WorldWideScience

Sample records for heavy rainfall events

  1. Analysis of convection-permitting simulations for capturing heavy rainfall events over Myanmar Region

    Science.gov (United States)

    Acierto, R. A. E.; Kawasaki, A.

    2017-12-01

    Perennial flooding due to heavy rainfall events causes strong impacts on the society and economy. With increasing pressures of rapid development and potential for climate change impacts, Myanmar experiences a rapid increase in disaster risk. Heavy rainfall hazard assessment is key on quantifying such disaster risk in both current and future conditions. Downscaling using Regional Climate Models (RCM) such as Weather Research and Forecast model have been used extensively for assessing such heavy rainfall events. However, usage of convective parameterizations can introduce large errors in simulating rainfall. Convective-permitting simulations have been used to deal with this problem by increasing the resolution of RCMs to 4km. This study focuses on the heavy rainfall events during the six-year (2010-2015) wet period season from May to September in Myanmar. The investigation primarily utilizes rain gauge observation for comparing downscaled heavy rainfall events in 4km resolution using ERA-Interim as boundary conditions using 12km-4km one-way nesting method. The study aims to provide basis for production of high-resolution climate projections over Myanmar in order to contribute for flood hazard and risk assessment.

  2. Projected changes of rainfall event characteristics for the Czech Republic

    Directory of Open Access Journals (Sweden)

    Svoboda Vojtěch

    2016-12-01

    Full Text Available Projected changes of warm season (May–September rainfall events in an ensemble of 30 regional climate model (RCM simulations are assessed for the Czech Republic. Individual rainfall events are identified using the concept of minimum inter-event time and only heavy events are considered. The changes of rainfall event characteristics are evaluated between the control (1981–2000 and two scenario (2020–2049 and 2070–2099 periods. Despite a consistent decrease in the number of heavy rainfall events, there is a large uncertainty in projected changes in seasonal precipitation total due to heavy events. Most considered characteristics (rainfall event depth, mean rainfall rate, maximum 60-min rainfall intensity and indicators of rainfall event erosivity are projected to increase and larger increases appear for more extreme values. Only rainfall event duration slightly decreases in the more distant scenario period according to the RCM simulations. As a consequence, the number of less extreme heavy rainfall events as well as the number of long events decreases in majority of the RCM simulations. Changes in most event characteristics (and especially in characteristics related to the rainfall intensity depend on changes in radiative forcing and temperature for the future periods. Only changes in the number of events and seasonal total due to heavy events depend significantly on altitude.

  3. Impact of climate change on extreme rainfall events and flood risk

    Indian Academy of Sciences (India)

    The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts ...

  4. Decadal features of heavy rainfall events in eastern China

    Science.gov (United States)

    Chen, Huopo; Sun, Jianqi; Fan, Ke

    2012-06-01

    Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the past 50 years, and the decadal features varied across regions. More HRE days are observed in the 1960s, 1980s, and 1990s over Northeast China (NEC); in the 1960s, 1970s, and 1990s over North China (NC); in the early 1960s, 1980s, and 2000s over the Huaihe River basin (HR); in the 1970s-1990s over the mid-lower reaches of the Yangtze River valley (YR); and in the 1970s and 1990s over South China (SC). These decadal changes of HRE days in eastern China are closely associated with the decadal variations of water content and stratification stability of the local atmosphere. The intensity of HREs in each sub-region is also characterized by strong decadal variability. The HRE intensity and frequency co-vary on the long-term trend, and show consistent variability over NEC, NC, and YR, but inconsistent variability over SC and HR. Further analysis of the relationships between the annual rainfall and HRE frequency as well as intensity indicates that the HRE frequency is the major contributor to the total rainfall variability in eastern China, while the HRE intensity shows only relative weak contribution.

  5. Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan.

    Science.gov (United States)

    Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey

    2017-04-01

    Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this

  6. Mesoscale and Local Scale Evaluations of Quantitative Precipitation Estimates by Weather Radar Products during a Heavy Rainfall Event

    Directory of Open Access Journals (Sweden)

    Basile Pauthier

    2016-01-01

    Full Text Available A 24-hour heavy rainfall event occurred in northeastern France from November 3 to 4, 2014. The accuracy of the quantitative precipitation estimation (QPE by PANTHERE and ANTILOPE radar-based gridded products during this particular event, is examined at both mesoscale and local scale, in comparison with two reference rain-gauge networks. Mesoscale accuracy was assessed for the total rainfall accumulated during the 24-hour event, using the Météo France operational rain-gauge network. Local scale accuracy was assessed for both total event rainfall and hourly rainfall accumulations, using the recently developed HydraVitis high-resolution rain gauge network Evaluation shows that (1 PANTHERE radar-based QPE underestimates rainfall fields at mesoscale and local scale; (2 both PANTHERE and ANTILOPE successfully reproduced the spatial variability of rainfall at local scale; (3 PANTHERE underestimates can be significantly improved at local scale by merging these data with rain gauge data interpolation (i.e., ANTILOPE. This study provides a preliminary evaluation of radar-based QPE at local scale, suggesting that merged products are invaluable for applications at very high resolution. The results obtained underline the importance of using high-density rain-gauge networks to obtain information at high spatial and temporal resolution, for better understanding of local rainfall variation, to calibrate remotely sensed rainfall products.

  7. From TRMM to GPM: How well can heavy rainfall be detected from space?

    Science.gov (United States)

    Prakash, Satya; Mitra, Ashis K.; Pai, D. S.; AghaKouchak, Amir

    2016-02-01

    In this study, we investigate the capabilities of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and the recently released Integrated Multi-satellitE Retrievals for GPM (IMERG) in detecting and estimating heavy rainfall across India. First, the study analyzes TMPA data products over a 17-year period (1998-2014). While TMPA and reference gauge-based observations show similar mean monthly variations of conditional heavy rainfall events, the multi-satellite product systematically overestimates its inter-annual variations. Categorical as well as volumetric skill scores reveal that TMPA over-detects heavy rainfall events (above 75th percentile of reference data), but it shows reasonable performance in capturing the volume of heavy rain across the country. An initial assessment of the GPM-based multi-satellite IMERG precipitation estimates for the southwest monsoon season shows notable improvements over TMPA in capturing heavy rainfall over India. The recently released IMERG shows promising results to help improve modeling of hydrological extremes (e.g., floods and landslides) using satellite observations.

  8. Physical Responses of Convective Heavy Rainfall to Future Warming Condition: Case Study of the Hiroshima Event

    Directory of Open Access Journals (Sweden)

    Kenshi Hibino

    2018-04-01

    Full Text Available An extreme precipitation event happened at Hiroshima in 2014. Over 200 mm of total rainfall was observed on the night of August 19th, which caused floods and many landslides. The rainfall event was estimated to be a rare event happening once in approximately 30 years. The physical response of this event to the change of the future atmospheric condition, which includes a temperature increase on average and convective stability change, is investigated in the present study using a 27-member ensemble experiment and pseudo global warming downscaling method. The experiment is integrated using the Japan Meteorological Research Institute non-hydrostatic regional climate model. A very high-resolution horizontal grid, 500 m, is used to reproduce dense cumulonimbus cloud formation causing heavy rainfall in the model. The future climate condition determined by a higher greenhouse gas concentration is prescribed to the model, in which the surface air temperature globally averaged is 4 K warmer than that in the preindustrial era. The total amounts of precipitation around the Hiroshima area in the future experiments are closer to or slightly lower than in the current experiments in spite of the increase in water vapor due to the atmospheric warming. The effect of the water vapor increase on extreme precipitation is found to be canceled out by the suppression of convection due to the thermal stability enhancement. The fact that future extreme precipitation like the Hiroshima event is not intensified is in contrast to the well-known result that extreme rainfall tends to be intensified in the future. The results in the present study imply that the response of extreme precipitation to global warming differs for each rainfall phenomenon.

  9. Diagnosing Possible Anthropogenic Contributions to Heavy Colorado Rainfall in September 2013

    Science.gov (United States)

    Pall, Pardeep; Patricola, Christina; Wehner, Michael; Stone, Dáithí; Paciorek, Christopher; Collins, William

    2015-04-01

    Unusually heavy rainfall occurred over the Colorado Front Range during early September 2013, with record or near-record totals recorded in several locations. It was associated predominantly with a stationary large-scale weather pattern (akin to the North American Monsoon, which occurs earlier in the year) that drove a strong plume of deep moisture inland from the Gulf of Mexico against the Front Range foothills. The resulting floods across the South Platte River basin impacted several thousands of people and many homes, roads, and businesses. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall, we adapt an existing event attribution paradigm of modelling an 'event that was' for September 2013 and comparing it to a modelled 'event that might have been' for that same time but for the absence of historical anthropogenic drivers of climate. Specifically, we first perform 'event that was' simulations with the regional Weather Research and Forecasting (WRF) model at 12 km resolution over North America, driven by NCEP2 re-analysis. We then re-simulate, having adjusted the re-analysis to 'event that might have been conditions' by modifying atmospheric greenhouse gas and other pollutant concentrations, temperature, humidity, and winds, as well as sea ice coverage, and sea-surface temperatures - all according to estimates from global climate model simulations. Thus our findings are highly conditional on the driving re-analysis and adjustments therein, but the setup allows us to elucidate possible mechanisms responsible for heavy Colorado rainfall in September 2013. Our model results suggests that, given an insignificant change in the pattern of large-scale driving weather, there is an increase in atmospheric water vapour under anthropogenic climate warming leading to a substantial increase in the probability of heavy rainfall occurring over the South Platte River basin in September 2013.

  10. Prediction of heavy rainfall over Chennai Metropolitan City, Tamil Nadu, India: Impact of microphysical parameterization schemes

    Science.gov (United States)

    Singh, K. S.; Bonthu, Subbareddy; Purvaja, R.; Robin, R. S.; Kannan, B. A. M.; Ramesh, R.

    2018-04-01

    This study attempts to investigate the real-time prediction of a heavy rainfall event over the Chennai Metropolitan City, Tamil Nadu, India that occurred on 01 December 2015 using Advanced Research Weather Research and Forecasting (WRF-ARW) model. The study evaluates the impact of six microphysical (Lin, WSM6, Goddard, Thompson, Morrison and WDM6) parameterization schemes of the model on prediction of heavy rainfall event. In addition, model sensitivity has also been evaluated with six Planetary Boundary Layer (PBL) and two Land Surface Model (LSM) schemes. Model forecast was carried out using nested domain and the impact of model horizontal grid resolutions were assessed at 9 km, 6 km and 3 km. Analysis of the synoptic features using National Center for Environmental Prediction Global Forecast System (NCEP-GFS) analysis data revealed strong upper-level divergence and high moisture content at lower level were favorable for the occurrence of heavy rainfall event over the northeast coast of Tamil Nadu. The study signified that forecasted rainfall was more sensitive to the microphysics and PBL schemes compared to the LSM schemes. The model provided better forecast of the heavy rainfall event using the logical combination of Goddard microphysics, YSU PBL and Noah LSM schemes, and it was mostly attributed to timely initiation and development of the convective system. The forecast with different horizontal resolutions using cumulus parameterization indicated that the rainfall prediction was not well represented at 9 km and 6 km. The forecast with 3 km horizontal resolution provided better prediction in terms of timely initiation and development of the event. The study highlights that forecast of heavy rainfall events using a high-resolution mesoscale model with suitable representations of physical parameterization schemes are useful for disaster management and planning to minimize the potential loss of life and property.

  11. Simulation of an extreme heavy rainfall event over Chennai, India using WRF: Sensitivity to grid resolution and boundary layer physics

    KAUST Repository

    Srinivas, C.V.

    2018-05-04

    In this study, the heavy precipitation event on 01 December 2015 over Chennai located on the southeast coast of India was simulated using the Weather Research and Forecast (WRF) model. A series of simulations were conducted using explicit convection and varying the planetary boundary layer (PBL) parameterization schemes. The model results were compared with available surface, satellite and Doppler Weather Radar observations. Simulations indicate strong, sustained moist convection associated with development of a mesoscale upper air cyclonic circulation, during the passage of a synoptic scale low-pressure trough caused heavy rainfall over Chennai and its surroundings. Results suggest that veering of wind with height associated with strong wind shear in the layer 800–400 hPa together with dry air advection facilitated development of instability and initiation of convection. The 1-km domain using explicit convection improved the prediction of rainfall intensity of about 450 mm and its distribution. The PBL physics strongly influenced the rainfall prediction by changing the location of upper air circulation, energy transport, moisture convergence and intensity of convection in the schemes YSU, MYJ and MYNN. All the simulations underestimated the first spell of the heavy rainfall. While YSU and MYJ schemes grossly underestimated the rainfall and dislocated the area of maximum rainfall, the higher order MYNN scheme simulated the rainfall pattern in better agreement with observations. The MYNN showed lesser mixing and simulated more humid boundary layer, higher convective available potential energy (CAPE) and stronger winds at mid-troposphere than did the other schemes. The MYNN also realistically simulated the location of upper air cyclonic flow and various dynamic and thermodynamic features. Consequently it simulated stronger moisture convergence and higher precipitation.

  12. Simulation of an extreme heavy rainfall event over Chennai, India using WRF: Sensitivity to grid resolution and boundary layer physics

    KAUST Repository

    Srinivas, C.V.; Yesubabu, V.; Hari Prasad, D.; Hari Prasad, K.B.R.R.; Greeshma, M.M.; Baskaran, R.; Venkatraman, B.

    2018-01-01

    In this study, the heavy precipitation event on 01 December 2015 over Chennai located on the southeast coast of India was simulated using the Weather Research and Forecast (WRF) model. A series of simulations were conducted using explicit convection and varying the planetary boundary layer (PBL) parameterization schemes. The model results were compared with available surface, satellite and Doppler Weather Radar observations. Simulations indicate strong, sustained moist convection associated with development of a mesoscale upper air cyclonic circulation, during the passage of a synoptic scale low-pressure trough caused heavy rainfall over Chennai and its surroundings. Results suggest that veering of wind with height associated with strong wind shear in the layer 800–400 hPa together with dry air advection facilitated development of instability and initiation of convection. The 1-km domain using explicit convection improved the prediction of rainfall intensity of about 450 mm and its distribution. The PBL physics strongly influenced the rainfall prediction by changing the location of upper air circulation, energy transport, moisture convergence and intensity of convection in the schemes YSU, MYJ and MYNN. All the simulations underestimated the first spell of the heavy rainfall. While YSU and MYJ schemes grossly underestimated the rainfall and dislocated the area of maximum rainfall, the higher order MYNN scheme simulated the rainfall pattern in better agreement with observations. The MYNN showed lesser mixing and simulated more humid boundary layer, higher convective available potential energy (CAPE) and stronger winds at mid-troposphere than did the other schemes. The MYNN also realistically simulated the location of upper air cyclonic flow and various dynamic and thermodynamic features. Consequently it simulated stronger moisture convergence and higher precipitation.

  13. Duration-frequency relationships of heavy rainfall in Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Álvaro José Back

    2012-06-01

    Full Text Available The purpose of this study was to adjust equations that establish relationships between rainfall events with different duration and data from weather stations in the state of Santa Catarina, Brazil. In this study, the relationships between different duration heavy rainfalls from 13 weather stations of Santa Catarina were analyzed. From series of maximum annual rainfalls, and using the Gumbel-Chow distribution, the maximum rainfall for durations between 5 min and 24 h were estimated considering return periods from 2 to 100 years. The data fit to the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test at 5 % significance. The coefficients of Bell's equation were adjusted to estimate the relationship between rainfall duration t (min and the return period T (y in relation to the maximum rainfall with a duration of 1 hour and a 10 year return period. Likewise, the coefficients of Bell's equation were adjusted based on the maximum rainfall with a duration of 1 day and a 10 year return period. The results showed that these relationships are viable to estimate short-duration rainfall events at locations where there are no rainfall records.

  14. Real-time Extremely Heavy Rainfall Forecast and Warning over Rajasthan During the Monsoon Season (2016)

    Science.gov (United States)

    Srivastava, Kuldeep; Pradhan, D.

    2018-01-01

    Two events of extremely heavy rainfall occurred over Rajasthan during 7-9 August 2016 and 19-21 August 2016. Due to these events, flooding occurred over east Rajasthan and affected the normal life of people. A low-pressure area lying over northwest Madhya Pradesh on 7 August 2016 moved north-westward and lay near east Rajasthan and adjoining northwest Madhya Pradesh on 8 and 9 August 2016. Under the influence of this low-pressure system, Chittorgarh district and adjoining areas of Rajasthan received extremely heavy rainfall of 23 cm till 0300 UTC of 8 August 2016 and 34 cm on 0300 UTC of 9 August 2016. A deep depression lying over extreme south Uttar Pradesh and adjoining northeast Madhya Pradesh on 19 August 2016 moved westward and gradually weakened into a depression on 20 August 2016. It further weakened into a low-pressure area and lay over east Rajasthan on 21 and 22 August 2016. Under the influence of this deep depression, Jhalawar received 31 cm and Baran received 25 cm on 19 August. On 20 August 2016, extremely heavy rainfall (EHR) occurred over Banswara (23.5 cm), Pratapgarh (23.2 cm) and Chittorgarh (22.7 cm) districts. In this paper, the performance of the National Centers for Environmental Prediction (NCEP) global forecast system (GFS) model for real-time forecast and warning of heavy to very heavy/EHR that occurred over Rajasthan during 7-9 August 2016 and 19-21 August 2016 has been examined. The NCEP GFS forecast rainfall (Day 1, Day 2 and Day 3) was compared with the corresponding observed gridded rainfall. Based on the predictions given by the NCEP GFS model for heavy rainfall and with their application in real-time rainfall forecast and warnings issued by the Regional Weather Forecasting Center in New Delhi, it is concluded that the model has predicted the wind pattern and EHR event associated with the low-pressure system very accurately on day 1 and day 2 forecasts and with small errors in intensity and space for day 3.

  15. Heavy daily-rainfall characteristics over the Gauteng Province

    African Journals Online (AJOL)

    2009-02-09

    Feb 9, 2009 ... the lowest number of heavy and very heavy rainfall days. The highest 24-h ... With regard to seasonal rainfall, the 1995/96 summer rainfall season had ..... The Gauteng Province is approximately 16 500 km2 in size. When the ...

  16. A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis

    Science.gov (United States)

    Bech, Joan; Pineda, Nicolau; Rigo, Tomeu; Aran, Montserrat; Amaro, Jéssica; Gayà, Miquel; Arús, Joan; Montanyà, Joan; der Velde, Oscar van

    2011-06-01

    This study presents an analysis of a severe weather case that took place during the early morning of the 2nd of November 2008, when intense convective activity associated with a rapidly evolving low pressure system affected the southern coast of Catalonia (NE Spain). The synoptic framework was dominated by an upper level trough and an associated cold front extending from Gibraltar along the Mediterranean coast of the Iberian Peninsula to SE France, which moved north-eastward. South easterly winds in the north of the Balearic Islands and the coast of Catalonia favoured high values of 0-3 km storm relative helicity which combined with moderate MLCAPE values and high shear favoured the conditions for organized convection. A number of multicell storms and others exhibiting supercell features, as indicated by Doppler radar observations, clustered later in a mesoscale convective system, and moved north-eastwards across Catalonia. They produced ground-level strong damaging wind gusts, an F2 tornado, hail and heavy rainfall. Total lightning activity (intra-cloud and cloud to ground flashes) was also relevant, exhibiting several classical features such as a sudden increased rate before ground level severe damage, as discussed in a companion study. Remarkable surface observations of this event include 24 h precipitation accumulations exceeding 100 mm in four different observatories and 30 minute rainfall amounts up to 40 mm which caused local flash floods. As the convective system evolved northward later that day it also affected SE France causing large hail, ground level damaging wind gusts and heavy rainfall.

  17. Vulnerability assessment of Central-East Sardinia (Italy to extreme rainfall events

    Directory of Open Access Journals (Sweden)

    A. Bodini

    2010-01-01

    Full Text Available In Sardinia (Italy, the highest frequency of extreme events is recorded in the Central-East area (3–4 events per year. The presence of high and steep mountains near the sea on the central and south-eastern coast, causes an East-West precipitation gradient in autumn especially, due to hot and moist currents coming from Africa. Soil structure and utilization make this area highly vulnerable to flash flooding and landslides. The specific purpose of this work is to provide a description of the heavy rainfall phenomenon on a statistical basis. The analysis mainly focuses on i the existence of trends in heavy rainfall and ii the characterization of the distribution of extreme events. First, to study possible trends in extreme events a few indices have been analyzed by the linear regression test. The analysis has been carried out at annual and seasonal scales. Then, extreme values analysis has been carried out by fitting a Generalized Pareto Distribution (GPD to the data. As far as trends are concerned, different results are obtained at the two temporal scales: significant trends are obtained at the seasonal scale which are masked at the annual scale. By combining trend analysis and GPD analysis, the vulnerability of the study area to the occurrence of heavy rainfall has been characterized. Therefore, this work might support the improvement of land use planning and the application of suitable prevention systems. Future work will consider the extension of the analysis to all Sardinia and the application of statistical methods taking into account the spatial correlation of extreme events.

  18. Influences of Appalachian orography on heavy rainfall and rainfall variability associated with the passage of hurricane Isabel by ensemble simulations

    Science.gov (United States)

    Oldaker, Guy; Liu, Liping; Lin, Yuh-Lang

    2017-12-01

    This study focuses on the heavy rainfall event associated with hurricane Isabel's (2003) passage over the Appalachian mountains of the eastern United States. Specifically, an ensemble consisting of two groups of simulations using the Weather Research and Forecasting model (WRF), with and without topography, is performed to investigate the orographic influences on heavy rainfall and rainfall variability. In general, the simulated ensemble mean with full terrain is able to reproduce the key observed 24-h rainfall amount and distribution, while the flat-terrain mean lacks in this respect. In fact, 30-h rainfall amounts are reduced by 75% with the removal of topography. Rainfall variability is also significantly increased with the presence of orography. Further analysis shows that the complex interaction between the hurricane and terrain along with contributions from varied microphysics, cumulus parametrization, and planetary boundary layer schemes have a pronounced effect on rainfall and rainfall variability. This study follows closely with a previous study, but for a different TC case of Isabel (2003). It is an important sensitivity test for a different TC in a very different environment. This study reveals that the rainfall variability behaves similarly, even with different settings of the environment.

  19. Characteristics of the event mean concentration (EMC) from rainfall runoff on an urban highway

    International Nuclear Information System (INIS)

    Lee, Ju Young; Kim, Hyoungjun; Kim, Youngjin; Han, Moo Young

    2011-01-01

    The purpose of this study was to investigate the characterization of the event mean concentration (EMC) of runoff during heavy precipitation events on highways. Highway runoff quality data were collected from the 7th highway, in South Korea during 2007-2009. The samples were analyzed for runoff quantity and quality parameters such as COD cr , TSS, TPHs, TKN, NO 3 , TP, PO 4 and six heavy metals, e.g., As, Cu, Cd, Ni, Pb and Zn. Analysis of resulting hydrographs and pollutant graphs indicates that the peak of the pollutant concentrations in runoff occurs 20 min after the first rainfall runoff occurrence. The first flush effect depends on the preceding dry period and the rainfall intensity. The results of this study can be used as a reference for water quality management of urban highways. - Research highlights: → Field test on urban highway were performed to 50 of 100 storm events for 3 years. → The peak pollutant concentrations occurs 20 min after the first runoff. → The first flush effect depends on the preceding dry period and rainfall intensity. → Relationship between runoff and event mean concentration for SS and COD. → A crest of the EMC by 70-80 m 3 /event and decreasing EMC after 70-80 m 3 /event. - This study investigate the characterization of the EMC of runoff during rainfall event on highway.

  20. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    Science.gov (United States)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  1. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin

    Science.gov (United States)

    Chawla, Ila; Osuri, Krishna K.; Mujumdar, Pradeep P.; Niyogi, Dev

    2018-02-01

    Reliable estimates of extreme rainfall events are necessary for an accurate prediction of floods. Most of the global rainfall products are available at a coarse resolution, rendering them less desirable for extreme rainfall analysis. Therefore, regional mesoscale models such as the advanced research version of the Weather Research and Forecasting (WRF) model are often used to provide rainfall estimates at fine grid spacing. Modelling heavy rainfall events is an enduring challenge, as such events depend on multi-scale interactions, and the model configurations such as grid spacing, physical parameterization and initialization. With this background, the WRF model is implemented in this study to investigate the impact of different processes on extreme rainfall simulation, by considering a representative event that occurred during 15-18 June 2013 over the Ganga Basin in India, which is located at the foothills of the Himalayas. This event is simulated with ensembles involving four different microphysics (MP), two cumulus (CU) parameterizations, two planetary boundary layers (PBLs) and two land surface physics options, as well as different resolutions (grid spacing) within the WRF model. The simulated rainfall is evaluated against the observations from 18 rain gauges and the Tropical Rainfall Measuring Mission Multi-Satellite Precipitation Analysis (TMPA) 3B42RT version 7 data. From the analysis, it should be noted that the choice of MP scheme influences the spatial pattern of rainfall, while the choice of PBL and CU parameterizations influences the magnitude of rainfall in the model simulations. Further, the WRF run with Goddard MP, Mellor-Yamada-Janjic PBL and Betts-Miller-Janjic CU scheme is found to perform best in simulating this heavy rain event. The selected configuration is evaluated for several heavy to extremely heavy rainfall events that occurred across different months of the monsoon season in the region. The model performance improved through incorporation

  2. Impact of climate change on extreme rainfall events and flood risk in ...

    Indian Academy of Sciences (India)

    events and flood risk in India. P Guhathakurta∗. , O P Sreejith and P A Menon. India Meteorological Department, Shivajinagar, Pune 411 005, India. ∗ e-mail: pguhathakurta@rediffmail.com. The occurrence of exceptionally heavy rainfall events and associated flash floods in many areas during recent years motivate us to ...

  3. A Synoptic Climatology of Heavy Rain Events in the Lake Eyre and Lake Frome Catchments

    Directory of Open Access Journals (Sweden)

    Michael John Pook

    2014-11-01

    Full Text Available The rare occasions when Lake Eyre in central, southern Australia fills with water excite great interest and produce major ecological responses. The filling of other smaller lakes such as Lake Frome, have less impact but can contribute important information about the current and past climates of these arid regions. Here, the dominant synoptic systems responsible for heavy rainfall over the catchments of Lake Eyre and Lake Frome since 1950 are identified and compared. Heavy rain events are defined as those where the mean catchment rainfall for 24 hours reaches a prescribed threshold. There were 25 such daily events at Lake Eyre and 28 in the Lake Frome catchment. The combination of a monsoon trough at mean sea level and a geopotential trough in the mid-troposphere was found to be the synoptic system responsible for the majority of the heavy rain events affecting Lake Eyre and one in five of the events at Lake Frome. Complex fronts where subtropical interactions occurred with Southern Ocean fronts also contributed over 20% of the heavy rainfall events in the Frome catchment. Surface troughs without upper air support were found to be associated with 10% or fewer of events in each catchment, indicating that mean sea level pressure analyses alone do not adequately capture the complexity of the heavy rainfall events. At least 80% of the heavy rain events across both catchments occurred when the Southern Oscillation Index (SOI was in its positive phase, and for Lake Frome, the SOI exceeded +10 on 60% of occasions, suggesting that the background atmospheric state in the Pacific Ocean was tilted towards La Niña. Hydrological modeling of the catchments suggests that the 12-month running mean of the soil moisture in a sub-surface layer provides a low frequency filter of the precipitation and matches measured lake levels relatively well.

  4. Hydrometeorological and statistical analyses of heavy rainfall in Midwestern USA

    Science.gov (United States)

    Thorndahl, S.; Smith, J. A.; Krajewski, W. F.

    2012-04-01

    Lake Michigan. The radar observations are processed using Hydro-NEXRAD algorithms in order to produce rainfall estimates with a spatial resolution of 1 km and a temporal resolution of 15 min. The rainfall estimates are bias-corrected on a daily basis using a network of rain gauges. Besides a thorough evaluation of the different challenges in investigating heavy rain as described above the study includes suggestions for frequency analysis methods as well as studies of hydrometeorological features of single events.

  5. Relationships between High Impact Tropical Rainfall Events and Environmental Conditions

    Science.gov (United States)

    Painter, C.; Varble, A.; Zipser, E. J.

    2017-12-01

    While rainfall increases as moisture and vertical motion increase, relationships between regional environmental conditions and rainfall event characteristics remain more uncertain. Of particular importance are long duration, heavy rain rate, and significant accumulation events that contribute sizable fractions of overall precipitation over short time periods. This study seeks to establish relationships between observed rainfall event properties and environmental conditions. Event duration, rain rate, and rainfall accumulation are derived using the Tropical Rainfall Measuring Mission (TRMM) 3B42 3-hourly, 0.25° resolution rainfall retrieval from 2002-2013 between 10°N and 10°S. Events are accumulated into 2.5° grid boxes and matched to monthly mean total column water vapor (TCWV) and 500-hPa vertical motion (omega) in each 2.5° grid box, retrieved from ERA-interim reanalysis. Only months with greater than 3 mm/day rainfall are included to ensure sufficient sampling. 90th and 99th percentile oceanic events last more than 20% longer and have rain rates more than 20% lower than those over land for a given TCWV-omega condition. Event duration and accumulation are more sensitive to omega than TCWV over oceans, but more sensitive to TCWV than omega over land, suggesting system size, propagation speed, and/or forcing mechanism differences for land and ocean regions. Sensitivities of duration, rain rate, and accumulation to TCWV and omega increase with increasing event extremity. For 3B42 and ERA-Interim relationships, the 90th percentile oceanic event accumulation increases by 0.93 mm for every 1 Pa/min change in rising motion, but this increases to 3.7 mm for every 1 Pa/min for the 99th percentile. Over land, the 90th percentile event accumulation increases by 0.55 mm for every 1 mm increase in TCWV, whereas the 99th percentile increases by 0.90 mm for every 1 mm increase in TCWV. These changes in event accumulation are highly correlated with changes in event

  6. Analyses of the temporal and spatial structures of heavy rainfall from a catalog of high-resolution radar rainfall fields

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Smith, James A.; Baeck, Mary Lynn

    2014-01-01

    that relate to size, structure and evolution of heavy rainfall. Extreme rainfall is also linked with severe weather (tornados, large hail and damaging wind). The diurnal cycle of rainfall for heavy rain days is characterized by an early peak in the largest rainfall rates, an afternoon-evening peak in rain...

  7. Characterization of rainfall events and correlation with reported disasters: A case in Cali, Colombia

    Science.gov (United States)

    Canon, C. C.; Tischbein, B.; Bogardi, J.

    2017-12-01

    Flood maps generally display the area that a river might overflow after a rainfall event takes place, under different scenarios of climate, land use/land cover, and/or failure of dams and dikes. However, rainfall is not limited to feed runoff and enlarge the river: it also causes minor disasters outside the map's highlighted area. The city of Cali in Colombia illustrates very well this situation: its flat topography and its major critical infrastructure near the river make it flood-risk prone; a heavy rainfall event would potentially deplete drinking water, electrical power and drainage capacity, and trigger outbreaks of water-borne diseases in the whole city, not only in the flooded area. Unfortunately, the government's disaster prevention strategies focus on the floodplain and usually overlook the aftermath of these minor disasters for being milder and scattered. Predicted losses in flood maps are potentially big, while those from minor disasters over the city are small but real, and citizens, utility companies and urban maintenance funds must constantly take them over. Mitigation and prevention of such minor disasters can save money for the development of the city in other aspects. This paper characterizes hundreds of rainfall events selected from 10-min step time series from 2006 to 2017, and finds their correlation with reported rainfall-related disasters throughout Cali, identified by date and neighborhood. Results show which rainfall parameters are most likely to indicate the occurrence of such disasters and their approximate location in the urban area of Cali. These results, when coupled with real-time observations of rainfall data and simulations of drainage network response, may help citizens and emergency bodies prioritize zones to assist during heavy storms. In the long term, stakeholders may also implement low impact development solutions in these zones to reduce flood risks.

  8. Cloud structure evolution of heavy rain events from the East-West Pacific Ocean: a combined global observation analysis

    Science.gov (United States)

    Sekaranom, A. B.; Nurjani, E.; Pujiastuti, I.

    2018-04-01

    Heavy rain events are often associated with flood hazards as one of the most devastating events across the globe. It is therefore essential to identify the evolution of heavy rainfall cloud structures, primarily from global satellite observation, as a tool to provide better disaster early warning systems. To identify the mechanism of heavy rainfall systems and its relationship with cloud development, especially over The Pacific Ocean, we aim to study the westward evolution of the convective systems over this area. Several datasets from Tropical Rainfall Measuring Mission (TRMM), CloudSat GEOPROF product, and ECMWF-reanalysis (ERA) interim were utilized to characterize the evolution. Geolocation and orbital time-lag analysis of the three different datasets for more than 8 years (2006-2014) could provide information related to the evolution of cloud structures associated with heavy rain events. In the first step, a heavy rainfall database was generated from TRMM. The CloudSat coordinate and time position were then matched with TRMM coordinate and time position. All of the processes were programatically conducted in fortran programming language. The result shows a transition between East and West Pacific ocean for TMI data.

  9. Possible impacts of climate change on heavy rainfall-related flooding risks in Ontario, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.S.; Li, G.; Li, Q; Auld, H. [Meteorological Service of Canada Branch, Environment Canada, Toronto, Ontario (Canada)

    2008-07-01

    The overarching purpose of this study is to project changes in occurrence frequency of future heavy rainfall and high-flow events under downscaled climate change scenarios for four selected river watersheds (Grand, Humber, Thames, Rideau Rivers) in Ontario, Canada. This study comprises of three major parts: (1) historical simulation modeling to verify the events, (2) statistical downscaling to provide station-scale climate change scenarios, and (3) estimates of changes in frequency and magnitude of future events in 21st century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology/hydrology and various regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This talk will introduce this research project and outline the modeling exercise and result verification process. The major findings on future estimates from the study will be summarized in the presentation as well. The results show that under downscaled climate change scenarios, frequency of the future heavy rainfall and high-/low-flow events for four selected river basins in Ontario could increase in the future. One of the major conclusions from the studies is that the procedures used in the study have the potential to be incorporated into municipal/community emergency response plans, thus providing them with real-time forecasting information to minimize the risks. The implementation of the significant increases in future heavy rainfall-related flooding risks should be taken into consideration when revising engineering infrastructure design standards (including infrastructure maintenance and new construction) and developing adaptation strategies and policies. (author)

  10. Possible impacts of climate change on heavy rainfall-related flooding risks in Ontario, Canada

    International Nuclear Information System (INIS)

    Cheng, C.S.; Li, G.; Li, Q; Auld, H.

    2008-01-01

    The overarching purpose of this study is to project changes in occurrence frequency of future heavy rainfall and high-flow events under downscaled climate change scenarios for four selected river watersheds (Grand, Humber, Thames, Rideau Rivers) in Ontario, Canada. This study comprises of three major parts: (1) historical simulation modeling to verify the events, (2) statistical downscaling to provide station-scale climate change scenarios, and (3) estimates of changes in frequency and magnitude of future events in 21st century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology/hydrology and various regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This talk will introduce this research project and outline the modeling exercise and result verification process. The major findings on future estimates from the study will be summarized in the presentation as well. The results show that under downscaled climate change scenarios, frequency of the future heavy rainfall and high-/low-flow events for four selected river basins in Ontario could increase in the future. One of the major conclusions from the studies is that the procedures used in the study have the potential to be incorporated into municipal/community emergency response plans, thus providing them with real-time forecasting information to minimize the risks. The implementation of the significant increases in future heavy rainfall-related flooding risks should be taken into consideration when revising engineering infrastructure design standards (including infrastructure maintenance and new construction) and developing adaptation strategies and policies. (author)

  11. The relationship of lightning activity and short-duration rainfall events during warm seasons over the Beijing metropolitan region

    Science.gov (United States)

    Wu, Fan; Cui, Xiaopeng; Zhang, Da-Lin; Qiao, Lin

    2017-10-01

    The relationship between lightning activity and rainfall associated with 2925 short-duration rainfall (SDR) events over the Beijing metropolitan region (BMR) is examined during the warm seasons of 2006-2007, using the cloud-to-ground (CG) and intracloud (IC) lightning data from Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 and 5-min rainfall data from automatic weather stations (AWSs). An optimal radius of 10 km around selected AWSs is used to determine the lightning-rainfall relationship. The lightning-rainfall correlations vary significantly, depending upon the intensity of SDR events. That is, correlation coefficient (R 0.7) for the short-duration heavy rainfall (SDHR, i.e., ≥ 20 mm h- 1) events is found higher than that (R 0.4) for the weak SDR (i.e., 5-10 mm h- 1) events, and lower percentage of the SDHR events (< 10%) than the weak SDR events (40-50%) are observed with few flashes. Significant time-lagged correlations between lightning and rainfall are also found. About 80% of the SDR events could reach their highest correlation coefficients when the associated lightning flashes shift at time lags of < 25 min before and after rainfall begins. Those events with lightning preceding rainfall account for 50-60% of the total SDR events. Better lightning-rainfall correlations can be attained when time lags are incorporated, with the use of total (CG and IC) lightning data. These results appear to have important implications for improving the nowcast of SDHR events.

  12. Soil erosion under multiple time-varying rainfall events

    Science.gov (United States)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  13. Variability of extreme weather events over the equatorial East Africa, a case study of rainfall in Kenya and Uganda

    Science.gov (United States)

    Ongoma, Victor; Chen, Haishan; Omony, George William

    2018-01-01

    This study investigates the variability of extreme rainfall events over East Africa (EA), using indices from the World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI). The analysis was based on observed daily rainfall from 23 weather stations, with length varying within 1961 and 2010. The indices considered are: wet days ( R ≥1 mm), annual total precipitation in wet days (PRCPTOT), simple daily intensity index (SDII), heavy precipitation days ( R ≥ 10 mm), very heavy precipitation days ( R ≥ 20 mm), and severe precipitation ( R ≥ 50 mm). The non-parametric Mann-Kendall statistical analysis was carried out to identify trends in the data. Temporal precipitation distribution was different from station to station. Almost all indices considered are decreasing with time. The analysis shows that the PRCPTOT, very heavy precipitation, and severe precipitation are generally declining insignificantly at 5 % significant level. The PRCPTOT is evidently decreasing over Arid and Semi-Arid Land (ASAL) as compared to other parts of EA. The number of days that recorded heavy rainfall is generally decreasing but starts to rise in the last decade although the changes are insignificant. Both PRCPTOT and heavy precipitation show a recovery in trend starting in the 1990s. The SDII shows a reduction in most areas, especially the in ASAL. The changes give a possible indication of the ongoing climate variability and change which modify the rainfall regime of EA. The results form a basis for further research, utilizing longer datasets over the entire region to reduce the generalizations made herein. Continuous monitoring of extreme events in EA is critical, given that rainfall is projected to increase in the twenty-first century.

