development

    Directory of Open Access Journals (Sweden)

    Hiroaki Yaritani


    Full Text Available Interest has rapidly grown in the use of unconventional resources to compensate for depletion of conventional hydrocarbon resources (“easy hydrocarbon” that are produced at relatively low cost from oil and gas fields with large proven reserves. When one wants to ensure the prospects for development of unconventional resources that are potentially vast in terms of their energy potential, it is essential to determine the quality of that energy. Here we consider the development of shale gas, an unconventional energy resource of particularly strong interest of late, through analysis of its energy return on investment (EROI, a key indicator for qualitative assessment of energy resources. We used a Monte Carlo approach for the carbon footprint of U.S. operations in shale gas development to estimate expected ranges of EROI values by incorporating parameter variability. We obtained an EROI of between 13 and 23, with a mean of approximately 17 at the start of the pipeline. When we incorporated all the costs required to bring shale gas to the consumer, the mean value of EROI drops from about 17 at the start of the pipeline to 12 when delivered to the consumer. The shale gas EROI values estimated in the present study are in the initial stage of shale gas exploitation where the quality of that resource may be considerably higher than the mean and thus the careful and continuous investigation of change in EROI is needed, especially as production moves off the initial “sweet spots”.

  6. Shale gas development and cancer incidence in southwest Pennsylvania. (United States)

    Finkel, M L


    To what extent does unconventional gas development lead to an increase in cancer incidence in heavily drilled Southwest Pennsylvania? Ecological study. Data for urinary bladder, thyroid and leukaemia were abstracted from the Pennsylvania Cancer Registry (PCR). Cancer incidence among counties with high, moderate and minimal number of producing wells is compared before drilling activity and thereafter. Observed vs expected cases, standardized incidence ratio and 95% confidence intervals are presented. Data are presented by county, diagnosis and sex for the years 2000-2004, 2004-2008 and 2008-2012. The percent difference between the observed cases from 2000 to 2004 and 2008-2012 was calculated. The observed number of urinary bladder cases was higher than expected in both sexes in counties with shale gas activity. In counties with the fewest number of producing wells, the increase was essentially non-existent. The number of observed cases of thyroid cancer increased substantially among both sexes over the time period in all counties regardless of the number of wells drilled. The pattern for leukaemia was mixed among males and females and among the counties regardless of the extent of shale gas development activities. Potential risk factors other than shale gas development must be taken into account to explain the higher than expected cancer cases in counties with and without shale gas wells before and during unconventional shale gas activity. Copyright © 2016 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. Total lead (Pb) concentration in oil shale ash samples based on correlation to isotope Pb-210 gamma-spectrometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaasma, T.; Kiisk, M.; Tkaczyk, A.H. [University of Tartu (Estonia); Bitjukova, L. [Tallinn University of Technology (Estonia)


    Estonian oil shale consists of organic matter and mineral material and contains various amounts of heavy metals as well as natural radionuclides (from the U-238 and Th-232 series and K-40). Previous research has shown that burning oil shale in the large power plants causes these radionuclides to become enriched in different ash fractions and be partially emitted to the atmosphere via fly ash and flue gases. The activity concentrations (Bq/kg) of these nuclides in different oil shale ash fractions vary significantly. This is influenced by the boiler parameters and combustion conditions - prevailing temperatures, pressure, ash circulating mechanisms, fly ash particle size, chemical composition of ash and coexistence of macro and micro components. As with radionuclides, various heavy metals remain concentrated in the ash fractions and are released to the atmosphere (over 20 tons of Pb per year from Estonian oil shale power plants). Lead is a heavy metal with toxic influence on the nervous system, reproductive system and different organs in human body. Depending on the exposure pathways, lead could pose a long term health hazard. Ash samples are highly heterogeneous and exhibit great variability in composition and particle size. Determining the lead concentration in ash samples by modern methods like inductively coupled plasma mass spectroscopy (ICP-MS), flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectroscopy (GFAAS) and other techniques often requires time consuming, multistage and complex chemical sample preparation. The list of possible methods to use is lengthy, but it is a challenge to choose a suitable one to meet measurement needs and practical considerations. The detection limits, capital costs and maintenance expenses vary between the instruments. This work presents the development of an alternative measurement technique for our oil shale ash samples. Oil shale ash was collected from different boilers using pulverized fuel

  8. Integrated reservoir characterization of a Posidonia Shale outcrop analogue: From serendipity to understanding

    NARCIS (Netherlands)

    Zijp, M.H.A.A.; Veen, J.H. ten; Verreussel, R.M.C.H.; Ventra, D.


    Shale gas reservoir stimulation procedures (e.g. hydraulic fracturing) require upfront prediction and planning that should be supported by a comprehensive reservoir characterization. Therefore, understanding shale depositional processes and associated vertical and lateral sedimentological

  9. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment (United States)

    Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M.


    Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 ?? 109 m3/1.73 ?? 104 m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m3/m3). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  10. Generic Argillite/Shale Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens


    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the

  11. Complex conductivity of organic-rich shales (United States)

    Woodruff, W. F.; Revil, A.; Torres-Verdin, C.


    We can accurately determine the intrinsic anisotropy and material properties in the laboratory, providing empirical evidence of transverse isotropy and the polarization of the organic and metallic fractions in saturated and unsaturated shales. We develop two distinct approaches to obtain the complex conductivity tensor from spectral induced polarization (SIP) measurements. Experimental results indicate clear anisotropy, and characterize the effects of thermal maturation, TOC, and pyrite, aiding in the calibration and interpretation of geophysical data. SIP is a non-intrusive measurement, sensitive to the surface conductance of mineral grains, frequency-dependent polarization of the electrical double layer, and bulk conductivity of the pore water. The in-phase and quadrature components depend upon parameters of principal importance in unconventional shale formation evaluation (e.g., the distribution of pore throat sizes, formation factor, permeability, salinity and cation exchange capacity (CEC), fluid saturation and wettability). In addition to the contribution of the electrical double layer of non-conducting minerals to surface conductivity, we have observed a clear relaxation associated with kerogen pyrolysis, pyrite distribution, and evidence that the CEC of the kerogen fraction may also contribute, depending on thermal maturation history. We utilize a recent model for anisotropic complex conductivity, and rigorous experimental protocols to quantify the role of kerogen and pyrolysis on surface and quadrature conductivity in mudrocks. The complex conductivity tensor σ* describes the directional dependence of electrical conduction in a porous medium, and accounts for both conduction and polarization. The complex-valued tensor components are given as σ*ij , where σ'ij represents in-phase and σ"ij denotes quadrature conductivities. The directional dependence of the complex conductivity tensor is relegated to the textural properties of the material. The

  12. The Supercritical CO2 Huff-n-puff Experiment of Shale Oil Utilizing Isopropanol (United States)

    Shang, Shengxiang; Dong, Mingzhe; Gong, Houjian


    In this study, the supercritical CO2 huff-n-puff experiment of shale oil has been investigated. Experimental data shows that the addition of isopropanol can greatly improve the recovery of shale oil. And this provides a new way to improve the recovery of shale oil. In this paper, it is also tried to analyze the influencing factor of isopropanol on the recovery of shale oil by analyzing the MMP.

  13. The next big thing : unconventional gas explorers lay technical foundations for shale gas development across Canada

    Energy Technology Data Exchange (ETDEWEB)

    Stonehouse, D.


    Canadian exploration companies have successfully developed strategies for economically extracting gas from coal seams and unconventional tight reservoirs. According to Talisman Energy Inc., the next step is to tap into Canada's shale gas resource. In contrast to conventional gas targets, shale gas acts both as a source rock and reservoir rock with the natural gas contained within shale sequences. The gas is stored as adsorbed gas attached to kerogen in the shale, or exists as free gas in pores and fractures. The 2 main types of shale reservoirs include those where the gas was produced thermogenically through high temperatures and those where the gas was produced biogenically through bacterial breakdown. Innovative drilling and stimulation technologies are needed to extract sufficient volumes of gas and to commercially produce either type of shale play. Western Canada is the primary focus for shale gas exploration, mostly in deeper thermogenic shales in northern Alberta and British Columbia. Industry experts are comparing a play in the Fort Nelson area to the prolific Barnett Shale in Texas. Directional drilling and measurement while drilling technology has allowed shale developers in the United States to more accurately hit target prospects and to intersect more of the prospective pay zone. Improved fracturing technology has also allowed developers to improve the permeability of shale reservoirs. This experience will be helpful in Canada, although much experimenting is still required, including microseismic mapping that provides images of the fractures created by hydraulic fracturing. The area for biogenic shale exploration in Canada is in the Colorado Cretaceous Group of shales stretching across central Alberta and Saskatchewan. Stealth Ventures Ltd. and PanTerra Resource Corp. have been testing several technologies to make the shale play economic. Developing the plays will require the appropriate drilling and completion technologies to assess the plays. It

  14. Can shale safely host US nuclear waste? (United States)

    Neuzil, C.E.


    "Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."

  15. Mineralization Of PAHs In Coal-Tar Impacted Aquifer Sediments And Associated Microbial Community Structure Investigated With FISH (United States)

    The microbial community structure and mineralization of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated aquifer were investigated spatially using fluorescence in situ hybridization (FISH) and in laboratory-scale incubations of the aquifer sediments. DAPI-detect...

  16. Genetic relationship of organic bases of the quinoline and isoquinoline series from lignite semicoking tars with the initial biological material

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Podshibyakin, S.I.; Domogatskii, V.V.; Shvykin, A.Y.; Shavyrina, O.A.; Chilachava, K.B. [Leo Tolstoy State Pedagog University, Tula (Russian Federation)


    The genetic relationship of quinoline and isoquinoline compounds present in semicoking tars of Kimovsk lignites (near-Moscow fields) with the initial vegetable material is discussed. Transformation pathways of the native compounds in the course of lignite formation are suggested.

  17. Calcipotriol versus coal tar: a prospective randomized study in stable plaque psoriasis

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, V.; Kaur, I.; Kumar, B. [Postgraduate Institute of Medicinal Education & Research, Chandigarh (India)


    Topical therapies are the first line of treatment for patients with stable plaque psoriasis (SPP) affecting a limited body surface area. Very few trials comparing newer agents, such as 0.005% topical calcipotriol, with conventional modes of therapy, such as coal tar ointment, have been reported. A prospective, right-left randomized, investigator-blinded study with a 12-week treatment period and an 8-week follow-up period was performed. It was found that 0.005% calcipotriol ointment produced a faster initial response and had better cosmetic acceptability in patients, although after a long period of treatment, i.e. 12 weeks, 5% coal tar ointment had comparable efficacy. There was no statistically significant difference in the relapse rates between the two modalities.

  18. The TAR model: use of therapeutic state transitions for quality assurance reporting in chronic disease management. (United States)

    Gaikwad, R; Warren, J; Kenealy, T


    Chronic disease management represents one of the challenges for health informatics and demands the appropriate application of information technology for improved patient care. This paper presents an approach to quality assurance reporting wherein the recommendations of evidence-based clinical practice guidelines are considered in the context of empirical therapeutic state-transitions (in terms of changes in individual patient prescriptions over time). We apply a Transition-based Audit Report (TAR) model to antihypertensive prescribing and related data as stored in a New Zealand General Practice Management System database. The results provide a set of quality indicators and specific patient cohorts for potential practice quality improvement with strong linkage to the selected guidelines and observed practice patterns. We see the TAR model primarily as a tool to enable internal quality improvement efforts, but also to be of relevance for focusing pay-for-performance programs.

  19. A proteomic study of TAR-RNA binding protein (TRBP-associated factors

    Directory of Open Access Journals (Sweden)

    Chi Ya-Hui


    Full Text Available Abstract Background The human TAR RNA-binding protein, TRBP, was first identified and cloned based on its high affinity binding to the small hairpin trans-activation responsive (TAR RNA of HIV-1. TRBP has more recently been found to be a constituent of the RNA-induced silencing complex (RISC serving as a Dicer co-factor in the processing of the ~70 nucleotide pre-microRNAs(miRNAs to 21-25 nucleotide mature miRNAs. Findings Using co-immunoprecipitation and protein-identification by mass spectrometry, we characterized intracellular proteins that complex with TRBP. These interacting proteins include those that have been described to act in protein synthesis, RNA modifications and processing, DNA transcription, and cell proliferation. Conclusions Our findings provide a proteome of factors that may cooperate with TRBP in activities such as miRNA processing and in RNA interference by the RISC complex.

  20. Gasification of biomass in a fixed bed downdraft gasifier--a realistic model including tar. (United States)

    Barman, Niladri Sekhar; Ghosh, Sudip; De, Sudipta


    This study presents a model for fixed bed downdraft biomass gasifiers considering tar also as one of the gasification products. A representative tar composition along with its mole fractions, as available in the literature was used as an input parameter within the model. The study used an equilibrium approach for the applicable gasification reactions and also considered possible deviations from equilibrium to further upgrade the equilibrium model to validate a range of reported experimental results. Heat balance was applied to predict the gasification temperature and the predicted values were compared with reported results in literature. A comparative study was made with some reference models available in the literature and also with experimental results reported in the literature. Finally a predicted variation of performance of the gasifier by this validated model for different air-fuel ratio and moisture content was also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Formulation of Pine Tar Antidandruff Shampoo Assessment and Comparison With Some Commercial Formulations

    Directory of Open Access Journals (Sweden)

    M. Gharavi


    Full Text Available In this study a pine tar shampoo as a new antidandruff formulation is presented. Assessment of antidandruff preparations has been hampered by the lack of standardized schedules, and reliable methods of evaluation.Some antidandruff agents such as : Zinc pyri-thione pine tar, selenium sulphide and (sulfure were used in shampoos. Samples were coded as numbers 1,2 formulated by us and 3,4 formulated commercially. The grading scheme based on 10 point scale, and corneocyte count was carried out on 50 selected volunte¬ers. Corneocyte count and fungal study proved that pine tor shampoo is effective against pityrosporum ovale. Draize lest was used for determination of the irritancy potential of the samples. Results showed that samples numbered 1,2 were relatively innocous in comparison with the others. I urthermore,s kin sensitination test on rabbit also confirmed the results obtained by Draize test. Consumer judgments proved that all formulations were acceptable.

  2. Development of Catalytic Tar Decomposition in an Internally Circulating Fluidized-Bed Gasifier (United States)

    Xiao, Xianbin; Le, Due Dung; Morishita, Kayoko; Li, Liuyun; Takarada, Takayuki

    Biomass gasification in an Internally Circulating Fluidized-bed Gasifier (ICFG) using Ni/Ah03 as tar cracking catalyst is studied at low temperature. Reaction conditions of the catalyst bed are discussed, including catalytic temperature and steam ratio. High energy efficiency and hydrogen-rich, low-tar product gas can be achieved in a properly designed multi-stage gasification process, together with high-performance catalyst. In addition, considering the economical feasibility, a newly-developed Ni-loaded brown coal char is developed and evaluated as catalyst in a lab-scale fluidized bed gasifier with catalyst fixed bed. The new catalyst shows a good ability and a hopeful prospect oftar decomposition, gas quality improvement and catalytic stability.

  3. Coal-tar pavement sealants might substantially increase children's PAH exposures (United States)

    Williams, E. Spencer; Mahler, Barbara J.; Van Metre, Peter C.


    Dietary ingestion has been identified repeatedly as the primary route of human exposure to polycyclic aromatic hydrocarbons (PAHs), seven of which are classified as probable human carcinogens (B2 PAHs) by the U.S. EPA. Humans are exposed to PAHs through ingestion of cooked and uncooked foods, incidental ingestion of soil and dust, inhalation of ambient air, and absorption through skin. Although PAH sources are ubiquitous in the environment, one recently identified PAH source stands out: Coal-tar-based pavement sealant—a product applied to many parking lots, driveways, and even playgrounds primarily in the central, southern, and eastern U.S.—has PAH concentrations 100–1000 times greater than most other PAH sources. It was reported recently that PAH concentrations in house dust in residences adjacent to parking lots with coal-tar-based sealant were 25 times higher than in residences adjacent to unsealed asphalt parking lots.

  4. Measurement of water activity from shales through thermo hygrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Claudio [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo (GTEP)


    This paper presents a campaign of lab tests to obtain the water activity from shales and its pore fluid originated from offshore and onshore basin. The results of water activity from shales indicate that the values rang from 0.754 to 0.923 and for the pore fluid are between 0.987 and 0.940. The results show that the water activity of interstitial water can be obtained in 6 days and the rock in 10 days using the thermo hygrometer used. The degree of saturation, water content, kind and tenor of expansible and hydratable clay mineral, total and interconnected porosity, salinity of interstitial fluid and the capillary pressure of shale samples affected the results of water activity. (author)