  14. Predicting extreme rainfall events over Jeddah, Saudi Arabia: Impact of data assimilation with conventional and satellite observations

    KAUST Repository

    Viswanadhapalli, Yesubabu

    2015-08-20

    The impact of variational data assimilation for predicting two heavy rainfall events that caused devastating floods in Jeddah, Saudi Arabia is studied using the Weather Research and Forecasting (WRF) model. On 25 November 2009 and 26 January 2011, the city was deluged with more than double the annual rainfall amount caused by convective storms. We used a high resolution, two-way nested domain WRF model to simulate the two rainfall episodes. Simulations include control runs initialized with National Center for Environmental Prediction (NCEP) Global Forecasting System (GFS) data and 3-Dimensional Variational (3DVAR) data assimilation experiments conducted by assimilating NCEP prepbufr and radiance observations. Observations from Automated Weather Stations (AWS), synoptic charts, radar reflectivity and satellite pictures from the Presidency of Meteorology and Environment (PME), Jeddah, Saudi Arabia are used to assess the forecasting results. To evaluate the impact of the different assimilated observational datasets on the simulation of the major flooding event of 2009, we conducted 3DVAR experiments assimilating individual sources and a combination of all data sets. Results suggest that while the control run had a tendency to predict the storm earlier than observed, the assimilation of profile observations greatly improved the model\\'s thermodynamic structure and lead to better representation of simulated rainfall both in timing and amount. The experiment with assimilation of all available observations compared best with observed rainfall in terms of timing of the storm and rainfall distribution, demonstrating the importance of assimilating different types of observations. Retrospective experiments with and without data assimilation, for three different model lead times (48, 72 and 96-h), were performed to examine the skill of WRF model to predict the heavy rainfall events. Quantitative rainfall analysis of these simulations suggests that 48-h lead time runs with

  15. Reduced salinity increases susceptibility of zooxanthellate jellyfish to herbicide toxicity during a simulated rainfall event

    International Nuclear Information System (INIS)

    Klein, Shannon G.; Pitt, Kylie A.; Carroll, Anthony R.

    2016-01-01

    Accurately predicting how marine biota are likely to respond to changing ocean conditions requires accurate simulation of interacting stressors, exposure regimes and recovery periods. Jellyfish populations have increased in some parts of the world and, despite few direct empirical tests, are hypothesised to be increasing because they are robust to a range of environmental stressors. Here, we investigated the effects of contaminated runoff on a zooxanthellate jellyfish by exposing juvenile Cassiopea sp. medusae to a photosystem II (PSII) herbicide, atrazine and reduced salinity conditions that occur following rainfall. Four levels of atrazine (0ngL"−"1, 10ngL"−"1, 2μgL"−"1, 20μgL"−"1) and three levels of salinity (35 ppt, 25 ppt, 17 ppt) were varied, mimicking the timeline of light, moderate and heavy rainfall events. Normal conditions were then slowly re-established over four days to mimic the recovery of the ecosystem post-rain and the experiment continued for a further 7 days to observe potential recovery of the medusae. Pulse-amplitude modulated (PAM) chlorophyll fluorescence, growth and bell contraction rates of medusae were measured. Medusae exposed to the combination of high atrazine and lowest salinity died. After 3 days of exposure, bell contraction rates were reduced by 88% and medusae were 16% smaller in the lowest salinity treatments. By Day 5 of the experiment, all medusae that survived the initial pulse event began to recover quickly. Although atrazine decreased YII under normal salinity conditions, YII was further reduced when medusae were exposed to both low salinity and atrazine simultaneously. Atrazine breakdown products were more concentrated in jellyfish tissues than atrazine at the end of the experiment, suggesting that although bioaccumulation occurred, atrazine was metabolised. Our results suggest that reduced salinity may increase the susceptibility of medusae to herbicide exposure during heavy rainfall events. - Highlights:

  16. Heavy Tail Behavior of Rainfall Extremes across Germany

    Science.gov (United States)

    Castellarin, A.; Kreibich, H.; Vorogushyn, S.; Merz, B.

    2017-12-01

    Distributions are termed heavy-tailed if extreme values are more likely than would be predicted by probability distributions that have exponential asymptotic behavior. Heavy-tail behavior often leads to surprise, because historical observations can be a poor guide for the future. Heavy-tail behavior seems to be widespread for hydro-meteorological extremes, such as extreme rainfall and flood events. To date there have been only vague hints to explain under which conditions these extremes show heavy-tail behavior. We use an observational data set consisting of 11 climate variables at 1440 stations across Germany. This homogenized, gap-free data set covers 110 years (1901-2010) at daily resolution. We estimate the upper tail behavior, including its uncertainty interval, of daily precipitation extremes for the 1,440 stations at the annual and seasonal time scales. Different tail indicators are tested, including the shape parameter of the Generalized Extreme Value distribution, the upper tail ratio and the obesity index. In a further step, we explore to which extent the tail behavior can be explained by geographical and climate factors. A large number of characteristics is derived, such as station elevation, degree of continentality, aridity, measures for quantifying the variability of humidity and wind velocity, or event-triggering large-scale atmospheric situation. The link between the upper tail behavior and these characteristics is investigated via data mining methods capable of detecting non-linear relationships in large data sets. This exceptionally rich observational data set, in terms of number of stations, length of time series and number of explaining variables, allows insights into the upper tail behavior which is rarely possible given the typical observational data sets available.

  17. Subtropical westerly jet waveguide and winter persistent heavy rainfall in south China

    Science.gov (United States)

    Ding, Feng; Li, Chun

    2017-07-01

    Using observed daily precipitation and National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis data, what induced winter large spatial persistent heavy rainfall (PHR) events in south China was examined, based on composite analyses of 30 large spatial PHR events during 1951-2015. The results showed that wave trains within North Africa-Asia (NAA) westerly jet existed in upper troposphere during these PHR processes. The wave trains shared the characteristic of a Rossby wave. The Rossby wave originated from northwest Europe, entered into the NAA jet through strong cold air advection to form convergence over the Mediterranean, and then propagated eastward along subtropical NAA jet. The Rossby wave propagated toward Southeast Asia and caused strong divergence in the upper troposphere. The strong divergence in the upper troposphere induced vertical convection and favored large spatial PHR events in south China. In addition, the enhanced India-Burma trough and subtropical high in the northwestern Pacific supplied enough water vapor transportation. This mechanism would be useful to the medium-range forecast of such winter rainfall processes over south China.

  18. Heavy rainfall equations for Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Álvaro José Back

    2011-12-01

    Full Text Available Knowledge of intensity-duration-frequency (IDF relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.

  19. Predicting extreme rainfall events over Jeddah, Saudi Arabia: Impact of data assimilation with conventional and satellite observations

    KAUST Repository

    Viswanadhapalli, Yesubabu; Srinivas, C.V.; Langodan, Sabique; Hoteit, Ibrahim

    2015-01-01

    The impact of variational data assimilation for predicting two heavy rainfall events that caused devastating floods in Jeddah, Saudi Arabia is studied using the Weather Research and Forecasting (WRF) model. On 25 November 2009 and 26 January 2011

  20. Simulation of heavy, long-term rainfall over low mountain ranges; Simulation von Starkniederschlaegen mit langer Andauer ueber Mittelgebirgen

    Energy Technology Data Exchange (ETDEWEB)

    Kunz, M.

    2003-03-01

    A diagnostic model for the estimation of orographic precipitation during large-scale upslide motions is presented. It is based on linear theory for 3-D mountain overflow. From the simulated vertical velocities rain intensities at the ground are calculated using a model for precipitation formation. Due to the small number of free parameters and because of the simple initialisation method, e.g. with single radiosonde data, the model is used for regionalisation of precipitation from rain gauge observations as well as for deriving its statistics under dynamical constraints. For Southwest Germany and Eastern France, with the low mountain ranges of the Vosges, Black Forest and Swabian Alb, model simulations are performed for individual events with heavy rainfall. Thereby it is evaluated, how realistic rainfall patterns can be obtained with a combination of model simulations and measurement data. Mean rainfall distributions are derived from simulations of all extreme events with 24-h totals over 60 mm at selected rain gauge stations between 1971 and 2000. Furthermore the calculation of rain sums for different return periods is performed using extreme value statistics. So it is possible to quantify the hazard potential of heavy rainfall, which may cause flooding or landslides, in high spatial resolution (2.5 x 2.5 km). (orig.)

  1. The Chennai extreme rainfall event in 2015: The Bay of Bengal connection

    Science.gov (United States)

    Boyaj, Alugula; Ashok, Karumuri; Ghosh, Subimal; Devanand, Anjana; Dandu, Govardhan

    2018-04-01

    Southeast India experienced a heavy rainfall during 30 Nov-2 Dec 2015. Particularly, the Chennai city, the fourth major metropolitan city in India with a population of 5 million, experienced extreme flooding and causalities. Using various observed/reanalysed datasets, we find that the concurrent southern Bay of Bengal (BoB) sea surface temperatures (SST) were anomalously warm. Our analysis shows that BoB sea surface temperature anomalies (SSTA) are indeed positively, and significantly, correlated with the northeastern Indian monsoonal rainfall during this season. Our sensitivity experiments carried out with the Weather Research and Forecasting (WRF) model at 25 km resolution suggest that, while the strong concurrent El Niño conditions contributed to about 21.5% of the intensity of the extreme Chennai rainfall through its signals in the local SST mentioned above, the warming trend in BoB SST also contributed equally to the extremity of the event. Further, the El Niño southern oscillation (ENSO) impacts on the intensity of the synoptic events in the BoB during the northeast monsoon are manifested largely through the local SST in the BoB as compared through its signature in the atmospheric circulations over the BoB.

  2. Numerical Simulation of Heavy Rainfall in August 2014 over Japan and Analysis of Its Sensitivity to Sea Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yuki Minamiguchi

    2018-02-01

    Full Text Available This study evaluated the performance of the Weather Research and Forecasting (WRF model version 3.7 for simulating a series of rainfall events in August 2014 over Japan and investigated the impact of uncertainty in sea surface temperature (SST on simulated rainfall in the record-high precipitation period. WRF simulations for the heavy rainfall were conducted for six different cases. The heavy rainfall events caused by typhoons and rain fronts were similarly accurately reproduced by three cases: the TQW_5km case with grid nudging for air temperature, humidity, and wind and with a horizontal resolution of 5 km; W_5km with wind nudging and 5-km resolution; and W_2.5km with wind nudging and 2.5-km resolution. Because the nudging for air temperature and humidity in TQW_5km suppresses the influence of SST change, and because W_2.5km requires larger computational load, W_5km was selected as the baseline case for a sensitivity analysis of SST. In the sensitivity analysis, SST around Japan was homogeneously changed by 1 K from the original SST data. The analysis showed that the SST increase led to a larger amount of precipitation in the study period in Japan, with the mean increase rate of precipitation being 13 ± 8% K−1. In addition, 99 percentile precipitation (100 mm d−1 in the baseline case increased by 13% K−1 of SST warming. These results also indicate that an uncertainty of approximately 13% in the simulated heavy rainfall corresponds to an uncertainty of 1 K in SST data around Japan in the study period.

  3. Study of atmospheric condition during the heavy rain event in Bojonegoro using weather research and forecasting (WRF) model: case study 9 February 2017

    Science.gov (United States)

    Saragih, I. J. A.; Meygatama, A. G.; Sugihartati, F. M.; Sidauruk, M.; Mulsandi, A.

    2018-03-01

    During 2016, there are frequent heavy rains in the Bojonegoro region, one of which is rain on 9 February 2016. The occurrence of heavy rainfall can cause the floods that inundate the settlements, rice fields, roads, and public facilities. This makes it important to analyze the atmospheric conditions during the heavy rainfall events in Bojonegoro. One of the analytical methods that can be used is using WRF-Advanced Research WRF (WRF-ARW) model. This study was conducted by comparing the rain analysis from WRF-ARW model with the Himawari-8 satellite imagery. The data used are Final Analysis (FNL) data for the WRF-ARW model and infrared (IR) channel for Himawari-8 satellite imagery. The data are processed into the time-series images and then analyzed descriptively. The meteorological parameters selected to be analyzed are relative humidity, vortices, divergences, air stability index, and precipitation. These parameters are expected to indicate the existence of a convective activity in Bojonegoro during the heavy rainfall event. The Himawari-8 satellite imagery shows that there is a cluster of convective clouds in Bojonegoro during the heavy rainfall event. The lowest value of the cloud top temperature indicates that the cluster of convective clouds is a cluster of Cumulonimbus cloud (CB).

  4. Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall

    Science.gov (United States)

    Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.

    2015-12-01

    Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is

  5. Association of Heavy Rainfall on Genotypic Diversity in V. cholerae Isolates from an Outbreak in India

    Directory of Open Access Journals (Sweden)

    A. K. Goel

    2011-01-01

    Full Text Available The outbreak of waterborne disease cholera has been associated with rainfall and flooding events by contamination of potable water with environmental Vibrio cholerae. The continuation of the epidemic in a region, however, is often due to secondary transmission of the initial outbreak strain through human waste. This paper reports, on the contrary, a rapid shift of genotype from one V. cholerae strain to another one in an epidemic region. V. cholerae isolated from patients during 2005 cholera epidemic in Chennai, India were characterized using PCR identification of toxin genes, antibiogram, and genomic fingerprinting analysis. The results showed that in spite of the similarity of toxin genes and antibiogram, the Vibrio isolates grouped into two different clusters based on the ERIC-PCR fingerprinting. Each cluster corresponded to a distinct peak of cholera outbreak, which occurred after separate heavy rainfall. The results suggest that the rainfall event can bring various genotypes of V. cholerae strains causing multiple outbreaks.

  6. How Pore-Fluid Pressure due to Heavy Rainfall Influences Volcanic Eruptions, Example of 1998 and 2008 Eruptions of Cerro Azul (Galapagos)

    Science.gov (United States)

    Albino, F.; Amelung, F.; Gregg, P. M.

    2016-12-01

    About 30 worldwide seismic studies have shown a strong correlation between rainfall and earthquakes in the past 22 years (e.g. Costain and Bollinger, 2010). Such correlation has been explained by the phenomenon of hydro-seismicity via pore pressure diffusion: an increase of pore-fluid in the upper crust reduces the normal stress on faults, which can trigger shear failure. Although this pore pressure effect is widely known for earthquakes, this phenomenon and more broadly poro-elasticity process are not widely studied on volcanoes. However, we know from our previous works that tensile failures that open to propagate magma through the surface are also pore pressure dependent. We have demonstrated that an increase of pore pressure largely reduces the overpressure required to rupture the magma reservoir. We have shown that the pore pressure has more influence on reservoir stability than other parameters such as the reservoir depth or the edifice loading. Here, we investigate how small pore-fluid changes due to hydrothermal or aquifer refill during heavy rainfall may perturb the conditions of failure around magma reservoirs and, what is more, if these perturbations are enough to trigger magma intrusions. We quantify the pore pressure effect on magmatic system by combining 1) 1D pore pressure diffusion model to quantify how pore pressure changes from surface to depth after heavy rainfall events and 2) 2D poro-elastic numerical model to provide the evolution of failure conditions of the reservoir as a consequence of these pore pressure changes. Sensitivity analysis is also performed to characterize the influence on our results of the poro-elastic parameters (hydraulic diffusivity, permeability and porosity) and the geometry of the magma reservoir and the aquifer (depth, size, shape). Finally, we apply our methodology to Cerro Azul volcano (Galapagos) where both last eruptions (1998 and 2008) occurred just after heavy rainfall events, without any pre-eruptive inflation. In

  7. Trends in total rainfall, heavy rain events, and number of dry days in San Juan, Puerto Rico, 1955-2009

    Directory of Open Access Journals (Sweden)

    Pablo A. Méndez-Lázaro

    2014-06-01

    Full Text Available Climate variability is a threat to water resources on a global scale and in tropical regions in particular. Rainfall events and patterns are associated worldwide with natural disasters like mudslides and landslides, meteorological phenomena like hurricanes, risks/hazards including severe storms and flooding, and health effects like vector-borne and waterborne diseases. Therefore, in the context of global change, research on rainfall patterns and their variations presents a challenge to the scientific community. The main objective of this research was to analyze recent trends in precipitation in the San Juan metropolitan area in Puerto Rico and their relationship with regional and global climate variations. The statistical trend analysis of precipitation was performed with the nonparametric Mann-Kendall test. All stations showed positive trends of increasing annual rainfall between 1955 and 2009. The winter months of January and February had an increase in monthly rainfall, although winter is normally a dry season on the island. Regarding dry days, we found an annual decreasing trend, also specifically in winter. In terms of numbers of severe rainfall events described as more than 78 mm in 24 hours, 63 episodes have occurred in the San Juan area in the last decade, specifically in the 2000-2009 time frame, with an average of 6 severe events per year. The majority of the episodes occurred in summer, more frequently in August and September. These results can be seen as a clear example of the complexity of spatial and temporal of rainfall distribution over a tropical city.

  8. Adaptation to heavy rainfall events: watershed-community planning of soil and water conservation technologies in Syria

    Science.gov (United States)

    Ziadat, Feras; Al-Wadaey, Ahmed; Masri, Zuhair; Sakai, Hirokazu

    2010-05-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) and other research, predict a significant future increase in the frequency and intensity of heavy rainfall events in many regions. This increase runoff and soil erosion, and reduce agricultural productivity, as well as increasing risks of flood damage to crops and infrastructure. Implementing adaptation measures and improved land management through erosion control and soil protection are among those that protect water and agriculture and limit their vulnerability. Soil erosion control practices are often based on long-term climatic averages. Special attention is needed to provide protection against average high-return frequency storms as well as severe storms with low-return frequency. Suitable and affordable soil conservation plans, coupled with an appropriate enabling environment, are needed. A watershed and community were selected in the mountainous area of North West Syria. The fields represent the non-tropical highland dry areas and dominated by olive orchards on steep slopes. Farmers were aware of resource degradation and productivity reduction, but lacked financial capital to implement the needed adaptation measures. A micro-credit system was established with the help of the UNDP Global Environment Facility - Small Grants Program (GEF-SGP) with small grants available for each farmer. Haphazard implementation on scattered fields proved inefficient in demonstrating obvious impact. Therefore, each watershed was classified into three erosion risk categories (high, moderate and low), derived from maps of flow accumulation, slope steepness, slope shape and land use. Using field survey of land ownership, the boundaries of 168 farms in the watersheds were mapped. Farmers' fields were classified using the erosion-risk map and considering the on-farm erosion hazard and the off-farm effect on other farmers' fields following the hillslope sequence. More than 60% of the farms were

  9. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2012-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2–0.3 Bq/L and 2–7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1–0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below

  10. Concentration of radiocesium in stream water from a mountainous catchment area during rainfall events

    International Nuclear Information System (INIS)

    Nakamura, Kimihito; Yasutaka, Tetsuo; Hatakeyama, Masato

    2013-01-01

    Terrestrial and aquatic systems were contaminated with radioactive materials following the nuclear accident at Fukushima Daiichi Nuclear Power Station on 11 March, 2011. It is important that levels of radiocesium (Cs) in stream water from affected areas be monitored as this water is used for paddy irrigation and domestic water. Additionally, soil particles and organic matter from the streams are deposited in rivers, estuaries and into the ocean. Predictions suggest that Cs levels will increase during intense rainfall-runoff events. To check this prediction, we monitored temporal changes in runoff events and Cs levels in stream water from a mountainous catchment area northwest of the Fukushima plant. In March and April, 2012, the concentrations of Cs and suspended solids (SS) in stream water taken from low-level water flow were found to be 0.2-0.3 Bq/L and 2-7 mg/L, respectively. A heavy rainfall event in July 2012 resulted in an increase and subsequent decrease of both the runoff volume and SS concentration. At the beginning of the rainfall event the concentration of Cs absorbed in the SS was measured to be 23 Bq/L, this decreased gradually to 0.3 Bq/L over the course of the event. The concentration of Cs dissolved in the water was 0.1 Bq/L, this decreased only slightly during the runoff event. During a low rainfall event in September 2012 the concentration of Cs absorbed in the SS at the beginning of the rainfall event was found to be 15 Bq/L, this decreased gradually to 0.5 Bq/L as the amount of SS in the water decreased. The concentration of Cs dissolved in the water was 0.2 Bq/L, again this decreased only slightly over the course of the runoff event. The Cs levels in stream water, during rainfall-runoff events, were primary influenced by the concentration of SS. The amount of Cs dissolved in the water, on the other hand, was roughly constant at 0.1-0.2 Bq/L. The results of this study indicate that, although the concentration of Cs in stream water is below the

  11. Mapeamento de chuvas intensas no estado de Minas Gerais Mapping of heavy rainfalls in the state of Minas Gerais

    Directory of Open Access Journals (Sweden)

    Carlos Rogério de Mello

    2013-02-01

    Full Text Available Estudos associados a chuvas extremas são constituídos de eventos de interesse prático para a gestão dos recursos naturais, como manejo de bacias hidrográficas e conservação dos solos e da água. A distribuição espacial desses eventos possibilita inferir sobre áreas onde sua ocorrência é acentuada e desprovida de informações técnicas. Os objetivos deste trabalho foram promover, a partir de dados pontuais de 177 estações meteorológicas e com a utilização de técnicas geoestatísticas, o mapeamento de chuvas intensas para o Estado de Minas Gerais e identificar as áreas mais vulneráveis no tocante à ocorrência dessas chuvas nesse Estado. Foi constatado que as maiores intensidades ocorrem nas regiões leste e noroeste de Minas Gerais, o que pode ser explicado pela maior influência da Zona de Convergência do Atlântico Sul, além de ocorrência de chuvas convectivas. Foi possível, também, constatar e mapear intensidades intermediárias nas regiões sul e central e os menores valores para as regiões norte e nordeste de Minas Gerais. Para maiores durações, verificou-se, para a região sul, ocorrência de altas intensidades, o que está associado à entrada com maior frequência de frentes frias, produzindo chuvas de longa duração.Studies of heavy rainfall are of practical interest for the conservation management of natural resources such as watersheds and soil and water. The spatial distribution of these natural rainfall events allows conclusions about regions where the occurrence of heavy rain is more frequent and to estimate their magnitude for locations without rainfall data sets. Thus, the purpose of this study was to map heavy rainfall data from 177 meteorological stations, using a geostatistical approach, for Minas Gerais, identifying the most vulnerable regions in terms of the occurrence of heavy rain. The highest values were estimated for the East and Northwest regions of the state, which can be explained by the

  12. Event-based rainfall-runoff modelling of the Kelantan River Basin

    Science.gov (United States)

    Basarudin, Z.; Adnan, N. A.; Latif, A. R. A.; Tahir, W.; Syafiqah, N.

    2014-02-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area.

  13. Event-based rainfall-runoff modelling of the Kelantan River Basin

    International Nuclear Information System (INIS)

    Basarudin, Z; Adnan, N A; Latif, A R A; Syafiqah, N; Tahir, W

    2014-01-01

    Flood is one of the most common natural disasters in Malaysia. According to hydrologists there are many causes that contribute to flood events. The two most dominant factors are the meteorology factor (i.e climate change) and change in land use. These two factors contributed to floods in recent decade especially in the monsoonal catchment such as Malaysia. This paper intends to quantify the influence of rainfall during extreme rainfall events on the hydrological model in the Kelantan River catchment. Therefore, two dynamic inputs were used in the study: rainfall and river discharge. The extreme flood events in 2008 and 2004 were compared based on rainfall data for both years. The events were modeled via a semi-distributed HEC-HMS hydrological model. Land use change was not incorporated in the study because the study only tries to quantify rainfall changes during these two events to simulate the discharge and runoff value. Therefore, the land use data representing the year 2004 were used as inputs in the 2008 runoff model. The study managed to demonstrate that rainfall change has a significant impact to determine the peak discharge and runoff depth for the study area

  14. Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan

    Science.gov (United States)

    Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji

    2009-11-01

    In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.

  15. Automated reconstruction of rainfall events responsible for shallow landslides

    Science.gov (United States)

    Vessia, G.; Parise, M.; Brunetti, M. T.; Peruccacci, S.; Rossi, M.; Vennari, C.; Guzzetti, F.

    2014-04-01

    Over the last 40 years, many contributions have been devoted to identifying the empirical rainfall thresholds (e.g. intensity vs. duration ID, cumulated rainfall vs. duration ED, cumulated rainfall vs. intensity EI) for the initiation of shallow landslides, based on local as well as worldwide inventories. Although different methods to trace the threshold curves have been proposed and discussed in literature, a systematic study to develop an automated procedure to select the rainfall event responsible for the landslide occurrence has rarely been addressed. Nonetheless, objective criteria for estimating the rainfall responsible for the landslide occurrence (effective rainfall) play a prominent role on the threshold values. In this paper, two criteria for the identification of the effective rainfall events are presented: (1) the first is based on the analysis of the time series of rainfall mean intensity values over one month preceding the landslide occurrence, and (2) the second on the analysis of the trend in the time function of the cumulated mean intensity series calculated from the rainfall records measured through rain gauges. The two criteria have been implemented in an automated procedure written in R language. A sample of 100 shallow landslides collected in Italy by the CNR-IRPI research group from 2002 to 2012 has been used to calibrate the proposed procedure. The cumulated rainfall E and duration D of rainfall events that triggered the documented landslides are calculated through the new procedure and are fitted with power law in the (D,E) diagram. The results are discussed by comparing the (D,E) pairs calculated by the automated procedure and the ones by the expert method.

  16. Classification of rainfall events for weather forecasting purposes in andean region of Colombia

    Science.gov (United States)

    Suárez Hincapié, Joan Nathalie; Romo Melo, Liliana; Vélez Upegui, Jorge Julian; Chang, Philippe

    2016-04-01

    This work presents a comparative analysis of the results of applying different methodologies for the identification and classification of rainfall events of different duration in meteorological records of the Colombian Andean region. In this study the work area is the urban and rural area of Manizales that counts with a monitoring hydro-meteorological network. This network is composed of forty-five (45) strategically located stations, this network is composed of forty-five (45) strategically located stations where automatic weather stations record seven climate variables: air temperature, relative humidity, wind speed and direction, rainfall, solar radiation and barometric pressure. All this information is sent wirelessly every five (5) minutes to a data warehouse located at the Institute of Environmental Studies-IDEA. With obtaining the series of rainfall recorded by the hydrometeorological station Palogrande operated by the National University of Colombia in Manizales (http://froac.manizales.unal.edu.co/bodegaIdea/); it is with this information that we proceed to perform behavior analysis of other meteorological variables, monitored at surface level and that influence the occurrence of such rainfall events. To classify rainfall events different methodologies were used: The first according to Monjo (2009) where the index n of the heavy rainfall was calculated through which various types of precipitation are defined according to the intensity variability. A second methodology that permitted to produce a classification in terms of a parameter β introduced by Rice and Holmberg (1973) and adapted by Llasat and Puigcerver, (1985, 1997) and the last one where a rainfall classification is performed according to the value of its intensity following the issues raised by Linsley (1977) where the rains can be considered light, moderate and strong fall rates to 2.5 mm / h; from 2.5 to 7.6 mm / h and above this value respectively for the previous classifications. The main

  17. Microcosms for evaluating microbial indicator persistence and mobilization in fluvial sediments during rainfall events.

    Science.gov (United States)

    Martín-Díaz, Julia; García-Aljaro, Cristina; Pascual-Benito, Míriam; Galofré, Belén; Blanch, Anicet R; Lucena, Francisco

    2017-10-15

    Mediterranean rivers, which are subject to long, dry periods and heavy rainfall events, could be particularly useful for understanding future climate scenarios. This study generated microcosms that mimicked riverbank sediment resuspension into the water of a typical Mediterranean river as a consequence of heavy rainfall. The mobilization and inactivation of six fecal pollution indicators and microbial source tracking markers were evaluated. The T 90 values in the sediments were: 4 days for sorbitol-fermenting Bifidobacterium, 11 days for culturable E. coli, 36 days for bacteriophages infecting Bacteroides thetaiotaomicron strain GA17 and more than 42 days for qPCR-detected E. coli, somatic coliphages and sulfite-reducing clostridia spores. Bacteriophages and bacteria showed different resuspension and sedimentation patterns. The data obtained could be used in predictive models to assess the effects of climate change on surface water quality. Pathogen mobilization into the water column poses a risk for humans, animals and the natural environment, and breaches the One Health approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Predictive ability of severe rainfall events over Catalonia for the year 2008

    Science.gov (United States)

    Comellas, A.; Molini, L.; Parodi, A.; Sairouni, A.; Llasat, M. C.; Siccardi, F.

    2011-07-01

    This paper analyses the predictive ability of quantitative precipitation forecasts (QPF) and the so-called "poor-man" rainfall probabilistic forecasts (RPF). With this aim, the full set of warnings issued by the Meteorological Service of Catalonia (SMC) for potentially-dangerous events due to severe precipitation has been analysed for the year 2008. For each of the 37 warnings, the QPFs obtained from the limited-area model MM5 have been verified against hourly precipitation data provided by the rain gauge network covering Catalonia (NE of Spain), managed by SMC. For a group of five selected case studies, a QPF comparison has been undertaken between the MM5 and COSMO-I7 limited-area models. Although MM5's predictive ability has been examined for these five cases by making use of satellite data, this paper only shows in detail the heavy precipitation event on the 9-10 May 2008. Finally, the "poor-man" rainfall probabilistic forecasts (RPF) issued by SMC at regional scale have also been tested against hourly precipitation observations. Verification results show that for long events (>24 h) MM5 tends to overestimate total precipitation, whereas for short events (≤24 h) the model tends instead to underestimate precipitation. The analysis of the five case studies concludes that most of MM5's QPF errors are mainly triggered by very poor representation of some of its cloud microphysical species, particularly the cloud liquid water and, to a lesser degree, the water vapor. The models' performance comparison demonstrates that MM5 and COSMO-I7 are on the same level of QPF skill, at least for the intense-rainfall events dealt with in the five case studies, whilst the warnings based on RPF issued by SMC have proven fairly correct when tested against hourly observed precipitation for 6-h intervals and at a small region scale. Throughout this study, we have only dealt with (SMC-issued) warning episodes in order to analyse deterministic (MM5 and COSMO-I7) and probabilistic (SMC

  19. Comparison between 3D-Var and 4D-Var data assimilation methods for the simulation of a heavy rainfall case in central Italy

    Science.gov (United States)

    Mazzarella, Vincenzo; Maiello, Ida; Capozzi, Vincenzo; Budillon, Giorgio; Ferretti, Rossella

    2017-08-01

    This work aims to provide a comparison between three dimensional and four dimensional variational data assimilation methods (3D-Var and 4D-Var) for a heavy rainfall case in central Italy. To evaluate the impact of the assimilation of reflectivity and radial velocity acquired from Monte Midia Doppler radar into the Weather Research Forecasting (WRF) model, the quantitative precipitation forecast (QPF) is used.The two methods are compared for a heavy rainfall event that occurred in central Italy on 14 September 2012 during the first Special Observation Period (SOP1) of the HyMeX (HYdrological cycle in Mediterranean EXperiment) campaign. This event, characterized by a deep low pressure system over the Tyrrhenian Sea, produced flash floods over the Marche and Abruzzo regions, where rainfall maxima reached more than 150 mm 24 h-1.To identify the best QPF, nine experiments are performed using 3D-Var and 4D-Var data assimilation techniques. All simulations are compared in terms of rainfall forecast and precipitation measured by the gauges through three statistical indicators: probability of detection (POD), critical success index (CSI) and false alarm ratio (FAR). The assimilation of conventional observations with 4D-Var method improves the QPF compared to 3D-Var. In addition, the use of radar measurements in 4D-Var simulations enhances the performances of statistical scores for higher rainfall thresholds.

  20. Climate-change driven increase in high intensity rainfall events: Analysis of development in the last decades and towards an extrapolation of future progression

    Science.gov (United States)

    Müller, Eva; Pfister, Angela; Gerd, Büger; Maik, Heistermann; Bronstert, Axel

    2015-04-01

    Hydrological extreme events can be triggered by rainfall on different spatiotemporal scales: river floods are typically caused by event durations of between hours and days, while urban flash floods as well as soil erosion or contaminant transport rather result from storms events of very short duration (minutes). Still, the analysis of climate change impacts on rainfall-induced extreme events is usually carried out using daily precipitation data at best. Trend analyses of extreme rainfall at sub-daily or even sub-hourly time scales are rare. In this contribution two lines of research are combined: first, we analyse sub-hourly rainfall data for several decades in three European regions.Second, we investigate the scaling behaviour of heavy short-term precipitation with temperature, i.e. the dependence of high intensity rainfall on the atmospheric temperature at that particular time and location. The trend analysis of high-resolution rainfall data shows for the first time that the frequency of short and intensive storm events in the temperate lowland regions in Germany has increased by up to 0.5 events per year over the last decades. I.e. this trend suggests that the occurrence of these types of storms have multiplied over only a few decades. Parallel to the changes in the rainfall regime, increases in the annual and seasonal average temperature and changes in the occurrence of circulation patterns responsible for the generation of high-intensity storms have been found. The analysis of temporally highly resolved rainfall records from three European regions further indicates that extreme precipitation events are more intense with warmer temperatures during the rainfall event. These observations follow partly the Clausius-Clapeyron relation. Based on this relation one may derive a general rule of maximum rainfall intensity associated to the event temperature, roughly following the Clausius-Clapeyron (CC) relation. This rule might be used for scenarios of future maximum

  1. Skill of Predicting Heavy Rainfall Over India: Improvement in Recent Years Using UKMO Global Model

    Science.gov (United States)

    Sharma, Kuldeep; Ashrit, Raghavendra; Bhatla, R.; Mitra, A. K.; Iyengar, G. R.; Rajagopal, E. N.

    2017-11-01

    The quantitative precipitation forecast (QPF) performance for heavy rains is still a challenge, even for the most advanced state-of-art high-resolution Numerical Weather Prediction (NWP) modeling systems. This study aims to evaluate the performance of UK Met Office Unified Model (UKMO) over India for prediction of high rainfall amounts (>2 and >5 cm/day) during the monsoon period (JJAS) from 2007 to 2015 in short range forecast up to Day 3. Among the various modeling upgrades and improvements in the parameterizations during this period, the model horizontal resolution has seen an improvement from 40 km in 2007 to 17 km in 2015. Skill of short range rainfall forecast has improved in UKMO model in recent years mainly due to increased horizontal and vertical resolution along with improved physics schemes. Categorical verification carried out using the four verification metrics, namely, probability of detection (POD), false alarm ratio (FAR), frequency bias (Bias) and Critical Success Index, indicates that QPF has improved by >29 and >24% in case of POD and FAR. Additionally, verification scores like EDS (Extreme Dependency Score), EDI (Extremal Dependence Index) and SEDI (Symmetric EDI) are used with special emphasis on verification of extreme and rare rainfall events. These scores also show an improvement by 60% (EDS) and >34% (EDI and SEDI) during the period of study, suggesting an improved skill of predicting heavy rains.

  2. Partial Least Squares Regression for Determining the Control Factors for Runoff and Suspended Sediment Yield during Rainfall Events

    Directory of Open Access Journals (Sweden)

    Nufang Fang

    2015-07-01

    Full Text Available Multivariate statistics are commonly used to identify the factors that control the dynamics of runoff or sediment yields during hydrological processes. However, one issue with the use of conventional statistical methods to address relationships between variables and runoff or sediment yield is multicollinearity. The main objectives of this study were to apply a method for effectively identifying runoff and sediment control factors during hydrological processes and apply that method to a case study. The method combines the clustering approach and partial least squares regression (PLSR models. The case study was conducted in a mountainous watershed in the Three Gorges Area. A total of 29 flood events in three hydrological years in areas with different land uses were obtained. In total, fourteen related variables were separated from hydrographs using the classical hydrograph separation method. Twenty-nine rainfall events were classified into two rainfall regimes (heavy Rainfall Regime I and moderate Rainfall Regime II based on rainfall characteristics and K-means clustering. Four separate PLSR models were constructed to identify the main variables that control runoff and sediment yield for the two rainfall regimes. For Rainfall Regime I, the dominant first-order factors affecting the changes in sediment yield in our study were all of the four rainfall-related variables, flood peak discharge, maximum flood suspended sediment concentration, runoff, and the percentages of forest and farmland. For Rainfall Regime II, antecedent condition-related variables have more effects on both runoff and sediment yield than in Rainfall Regime I. The results suggest that the different control factors of the two rainfall regimes are determined by the rainfall characteristics and thus different runoff mechanisms.

  3. Damaging Rainfall and Flooding. The Other Sahel Hazards

    Energy Technology Data Exchange (ETDEWEB)

    Tarhule, A. [Department of Geography, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73079 (United States)

    2005-10-01

    Damaging rainfall and rain-induced flooding occur from time to time in the drought-prone Sahel savannah zone of Niger in West Africa but official records of these events and their socioeconomic impacts do not exist. This paper utilized newspaper accounts between 1970 and 2000 to survey and illustrate the range of these flood hazards in the Sahel. During the study interval, 53 newspaper articles reported 79 damaging rainfall and flood events in 47 different communities in the Sahel of Niger. Collectively, these events destroyed 5,580 houses and rendered 27,289 people homeless. Cash losses and damage to infrastructure in only three events exceeded $4 million. Sahel residents attribute these floods to five major causes including both natural and anthropogenic, but they view the flood problem as driven primarily by land use patterns. Despite such awareness, traditional coping strategies appear inadequate for dealing with the problems in part because of significant climatic variability. Analysis of several rainfall measures indicates that the cumulative rainfall in the days prior to a heavy rain event is an important factor influencing whether or not heavy rainfall results in flooding. Thus, despite some limitations, newspaper accounts of historical flooding are largely consistent with measured climatic variables. The study demonstrates that concerted effort is needed to improve the status of knowledge concerning flood impacts and indeed other natural and human hazards in the Sahel.

  4. A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events

    Science.gov (United States)

    Zorzetto, E.; Marani, M.

    2017-12-01

    The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.

  5. Geotechnical hazards from large earthquakes and heavy rainfalls

    CERN Document Server

    Kazama, Motoki; Lee, Wei

    2017-01-01

    This book is a collection of papers presented at the International Workshop on Geotechnical Natural Hazards held July 12–15, 2014, in Kitakyushu, Japan. The workshop was the sixth in the series of Japan–Taiwan Joint Workshops on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, held under the auspices of the Asian Technical Committee No. 3 on Geotechnology for Natural Hazards of the International Society for Soil Mechanics and Geotechnical Engineering. It was co-organized by the Japanese Geotechnical Society and the Taiwanese Geotechnical Society. The contents of this book focus on geotechnical and natural hazard-related issues in Asia such as earthquakes, tsunami, rainfall-induced debris flows, slope failures, and landslides. The book contains the latest information and mitigation technology on earthquake- and rainfall-induced geotechnical natural hazards. By dissemination of the latest state-of-the-art research in the area, the information contained in this book will help researchers, des...

  6. What rainfall events trigger landslides on the West Coast US?

    Science.gov (United States)

    Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia

    2016-04-01

    A dataset of landslide occurrences compiled by collating google news reports covers 9 full years of data. We show that, while this compilation cannot provide consistent and widespread monitoring everywhere, it is adequate to capture the distribution of events in the major urban areas of the West Coast US and it can be used to provide a quantitative relationship between landslides and rainfall events. The case of the Seattle metropolitan area is presented as an example. The landslide dataset shows a clear seasonality in landslide occurrence, corresponding to the seasonality of rainfall, modified by the accumulation of soil moisture as winter progresses. Interannual variability of landslide occurrences is also linked to interannual variability of monthly rainfall. In most instances, landslides are clustered on consecutive days or at least within the same pentad and correspond to days of large rainfall accumulation at the regional scale. A joint analysis of the landslide data and of the high-resolution PRISM daily rainfall accumulation shows that on days when landslides occurred, the distribution of rainfall was shifted, with rainfall accumulation higher than 10mm/day being more common. Accumulations above 50mm/day much increase the probability of landslides, including the possibility of a major landslide event (one with multiple landslides in a day). The synoptic meteorological conditions associated with these major events show a mid-tropospheric ridge to the south of the target area steering a surface low and bringing enhanced precipitable water towards the Pacific North West. The interaction of the low-level flow with the local orography results in instances of a strong Puget Sound Convergence Zone, with widespread rainfall accumulation above 30mm/day and localized maxima as high as 100mm/day or more.

  7. Predictive ability of severe rainfall events over Catalonia for the year 2008

    Directory of Open Access Journals (Sweden)

    A. Comellas

    2011-07-01

    Full Text Available This paper analyses the predictive ability of quantitative precipitation forecasts (QPF and the so-called "poor-man" rainfall probabilistic forecasts (RPF. With this aim, the full set of warnings issued by the Meteorological Service of Catalonia (SMC for potentially-dangerous events due to severe precipitation has been analysed for the year 2008. For each of the 37 warnings, the QPFs obtained from the limited-area model MM5 have been verified against hourly precipitation data provided by the rain gauge network covering Catalonia (NE of Spain, managed by SMC. For a group of five selected case studies, a QPF comparison has been undertaken between the MM5 and COSMO-I7 limited-area models. Although MM5's predictive ability has been examined for these five cases by making use of satellite data, this paper only shows in detail the heavy precipitation event on the 9–10 May 2008. Finally, the "poor-man" rainfall probabilistic forecasts (RPF issued by SMC at regional scale have also been tested against hourly precipitation observations. Verification results show that for long events (>24 h MM5 tends to overestimate total precipitation, whereas for short events (≤24 h the model tends instead to underestimate precipitation. The analysis of the five case studies concludes that most of MM5's QPF errors are mainly triggered by very poor representation of some of its cloud microphysical species, particularly the cloud liquid water and, to a lesser degree, the water vapor. The models' performance comparison demonstrates that MM5 and COSMO-I7 are on the same level of QPF skill, at least for the intense-rainfall events dealt with in the five case studies, whilst the warnings based on RPF issued by SMC have proven fairly correct when tested against hourly observed precipitation for 6-h intervals and at a small region scale.

    Throughout this study, we have only dealt with (SMC-issued warning episodes in order to analyse deterministic (MM5 and COSMO-I7

  8. Understanding extreme rainfall events in Australia through historical data

    Science.gov (United States)

    Ashcroft, Linden; Karoly, David John

    2016-04-01

    Historical climate data recovery is still an emerging field in the Australian region. The majority of Australia's instrumental climate analyses begin in 1900 for rainfall and 1910 for temperature, particularly those focussed on extreme event analysis. This data sparsity for the past in turn limits our understanding of long-term climate variability, constraining efforts to predict the impact of future climate change. To address this need for improved historical data in Australia, a new network of recovered climate observations has recently been developed, centred on the highly populated southeastern Australian region (Ashcroft et al., 2014a, 2014b). The dataset includes observations from more than 39 published and unpublished sources and extends from British settlement in 1788 to the formation of the Australian Bureau of Meteorology in 1908. Many of these historical sources provide daily temperature and rainfall information, providing an opportunity to improve understanding of the multidecadal variability of Australia's extreme events. In this study we combine the historical data for three major Australian cities - Melbourne, Sydney and Adelaide - with modern observations to examine extreme rainfall variability over the past 174 years (1839-2013). We first explore two case studies, combining instrumental and documentary evidence to support the occurrence of severe storms in Sydney in 1841 and 1844. These events appear to be at least as extreme as Sydney's modern 24-hour rainfall record. Next we use a suite of rainfall indices to assess the long-term variability of rainfall in southeastern Australia. In particular, we focus on the stationarity of the teleconnection between the El Niño-Southern Oscillation (ENSO) phenomenon and extreme rainfall events. Using ENSO reconstructions derived from both palaeoclimatic and documentary sources, we determine the historical relationship between extreme rainfall in southeastern Australia and ENSO, and examine whether or not this

  9. Temporal characteristics of rainfall events under three climate types in Slovenia

    Science.gov (United States)

    Dolšak, Domen; Bezak, Nejc; Šraj, Mojca

    2016-10-01

    Temporal rainfall distribution can often have significant influence on other hydrological processes such as runoff generation or rainfall interception. High-frequency rainfall data from 30 stations in Slovenia were analysed in order to improve the knowledge about the temporal rainfall distribution within a rainfall event. Using the pre-processed rainfall data Huff curves were determined and the binary shape code (BSC) methodology was applied. Although Slovenia covers only about 20,000 km2, results indicate large temporal and spatial variability in the precipitation pattern of the analysed stations, which is in agreement with the different Slovenian climate types: sub-Mediterranean, temperate continental, and mountain climate. Statistically significant correlation was identified between the most frequent BSC types, mean annual precipitation, and rainfall erosivity for individual rainfall stations. Moreover, different temporal rainfall distributions were observed for rainfall events with shorter duration (less than 12 h) than those with longer duration (more than 24 h). Using the analysis of the Huff curves it was shown that the variability in the Huff curves decreases with increasing rainfall duration. Thus, it seems that for shorter duration convective storms a more diverse temporal rainfall distribution can be expected than for the longer duration frontal precipitation where temporal rainfall distribution shows less variability.

  10. Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain).

    Science.gov (United States)

    Corada-Fernández, Carmen; Candela, Lucila; Torres-Fuentes, Nivis; Pintado-Herrera, Marina G; Paniw, Maria; González-Mazo, Eduardo

    2017-12-15

    This study is focused on the Guadalete River basin (SW, Spain), where extreme weather conditions have become common, with and alternation between periods of drought and extreme rainfall events. Combined sewer overflows (CSOs) occur when heavy rainfall events exceed the capacity of the wastewater treatment plants (WWTP), as well as pollution episodes in parts of the basin due to uncontrolled sewage spills and the use of reclaimed water and sludge from the local WWTP. The sampling was carried out along two seasons and three campaigns during dry (March 2007) and extreme rainfall (April and December 2010) in the Guadalete River, alluvial aquifer and Jerez de la Frontera aquifer. Results showed minimum concentrations for synthetic surfactants in groundwater (contaminants increased in December 2010 as the heavy rainfall caused the river to overflow. In surface water, surfactant concentrations showed similar trends to groundwater observations. In addition to surfactants, pharmaceuticals and personal care products (PPCPs) were analyzed in the third campaign, 22 of which were detected in surface waters. Two fragrances (OTNE and galaxolide) and one analgesic/anti-inflammatory (ibuprofen) were the most abundant PPCPs (up to 6540, 2748 and 1747ng·L -1 , respectively). Regarding groundwater, most PPCPs were detected in Jerez de la Frontera aquifer, where a synthetic fragrance (OTNE) was predominant (up to 1285ng·L -1 ). Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Korup Andersen, Aske; Larsen, Anders Badsberg

    2017-01-01

    Continuous and long rainfall series are a necessity in rural and urban hydrology for analysis and design purposes. Local historical point rainfall series often cover several decades, which makes it possible to estimate rainfall means at different timescales, and to assess return periods of extreme...... includes climate changes projected to a specific future period. This paper presents a framework for resampling of historical point rainfall series in order to generate synthetic rainfall series, which has the same statistical properties as an original series. Using a number of key target predictions...... for the future climate, such as winter and summer precipitation, and representation of extreme events, the resampled historical series are projected to represent rainfall properties in a future climate. Climate-projected rainfall series are simulated by brute force randomization of model parameters, which leads...

  12. Weather model performance on extreme rainfall events simulation's over Western Iberian Peninsula

    Science.gov (United States)

    Pereira, S. C.; Carvalho, A. C.; Ferreira, J.; Nunes, J. P.; Kaiser, J. J.; Rocha, A.

    2012-08-01

    This study evaluates the performance of the WRF-ARW numerical weather model in simulating the spatial and temporal patterns of an extreme rainfall period over a complex orographic region in north-central Portugal. The analysis was performed for the December month of 2009, during the Portugal Mainland rainy season. The heavy rainfall to extreme heavy rainfall periods were due to several low surface pressure's systems associated with frontal surfaces. The total amount of precipitation for December exceeded, in average, the climatological mean for the 1971-2000 time period in +89 mm, varying from 190 mm (south part of the country) to 1175 mm (north part of the country). Three model runs were conducted to assess possible improvements in model performance: (1) the WRF-ARW is forced with the initial fields from a global domain model (RunRef); (2) data assimilation for a specific location (RunObsN) is included; (3) nudging is used to adjust the analysis field (RunGridN). Model performance was evaluated against an observed hourly precipitation dataset of 15 rainfall stations using several statistical parameters. The WRF-ARW model reproduced well the temporal rainfall patterns but tended to overestimate precipitation amounts. The RunGridN simulation provided the best results but model performance of the other two runs was good too, so that the selected extreme rainfall episode was successfully reproduced.

  13. Occurrence of heavy rainfall around the confluence line in monsoon ...

    Indian Academy of Sciences (India)

    that when the disturbance-centre is away from the basin, heavy rainfall may also occur in the basin area close to ... Lal 1958; Bedekar and Benarjee 1969) extending .... 13. 26.8.1977. 23.3. D around C.L.. 14. 18.8.1978. 40.5. D around C.L.. 15.

  14. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events.

    Science.gov (United States)

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Xin; Zhang, Juan; Han, Feng

    2016-08-01

    Soil contamination by mercury (Hg) is a global environmental issue. In watersheds with a significant soil Hg storage, soil erosion during rainfall-runoff events can result in nonpoint source (NPS) Hg pollution and therefore, can extend its environmental risk from soils to aquatic ecosystems. Nonetheless, transport mechanisms of soil-bound Hg in the erosion process have not been explored directly, and how different fractions of soil organic matter (SOM) impact transport is not fully understood. This study investigated transport mechanisms based on rainfall-runoff simulation experiments. The experiments simulated high-intensity and long-duration rainfall conditions, which can produce significant soil erosion and NPS pollution. The enrichment ratio (ER) of total mercury (THg) was the key variable in exploring the mechanisms. The main study findings include the following: First, the ER-sediment flux relationship for Hg depends on soil composition, and no uniform ER-sediment flux function exists for different soils. Second, depending on soil composition, significantly more Hg could be released from a less polluted soil in the early stage of large rainfall events. Third, the heavy fraction of SOM (i.e., the remnant organic matter coating on mineral particles) has a dominant influence on the enrichment behavior and transport mechanisms of Hg, while clay mineral content exhibits a significant, but indirect, influence. The study results imply that it is critical to quantify the SOM composition in addition to total organic carbon (TOC) for different soils in the watershed to adequately model the NPS pollution of Hg and spatially prioritize management actions in a heterogeneous watershed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

    2014-03-28

    The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transport in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: • Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. • Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. • The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. • Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high

  16. Soil organic carbon loss and selective transportation under field simulated rainfall events.

    Science.gov (United States)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Zhang, Yan; Ma, Wenming; Hu, Yanbiao; Zeng, Guangming

    2014-01-01

    The study on the lateral movement of soil organic carbon (SOC) during soil erosion can improve the understanding of global carbon budget. Simulated rainfall experiments on small field plots were conducted to investigate the SOC lateral movement under different rainfall intensities and tillage practices. Two rainfall intensities (High intensity (HI) and Low intensity (LI)) and two tillage practices (No tillage (NT) and Conventional tillage (CT)) were maintained on three plots (2 m width × 5 m length): HI-NT, LI-NT and LI-CT. The rainfall lasted 60 minutes after the runoff generated, the sediment yield and runoff volume were measured and sampled at 6-min intervals. SOC concentration of sediment and runoff as well as the sediment particle size distribution were measured. The results showed that most of the eroded organic carbon (OC) was lost in form of sediment-bound organic carbon in all events. The amount of lost SOC in LI-NT event was 12.76 times greater than that in LI-CT event, whereas this measure in HI-NT event was 3.25 times greater than that in LI-NT event. These results suggest that conventional tillage as well as lower rainfall intensity can reduce the amount of lost SOC during short-term soil erosion. Meanwhile, the eroded sediment in all events was enriched in OC, and higher enrichment ratio of OC (ERoc) in sediment was observed in LI events than that in HI event, whereas similar ERoc curves were found in LI-CT and LI-NT events. Furthermore, significant correlations between ERoc and different size sediment particles were only observed in HI-NT event. This indicates that the enrichment of OC is dependent on the erosion process, and the specific enrichment mechanisms with respect to different erosion processes should be studied in future.

  17. Heavy rainfall in Mediterranean cyclones. Part I: contribution of deep convection and warm conveyor belt

    Science.gov (United States)

    Flaounas, Emmanouil; Kotroni, Vassiliki; Lagouvardos, Konstantinos; Gray, Suzanne L.; Rysman, Jean-François; Claud, Chantal

    2018-04-01

    In this study, we provide an insight to the role of deep convection (DC) and the warm conveyor belt (WCB) as leading processes to Mediterranean cyclones' heavy rainfall. To this end, we use reanalysis data, lighting and satellite observations to quantify the relative contribution of DC and the WCB to cyclone rainfall, as well as to analyse the spatial and temporal variability of these processes with respect to the cyclone centre and life cycle. Results for the period 2005-2015 show that the relationship between cyclone rainfall and intensity has high variability and demonstrate that even intense cyclones may produce low rainfall amounts. However, when considering rainfall averages for cyclone intensity bins, a linear relationship was found. We focus on the 500 most intense tracked cyclones (responsible for about 40-50% of the total 11-year Mediterranean rainfall) and distinguish between the ones producing high and low rainfall amounts. DC and the WCB are found to be the main cause of rainfall for the former (producing up to 70% of cyclone rainfall), while, for the latter, DC and the WCB play a secondary role (producing up to 50% of rainfall). Further analysis showed that rainfall due to DC tends to occur close to the cyclones' centre and to their eastern sides, while the WCBs tend to produce rainfall towards the northeast. In fact, about 30% of rainfall produced by DC overlaps with rainfall produced by WCBs but this represents only about 8% of rainfall produced by WCBs. This suggests that a considerable percentage of DC is associated with embedded convection in WCBs. Finally, DC was found to be able to produce higher rain rates than WCBs, exceeding 50 mm in 3-h accumulated rainfall compared to a maximum of the order of 40 mm for WCBs. Our results demonstrate in a climatological framework the relationship between cyclone intensity and processes that lead to heavy rainfall, one of the most prominent environmental risks in the Mediterranean. Therefore, we set

  18. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    Science.gov (United States)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  19. Exploratory analysis of rainfall events in Coimbra, Portugal: variability of raindrop characteristics

    Science.gov (United States)

    Carvalho, S. C. P.; de Lima, M. I. P.; de Lima, J. L. M. P.

    2012-04-01

    Laser disdrometers can monitor efficiently rainfall characteristics at small temporal scales, providing data on rain intensity, raindrop diameter and fall speed, and raindrop counts over time. This type of data allows for the increased understanding of the rainfall structure at small time scales. Of particular interest for many hydrological applications is the characterization of the properties of extreme events, including the intra-event variability, which are affected by different factors (e.g. geographical location, rainfall generating mechanisms). These properties depend on the microphysical, dynamical and kinetic processes that interact to produce rain. In this study we explore rainfall data obtained during two years with a laser disdrometer installed in the city of Coimbra, in the centre region of mainland Portugal. The equipment was developed by Thies Clima. The data temporal resolution is one-minute. Descriptive statistics of time series of raindrop diameter (D), fall speed, kinetic energy, and rain rate were studied at the event scale; for different variables, the average, maximum, minimum, median, variance, standard deviation, quartile, coefficient of variation, skewness and kurtosis were determined. The empirical raindrop size distribution, N(D), was also calculated. Additionally, the parameterization of rainfall was attempted by investigating the applicability of different theoretical statistical distributions to fit the empirical data (e.g. exponential, gamma and lognormal distributions). As expected, preliminary results show that rainfall properties and structure vary with rainfall type and weather conditions over the year. Although only two years were investigated, already some insight into different rain events' structure was obtained.

  20. Climatic trends of different intensity heavy precipitation events concentration in China%中国强降水过程时空集中度气候趋势

    Institute of Scientific and Technical Information of China (English)

    谢志清; 杜银; 姜爱军

    2005-01-01

    Based on 740 stations of daily precipitation datasets in China, the precipitationconcentration degree (PCD) and precipitation-concentration period (PCP) of different intensity durative precipitation events were calculated to analyze their statistical characteristics, mainly including spatial and temporal distributions, variations and climatic trends of the two parameters of the durative heavy precipitation events in China. It is proved that these two parameters of heavy rainfall can display the temporal inhomogeneity in the precipitation field. And it is also found that there is a good positive relationship between the precipitation-concentration degree and annual rainfall amount in the Eastern and Central China. This method can be applied in flood assessment and climate change fields.

  1. Performance and efficiency of geotextile-supported erosion control measures during simulated rainfall events

    Science.gov (United States)

    Obriejetan, Michael; Rauch, Hans Peter; Florineth, Florin

    2013-04-01

    Erosion control systems consisting of technical and biological components are widely accepted and proven to work well if installed properly with regard to site-specific parameters. A wide range of implementation measures for this specific protection purpose is existent and new, in particular technical solutions are constantly introduced into the market. Nevertheless, especially vegetation aspects of erosion control measures are frequently disregarded and should be considered enhanced against the backdrop of the development and realization of adaptation strategies in an altering environment due to climate change associated effects. Technical auxiliaries such as geotextiles typically used for slope protection (nettings, blankets, turf reinforcement mats etc.) address specific features and due to structural and material diversity, differing effects on sediment yield, surface runoff and vegetational development seem evident. Nevertheless there is a knowledge gap concerning the mutual interaction processes between technical and biological components respectively specific comparable data on erosion-reducing effects of technical-biological erosion protection systems are insufficient. In this context, an experimental arrangement was set up to study the correlated influences of geotextiles and vegetation and determine its (combined) effects on surface runoff and soil loss during simulated heavy rainfall events. Sowing vessels serve as testing facilities which are filled with top soil under application of various organic and synthetic geotextiles and by using a reliable drought resistant seed mixture. Regular vegetational monitoring as well as two rainfall simulation runs with four repetitions of each variant were conducted. Therefore a portable rainfall simulator with standardized rainfall intensity of 240 mm h-1 and three minute rainfall duration was used to stress these systems on different stages of plant development at an inclination of 30 degrees. First results show

  2. A dimensionless approach for the runoff peak assessment: effects of the rainfall event structure

    Science.gov (United States)

    Gnecco, Ilaria; Palla, Anna; La Barbera, Paolo

    2018-02-01

    The present paper proposes a dimensionless analytical framework to investigate the impact of the rainfall event structure on the hydrograph peak. To this end a methodology to describe the rainfall event structure is proposed based on the similarity with the depth-duration-frequency (DDF) curves. The rainfall input consists of a constant hyetograph where all the possible outcomes in the sample space of the rainfall structures can be condensed. Soil abstractions are modelled using the Soil Conservation Service method and the instantaneous unit hydrograph theory is undertaken to determine the dimensionless form of the hydrograph; the two-parameter gamma distribution is selected to test the proposed methodology. The dimensionless approach is introduced in order to implement the analytical framework to any study case (i.e. natural catchment) for which the model assumptions are valid (i.e. linear causative and time-invariant system). A set of analytical expressions are derived in the case of a constant-intensity hyetograph to assess the maximum runoff peak with respect to a given rainfall event structure irrespective of the specific catchment (such as the return period associated with the reference rainfall event). Looking at the results, the curve of the maximum values of the runoff peak reveals a local minimum point corresponding to the design hyetograph derived according to the statistical DDF curve. A specific catchment application is discussed in order to point out the dimensionless procedure implications and to provide some numerical examples of the rainfall structures with respect to observed rainfall events; finally their effects on the hydrograph peak are examined.

  3. Gamma-ray dose rate increase at rainfall events and their air-mass origins

    International Nuclear Information System (INIS)

    Iyogi, Takashi; Hisamatsu, Shun'ichi; Inaba, Jiro

    2007-01-01

    The environmental γ-ray dose rate and precipitation rates were measured at our institute, in Rokkasho, Aomori, Japan. We analyzed 425 rainfall events in which the precipitation rate was over 0.5 mm from April through November during the years 2003 to 2005. Backward trajectories for 5 d starting from 1000 m above Rokkasho at the time of the maximum dose rate in a rainfall event, were calculated by using the HYSPLIT model of the NOAA Air Resources Laboratory. The trajectories for 5 d were classified by visual inspection according to the passage areas; Pacific Ocean, Asian Continent and Japan Islands. The increase of cumulative environmental γ-ray dose during a rainfall event was plotted against the precipitation in the event, and their relationship was separately examined according to the air-mass passage area, i.e. origin of the air-mass. Our results showed that the origin of air-mass was an important factor affecting the increase of environmental γ-ray dose rate by rainfall. (author)

  4. Assessment of Rainfall-induced Landslide Potential and Spatial Distribution

    Science.gov (United States)

    Chen, Yie-Ruey; Tsai, Kuang-Jung; Chen, Jing-Wen; Chiang, Jie-Lun; Hsieh, Shun-Chieh; Chue, Yung-Sheng

    2016-04-01

    Recently, due to the global climate change, most of the time the rainfall in Taiwan is of short duration but with high intensity. Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assesses rainfall-induced (secondary) landslide potential and spatial distribution in watershed of Southern Taiwan under extreme climate change. The study areas in this research are Baolai and Jianshan villages in the watershed of the Laonongxi River Basin in the Southern Taiwan. This study focused on the 3 years after Typhoon Morakot (2009 to 2011). During this period, the study area experienced six heavy rainfall events including five typhoons and one heavy rainfall. The genetic adaptive neural network, texture analysis and GIS were implemented in the analysis techniques for the interpretation of satellite images and to obtain surface information and hazard log data and to analyze land use change. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various natural environmental and slope development hazard factors. Furthermore, this study established a slope landslide potential assessment model and depicted a slope landslide potential diagram by using the GIS platform. The interaction between (secondary) landslide mechanism, scale, and location was analyzed using association analysis of landslide historical data and regional environmental characteristics. The results of image classification before and after six heavy rainfall events show that the values of coefficient of agreement are at medium-high level. By multivariate hazards evaluation method, geology and the effective accumulative rainfall (EAR) are the most important factors. Slope, distance from fault, aspect, land disturbance

  5. The relationship of lightning activity and short-duation rainfall events during warm seasons over the Beijing metropolitan region

    Science.gov (United States)

    Wu, F.; Cui, X.; Zhang, D. L.; Lin, Q.

    2017-12-01

    The relationship between lightning activity and rainfall associated with 2925 short-duration rainfall (SDR) events over the Beijing metropolitan region (BMR) is examined during the warm seasons of 2006-2007, using the cloud-to-ground (CG) and intracloud (IC) lightning data from Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 and 5-min rainfall data from automatic weather stations (AWSs). To facilitate the analysis of the rainfall-lightning correlations, the SDR events are categorized into six different intensity grades according to their hourly rainfall rates (HRRs), and an optimal radius of 10 km from individual AWSs for counting their associated lightning flashes is used. Results show that the lightning-rainfall correlations vary significantly with different intensity grades. Weak correlations (R 0.4) are found in the weak SDR events, and 40-50% of the events are no-flash ones. And moderate correlation (R 0.6) are found in the moderate SDR events, and > 10-20% of the events are no-flash ones. In contrast, high correlations (R 0.7) are obtained in the SDHR events, and < 10% of the events are no-flash ones. The results indicate that lightning activity is observed more frequently and correlated more robust with the rainfall in the SDHR events. Significant time lagged correlations between lightning and rainfall are also found. About 80% of the SDR events could reach their highest correlation coefficients when the associated lightning flashes shift at time lags of < 25 min before and after rainfall begins. The percentages of SDR events with CG or total lightning activity preceding, lagging or coinciding with rainfall shows that (i) in about 55% of the SDR events lightning flashes preceded rainfall; (ii) the SDR events with lightning flashes lagging behind rainfall accounted for about 30%; and (iii) the SDR events without any time shifts accounted for the remaining 15%. Better lightning-rainfall correlations can be attained when time

  6. Simulation of rainfall-runoff for major flash flood events in Karachi

    Science.gov (United States)

    Zafar, Sumaira

    2016-07-01

    Metropolitan city Karachi has strategic importance for Pakistan. With the each passing decade the city is facing urban sprawl and rapid population growth. These rapid changes directly affecting the natural resources of city including its drainage pattern. Karachi has three major cities Malir River with the catchment area of 2252 sqkm and Lyari River has catchment area about 470.4 sqkm. These are non-perennial rivers and active only during storms. Change of natural surfaces into hard pavement causing an increase in rainfall-runoff response. Curve Number is increased which is now causing flash floods in the urban locality of Karachi. There is only one gauge installed on the upstream of the river but there no record for the discharge. Only one gauge located at the upstream is not sufficient for discharge measurements. To simulate the maximum discharge of Malir River rainfall (1985 to 2014) data were collected from Pakistan meteorological department. Major rainfall events use to simulate the rainfall runoff. Maximum rainfall-runoff response was recorded in during 1994, 2007 and 2013. This runoff causes damages and inundation in floodplain areas of Karachi. These flash flooding events not only damage the property but also cause losses of lives

  7. Responses of diatom communities to hydrological processes during rainfall events

    Science.gov (United States)

    Wu, Naicheng; Faber, Claas; Ulrich, Uta; Fohrer, Nicola

    2015-04-01

    The importance of diatoms as a tracer of hydrological processes has been recently recognized (Pfister et al. 2009, Pfister et al. 2011, Tauro et al. 2013). However, diatom variations in a short-term scale (e.g., sub-daily) during rainfall events have not been well documented yet. In this study, rainfall event-based diatom samples were taken at the outlet of the Kielstau catchment (50 km2), a lowland catchment in northern Germany. A total of nine rainfall events were caught from May 2013 to April 2014. Non-metric multidimensional scaling (NMDS) revealed that diatom communities of different events were well separated along NMDS axis I and II, indicating a remarkable temporal variation. By correlating water level (a proxy of discharge) and different diatom indices, close relationships were found. For example, species richness, biovolume (μm3), Shannon diversity and moisture index01 (%, classified according to van Dam et al. 1994) were positively related with water level at the beginning phase of the rainfall (i.e. increasing limb of discharge peak). However, in contrast, during the recession limb of the discharge peak, diatom indices showed distinct responses to water level declines in different rainfall events. These preliminary results indicate that diatom indices are highly related to hydrological processes. The next steps will include finding out the possible mechanisms of the above phenomena, and exploring the contributions of abiotic variables (e.g., hydrologic indices, nutrients) to diatom community patterns. Based on this and ongoing studies (Wu et al. unpublished data), we will incorporate diatom data into End Member Mixing Analysis (EMMA) and select the tracer set that is best suited for separation of different runoff components in our study catchment. Keywords: Diatoms, Rainfall event, Non-metric multidimensional scaling, Hydrological process, Indices References: Pfister L, McDonnell JJ, Wrede S, Hlúbiková D, Matgen P, Fenicia F, Ector L, Hoffmann L

  8. Persistent after-effects of heavy rain on concentrations of ice nuclei and rainfall suggest a biological cause

    Science.gov (United States)

    Bigg, E. K.; Soubeyrand, S.; Morris, C. E.

    2015-03-01

    Rainfall is one of the most important aspects of climate, but the extent to which atmospheric ice nuclei (IN) influence its formation, quantity, frequency, and location is not clear. Microorganisms and other biological particles are released following rainfall and have been shown to serve as efficient IN, in turn impacting cloud and precipitation formation. Here we investigated potential long-term effects of IN on rainfall frequency and quantity. Differences in IN concentrations and rainfall after and before days of large rainfall accumulation (i.e., key days) were calculated for measurements made over the past century in southeastern and southwestern Australia. Cumulative differences in IN concentrations and daily rainfall quantity and frequency as a function of days from a key day demonstrated statistically significant increasing logarithmic trends (R2 > 0.97). Based on observations that cumulative effects of rainfall persisted for about 20 days, we calculated cumulative differences for the entire sequence of key days at each site to create a historical record of how the differences changed with time. Comparison of pre-1960 and post-1960 sequences most commonly showed smaller rainfall totals in the post-1960 sequences, particularly in regions downwind from coal-fired power stations. This led us to explore the hypothesis that the increased leaf surface populations of IN-active bacteria due to rain led to a sustained but slowly diminishing increase in atmospheric concentrations of IN that could potentially initiate or augment rainfall. This hypothesis is supported by previous research showing that leaf surface populations of the ice-nucleating bacterium Pseudomonas syringae increased by orders of magnitude after heavy rain and that microorganisms become airborne during and after rain in a forest ecosystem. At the sites studied in this work, aerosols that could have initiated rain from sources unrelated to previous rainfall events (such as power stations) would

  9. Projected changes of rainfall event characteristics for the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Svoboda, V.; Hanel, M.; Máca, P.; Kyselý, Jan

    2016-01-01

    Roč. 64, č. 4 (2016), s. 415-425 ISSN 0042-790X R&D Projects: GA ČR(CZ) GA14-18675S Institutional support: RVO:68378289 Keywords : rainfall event * hourly rainfall * regional climate model * climate change Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.654, year: 2016 https://www.degruyter.com/view/j/johh.2016.64.issue-4/johh-2016-0036/johh-2016-0036.xml

  10. Case study: Rainfall partitioning across a natural-to-urban forest gradient during an extreme rain event

    Science.gov (United States)

    Akin, B. H.; Van Stan, J. T., II; Cote, J. F.; Jarvis, M. T.; Underwood, J.; Friesen, J.; Hildebrandt, A.; Maldonado, G.

    2017-12-01

    Trees' partitioning of rainfall is an important first process along the rainfall-to-runoff pathway that has economically significant influences on urban stormwater management. However, important knowledge gaps exist regarding (1) its role during extreme storms and (2) how this role changes as forest structure is altered by urbanization. Little research has been conducted on canopy rainfall partitioning during large, intense storms, likely because canopy water storage is rapidly overwhelmed (i.e., 1-3 mm) by short duration events exceeding, for example, 80 mm of rainfall. However, canopy structure controls more than just storage; it also affects the time for rain to drain to the surface (becoming throughfall) and the micrometeorological conditions that drive wet canopy evaporation. In fact, observations from an example extreme ( 100 mm with maximum 5-minute intensities exceeding 55 mm/h) storm across a urban-to-natural gradient in pine forests in southeast Georgia (USA), show that storm intensities were differentially dampened by 33% (tree row), 28% (forest fragment), and 17% (natural forests). In addition, maximum wet canopy evaporation rates were higher for the exposed tree row (0.18 mm/h) than for the partially-enclosed fragment canopy (0.14 mm/h) and the closed canopy natural forest site (0.11). This resulted in interception percentages decreasing from urban-to-natural stand structures (25% to 16%). A synoptic analysis of the extreme storm in this case study also shows that the mesoscale meteorological conditions that developed the heavy rainfall is expected to occur more often with projected climate changes.

  11. Event by event fluctuations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2001-01-01

    The authors discuss the physics underlying event-by-event fluctuations in relativistic heavy ion collisions. We will argue that the fluctuations of the ratio of positively over negatively charged particles may serve as a unique signature for the Quark Gluon Plasma.

  12. Improved estimation of heavy rainfall by weather radar after reflectivity correction and accounting for raindrop size distribution variability

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2015-04-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and meteorological perspective. Unfortunately, the operational weather radar measurements were affected by multiple sources of error and only 30% of the precipitation observed by rain gauges was estimated. Such an underestimation of heavy rainfall, albeit generally less strong than in this extreme case, is typical for operational weather radar in The Netherlands. In general weather radar measurement errors can be subdivided into two groups: (1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, radar calibration, vertical profile of reflectivity) and (2) errors resulting from variations in the raindrop size distribution that in turn result in incorrect rainfall intensity and attenuation estimates from observed reflectivity measurements. A stepwise procedure to correct for the first group of errors leads to large improvements in the quality of the estimated precipitation, increasing the radar rainfall accumulations to about 65% of those observed by gauges. To correct for the second group of errors, a coherent method is presented linking the parameters of the radar reflectivity-rain rate (Z-R) and radar reflectivity-specific attenuation (Z-k) relationships to the normalized drop size distribution (DSD). Two different procedures were applied. First, normalized DSD parameters for the whole event and for each precipitation type separately (convective, stratiform and undefined) were obtained using local disdrometer observations. Second, 10,000 randomly generated plausible normalized drop size distributions were used for rainfall estimation, to evaluate whether this Monte Carlo method would improve the quality of weather radar rainfall products. Using the

  13. Impacts of traffic and rainfall characteristics on heavy metals build-up and wash-off from urban roads.

    Science.gov (United States)

    Mahbub, Parvez; Ayoko, Godwin A; Goonetilleke, Ashantha; Egodawatta, Prasanna; Kokot, Serge

    2010-12-01

    An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE, and GAIA. Initial analyses established high, low, and moderate traffic scenarios as well as low, low to moderate, moderate, high, and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up, while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75 μm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 μm, whereas metal concentrations in finer size range of 300 μm can be targeted for removal of Ni, Cu, Pb, Cd, Cr, and Zn from build-up, while organic matter from 300 μm can be targeted for removal of Cd, Cr, Pb, and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.

  14. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia

    Science.gov (United States)

    Mayowa, Olaniya Olusegun; Pour, Sahar Hadi; Shahid, Shamsuddin; Mohsenipour, Morteza; Harun, Sobri Bin; Heryansyah, Arien; Ismail, Tarmizi

    2015-12-01

    The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfall- related extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971-2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann-Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.

  15. High-Resolution Discharge Forecasting for Snowmelt and Rainfall Mixed Events

    Directory of Open Access Journals (Sweden)

    Tomasz Berezowski

    2018-01-01

    Full Text Available Discharge events induced by mixture of snowmelt and rainfall are strongly nonlinear due to consequences of rain-on-snow phenomena and snowmelt dependence on energy balance. However, they received relatively little attention, especially in high-resolution discharge forecasting. In this study, we use Random Forests models for 24 h discharge forecasting in 1 h resolution in a 105.9 km 2 urbanized catchment in NE Poland: Biala River. The forcing data are delivered by Weather Research and Forecasting (WRF model in 1 h temporal and 4 × 4 km spatial resolutions. The discharge forecasting models are set in two scenarios with snowmelt and rainfall and rainfall only predictors in order to highlight the effect of snowmelt on the results (both scenarios use also pre-forecast discharge based predictors. We show that inclusion of snowmelt decrease the forecast errors for longer forecasts’ lead times. Moreover, importance of discharge based predictors is higher in the rainfall only models then in the snowmelt and rainfall models. We conclude that the role of snowmelt for discharge forecasting in mixed snowmelt and rainfall environments is in accounting for nonlinear physical processes, such as initial wetting and rain on snow, which cannot be properly modelled by rainfall only.

  16. Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection

    KAUST Repository

    Naveau, Philippe

    2016-04-09

    In statistics, extreme events are often defined as excesses above a given large threshold. This definition allows hydrologists and flood planners to apply Extreme-Value Theory (EVT) to their time series of interest. Even in the stationary univariate context, this approach has at least two main drawbacks. First, working with excesses implies that a lot of observations (those below the chosen threshold) are completely disregarded. The range of precipitation is artificially shopped down into two pieces, namely large intensities and the rest, which necessarily imposes different statistical models for each piece. Second, this strategy raises a nontrivial and very practical difficultly: how to choose the optimal threshold which correctly discriminates between low and heavy rainfall intensities. To address these issues, we propose a statistical model in which EVT results apply not only to heavy, but also to low precipitation amounts (zeros excluded). Our model is in compliance with EVT on both ends of the spectrum and allows a smooth transition between the two tails, while keeping a low number of parameters. In terms of inference, we have implemented and tested two classical methods of estimation: likelihood maximization and probability weighed moments. Last but not least, there is no need to choose a threshold to define low and high excesses. The performance and flexibility of this approach are illustrated on simulated and hourly precipitation recorded in Lyon, France.

  17. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  18. Identification of homogeneous regions for rainfall regional frequency analysis considering typhoon event in South Korea

    Science.gov (United States)

    Heo, J. H.; Ahn, H.; Kjeldsen, T. R.

    2017-12-01

    South Korea is prone to large, and often disastrous, rainfall events caused by a mixture of monsoon and typhoon rainfall phenomena. However, traditionally, regional frequency analysis models did not consider this mixture of phenomena when fitting probability distributions, potentially underestimating the risk posed by the more extreme typhoon events. Using long-term observed records of extreme rainfall from 56 sites combined with detailed information on the timing and spatial impact of past typhoons from the Korea Meteorological Administration (KMA), this study developed and tested a new mixture model for frequency analysis of two different phenomena; events occurring regularly every year (monsoon) and events only occurring in some years (typhoon). The available annual maximum 24 hour rainfall data were divided into two sub-samples corresponding to years where the annual maximum is from either (1) a typhoon event, or (2) a non-typhoon event. Then, three-parameter GEV distribution was fitted to each sub-sample along with a weighting parameter characterizing the proportion of historical events associated with typhoon events. Spatial patterns of model parameters were analyzed and showed that typhoon events are less commonly associated with annual maximum rainfall in the North-West part of the country (Seoul area), and more prevalent in the southern and eastern parts of the country, leading to the formation of two distinct typhoon regions: (1) North-West; and (2) Southern and Eastern. Using a leave-one-out procedure, a new regional frequency model was tested and compared to a more traditional index flood method. The results showed that the impact of typhoon on design events might previously have been underestimated in the Seoul area. This suggests that the use of the mixture model should be preferred where the typhoon phenomena is less frequent, and thus can have a significant effect on the rainfall-frequency curve. This research was supported by a grant(2017-MPSS31

  19. Forecasting the heavy rainfall during Himalayan flooding—June 2013

    Directory of Open Access Journals (Sweden)

    Anumeha Dube

    2014-08-01

    Verification of the synoptic features in forecasts of the two models suggests that NCUM accurately captures the circulation features as compared to T574. Further verification of this event is carried out based on the contiguous rain area (CRA technique. CRA verification is used in computing the total mean square error (MSE which is based on displacement, volume and pattern errors. This verification technique also, confirms the better skill of NCUM over T574 in terms of forecast peak rainfall amounts, volume and average rain rate, lower MSE and root mean square error (RMSE as well as having higher hit rates and lower misses and false alarm rates for different rainfall thresholds from Day 1 to Day 5 forecasts.