  5. Developing a shale heterogeneity index to predict fracture response in the Mancos Shale (United States)

    DeReuil, Aubry; Birgenheier, Lauren; McLennan, John


    The interplay between sedimentary heterogeneity and fracture propagation in mudstone is crucial to assess the potential of low permeability rocks as unconventional reservoirs. Previous experimental research has demonstrated a relationship between heterogeneity and fracture of brittle rocks, as discontinuities in a rock mass influence micromechanical processes such as microcracking and strain localization, which evolve into macroscopic fractures. Though numerous studies have observed heterogeneity influencing fracture development, fundamental understanding of the entire fracture process and the physical controls on this process is still lacking. This is partly due to difficulties in quantifying heterogeneity in fine-grained rocks. Our study tests the hypothesis that there is a correlation between sedimentary heterogeneity and the manner in which mudstone is fractured. An extensive range of heterogeneity related to complex sedimentology is represented by various samples from cored intervals of the Mancos Shale. Samples were categorized via facies analysis consisting of: visual core description, XRF and XRD analysis, SEM and thin section microscopy, and reservoir quality analysis that tested porosity, permeability, water saturation, and TOC. Systematic indirect tensile testing on a broad variety of facies has been performed, and uniaxial and triaxial compression testing is underway. A novel tool based on analytically derived and statistically proven relationships between sedimentary geologic and geomechanical heterogeneity is the ultimate result, referred to as the shale heterogeneity index. Preliminary conclusions from development of the shale heterogeneity index reveal that samples with compositionally distinct bedding withstand loading at higher stress values, while texturally and compositionally homogeneous, bedded samples fail at lower stress values. The highest tensile strength results from cemented Ca-enriched samples, medial to high strength samples have

  6. Topical coal tar alone and in combination with oral methotrexate in management of psoriasis : a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Prasad PVS


    Full Text Available Thirty five patients admitted with psoriasis were analysed. 16 patients received 20% crude coal tar and 19 patients received 20% crude coal tar along with methotrexate in a weekly oral schedule (15mg/wk. After 4 weeks of therapy there was total clearence in 52.6% of the patients with combination therapy, whereas only 12.5% of the patients with conventional therapy achieved this.

  7. OLGA. Flexible tar removal for high efficient production of clean heat and power as well as sustainable fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Zwart, R.W.R. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)


    The content of the paper lists the following subjects: The tar problem; The OLGA technology; The development with Step 1: Demonstration of high-efficient production of clean heat and power, Step 2: Developing high-efficient production of sustainable fuels and chemicals, and Step 3: Demonstrating the flexibility of the OLGA tar removal technology. Further, attention is paid to Commercial gasification projects, and finally Conclusions are formulated and an Outlook is given.

  8. Search for a solvent using the UNIFAC method for separation of coal tar distillate by liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Egashira, R.; Watanabe, K. [Tokyo Institute of Technology, Tokyo (Japan)


    Firstly, the functional groups composing the solvent predicted to be appropriate for the separation of coal tar distillate were selected. Secondly, liquid-liquid equilibria between coal tar distillates and solvents containing fictitious components consisting of the above selected functional groups were estimated by UNIFAC to determine the effects of these groups on the distribution coefficients. Finally, according to these results, solvents containing real components were selected and compared. These results provide useful information for the selection of appropriate extracting solvents.

  9. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix. (United States)

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N


    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.

  10. Geomechanical and anisotropic acoustic properties of Lower Jurassic Posidonia Shales from Whitby (UK)

    NARCIS (Netherlands)

    Zhubayev, Alimzhan; Houben, Maartje; Smeulders, David; Barnhoorn, Auke


    The Posidonia Shale Formation (PSF) is one of the possible resource shales for unconventional gas in Northern Europe and currently is of great interest to hydrocarbon exploration and production. Due to low permeability of shales, economically viable production requires hydraulic fracturing of the

  11. Remediation of Coal Tar by STAR: Self-Sustaining Propagation Across Clean Gaps (United States)

    Gerhard, J.; Brown, J.; Torero, J. L.; Grant, G.


    Self-sustaining Treatment for Active Remediation (STAR) is an emerging remediation technique which utilizes a subsurface smouldering reaction to destroy non-aqueous phase liquids (NAPL) in situ. The reaction is self-sustaining in that, once ignited, the destructive smouldering front will propagate outwards using only the energy embedded in the contaminant. However, it is known that coal tar can occur as both a continuous pool as well as in distinct seams separated by clean intervals. This study evaluated the hypothesis that the smouldering reaction can cross or `jump' clean gaps by transferring enough heat through the gap to re-ignite the reaction in the contaminated region beyond. Column and 2D box experiments were performed at two scales to determine the maximum clean gap which could be jumped vertically and horizontally. Once the maximum gap had been determined, sensitivity to various in situ and engineering control parameters were explored including: coal tar layer thickness, soil permeability, moisture content, NAPL saturation, and air injection flowrate. High resolution thermocouples informed the progress of the reaction, continuous gas emissions analysis revealed when the reaction was active and dormant, and detailed excavation mapped the extent of remediation and whether gaps were successfully jumped. The work demonstrated that substantial clean gaps, approaching the limit of the laboratory scale, can be jumped by the smouldering reaction using convective heat transfer. Also observed in some cases was the mobilization of pre-heated coal tar into the clean gaps and the reaction's ability to propagate through and destroy coal tar both adjacent to and within the gaps. This work is providing new insights into the robust nature of the technology for in situ applications, and indicating how extreme the heterogeneity has to be before the reaction is interrupted and a new ignition location would be required.

  12. Effects of the chemical composition of coal tar pitch on dimensional changes during graphitization / Lay Shoko


    Shoko, Lay


    Coal can be converted to different chemical products through processes such destructive distillation. The destructive distillation of coal yields coke as the main product with byproducts such as coal tar pitch (CTP). CTP has a wide range of applications, especially in the carbon-processing industries. Typical applications include the manufacture of anodes used in many electrochemical processes, as well as Söderberg electrodes used in different ferroalloy processes. Söderberg el...

  13. Volatilization of polycyclic aromatic hydrocarbons from coal-tar-sealed pavement. (United States)

    Van Metre, Peter C; Majewski, Michael S; Mahler, Barbara J; Foreman, William T; Braun, Christopher L; Wilson, Jennifer T; Burbank, Teresa L


    Coal-tar-based pavement sealants, a major source of PAHs to urban water bodies, are a potential source of volatile PAHs to the atmosphere. An initial assessment of volatilization of PAHs from coal-tar-sealed pavement is presented here in which we measured summertime gas-phase PAH concentrations 0.03 m and 1.28 m above the pavement surface of seven sealed (six with coal-tar-based sealant and one with asphalt-based sealant) and three unsealed (two asphalt and one concrete) parking lots in central Texas. PAHs also were measured in parking lot dust. The geometric mean concentration of the sum of eight frequently detected PAHs (ΣPAH(8)) in the 0.03-m samples above sealed lots (1320 ng m(-3)) during the hottest part of the day was 20 times greater than that above unsealed lots (66.5 ng m(-3)). The geometric mean concentration in the 1.28-m samples above sealed lots (138 ng m(-3)) was five times greater than above unsealed lots (26.0 ng m(-3)). Estimated PAH flux from the sealed lots was 60 times greater than that from unsealed lots (geometric means of 88 and 1.4 μg m(-2) h(-1), respectively). Although the data set presented here is small, the much higher estimated fluxes from sealed pavement than from unsealed pavement indicate that coal-tar-based sealants are emitting PAHs to urban air at high rates compared to other paved surfaces. Published by Elsevier Ltd.

  14. Investigating Efficient Tar Management from Biomass and Waste to Energy Gasification Processes (United States)


    breaks tars down completely to carbon monoxide and hydrogen and then combusts these molecules or uses them in liquid fuel production. Literature shows...Toluene, Xylene CFM Cubic Feet per Minute CO Carbon Monoxide CO2 Carbon Dioxide CONUS Continental US DoD Department of Defense...amounts of methanol and ethanol, which are all flammable liquids. A current manual for a COTS diesel genset allows 35% aromatic fuel in the mix. As a

  15. Tar sand extraction by steam stimulation and steam drive: measurement of physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Linberg, W.R.


    The measurement of the following thermophysical properties of Utah tar sands is in progress: thermal conductivity, specific heat relative permeability, and viscosity (of the recovered bitumen). During the report period (October 1, 1978 to November 1, 1979), experimental procedures have been developed and a basic data set has been measured. Additionally, standard core analysis has been performed for four drill sites in the Asphalt Ridge, Utah area.



    MASALCI ŞAHİN, Gülgüney


    The Hittites who provided a political unity in Anatolia circa 2000 BC, calledthemselves as "nation of thousand gods". They celebrated many festivals fortheir god's name and performed rituals. Music which is an important componentof the culture is the one of the essential elements of Hittite’s religious ceremonies.There were lots of musical instruments in cultic feasts, libations, celebrating festivalsand funerals. The common idea was aboutGIŠ ŠÀ.A.TAR/ TIBULA which wasit was a ...