  20. Sediment yield during typhoon events in relation to landslides, rainfall, and catchment areas in Taiwan

    Science.gov (United States)

    Chen, Chi-Wen; Oguchi, Takashi; Hayakawa, Yuichi S.; Saito, Hitoshi; Chen, Hongey; Lin, Guan-Wei; Wei, Lun-Wei; Chao, Yi-Chiung

    2018-02-01

    Debris sourced from landslides will result in environmental problems such as increased sediment discharge in rivers. This study analyzed the sediment discharge of 17 main rivers in Taiwan during 14 typhoon events, selected from the catchment area and river length, that caused landslides according to government reports. The measured suspended sediment and water discharge, collected from hydrometric stations of the Water Resources Agency of Taiwan, were used to establish rating-curve relationships, a power-law relation between them. Then sediment discharge during typhoon events was estimated using the rating-curve method and the measured data of daily water discharge. Positive correlations between sediment discharge and rainfall conditions for each river indicate that sediment discharge increases when a greater amount of rainfall or a higher intensity of rainfall falls during a typhoon event. In addition, the amount of sediment discharge during a typhoon event is mainly controlled by the total amount of rainfall, not by peak rainfall. Differences in correlation equations among the rivers suggest that catchments with larger areas produce more sediment. Catchments with relatively low sediment discharge show more distinct increases in sediment discharge in response to increases in rainfall, owing to the little opportunity for deposition in small catchments with high connectivity to rivers and the transportation of the majority of landslide debris to rivers during typhoon events. Also, differences in geomorphic and geologic conditions among catchments around Taiwan lead to a variety of suspended sediment dynamics and the sediment budget. Positive correlation between average sediment discharge and average area of landslides during typhoon events indicates that when larger landslides are caused by heavier rainfall during a typhoon event, more loose materials from the most recent landslide debris are flushed into rivers, resulting in higher sediment discharge. The high

  1. Spatio-temporal variability and trends of precipitation and extreme rainfall events in Ethiopia in 1980-2010

    Science.gov (United States)

    Gummadi, Sridhar; Rao, K. P. C.; Seid, Jemal; Legesse, Gizachew; Kadiyala, M. D. M.; Takele, Robel; Amede, Tilahun; Whitbread, Anthony

    2017-12-01

    This article summarizes the results from an analysis conducted to investigate the spatio-temporal variability and trends in the rainfall over Ethiopia over a period of 31 years from 1980 to 2010. The data is mostly observed station data supplemented by bias-corrected AgMERRA climate data. Changes in annual and Belg (March-May) and Kiremt (June to September) season rainfalls and rainy days have been analysed over the entire Ethiopia. Rainfall is characterized by high temporal variability with coefficient of variation (CV, %) varying from 9 to 30% in the annual, 9 to 69% during the Kiremt season and 15-55% during the Belg season rainfall amounts. Rainfall variability increased disproportionately as the amount of rainfall declined from 700 to 100 mm or less. No significant trend was observed in the annual rainfall amounts over the country, but increasing and decreasing trends were observed in the seasonal rainfall amounts in some areas. A declining trend is also observed in the number of rainy days especially in Oromia, Benishangul-Gumuz and Gambella regions. Trends in seasonal rainfall indicated a general decline in the Belg season and an increase in the Kiremt season rainfall amounts. The increase in rainfall during the main Kiremt season along with the decrease in the number of rainy days leads to an increase in extreme rainfall events over Ethiopia. The trends in the 95th-percentile rainfall events illustrate that the annual extreme rainfall events are increasing over the eastern and south-western parts of Ethiopia covering Oromia and Benishangul-Gumuz regions. During the Belg season, extreme rainfall events are mostly observed over central Ethiopia extending towards the southern part of the country while during the Kiremt season, they are observed over parts of Oromia, (covering Borena, Guji, Bali, west Harerge and east Harerge), Somali, Gambella, southern Tigray and Afar regions. Changes in the intensity of extreme rainfall events are mostly observed over south

  2. Mesoscale processes for super heavy rainfall of Typhoon Morakot (2009 over Southern Taiwan

    Directory of Open Access Journals (Sweden)

    C.-Y. Lin

    2011-01-01

    Full Text Available Within 100 h, a record-breaking rainfall, 2855 mm, was brought to Taiwan by typhoon Morakot in August 2009 resulting in devastating landslides and casualties. Analyses and simulations show that under favorable large-scale situations, this unprecedented precipitation was caused first by the convergence of the southerly component of the pre-existing strong southwesterly monsoonal flow and the northerly component of the typhoon circulation. Then the westerly component of southwesterly flow pushed the highly moist air (mean specific humidity >16 g/kg between 950 and 700 hPa from NCEP GFS data set eastward against the Central Mountain Range, and forced it to lift in the preferred area. From the fine-scale numerical simulation, not only did the convergence itself provide the source of the heavy rainfall when it interacted with the topography, but also convective cells existed within the typhoon's main rainband. The convective cells were in the form of small rainbands perpendicular to the main one, and propagated as wave trains downwind. As the main rainband moved northward and reached the southern CMR, convective cells inside the narrow convergence zone to the south and those to the north as wave trains, both rained heavily as they were lifted by the west-facing mountain slopes. Those mesoscale processes were responsible for the unprecedented heavy rainfall total that accompanied this typhoon.

  3. Simulation of the catastrophic floods caused by extreme rainfall events - Uh River basin case study

    OpenAIRE

    Pekárová, Pavla; Halmová, Dana; Mitková, Veronika

    2005-01-01

    The extreme rainfall events in Central and East Europe on August 2002 rise the question, how other basins would respond on such rainfall situations. Such theorisation helps us to arrange in advance the necessary activity in the basin to reduce the consequence of the assumed disaster. The aim of the study is to recognise a reaction of the Uh River basin (Slovakia, Ukraine) to the simulated catastrophic rainfall events from August 2002. Two precipitation scenarios, sc1 and sc2, were created. Th...

  4. Characteristics of aerosol pollution during heavy haze events in Suzhou, China

    Science.gov (United States)

    Tian, M.; Wang, H. B.; Chen, Y.; Yang, F. M.; Zhang, X. H.; Zou, Q.; Zhang, R. Q.; Ma, Y. L.; He, K. B.

    2015-11-01

    A comprehensive measurement was carried out to analyze the heavy haze events in Suzhou in January 2013 when extremely severe haze pollution occurred in many cities in China especially in the East. Hourly concentrations of PM2.5, chemical composition (including water-soluble inorganic ions, OC, and EC), and gas-phase precursors were obtained via on-line monitoring system. Based on these data, detailed aerosol composition, light extinction and gas-phase precursors were analyzed to understand the characteristics of the haze events, moreover, the formation mechanism of nitrate and sulfate in PM2.5 and the regional sources deduced from trajectory and PSCF were discussed to explore the origin of the heavy aerosol pollution. The results showed that frequent haze events were occurred on January 2013 and the concentrations of PM2.5 often exceeded 150 μg m-3 during the haze occurrence, with a maximum concentration of 324 μg m-3 on 14 January 2013. Unfavorable weather conditions (high RH, and low rainfall, wind speed and atmospheric pressure), high concentration of secondary aerosol species (including SO42-, NO3-, NH4+, and SOC) and precursors were observed during the haze events. Additionally, OM, (NH4)2SO4, NH4NO3 were demonstrated to be the major contributors to the visibility impairment but the share differed from haze events. This study also found that the high concentration of sulfate might be explained by the heterogeneous reactions in the aqueous surface layer of pre-existing particles or in cloud processes while nitrate might be mainly formed through homogeneous gas-phase reactions. The results of trajectory clustering and the PSCF method manifested that aerosol pollutions in the studied areas were mainly affected by local activities and surrounding sources transported from nearby cities.

  5. Evaluation of Version-7 TRMM Multi-Satellite Precipitation Analysis Product during the Beijing Extreme Heavy Rainfall Event of 21 July 2012

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2013-12-01

    Full Text Available The latest Version-7 (V7 Tropical Rainfall Measuring Mission (TRMM Multi-satellite Precipitation Analysis (TMPA products were released by the National Aeronautics and Space Administration (NASA in December of 2012. Their performance on different climatology, locations, and precipitation types is of great interest to the satellite-based precipitation community. This paper presents a study of TMPA precipitation products (3B42RT and 3B42V7 for an extreme precipitation event in Beijing and its adjacent regions (from 00:00 UTC 21 July 2012 to 00:00 UTC 22 July 2012. Measurements from a dense rain gauge network were used as the ground truth to evaluate the latest TMPA products. Results are summarized as follows. Compared to rain gauge measurements, both 3B42RT and 3B42V7 generally captured the rainfall spatial and temporal pattern, having a moderate spatial correlation coefficient (CC, 0.6 and high CC values (0.88 over the broader Hebei, Beijing and Tianjin (HBT regions, but the rainfall peak is 6 h ahead of gauge observations. Overall, 3B42RT showed higher estimation than 3B42V7 over both HBT and Beijing. At the storm center, both 3B42RT and 3B42V7 presented a relatively large deviation from the temporal variation of rainfall and underestimated the storm by 29.02% and 36.07%, respectively. The current study suggests that the latest TMPA products still have limitations in terms of resolution and accuracy, especially for this type of extreme event within a latitude area on the edge of coverage of TRMM precipitation radar and microwave imager. Therefore, TMPA users should be cautious when 3B42RT and 3B42V7 are used to model, monitor, and forecast both flooding hazards in the Beijing urban area and landslides in the mountainous west and north of Beijing.

  6. Estimation of initiating event frequency for external flood events by extreme value theorem

    International Nuclear Information System (INIS)

    Chowdhury, Sourajyoti; Ganguly, Rimpi; Hari, Vibha

    2017-01-01

    External flood is an important common cause initiating event in nuclear power plants (NPPs). It may potentially lead to severe core damage (SCD) by first causing the failure of the systems required for maintaining the heat sinks and then by contributing to failures of engineered systems designed to mitigate such failures. The sample NPP taken here is twin 220 MWe Indian standard pressurized heavy water reactor (PHWR) situated inland. A comprehensive in-house Level-1 internal event PSA for full power had already been performed. External flood assessment was further conducted in area of external hazard risk assessment in response to post-Fukushima measures taken in nuclear industries. The present paper describes the methodology to calculate initiating event (IE) frequency for external flood events for the sample inland Indian NPP. General extreme value (GEV) theory based on maximum likelihood method (MLM) and order statistics approach (OSA) is used to analyse the rainfall data for the site. Thousand-year return level and necessary return periods for extreme rainfall are evaluated. These results along with plant-specific topographical calculations quantitatively establish that external flooding resulting from upstream dam break, river flooding and heavy rainfall (flash flood) would be unlikely for the sample NPP in consideration.

  7. Long term variations of extreme rainfall in Denmark and southern Sweden

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Madsen, Henrik; Rosbjerg, Dan

    2015-01-01

    A high number of studies have detected changes in the observed heavy rainfall in Northern and Central Europe, all adding to the debate on anthropogenic climate change and its potential impact on rainfall extremes. However, it is equally relevant to understand natural variations on which...... the anthropogenic changes are imposed. This study identifies multi-decadal variations in daily rainfall extremes from Denmark and southern Sweden, with a recurrence level relevant for flood hazard analysis. Based on smoothed series it is concluded that the frequency of the extreme events shows both a general...

  8. Diurnal Variation of Rainfall Associated with Tropical Depression in South China and its Relationship to Land-Sea Contrast and Topography

    Directory of Open Access Journals (Sweden)

    Yuchun Zhao

    2013-12-01

    Full Text Available Convective precipitation associated with tropical depression (TD is one primary type of post-flooding season rainfall in South China (SC. Observations of the Tropical Rainfall Measuring Mission (TRMM satellite have shown specific diurnal features of convective rainfall in South China, which is somewhat different from that in other seasons or regions of China. Convective precipitation is usually organized into a rainfall band along the southeastern coast of South China in the early morning hours. The rainfall band develops and intensifies quickly in the morning, then moves inland in the afternoon and, finally, diminishes at night. The daily convective rainfall along the coast is much more than that in the inland region, and heavy rainfall is often found along the coast. A long-duration heavy rainfall event associated with tropical depression “Fitow” during the period from 28 August to 6 September 2001, is selected in this study to explore the diurnal feature of convective rainfall and its formation mechanism. Modeling results of the 10-day heavy rainfall event are compared with both rain-gauge observation and satellite-retrieved rainfall. Total precipitation and its spatial distribution, as well as diurnal variations are reasonably simulated and agree well with observations. Further analysis reveals that the development and movement of convective precipitation is mainly related to the land and sea breezes. The anomalous height-latitudinal circulation in the morning-to-noon hours is completely reversed in the afternoon-to-late-evening hours, with the convective rainfall swinging back and forth, following its updraft branch. Sensitivity experiments show that the afternoon convective rainfall in the inland region of SC is caused by the diurnal variation of solar radiation forcing. The mountain range along the coast and the complex topography in the inland region of SC plays a critical role in the enhancement of diurnal convective rainfall

  9. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  10. Contribution of hydrological data to the understanding of the spatio-temporal dynamics of F-specific RNA bacteriophages in river water during rainfall-runoff events.

    Science.gov (United States)

    Fauvel, Blandine; Cauchie, Henry-Michel; Gantzer, Christophe; Ogorzaly, Leslie

    2016-05-01

    Heavy rainfall events were previously reported to bring large amounts of microorganisms in surface water, including viruses. However, little information is available on the origin and transport of viral particles in water during such rain events. In this study, an integrative approach combining microbiological and hydrological measurements was investigated to appreciate the dynamics and origins of F-specific RNA bacteriophage fluxes during two distinct rainfall-runoff events. A high frequency sampling (automatic sampler) was set up to monitor the F-specific RNA bacteriophages fluxes at a fine temporal scale during the whole course of the rainfall-runoff events. A total of 276 rainfall-runoff samples were collected and analysed using both infectivity and RT-qPCR assays. The results highlight an increase of 2.5 log10 and 1.8 log10 of infectious F-specific RNA bacteriophage fluxes in parallel of an increase of the water flow levels for both events. Faecal pollution was characterised as being mainly from anthropic origin with a significant flux of phage particles belonging to the genogroup II. At the temporal scale, two successive distinct waves of phage pollution were established and identified through the hydrological measurements. The first arrival of phages in the water column was likely to be linked to the resuspension of riverbed sediments that was responsible for a high input of genogroup II. Surface runoff contributed further to the second input of phages, and more particularly of genogroup I. In addition, an important contribution of infectious phage particles has been highlighted. These findings imply the existence of a close relationship between the risk for human health and the viral contamination of flood water. Copyright © 2016 Luxembourg institute of Science and Technology. Published by Elsevier Ltd.. All rights reserved.

  11. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel

    Science.gov (United States)

    Zhang, Wenmin; Brandt, Martin; Tong, Xiaoye; Tian, Qingjiu; Fensholt, Rasmus

    2018-01-01

    Climate change in drylands has caused alterations in the seasonal distribution of rainfall including increased heavy-rainfall events, longer dry spells, and a shifted timing of the wet season. Yet the aboveground net primary productivity (ANPP) in drylands is usually explained by annual-rainfall sums, disregarding the influence of the seasonal distribution of rainfall. This study tested the importance of rainfall metrics in the wet season (onset and cessation of the wet season, number of rainy days, rainfall intensity, number of consecutive dry days, and heavy-rainfall events) for growing season ANPP. We focused on the Sahel and northern Sudanian region (100-800 mm yr-1) and applied daily satellite-based rainfall estimates (CHIRPS v2.0) and growing-season-integrated normalized difference vegetation index (NDVI; MODIS) as a proxy for ANPP over the study period: 2001-2015. Growing season ANPP in the arid zone (100-300 mm yr-1) was found to be rather insensitive to variations in the seasonal-rainfall metrics, whereas vegetation in the semi-arid zone (300-700 mm yr-1) was significantly impacted by most metrics, especially by the number of rainy days and timing (onset and cessation) of the wet season. We analysed critical breakpoints for all metrics to test if vegetation response to changes in a given rainfall metric surpasses a threshold beyond which vegetation functioning is significantly altered. It was shown that growing season ANPP was particularly negatively impacted after > 14 consecutive dry days and that a rainfall intensity of ˜ 13 mm day-1 was detected for optimum growing season ANPP. We conclude that the number of rainy days and the timing of the wet season are seasonal-rainfall metrics that are decisive for favourable vegetation growth in the semi-arid Sahel and need to be considered when modelling primary productivity from rainfall in the drylands of the Sahel and elsewhere.

  12. Prevention through policy: Urban macroplastic leakages to the marine environment during extreme rainfall events

    OpenAIRE

    Axelsson, Charles; van Sebille, Erik

    2017-01-01

    The leakage of large plastic litter (macroplastics) into the ocean is a major environmental problem. A significant fraction of this leakage originates from coastal cities, particularly during extreme rainfall events. As coastal cities continue to grow, finding ways to reduce this macroplastic leakage is extremely pertinent. Here, we explore why and how coastal cities can reduce macroplastic leakages during extreme rainfall events. Using nine global cities as a basis, we establish that while c...

  13. A Canonical Response in Rainfall Characteristics to Global Warming: Projections by IPCC CMIP5 Models

    Science.gov (United States)

    Lau, William K. M.; Wu, H. T.; Kim, K. M.

    2012-01-01

    Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (>10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.

  14. Runoff and Sediment Production under the Similar Rainfall Events in Different Aggregate Sizes of an Agricultural Soil

    Directory of Open Access Journals (Sweden)

    S. F. Eslami

    2016-09-01

    Full Text Available Introduction: Soil erosion by water is the most serious form of land degradation throughout the world, particularly in arid and semi-arid regions. In these areas, soils are weakly structured and are easily disrupted by raindrop impacts. Soil erosion is strongly affected by different factors such as rainfall characteristics, slope properties, vegetation cover, conservation practices, and soil erodibility. Different physicochemical soil properties such texture, structure, infiltration rate, organic matter, lime and exchangeable sodium percentage can affect the soil erodibility as well as soil erosion. Soil structure is one of the most important properties influencing runoff and soil loss because it determines the susceptibility of the aggregates to detach by either raindrop impacts or runoff shear stress. Many soil properties such as particle size distribution, organic matter, lime, gypsum, and exchangeable sodium percentage (ESP can affect the soil aggregation and the stability. Aggregates size distribution and their stability can be changed considerably because of agricultural practices. Information about variations of runoff and sediment in the rainfall events can be effective in modeling runoff as well as sediment. Thus, the study was conducted to determine runoff and sediment production of different aggregate sizes in the rainfall event scales. Materials and Methods: Toward the objective of the study, five aggregate classes consist of 0.25-2, 2-4.75, 4.75-5.6, 5.6-9.75, and 9.75-12.7 mm were collected from an agricultural sandy clay loam (0-30 cm using the related sieves in the field. Physicochemical soil analyses were performed in the aggregate samples using conventional methods in the lab. The aggregate samples were separately filed into fifteen flumes with a dimension of 50 cm × 100 cm and 15-cm in depth. The aggregate flumes were fixed on a steel plate with 9% slope and were exposed to the simulated rainfalls for investigating runoff and

  15. Improved spatial mapping of rainfall events with spaceborne SAR imagery

    Science.gov (United States)

    Ulaby, F. T.; Brisco, B.; Dobson, C.

    1983-01-01

    The Seasat satellite acquired the first spaceborne synthetic-aperture radar (SAR) images of the earth's surface, in 1978, at a frequency of 1.275 GHz (L-band) in a like-polarization mode at incidence angles of 23 + or - 3 deg. Although this may not be the optimum system configuration for radar remote sensing of soil moisture, interpretation of two Seasat images of Iowa demonstrates the sensitivity of microwave backscatter to soil moisture content. In both scenes, increased image brightness, which represents more radar backscatter, can be related to previous rainfall activity in the two areas. Comparison of these images with ground-based rainfall observations illustrates the increased spatial coverage of the rainfall event that can be obtained from the satellite SAR data. These data can then be color-enhanced by a digital computer to produce aesthetically pleasing output products for the user community.

  16. Assessment of realistic nowcasting lead-times based on predictability analysis of Mediterranean Heavy Precipitation Events

    Science.gov (United States)

    Bech, Joan; Berenguer, Marc

    2014-05-01

    Operational quantitative precipitation forecasts (QPF) are provided routinely by weather services or hydrological authorities, particularly those responsible for densely populated regions of small catchments, such as those typically found in Mediterranean areas prone to flash-floods. Specific rainfall values are used as thresholds for issuing warning levels considering different time frameworks (mid-range, short-range, 24h, 1h, etc.), for example 100 mm in 24h or 60 mm in 1h. There is a clear need to determine how feasible is a specific rainfall value for a given lead-time, in particular for very short range forecasts or nowcasts typically obtained from weather radar observations (Pierce et al 2012). In this study we assess which specific nowcast lead-times can be provided for a number of heavy precipitation events (HPE) that affected Catalonia (NE Spain). The nowcasting system we employed generates QPFs through the extrapolation of rainfall fields observed with weather radar following a Lagrangian approach developed and tested successfully in previous studies (Berenguer et al. 2005, 2011).Then QPFs up to 3h are compared with two quality controlled observational data sets: weather radar quantitative precipitation estimates (QPE) and raingauge data. Several high-impact weather HPE were selected including the 7 September 2005 Llobregat Delta river tornado outbreak (Bech et al. 2007) or the 2 November 2008 supercell tornadic thunderstorms (Bech et al. 2011) both producing, among other effects, local flash floods. In these two events there were torrential rainfall rates (30' amounts exceeding 38.2 and 12.3 mm respectively) and 24h accumulation values above 100 mm. A number of verification scores are used to characterize the evolution of precipitation forecast quality with time, which typically presents a decreasing trend but showing an strong dependence on the selected rainfall threshold and integration period. For example considering correlation factors, 30

  17. Leaching variations of heavy metals in chelator-assisted phytoextraction by Zea mays L. exposed to acid rainfall.

    Science.gov (United States)

    Lu, Yayin; Luo, Dinggui; Liu, Lirong; Tan, Zicong; Lai, An; Liu, Guowei; Li, Junhui; Long, Jianyou; Huang, Xuexia; Chen, Yongheng

    2017-11-01

    Chelant-enhanced phytoextraction method has been put forward as an effective soil remediation method, whereas the heavy metal leaching could not be ignored. In this study, a cropping-leaching experiment, using soil columns, was applied to study the metal leaching variations during assisted phytoextraction of Cd- and Pb-polluted soils, using seedlings of Zea mays, applying three different chelators (EDTA, EDDS, and rhamnolipid), and artificial rainfall (acid rainfall or normal rainfall). It showed that artificial rainfall, especially artificial acid rain, after chelator application led to the increase of heavy metals in the leaching solution. EDTA increased both Cd and Pb concentrations in the leaching solution, obviously, whereas EDDS and rhamnolipid increased Cd concentration but not Pb. The amount of Cd and Pb decreased as the leaching solution increased, the patterns as well matched LRMs (linear regression models), with R-square (R 2 ) higher than 90 and 82% for Cd and Pb, respectively. The maximum cumulative Cd and Pb in the leaching solutions were 18.44 and 16.68%, respectively, which was amended by EDTA and acid rainwater (pH 4.5), and followed by EDDS (pH 4.5), EDDS (pH 6.5), rhamnolipid (0.5 g kg -1 soil, pH 4.5), and rhamnolipid (pH 6.5).

  18. Rainfall characterisation by application of standardised precipitation index (SPI) in Peninsular Malaysia

    Science.gov (United States)

    Yusof, Fadhilah; Hui-Mean, Foo; Suhaila, Jamaludin; Yusop, Zulkifli; Ching-Yee, Kong

    2014-02-01

    The interpretations of trend behaviour for dry and wet events are analysed in order to verify the dryness and wetness episodes. The fitting distribution of rainfall is computed to classify the dry and wet events by applying the standardised precipitation index (SPI). The rainfall amount for each station is categorised into seven categories, namely extremely wet, severely wet, moderately wet, near normal, moderately dry, severely dry and extremely dry. The computation of the SPI is based on the monsoon periods, which include the northeast monsoon, southwest monsoon and inter-monsoon. The trends of the dry and wet periods were then detected using the Mann-Kendall trend test and the results indicate that the major parts of Peninsular Malaysia are characterised by increasing droughts rather than wet events. The annual trends of drought and wet events of the randomly selected stations from each region also yield similar results. Hence, the northwest and southwest regions are predicted to have a higher probability of drought occurrence during a dry event and not much rain during the wet event. The east and west regions, on the other hand, are going through a significant upward trend that implies lower rainfall during the drought episodes and heavy rainfall during the wet events.

  19. Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM for Rainfall Variability over the Pacific Slope and Coast of Ecuador

    Directory of Open Access Journals (Sweden)

    Bolívar Erazo

    2018-02-01

    Full Text Available A dense rain-gauge network within continental Ecuador was used to evaluate the quality of various products of rainfall data over the Pacific slope and coast of Ecuador (EPSC. A cokriging interpolation method is applied to the rain-gauge data yielding a gridded product at 5-km resolution covering the period 1965–2015. This product is compared with the Global Precipitation Climatology Centre (GPCC dataset, the Climatic Research Unit–University of East Anglia (CRU dataset, the Tropical Rainfall Measuring Mission (TRMM/TMPA 3B43 Version 7 dataset and the ERA-Interim Reanalysis. The analysis reveals that TRMM data show the most realistic features. The relative bias index (Rbias indicates that TRMM data is closer to the observations, mainly over lowlands (mean Rbias of 7% but have more limitations in reproducing the rainfall variability over the Andes (mean Rbias of −28%. The average RMSE and Rbias of 68.7 and −2.8% of TRMM are comparable with the GPCC (69.8 and 5.7% and CRU (102.3 and −2.3% products. This study also focuses on the rainfall inter-annual variability over the study region which experiences floods that have caused high economic losses during extreme El Niño events. Finally, our analysis evaluates the ability of TRMM data to reproduce rainfall events during El Niño years over the study area and the large basins of Esmeraldas and Guayas rivers. The results show that TRMM estimates report reasonable levels of heavy rainfall detection (for the extreme 1998 El Niño event over the EPSC and specifically towards the center-south of the EPSC (Guayas basin but present underestimations for the moderate El Niño of 2002–2003 event and the weak 2009–2010 event. Generally, the rainfall seasonal features, quantity and long-term climatology patterns are relatively well estimated by TRMM.

  20. The Energy Budget of a Southwest Vortex With Heavy Rainfall over South China

    Institute of Scientific and Technical Information of China (English)

    FU Shenming; SUN Jianhua; ZHAO Sixiong; LI Wanli

    2011-01-01

    Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China (11-13 June 2008). The results show that kinetic energy (KE) generation and a dvection were the most important KE sources, while friction and sub-grid processes were the main KE sinks. There was downward conversion from divergent to rotational wind KE consistent with the downward stretching of SWVs. The Coriolis force was important for the formation and maintenance of the SWV. Convergence was also an important factor for maintenance, as was vertical motion during the mature stage of the SWV and the formation stage of a newly formed vortex (vortex B). The conversion from available potential energy (APE) to KE of divergent wind can lead to strong convection. Vertical motion influenced APE by dynamical and thermal processes which had opposite effects.The variation of APE was related to the heavy rainfall and convection; in this case, vertical motion with direct thermal circulation was the most important way in which APE was released, while latent heat release and vertical temperature advection were important for APE generation.

  1. The Energy Budget of a Southwest Vortex With Heavy Rainfall over South China

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China(11-13 June 2008).The results show that kinetic energy(KE) generation and advection were the most important KE sources,while friction and sub-grid processes were the main KE sinks.There was downward conversion from divergent to rotational wind KE consistent with the downward stretching of SWVs.The Coriolis force was important for the formation and maintenance of the SWV.Convergence was also an important factor for maintenance,as was vertical motion during the mature stage of the SWV and the formation stage of a newly formed vortex(vortex B).The conversion from available potential energy(APE) to KE of divergent wind can lead to strong convection.Vertical motion influenced APE by dynamical and thermal processes which had opposite effects. The variation of APE was related to the heavy rainfall and convection;in this case,vertical motion with direct thermal circulation was the most important way in which APE was released,while latent heat release and vertical temperature advection were important for APE generation.

  2. Monsoon effect simulation on typhoon rainfall potential - Typhoon Morakot (2009

    Directory of Open Access Journals (Sweden)

    Yi-Ling Chang

    2017-01-01

    Full Text Available A record breaking extreme precipitation event produced 3000 mm day-1 of accumulated rainfall over southern Taiwan in August 2009. The interactions between Typhoon Morakot and the prevailing southwesterly (SW monsoon are the primary mechanism for this heavy precipitation during 5 - 13 August 2009. This extreme precipitation could be produced by the abundant moisture from the SW monsoon associated with the interaction between typhoon and monsoon wind fields, leading to severe property damage. The accurate mapping of extreme precipitation caused from the interaction between a monsoon and typhoon is critical for early warning in Taiwan. This study simulates the heavy rainfall event is based on the Weather Research and Forecast system model (WRF using the three nested domain configuration. Using data assimilation with a virtual meteorological field using the 3D-Var system, such as wind field to alter the SW monsoon strength in the initial condition, the impacts of intensified convergence and water vapor content on the accumulated rainfall are analyzed to quantize the intensification of typhoon rainfall potential. The results showed a positive correlation between the enhanced precipitation and the intensity of low-level wind speed convergence as well as water vapor content. For the Typhoon Morakot case study the rainfall for could attain approximately 2 × 104 mm at 6 hours interval in the southern Taiwan area when 10 × 10-6 s-1 convergence intensified at 850 hPa level around the southern part of the Taiwan Strait. These results suggest that low-level wind speed, convergence and water vapor content play key roles in the typhoon rainfall potential coupled with the SW monsoon.

  3. Variability of extreme wet events over Malawi

    Directory of Open Access Journals (Sweden)

    Libanda Brigadier

    2017-01-01

    Full Text Available Adverse effects of extreme wet events are well documented by several studies around the world. These effects are exacerbated in developing countries like Malawi that have insufficient risk reduction strategies and capacity to cope with extreme wet weather. Ardent monitoring of the variability of extreme wet events over Malawi is therefore imperative. The use of the Expert Team on Climate Change Detection and Indices (ETCCDI has been recommended by many studies as an effective way of quantifying extreme wet events. In this study, ETCCDI indices were used to examine the number of heavy, very heavy, and extremely heavy rainfall days; daily and five-day maximum rainfall; very wet and extremely wet days; annual wet days and simple daily intensity. The Standard Normal Homogeneity Test (SNHT was employed at 5% significance level before any statistical test was done. Trend analysis was done using the nonparametric Mann-Kendall statistical test. All stations were found to be homogeneous apart from Mimosa. Trend results show high temporal and spatial variability with the only significant results being: increase in daily maximum rainfall (Rx1day over Karonga and Bvumbwe, increase in five-day maximum rainfall (Rx5day over Bvumbwe. Mzimba and Chileka recorded a significant decrease in very wet days (R95p while a significant increase was observed over Thyolo. Chileka was the only station which observed a significant trend (decrease in extremely wet rainfall (R99p. Mzimba was the only station that reported a significant trend (decrease in annual wet-day rainfall total (PRCPTOT and Thyolo was the only station that reported a significant trend (increase in simple daily intensity (SDII. Furthermore, the findings of this study revealed that, during wet years, Malawi is characterised by an anomalous convergence of strong south-easterly and north-easterly winds. This convergence is the main rain bringing mechanism to Malawi.

  4. Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France.

    Science.gov (United States)

    Roiz, David; Boussès, Philippe; Simard, Frédéric; Paupy, Christophe; Fontenille, Didier

    2015-06-01

    Extreme precipitation events are increasing as a result of ongoing global warming, but controversy surrounds the relationship between flooding and mosquito-borne diseases. A common view among the scientific community and public health officers is that heavy rainfalls have a flushing effect on breeding sites, which negatively affects vector populations, thereby diminishing disease transmission. During 2014 in Montpellier, France, there were at least 11 autochthonous cases of chikungunya caused by the invasive tiger mosquito Aedes albopictus in the vicinity of an imported case. We show that an extreme rainfall event increased and extended the abundance of the disease vector Ae. albopictus, hence the period of autochthonous transmission of chikungunya. We report results from close monitoring of the adult and egg population of the chikungunya vector Ae. albopictus through weekly sampling over the entire mosquito breeding season, which revealed an unexpected pattern. Statistical analysis of the seasonal dynamics of female abundance in relation to climatic factors showed that these relationships changed after the heavy rainfall event. Before the inundations, accumulated temperatures are the most important variable predicting Ae. albopictus seasonal dynamics. However, after the inundations, accumulated rainfall over the 4 weeks prior to capture predicts the seasonal dynamics of this species and extension of the transmission period. Our empirical data suggests that heavy rainfall events did increase the risk of arbovirus transmission in Southern France in 2014 by favouring a rapid rise in abundance of vector mosquitoes. Further studies should now confirm these results in different ecological contexts, so that the impact of global change and extreme climatic events on mosquito population dynamics and the risk of disease transmission can be adequately understood.

  5. Prevention through policy: Urban macroplastic leakages to the marine environment during extreme rainfall events.

    Science.gov (United States)

    Axelsson, Charles; van Sebille, Erik

    2017-11-15

    The leakage of large plastic litter (macroplastics) into the ocean is a major environmental problem. A significant fraction of this leakage originates from coastal cities, particularly during extreme rainfall events. As coastal cities continue to grow, finding ways to reduce this macroplastic leakage is extremely pertinent. Here, we explore why and how coastal cities can reduce macroplastic leakages during extreme rainfall events. Using nine global cities as a basis, we establish that while cities actively create policies that reduce plastic leakages, more needs to be done. Nonetheless, these policies are economically, socially and environmentally cobeneficial to the city environment. While the lack of political engagement and economic concerns limit these policies, lacking social motivation and engagement is the largest limitation towards implementing policy. We recommend cities to incentivize citizen and municipal engagement with responsible usage of plastics, cleaning the environment and preparing for future extreme rainfall events. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  6. Characterizing fluvial heavy metal pollutions under different rainfall conditions: Implication for aquatic environment protection.

    Science.gov (United States)

    Zhang, Lixun; Zhao, Bo; Xu, Gang; Guan, Yuntao

    2018-09-01

    Globally, fluvial heavy metal (HM) pollution has recently become an increasingly severe problem. However, few studies have investigated the variational characteristics of fluvial HMs after rain over long periods (≥1 year). The Dakan River in Xili Reservoir watershed (China) was selected as a case study to investigate pollution levels, influencing factors, and sources of HMs under different rainfall conditions during 2015 and 2016. Fluvial HMs showed evident spatiotemporal variations attributable to the coupled effects of pollution generation and rainfall diffusion. Fluvial HM concentrations were significantly associated with rainfall characteristics (e.g., rainfall intensity, rainfall amount, and antecedent dry period) and river flow, which influenced the generation and the transmission of fluvial HMs in various ways. Moreover, this interrelationship depended considerably on the HM type and particle size distribution. Mn, Pb, Cr, and Ni were major contributors to high values of the comprehensive pollution index; therefore, they should be afforded special attention. Additionally, quantitative source apportionment of fluvial HMs was conducted by combining principal component analysis with multiple linear regression and chemical mass balance models to obtain comprehensive source profiles. Finally, an environment-friendly control strategy coupling "source elimination" and "transport barriers" was proposed for aquatic environment protection. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Curve Number Estimation for a Small Urban Catchment from Recorded Rainfall-Runoff Events

    Directory of Open Access Journals (Sweden)

    Banasik Kazimierz

    2014-12-01

    Full Text Available Runoff estimation is a key component in various hydrological considerations. Estimation of storm runoff is especially important for the effective design of hydraulic and road structures, for the flood flow management, as well as for the analysis of land use changes, i.e. urbanization or low impact development of urban areas. The curve number (CN method, developed by Soil Conservation Service (SCS of the U.S. Department of Agriculture for predicting the flood runoff depth from ungauged catchments, has been in continuous use for ca. 60 years. This method has not been extensively tested in Poland, especially in small urban catchments, because of lack of data. In this study, 39 rainfall-runoff events, collected during four years (2009–2012 in a small (A=28.7 km2, urban catchment of Służew Creek in southwest part of Warsaw were used, with the aim of determining the CNs and to check its applicability to ungauged urban areas. The parameters CN, estimated empirically, vary from 65.1 to 95.0, decreasing with rainfall size and, when sorted rainfall and runoff separately, reaching the value from 67 to 74 for large rainfall events.

  8. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate.

    Science.gov (United States)

    Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D

    2016-04-15

    Sediment and heavy metals in stormwater runoff are key pollutants of urban waterways, and their presence in stormwater is driven by climatic factors such as rainfall intensity. This study describes the total suspended solids (TSS) and heavy metal concentrations found in runoff from four different urban surfaces within a residential/institutional catchment, in a climate where rainfall is typically of low intensity (runoff quality from a compilation of international studies. The road runoff had the highest TSS concentrations, while copper and galvanized roof runoff had the highest copper and zinc concentrations, respectively. Pollutant concentrations were found to be significantly different between surfaces; quantification and prediction of pollutant contributions from urban surfaces should thus take account of the different surface materials, instead of being aggregated into more generalized categories such as land use. The TSS and heavy metal concentrations were found to be at the low to medium end of ranges observed internationally, except for total copper and zinc concentrations generated by dissolution of copper and galvanized roofing material respectively; these concentrations were at least as high as those reported internationally. TSS wash-off from the roofs was seen to be a source-limited process, where all available TSS is washed off during the rain event despite the low intensity rainfall, whereas both road TSS and heavy metals wash-off from roof and road surfaces appeared to all be transport-limited and therefore some carryover of pollutants occurs between rain events. A first flush effect was seen from most surfaces for TSS, but not for heavy metals. This study demonstrates that in low intensity rainfall climates, quantification of untreated runoff quality from key individual surface types in a catchment are needed to enable development of targeted and appropriately sized stormwater treatment systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Convective Mode and Mesoscale Heavy Rainfall Forecast Challenges during a High-Impact Weather Period along the Gulf Coast and Florida from 17-20 May 2016

    Science.gov (United States)

    Bosart, L. F.; Wallace, B. C.

    2017-12-01

    Two high-impact convective storm forecast challenges occurred between 17-20 May 2016 during NOAA's Hazardous Weather Testbed Spring Forecast Experiment (SFE) at the Storm Prediction Center. The first forecast challenge was 286 mm of unexpected record-breaking rain that fell on Vero Beach (VRB), Florida, between 1500 UTC 17 May and 0600 UTC 18 May, more than doubling the previous May daily rainfall record. The record rains in VRB occurred subsequent to the formation of a massive MCS over the central Gulf of Mexico between 0900-1000 UTC 17 May. This MCS, linked to the earlier convection associated with an anomalously strong subtropical jet (STJ) over the Gulf of Mexico, moved east-northeastward toward Florida. The second forecast challenge was a large MCS that formed over the Mexican mountains near the Texas-Mexican border, moved eastward and grew upscale prior to 1200 UTC 19 May. This MCS further strengthened offshore after 1800 UTC 19 May beneath the STJ. SPC SFE participants expected this MCS to move east-northeastward and bring heavy rain due to training echoes along the Gulf coast as far eastward as the Florida panhandle. Instead, this MCS transitioned into a bowing MCS that resembled a low-end derecho and produced a 4-6 hPa cold pool with widespread surface wind gusts between 35-50 kt. Both MCS events occurred in a large-scale baroclinic environment along the northern Gulf coast. Both MCS events responded to antecedent convection within this favorable large-scale environment. Rainfall amounts with the first heavy rain-producing MCS were severely underestimated by models and forecasters alike. The second MCS produced the greatest forecaster angst because rainfall totals were forecast too high (MCS propagated too fast) and severe wind reports were much more widespread than anticipated (because of cold pool formation). This presentation will attempt to untangle what happened and why it happened.

  10. Rainfall-induced landslide susceptibility zonation of Puerto Rico

    Science.gov (United States)

    Chiara Lepore; Sameer A. Kamal; Peter Shanahan; Rafael L. Bras

    2011-01-01

    Landslides are a major geologic hazard with estimated tens of deaths and $1–2 billion in economic losses per year in the US alone. The island of Puerto Rico experiences one or two large events per year, often triggered in steeply sloped areas by prolonged and heavy rainfall. Identifying areas susceptible to landslides thus has great potential value for Puerto Rico and...

  11. Event-By-Event Initial Conditions for Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Rose, S; Fries, R J

    2017-01-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events. (paper)

  12. Event-By-Event Initial Conditions for Heavy Ion Collisions

    Science.gov (United States)

    Rose, S.; Fries, R. J.

    2017-04-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events.

  13. Extreme Rainfall In A City

    Science.gov (United States)

    Nkemdirim, Lawrence

    Cities contain many structures and activities that are vulnerable to severe weather. Heavy precipitation cause floods which can damage structures, compromise transportation and water supply systems, and slow down economic and social activities. Rain induced flood patterns in cities must be well understood to enable effective placement of flood control and other regulatory measures. The planning goal is not to eliminate all floods but to reduce their frequency and resulting damage. Possible approaches to such planning include probability based extreme event analysis. Precipitation is normally the most variable hydrologic element over a given area. This variability results from the distribution of clouds and in cloud processes in the atmosphere, the storm path, and the distribution of topographical features on the ground along path. Some studies suggest that point rainfall patterns are also affected by urban industrial effects hence some agreement that cities are wetter than the country surrounding them. However, there are still questions regarding the intra- urban distribution of precipitation. The sealed surfaces, urban structures, and the urban heat anomaly increase convection in cities which may enhance the generation of clouds. Increased dust and gaseous aerosols loads are effective condensation and sublimation nuclei which may also enhance the generation of precipitation. Based on these associations, the greatest amount of convection type rainfall should occur at city center. A study of summer rainfall in Calgary showed that frequencies of trace amounts of rainfall and events under 0.2mm are highest downtown than elsewhere. For amounts greater than than 0.2 mm, downtown sites were not favored. The most compelling evidence for urban-industrial precipitation enhancement came from the Metromex project around St. Loius, Missouri where maximum increases of between 5 to 30 per cent in summer rainfall downwind of the city was linked to urbanization and

  14. Landsliding and flooding event triggered by heavy rains in the Rize region

    Science.gov (United States)

    Yalcin, Ali; Kavurmaci, M. Murat

    2013-04-01

    Rize province has been significantly damaged by frequent landslides and floods which are caused by severe rainfalls and result in many casualties. The area is prone to landslides because of the climate conditions, geologic, and land cover characteristics of the region. The most recent landslide occurred on August 26, 2010 in Gundogdu town. The landslides have caused large numbers of casualties and huge economic losses in the region. Thirteen people died, twenty houses collapsed, more than a hundred houses damaged, and one hundred fifty vehicles were damaged in the Gundogdu landslide. Flood event is often seen in the region of Rize, due to continuous rainfall. Floods cause huge loss of life and property in this region. Rainfall is the most frequent landslide-triggering factor in East Black Sea region, Turkey, especially Rize region. Rize is the rainiest city of Turkey. Total annual precipitation is over 2300 mm, and precipitation is equally distributed in each month. However, in August 26, 166.5 mm precipitation rained within 24 hours in the region and this rainstorm caused great damage. The intensity rainfall periods were become as an indicator of landslide activity. It is very important that the presence of suitable lithologic units for occurring landslides. There are appropriate materials to contributed constitution of landslides in the study area; completely weathered dacite. In addition, intensity land cover types as tea plantations have been blocked surface flows and rainfall is able to quickly penetrate into the soil through open tension cracks that appear in the landslide head and in stretching zones. According to the results of the analysis, the study area has been overlaid tea garden 70 % percentage approximately. Furthermore, the landslide risks have increased by devastation of land cover in this region. In this region, over-steepened slopes, slope saturation in areas of heavy rainfall, and removal of slope vegetation can also increase landslide potential

  15. Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events

    International Nuclear Information System (INIS)

    Zheng Yi; Luo Xiaolin; Zhang Wei; Wu Bin; Han Feng; Lin Zhongrong; Wang Xuejun

    2012-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported by surface runoff result in nonpoint source pollution and jeopardize aquatic ecosystems. The transport mechanism of PAHs during rainfall-runoff events has been rarely studied regarding pervious areas. An experimental system was setup to simulate the runoff pollution process on PAHs-contaminated soil. The enrichment behavior of soil-bound PAHs was investigated. The results show that soil organic matters (SOM), rather than clay particles, seem to be the main carrier of PAHs. The enrichment is highly conditioned on runoff and erosion processes, and its magnitude varies among PAH compounds. It is not feasible to build a simple and universal relationship between enrichment ratio and sediment discharge following the traditional enrichment theory. To estimate the flux of PAHs from pervious areas, soil erosion process has to be clearly understood, and both organic carbon content and composition of SOM should be factored into the calculation. - Highlights: ► Significant enrichment of particle-bound PAHs during rainfall-runoff events. ► Organic matters as the direct carrier of PAHs in runoff from contaminated soil. ► The traditional enrichment theory is not fully valid for PAHs. - The traditional enrichment theory is not fully valid for PAHs, and soil organic matters have a significant impact on the transport of PAHs during rainfall-runoff events.

  16. Quantitative Assessment on Anthropogenic Contributions to the Rainfall Extremes Associated with Typhoon Morakot (2009)

    Science.gov (United States)

    Chen, C. T.; Lo, S. H.; Wang, C. C.; Tsuboki, K.

    2017-12-01

    More than 2000 mm rainfall occurred over southern Taiwan when a category 1 Typhoon Morakot pass through Taiwan in early August 2009. Entire village and hundred of people were buried by massive mudslides induced by record-breaking precipitation. Whether the past anthropogenic warming played a significant role in such extreme event remained very controversial. On one hand, people argue it's nearly impossible to attribute an individual extreme event to global warming. On the other hand, the increase of heavy rainfall is consistent with the expected effects of climate change on tropical cyclone. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall associated with Typhoon Morakot, we adapt an existing probabilistic event attribution framework to simulate a `world that was' and compare it with an alternative condition, 'world that might have been' that removed the historical anthropogenic drivers of climate. One limitation for applying such approach to high-impact weather system is that it will require models capable of capturing the essential processes lead to the studied extremes. Using a cloud system resolving model that can properly simulate the complicated interactions between tropical cyclone, large-scale background, topography, we first perform the ensemble `world that was' simulations using high resolution ECMWF YOTC analysis. We then re-simulate, having adjusted the analysis to `world that might have been conditions' by removing the regional atmospheric and oceanic forcing due to human influences estimated from the CMIP5 model ensemble mean conditions between all forcing and natural forcing only historical runs. Thus our findings are highly conditional on the driving analysis and adjustments therein, but the setup allows us to elucidate possible contribution of anthropogenic forcing to changes in the likelihood of heavy rainfall associated Typhoon Morakot in early August 2009.

  17. Jet-Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

    OpenAIRE

    Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.

    2012-01-01

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...

  18. Heavy ion and proton-induced single event multiple upset

    International Nuclear Information System (INIS)

    Reed, R.A.; Carts, M.A.; Marshall, P.W.

    1997-01-01

    Individual ionizing heavy ion events are shown to cause two or more adjacent memory cells to change logic states in a high density CMOS SRAM. A majority of the upsets produced by normally incident heavy ions are due to single-particle events that causes a single cell to upset. However, for grazing angles a majority of the upsets produced by heavy-ion irradiation are due to single-particle events that cause two or more cells to change logic states. Experimental evidence of a single proton-induced spallation reaction that causes two adjacent memory cells to change logic states is presented. Results from a dual volume Monte-Carlo simulation code for proton-induced single-event multiple upsets are within a factor of three of experimental data for protons at normal incidence and 70 degrees

  19. Rainfall timing and runoff: The influence of the criterion for rain event separation

    OpenAIRE

    Molina-Sanchis, Isabel; Lázaro, Roberto; Arnau-Rosalén, Eva; Calvo-Cases, Adolfo

    2016-01-01

    Rain is not uniform in time and space in semiarid areas and its distribution is very important for the runoff process. Hydrological studies usually divide rainfall into events. However, defining rain events is complicated, and rain characteristics vary depending on how the events are delimited. Choosing a minimum inter-event time (MIT) is a commonly used criterion. Our hypothesis is that there will be an optimal MIT that explains the maximum part of the variance of the runoff, with time to ru...

  20. Estimation of typhoon rainfall in GaoPing River: A Multivariate Maximum Entropy Method

    Science.gov (United States)

    Pei-Jui, Wu; Hwa-Lung, Yu

    2016-04-01

    The heavy rainfall from typhoons is the main factor of the natural disaster in Taiwan, which causes the significant loss of human lives and properties. Statistically average 3.5 typhoons invade Taiwan every year, and the serious typhoon, Morakot in 2009, impacted Taiwan in recorded history. Because the duration, path and intensity of typhoon, also affect the temporal and spatial rainfall type in specific region , finding the characteristics of the typhoon rainfall type is advantageous when we try to estimate the quantity of rainfall. This study developed a rainfall prediction model and can be divided three parts. First, using the EEOF(extended empirical orthogonal function) to classify the typhoon events, and decompose the standard rainfall type of all stations of each typhoon event into the EOF and PC(principal component). So we can classify the typhoon events which vary similarly in temporally and spatially as the similar typhoon types. Next, according to the classification above, we construct the PDF(probability density function) in different space and time by means of using the multivariate maximum entropy from the first to forth moment statistically. Therefore, we can get the probability of each stations of each time. Final we use the BME(Bayesian Maximum Entropy method) to construct the typhoon rainfall prediction model , and to estimate the rainfall for the case of GaoPing river which located in south of Taiwan.This study could be useful for typhoon rainfall predictions in future and suitable to government for the typhoon disaster prevention .

  1. Extreme rainfall events in karst environments: the case study of September 2014 in the Gargano area (southern Italy)

    Science.gov (United States)

    Martinotti, Maria Elena; Pisano, Luca; Trabace, Maria; Marchesini, Ivan; Peruccacci, Silvia; Rossi, Mauro; Amoruso, Giuseppe; Loiacono, Pierluigi; Vennari, Carmela; Vessia, Giovanna; Parise, Mario; Brunetti, Maria Teresa

    2015-04-01

    In the first week of September 2014, the Gargano Promontory (Apulia, SE Italy) was hit by an extreme rainfall event that caused several landslides, floods and sinkholes. As a consequence of the floods, two people lost their lives and severe socio-economic damages were reported. The highest peaks of rainfall were recorded between September 3rd and 6th at the Cagnano Varano and San Marco in Lamis rain gauges with a maximum daily rainfall (over 230 mm) that is about 30% the mean annual rainfall. The Gargano Promontory is characterized by complex orographic conditions, with the highest elevation of about 1000 m a.s.l. The geological setting consists of different types of carbonate deposits affected by intensive development of karst processes. The morphological and climatic settings of the area, associated with frequent extreme rainfall events can cause various types of geohazards (e.g., landslides, floods, sinkholes). A further element enhancing the natural predisposition of the area to the occurrence of landslides, floods and sinkholes is an intense human activity, characterized by an inappropriate land use and management. In order to obtain consistent and reliable data on the effects produced by the storm, a systematic collection of information through field observations, a critical analysis of newspaper articles and web-news, and a co-operation with the Regional Civil Protection and local geologists started immediately after the event. The information collected has been organized in a database including the location, the occurrence time and the type of geohazard documented with photographs. The September 2014 extreme rainfall event in the Gargano Promontory was also analyzed to validate the forecasts issued by the Italian national early-warning system for rainfall-induced landslides (SANF), developed by the Research Institute for Geo-Hydrological Protection (IRPI) for the Italian national Department for Civil Protection (DPC). SANF compares rainfall measurements and

  2. Stable Isotopic Composition of Precipitation from 2015-2016 Central Texas Rainfall Events

    Science.gov (United States)

    Maupin, C. R.; McChesney, C. L.; Roark, B.; Gorman, M. K.; Housson, A. L.

    2016-12-01

    Central Texas lies within the Southern Great Plains, a region where rainfall is of tremendous agricultural and associated socioeconomic importance. Paleoclimate records from speleothems in central Texas caves may assist in placing historical and recent drought and pluvial events in the context of natural variability. Effective interpretation of such records requires the nature and origin of variations in the meteoric δ18O signal transmitted from cloud to speleothem to be understood. Here we present a record of meteoric δ18O and δD from each individual precipitation event (δ18Op and δDp), collected by rain gauge in Austin, Texas, USA, from April 2015 through 2016. Backwards hybrid single-particle Lagrangian integrated trajectories (HYSPLITs) indicate the broader moisture source for each precipitation event during this time was the Gulf of Mexico. The local meteoric water line is within error of the global meteoric water line, suggesting minimal sourcing of evaporated continental vapor for precipitation. Total monthly rainfall followed the climatological pattern of a dual boreal spring and fall maximum, with highly variable event δ18Op and δDp values. Surface temperature during precipitation often exerts control over continental and mid latitude δ18Op values, but is not significantly correlated to study site δ18Op (p>0.10). Amount of rain falling during each precipitation event ("amount effect") explains a significant 18% of variance in δ18Op. We hypothesize that this relationship can be attributed to the following: 1) minimal recycling of continental water vapor during the study period; 2) the presence of synoptic conditions favoring intense boreal spring and fall precipitation, driven by a developing, and subsequently in-place, strong ENSO event coupled with a southerly flow from the open Gulf of Mexico; and 3) the meteorological nature of the predominant precipitating events over Texas during this time, mesoscale convective systems, which are known to

  3. Evolution of extreme rainfall in France with a changing climate

    International Nuclear Information System (INIS)

    Soubeyroux, Jean-Michel; Veysseire, Jean-Michel; Gouget, Viviane; Neppel, Luc; Tramblay, Yves; Carreau, Julie

    2015-01-01

    This paper focuses a synthesis of the works led within the framework of the French project ANR/Extraflo on the evolution of the daily (and infra daily) extreme rainfall in France. An important dataset of more than 900 series was used. It was shown that a majority of series presented a not significant upward trend in particular in Mediterranean area, in relation with various recent exceptional extreme events. An interesting way to characterize this evolution consists in identifying climatic co-variables associated to heavy rainfall events (weather patterns, average temperatures, flow of humidity) and in taking into account them with a non stationary POT model. The application of this method with climatic projections under scenario A2 from IPCC could lead to a possible increase on extreme precipitation quantiles on the horizon 2070. (authors)

  4. A spatial and nonstationary model for the frequency of extreme rainfall events

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Madsen, Henrik; Rosbjerg, Dan

    2013-01-01

    of extreme rainfall events, a statistical model is tested for this purpose. The model is built on the theory of generalized linear models and uses Poisson regression solved by generalized estimation equations. Spatial and temporal explanatory variables can be included simultaneously, and their relative...

  5. Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling

    OpenAIRE

    Tramblay, Yves; Bouvier, Christophe; Martin, C.; Didon-Lescot, J. F.; Todorovik, D.; Domergue, J. M.

    2010-01-01

    Flash floods are the most destructive natural hazards that occur in the Mediterranean region. Rainfall-runoff models can be very useful for flash flood forecasting and prediction. Event-based models are very popular for operational purposes, but there is a need to reduce the uncertainties related to the initial moisture conditions estimation prior to a flood event. This paper aims to compare several soil moisture indicators: local Time Domain Reflectometry (TDR) measurements of soil moisture,...

  6. Evidence of Teleconnections between the Peruvian central Andes and Northeast Brazil during extreme rainfall events

    Science.gov (United States)

    Sulca, J. C.; Vuille, M. F.; Silva, F. Y.; Takahashi, K.

    2013-12-01

    Knowledge about changes in regional circulation and physical processes associated with extreme rainfall events in South America is limited. Here we investigate such events over the Mantaro basin (MB) located at (10°S-13°S; 73°W-76°W) in the central Peruvian Andes and Northeastern Brazil (NEB), located at (9°S-15°S; 39°W-46°W). Occasional dry and wet spells can be observed in both areas during the austral summer season. The main goal of this study is to investigate potential teleconnections between extreme rainfall events in MB and NEB during austral summer. We define wet (dry) spells as periods that last for at least 3 (5) consecutive days with rainfall above (below) the 70 (30) percentile. To identify the dates of ocurrence of these events, we used daily accumulated rainfall data from 14 climate stations located in the Mantaro basin for the period 1965 to 2002. In NEB we defined a rainfall index which is based on average daily gridded rainfall data within the region for the same period. Dry (wet spells) in the MB are associated with positive (negative) OLR anomalies which extend over much of the tropical Andes, indicating the large-scale nature of these events. At 200 hPa anomalous easterly (westerly) zonal winds aloft accompany wet (dry) spells. Composite anomalies of dry spells in MB reveal significant contemporaneous precipitation anomalies of the opposite sign over NEB, which suggest that intraseasonal precipitation variability over the two regions may be dynamically linked. Indeed upper-tropospheric circulation anomalies over the central Andes extend across South America and appear to be tied to an adjustment in the Bolivian High-Nordeste Low system. Dry (wet) spells in NEB are equally associated with a large-scale pattern of positive (negative) OLR anomalies; however, there are no related significant OLR anomalies over the MB during these events. Dry (wet) spells are associated with robust patterns of anomalous wind fields at both low and upper

  7. Estimation of return levels against different return periods of extreme annual rainfall over Baluchistan

    International Nuclear Information System (INIS)

    Ali, M.; Jan, B.; Iqbal, J.

    2012-01-01

    Unprecedented heavy monsoon rainfall began in the last week of July 2010 in the Northern part of our country, causes floods in Baluchistan and Sindh. As the high frequency rainfall events are a significant cause of current severe flooding in Pakistan and any fluctuation in the level of such events may cause huge economic losses as well as social problem, urban structures (i.e. dams, urban drainage systems and flood). Statistical distributions are used to identify extremes of annual rainfall of different cities of Baluchistan (Quetta, Sibbi, Khuzdar, Lasbella, Dalbandin and Pasni) with their return periods. Analysis predicts that Gumbel Max. (GM) Distribution is the best fitted distribution for Sibbi and Lasbella while the GEV distribution is the best fitted for Quetta, Khuzdar, Dalbandin and Pasni. The analysis also suggests that different cities of Baluchistan have 30-years return period for getting more than 90 mm average daily rainfall while they have 100-years return period for receiving more than 118 mm daily rainfall. This suggests for suitable flood forecasting and improving the river structure in Baluchistan, Pakistan. (author)

  8. Assessing the Impacts of Flooding Caused by Extreme Rainfall Events Through a Combined Geospatial and Numerical Modeling Approach

    Science.gov (United States)

    Santillan, J. R.; Amora, A. M.; Makinano-Santillan, M.; Marqueso, J. T.; Cutamora, L. C.; Serviano, J. L.; Makinano, R. M.

    2016-06-01

    In this paper, we present a combined geospatial and two dimensional (2D) flood modeling approach to assess the impacts of flooding due to extreme rainfall events. We developed and implemented this approach to the Tago River Basin in the province of Surigao del Sur in Mindanao, Philippines, an area which suffered great damage due to flooding caused by Tropical Storms Lingling and Jangmi in the year 2014. The geospatial component of the approach involves extraction of several layers of information such as detailed topography/terrain, man-made features (buildings, roads, bridges) from 1-m spatial resolution LiDAR Digital Surface and Terrain Models (DTM/DSMs), and recent land-cover from Landsat 7 ETM+ and Landsat 8 OLI images. We then used these layers as inputs in developing a Hydrologic Engineering Center Hydrologic Modeling System (HEC HMS)-based hydrologic model, and a hydraulic model based on the 2D module of the latest version of HEC River Analysis System (RAS) to dynamically simulate and map the depth and extent of flooding due to extreme rainfall events. The extreme rainfall events used in the simulation represent 6 hypothetical rainfall events with return periods of 2, 5, 10, 25, 50, and 100 years. For each event, maximum flood depth maps were generated from the simulations, and these maps were further transformed into hazard maps by categorizing the flood depth into low, medium and high hazard levels. Using both the flood hazard maps and the layers of information extracted from remotely-sensed datasets in spatial overlay analysis, we were then able to estimate and assess the impacts of these flooding events to buildings, roads, bridges and landcover. Results of the assessments revealed increase in number of buildings, roads and bridges; and increase in areas of land-cover exposed to various flood hazards as rainfall events become more extreme. The wealth of information generated from the flood impact assessment using the approach can be very useful to the

  9. Relations between Rainfall and Postfire Debris-Flow- and Flood-Event Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California, USA

    Science.gov (United States)

    Cannon, Susan; Collins, Larry; Boldt, Eric; Staley, Dennis

    2010-05-01

    Following wildfires, emergency-response and public-safety agencies are often faced with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storm events themselves. We here provide information critical to this process for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 am and 4 pm, along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storm events from recently burned areas in southern California was used to develop a system for classifying the magnitude of postfire hydrologic events. The three-class system is based on differences between the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions that may lead to debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow- and flood-event magnitude information. The within-storm rainfall accumulations (A) and durations (D) below which Magnitude I events are expected, and above which Magnitude II events may occur, are defined by A=0.4D0.55. The function A=0.6D0.50 defines the within-storm rainfall accumulations and durations above which a Magnitude III event will occur in response to a regional-scale storm, and a Magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.1D0

  10. Development of Radar-Satellite Blended QPF (Quantitative Precipitation Forecast) Technique for heavy rainfall

    Science.gov (United States)

    Jang, Sangmin; Yoon, Sunkwon; Rhee, Jinyoung; Park, Kyungwon

    2016-04-01

    Due to the recent extreme weather and climate change, a frequency and size of localized heavy rainfall increases and it may bring various hazards including sediment-related disasters, flooding and inundation. To prevent and mitigate damage from such disasters, very short range forecasting and nowcasting of precipitation amounts are very important. Weather radar data very useful in monitoring and forecasting because weather radar has high resolution in spatial and temporal. Generally, extrapolation based on the motion vector is the best method of precipitation forecasting using radar rainfall data for a time frame within a few hours from the present. However, there is a need for improvement due to the radar rainfall being less accurate than rain-gauge on surface. To improve the radar rainfall and to take advantage of the COMS (Communication, Ocean and Meteorological Satellite) data, a technique to blend the different data types for very short range forecasting purposes was developed in the present study. The motion vector of precipitation systems are estimated using 1.5km CAPPI (Constant Altitude Plan Position Indicator) reflectivity by pattern matching method, which indicates the systems' direction and speed of movement and blended radar-COMS rain field is used for initial data. Since the original horizontal resolution of COMS is 4 km while that of radar is about 1 km, spatial downscaling technique is used to downscale the COMS data from 4 to 1 km pixels in order to match with the radar data. The accuracies of rainfall forecasting data were verified utilizing AWS (Automatic Weather System) observed data for an extreme rainfall occurred in the southern part of Korean Peninsula on 25 August 2014. The results of this study will be used as input data for an urban stream real-time flood early warning system and a prediction model of landslide. Acknowledgement This research was supported by a grant (13SCIPS04) from Smart Civil Infrastructure Research Program funded by

  11. Increased rainfall variability and N addition accelerate litter decomposition in a restored prairie.

    Science.gov (United States)

    Schuster, Michael J

    2016-03-01

    Anthropogenic nitrogen deposition and projected increases in rainfall variability (the frequency of drought and heavy rainfall events) are expected to strongly influence ecosystem processes such as litter decomposition. However, how these two global change factors interact to influence litter decomposition is largely unknown. I examined how increased rainfall variability and nitrogen addition affected mass and nitrogen loss of litter from two tallgrass prairie species, Schizachyrium scoparium and Solidago canadensis, and isolated the effects of each during plant growth and during litter decomposition. I increased rainfall variability by consolidating ambient rainfall into larger events and simulated chronic nitrogen deposition using a slow-release urea fertilizer. S. scoparium litter decay was more strongly regulated by the treatments applied during plant growth than by those applied during decomposition. During plant growth, increased rainfall variability resulted in S. scoparium litter that subsequently decomposed more slowly and immobilized more nitrogen than litter grown under ambient conditions, whereas nitrogen addition during plant growth accelerated subsequent mass loss of S. scoparium litter. In contrast, S. canadensis litter mass and N losses were enhanced under either N addition or increased rainfall variability both during plant growth and during decomposition. These results suggest that ongoing changes in rainfall variability and nitrogen availability are accelerating nutrient cycling in tallgrass prairies through their combined effects on litter quality, environmental conditions, and plant community composition.

  12. Climatological studies on precipitation features and large-scale atmospheric fields on the heavy rainfall days in the eastern part of Japan from the Baiu to midsummer season

    Science.gov (United States)

    Matsumoto, Kengo; Kato, Kuranoshin; Otani, Kazuo

    2017-04-01

    In East Asia the significant subtropical frontal zone called the Meiyu (in China) / Baiu (in Japan) appears in early summer (just before the midsummer) and the huge rainfall is brought due to the frequent appearance of the "heavy rainfall days" (referred to as HRDs hereafter) mainly in that western part. On the other hand, large-scale fields around the front in eastern Japan is rather different from that in western Japan but the total precipitation in the eastern Japan is still considerable compared to that in the other midlatitude regions. Thus, it is also interesting to examine how the rainfall characteristics and large-scale atmospheric fields on HRDs (with more than 50 mm/day) in the eastern Japan in the mature stage of the Baiu season (16 June 15 July), together with those in midsummer (1 31 August). Based on such scientific background, further analyses were performed in this study mainly with the daily and the hourly precipitation data and the NCEP/NCAR re-analysis date from 1971 to 2010, succeeding to our previous results (e.g., EGU2015). As reported at EGU2014 and 2015, about half of HRDs at Tokyo (eastern Japan) were related to the typhoon even in the Baiu season. Interestingly, half of HRDs were characterized by the large contribution of moderate rain less than 10 mm/h. While, the precipitation on HRDs at Tokyo in midsummer was mainly brought by the intense rainfall with more than 10 mm/h, in association with the typhoons. In the present study, we examined the composite meridional structure of the rainfall area along 140E. In the pattern only associated with a typhoons in the Baiu season (Pattern A), the heavy rainfall area (more than 50 mm/day) with large contribution of the intense rain (stronger than 10 mm/h) showed rather wide meridional extension. The area was characterized by the duration of the intermittent enhancement of the rainfall. In the pattern associated with a typhoon and a front (Pattern B), while the contribution ratio of the rainfall

  13. Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The goyang case

    Science.gov (United States)

    Choi, Hyun-Young; Ha, Ji-Hyun; Lee, Dong-Kyou; Kuo, Ying-Hwa

    2011-05-01

    We investigated a torrential rainfall case with a daily rainfall amount of 379 mm and a maximum hourly rain rate of 77.5 mm that took place on 12 July 2006 at Goyang in the middlewestern part of the Korean Peninsula. The heavy rainfall was responsible for flash flooding and was highly localized. High-resolution Doppler radar data from 5 radar sites located over central Korea were analyzed. Numerical simulations using the Weather Research and Forecasting (WRF) model were also performed to complement the high-resolution observations and to further investigate the thermodynamic structure and development of the convective system. The grid nudging method using the Global Final (FNL) Analyses data was applied to the coarse model domain (30 km) in order to provide a more realistic and desirable initial and boundary conditions for the nested model domains (10 km, 3.3 km). The mesoscale convective system (MCS) which caused flash flooding was initiated by the strong low level jet (LLJ) at the frontal region of high equivalent potential temperature (θe) near the west coast over the Yellow Sea. The ascending of the warm and moist air was induced dynamically by the LLJ. The convective cells were triggered by small thermal perturbations and abruptly developed by the warm θe inflow. Within the MCS, several convective cells responsible for the rainfall peak at Goyang simultaneously developed with neighboring cells and interacted with each other. Moist absolutely unstable layers (MAULs) were seen at the lower troposphere with the very moist environment adding the instability for the development of the MCS.

  14. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions

    Science.gov (United States)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-09-01

    The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.

  15. Climate change increases the probability of heavy rains in Northern England/Southern Scotland like those of storm Desmond—a real-time event attribution revisited

    Science.gov (United States)

    Otto, Friederike E. L.; van der Wiel, Karin; van Oldenborgh, Geert Jan; Philip, Sjoukje; Kew, Sarah F.; Uhe, Peter; Cullen, Heidi

    2018-02-01

    On 4-6 December 2015, storm Desmond caused very heavy rainfall in Northern England and Southern Scotland which led to widespread flooding. A week after the event we provided an initial assessment of the influence of anthropogenic climate change on the likelihood of one-day precipitation events averaged over an area encompassing Northern England and Southern Scotland using data and methods available immediately after the event occurred. The analysis was based on three independent methods of extreme event attribution: historical observed trends, coupled climate model simulations and a large ensemble of regional model simulations. All three methods agreed that the effect of climate change was positive, making precipitation events like this about 40% more likely, with a provisional 2.5%-97.5% confidence interval of 5%-80%. Here we revisit the assessment using more station data, an additional monthly event definition, a second global climate model and regional model simulations of winter 2015/16. The overall result of the analysis is similar to the real-time analysis with a best estimate of a 59% increase in event frequency, but a larger confidence interval that does include no change. It is important to highlight that the observational data in the additional monthly analysis does not only represent the rainfall associated with storm Desmond but also that of storms Eve and Frank occurring towards the end of the month.

  16. Extreme events assessment methodology coupling rainfall and tidal levels in the coastal floodplain of the São Paulo North Coast (Brazil) for drainage purposes

    Science.gov (United States)

    Alfredini, P.; Cartacho, D. L.; Arasaki, E.; Rosso, M.; Sousa, W. C., Jr.; Lanzieri, D. R.; Ferreira, J. P. M.

    2012-04-01

    The Caraguatatuba Coastal Plain is the wider in São Paulo State (Brazil) North Coastline. The Santo Antônio Torrent Catchmenth drains that region with high urban concentration (around 100,000 permanent inhabitants), which may quintuplicate with the turists in the summer period. In the last decade important oil and gas sea reserves were discovered and the facilities for their treatment were located in that region. For that great economic growth scenario it is mandatory to design mitigation risk measures to have the fluvial forcing processes well known, considering the natural hazards. The Santo Antônio catchment has a surface area of 40 km2, heavy rainfall rates (around 3000 mm/year), concentrated mainly in the summer period, producing high fluvial sediment transport capacity, floods and debris-flows. Due to the steep slopes and the altitude (~ 1000 m) of the mountains near the coast, the hydrological orographic effect rapidly condensates the sea humidity and recurrent and intense flood events cause extensive risks and damages to population and infrastructures. Strong debris-flows occur in that region, because rains higher than 300-400 mm per day occur in multi decadal periods. Due to the wind blowing landward the humidity from the sea, also meteorological tides occur in correspondence of high rainfall rates. The aim of this project is to present an extreme hydrological assessment methodology, coupling rainfall rates and tidal levels, to show the impact of climate changes during the last decades. It is also presented the magnitude of the rising meteorological tide coupled with the extreme rainfall events. The data base analysed comprised long term data of rainfall and tidal measurements from 1954 to 2003. The correlations of the two data were divided in five classes of rainfall in mm per day (> 0, > 25, > 50, > 75 and > 100) and estimated the tidal levels for different return periods in years (2, 5, 10, 20, 50, 75 and 100). The comparison of two distint periods

  17. A test for Improvement of high resolution Quantitative Precipitation Estimation for localized heavy precipitation events

    Science.gov (United States)

    Lee, Jung-Hoon; Roh, Joon-Woo; Park, Jeong-Gyun

    2017-04-01

    Accurate estimation of precipitation is one of the most difficult and significant tasks in the area of weather diagnostic and forecasting. In the Korean Peninsula, heavy precipitations are caused by various physical mechanisms, which are affected by shortwave trough, quasi-stationary moisture convergence zone among varying air masses, and a direct/indirect effect of tropical cyclone. In addition to, various geographical and topographical elements make production of temporal and spatial distribution of precipitation is very complicated. Especially, localized heavy rainfall events in South Korea generally arise from mesoscale convective systems embedded in these synoptic scale disturbances. In weather radar data with high temporal and spatial resolution, accurate estimation of rain rate from radar reflectivity data is too difficult. Z-R relationship (Marshal and Palmer 1948) have adapted representatively. In addition to, several methods such as support vector machine (SVM), neural network, Fuzzy logic, Kriging were utilized in order to improve the accuracy of rain rate. These methods show the different quantitative precipitation estimation (QPE) and the performances of accuracy are different for heavy precipitation cases. In this study, in order to improve the accuracy of QPE for localized heavy precipitation, ensemble method for Z-R relationship and various techniques was tested. This QPE ensemble method was developed by a concept based on utilizing each advantage of precipitation calibration methods. The ensemble members were produced for a combination of different Z-R coefficient and calibration method.

  18. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    Science.gov (United States)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  19. Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin's finches.

    Science.gov (United States)

    Cimadom, Arno; Ulloa, Angel; Meidl, Patrick; Zöttl, Markus; Zöttl, Elisabet; Fessl, Birgit; Nemeth, Erwin; Dvorak, Michael; Cunninghame, Francesca; Tebbich, Sabine

    2014-01-01

    Invasive alien parasites and pathogens are a growing threat to biodiversity worldwide, which can contribute to the extinction of endemic species. On the Galápagos Islands, the invasive parasitic fly Philornis downsi poses a major threat to the endemic avifauna. Here, we investigated the influence of this parasite on the breeding success of two Darwin's finch species, the warbler finch (Certhidea olivacea) and the sympatric small tree finch (Camarhynchus parvulus), on Santa Cruz Island in 2010 and 2012. While the population of the small tree finch appeared to be stable, the warbler finch has experienced a dramatic decline in population size on Santa Cruz Island since 1997. We aimed to identify whether warbler finches are particularly vulnerable during different stages of the breeding cycle. Contrary to our prediction, breeding success was lower in the small tree finch than in the warbler finch. In both species P. downsi had a strong negative impact on breeding success and our data suggest that heavy rain events also lowered the fledging success. On the one hand parents might be less efficient in compensating their chicks' energy loss due to parasitism as they might be less efficient in foraging on days of heavy rain. On the other hand, intense rainfalls might lead to increased humidity and more rapid cooling of the nests. In the case of the warbler finch we found that the control of invasive plant species with herbicides had a significant additive negative impact on the breeding success. It is very likely that the availability of insects (i.e. food abundance)is lower in such controlled areas, as herbicide usage led to the removal of the entire understory. Predation seems to be a minor factor in brood loss.

  20. Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin's finches.

    Directory of Open Access Journals (Sweden)

    Arno Cimadom

    Full Text Available Invasive alien parasites and pathogens are a growing threat to biodiversity worldwide, which can contribute to the extinction of endemic species. On the Galápagos Islands, the invasive parasitic fly Philornis downsi poses a major threat to the endemic avifauna. Here, we investigated the influence of this parasite on the breeding success of two Darwin's finch species, the warbler finch (Certhidea olivacea and the sympatric small tree finch (Camarhynchus parvulus, on Santa Cruz Island in 2010 and 2012. While the population of the small tree finch appeared to be stable, the warbler finch has experienced a dramatic decline in population size on Santa Cruz Island since 1997. We aimed to identify whether warbler finches are particularly vulnerable during different stages of the breeding cycle. Contrary to our prediction, breeding success was lower in the small tree finch than in the warbler finch. In both species P. downsi had a strong negative impact on breeding success and our data suggest that heavy rain events also lowered the fledging success. On the one hand parents might be less efficient in compensating their chicks' energy loss due to parasitism as they might be less efficient in foraging on days of heavy rain. On the other hand, intense rainfalls might lead to increased humidity and more rapid cooling of the nests. In the case of the warbler finch we found that the control of invasive plant species with herbicides had a significant additive negative impact on the breeding success. It is very likely that the availability of insects (i.e. food abundanceis lower in such controlled areas, as herbicide usage led to the removal of the entire understory. Predation seems to be a minor factor in brood loss.

  1. The effects of extreme rainfall events on carbon release from Biological Soil Crusts covered soil in fixed sand dunes in the Tengger Desert, northern China

    Science.gov (United States)

    Zhao, Yang; Li, Xinrong; Pan, Yanxia; Hui, Rong

    2016-04-01

    How soil cover types and extreme rainfall event influence carbon (C) release in temperate desert ecosystems has largely been unexplored. We assessed the effects of extreme rainfall (quantity and intensity) events on the carbon release from soils covered by different types of biological soil crusts (BSCs) in fixed sand dunes in the Tengger Desert, Shapotou regionof northern China. We removed intact crusts down to 10 cm and measured them in PVC mesocosms. A Li-6400-09 Soil Chamber was used to measure the respiration rates of the BSCs immediately after the rainfall stopped, and continued until the respiration rates of the BSCs returned to the pre-rainfall basal rate. Our results showed that almost immediately after extreme rainfall events the respiration rates of algae crust and mixed crust were significantly inhibited, but moss crust was not significantly affected. The respiration rates of algae crust, mixed crust, and moss crust in extreme rainfall quantity and intensity events were, respectively, 0.12 and 0.41 μmolCO2/(m2•s), 0.10 and 0.45 μmolCO2/(m2•s), 0.83 and 1.69 μmolCO2/(m2•s). Our study indicated that moss crust in the advanced succession stage can well adapt to extreme rainfall events in the short term. Keywords: carbon release; extreme rainfall events; biological soil crust

  2. Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.

    Science.gov (United States)

    Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min

    2016-07-01

    River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Use of 7Be to document soil erosion associated with a short period of extreme rainfall

    International Nuclear Information System (INIS)

    Sepulveda, A.; Schuller, P.; Walling, D.E.; Castillo, A.

    2008-01-01

    Intensification and expansion of agricultural production since the 1970s have increased soil erosion problems in south-central Chile. Quantitative information on soil loss is needed for erosion risk assessment and to establish the effectiveness of improved land management practices. Since information from traditional sources, such as erosion plots, is limited, attention has been directed to the use of environmental radionuclides for documenting erosion rates. Cs-137 has been successfully utilised for this purpose, but only provides information on medium-term erosion rates. There is also a need to document event-related soil erosion. This paper outlines the basis for using 7 Be measurements to document short-term erosion and reports its successful use for quantifying the erosion that occurred within an arable field, as a result of a period of heavy rainfall (400 mm in 27 days) occurring in May 2005. The study field had been under a no-till, no-burning system for 18 years, but immediately prior to the period of heavy rainfall the harvest residues were burnt. The erosion recorded therefore reflected both the extreme nature of the rainfall and the effects of the burning in increasing surface runoff and erosion. The sampled area corresponded to that used previously by the authors to document the medium-term erosion rates associated with both conventional tillage and the subsequent switch to a no-till system. Comparisons between the erosion documented for the period of heavy rainfall in 2005 with these medium-term erosion rates permits some tentative conclusions regarding the importance of extreme events and the impact of burning in increasing the erosion associated with the no-till system

  4. Spatial structure of monthly rainfall measurements average over 25 years and trends of the hourly variability of a current rainy day in Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Kanevski, Mikhail; Jaboyedoff, Michel

    2013-04-01

    Climate plays a vital role in a wide range of socio-economic activities of most nations particularly of developing countries. Climate (rainfall) plays a central role in agriculture which is the main stay of the Rwandan economy and community livelihood and activities. The majority of the Rwandan population (81,1% in 2010) relies on rain fed agriculture for their livelihoods, and the impacts of variability in climate patterns are already being felt. Climate-related events like heavy rainfall or too little rainfall are becoming more frequent and are impacting on human wellbeing.The torrential rainfall that occurs every year in Rwanda could disturb the circulation for many days, damages houses, infrastructures and causes heavy economic losses and deaths. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). Globally, the spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front» mechanism. What is the hourly variability in this mountainous area? Is there any correlation with the identified zones of the monthly average series (from 1965 to 1990 established by the Rwandan meteorological services)? Where could we have hazards with several consecutive rainy days (using forecasted datas from the Norwegian Meteorological Institute)? Spatio-temporal analysis allows for identifying and explaining large-scale anomalies which are useful for understanding hydrological characteristics and subsequently predicting these hydrological events. The objective of our current research (Rainfall variability) is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical

  5. Attribution of Extreme Rainfall Events in the South of France Using EURO-CORDEX Simulations

    Science.gov (United States)

    Luu, L. N.; Vautard, R.; Yiou, P.

    2017-12-01

    The Mediterranean region regularly undergoes episodes of intense precipitation in the fall season that exceed 300mm a day. This study focuses on the role of climate change on the dynamics of the events that occur in the South of France. We used an ensemble of 10 EURO-CORDEX model simulations with two horizontal resolutions (EUR-11: 0.11° and EUR-44: 0.44°) for the attribution of extreme rainfall in the fall in the Cevennes mountain range (South of France). The biases of the simulations were corrected with simple scaling adjustment and a quantile correction (CDFt). This produces five datasets including EUR-44 and EUR-11 with and without scaling adjustment and CDFt-EUR-11, on which we test the impact of resolution and bias correction on the extremes. Those datasets, after pooling all of models together, are fitted by a stationary Generalized Extreme Value distribution for several periods to estimate a climate change signal in the tail of distribution of extreme rainfall in the Cévenne region. Those changes are then interpreted by a scaling model that links extreme rainfall with mean and maximum daily temperature. The results show that higher-resolution simulations with bias adjustment provide a robust and confident increase of intensity and likelihood of occurrence of autumn extreme rainfall in the area in current climate in comparison with historical climate. The probability (exceedance probability) of 1-in-1000-year event in historical climate may increase by a factor of 1.8 under current climate with a confident interval of 0.4 to 5.3 following the CDFt bias-adjusted EUR-11. The change of magnitude appears to follow the Clausius-Clapeyron relation that indicates a 7% increase in rainfall per 1oC increase in temperature.