  17. Steam reforming of tar model compound using Pd catalyst on alumina tube. (United States)

    Nisamaneenate, Jurarat; Atong, Duangduen; Sricharoenchaikul, Viboon


    Gasification processing of biomass as a renewable energy source generates tar in the product gas. Tar leads to foul-up of the process equipment by corrosion and deposit formation. Catalytic elimination of tars is a crucial step to improve fuel gas quality from the process. In this study, a palladium catalyst on alumina (Pd/Al2O3) was used in steam reforming of benzene as a biomass gasification tar model compound. The reaction was carried out in a laboratory-scale tube reactor made of stainless steel to study the effect of reaction temperature, catalyst loading, quantity of palladium catalyst tubes, steam to carbon ratio (S/C), and residence time on catalytic performance and stability. Pd/Al2O3 showed high efficiency ofbenzene decomposition and enhanced the formation of fuel gas. Hydrogen and carbon conversions increased with reaction temperature. Although the benzene concentration increased from 2000 to 5000 mg/l, the catalytic performance at 600 degrees C and 800 degrees C was similar. 1.0 wt% Pd/Al2O3 showed excellent catalytic activity with the highest hydrogen and carbon conversions of 83% and 81%, respectively at 800 degrees C. This result is attributed to the smooth surface of the palladium, as noted from scanning electron microscopy imaging. An S/C of 2 provided the highest conversion. The addition of catalyst from four and seven tubes did not result in any great difference in terms of benzene cracking efficiency. The fourth cyclic usage of 1.0 wt% Pd/Al2O3 exhibited a higher conversion than that of 0.5 wt%.

  18. Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process


    M. A. A. Mohammed; A. Salmiaton; W. A. K. G. Wan Azlina; M. S. Mohamad Amran; Y. H. Taufiq-Yap


    Three types of local Malaysian dolomites were characterized to investigate their suitability for use as tar-cracking catalysts in the biomass gasification process. The dolomites were calcined to examine the effect of the calcination process on dolomite’s catalytic activity and properties. The modifications undergone by dolomites consequent to thermal treatment were investigated using various analytical methods. Thermogravimetric and differential thermal analyses indicated that the dolomites u...

  19. Volume fracturing of deep shale gas horizontal wells

    Directory of Open Access Journals (Sweden)

    Tingxue Jiang


    Full Text Available Deep shale gas reservoirs buried underground with depth being more than 3500 m are characterized by high in-situ stress, large horizontal stress difference, complex distribution of bedding and natural cracks, and strong rock plasticity. Thus, during hydraulic fracturing, these reservoirs often reveal difficult fracture extension, low fracture complexity, low stimulated reservoir volume (SRV, low conductivity and fast decline, which hinder greatly the economic and effective development of deep shale gas. In this paper, a specific and feasible technique of volume fracturing of deep shale gas horizontal wells is presented. In addition to planar perforation, multi-scale fracturing, full-scale fracture filling, and control over extension of high-angle natural fractures, some supporting techniques are proposed, including multi-stage alternate injection (of acid fluid, slick water and gel and the mixed- and small-grained proppant to be injected with variable viscosity and displacement. These techniques help to increase the effective stimulated reservoir volume (ESRV for deep gas production. Some of the techniques have been successfully used in the fracturing of deep shale gas horizontal wells in Yongchuan, Weiyuan and southern Jiaoshiba blocks in the Sichuan Basin. As a result, Wells YY1HF and WY1HF yielded initially 14.1 × 104 m3/d and 17.5 × 104 m3/d after fracturing. The volume fracturing of deep shale gas horizontal well is meaningful in achieving the productivity of 50 × 108 m3 gas from the interval of 3500–4000 m in Phase II development of Fuling and also in commercial production of huge shale gas resources at a vertical depth of less than 6000 m.

  20. Source apportionment of hydrocarbons measured in the Eagle Ford shale (United States)

    Roest, G. S.; Schade, G. W.


    The rapid development of unconventional oil and gas in the US has led to hydrocarbon emissions that are yet to be accurately quantified. Emissions from the Eagle Ford Shale in southern Texas, one of the most productive shale plays in the U.S., have received little attention due to a sparse air quality monitoring network, thereby limiting studies of air quality within the region. We use hourly atmospheric hydrocarbon and meteorological data from three locations in the Eagle Ford Shale to assess their sources. Data are available from the Texas commission of environmental quality (TCEQ) air quality monitors in Floresville, a small town southeast of San Antonio and just north of the shale area; and Karnes city, a midsize rural city in the center of the shale. Our own measurements were carried out at a private ranch in rural Dimmit County in southern Texas from April to November of 2015. Air quality monitor data from the TCEQ were selected for the same time period. Non-negative matrix factorization in R (package NMF) was used to determine likely sources and their contributions above background. While the TCEQ monitor data consisted mostly of hydrocarbons, our own data include both CO, CO2, O3, and NOx. We find that rural Dimmit County hydrocarbons are dominated by oil and gas development sources, while central shale hydrocarbons at the TCEQ monitoring sites have a mix of sources including car traffic. However, oil and gas sources also dominate hydrocarbons at Floresville and Karnes City. Toxic benzene is nearly exclusively due to oil and gas development sources, including flaring, which NMF identifies as a major hydrocarbon source in Karnes City. Other major sources include emissions of light weight alkanes (C2-C5) from raw natural gas emissions and a larger set of alkanes (C2-C10) from oil sources, including liquid storage tanks.

  1. Revegetation research on oil shale lands in the Piceance Basin

    Energy Technology Data Exchange (ETDEWEB)

    Redente, E.F.; Cook, C.W.


    The overall objective of this project is to study the effects of various reclamation practices on above- and belowground ecosystem development associated with disturbed oil shale lands in northwestern Colorado. Plant growth media that are being used in field test plots include retorted shale, soil over retorted shale, subsoil materials, and surface disturbed topsoils. Satisfactory stands of vegetation failed to establish on unleached retorted shale during two successive years of seeding. All seedings with soil over retorted shale were judged to be successful at the end of three growing seasons, but deep-rooted shrubs that depend upon subsoil moisture may have their growth hampered by the retorted shale substrate. Natural revegetation on areas with various degrees of disturbance shows that natural invasion and succession was slow at best. Invasion of species on disturbed topsoil plots showed that after three years introduced seed mixtures were more effective than native mixtures in occupying space and closing the community to invading species. Fertilizer appears to encourage the invasion of annual plants even after the third year following application. Long-term storage of topsoil without vegetation significantly decreases the mycorrhizal infection potential and, therefore, decreases the relative success of aboveground vegetation and subsequent succession. Ecotypic differentation related to growth and competitive ability, moisture stress tolerance, and reproductive potential have been found in five native shrub species. Germplasm sources of two grasses and two legumes, that have shown promise as revegetation species, have been collected and evaluated for the production of test seed. Fertilizer (nitrogen) when added to the soil at the time of planting may encourage competition from annual weeds to the detriment of seeded species.

  2. Sequence and structure requirements for specific recognition of HIV-1 TAR and DIS RNA by the HIV-1 Vif protein. (United States)

    Freisz, Séverine; Mezher, Joelle; Hafirassou, Lamine; Wolff, Philippe; Nominé, Yves; Romier, Christophe; Dumas, Philippe; Ennifar, Eric


    The HIV-1 Vif protein plays an essential role in the regulation of the infectivity of HIV-1 virion and in vivo pathogenesis. Vif neutralizes the human DNA-editing enzyme APOBEC3 protein, an antiretroviral cellular factor from the innate immune system, allowing the virus to escape the host defence system. It was shown that Vif is packaged into viral particles through specific interactions with the viral genomic RNA. Conserved and structured sequences from the 5'-noncoding region, such as the Tat-responsive element (TAR) or the genomic RNA dimerization initiation site (DIS), are primary binding sites for Vif. In the present study we used isothermal titration calorimetry to investigate sequence and structure determinants important for Vif binding to short viral RNA corresponding to TAR and DIS stem-loops. We showed that Vif specifically binds TAR and DIS in the low nanomolar range. In addition, Vif primarily binds the TAR UCU bulge, but not the apical loop. Determinants for Vif binding to the DIS loop-loop complex are likely more complex and involve the self-complementary loop together with the upper part of the stem. These results suggest that Tat-TAR inhibitors or DIS small molecule binders might be also effective to disturb Vif-TAR and Vif-DIS binding in order to reduce Vif packaging into virions.

  3. Field and Model Study to Define Baseline Conditions of Beached Oil Tar Balls along Florida’s First Coast

    Directory of Open Access Journals (Sweden)

    Peter Bacopoulos


    Full Text Available Anecdotal data are currently the best data available to describe baseline conditions of beached oil tar balls on Florida’s First Coast beaches. This study combines field methods and numerical modeling to define a data-driven knowledge base of oil tar ball baseline conditions. Outcomes from the field study include an established methodology for field data collection and laboratory testing of beached oil tar balls, spatial maps of collected samples and analysis of the data as to transport/wash-up trends. Archives of the electronic data, including GPS locations and other informational tags, and collected samples are presented, as are the physical and chemical analyses of the collected samples. The thrust of the physical and chemical analyses is to differentiate the collected samples into highly suspect oil tar balls versus false/non-oil tar ball samples. The numerical modeling involves two-dimensional hydrodynamic simulations of astronomic tides. Results from the numerical modeling include velocity residuals that show ebb-dominated residual currents exiting the inlet via an offshore, counter-rotating dual-eddy system. The tidally derived residual currents are used as one explanation for the observed transport trends. The study concludes that the port activity in the St. Johns River is not majorly contributing to the baseline conditions of oil tar ball wash-up on Florida’s First Coast beaches.