  6. Coupling rainfall observations and satellite soil moisture for predicting event soil loss in Central Italy

    Science.gov (United States)

    Todisco, Francesca; Brocca, Luca; Termite, Loris Francesco; Wagner, Wolfgang

    2015-04-01

    The accuracy of water soil loss prediction depends on the ability of the model to account for effects of the physical phenomena causing the output and the accuracy by which the parameters have been determined. The process based models require considerable effort to obtain appropriate parameter values and their failure to produce better results than achieved using the USLE/RUSLE model, encourages the use of the USLE/RUSLE model in roles of which it was not designed. In particular it is widely used in watershed models even at the event temporal scale. At hillslope scale, spatial variability in soil and vegetation result in spatial variations in soil moisture and consequently in runoff within the area for which soil loss estimation is required, so the modeling approach required to produce those estimates needs to be sensitive to those spatial variations in runoff. Some models include explicit consideration of runoff in determining the erosive stresses but this increases the uncertainty of the prediction due to the difficulty in parameterising the models also because the direct measures of surface runoff are rare. The same remarks are effective also for the USLE/RUSLE models including direct consideration of runoff in the erosivity factor (i.e. USLE-M by Kinnell and Risse, 1998, and USLE-MM by Bagarello et al., 2008). Moreover actually most of the rainfall-runoff models are based on the knowledge of the pre-event soil moisture that is a fundamental variable in the rainfall-runoff transformation. In addiction soil moisture is a readily available datum being possible to have easily direct pre-event measures of soil moisture using in situ sensors or satellite observations at larger spatial scale; it is also possible to derive the antecedent water content with soil moisture simulation models. The attempt made in the study is to use the pre-event soil moisture to account for the spatial variation in runoff within the area for which the soil loss estimates are required. More

  7. Prevention through policy : Urban macroplastic leakages to the marine environment during extreme rainfall events

    NARCIS (Netherlands)

    Axelsson, Charles; van Sebille, Erik

    2017-01-01

    The leakage of large plastic litter (macroplastics) into the ocean is a major environmental problem. A significant fraction of this leakage originates from coastal cities, particularly during extreme rainfall events. As coastal cities continue to grow, finding ways to reduce this macroplastic

  8. Groundwater response to heavy precipitation

    International Nuclear Information System (INIS)

    Waring, C.; Bradd, J.; Hankin, S.

    2003-05-01

    An investigation of the groundwater response to heavy rainfall at Lucas Heights Science and Technology Centre (LHSTC) is required under the conditions of Facility Licence F0001 for the ANSTO's Replacement Research Reactor. Groundwater continuous hydrograph monitoring has been used for this purpose. Hydrograph data from four boreholes are presented showing the rainfall recorded during the same period for comparison. The drought conditions have provided only limited cases where groundwater responded to a rainfall event. The characteristic response was local, caused by saturated soil contributing water directly to the borehole and the falling head as the water was redistributed into he aquifer in a few hours. Hydrograph data from borehole near the head of a gully showed that groundwater flow from the plateau to the gully produced a peak a fe days after the rainfall event and that the water level returned to its original level after about 10 days. The hydrograph data are consistent with an imperfect multi-layer groundwater flow regime, developed from earlier seismic and geophysical data, with decreasing rate of flow in each layer due to decreasing hydraulic conductivity with depth. The contrast in hydraulic conductivity between the thin permeable soil layer and the low permeable sandstone forms an effective barrier to vertical flow

  9. Simulation of Flash-Flood-Producing Storm Events in Saudi Arabia Using the Weather Research and Forecasting Model

    KAUST Repository

    Deng, Liping

    2015-05-01

    The challenges of monitoring and forecasting flash-flood-producing storm events in data-sparse and arid regions are explored using the Weather Research and Forecasting (WRF) Model (version 3.5) in conjunction with a range of available satellite, in situ, and reanalysis data. Here, we focus on characterizing the initial synoptic features and examining the impact of model parameterization and resolution on the reproduction of a number of flood-producing rainfall events that occurred over the western Saudi Arabian city of Jeddah. Analysis from the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim) data suggests that mesoscale convective systems associated with strong moisture convergence ahead of a trough were the major initial features for the occurrence of these intense rain events. The WRF Model was able to simulate the heavy rainfall, with driving convective processes well characterized by a high-resolution cloud-resolving model. The use of higher (1 km vs 5 km) resolution along the Jeddah coastline favors the simulation of local convective systems and adds value to the simulation of heavy rainfall, especially for deep-convection-related extreme values. At the 5-km resolution, corresponding to an intermediate study domain, simulation without a cumulus scheme led to the formation of deeper convective systems and enhanced rainfall around Jeddah, illustrating the need for careful model scheme selection in this transition resolution. In analysis of multiple nested WRF simulations (25, 5, and 1 km), localized volume and intensity of heavy rainfall together with the duration of rainstorms within the Jeddah catchment area were captured reasonably well, although there was evidence of some displacements of rainstorm events.

  10. Erosive rainfall in the Rio do Peixe Valley: Part III - Risk of extreme events

    Directory of Open Access Journals (Sweden)

    Álvaro J. Back

    Full Text Available ABSTRACT Understanding the risks of extreme events related to soil erosion is important for adequate dimensioning of erosion and runoff control structures. The objective of this study was to determine the rainfall erosivity with different return periods for the Valley of the Rio do Peixe in Santa Catarina state, Brazil. Daily pluviographic data series from 1984 to 2014 from the Campos Novos, and Videira meteorological stations and from 1986 to 2014 from the Caçador station were used. The data series of maximum annual rainfall intensity in 30 min, maximum annual erosive rainfall, and total annual erosivity were analyzed for each station. The Gumbel-Chow distributions were adjusted and their adhesions were evaluated by the Kolmogorov-Smirnov test at a significance level of 5%. The Gumbel-Chow distribution was adequate for the estimation of all studied variables. The mean annual erosivity corresponds to the return period of 2.25 years. The data series of the annual maximum individual rainfall erosivity coefficients varied from 47 to 50%.

  11. Heavy rainfalls, floods and landslides in the small catchment of the Bend Carpathians and Subcarpathians (Romania)

    International Nuclear Information System (INIS)

    Balteanu, Dan; Serban, Mihaela

    2004-01-01

    The small catchments of the Bend Carpathians and of the adjacent hilly region are affected by a great diversity of geomorphic processes differing in terms of geological structure, terrain configuration, seismic activity and human pressure. The region is developed on Paleogene flysch and Neogene molasse deposits and is characterised by an intense tectonic mobility (neotectonic uplift movements, strong earthquakes). We have chosen two catchments with a surface of 20-30 km 2 in which we tried to evaluate the sediments transfers during extreme events on the slope, from the slope downwards the channels and along the channels. The two catchments are characterised by some of the highest sediment yield in the region. Long-term measurements carried out in the region have revealed that landslides and mud flows are the most common processes of sediment transfer on the slopes. The reactivation of the mass movements is related to heavy rainfalls (over 100 mm in 24 hours) to long lasting rainy periods and to combined rainfalls and rapid snow melting. The denudation rates through mass movements were estimated in 6 experimental plots, indicating values between 1-10 mm in the years with high amount of,precipitations with a return period of 5-7 years and 40-70 mm in extreme conditions with a return period of 50 years. Sediment delivery ratios are controlled by rock erodibility and the runoff regime. A sediment yield multivariate statistical analysis of 27 third order drainage basins on flysch and molasse deposits indicates that total erosion is four times higher in the hilly region than in the flysch mountains (Ichim, Raldoane, 1987).(Author)

  12. Rainfall estimation in the context of post-event flash flood analysis

    Science.gov (United States)

    Delrieu, Guy; Boudevillain, Brice; Bouilloud, Ludovic

    2010-05-01

    Due to their spatial coverage and space-time resolution, operational weather radar networks offer unprecedented opportunities for the observation of flash flood generating storms. However, the radar rainfall estimation quality highly depends on the relative locations of the event and the radar(s). A mountainous environment obviously adds to the complexity of the radar quantitative precipitation estimation (QPE). A pragmatic methodology was developed within the EC-funded HYDRATE project to take the best benefit of the existing rainfall observations (radar and raingauge data) for given flash-flood cases: 1) A precise documentation of the radar characteristics (location, parameters, operating protocol, data archives and processing) needs first to be established. The radar(s) detection domain(s) can then be characterized using the "hydrologic visibility" concepts (Pellarin et al. J Hydrometeor 3(5) 539-555 2002). 2) Rather dense raingauge observations (operational, amateur) are usually available at the event time scale while few raingauge time series exist at the hydrologic time steps. Such raingauge datasets need to be critically analysed; a geostatistical approach is proposed for this task. 3) A number of identifications can be implemented prior to the radar data re-processing: a) Special care needs to be paid to (residual) ground clutter which has a dramatic impact of radar QPE. Dry-weather maps and rainfall accumulation maps may help in this task. b) Various sources of power losses such as screening, wet radome, attenuation in rain need to be identified and quantified. It will be shown that mountain returns can be used to quantify attenuation effects at C-band. c) Radar volume data is required to characterize the vertical profile of reflectivity (VPR), eventually conditioned on rain type (convective, widespread). When such data is not available, knowledge of the 0°C isotherm and the scanning protocol may help detecting bright-band contaminations that critically

  13. Damaging Hydrogeological Events: A Procedure for the Assessment of Severity Levels and an Application to Calabria (Southern Italy

    Directory of Open Access Journals (Sweden)

    Tommaso Caloiero

    2014-11-01

    Full Text Available A damaging hydrogeological event (DHE is characterized by two components: a rainfall event and a subsequent damage event, which is the result of floods and landslides triggered by rainfall. The characteristics of both events depend on climatic, geomorphological and anthropogenic factors. In this paper, a methodology to classify the severity of DHEs is presented. A chart which considers indicators of both the damage (Dscore and the daily rainfall (Rscore values recorded in the study area is proposed. According to the chart, the events are classified into four types: ordinary events, with low Dscore and Rscore values; extraordinary events, with high Rscore values but low Dscore values; catastrophic events, characterized by non-exceptional rainfall (low Rscore and severe damage (high Dscore; major catastrophic events, obtained by both high Dscore and Rscore values. Using this approach, the 2013 DHE that occurred in Calabria (Italy was classified as an ordinary event, when compared to the previous ones, even though the widespread diffusion of damage data induced the perception of high severity damage. The rainfall that triggered this event confirms the negative trend of heavy daily precipitation detected in Calabria, and the damage can be ascribed more to sub-daily than daily rainfall affecting urbanized flood-prone areas.

  14. Heavy flavours production in DIS events at HERA

    International Nuclear Information System (INIS)

    Bellan, Paolo

    2008-10-01

    The estimation of the fraction of events in which an heavy quark is produced in the deeply inelastic electron-proton collisions is the measurement performed in the present analysis. The analysed data sample corresponds to about 130 pb -1 collected during the years 2004-2005 by the ZEUS detector, located in one of the interaction points of the HERA collider in Hamburg. The measured percentages are directly related to the proton structure, formally encoded by the contribution of the heavy quarks to the structure functions F 2 . The tagging of the events in which an heavy quark is produced is achieved by means of the Impact Parameter method. The correlation between the lifetime of the hadrons and the geometrical properties of the relative tracks makes possible to pick out the heavy flavours production form the background. This kind of 'topological' method makes an extensive use of the silicon Micro Vertex Detector (MVD). This essential component of the tracking suite of the ZEUS detector has been the major upgrade realized in the second half of the ZEUS experiment data taking period. The achievement of the physical goal has strongly leaned on its performance and reliability, so a considerable part of the work consisted in feasibility, refinement and optimization studies. (orig.)

  15. Heavy flavours production in DIS events at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Bellan, Paolo

    2008-10-15

    The estimation of the fraction of events in which an heavy quark is produced in the deeply inelastic electron-proton collisions is the measurement performed in the present analysis. The analysed data sample corresponds to about 130 pb{sup -1} collected during the years 2004-2005 by the ZEUS detector, located in one of the interaction points of the HERA collider in Hamburg. The measured percentages are directly related to the proton structure, formally encoded by the contribution of the heavy quarks to the structure functions F{sub 2}. The tagging of the events in which an heavy quark is produced is achieved by means of the Impact Parameter method. The correlation between the lifetime of the hadrons and the geometrical properties of the relative tracks makes possible to pick out the heavy flavours production form the background. This kind of 'topological' method makes an extensive use of the silicon Micro Vertex Detector (MVD). This essential component of the tracking suite of the ZEUS detector has been the major upgrade realized in the second half of the ZEUS experiment data taking period. The achievement of the physical goal has strongly leaned on its performance and reliability, so a considerable part of the work consisted in feasibility, refinement and optimization studies. (orig.)

  16. [Rainfall intensity effects on nutrients transport in surface runoff from farmlands in gentle slope hilly area of Taihu Lake Basin].

    Science.gov (United States)

    Li, Rui-ling; Zhang, Yong-chun; Liu, Zhuang; Zeng, Yuan; Li, Wei-xin; Zhang, Hong-ling

    2010-05-01

    To investigate the effect of rainfall on agricultural nonpoint source pollution, watershed scale experiments were conducted to study the characteristics of nutrients in surface runoff under different rainfall intensities from farmlands in gentle slope hilly areas around Taihu Lake. Rainfall intensity significantly affected N and P concentrations in runoff. Rainfall intensity was positively related to TP, PO4(3-) -P and NH4+ -N event mean concentrations(EMC). However, this study have found the EMC of TN and NO3- -N to be positively related to rainfall intensity under light rain and negatively related to rainfall intensity under heavy rain. TN and TP site mean amounts (SMA) in runoff were positively related to rainfall intensity and were 1.91, 311.83, 127.65, 731.69 g/hm2 and 0.04, 7.77, 2.99, 32.02 g/hm2 with rainfall applied under light rain, moderate rain, heavy rain and rainstorm respectively. N in runoff was mainly NO3- -N and NH4+ -N and was primarily in dissolved form from Meilin soils. Dissolved P (DP) was the dominant form of TP under light rain, but particulate P (PP) mass loss increased with the increase of rainfall intensity and to be the dominant form when the rainfall intensity reaches rainstorm. Single relationships were used to describe the dependence of TN and TP mass losses in runoff on rainfall, maximum rainfall intensity, average rainfall intensity and rainfall duration respectively. The results showed a significant positive correlation between TN mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01) and also TP mass loss and rainfall, maximum rainfall intensity respectively (p < 0.01).

  17. Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models

    Science.gov (United States)

    Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong

    2012-01-01

    Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.

  18. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    extreme frequency); the average intensity of rainfall from extreme events ... frequency and extreme intensity indices, suggesting that extreme events are more frequent and intense during years with high rainfall. The proportion of total rainfall from ...

  19. Strategy for introduction of rainwater management facility considering rainfall event applied on new apartment complex

    Science.gov (United States)

    KIM, H.; Lee, D. K.; Yoo, S.

    2014-12-01

    As regional torrential rains become frequent due to climate change, urban flooding happens very often. That is why it is necessary to prepare for integrated measures against a wide range of rainfall. This study proposes introduction of effective rainwater management facilities to maximize the rainwater runoff reductions and recover natural water circulation for unpredictable extreme rainfall in apartment complex scale. The study site is new apartment complex in Hanam located in east of Seoul, Korea. It has an area of 7.28ha and is analysed using the EPA-SWMM and STORM model. First, it is analyzed that green infrastructure(GI) had efficiency of flood reduction at the various rainfall events and soil characteristics, and then the most effective value of variables are derived. In case of rainfall event, Last 10 years data of 15 minutes were used for analysis. A comparison between A(686mm rainfall during 22days) and B(661mm/4days) knew that soil infiltration of A is 17.08% and B is 5.48% of the rainfall. Reduction of runoff after introduction of the GI of A is 24.76% and B is 6.56%. These results mean that GI is effective to small rainfall intensity, and artificial rainwater retarding reservoir is needed at extreme rainfall. Second, set of target year is conducted for the recovery of hydrological cycle at the predevelopment. And an amount of infiltration, evaporation, surface runoff of the target year and now is analysed on the basis of land coverage, and an arrangement of LID facilities. Third, rainwater management scenarios are established and simulated by the SWMM-LID. Rainwater management facilities include GI(green roof, porous pavement, vegetative swale, ecological pond, and raingarden), and artificial rainwater. Design scenarios are categorized five type: 1)no GI, 2)conventional GI design(current design), 3)intensive GI design, 4)GI design+rainwater retarding reservoir 5)maximized rainwater retarding reservoir. Intensive GI design is to have attribute value to

  20. Rainfall Stochastic models

    Science.gov (United States)

    Campo, M. A.; Lopez, J. J.; Rebole, J. P.

    2012-04-01

    This work was carried out in north of Spain. San Sebastian A meteorological station, where there are available precipitation records every ten minutes was selected. Precipitation data covers from October of 1927 to September of 1997. Pulse models describe the temporal process of rainfall as a succession of rainy cells, main storm, whose origins are distributed in time according to a Poisson process and a secondary process that generates a random number of cells of rain within each storm. Among different pulse models, the Bartlett-Lewis was used. On the other hand, alternative renewal processes and Markov chains describe the way in which the process will evolve in the future depending only on the current state. Therefore they are nor dependant on past events. Two basic processes are considered when describing the occurrence of rain: the alternation of wet and dry periods and temporal distribution of rainfall in each rain event, which determines the rainwater collected in each of the intervals that make up the rain. This allows the introduction of alternative renewal processes and Markov chains of three states, where interstorm time is given by either of the two dry states, short or long. Thus, the stochastic model of Markov chains tries to reproduce the basis of pulse models: the succession of storms, each one composed for a series of rain, separated by a short interval of time without theoretical complexity of these. In a first step, we analyzed all variables involved in the sequential process of the rain: rain event duration, event duration of non-rain, average rainfall intensity in rain events, and finally, temporal distribution of rainfall within the rain event. Additionally, for pulse Bartlett-Lewis model calibration, main descriptive statistics were calculated for each month, considering the process of seasonal rainfall in each month. In a second step, both models were calibrated. Finally, synthetic series were simulated with calibration parameters; series

  1. Heavy Rainfall Associated with a Monsoon Depression in South China: Structure Analysis

    Institute of Scientific and Technical Information of China (English)

    JIANG Jianying; JIANG Jixi; BU Yalin; LIU Nianqing

    2008-01-01

    A heavy rainfall associated with the deepening of a monsoon depression happened in the summer of 2005.This process was first diagnostically analyzed and the 3D structure of the monsoon depression was discussed,then this structure was compared with those of the monsoon depression in South Asia and the low vortex in the Meiyu front. The results showed that the heavy rainfall directly resulted from a monsoon depression in South China, and the large-scale environment provided a favorable background for the deepening of the monsoon depression. The 3D structure of the monsoon depression was as follows. In the horizontal direction,there existed a convective cloud band to the south of the monsoon depression, which lay in a convectively instable area, with a relatively strong ascending motion in the mid and low levels of the troposphere, and the ascending motion matched well with a moist tongue, a convergence area, and a band of positive vorticity in the mid and low levels of the troposphere. In the vertical direction, the depression had an obviously cyclonic circulation in the mid and low levels of the troposphere, but no circulation from above 300 hPa. The monsoon depression corresponded to convergence and positive vorticity in the low levels, but to divergence and negative vortieity in the upper levels. The upward draft of the depression could reach the upper levels of the troposphere in the west of the depression, while the descending motion lay in the east. There was a low-level jet to the south of the depression, while the upper-level jet was not obvious. The depression was vertically warm in the upper levels and cold in the low levels, and the axis of the depression tilted southeastward with height, whose characteristics were different not only from the monsoon depression in South Asia but also from the low vortex in the Meiyu front.

  2. A Step towards a Sharable Community Knowledge Base for WRF Settings -Developing a WRF Setting Methodology based on a case study in a Torrential Rainfall Event

    Science.gov (United States)

    CHU, Q.; Xu, Z.; Zhuo, L.; Han, D.

    2016-12-01

    Increased requirements for interactions between different disciplines and readily access to the numerical weather forecasting system featured with portability and extensibility have made useful contribution to the increases of downstream model users in WRF over recent years. For these users, a knowledge base classified by the representative events would be much helpful. This is because the determination of model settings is regarded as the most important steps in WRF. However, such a process is generally time-consuming, even if with a high computational platform. As such, we propose a sharable proper lookup table on WRF domain settings and corresponding procedures based on a representative torrential rainfall event in Beijing, China. It has been found that WRF's simulations' drift away from the input lateral boundary conditions can be significantly reduced with the adjustment of the domain settings. Among all the impact factors, the placement of nested domain can not only affect the moving speed and angle of the storm-center, but also the location and amount of heavy-rain-belt which can only be detected with adjusted spatial resolutions. Spin-up time is also considered in the model settings, which is demonstrated to have the most obvious influence on the accuracy of the simulations. This conclusion is made based on the large diversity of spatial distributions of precipitation, in terms of the amount of heavy rain varied from -30% to 58% among each experiment. After following all the procedures, the variations of domain settings have minimal effect on the modeling and show the best correlation (larger than 0.65) with fusion observations. So the model settings, including domain size covering the greater Beijing area, 1:5:5 downscaling ratio, 57 vertical levels with top of 50hpa and 60h spin-up time, are found suitable for predicting the similar convective torrential rainfall event in Beijing area. We hope that the procedure for building the community WRF knowledge

  3. To what extent does variability of historical rainfall series influence extreme event statistics of sewer system surcharge and overflows?

    Science.gov (United States)

    Schaarup-Jensen, K; Rasmussen, M R; Thorndahl, S

    2009-01-01

    In urban drainage modelling long-term extreme statistics has become an important basis for decision-making e.g. in connection with renovation projects. Therefore it is of great importance to minimize the uncertainties with regards to long-term prediction of maximum water levels and combined sewer overflow (CSO) in drainage systems. These uncertainties originate from large uncertainties regarding rainfall inputs, parameters, and assessment of return periods. This paper investigates how the choice of rainfall time series influences the extreme events statistics of max water levels in manholes and CSO volumes. Traditionally, long-term rainfall series, from a local rain gauge, are unavailable. In the present case study, however, long and local rain series are available. 2 rainfall gauges have recorded events for approximately 9 years at 2 locations within the catchment. Beside these 2 gauges another 7 gauges are located at a distance of max 20 kilometers from the catchment. All gauges are included in the Danish national rain gauge system which was launched in 1976. The paper describes to what extent the extreme events statistics based on these 9 series diverge from each other and how this diversity can be handled, e.g. by introducing an "averaging procedure" based on the variability within the set of statistics. All simulations are performed by means of the MOUSE LTS model.

  4. Role of cold surge and MJO on rainfall enhancement over indonesia during east asian winter monsoon

    Science.gov (United States)

    Fauzi, R. R.; Hidayat, R.

    2018-05-01

    Intensity of precipitation in Indonesia is influenced by convection and propagation of southwest wind. Objective of this study is to analyze the relationship between cold surge and the phenomenon of intra-seasonal climate variability Madden-julian Oscillation (MJO) for affecting precipitation in Indonesia. The data used for identifying the occurrence of cold surge are meridional wind speed data from the ERA-Interim. In addition, this study also used RMM1 and RMM2 index data from Bureau of Meteorology (BOM) for identifying MJO events. The results showed that during East Asian Winter Monsoon (EAWM) in 15 years (2000-2015), there are 362 cold surge events, 186 MJO events, and 113 cold surge events were associated with MJO events. The spread of cold surge can penetrate to equator and brought mass of water vapor that causes dominant precipitation in the Indonesian Sea up to 50-75% from climatological precipitation during EAWM. The MJO convection activity that moves from west to east also increases precipitation, but the distribution of rainfall is wider than cold surge, especially in Eastern Indonesia. MJO and cold surge simultaneously can increase rainfall over 100-150% in any Indonesian region that affected by MJO and cold surge events. The mechanism of heavy rainfall is illustrated by high activity of moisture transport in areas such as Java Sea and coastal areas of Indonesia.

  5. The PRESSCA operational early warning system for landslide forecasting: the 11-12 November 2013 rainfall event in Central Italy.

    Science.gov (United States)

    Ciabatta, Luca; Brocca, Luca; Ponziani, Francesco; Berni, Nicola; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Umbria Region, located in Central Italy, is one of the most landslide risk prone area in Italy, almost yearly affected by landslides events at different spatial scales. For early warning procedures aimed at the assessment of the hydrogeological risk, the rainfall thresholds represent the main tool for the Italian Civil Protection System. As shown in previous studies, soil moisture plays a key-role in landslides triggering. In fact, acting on the pore water pressure, soil moisture influences the rainfall amount needed for activating a landslide. In this work, an operational physically-based early warning system, named PRESSCA, that takes into account soil moisture for the definition of rainfall thresholds is presented. Specifically, the soil moisture conditions are evaluated in PRESSCA by using a distributed soil water balance model that is recently coupled with near real-time satellite soil moisture product obtained from ASCAT (Advanced SCATterometer) and from in-situ monitoring data. The integration of three different sources of soil moisture information allows to estimate the most accurate possible soil moisture condition. Then, both observed and forecasted rainfall data are compared with the soil moisture-based thresholds in order to obtain risk indicators over a grid of ~ 5 km. These indicators are then used for the daily hydrogeological risk evaluation and management by the Civil Protection regional service, through the sharing/delivering of near real-time landslide risk scenarios (also through an open source web platform: www.cfumbria.it). On the 11th-12th November, 2013, Umbria Region was hit by an exceptional rainfall event with up to 430mm/72hours that resulted in significant economic damages, but fortunately no casualties among the population. In this study, the results during the rainfall event of PRESSCA system are described, by underlining the model capability to reproduce, two days in advance, landslide risk scenarios in good spatial and temporal

  6. Impact of Rainfall on Multilane Roundabout Flowrate Contraction

    Science.gov (United States)

    PARKSHIR, Amir; BEN-EDIGBE, Johnnie

    2017-08-01

    In this study, roundabouts at two sites in the Malaysia were investigated under rainy and dry weather conditions. Two automatic traffic counters per roundabout arm as well as two rain gauge stations were used to collect data at each surveyed site. Nearly one million vehicles were investigated at four sites. Vehicle volume, speeds and headways for entry and circulating flows were collected continuously at each roundabout about arm for six weeks between November 2013 and January 2014. Empirical regression technique and gap-acceptance models were modified and used to analyze roundabout capacity. Good fits to the data were obtained; the results also fit models developed in other countries. It was assumed that entry capacity depends on the geometric characteristics of the roundabout, particularly the diameter of the outside circle of the intersection. It was also postulated that geometric characteristics determine the speed of vehicles around the central island and, therefore, have an impact on the gap-acceptance process and consequently the capacity. Only off-peak traffic data per light, moderate or heavy rainfall were analysed. Peak traffic data were not used because of the presence of peak traffic flow. Passenger car equivalent values being an instrument of conversion from traffic volume to flow were modified. Results show that, average entry capacity loss is about 22.6% under light rainfall, about 18.1% under moderate rainfall and about 5.6% under heavy rainfall. Significant entry capacity loss would result from rainfall irrespective of their intensity. It can be postulated that entry capacity loss under heavy rainfall is lowest because the advantage enjoyed by circulating flow would be greatly reduced with increased rainfall intensity. The paper concluded that rainfall has significant impact of flowrate contraction at roundabouts.

  7. Quantifying rainfall-derived inflow and infiltration in sanitary sewer systems based on conductivity monitoring

    Science.gov (United States)

    Zhang, Mingkai; Liu, Yanchen; Cheng, Xun; Zhu, David Z.; Shi, Hanchang; Yuan, Zhiguo

    2018-03-01

    Quantifying rainfall-derived inflow and infiltration (RDII) in a sanitary sewer is difficult when RDII and overflow occur simultaneously. This study proposes a novel conductivity-based method for estimating RDII. The method separately decomposes rainfall-derived inflow (RDI) and rainfall-induced infiltration (RII) on the basis of conductivity data. Fast Fourier transform was adopted to analyze variations in the flow and water quality during dry weather. Nonlinear curve fitting based on the least squares algorithm was used to optimize parameters in the proposed RDII model. The method was successfully applied to real-life case studies, in which inflow and infiltration were successfully estimated for three typical rainfall events with total rainfall volumes of 6.25 mm (light), 28.15 mm (medium), and 178 mm (heavy). Uncertainties of model parameters were estimated using the generalized likelihood uncertainty estimation (GLUE) method and were found to be acceptable. Compared with traditional flow-based methods, the proposed approach exhibits distinct advantages in estimating RDII and overflow, particularly when the two processes happen simultaneously.

  8. Probabilistic clustering of rainfall condition for landslide triggering

    Science.gov (United States)

    Rossi, Mauro; Luciani, Silvia; Cesare Mondini, Alessandro; Kirschbaum, Dalia; Valigi, Daniela; Guzzetti, Fausto

    2013-04-01

    Landslides are widespread natural and man made phenomena. They are triggered by earthquakes, rapid snow melting, human activities, but mostly by typhoons and intense or prolonged rainfall precipitations. In Italy mostly they are triggered by intense precipitation. The prediction of landslide triggered by rainfall precipitations over large areas is commonly based on the exploitation of empirical models. Empirical landslide rainfall thresholds are used to identify rainfall conditions for the possible landslide initiation. It's common practice to define rainfall thresholds by assuming a power law lower boundary in the rainfall intensity-duration or cumulative rainfall-duration space above which landslide can occur. The boundary is defined considering rainfall conditions associated to landslide phenomena using heuristic approaches, and doesn't consider rainfall events not causing landslides. Here we present a new fully automatic method to identify the probability of landslide occurrence associated to rainfall conditions characterized by measures of intensity or cumulative rainfall and rainfall duration. The method splits the rainfall events of the past in two groups: a group of events causing landslides and its complementary, then estimate their probabilistic distributions. Next, the probabilistic membership of the new event to one of the two clusters is estimated. The method doesn't assume a priori any threshold model, but simple exploits the real empirical distribution of rainfall events. The approach was applied in the Umbria region, Central Italy, where a catalogue of landslide timing, were obtained through the search of chronicles, blogs and other source of information in the period 2002-2012. The approach was tested using rain gauge measures and satellite rainfall estimates (NASA TRMM-v6), allowing in both cases the identification of the rainfall condition triggering landslides in the region. Compared to the other existing threshold definition methods, the prosed

  9. Characteristic and Behavior of Rainfall Induced Landslides in Java Island, Indonesia : an Overview

    Science.gov (United States)

    Christanto, N.; Hadmoko, D. S.; Westen, C. J.; Lavigne, F.; Sartohadi, J.; Setiawan, M. A.

    2009-04-01

    Landslides are important natural hazards occurring on mountainous area situated in the wet tropical climate like in Java, Indonesia. As a central of economic and government activity, Java become the most populated island in Indonesia and is increasing every year. This condition create population more vulnerable to hazard. Java is populated by 120 million inhabitants or equivalent with 60% of Indonesian population in only 6,9% of the total surface of Indonesia. Due to its geological setting, its topographical characteristics, and its climatic characteristics, Java is the most exposed regions to landslide hazard and closely related to several factors: (1) located on a subduction zone, 60% of Java is mountainous, with volcano-tectonic mountain chains and 36 active volcanoes out of the 129 in Indonesia, and these volcanic materials are intensively weathered (2) Java is under a humid tropical climate associated with heavy rainfall during the rainy season from October to April. On top of these "natural" conditions, the human activity is an additional factor of landslide occurrence, driven by a high demographic density The purpose of this paper was to collect and analyze spatial and temporal data concerning landslide hazard for the period 1981-2007 and to evaluate and analyze the characteristic and the behavior of landslide in Java. The results provides a new insight into our understanding of landslide hazard and characteristic in the humid tropics, and a basis for predicting future landslides and assessing related hazards at a regional scale. An overview of characteristic and behavior of landslides in Java is given. The result of this work would be valuable for decision makers and communities in the frame of future landslide risk reduction programs. Landslide inventory data was collected from internal database at the different institutions. The result is then georefenced. The temporal changes of landslide activities was done by examining the changes in number and

  10. Applying Customized Climate Advisory Information to Translate Extreme Rainfall Events into Farming Options in the Sudan-Sahel of West Africa

    Science.gov (United States)

    Salack, S.; Worou, N. O.; Sanfo, S.; Nikiema, M. P.; Boubacar, I.; Paturel, J. E.; Tondoh, E. J.

    2017-12-01

    In West Africa, the risk of food insecurity linked to the low productivity of small holder farming increases as a result of rainfall extremes. In its recent evolution, the rainy season in the Sudan-Sahel zone presents mixed patterns of extreme climatic events. In addition to intense rain events, the distribution of events is associated with pockets of intra-seasonal long dry spells. The negative consequences of these mixed patterns are obvious on the farm: soil water logging, erosion of arable land, dwartness and dessication of crops, and loss in production. The capacity of local farming communities to respond accordingly to rainfall extreme events is often constrained by lack of access to climate information and advisory on smart crop management practices that can help translate extreme rainfall events into farming options. The objective of this work is to expose the framework and the pre-liminary results of a scheme that customizes climate-advisory information package delivery to subsistence farmers in Bakel (Senegal), Ouahigouya & Dano (Burkina Faso) and Bolgatanga (Ghana) for sustainable family agriculture. The package is based on the provision of timely climate information (48-hours, dekadal & seasonal) embedded with smart crop management practices to explore and exploite the potential advantage of intense rainfall and extreme dry spells in millet, maize, sorghum and cowpea farming communities. It is sent via mobile phones and used on selected farms (i.e agro-climatic farm schools) on which some small on-farm infrastructure were built to alleviate negative impacts of weather. Results provide prominent insight on how co-production of weather/climate information, customized access and guidiance on its use can induce fast learning (capacity building of actors), motivation for adaptation, sustainability, potential changes in cropping system, yields and family income in the face of a rainfall extremes at local scales of Sudan-Sahel of West Africa. Keywords: Climate

  11. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad; Attada, Raju; Knio, Omar; Hoteit, Ibrahim

    2017-01-01

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  12. Analysis of a severe weather event over Mecca, Kingdom of Saudi Arabia, using observations and high-resolution modelling

    KAUST Repository

    Dasari, Hari Prasad

    2017-08-10

    The dynamic and thermodynamic characteristics of a severe weather event that caused heavy wind and rainfall over Mecca, Kingdom of Saudi Arabia, on 11 September 2015 were investigated using available observations and the Weather Research and Forecasting model configured at 1 km resolution. Analysis of surface, upper air observations and model outputs reveals that the event was initiated by synoptic scale conditions that intensified by interaction with the local topography, triggering strong winds and high convective rainfall. The model predicted the observed characteristics of both rainfall and winds well, accurately predicting the maximum wind speed of 20–25 m s−1 that was sustained for about 2 h. A time series analysis of various atmospheric variables suggests a sudden fall in pressure, temperature and outgoing long wave radiation before the development of the storm, followed by a significant increase in wind speed, latent and moisture fluxes and change in wind direction during the mature stage of the storm. The model outputs suggest that the heavy rainfall was induced by a low-level moisture supply from the Red Sea combined with orographic lifting. Latent heat release from microphysical processes increased the vertical velocities in the mid-troposphere, further increasing the low-level convergence that strengthened the event.

  13. Stream discharge of metals and rare earth elements in rainfall events in a forested catchment

    International Nuclear Information System (INIS)

    Matsunaga, Takeshi; Tsuduki, Katsunori; Yanase, Nobuyuki; Hanzawa, Yukiko; Naganawa, Hirochika; Inoue, Takanobu; Yamada, Toshiro; Miyata, Akifumi

    2007-01-01

    In a forested catchment rainfall event, the accelerated stream discharge of dissolved Cr, Cu, and Sb was attributed mainly to the first flush from the ground surface and/or instantaneous resuspension of stream sediment, while REE discharge was linked to that of dissolved organic matter from the soil layer. (author)

  14. Derivation of critical rainfall thresholds for landslide in Sicily

    Science.gov (United States)

    Caracciolo, Domenico; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    Rainfall is the primary trigger of shallow landslides that can cause fatalities, damage to properties and economic losses in many areas of the world. For this reason, determining the rainfall amount/intensity responsible for landslide occurrence is important, and may contribute to mitigate the related risk and save lives. Efforts have been made in different countries to investigate triggering conditions in order to define landslide-triggering rainfall thresholds. The rainfall thresholds are generally described by a functional relationship of power in terms of cumulated or intensity event rainfall-duration, whose parameters are estimated empirically from the analysis of historical rainfall events that triggered landslides. The aim of this paper is the derivation of critical rainfall thresholds for landslide occurrence in Sicily, southern Italy, by focusing particularly on the role of the antecedent wet conditions. The creation of the appropriate landslide-rainfall database likely represents one of main efforts in this type of analysis. For this work, historical landslide events occurred in Sicily from 1919 to 2001 were selected from the archive of the Sistema Informativo sulle Catastrofi Idrogeologiche, developed under the project Aree Vulnerabili Italiane. The corresponding triggering precipitations were screened from the raingauges network in Sicily, maintained by the Osservatorio delle Acque - Agenzia Regionale per i Rifiuti e le Acque. In particular, a detailed analysis was carried out to identify and reconstruct the hourly rainfall events that caused the selected landslides. A bootstrapping statistical technique has been used to determine the uncertainties associated with the threshold parameters. The rainfall thresholds at different exceedance probability levels, from 1% to 10%, were defined in terms of cumulated event rainfall, E, and rainfall duration, D. The role of rainfall prior to the damaging events was taken into account by including in the analysis

  15. Trends in characteristics of sub-daily heavy precipitation and rainfall erosivity in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Hanel, M.; Pavlásková, A.; Kyselý, Jan

    2016-01-01

    Roč. 36, č. 4 (2016), s. 1833-1845 ISSN 0899-8418 R&D Projects: GA ČR(CZ) GA14-18675S Institutional support: RVO:68378289 Keywords : sub-daily precipitation * rainfall events * erosivity * extremes * climate variability * Central Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.4463/abstract

  16. Multivariate Analysis of Erosivity Indices and Rainfall Physical Characteristics Associated with Rainfall Patterns in Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Roriz Luciano Machado

    2017-12-01

    Full Text Available ABSTRACT The identification of areas with greater erosive potential is important for planning soil and water conservation. The objective of this study was to evaluate the physical characteristics of rainfall events in the state of Rio de Janeiro, Brazil, and their interactions with rainfall patterns through multivariate statistical analysis. Rainfall depth, kinetic energy, 30-min intensity (I30, duration of rainfall events, and the erosivity indices KE >10, KE >25, and EI30 in 36 locations (stations were subjected to principal component analysis (PCA and canonical discriminant analysis (CDA. Based on evaluation of the respective historical series of hyetographs, it was found that the advanced pattern occurs with highest frequency (51.8 %, followed by the delayed pattern (26.1 %, and by the intermediate pattern (22.1 %. All the evaluated rainfall characteristics have high response capacity in describing localities and rainfall patterns through PCA and CDA. In CDA, the Tukey test (p<0.05 applied to the scores of the first canonical discriminant function (CDF1 allowed differentiation of the stations with respect to the rainfall and erosivity characteristics for the advanced and delayed patterns. In the delayed pattern, the localities of Angra dos Reis, Campos, Eletrobrás, Manuel Duarte, Santa Isabel do Rio Preto, Tanguá, Teresópolis, Vila Mambucaba, and Xerém had the highest CDF1 scores, indicating that they have rainfalls with higher depth, I30, and duration because the standardized canonical coefficient (SCC and the correlation coefficient (“r” of these characteristics were positive. The rainfall events in the state of Rio de Janeiro differ from one locality to another in relation to the advanced and delayed rainfall patterns, mainly due to the physical characteristics of rainfall depth, I30, and duration, indicating a higher risk of soil loss and runoff in the localities where rainfall events with the delayed pattern prevail.

  17. Impact of climate change on heavy precipitation events of the Mediterranean basin

    International Nuclear Information System (INIS)

    Ricard, D.; Beaulant, A.L.; Deque, M.; Ducrocq, V.; Joly, A.; Joly, B.; Martin, E.; Nuissier, O.; Quintana Segui, P.; Ribes, A.; Sevault, F.; Somot, S.; Boe, J.

    2009-01-01

    A second topic covered by the CYPRIM project aims to characterize the evolution of heavy precipitation events in Mediterranean in the context of climate change. To this end, a continuous climate simulation from 1960 to 2099 has been run using a regional ocean-atmosphere coupled model under IPCC A2 emission scenario. Various techniques of down-scaling, down to the very fine 2 km scale, and methods to highlight synoptic environments favourable to heavy rain, have been used to estimate the impact of climate change on precipitation and hydrology over South-East France, both for the whole autumn season and the heavy rain events. (authors)

  18. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating

    Science.gov (United States)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.

    2018-04-01

    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  19. Determining rainfall thresholds that trigger landslides in Colombia

    International Nuclear Information System (INIS)

    Mayorga Marquez, Ruth

    2003-01-01

    Considering that rainfall is the natural event that more often triggers landslides, it is important to study the relationship between this phenomenon and the occurrence of earth mass movements, by determining rainfall thresholds that trigger landslides in different zones of Colombia. The research presents a methodology that allows proposing rainfall thresholds that trigger landslides in Colombia, by means of a relationship between the accumulated rain in the soil (antecedent rainfall) and the rain that falls the day of the landslide occurrence (event rainfall)

  20. Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)

    Science.gov (United States)

    Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.; Arsene, I.; Tywoniuk, K.

    2009-05-01

    HYDJET++ is a Monte Carlo event generator for simulation of relativistic heavy ion AA collisions considered as a superposition of the soft, hydro-type state and the hard state resulting from multi-parton fragmentation. This model is the development and continuation of HYDJET event generator (Lokhtin and Snigirev, EPJC 45 (2006) 211). The main program is written in the object-oriented C++ language under the ROOT environment. The hard part of HYDJET++ is identical to the hard part of Fortran-written HYDJET and it is included in the generator structure as a separate directory. The soft part of HYDJET++ event is the "thermal" hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parameterization of relativistic hydrodynamics with preset freeze-out conditions. It includes the longitudinal, radial and elliptic flow effects and the decays of hadronic resonances. The corresponding fast Monte Carlo simulation procedure, C++ code FAST MC (Amelin et al., PRC 74 (2006) 064901; PRC 77 (2008) 014903) is adapted to HYDJET++. It is designed for studying the multi-particle production in a wide energy range of heavy ion experimental facilities: from FAIR and NICA to RHIC and LHC. Program summaryProgram title: HYDJET++, version 2 Catalogue identifier: AECR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 100 387 No. of bytes in distributed program, including test data, etc.: 797 019 Distribution format: tar.gz Programming language: C++ (however there is a Fortran-written part which is included in the generator structure as a separate directory) Computer: Hardware independent (both C++ and Fortran compilers and ROOT environment [1] ( http://root.cern.ch/) should be installed

  1. Determining the precipitable water vapor thresholds under different rainfall strengths in Taiwan

    Science.gov (United States)

    Yeh, Ta-Kang; Shih, Hsuan-Chang; Wang, Chuan-Sheng; Choy, Suelynn; Chen, Chieh-Hung; Hong, Jing-Shan

    2018-02-01

    Precipitable Water Vapor (PWV) plays an important role for weather forecasting. It is helpful in evaluating the changes of the weather system via observing the distribution of water vapor. The ability of calculating PWV from Global Positioning System (GPS) signals is useful to understand the special weather phenomenon. In this study, 95 ground-based GPS and rainfall stations in Taiwan were utilized from 2006 to 2012 to analyze the relationship between PWV and rainfall. The PWV data were classified into four classes (no, light, moderate and heavy rainfall), and the vertical gradients of the PWV were obtained and the variations of the PWV were analyzed. The results indicated that as the GPS elevation increased every 100 m, the PWV values decreased by 9.5 mm, 11.0 mm, 12.2 mm and 12.3 mm during the no, light, moderate and heavy rainfall conditions, respectively. After applying correction using the vertical gradients mentioned above, the average PWV thresholds were 41.8 mm, 52.9 mm, 62.5 mm and 64.4 mm under the no, light, moderate and heavy rainfall conditions, respectively. This study offers another type of empirical threshold to assist the rainfall prediction and can be used to distinguish the rainfall features between different areas in Taiwan.

  2. Evaluating the MSG satellite Multi-Sensor Precipitation Estimate for extreme rainfall monitoring over northern Tunisia

    Directory of Open Access Journals (Sweden)

    Saoussen Dhib

    2017-06-01

    Full Text Available Knowledge and evaluation of extreme precipitation is important for water resources and flood risk management, soil and land degradation, and other environmental issues. Due to the high potential threat to local infrastructure, such as buildings, roads and power supplies, heavy precipitation can have an important social and economic impact on society. At present, satellite derived precipitation estimates are becoming more readily available. This paper aims to investigate the potential use of the Meteosat Second Generation (MSG Multi-Sensor Precipitation Estimate (MPE for extreme rainfall assessment in Tunisia. The MSGMPE data combine microwave rain rate estimations with SEVIRI thermal infrared channel data, using an EUMETSAT production chain in near real time mode. The MPE data can therefore be used in a now-casting mode, and are potentially useful for extreme weather early warning and monitoring. Daily precipitation observed across an in situ gauge network in the north of Tunisia were used during the period 2007–2009 for validation of the MPE extreme event data. As a first test of the MSGMPE product's performance, very light to moderate rainfall classes, occurring between January and October 2007, were evaluated. Extreme rainfall events were then selected, using a threshold criterion for large rainfall depth (>50 mm/day occurring at least at one ground station. Spatial interpolation methods were applied to generate rainfall maps for the drier summer season (from May to October and the wet winter season (from November to April. Interpolated gauge rainfall maps were then compared to MSGMPE data available from the EUMETSAT UMARF archive or from the GEONETCast direct dissemination system. The summation of the MPE data at 5 and/or 15 min time intervals over a 24 h period, provided a basis for comparison. The MSGMPE product was not very effective in the detection of very light and light rain events. Better results were obtained for the slightly

  3. Lightning activity, rainfall and flash flooding – occasional or interrelated events? A case study in the island of Crete

    Directory of Open Access Journals (Sweden)

    A. G. Koutroulis

    2012-04-01

    Full Text Available The majority of cyclones passing over Crete in late autumn to early winter originate from southwest, west and northwest and are of varying size and intensity. A number of these cyclones cause flash floods. The present study reports the possible relationships between lighting activity and high precipitation related to flash flood events. In this study an attempt was made to correlate the lightning number and location, recorded by the ZEUS lightning detection system, with the rainfall characteristics for sixteen rain events (4 flood and 12 non-flood events on the island of Crete, during the period 2008–2009. Spatiotemporal analysis of rain and rain rate with flash count was performed with respect to distance (radius of flashes from raingauge location at various temporal scales, in order to examine the correlation of accumulated rainfall and lightning activity. The maximum attained statistical significant correlation was obtained within a circular area of an average radius of 15 km around the raingauge, and an average time lag of flash count prior precipitation accumulation of 15 min. The maximum correlation between the lightning and rainfall data is obtained for shorter time lags for the flood events (15 min than the non-flood events (25 min, that could reflect the faster propagation of flood triggering storms due to high convective activity. Results show increased lightning activity occurring during flood triggering storms, by an average of four times higher. Furthermore, there is evidence that the number of flashes that occur during a precipitation event is related to precipitation depth when the latter is adequate to produce a flood event. Differences between flood and non-flood producing storms need to be further assessed by analyzing more independent parameters, including the synoptic conditions and dominant flash flood hydrological generating processes.

  4. High-energy heavy ion testing of VLSI devices for single event ...

    Indian Academy of Sciences (India)

    Unknown

    per describes the high-energy heavy ion radiation testing of VLSI devices for single event upset (SEU) ... The experimental set up employed to produce low flux of heavy ions viz. silicon ... through which they pass, leaving behind a wake of elec- ... for use in Bus Management Unit (BMU) and bulk CMOS ... was scheduled.

  5. Changes in Convective Rainfall in future climates over Western Europe.

    Science.gov (United States)

    Gadian, A.; Burton, R.; Blyth, A. M.; Mobbs, S.; Warner, J.; Groves, J.; Holland, G. J.; Bruyere, C. L.; Done, J.; Tye, M. R.; Thielen, J.

    2016-12-01

    This project aims to analyse extreme convective weather events over the European domain in a future climate scenario using the Weather Research Forecasting model (WRF). Climate models have insufficient resolution to properly simulate small meso-scale precipitation events which are critical in understanding climate change. Use of a weather model is specifically designed to resolve small (and large) scale processes and in particular to be convection permitting. Changes in extreme weather events in the future climate can be represented as small scale processes and regional meso-scale precipitation events. A channel outer domain (D01), with a resolution of 20km at +/-300 N/S and 8km at 680N, drives a one way nested inner domain resolution which is a factor of 5:1 smaller. For calibration purposes, the outer domain is driven at the Northern / Southern boundaries either by ERA-interim or bias corrected data CCSM for 1989-1995. For the future simulations, the outer domain is driven by CCSM data for 2020-2025 and 2030-2035. An initial analysis for the inner domain convection over Western Europe will be presented. This presentation will provide details of the project. An inter-comparison of the simulations driven for 1990-1995 will provide information on the applicability of using the climate data driven results for the analysis of the future years. Initial plots of changes in precipitation over the future decades will focus on the summer precipitation, providing mean and standard deviation changes. The results indicate that the summer months are dryer, the wet events become shorter, with longer dry periods. The peak precipitation for the events does not increase, but the average rainfall and the amount of heavy rain (>7.6mm / hour) does increase. Future plans for use of the data will be discussed. Use the output data to drive the EFAS (European Flood model) to examine the predicted changes in quantity and frequency of severe and hazardous convective rainfall events and

  6. The Spatial Scaling of Global Rainfall Extremes

    Science.gov (United States)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  7. Modelling of extreme rainfall events in Peninsular Malaysia based on annual maximum and partial duration series

    Science.gov (United States)

    Zin, Wan Zawiah Wan; Shinyie, Wendy Ling; Jemain, Abdul Aziz

    2015-02-01

    In this study, two series of data for extreme rainfall events are generated based on Annual Maximum and Partial Duration Methods, derived from 102 rain-gauge stations in Peninsular from 1982-2012. To determine the optimal threshold for each station, several requirements must be satisfied and Adapted Hill estimator is employed for this purpose. A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. The mean annual frequency is also checked to ensure that it lies in the range of one to five and the resulting data is also de-clustered to ensure independence. The two data series are then fitted to Generalized Extreme Value and Generalized Pareto distributions for annual maximum and partial duration series, respectively. The parameter estimation methods used are the Maximum Likelihood and the L-moment methods. Two goodness of fit tests are then used to evaluate the best-fitted distribution. The results showed that the Partial Duration series with Generalized Pareto distribution and Maximum Likelihood parameter estimation provides the best representation for extreme rainfall events in Peninsular Malaysia for majority of the stations studied. Based on these findings, several return values are also derived and spatial mapping are constructed to identify the distribution characteristic of extreme rainfall in Peninsular Malaysia.

  8. Comparison between snowmelt-runoff and rainfall-runoff nonpoint source pollution in a typical urban catchment in Beijing, China.

    Science.gov (United States)

    Chen, Lei; Zhi, Xiaosha; Shen, Zhenyao; Dai, Ying; Aini, Guzhanuer

    2018-01-01

    As a climate-driven event, nonpoint source (NPS) pollution is caused by rainfall- or snowmelt-runoff processes; however, few studies have compared the characteristics and mechanisms of these two kinds of NPS processes. In this study, three factors relating to urban NPS, including surface dust, snowmelt, and rainfall-runoff processes, were analyzed comprehensively by both field sampling and laboratory experiments. The seasonal variation and leaching characteristics of pollutants in surface dust were explored, and the runoff quality of snowmelt NPS and rainfall NPS were compared. The results indicated that dusts are the main sources of urban NPS and more pollutants are deposited in dust samples during winter and spring. However, pollutants in surface dust showed a low leaching ratio, which indicated most NPS pollutants would be carried as particulate forms. Compared to surface layer, underlying snow contained higher chemical oxygen demand, total suspended solids (TSS), Cu, Fe, Mn, and Pb concentrations, while the event mean concentration of most pollutants in snowmelt tended to be higher in roads. Moreover, the TSS and heavy metal content of snowmelt NPS was always higher than those of rainfall NPS, which indicated the importance of controlling snowmelt pollution for effective water quality management.

  9. Flood modelling with a distributed event-based parsimonious rainfall-runoff model: case of the karstic Lez river catchment

    Directory of Open Access Journals (Sweden)

    M. Coustau

    2012-04-01

    Full Text Available Rainfall-runoff models are crucial tools for the statistical prediction of flash floods and real-time forecasting. This paper focuses on a karstic basin in the South of France and proposes a distributed parsimonious event-based rainfall-runoff model, coherent with the poor knowledge of both evaporative and underground fluxes. The model combines a SCS runoff model and a Lag and Route routing model for each cell of a regular grid mesh. The efficiency of the model is discussed not only to satisfactorily simulate floods but also to get powerful relationships between the initial condition of the model and various predictors of the initial wetness state of the basin, such as the base flow, the Hu2 index from the Meteo-France SIM model and the piezometric levels of the aquifer. The advantage of using meteorological radar rainfall in flood modelling is also assessed. Model calibration proved to be satisfactory by using an hourly time step with Nash criterion values, ranging between 0.66 and 0.94 for eighteen of the twenty-one selected events. The radar rainfall inputs significantly improved the simulations or the assessment of the initial condition of the model for 5 events at the beginning of autumn, mostly in September–October (mean improvement of Nash is 0.09; correction in the initial condition ranges from −205 to 124 mm, but were less efficient for the events at the end of autumn. In this period, the weak vertical extension of the precipitation system and the low altitude of the 0 °C isotherm could affect the efficiency of radar measurements due to the distance between the basin and the radar (~60 km. The model initial condition S is correlated with the three tested predictors (R2 > 0.6. The interpretation of the model suggests that groundwater does not affect the first peaks of the flood, but can strongly impact subsequent peaks in the case of a multi-storm event. Because this kind of model is based on a limited

  10. The effects of acid rainfall and heavy metal particulates on a boreal forest ecosystem near the Sudbury smelting region of Canada

    Science.gov (United States)

    T. C. Hutchinson

    1976-01-01

    Sulphur dioxide emissions have occurred on a gigantic scale at Sudbury from nickel-copper smelters. Soil erosion has followed the destruction of large areas of forest. Rainfall has been found highly acidic, frequently less than pH 3.0 in 1971. Metal accumulation in the soils (to distances of 50 km) have occurred for nickel and copper. The combination of heavy metal...

  11. Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling

    Science.gov (United States)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2017-03-01

    total flow variability in the response of the urban drainage systems to heavy rainfall events.

  12. Evaluation of rainfall infiltration characteristics in a volcanic ash soil by time domain reflectometry method

    Directory of Open Access Journals (Sweden)

    S. Hasegawa

    1997-01-01

    Full Text Available Time domain reflectometry (TDR was used to monitor soil water conditions and to evaluate infiltration characteristics associated with rainfall into a volcanic-ash soil (Hydric Hapludand with a low bulk density. Four 1 m TDR probes were installed vertically along a 6 m line in a bare field. Three 30 cm and one 60 cm probes were installed between the 1 m probes. Soil water content was measured every half or every hour throughout the year. TDR enabled prediction of the soil water content precisely even though the empirical equation developed by Topp et al. (1980 underestimated the water content. Field capacity, defined as the amount of water stored to a depth of 1 m on the day following heavy rainfall, was 640 mm. There was approximately 100 mm difference in the amount of water stored between field capacity and the driest period. Infiltration characteristics of rainfall were investigated for 36 rainfall events exceeding 10 mm with a total amount of rain of 969 mm out of an annual rainfall of 1192 mm. In the case of 25 low intensity rainfall events with less than 10 mm h-1 on to dry soils, the increase in the amount of water stored to a depth of 1 m was equal to the cumulative rainfall. For rain intensity in excess of 10 mm h-1, non-uniform infiltration occurred. The increase in the amount of water stored at lower elevation locations was 1.4 to 1.6 times larger than at higher elevation locations even though the difference in ground height among the 1 m probes was 6 cm. In the two instances when rainfall exceeded 100 mm, including the amount of rain in a previous rainfall event, the increase in the amount of water stored to a depth of 1 m was 65 mm lower than the total quantity of rain on the two occasions (220 mm; this indicated that 65 mm of water or 5.5% of the annual rainfall had flowed away either by surface runoff or bypass flow. Hence, approximately 95% of the annual rainfall was absorbed by the soil matrix but it is not possible to simulate

  13. Relationship between rainfall and microbiological contamination of ...

    African Journals Online (AJOL)

    Outbreaks of contamination events in many developing countries occur during periods of peak rainfall. This study presents evidence of direct pulse response of shallow groundwater contamination events to rainfall in Northern Mozambique. The objective of the paper is to establish both a statistical relationship between ...

  14. Rainfall: State of the Science

    Science.gov (United States)

    Testik, Firat Y.; Gebremichael, Mekonnen

    Rainfall: State of the Science offers the most up-to-date knowledge on the fundamental and practical aspects of rainfall. Each chapter, self-contained and written by prominent scientists in their respective fields, provides three forms of information: fundamental principles, detailed overview of current knowledge and description of existing methods, and emerging techniques and future research directions. The book discusses • Rainfall microphysics: raindrop morphodynamics, interactions, size distribution, and evolution • Rainfall measurement and estimation: ground-based direct measurement (disdrometer and rain gauge), weather radar rainfall estimation, polarimetric radar rainfall estimation, and satellite rainfall estimation • Statistical analyses: intensity-duration-frequency curves, frequency analysis of extreme events, spatial analyses, simulation and disaggregation, ensemble approach for radar rainfall uncertainty, and uncertainty analysis of satellite rainfall products The book is tailored to be an indispensable reference for researchers, practitioners, and graduate students who study any aspect of rainfall or utilize rainfall information in various science and engineering disciplines.

  15. Regional rainfall thresholds for landslide occurrence using a centenary database

    Science.gov (United States)

    Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Garcia, Ricardo A. C.; Quaresma, Ivânia

    2018-04-01

    This work proposes a comprehensive method to assess rainfall thresholds for landslide initiation using a centenary landslide database associated with a single centenary daily rainfall data set. The method is applied to the Lisbon region and includes the rainfall return period analysis that was used to identify the critical rainfall combination (cumulated rainfall duration) related to each landslide event. The spatial representativeness of the reference rain gauge is evaluated and the rainfall thresholds are assessed and calibrated using the receiver operating characteristic (ROC) metrics. Results show that landslide events located up to 10 km from the rain gauge can be used to calculate the rainfall thresholds in the study area; however, these thresholds may be used with acceptable confidence up to 50 km from the rain gauge. The rainfall thresholds obtained using linear and potential regression perform well in ROC metrics. However, the intermediate thresholds based on the probability of landslide events established in the zone between the lower-limit threshold and the upper-limit threshold are much more informative as they indicate the probability of landslide event occurrence given rainfall exceeding the threshold. This information can be easily included in landslide early warning systems, especially when combined with the probability of rainfall above each threshold.

  16. Characteristics of pulsed runoff-erosion events under typical rainstorms in a small watershed on the Loess Plateau of China.

    Science.gov (United States)

    Wu, Lei; Jiang, Jun; Li, Gou-Xia; Ma, Xiao-Yi

    2018-02-27

    The pulsed events of rainstorm erosion on the Loess Plateau are well-known, but little information is available concerning the characteristics of superficial soil erosion processes caused by heavy rainstorms at the watershed scale. This study statistically evaluated characteristics of pulsed runoff-erosion events based on 17 observed rainstorms from 1997-2010 in a small loess watershed on the Loess Plateau of China. Results show that: 1) Rainfall is the fundamental driving force of soil erosion on hillslopes, but the correlations of rainfall-runoff and rainfall-sediment in different rainstorms are often scattered due to infiltration-excess runoff and soil conservation measures. 2) Relationships between runoff and sediment for each rainstorm event can be regressed by linear, power, logarithmic and exponential functions. Cluster Analysis is helpful in classifying runoff-erosion events and formulating soil conservation strategies for rainstorm erosion. 3) Response characteristics of sediment yield are different in different levels of pulsed runoff-erosion events. Affected by rainfall intensity and duration, large changes may occur in the interactions between flow and sediment for different flood events. Results provide new insights into runoff-erosion processes and will assist soil conservation planning in the loess hilly region.

  17. Disturbance Driven Rainfall in O`ahu, Hawai`i (1990-2010)

    Science.gov (United States)

    Longman, R. J.; Elison Timm, O.; Giambelluca, T. W.; Kaiser, L.; Newman, A. J.; Arnold, J.; Clark, M. P.

    2017-12-01

    Trade wind orographic rainfall is the most prevalent synoptic weather pattern in Hawai`i and provides a year-round source of moisture to the windward areas across the Island chain. Significant contributions to total and extreme precipitation have also been linked to one of four atmospheric disturbance situations that include: cold fronts, Kona storms, upper-tropospheric disturbances (upper level lows), and tropical systems. The primary objective of this research is to determine how these disturbance types contribute to total wet-season rainfall (RF) on the Island of O`ahu, Hawai`i and to identify any significant changes in the frequency of occurrence and or the intensity of these events. Atmospheric fronts that occurred in the Hawai`i region (17-26°N, 150-165°W) were extracted from a global dataset and combined with a Kona low and upper level low dataset to create a daily categorical weather classification time series (1990-2010). Mean rainfall was extracted from gridded daily O`ahu RF maps. Results show that the difference between a wet and dry year is predominantly explained by the RF contributions from disturbance events (r2 = 0.57, p cold fronts that cross the Island. During the wettest season on record, disturbances accounted for 48% of the total RF, while during the driest season they accounted for only 6% of the total RF. The event-based RF analysis also compared the RF intensity in the absence of disturbance events with the average RF intensity on days when atmospheric fronts are present but do not cross the island. The results show that non-crossing fronts reduce the average RF intensity. A possible explanation is that these events are too far away to produce RF, but close enough to disrupt normal trade wind flow, thus limiting orographic RF on the island. This new event-based RF analysis has important implications for the projection of regional climate change in Hawai`i. Our results suggest that if storm tracks were to shift poleward, O`ahu wet season

  18. Characterisation of diffuse pollutions from forested watersheds in Japan during storm events - its association with rainfall and watershed features.

    Science.gov (United States)

    Zhang, Zhao; Fukushima, Takehiko; Onda, Yuichi; Mizugaki, Shigeru; Gomi, Takashi; Kosugi, Ken'ichirou; Hiramatsu, Shinya; Kitahara, Hikaru; Kuraji, Koichiro; Terajima, Tomomi; Matsushige, Kazuo; Tao, Fulu

    2008-02-01

    Forest areas have been identified as important sources of nonpoint pollution in Japan. The managers must estimate stormwater quality and quantities from forested watersheds to develop effective management strategies. Therefore, stormwater runoff loads and concentrations of 10 constituents (total suspended solids, dissolved organic carbon, PO(4)-P, dissolved total phosphorus, total phosphorus, NH(4)-N, NO(2)-N, NO(3)-N, dissolved total nitrogen, and total nitrogen) for 72 events across five regions (Aichi, Kochi, Mie, Nagano, and Tokyo) were characterised. Most loads were significantly and positively correlated with stormwater variables (total event rainfall, event duration, and rainfall intensity), but most discharge-weighted event concentrations (DWECs) showed negative correlations with rainfall intensity. Mean water quality concentration during baseflow was correlated significantly with storm concentrations (r=0.41-0.77). Although all pollutant load equations showed high coefficients of determination (R(2)=0.55-0.80), no models predicted well pollutant concentrations, except those for the three N constituents (R(2)=0.59-0.67). Linear regressions to estimate stormwater concentrations and loads were greatly improved by regional grouping. The lower prediction capability of the concentration models for Mie, compared with the other four regions, indicated that other watershed or storm characteristics should be included in the prediction models. Significant differences among regions were found more frequently in concentrations than in loads for all constituents. Since baseflow conditions implied available pollutant sources for stormwater, the similar spatial characteristics of pollutant concentrations between baseflow and stormflow conditions were an important control for stormwater quality.

  19. MARTINI: An event generator for relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Gale, Charles; Jeon, Sangyong

    2009-01-01

    We introduce the modular algorithm for relativistic treatment of heavy ion interactions (MARTINI), a comprehensive event generator for the hard and penetrating probes in high-energy nucleus-nucleus collisions. Its main components are a time-evolution model for the soft background, PYTHIA 8.1, and the McGill-Arnold, Moore, and Yaffe (AMY) parton-evolution scheme, including radiative as well as elastic processes. This allows us to generate full event configurations in the high p T region that take into account thermal quantum chromodynamic (QCD) and quantum electrodynamic (QED) effects as well as effects of the evolving medium. We present results for the neutral pion nuclear modification factor in Au+Au collisions at the BNL Relativistic Heavy Ion Collider as a function of p T for different centralities and also as a function of the angle with respect to the reaction plane for noncentral collisions. Furthermore, we study the production of high-transverse-momentum photons, incorporating a complete set of photon-production channels.

  20. The rainfall plot: its motivation, characteristics and pitfalls.

    Science.gov (United States)

    Domanska, Diana; Vodák, Daniel; Lund-Andersen, Christin; Salvatore, Stefania; Hovig, Eivind; Sandve, Geir Kjetil

    2017-05-18

    A visualization referred to as rainfall plot has recently gained popularity in genome data analysis. The plot is mostly used for illustrating the distribution of somatic cancer mutations along a reference genome, typically aiming to identify mutation hotspots. In general terms, the rainfall plot can be seen as a scatter plot showing the location of events on the x-axis versus the distance between consecutive events on the y-axis. Despite its frequent use, the motivation for applying this particular visualization and the appropriateness of its usage have never been critically addressed in detail. We show that the rainfall plot allows visual detection even for events occurring at high frequency over very short distances. In addition, event clustering at multiple scales may be detected as distinct horizontal bands in rainfall plots. At the same time, due to the limited size of standard figures, rainfall plots might suffer from inability to distinguish overlapping events, especially when multiple datasets are plotted in the same figure. We demonstrate the consequences of plot congestion, which results in obscured visual data interpretations. This work provides the first comprehensive survey of the characteristics and proper usage of rainfall plots. We find that the rainfall plot is able to convey a large amount of information without any need for parameterization or tuning. However, we also demonstrate how plot congestion and the use of a logarithmic y-axis may result in obscured visual data interpretations. To aid the productive utilization of rainfall plots, we demonstrate their characteristics and potential pitfalls using both simulated and real data, and provide a set of practical guidelines for their proper interpretation and usage.

  1. Rainfall-threshold conditions for landslides in a humid-tropical system

    Science.gov (United States)

    Larsen, Matthew C.; Simon, Andrew

    1993-01-01

    Landslides are triggered by factors such as heavy rainfall, seismic activity, and construction on hillslopes. The leading cause of landslides in Puerto Rico is intense and/or prolonged rainfall. A rainfall threshold for rainfall-triggered landsliding is delimited by 256 storms that occurred between 1959 and 1991 in the central mountains of Puerto Rico, where mean annual rainfall is close to or in excess of 2,000 mm. Forty one of the 256 storms produced intense and/or prolonged rainfall that resulted in tens to hundreds of landslides. A threshold fitted to the lower boundary of the field defined by landslide-triggering storms is expressed as

  2. Censored rainfall modelling for estimation of fine-scale extremes

    Science.gov (United States)

    Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro

    2018-01-01

    Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.

  3. The composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.

    1984-01-01

    The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however, are found to be roughly energy independent in the proportional1 to proportional20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He + along with heavy ions with typically coronal ionization states. High-resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP 22 Ne/ 20 Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of 3 He-rich, heavy-ion rich and carbon-poor SEP events, along with direct measurements of the ionization states of SEPs provide essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production. (orig./HM)

  4. [Infiltration characteristics of soil water on loess slope land under intermittent and repetitive rainfall conditions].

    Science.gov (United States)

    Li, Yi; Shao, Ming-An

    2008-07-01

    Based on the experiments of controlled intermittent and repetitive rainfall on slope land, the infiltration and distribution characteristics of soil water on loess slope land were studied. The results showed that under the condition of intermittent rainfall, the cumulative runoff during two rainfall events increased linearly with time, and the wetting front also increased with time. In the interval of the two rainfall events, the wetting front increased slowly, and the infiltration rate was smaller on steeper slope than on flat surface. During the second rainfall event, there was an obvious decreasing trend of infiltration rate with time. The cumulative infiltration on 15 degrees slope land was larger than that of 25 degrees slope land, being 178 mm and 88 mm, respectively. Under the condition of repetitive rainfall, the initial infiltration rate during each rainfall event was relatively large, and during the first rainfall, both the infiltration rate and the cumulative infiltration at various stages were larger than those during the other three rainfall events. However, after the first rainfall, there were no obvious differences in the infiltration rate among the next three rainfall events. The more the rainfall event, the deeper the wetting front advanced.

  5. Rainfall simulation in education

    Science.gov (United States)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain

  6. Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting

    Science.gov (United States)

    Sutawinaya, IP; Astawa, INGA; Hariyanti, NKD

    2018-01-01

    Heavy rainfall can cause disaster, therefore need a forecast to predict rainfall intensity. Main factor that cause flooding is there is a high rainfall intensity and it makes the river become overcapacity. This will cause flooding around the area. Rainfall factor is a dynamic factor, so rainfall is very interesting to be studied. In order to support the rainfall forecasting, there are methods that can be used from Artificial Intelligence (AI) to statistic. In this research, we used Adaline for AI method and Regression for statistic method. The more accurate forecast result shows the method that used is good for forecasting the rainfall. Through those methods, we expected which is the best method for rainfall forecasting here.

  7. Composites of Heavy Rain Producing Elevated Thunderstorms in the Central United States

    Directory of Open Access Journals (Sweden)

    Laurel P. McCoy

    2017-01-01

    Full Text Available Composite analyses of the atmosphere over the central United States during elevated thunderstorms producing heavy rainfall are presented. Composites were created for five National Weather Service County Warning Areas (CWAs in the region. Events studied occurred during the warm season (April–September during 1979–2012. These CWAs encompass the region determined previously to experience the greatest frequency of elevated thunderstorms in the United States. Composited events produced rainfall of >50 mm 24 hr−1 within the selected CWA. Composites were generated for the 0–3 hr period prior to the heaviest rainfall, 6–9 hours prior to it, and 12–15 hours prior to it. This paper focuses on the Pleasant Hill, Missouri (EAX composites, as all CWA results were similar; also these analyses focus on the period 0–3 hours prior to event occurrence. These findings corroborate the findings of previous authors. What is offered here that is unique is (1 a measure of the interquartile range within the composite mean fields, allowing for discrimination between variable fields that provided a strong reliable signal, from those that may appear strong but possess large variability, and (2 composite soundings of two subclasses of elevated thunderstorms. Also, a null case (one that fits the composite but failed to produce significant rainfall is also examined for comparison.

  8. Composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.

    1983-01-01

    Recent advances in determining the elemental, charge state, and isotopic composition of approximatelt 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production

  9. Bivariate frequency analysis of rainfall intensity and duration for urban stormwater infrastructure design

    Science.gov (United States)

    Jun, Changhyun; Qin, Xiaosheng; Gan, Thian Yew; Tung, Yeou-Koung; De Michele, Carlo

    2017-10-01

    This study presents a storm-event based bivariate frequency analysis approach to determine design rainfalls in which, the number, intensity and duration of actual rainstorm events were considered. To derive more realistic design storms, the occurrence probability of an individual rainstorm event was determined from the joint distribution of storm intensity and duration through a copula model. Hourly rainfall data were used at three climate stations respectively located in Singapore, South Korea and Canada. It was found that the proposed approach could give a more realistic description of rainfall characteristics of rainstorm events and design rainfalls. As results, the design rainfall quantities from actual rainstorm events at the three studied sites are consistently lower than those obtained from the conventional rainfall depth-duration-frequency (DDF) method, especially for short-duration storms (such as 1-h). It results from occurrence probabilities of each rainstorm event and a different angle for rainfall frequency analysis, and could offer an alternative way of describing extreme rainfall properties and potentially help improve the hydrologic design of stormwater management facilities in urban areas.

  10. To what extent does variability of historical rainfall series influence extreme event statistics of sewer system surcharge and overflows?

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Kjeld; Rasmussen, Michael R.; Thorndahl, Søren

    2008-01-01

    In urban drainage modeling long term extreme statistics has become an important basis for decision-making e.g. in connection with renovation projects. Therefore it is of great importance to minimize the uncertainties concerning long term prediction of maximum water levels and combined sewer...... overflow (CSO) in drainage systems. These uncertainties originate from large uncertainties regarding rainfall inputs, parameters, and assessment of return periods. This paper investigates how the choice of rainfall time series influences the extreme events statistics of max water levels in manholes and CSO...... gauges are located at a distance of max 20 kilometers from the catchment. All gauges are included in the Danish national rain gauge system which was launched in 1976. The paper describes to what extent the extreme events statistics based on these 9 series diverge from each other and how this diversity...

  11. To what extent does variability of historical rainfall series influence extreme event statistics of sewer system surcharge and overflows?

    DEFF Research Database (Denmark)

    Schaarup-Jensen, Kjeld; Rasmussen, Michael R.; Thorndahl, Søren

    2009-01-01

    In urban drainage modelling long term extreme statistics has become an important basis for decision-making e.g. in connection with renovation projects. Therefore it is of great importance to minimize the uncertainties concerning long term prediction of maximum water levels and combined sewer...... overflow (CSO) in drainage systems. These uncertainties originate from large uncertainties regarding rainfall inputs, parameters, and assessment of return periods. This paper investigates how the choice of rainfall time series influences the extreme events statistics of max water levels in manholes and CSO...... gauges are located at a distance of max 20 kilometers from the catchment. All gauges are included in the Danish national rain gauge system which was launched in 1976. The paper describes to what extent the extreme events statistics based on these 9 series diverge from each other and how this diversity...

  12. Heavy Precipitation impacts and emergency planning - developing applicable strategies for a metropolitan area

    Science.gov (United States)

    Kutschker, Thomas; Glade, Thomas

    2016-04-01

    area. It shows that most of the damage is caused by spilled sewage drains flooding basements and streets. Besides less fire brigade operations are observed in rural areas with constant amount of rainfall. The occurrence of heavy rain events is spatially limited, hot-spot areas with higher probability can be detected. Based on this finding, a resource management strategy for the fire brigade can be developed. Keywords: emergency planning strategy, critical infrastructure, heavy rainfall, fire-brigade resource management

  13. Hydrological Effects of Historic Rainfall on the Waccamaw River

    Science.gov (United States)

    Jolly, J.; Bao, S.

    2017-12-01

    This study focuses on the overall water budget of the Waccamaw River during and after a historic rainfall event related to Hurricane Joaquin, producing a 1000-year rainfall event. While rainfall is the only input, it enters the basin through various means. Some rainwater enters the soil as soil moisture while rainfall also goes underground and enters the river channels from underground, which is defined as bucket in. Over time, the rainfall was removed from the river site through various natural processes. Those processes, including evaporation, soil storage as soil moisture, discharge runoff through the river channel, among others, were modeled and validated against the USGS gauge stations. The validated model results were then used to estimate the hydrological response of the Waccamaw River to the rainfall event and determine the overall water budget. The experiment was completed using a WRF-Hydro modeling system for the purposes of weather forecasting and meteorological analysis. Upon completion of the data analysis, the WRF-Hydro model result showed that large amounts of rainfall were variously dispersed through the aforementioned areas. It was determined that after entering the soil rainfall predominantly left the river basin by discharge, while evaporation accounted for the second most common destination of rainfall. Base flow also accounted for a destination of rainfall, though not as much as those previously mentioned.

  14. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    Science.gov (United States)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  15. Application of the Hess-Brezowsky classification to the identification of weather patterns causing heavy winter rainfall in Brittany (France

    Directory of Open Access Journals (Sweden)

    O. Planchon

    2009-07-01

    Full Text Available An accurate knowledge of the weather patterns causing winter rainfall over the Scorff watershed in western Brittany (W. France was developed prior to studies of the impact of the climate factor on land use management, and of the hydrological reponses to rain-producing weather patterns. These two studies are carried out in the context of the climate change. The identification of rainy air-circulation types was realized using the objective computational version of the 29-type Hess and Brezowsky Grosswetterlagen system of classifying European synoptic regimes, for the cold season (November-March of the 1958–2005 period at the reference weather station of Lorient, and 13 other stations located in western and southern Brittany, including a more detailed study for the wet 2000–2001 cold season for three reference stations of the Scorff watershed (Lorient, Plouay and Plouray. The precipitation proportion (including the days with rainfall ≥20 mm was calculated by major air-circulation type (GWT: see Appendix A and by individual air-circulation subtype (GWL: see Appendix A for the studied time-period. The most frequently occurrence of rainy days associated with westerly and southerly GWL confirmed well-known observations in western Europe and so justify the use of the Hess-Brezowsky classification in other areas outside Central Europe. The southern or south-western exposure of the watershed with a hilly inland area enhanced the heavy rainfall generated by the SW and S circulation types, and increased the difference between the rainfall amounts of coastal and inland stations during the wettest days.

  16. A space-time rainfall generator for highly convective Mediterranean rainstorms

    Directory of Open Access Journals (Sweden)

    S. Salsón

    2003-01-01

    Full Text Available Distributed hydrological models require fine resolution rainfall inputs, enhancing the practical interest of space-time rainfall models, capable of generating through numerical simulation realistic space-time rainfall intensity fields. Among different mathematical approaches, those based on point processes and built upon a convenient analytical description of the raincell as the fundamental unit, have shown to be particularly suitable and well adapted when extreme rainfall events of convective nature are considered. Starting from previous formulations, some analytical refinements have been considered, allowing practical generation of space-time rainfall intensity fields for that type of rainstorm events. Special attention is placed on the analytical description of the spatial and temporal evolution of the rainfall intensities produced by the raincells. After deriving the necessary analytical results, the seven parameters of the model have been estimated by the method of moments, for each of the 30 selected rainfall events in the Jucar River Basin (ValenciaSpain – period 1991 to 2000, using 5-min aggregated rainfall data series from an automatic raingauge network.

  17. On the Characterization of Rainfall Associated with U.S. Landfalling North Atlantic Tropical Cyclones Based on Satellite Data and Numerical Weather Prediction Outputs

    Science.gov (United States)

    Luitel, B. N.; Villarini, G.; Vecchi, G. A.