  4. Marketing 'less harmful, low-tar' cigarettes is a key strategy of the industry to counter tobacco control in China. (United States)

    Yang, Gonghuan


    While the 'low-tar' scheme has been widely recognised as a misleading tactic used by the tobacco industry to deceive the public about the true risks of cigarette smoking, a similar campaign using the slogan of 'less harmful, low tar' was launched by the Chinese tobacco industry, that is, State Tobacco Monopoly Administration/China National Tobacco Corporation and began to gain traction during the last decade. Despite the fact that no sufficient research evidence supports the claims made by the industry that these cigarettes are safer, the Chinese tobacco industry has continued to promote them using various health claims. As a result, the production and sales of 'less harmful, low-tar' cigarettes have increased dramatically since 2000. Recently, a tobacco industry senior researcher, whose main research area is 'less harmful, low-tar' cigarettes, was elected as an Academician to the prestigious Chinese Academy of Engineering for his contribution to developing 'less harmful, low-tar' cigarettes. The tobacco researcher's election caused an outcry from the tobacco control community and the general public in China. This paper discusses the Chinese tobacco industry's 'less harmful, low-tar' initiatives and calls for the Chinese government to stop the execution of this deceptive strategy for tobacco marketing.

  5. Effect of tar impregnation on carbon monoxide disintegration resistance in refractory lining of torpedo ladle

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Y.T.; Ko, Y.C.


    Investigates whether the Ludwig-Sorret effect could be used to cope with the lining disintegration caused by the deposition of carbon from carbon monoxide in torpedo ladles by impregnating with tar the aluminosilicate refractory brick which are not immune to carbon monoxide attack. Explains, on the basis of Ludwig-Sorret effect, that fluids diffuse from a region of higher temperature to that of lower temperature under the driving force of a temperature gradient; tar impregnated in torpedo ladle lining will flow toward the cold end during preheating and in service. Finds that the nondisintegration portion of the specimen contained neither carbon nor iron oxide-like substance. X-ray diffraction proved that an ironoxide-like substance, collected from the sites where carbon deposited, contained hematite and magnetite. Microscopic examination indicated that most residual carbon was found in the fine pores in the matrix. Concludes that it seems unlikely that tar impregnation for refractory brick that are not immune to carbon monoxide disintegration can significantly improve the disintegration resistance in torpedo ladles in service.

  6. Macroseepage of Methane and Light Alkanes at the La Brea Tar Pits in Los Angeles (United States)

    Doezema, L. A.; Weber, D.; Schuffels, S.; Marquez, A.; Taylor, C.; Raya, P.; Howard, D.; Contreras, P.; Fusco, K.; Morales, F.; Nwachuku, I.


    Natural seepage of methane has been theorized to be an underreported source of global methane. Recent studies have also suggested that light alkane flux that is given off in combination with the methane also is underreported in local and global budgets. This study investigated macroseepage, visible seepage, at the La Brea Tar Pits in Los Angeles, CA. More than 100 samples were collected from individual seeps using stainless steel flux chambers and canisters and were analyzed for methane and C2-C5 alkanes using gas chromatography equipped with flame ionization detectors (GC-FID). Maximum hourly fluxes from individual seeps were over 70 g of methane and over 720 mg, 670 mg, 200 mg, 20 mg, 14 mg, and 0.2 mg for ethane, propane, i-butane, n-butane, i-pentane, and n-pentane respectively. In addition to the active seepage sites, a significant amount of methane and light alkanes was also found to come from outgassing from standing tar deposits. Using gas ratios found in this study along with overall methane emission estimates from another recent study, the La Brea Tar Pits were found to be a significant source of light alkanes in the South Coast Air Basin, contributing approximately 2% towards the overall budget.

  7. PAHs underfoot: contaminated dust from coal-tar sealcoated pavement is widespread in the United States. (United States)

    Van Metre, Peter C; Mahler, Barbara J; Wilson, Jennifer T


    We reported in 2005 that runoff from parking lots treated with coal-tar-based sealcoat was a major source of polycyclic aromatic hydrocarbons (PAHs) to streams in Austin, Texas. Here we present new data from nine U.S. cities that show nationwide patterns in concentrations of PAHs associated with sealcoat. Dust was swept from parking lots in six cities in the central and eastern U.S., where coal-tar-based sealcoat dominates use, and three cities in the western U.S., where asphalt-based sealcoat dominates use. For six central and eastern cities, median SigmaPAH concentrations in dust from sealcoated and unsealcoated pavement are 2200 and 27 mg/kg, respectively. For three western cities, median SigmaPAH concentrations in dust from sealcoated and unsealcoated pavement are similar and very low (2.1 and 0.8 mg/kg, respectively). Lakes in the central and eastern cities where pavement was sampled have bottom sediments with higher PAH concentrations than do those in the western cities relative to degree of urbanization. Bottom-sediment PAH assemblages are similar to those of sealcoated pavement dust regionally, implicating coal-tar-based sealcoat as a PAH source to the central and eastern lakes. Concentrations of benzo[a]pyrene in dustfrom coal-tarsealcoated pavement and adjacent soils greatly exceed generic soil screening levels, suggesting that research on human-health risk is warranted.

  8. Cancer risk from incidental ingestion exposures to PAHs associated with coal-tar-sealed pavement. (United States)

    Williams, E Spencer; Mahler, Barbara J; Van Metre, Peter C


    Recent (2009-10) studies documented significantly higher concentrations of polycyclic aromatic hydrocarbons (PAHs) in settled house dust in living spaces and soil adjacent to parking lots sealed with coal-tar-based products. To date, no studies have examined the potential human health effects of PAHs from these products in dust and soil. Here we present the results of an analysis of potential cancer risk associated with incidental ingestion exposures to PAHs in settings near coal-tar-sealed pavement. Exposures to benzo[a]pyrene equivalents were characterized across five scenarios. The central tendency estimate of excess cancer risk resulting from lifetime exposures to soil and dust from nondietary ingestion in these settings exceeded 1 × 10(-4), as determined using deterministic and probabilistic methods. Soil was the primary driver of risk, but according to probabilistic calculations, reasonable maximum exposure to affected house dust in the first 6 years of life was sufficient to generate an estimated excess lifetime cancer risk of 6 × 10(-5). Our results indicate that the presence of coal-tar-based pavement sealants is associated with significant increases in estimated excess lifetime cancer risk for nearby residents. Much of this calculated excess risk arises from exposures to PAHs in early childhood (i.e., 0-6 years of age).

  9. Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal. (United States)

    Xie, Qinglong; Borges, Fernanda Cabral; Cheng, Yanling; Wan, Yiqin; Li, Yun; Lin, Xiangyang; Liu, Yuhuan; Hussain, Fida; Chen, Paul; Ruan, Roger


    In the present study, a microwave-assisted biomass gasification system was developed for syngas production. Three catalysts including Fe, Co and Ni with Al2O3 support were examined and compared for their effects on syngas production and tar removal. Experimental results showed that microwave is an effective heating method for biomass gasification. Ni/Al2O3 was found to be the most effective catalyst for syngas production and tar removal. The gas yield reached above 80% and the composition of tar was the simplest when Ni/Al2O3 catalyst was used. The optimal ratio of catalyst to biomass was determined to be 1:5-1:3. The addition of steam was found to be able to improve the gas production and syngas quality. Results of XRD analyses demonstrated that Ni/Al2O3 catalyst has good stability during gasification process. Finally, a new concept of microwave-assisted dual fluidized bed gasifier was put forward for the first time in this study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    Directory of Open Access Journals (Sweden)

    Gregory Upert


    Full Text Available Human immunodeficiency virus-1 (HIV-1 replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR, to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP cation-based vectors that efficiently deliver nucleotide analogs (PNAs into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins.

  11. Aggravated test of Intermediate temperature solid oxide fuel cells fed with tar-contaminated syngas (United States)

    Pumiglia, Davide; Vaccaro, Simone; Masi, Andrea; McPhail, Stephen J.; Falconieri, Mauro; Gagliardi, Serena; Della Seta, Livia; Carlini, Maurizio


    In the present work, the effects of a tar-containing simulated syngas on an IT-SOFC (Intermediate Temperature Solid Oxide Fuel Cell) are evaluated. Performance and degradation rate of a planar anode-supported cell, operating under a simulated syngas obtained from steam-enriched air gasification of biomass, have been studied. The simulated syngas was contaminated using toluene as a model tar. Polarization curves and electrochemical impedance spectroscopy have been carried out under different toluene concentrations. A cell was then operated under a constant current density on a long run. EIS measurements were made during the operation to analyze the degradation, and the voltage evolution of the cell was compared to that obtained from another identical cell operated in clean syngas for 1000 h under similar conditions. A deep post-mortem characterization was performed by means of XRD measurements, Raman spectroscopy and SEM/EDS analysis. Results show that the presence of tar dramatically reduces the electrochemical performances of the cell, affecting both activation and mass transport processes. Post-mortem analysis shows the formation of carbon deposits, oxidation of Ni to NiO, segregation of ZrO2 from the YSZ phase, particle coarsening and enhanced fragility of the anode structure, in good agreement with what suggested from the electrochemical results.

  12. Screening method for solvent selection used in tar removal by the absorption process. (United States)

    Masurel, Eve; Authier, Olivier; Castel, Christophe; Roizard, Christine


    The aim of this paper is the study of the treatment of flue gas issued from a process of biomass gasification in fluidized bed. The flue gas contains tar which should be selectively removed from the fuel components of interest (e.g. H2, CO and light hydrocarbons) to avoid condensation and deposits in internal combustion engine. The chosen flue gas treatment is the gas-liquid absorption using solvents, which present specific physicochemical properties (e.g. solubility, viscosity, volatility and chemical and thermal stability) in order to optimize the unit on energetic, technico-economic and environmental criteria. The rational choice of the proper solvent is essential for solving the tar issue. The preselection of the solvents is made using a Hansen parameter in order to evaluate the tar solubility and the saturation vapour pressure of the solvent is obtained using Antoine law. Among the nine families of screened solvents (alcohols, amines, ketones, halogenates, ethers, esters, hydrocarbons, sulphured and chlorinates), acids methyl esters arise as solvents of interest. Methyl oleate has then been selected and studied furthermore. Experimental liquid-vapour equilibrium data using bubbling point and absorption cell measurements and theoretical results obtained by the UNIFAC-Dortmund model confirm the high potential of this solvent and the good agreement between experimental and theoretical results.

  13. Oil shale research and coordination. Progress report, 1980-1981

    Energy Technology Data Exchange (ETDEWEB)

    Chappell, W R


    Purpose is to evaluate the environmental and health consequences of the release of toxic trace elements by an oil shale industry. Emphasis is on the five elements As, Mo, F, Se, and B. Results of four years' research are summarized and the research results over the past year are reported in this document. Reports by the task force are included as appendices, together with individual papers on various aspects of the subject topic. Separate abstracts were prepared for the eleven individual papers. A progress report on the IWG oil shale risk analysis is included at the end of this document. (DLC)

  14. Organic Substances from Unconventional Oil and Gas Production in Shale (United States)

    Orem, W. H.; Varonka, M.; Crosby, L.; Schell, T.; Bates, A.; Engle, M.


    Unconventional oil and gas (UOG) production has emerged as an important element in the US and world energy mix. Technological innovations in the oil and gas industry, especially horizontal drilling and hydraulic fracturing, allow for the enhanced release of oil and natural gas from shale compared to conventional oil and gas production. This has made commercial exploitation possible on a large scale. Although UOG is enormously successful, there is surprisingly little known about the effects of this technology on the targeted shale formation and on environmental impacts of oil and gas production at the surface. We examined water samples from both conventional and UOG shale wells to determine the composition, source and fate of organic substances present. Extraction of hydrocarbon from shale plays involves the creation and expansion of fractures through the hydraulic fracturing process. This process involves the injection of large volumes of a water-sand mix treated with organic and inorganic chemicals to assist the process and prop open the fractures created. Formation water from a well in the New Albany Shale that was not hydraulically fractured (no injected chemicals) had total organic carbon (TOC) levels that averaged 8 mg/L, and organic substances that included: long-chain fatty acids, alkanes, polycyclic aromatic hydrocarbons, heterocyclic compounds, alkyl benzenes, and alkyl phenols. In contrast, water from UOG production in the Marcellus Shale had TOC levels as high as 5,500 mg/L, and contained a range of organic chemicals including, solvents, biocides, scale inhibitors, and other organic chemicals at thousands of μg/L for individual compounds. These chemicals and TOC decreased rapidly over the first 20 days of water recovery as injected fluids were recovered, but residual organic compounds (some naturally-occurring) remained up to 250 days after the start of water recovery (TOC 10-30 mg/L). Results show how hydraulic fracturing changes the organic

  15. Using Neutrons to Study Fluid-Rock Interactions in Shales (United States)

    DiStefano, V. H.; McFarlane, J.; Anovitz, L. M.; Gordon, A.; Hale, R. E.; Hunt, R. D.; Lewis, S. A., Sr.; Littrell, K. C.; Stack, A. G.; Chipera, S.; Perfect, E.; Bilheux, H.; Kolbus, L. M.; Bingham, P. R.


    Recovery of hydrocarbons by hydraulic fracturing depends on complex fluid-rock interactions that we are beginning to understand using neutron imaging and scattering techniques. Organic matter is often thought to comprise the majority of porosity in a shale. In this study, correlations between the type of organic matter embedded in a shale and porosity were investigated experimentally. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis-gas chromatography, Differential Thermal Analysis/Thermogravimetric analysis, and organic solvent extraction with the resulting affluent analyzed by gas chromatography-mass spectrometry. The pore size distribution of the microporosity (~1 nm to 2 µm) in the Eagle Ford shales was measured before and after solvent extraction using small angle neutron scattering. Organics representing mass fractions of between 0.1 to 1 wt.% were removed from the shales and porosity generally increased across the examined microporosity range, particularly at larger pore sizes, approximately 50 nm to 2 μm. This range reflects extraction of accessible organic material, including remaining gas molecules, bitumen, and kerogen derivatives, indicating where the larger amount of organic matter in shale is stored. An increase in porosity at smaller pore sizes, ~1-3 nm, was also present and could be indicative of extraction of organic material stored in the inter-particle spaces of clays. Additionally, a decrease in porosity after extraction for a sample was attributed to swelling of pores with solvent uptake. This occurred in a shale with high clay content and low thermal maturity. The extracted hydrocarbons were primarily paraffinic, although some breakdown of larger aromatic compounds was observed in toluene extractions. The amount of hydrocarbon extracted and an overall increase in porosity appeared to be primarily correlated with the clay percentage in the shale. This study complements fluid transport neutron


    Directory of Open Access Journals (Sweden)

    A. Yu. Mishin


    Full Text Available The publication is devoted to the impact of shale gas revolution on the competitiveness ofU.S.industry. The author examines the shale revolution as a tool to improve competitiveness ofU.S.industry. The analysis of available publications and different opinions on this issue, given the impact factor model policy on the competitiveness of products and calculated generalized economic evaluation of cost share of natural gas in the value of industrial production, conclusions.

  17. Executive summary. Western oil shale developmet: a technology assessment

    Energy Technology Data Exchange (ETDEWEB)


    The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  18. Heavy oil reservoirs recoverable by thermal technology. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kujawa, P.


    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  19. Traditional Tar Production from the Anatolian Black Pine [Pinus nigra Arn. subsp. pallasiana (Lamb.) Holmboe var. pallasiana] and its usages in Afyonkarahisar, Central Western Turkey. (United States)

    Arı, Süleyman; Kargıoğlu, Mustafa; Temel, Mehmet; Konuk, Muhsin


    Tar is one example of a plant product used in folk medicine and it is obtained from Pinus nigra Arn. subsp. pallasiana (Lamb.) Holmboe, which is very common in the West Anatolian Region. Old trees that are good for kindling and have thick trucks are preferred to obtain tar. Tar is used not only as traditional medicine but also for protection against both endoparasites and ectoparasites. The objective of this study was to record the traditional method of obtaining tar and its usages in Afyonkarahisar which is located in the Western Anatolian Region of Turkey. In order to record the traditional methods of obtaining tar, we visited the villages of Doğlat, Kürtyurdu and Çatağıl in Afyonkarahisar (Turkey) June-July, 2012. Ethnobotanical data about the method of collection and traditional usages of tar were obtained through informal interviews with 26 participants (16 men and 10 women). Data concerning the method of tar collection and its traditional usages were recorded and photographed. The traditional method for obtaining tar from Pinus nigra subsp. pallasiana by local people was recorded and the local usages (curing ear pain in children, osteomyelitis, wounds, ulcers, eczema, acne, alopecia, fungus, foot-and-mouth disease in animals, mouth sores in sheep and goats, protection against endo- and ectoparasites, repellent for snakes, mice, flies (Tabanus bovinus) and ticks, and the prevention of water leakage from roofs) of tar are described. In this study, the traditional method for obtaining tar and the traditional usages of tar are explained. Documentation of the method of obtaining tar and its traditional usages may contribute to scientific research on the benefits and usages of tar in medicine, veterinary medicine, as well as other fields.

  20. La rivoluzione dello shale oil e i mercati finanziari (The Shale Oil Revolution and Financial Markets

    Directory of Open Access Journals (Sweden)

    Alessandro Roncaglia


    Full Text Available Shale oil exhibits structural characteristics that set it apart from ‘traditional’ oil, such as the shorter time required to build new plants, the shorter duration of the investment, and a lower ratio of fixed to variable costs. These differences imply a lower degree of oligopolistic control of the market, which in the medium term could lead to further downward pressure on prices. However, the high degree of financialization of these markets makes it a necessary condition, for such a regime change to materialize, that financial market operators internalize new behavioural and procedural conventions, adapted to the changed technological scenario. JEL codes: L13, L71, Q41

  1. Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Hall, V.S. (comp.)


    This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

  2. Cu isotopes in marine black shales record the Great Oxidation Event. (United States)

    Chi Fru, Ernest; Rodríguez, Nathalie P; Partin, Camille A; Lalonde, Stefan V; Andersson, Per; Weiss, Dominik J; El Albani, Abderrazak; Rodushkin, Ilia; Konhauser, Kurt O


    The oxygenation of the atmosphere ∼2.45-2.32 billion years ago (Ga) is one of the most significant geological events to have affected Earth's redox history. Our understanding of the timing and processes surrounding this key transition is largely dependent on the development of redox-sensitive proxies, many of which remain unexplored. Here we report a shift from negative to positive copper isotopic compositions (δ(65)CuERM-AE633) in organic carbon-rich shales spanning the period 2.66-2.08 Ga. We suggest that, before 2.3 Ga, a muted oxidative supply of weathering-derived copper enriched in (65)Cu, along with the preferential removal of (65)Cu by iron oxides, left seawater and marine biomass depleted in (65)Cu but enriched in (63)Cu. As banded iron formation deposition waned and continentally sourced Cu became more important, biomass sampled a dissolved Cu reservoir that was progressively less fractionated relative to the continental pool. This evolution toward heavy δ(65)Cu values coincides with a shift to negative sedimentary δ(56)Fe values and increased marine sulfate after the Great Oxidation Event (GOE), and is traceable through Phanerozoic shales to modern marine settings, where marine dissolved and sedimentary δ(65)Cu values are universally positive. Our finding of an important shift in sedimentary Cu isotope compositions across the GOE provides new insights into the Precambrian marine cycling of this critical micronutrient, and demonstrates the proxy potential for sedimentary Cu isotope compositions in the study of biogeochemical cycles and oceanic redox balance in the past.

  3. Environmental consequences of shale gas exploitation and the crucial role of rock microfracturing (United States)

    Renard, Francois


    The growing exploitation of unconventional gas and oil resources has dramatically changed the international market of hydrocarbons in the past ten years. However, several environmental concerns have also been identified such as the increased microseismicity, the leakage of gas into freshwater aquifers, and the enhanced water-rock interactions inducing the release of heavy metals and other toxic elements in the produced water. In all these processes, fluids are transported into a network of fracture, ranging from nanoscale microcracks at the interface between minerals and the kerogen of the source rock, to well-developed fractures at the meter scale. Characterizing the fracture network and the mechanisms of its formation remains a crucial goal. A major difficulty when analyzing fractures from core samples drilled at depth is that some of them are produced by the coring process, while some other are produced naturally at depth by the coupling between geochemical and mechanical forces. Here, I present new results of high resolution synchrotron 3D X-ray microtomography imaging of shale samples, at different resolutions, to characterize their microfractures and their mechanisms of formation. The heterogeneities of rock microstructure are also imaged, as they create local stress concentrations where cracks may nucleate or along which they propagate. The main results are that microcracks form preferentially along kerogen-mineral interfaces and propagate along initial heterogeneities according to the local stress direction, connecting to increase the total volume of fractured rock. Their lifetime is also an important parameter because they may seal by fluid circulation, fluid-rock interactions, and precipitation of a cement. Understanding the multi-scale processes of fracture network development in shales and the coupling with fluid circulation represents a key challenge for future research directions.

  4. Graphite Black shale of Vendas de Ceira, Coimbra, Portugal (United States)

    Quinta-Ferreira, Mário; Silva, Daniela; Coelho, Nuno; Gomes, Ruben; Santos, Ana; Piedade, Aldina


    The graphite black shale of Vendas de Ceira located in south of Coimbra (Portugal), caused serious instability problems in recent road excavation slopes. The problems increased with the rain, transforming shales into a dark mud that acquires a metallic hue when dried. The black shales are attributed to the Devonian or eventually, to the Silurian. At the base of the slope is observed graphite black shale and on the topbrown schist. Samples were collected during the slope excavation works. Undisturbed and less altered materials were selected. Further, sampling was made difficult as the graphite shale was covered by a thick layer of reinforced concrete, which was used to stabilize the excavated surfaces. The mineralogy is mainly constituted by quartz, muscovite, ilite, ilmenite and feldspar without the presence of expansive minerals. The organic matter content is 0.3 to 0.4%. The durability evaluated by the Slake Durability Test varies from very low (Id2 of 6% for sample A) to high (98% for sample C). The grain size distribution of the shale particles, was determined after disaggregation with water, which allowed verifying that sample A has 37% of fines (5% of clay and 32% of silt) and 63% of sand, while sample C has only 14% of fines (2% clay and 12% silt) and 86% sand, showing that the decrease in particle size contributes to reduce durability. The unconfined linear expansion confirms the higher expandability (13.4%) for sample A, reducing to 12.1% for sample B and 10.5% for sample C. Due the shale material degradated with water, mercury porosimetry was used. While the dry weight of the three samples does not change significantly, around 26 kN/m3, the porosity is much higher in sample A with 7.9% of pores, reducing to 1.4% in sample C. The pores size vary between 0.06 to 0.26 microns, does not seem to have any significant influence in the shale behaviour. In order to have a comparison term, a porosity test was carried out on the low weatherable brown shale, which is

  5. A heavy load for heavy ions

    CERN Multimedia


    On 25 September, the two large coils for the dipole magnet of ALICE, the LHC experiment dedicated to heavy ions, arrived at Point 2 on two heavy load trucks after a 1200 km journey from their assembly in Vannes, France.

  6. MultiMiTar: a novel multi objective optimization based miRNA-target prediction method.

    Directory of Open Access Journals (Sweden)

    Ramkrishna Mitra

    Full Text Available BACKGROUND: Machine learning based miRNA-target prediction algorithms often fail to obtain a balanced prediction accuracy in terms of both sensitivity and specificity due to lack of the gold standard of negative examples, miRNA-targeting site context specific relevant features and efficient feature selection process. Moreover, all the sequence, structure and machine learning based algorithms are unable to distribute the true positive predictions preferentially at the top of the ranked list; hence the algorithms become unreliable to the biologists. In addition, these algorithms fail to obtain considerable combination of precision and recall for the target transcripts that are translationally repressed at protein level. METHODOLOGY/PRINCIPAL FINDING: In the proposed article, we introduce an efficient miRNA-target prediction system MultiMiTar, a Support Vector Machine (SVM based classifier integrated with a multiobjective metaheuristic based feature selection technique. The robust performance of the proposed method is mainly the result of using high quality negative examples and selection of biologically relevant miRNA-targeting site context specific features. The features are selected by using a novel feature selection technique AMOSA-SVM, that integrates the multi objective optimization technique Archived Multi-Objective Simulated Annealing (AMOSA and SVM. CONCLUSIONS/SIGNIFICANCE: MultiMiTar is found to achieve much higher Matthew's correlation coefficient (MCC of 0.583 and average class-wise accuracy (ACA of 0.8 compared to the others target prediction methods for a completely independent test data set. The obtained MCC and ACA values of these algorithms range from -0.269 to 0.155 and 0.321 to 0.582, respectively. Moreover, it shows a more balanced result in terms of precision and sensitivity (recall for the translationally repressed data set as compared to all the other existing methods. An important aspect is that the true positive

  7. Modeling fluid injection induced microseismicity in shales (United States)

    Carcione, José M.; Currenti, Gilda; Johann, Lisa; Shapiro, Serge


    Hydraulic fracturing in shales generates a cloud of seismic—tensile and shear—events that can be used to evaluate the extent of the fracturing (event clouds) and obtain the hydraulic properties of the medium, such as the degree of anisotropy and the permeability. Firstly, we investigate the suitability of novel semi-analytical reference solutions for pore pressure evolution around a well after fluid injection in anisotropic media. To do so, we use cylindrical coordinates in the presence of a formation (a layer) and spherical coordinates for a homogeneous and unbounded medium. The involved differential equations are transformed to an isotropic diffusion equation by means of pseudo-spatial coordinates obtained from the spatial variables re-scaled by the permeability components. We consider pressure-dependent permeability components, which are independent of the spatial direction. The analytical solutions are compared to numerical solutions to verify their applicability. The comparison shows that the solutions are suitable for a limited permeability range and moderate to minor pressure dependences of the permeability. Once the pressure evolution around the well has been established, we can model the microseismic events. Induced seismicity by failure due to fluid injection in a porous rock depends on the properties of the hydraulic and elastic medium and in situ stress conditions. Here, we define a tensile threshold pressure above which there is tensile emission, while the shear threshold is obtained by using the octahedral stress criterion and the in situ rock properties and conditions. Subsequently, we generate event clouds for both cases and study the spatio-temporal features. The model considers anisotropic permeability and the results are spatially re-scaled to obtain an effective isotropic medium representation. For a 3D diffusion in spherical coordinates and exponential pressure dependence of the permeability, the results differ from those of the classical

  8. An exploratory study of air emissions associated with shale gas development and production in the Barnett Shale. (United States)

    Rich, Alisa; Grover, James P; Sattler, Melanie L


    Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a "fingerprint" of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8-2.0 ppm(v)). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1

  9. The possibilities of using shale gas in the Russian and European power industries (United States)

    Morozova, A. O.; Klimenko, V. V.


    Recent years have witnessed wide interest of the society in the problem of shale gas with its being discussed at different levels, up to political ones. The data on the shale gas resources worldwide and in individual regions are analyzed. The possibilities of shale gas production and prospects of using it for replacing the supplies of natural gas to Europe from Russia are evaluated. Matters concerned with the consumer properties of shale gas are considered. The likelihood of using shale gas in the thermal power industry of Russia is estimated.

  10. Comprehensive evaluation technology for shale gas sweet spots in the complex marine mountains, South China: A case study from Zhaotong national shale gas demonstration zone

    Directory of Open Access Journals (Sweden)

    Xing Liang


    Full Text Available The exploration and development of marine shale gas reservoirs in South China is challenged by complex geological and geographical conditions, such as strong transformation, post maturity, complex mountains and humanity. In this paper, the evaluations on shale gas sweet spots conducted in Zhaotong demonstration zone in the past six years and the construction of 500 million m3 shale gas productivity in Huangjinba region were discussed, and the results of shale gas reservoir evaluations in China and abroad were investigated. Accordingly, it is proposed that another two key indicators be taken into consideration in the evaluation on shale gas sweet spots in marine mountains in South China, i.e. shale gas preservation conditions and pore pressure, and the research on ground stress and natural microfracture systems should be strengthened. Then, systematic analysis was conducted by integrating shale gas multidisciplinary data and geological and engineering integration study was carried out. Finally, a 3D model, which was composed of “geophysics, reservoir geology, fracture system and rock geomechanics”, was established for shale gas reservoirs. Application practice shows that the geological engineering integration and the 3D reservoir modeling are effective methods for evaluating the shale gas sweet spots in complex marine mountains in South China. Besides, based on shale gas sweet spot evaluation, 3D spatial congruency and superposition effects of multiple attributes and multiple evaluation parameters are presented. Moreover, the short-plate principle is the factor controlling the distribution patterns and evaluation results of shale gas sweet spots. It is concluded that this comprehensive evaluation method is innovative and effective in avoiding complex geological and engineering risks, so it is of guiding significance in exploration and development of marine shale gas in South China.

  11. Heavy Menstrual Bleeding (United States)

    ... can cause heavy bleeding. • Medications—Blood thinners and aspirin can cause heavy menstrual bleeding. The copper intrauterine ... on the ovaries, fallopian tubes, and other pelvic structures. Endometrium: The lining of the uterus. Fibroids: Growths, ...

  12. The Status, Obstacles and Policy Recommendations of Shale Gas Development in China

    Directory of Open Access Journals (Sweden)

    Guanglin Pi


    Full Text Available The Chinese government has introduced numerous policies and development plans to boost its shale gas industry in recent years. However, China’s shale gas exploration and development is still in the initial stage and has been confronted with many challenges. This paper systematically analyzes the current status of China’s shale gas industry from five aspects for the first time—resource situation, exploration and development status, policy and planning situation, technology status and international cooperation—then respectively elaborates on the different obstacles of shale gas development in the short run and the medium and long term. We argue that short-term barriers to the Chinese shale gas industry mainly include objective factors, such as geological and surface conditions, shale gas proven reserves, technology innovation and environmental concerns, while some man-made obstacles (except for water scarcity may restrict shale gas development in the medium and long term. In order to better tackle the short-term challenges, this paper proposes policy recommendations from five perspectives: strengthening the investigation and evaluation of China’s shale gas resources; perfecting shale gas industry policy; establishing a national shale gas comprehensive experimental zone; enhancing scientific and technological research; and establishing a shale gas regulatory system with an emphasis on environmental protection and supervision.

  13. Petroleum potential of campano-maastrichtian shales of Anambra ...

    African Journals Online (AJOL)

    This corroborates with the results of the maceral analysis. The maceral composition is mainly vitrinitic and liptinitic of terrestrial origin, which are over 65 volume percent. The shales are moderately rich in organic matter. Extract yields and the bitumen ratio (mg HC/g TOC) revealed that these samples are at immature stage of ...

  14. Risks and risk governance in unconventional shale gas development. (United States)

    Small, Mitchell J; Stern, Paul C; Bomberg, Elizabeth; Christopherson, Susan M; Goldstein, Bernard D; Israel, Andrei L; Jackson, Robert B; Krupnick, Alan; Mauter, Meagan S; Nash, Jennifer; North, D Warner; Olmstead, Sheila M; Prakash, Aseem; Rabe, Barry; Richardson, Nathan; Tierney, Susan; Webler, Thomas; Wong-Parodi, Gabrielle; Zielinska, Barbara


    A broad assessment is provided of the current state of knowledge regarding the risks associated with shale gas development and their governance. For the principal domains of risk, we identify observed and potential hazards and promising mitigation options to address them, characterizing current knowledge and research needs. Important unresolved research questions are identified for each area of risk; however, certain domains exhibit especially acute deficits of knowledge and attention, including integrated studies of public health, ecosystems, air quality, socioeconomic impacts on communities, and climate change. For these, current research and analysis are insufficient to either confirm or preclude important impacts. The rapidly evolving landscape of shale gas governance in the U.S. is also assessed, noting challenges and opportunities associated with the current decentralized (state-focused) system of regulation. We briefly review emerging approaches to shale gas governance in other nations, and consider new governance initiatives and options in the U.S. involving voluntary industry certification, comprehensive development plans, financial instruments, and possible future federal roles. In order to encompass the multiple relevant disciplines, address the complexities of the evolving shale gas system and reduce the many key uncertainties needed for improved management, a coordinated multiagency federal research effort will need to be implemented.

  15. A comparative assessment of the economic benefits from shale gas ...

    African Journals Online (AJOL)



    Sep 1, 2014 ... coal bed gasification (proposed for the Waterberg coal fields) or further coal mining. If shale gas developments lead to a lower domestic gas price, it will impact on the appeal of both coal bed gasification and coal. The effects of a growing natural resource industry will vary based on the economic setting, the ...

  16. Processing use, and characterization of shale oil products (United States)

    Decora, Andrew W.; Kerr, Robert D.


    Oil shale is a potential source of oil that will supplement conventional sources for oil as our needs for fossil fuels begin to exceed our supplies. The resource may be mined and processed on the surface or it may be processed in situ. An overview of the potential technologies and environmental issues is presented. PMID:446454

  17. A comparative assessment of the economic benefits from shale gas ...

    African Journals Online (AJOL)

    To date, the Econometrix report (published in 2012) provides the only estimate of the economic impacts that may emanate from developing the Karoo's shale gas. The report uses a Keynesian multiplier model to estimate the impacts. The analysis performed in this paper estimates the economic impacts using a Computable ...

  18. The scientific assessment of shale gas development in South Africa

    CSIR Research Space (South Africa)

    Snyman-Van der Walt, Luanita


    Full Text Available This presentation discusses the scientific assessment of shale gas development in South Africa by Luanita Snyman Van der Walt at the 6th CSIR Conference: Ideas that work for industrial development, 5-6 October 2017, CSIR International Convention...

  19. Rapid estimation of organic nitrogen in oil shale wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Harris, G.J.; Daughton, C.G.


    Many of the characteristics of oil shale process wastewaters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogen heterocycles and aromatic amines. For the frequent performance assessment of waste treatment procsses designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential.

  20. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.


    Emission levels of selected trace metals from the Estonian oil shale fired power plant were studied. The plant is the largest single power plant in Estonia with an electricity production capacity of 1170 MWe (1995). Trace metals were sampled from the flue gases by a manual method incorporating...