    2014-12-01

    When we talk about tropical cyclones (TCs), the first things that come to mind are strong winds and storm surge affecting the coastal areas. However, according to the Federal Emergency Management Agency (FEMA) 59% of the deaths caused by TCs since 1970 is due to fresh water flooding. Heavy rainfall associated with TCs accounts for 13% of heavy rainfall events nationwide for the June-October months, with this percentage being much higher if the focus is on the eastern and southern United States. This study focuses on the evaluation of precipitation associated with the North Atlantic TCs that affected the continental United States over the period 2007 - 2012. We evaluate the rainfall associated with these TCs using four satellite based rainfall products: Tropical Rainfall Measuring Mission - Multi-satellite Precipitation Analysis (TMPA; both real-time and research version); Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN); Climate Prediction Center (CPC) MORPHing technique (CMORPH). As a reference data we use gridded rainfall provided by CPC (Daily US Unified Gauge-Based Analysis of Precipitation). Rainfall fields from each of these satellite products are compared to the reference data, providing valuable information about the realism of these products in reproducing the rainfall associated with TCs affecting the continental United States. In addition to the satellite products, we evaluate the forecasted rainfall produced by five state-of-the-art numerical weather prediction (NWP) models: European Centre for Medium-Range Weather Forecasts (ECMWF), UK Met Office (UKMO), National Centers for Environmental Prediction (NCEP), China Meteorological Administration (CMA), and Canadian Meteorological Center (CMC). The skill of these models in reproducing TC rainfall is quantified for different lead times, and discussed in light of the performance of the satellite products.

  18. Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model

    Science.gov (United States)

    Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.

    2010-10-01

    The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.

  19. Downscaling of rainfall in Peru using Generalised Linear Models

    Science.gov (United States)

    Bergin, E.; Buytaert, W.; Onof, C.; Wheater, H.

    2012-04-01

    The assessment of water resources in the Peruvian Andes is particularly important because the Peruvian economy relies heavily on agriculture. Much of the agricultural land is situated near to the coast and relies on large quantities of water for irrigation. The simulation of synthetic rainfall series is thus important to evaluate the reliability of water supplies for current and future scenarios of climate change. In addition to water resources concerns, there is also a need to understand extreme heavy rainfall events, as there was significant flooding in Machu Picchu in 2010. The region exhibits a reduction of rainfall in 1983, associated with El Nino Southern Oscillation (SOI). NCEP Reanalysis 1 data was used to provide weather variable data. Correlations were calculated for several weather variables using raingauge data in the Andes. These were used to evaluate teleconnections and provide suggested covariates for the downscaling model. External covariates used in the model include sea level pressure and sea surface temperature over the region of the Humboldt Current. Relative humidity and temperature data over the region are also included. The SOI teleconnection is also used. Covariates are standardised using observations for 1960-1990. The GlimClim downscaling model was used to fit a stochastic daily rainfall model to 13 sites in the Peruvian Andes. Results indicate that the model is able to reproduce rainfall statistics well, despite the large area used. Although the correlation between individual rain gauges is generally quite low, all sites are affected by similar weather patterns. This is an assumption of the GlimClim downscaling model. Climate change scenarios are considered using several GCM outputs for the A1B scenario. GCM data was corrected for bias using 1960-1990 outputs from the 20C3M scenario. Rainfall statistics for current and future scenarios are compared. The region shows an overall decrease in mean rainfall but with an increase in variance.

  20. The analysis of the possibility of using 10-minute rainfall series to determine the maximum rainfall amount with 5 minutes duration

    Science.gov (United States)

    Kaźmierczak, Bartosz; Wartalska, Katarzyna; Wdowikowski, Marcin; Kotowski, Andrzej

    2017-11-01

    Modern scientific research in the area of heavy rainfall analysis regarding to the sewerage design indicates the need to develop and use probabilistic rain models. One of the issues that remains to be resolved is the length of the shortest amount of rain to be analyzed. It is commonly believed that the best time is 5 minutes, while the least rain duration measured by the national services is often 10 or even 15 minutes. Main aim of this paper is to present the difference between probabilistic rainfall models results given from rainfall time series including and excluding 5 minutes rainfall duration. Analysis were made for long-time period from 1961-2010 on polish meteorological station Legnica. To develop best fitted to measurement rainfall data probabilistic model 4 probabilistic distributions were used. Results clearly indicates that models including 5 minutes rainfall duration remains more appropriate to use.

  1. Observed change in extreme daily rainfalls in the French Mediterranean

    Science.gov (United States)

    Ribes, Aurélien; Thao, Soulivanh; Vautard, Robert; Dubuisson, Brigitte; Somot, Samuel; Colin, Jeanne; Planton, Serge; Soubeyroux, Jean-Michel

    2017-04-01

    In spite of a relatively dry mean climate, the Mediterranean regions in Southern France use to experience heavy rainfalls over short durations - typically a few minutes to one day. Here we examine long-term trends in the historical record of extreme precipitation events occurring over the French Mediterranean area, where many long homogeneous time-series are available. Extreme events are considered in terms of their intensity, frequency, extent and precipitated volume. Changes in intensity are analysed via an original statistical approach where the annual maximum rainfall observed at each measurement station are aggregated into a univariate time-series, according to their statistical dependence. This procedure substantially enhances the signal-to-noise ratio. The mean intensity increase is significant and estimated at +22% (+7% to +39% at the 90% confidence level) over the 1961-2015 period. Given the observed warming over the considered area, this increase is consistent with a rate of about one to three times that implied by the Clausius-Clapeyron relationship. Changes in frequency and other spatial features are investigated through a Generalised Linear Model. Changes in frequencies for events exceeding high thresholds (about 200mm in one day) are found to be significant, typically near a doubling of the frequency, but with large uncertainties in this risk ratio. The area affected by severe events and the water volume precipitated during those events also exhibit significant trends, with an increase by a factor of about 4 for a 200mm threshold, again with large uncertainties. All diagnoses consistently point toward an intensification of the most extreme events during the last decades. We argue that the diagnosed trends can hardly be explained without invoking the human influence on climate.

  2. The Role of Southwesterly Flow in MCS Formation During a Heavy Rain Event in Taiwan on 12 - 13 June 2005

    Directory of Open Access Journals (Sweden)

    Fang-Ching Chien

    2015-01-01

    Full Text Available This paper presents a numerical study of a heavy rain event that occurred in southern Taiwan in June 2005. From 11 - 13 June 2005, a weak Mei-yu front moved southeastward from China to Taiwan, while mesoscale convective systems (MCSs were developing and moving northward over the northern South China Sea (SCS. During the first day of the event the southwesterly flow intensified when a ridge associated with the Pacific high extended northwestward from the Philippines to the southern Taiwan Strait (TS. This pressure pattern produced a large northwestward pressure gradient force that created a southeasterly wind speed increase followed by intensification of the southwesterly flow through Coriolis acceleration. An low-level jet (LLJ formed consequently and transported moisture and unstable air toward the southwestern coast of Taiwan. MCSs were triggered in the southwesterly flow because the potentially unstable air was lifted in a low-level convergence and shearing vorticity environment. They intensified, became organized, and moved northeastward overland, resulting in heavy rainfall in southern Taiwan. On the second day, low pressure formed near the southern TS because of the combined effect of a travelling short-wave trough and a pressure reduction resulting from the latent heat release by the evolving MCSs. This pressure change produced down-gradient acceleration in the northeastward direction, resulting in southwesterly flow strengthening. The local wind acceleration was smaller than that of the first day because the dominant pressure system was local scale, while that of the first day was synoptic scale.

  3. Synoptic aspects of the central Chile rainfall variability associated with the southern oscillation

    International Nuclear Information System (INIS)

    Rutllant, J.; Fuenzalida, H.

    1988-07-01

    Central Chile winter rainfall patterns show a positive anomaly during the developing stage of warm events associated to the negative phase of the Southern Oscillation. On the other hand, cold events during the positive phase of the Southern Oscillation, correspond quite closely to dry conditions. However, several dry years seem to precede or follow warm events without being necessarily classified as cold events. A synoptic characterization of major winter storms during the development of the most recent warm events in 1972, 1982 and 1987, is presented. Dry winter months during cold-event years are described in terms of average 500 hPa contour anomaly fields. Significant departures from this general behavior, as storms not associated to warm events and extended dry periods during otherwise wet winters, are also analyzed. It is found that major winter storms occurring during the developing phase of warm events are related to hemispheric types of blocking and anomaly patterns where sonal wavenumber 4 and a particular phase of wavenumber 3 dominate. The blockings, located in the Bellingshausen sea area, split the westerly flow diverting the storm tracks towards central Chile. Cold years, often immediately preceding or following a warm event, bring dry conditions in the study area due to a well developed subtropical anticyclonic belt and predominantly sonal westerly flow. Superimposed on these general conditions, anomaly contour patterns in southern South America reveal opposite signs with respect to those associated to warm events. Heavy winter storms not coinciding with warm events show local types of blocking in the Antartic peninsula area, with meridionally or slightly NE-SW oriented troughs and ridges. Extended dry spells and rainfall episodes during warm-event winters seem to be connected with alternating subtropical anomalies moving east with an intraseasonal time scale, superimposed on the aforementioned anomaly pattern at high latitudes. 21 refs, 17 figs, 1 tab

  4. Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation

    Science.gov (United States)

    Aryal, Yog N.; Villarini, Gabriele; Zhang, Wei; Vecchi, Gabriel A.

    2018-04-01

    The aim of this study is to examine the contribution of North Atlantic tropical cyclones (TCs) to flooding and heavy rainfall across the continental United States. Analyses highlight the spatial variability in these hazards, their temporal changes in terms of frequency and magnitude, and their connection to large-scale climate, in particular to the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO). We use long-term stream and rain gage measurements, and our analyses are based on annual maxima (AMs) and peaks-over-threshold (POTs). TCs contribute to ∼20-30% of AMs and POTs over Florida and coastal areas of the eastern United States, and the contribution decreases as we move inland. We do not detect statistically significant trends in the magnitude or frequency of TC floods. Regarding the role of climate, NAO and ENSO do not play a large role in controlling the frequency and magnitude of TC flooding. The connection between heavy rainfall and TCs is comparable to what observed in terms of flooding. Unlike flooding, NAO plays a significant role in TC-related extreme rainfall along the U.S. East Coast, while ENSO is most strongly linked to the TC precipitation in Texas.

  5. Urban Flooding Analysis Using Radar Rainfall Data and 2-D Hydrodynamic Model: A Pilot Study of Back Cover Area, Portland, Maine

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Eugene [Argonne National Lab. (ANL), Argonne, IL (United States); Pierce, Julia [Argonne National Lab. (ANL), Argonne, IL (United States); Mahat, Vinod [Argonne National Lab. (ANL), Argonne, IL (United States); Jared, Alissa [Argonne National Lab. (ANL), Argonne, IL (United States); Collis, Scott [Argonne National Lab. (ANL), Argonne, IL (United States); Verner, Duane [Argonne National Lab. (ANL), Argonne, IL (United States); Wall, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    This project is a part of the Regional Resiliency Assessment Program, led by the Department of Homeland Security, to address flooding hazards of regional significance for Portland, Maine. The pilot study was performed by Argonne National Laboratory to identify differences in spatial rainfall distributions between the radar-derived and rain-gauge rainfall datasets and to evaluate their impacts on urban flooding. The flooding impact analysis utilized a high-resolution 2-dimensional (2-D) hydrodynamic model (15 ft by 15 ft) incorporating the buildings, streets, stream channels, hydraulic structures, an existing city storm drain system, and assuming a storm surge along the coast coincident with a heavy rainfall event. Two historical storm events from April 16, 2007, and September 29, 2015, were selected for evaluation. The radar-derived rainfall data at a 200-m resolution provide spatially-varied rainfall patterns with a wide range of intensities for each event. The resultant maximum flood depth using data from a single rain gauge within the study area could be off (either under- or over-estimated) by more than 10% in the 2007 storm and more than 60% in the 2015 storm compared to the radar-derived rainfall data. The model results also suggest that the inundation area with a flow depth at or greater than 0.5 ft could reach 11% (2007 storm) and 17% (2015 storm) of the total study area, respectively. The lowland areas within the neighborhoods of North Deering, East Deering, East and West Baysides and northeastern Parkside, appear to be more vulnerable to the flood hazard in both storm events. The high-resolution 2-D hydrodynamic model with high-resolution radar-derived rainfall data provides an excellent tool for detailed urban flood analysis and vulnerability assessment. The model developed in this study could be potentially used to evaluate any proposed mitigation measures and optimize their effects in the future for Portland, ME.

  6. Composition variations of low energy heavy ions during large solar energetic particle events

    Energy Technology Data Exchange (ETDEWEB)

    Ho, George C., E-mail: George.Ho@jhuapl.edu; Mason, Glenn M., E-mail: Glenn.Mason@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States)

    2016-03-25

    The time-intensity profile of large solar energetic particle (SEP) event is well organized by solar longitude as observed at Earth orbit. This is mostly due to different magnetic connection to the shock that is associated with large SEP event propagates from the Sun to the heliosphere. Earlier studies have shown event averaged heavy ion abundance ratios can also vary as a function of solar longitude. It was found that the Fe/O ratio for high energy particle (>10 MeV/nucleon) is higher for those western magnetically well connected events compare to the eastern events as observed at L1 by the Advanced Composition Explorer (ACE) spacecraft. In this paper, we examined the low energy (∼1 MeV/nucleon) heavy ions in 110 isolated SEP events from 2009 to the end of 2014. In addition, the optical and radio signatures for all of our events are identified and when data are available we also located the associated coronal mass ejection (CME) data. Our survey shows a higher Fe/O ratio at events in the well-connected region, while there are no corrections between the event averaged elemental composition with the associated coronal mass ejection speed. This is inconsistent with the higher energy results, but inline with other recent low-energy measurements.

  7. Stream II-V5: Revision Of Stream II-V4 To Account For The Effects Of Rainfall Events

    International Nuclear Information System (INIS)

    Chen, K.

    2010-01-01

    STREAM II-V4 is the aqueous transport module currently used by the Savannah River Site emergency response Weather Information Display (WIND) system. The transport model of the Water Quality Analysis Simulation Program (WASP) was used by STREAM II to perform contaminant transport calculations. WASP5 is a US Environmental Protection Agency (EPA) water quality analysis program that simulates contaminant transport and fate through surface water. STREAM II-V4 predicts peak concentration and peak concentration arrival time at downstream locations for releases from the SRS facilities to the Savannah River. The input flows for STREAM II-V4 are derived from the historical flow records measured by the United States Geological Survey (USGS). The stream flow for STREAM II-V4 is fixed and the flow only varies with the month in which the releases are taking place. Therefore, the effects of flow surge due to a severe storm are not accounted for by STREAM II-V4. STREAM II-V4 has been revised to account for the effects of a storm event. The steps used in this method are: (1) generate rainfall hyetographs as a function of total rainfall in inches (or millimeters) and rainfall duration in hours; (2) generate watershed runoff flow based on the rainfall hyetographs from step 1; (3) calculate the variation of stream segment volume (cross section) as a function of flow from step 2; (4) implement the results from steps 2 and 3 into the STREAM II model. The revised model (STREAM II-V5) will find the proper stream inlet flow based on the total rainfall and rainfall duration as input by the user. STREAM II-V5 adjusts the stream segment volumes (cross sections) based on the stream inlet flow. The rainfall based stream flow and the adjusted stream segment volumes are then used for contaminant transport calculations.

  8. Climate change and predicting soil loss from rainfall

    Science.gov (United States)

    Kinnell, Peter

    2017-04-01

    Conceptually, rainfall has a certain capacity to cause soil loss from an eroding area while soil surfaces have a certain resistance to being eroded by rainfall. The terms "rainfall erosivity' and "soil erodibility" are frequently used to encapsulate the concept and in the Revised Universal Soil Loss Equation (RUSLE), the most widely used soil loss prediction equation in the world, average annual values of the R "erosivity" factor and the K "erodibility" factor provide a basis for accounting for variation in rainfall erosion associated with geographic variations of climate and soils. In many applications of RUSLE, R and K are considered to be independent but in reality they are not. In RUSLE2, provision has been made to take account of the fact that K values determined using soil physical factors have to be adjusted for variations in climate because runoff is not directly included as a factor in determining R. Also, the USLE event erosivity index EI30 is better related to accounting for event sediment concentration than event soil loss. While the USLE-M, a modification of the USLE which includes runoff as a factor in determining the event erosivity index provides better estimates of event soil loss when event runoff is known, runoff prediction provides a challenge to modelling event soil loss as climate changes

  9. Meteorology Assessment of Historic Rainfall for Los Alamos During September 2013

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-12

    DOE Order 420.1, Facility Safety, requires that site natural phenomena hazards be evaluated every 10 years to support the design of nuclear facilities. The evaluation requires calculating return period rainfall to determine roof loading requirements and flooding potential based on our on-site rainfall measurements. The return period rainfall calculations are done based on statistical techniques and not site-specific meteorology. This and future studies analyze the meteorological factors that produce the significant rainfall events. These studies provide the meteorology context of the return period rainfall events.

  10. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems

    International Nuclear Information System (INIS)

    Jentsch, A.; Jentsch, A.; Beierkuhnlein, C.

    2008-01-01

    Climate change will increase the recurrence of extreme weather events such as drought and heavy rainfall. Evidence suggests that modifications in extreme weather events pose stronger threats to ecosystem functioning than global trends and shifts in average conditions. As ecosystem functioning is connected with ecological services, this has far-reaching effects on societies in the 21. century. Here, we: (i) present the rationale for the increasing frequency and magnitude of extreme weather events in the near future; (ii) discuss recent findings on meteorological extremes and summarize their effects on ecosystems and (iii) identify gaps in current ecological climate change research. (authors)

  11. Impact of the Rainfall Duration and Temporal Rainfall Distribution Defined Using the Huff Curves on the Hydraulic Flood Modelling Results

    Directory of Open Access Journals (Sweden)

    Nejc Bezak

    2018-02-01

    Full Text Available In the case of ungauged catchments, different procedures can be used to derive the design hydrograph and design peak discharge, which are crucial input data for the design of different hydrotechnical engineering structures, or the production of flood hazard maps. One of the possible approaches involves using a hydrological model where one can calculate the design hydrograph through the design of a rainfall event. This study investigates the impact of the design rainfall on the combined one-dimensional/two-dimensional (1D/2D hydraulic modelling results. The Glinščica Stream catchment located in Slovenia (central Europe is used as a case study. Ten different design rainfall events were compared for 10 and 100-year return periods, where we used Huff curves for the design rainfall event definition. The results indicate that the selection of the design rainfall event should be regarded as an important step, since the hydraulic modelling results for different scenarios differ significantly. In the presented experimental case study, the maximum flooded area extent was twice as large as the minimum one, and the maximum water velocity over flooded areas was more than 10 times larger than the minimum one. This can lead to the production of very different flood hazard maps, and consequently planning very different flood protection schemes.

  12. Changing character of rainfall in eastern China, 1951–2007

    Science.gov (United States)

    Day, Jesse A.; Fung, Inez; Liu, Weihan

    2018-03-01

    The topography and continental configuration of East Asia favor the year-round existence of storm tracks that extend thousands of kilometers from China into the northwestern Pacific Ocean, producing zonally elongated patterns of rainfall that we call “frontal rain events.” In spring and early summer (known as “Meiyu Season”), frontal rainfall intensifies and shifts northward during a series of stages collectively known as the East Asian summer monsoon. Using a technique called the Frontal Rain Event Detection Algorithm, we create a daily catalog of all frontal rain events in east China during 1951–2007, quantify their attributes, and classify all rainfall on each day as either frontal, resulting from large-scale convergence, or nonfrontal, produced by local buoyancy, topography, or typhoons. Our climatology shows that the East Asian summer monsoon consists of a series of coupled changes in frontal rain event frequency, latitude, and daily accumulation. Furthermore, decadal changes in the amount and distribution of rainfall in east China are overwhelmingly due to changes in frontal rainfall. We attribute the “South Flood–North Drought” pattern observed beginning in the 1980s to changes in the frequency of frontal rain events, while the years 1994–2007 witnessed an uptick in event daily accumulation relative to the rest of the study years. This particular signature may reflect the relative impacts of global warming, aerosol loading, and natural variability on regional rainfall, potentially via shifting the East Asian jet stream.

  13. Near-Surface Geophysical Mapping of the Hydrological Response to an Intense Rainfall Event at the Field Scale

    Science.gov (United States)

    Martínez, G.; Vanderlinden, K.; Giraldez, J. V.; Espejo, A. J.; Muriel, J. L.

    2009-12-01

    Soil moisture plays an important role in a wide variety of biogeochemical fluxes in the soil-plant-atmosphere system and governs the (eco)hydrological response of a catchment to an external forcing such as rainfall. Near-surface electromagnetic induction (EMI) sensors that measure the soil apparent electrical conductivity (ECa) provide a fast and non-invasive means for characterizing this response at the field or catchment scale through high-resolution time-lapse mapping. Here we show how ECa maps, obtained before and after an intense rainfall event of 125 mm h-1, elucidate differences in soil moisture patterns and hydrologic response of an experimental field as a consequence of differed soil management. The dryland field (Vertisol) was located in SW Spain and cropped with a typical wheat-sunflower-legume rotation. Both, near-surface and subsurface ECa (ECas and ECad, respectively), were measured using the EM38-DD EMI sensor in a mobile configuration. Raw ECa measurements and Mean Relative Differences (MRD) provided information on soil moisture patterns while time-lapse maps were used to evaluate the hydrologic response of the field. ECa maps of the field, measured before and after the rainfall event showed similar patterns. The field depressions where most of water and sediments accumulated had the highest ECa and MRD values. The SE-oriented soil, which was deeper and more exposed to sun and wind, showed the lowest ECa and MRD. The largest differences raised in the central part of the field where a high ECa and MRD area appeared after the rainfall event as a consequence of the smaller soil depth and a possible subsurface flux concentration. Time-lapse maps of both ECa and MRD were also similar. The direct drill plots showed higher increments of ECa and MRD as a result of the smaller runoff production. Time-lapse ECa increments showed a bimodal distribution differentiating clearly the direct drill from the conventional and minimum tillage plots. However this kind

  14. Heavy Rainfall Episodes in the Eastern Northeast Brazil Linked to Large-Scale Ocean-Atmosphere Conditions in the Tropical Atlantic

    Directory of Open Access Journals (Sweden)

    Yves K. Kouadio

    2012-01-01

    Full Text Available Relationships between simultaneous occurrences of distinctive atmospheric easterly wave (EW signatures that cross the south-equatorial Atlantic, intense mesoscale convective systems (lifespan > 2 hour that propagate westward over the western south-equatorial Atlantic, and subsequent strong rainfall episodes (anomaly > 10 mm·day−1 that occur in eastern Northeast Brazil (ENEB are investigated. Using a simple diagnostic analysis, twelve cases with EW lifespan ranging between 3 and 8 days and a mean velocity of 8 m·s−1 were selected and documented during each rainy season of 2004, 2005, and 2006. These cases, which represent 50% of the total number of strong rainfall episodes and 60% of the rainfall amount over the ENEB, were concomitant with an acceleration of the trade winds over the south-equatorial Atlantic, an excess of moisture transported westward from Africa to America, and a strengthening of the convective activity in the oceanic region close to Brazil. Most of these episodes occurred during positive sea surface temperature anomaly patterns over the entire south-equatorial Atlantic and low-frequency warm conditions within the oceanic mixing layer. A real-time monitoring and the simulation of this ocean-atmosphere relationship could help in forecasting such dramatic rainfall events.

  15. Regional rainfall thresholds for landslide occurrence using a centenary database

    Science.gov (United States)

    Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Quaresma, Ivânia

    2017-04-01

    Rainfall is one of the most important triggering factors for landslides occurrence worldwide. The relation between rainfall and landslide occurrence is complex and some approaches have been focus on the rainfall thresholds identification, i.e., rainfall critical values that when exceeded can initiate landslide activity. In line with these approaches, this work proposes and validates rainfall thresholds for the Lisbon region (Portugal), using a centenary landslide database associated with a centenary daily rainfall database. The main objectives of the work are the following: i) to compute antecedent rainfall thresholds using linear and potential regression; ii) to define lower limit and upper limit rainfall thresholds; iii) to estimate the probability of critical rainfall conditions associated with landslide events; and iv) to assess the thresholds performance using receiver operating characteristic (ROC) metrics. In this study we consider the DISASTER database, which lists landslides that caused fatalities, injuries, missing people, evacuated and homeless people occurred in Portugal from 1865 to 2010. The DISASTER database was carried out exploring several Portuguese daily and weekly newspapers. Using the same newspaper sources, the DISASTER database was recently updated to include also the landslides that did not caused any human damage, which were also considered for this study. The daily rainfall data were collected at the Lisboa-Geofísico meteorological station. This station was selected considering the quality and completeness of the rainfall data, with records that started in 1864. The methodology adopted included the computation, for each landslide event, of the cumulative antecedent rainfall for different durations (1 to 90 consecutive days). In a second step, for each combination of rainfall quantity-duration, the return period was estimated using the Gumbel probability distribution. The pair (quantity-duration) with the highest return period was

  16. On the performance of telemedicine system using 17-GHz orthogonally polarized microwave links under the influence of heavy rainfall.

    Science.gov (United States)

    Fong, Bernard; Fong, A C M; Hong, G Y

    2005-09-01

    This paper describes the design of a telemedicine system based on next-generation wireless local area networks (WLANs) operating at 17 GHz. Seventeen gigahertz is proposed for next-generation WLAN services offering numerous advantages over traditional IEEE 802.11 networks that operate in the range of 2.4-5 GHz. Orthogonal polarization is often used to increase spectrum efficiency by utilizing signal paths of horizontal and vertical polarization. Radio waves exceeding 10 GHz are particularly vulnerable to signal degradation under the influence of rain which causes an effective reduction in isolation between polarized signal paths. This paper investigates the influence of heavy rain in a tropical region on wide-band microwave signals at 17 GHz using two links provided by a fixed broad-band wireless access system for two-way data exchange between paramedics attending an accident scene and the hospital via microwave equipment installed in the ambulance. We also study the effects of cross polarization and phase rotation due to persistent heavy rainfall in tropical regions.

  17. Heavy rain prediction using deterministic and probabilistic models - the flash flood cases of 11-13 October 2005 in Catalonia (NE Spain)

    Science.gov (United States)

    Barrera, A.; Altava-Ortiz, V.; Llasat, M. C.; Barnolas, M.

    2007-09-01

    Between the 11 and 13 October 2005 several flash floods were produced along the coast of Catalonia (NE Spain) due to a significant heavy rainfall event. Maximum rainfall achieved values up to 250 mm in 24 h. The total amount recorded during the event in some places was close to 350 mm. Barcelona city was also in the affected area where high rainfall intensities were registered, but just a few small floods occurred, thanks to the efficient urban drainage system of the city. Two forecasting methods have been applied in order to evaluate their capability of prediction regarding extreme events: the deterministic MM5 model and a probabilistic model based on the analogous method. The MM5 simulation allows analysing accurately the main meteorological features with a high spatial resolution (2 km), like the formation of some convergence lines over the region that partially explains the maximum precipitation location during the event. On the other hand, the analogous technique shows a good agreement among highest probability values and real affected areas, although a larger pluviometric rainfall database would be needed to improve the results. The comparison between the observed precipitation and from both QPF (quantitative precipitation forecast) methods shows that the analogous technique tends to underestimate the rainfall values and the MM5 simulation tends to overestimate them.

  18. Landslides in West Coast Metropolitan Areas: The Role of Extreme Weather Events

    Science.gov (United States)

    Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia B.

    2016-01-01

    Rainfall-induced landslides represent a pervasive issue in areas where extreme rainfall intersects complex terrain. A farsighted management of landslide risk requires assessing how landslide hazard will change in coming decades and thus requires, inter alia, that we understand what rainfall events are most likely to trigger landslides and how global warming will affect the frequency of such weather events. We take advantage of 9 years of landslide occurrence data compiled by collating Google news reports and of a high-resolution satellite-based daily rainfall data to investigate what weather triggers landslide along the West Coast US. We show that, while this landslide compilation cannot provide consistent and widespread monitoring everywhere, it captures enough of the events in the major urban areas that it can be used to identify the relevant relationships between landslides and rainfall events in Puget Sound, the Bay Area, and greater Los Angeles. In all these regions, days that recorded landslides have rainfall distributions that are skewed away from dry and low-rainfall accumulations and towards heavy intensities. However, large daily accumulation is the main driver of enhanced hazard of landslides only in Puget Sound. There, landslide are often clustered in space and time and major events are primarily driven by synoptic scale variability, namely "atmospheric rivers" of high humidity air hitting anywhere along the West Coast, and the interaction of frontal system with the coastal orography. The relationship between landslide occurrences and daily rainfall is less robust in California, where antecedent precipitation (in the case of the Bay area) and the peak intensity of localized downpours at sub-daily time scales (in the case of Los Angeles) are key factors not captured by the same-day accumulations. Accordingly, we suggest that the assessment of future changes in landslide hazard for the entire the West Coast requires consideration of future changes in the

  19. Development of heavy-ion irradiation technique for single-event in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Norio; Akutsu, Takao; Matsuda, Sumio [National Space Development Agency of Japan, Tsukuba, Ibaraki (Japan). Tsukuba Space Center; Naitoh, Ichiro; Itoh, Hisayoshi; Agematsu, Takashi; Kamiya, Tomihiro; Nashiyama, Isamu

    1997-03-01

    Heavy-ion irradiation technique has been developed for the evaluation of single-event effects on semiconductor devices. For the uniform irradiation of high energy heavy ions to device samples, we have designed and installed a magnetic beam-scanning system in a JAERI cyclotron beam course. It was found that scanned area was approximately 4 x 2 centimeters and that the deviation of ion fluence from the average value was less than 7%. (author)

  20. Event displays highlighting the main properties of heavy flavour jets in the CMS Experiment

    CERN Multimedia

    Skovpen, Kirill

    2017-01-01

    A broad range of physics analyses at CMS rely on the efficient identification of heavy flavour jets. Identification of these objects is a challenging task, especially in the presence of a large number of multiple interactions per bunch crossing. The presented summary contains a set of graphical displays of reconstructed events in data collected by CMS in proton-proton collisions at 13 TeV in 2016. The displays highlight the main properties of heavy flavour jets in several event topologies, including QCD multijet, top quark pair, W+c and boosted H→bb.

  1. Response of conservation measures from small cultivated watersheds, concerning runoff and erosion, under the impact of extreme rainfall events

    Science.gov (United States)

    Popa, N.

    2008-11-01

    The study has been made in a representative small watershed with gently to hilly slopes from Tutova Rolling Hills, Romania. The system of conservation measures is represented by stripcroping, bufferstrips, bench terraces, a grassed waterway and a drainage network. The monitoring of hydrological response of agricultural units has been made in two cross sections corresponding to each of the land use type by means of two concrete triangular weirs. The most important soil losses were caused by three extreme rainfall events from August 2004, May 2005 and September 2007. At the date of the first rainfall event, the soil was generally very well protected against erosion by the vegetative cover, excepting parcels that were just ploughed after the mash crop. In that case, it was estimated that the value of soil losses ranged between 20.0 and 24.5 t/ha while for the other crops like corn and soybean, soil losses they were 1.0-1.5 t/ha and 0.5-0.8 t/ha respectively. Damages caused by the rainfall from September 2007 were much more important because at that time about 30% from the entire surface was just prepared for rape seeding. Maximum value of erosion was 95 t/ha on a parcel with 16% slope and 50m length along the slope.

  2. Response of conservation measures from small cultivated watersheds, concerning runoff and erosion, under the impact of extreme rainfall events

    International Nuclear Information System (INIS)

    Popa, N

    2008-01-01

    The study has been made in a representative small watershed with gently to hilly slopes from Tutova Rolling Hills, Romania. The system of conservation measures is represented by stripcroping, bufferstrips, bench terraces, a grassed waterway and a drainage network. The monitoring of hydrological response of agricultural units has been made in two cross sections corresponding to each of the land use type by means of two concrete triangular weirs. The most important soil losses were caused by three extreme rainfall events from August 2004, May 2005 and September 2007. At the date of the first rainfall event, the soil was generally very well protected against erosion by the vegetative cover, excepting parcels that were just ploughed after the mash crop. In that case, it was estimated that the value of soil losses ranged between 20.0 and 24.5 t/ha while for the other crops like corn and soybean, soil losses they were 1.0-1.5 t/ha and 0.5-0.8 t/ha respectively. Damages caused by the rainfall from September 2007 were much more important because at that time about 30% from the entire surface was just prepared for rape seeding. Maximum value of erosion was 95 t/ha on a parcel with 16% slope and 50m length along the slope.

  3. Increasing trends in rainfall-runoff erosivity in the Source Region of the Three Rivers, 1961-2012.

    Science.gov (United States)

    Wang, Yousheng; Cheng, Congcong; Xie, Yun; Liu, Baoyuan; Yin, Shuiqing; Liu, Yingna; Hao, Yanfang

    2017-08-15

    As the head source of the two longest rivers in China and the longest river in Southeast Asia, the East Qinghai-Tibetan Plateau (QTP) is experiencing increasing thaw snowmelt and more heavy precipitation events under global warming, which might lead to soil erosion risk. To understand the potential driving force of soil erosion and its relationship with precipitation in the context of climate change, this study analyzed long-term variations in annual rainfall-runoff erosivity, a climatic index of soil erosion, by using the Mann-Kendall statistical test and Theil and Sen's approach in the Source Region of the Three Rivers during 1961-2012. The results showed the followings: (i) increasing annual rainfall-runoff erosivity was observed over the past 52years, with a mean relative trend index (RT 1 ) value of 12.1%. The increasing trend was more obvious for the latest two decades: RT 1 was nearly three times larger than that over the entire period; (ii) more precipitation events and a higher precipitation amount were the major forces for the increasing rainfall-runoff erosivity; (iii) similar rising trends in sediment yields, which corresponded to rainfall-runoff erosivity under slightly increasing vegetation coverage in the study area, implied a large contribution of rainfall-runoff erosivity to the increasing sediment yields; and (iv) high warming rates increased the risk of soil destruction, soil erosion and sediment yields. Conservation measures, such as enclosing grassland, returning grazing land to grassland and rotation grazing since the 1980s, have maintained vegetation coverage and should be continued and strengthened. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Rainfall and runoff Intensity-Duration-Frequency Curves for Washington State considering the change and uncertainty of observed and anticipated extreme rainfall and snow events

    Science.gov (United States)

    Demissie, Y. K.; Mortuza, M. R.; Li, H. Y.

    2015-12-01

    The observed and anticipated increasing trends in extreme storm magnitude and frequency, as well as the associated flooding risk in the Pacific Northwest highlighted the need for revising and updating the local intensity-duration-frequency (IDF) curves, which are commonly used for designing critical water infrastructure. In Washington State, much of the drainage system installed in the last several decades uses IDF curves that are outdated by as much as half a century, making the system inadequate and vulnerable for flooding as seen more frequently in recent years. In this study, we have developed new and forward looking rainfall and runoff IDF curves for each county in Washington State using recently observed and projected precipitation data. Regional frequency analysis coupled with Bayesian uncertainty quantification and model averaging methods were used to developed and update the rainfall IDF curves, which were then used in watershed and snow models to develop the runoff IDF curves that explicitly account for effects of snow and drainage characteristic into the IDF curves and related designs. The resulted rainfall and runoff IDF curves provide more reliable, forward looking, and spatially resolved characteristics of storm events that can assist local decision makers and engineers to thoroughly review and/or update the current design standards for urban and rural storm water management infrastructure in order to reduce the potential ramifications of increasing severe storms and resulting floods on existing and planned storm drainage and flood management systems in the state.

  5. Spatial Scaling of Global Rainfall and Flood Extremes

    Science.gov (United States)

    Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip

    2014-05-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration and spatial extent of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (up to 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances and floods. We present the first ever results on a global analysis of the scaling characteristics of extreme rainfall and flood event duration, volumes and contiguous flooded areas as a result of large scale organization of long duration rainfall events. Results are organized by latitude and with reference to the phases of ENSO, and reveal surprising invariance across latitude. Speculation as to the potential relation to the dynamical factors is presented

  6. Simulated transient thermal infrared emissions of forest canopies during rainfall events

    Science.gov (United States)

    Ballard, Jerrell R.; Hawkins, William R.; Howington, Stacy E.; Kala, Raju V.

    2017-05-01

    We describe the development of a centimeter-scale resolution simulation framework for a theoretical tree canopy that includes rainfall deposition, evaporation, and thermal infrared emittance. Rainfall is simulated as discrete raindrops with specified rate. The individual droplets will either fall through the canopy and intersect the ground; adhere to a leaf; bounce or shatter on impact with a leaf resulting in smaller droplets that are propagated through the canopy. Surface physical temperatures are individually determined by surface water evaporation, spatially varying within canopy wind velocities, solar radiation, and water vapor pressure. Results are validated by theoretical canopy gap and gross rainfall interception models.

  7. The Use of Water Vapor for Detecting Environments that Lead to Convectively Produced Heavy Precipitation and Flash Floods

    Science.gov (United States)

    Scofield, Rod; Vicente, Gilberto; Hodges, Mike

    2000-01-01

    This Tech Report summarizes years of study and experiences on using GOES Water vapor (6.7 micron and precipitable water) and Special Sensor Microwave Imager (SSM/1) from the Defense Meteorological Satellite Program (DMSP) derived Precipitable Water (PNAI) for detecting environments favorable for convectively produced flash floods. An emphasis is on the moisture. upper air flow, and equivalent potential temperature (Theta(sub e)) patterns that lead to devastating flood events. The 15 minute 6.7 micron water vapor imagery is essential for tracking middle to upper tropospheric disturbances that produce upward vertical motion and initiate flash flood producing systems. Water vapor imagery at 6.7 micron is also used to detect surges of upper level moisture (called tropical water vapor plumes) that have been associated with extremely heavy rainfall. Since the water vapor readily depicts lifting mechanisms and upper level moisture, water vapor imagery is often an excellent source of data for recognizing patterns of heavy precipitation and flash floods. In order to analyze the depth of the moisture, the PW aspects of the troposphere must be measured. The collocation (or nearby location) of high values ofP\\V and instability are antecedent conditions prior to the flash flood or heavy rainfall events. Knowledge of PW magnitudes have been used as thresholds for impending flash flood events, PW trends are essential in flash flood prediction. Conceptual models and water vapor products are used to study some of the characteristics of convective systems that occurred over the United States of America (USA) during the summer of 1997 and the 1997-1998 El Nino. P\\V plumes were associated with most of the \\vest coast heavy precipitation events examined during the winter season of 1997 - 1998, In another study, conducted during the summer season of 1997. results showed that the collocation of water vapor (6.7 micron) and P\\N' plumes possessed higher correlations with predicted

  8. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    Science.gov (United States)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is

  9. Climate change and heavy rain events in the central U.S

    International Nuclear Information System (INIS)

    Kunkel, K.E.

    1994-01-01

    Floods are one of the most destructive weather-related natural hazards, annually responsible for hundreds of millions of dollars of damage in the United States. The 1993 Upper Mississippi River flood was particularly devastating, with losses estimate at $15--20 billion. Climate change caused by anthropogenic releases of trace gases into the atmosphere may potentially affect the frequency and/or intensity of the meteorological conditions that cause floods. Flood control structures often have lifetimes of 50 to 100 years or more. Since design decisions are being made today for flood control structures that will still be in operation in the late 21st century, it is important to study the possibility that changes in flooding may result due to possible climate change. In this paper, the authors describe an analysis of heavy precipitation events. In particular, they identify the principal meteorological conditions that are associated with these events. An approach to assessing the impacts of climate change on flood-producing heavy rain events is outlined. Kunkel et al. (1993) found that floods on small streams in the central US could be closely related to large rain accumulations over 5--10-day periods. Typically, these accumulations are the result of two or more sizable individual events. The first event may set the stage by creating wet topsoils. The following events then result in high runoff. The present study focuses on these multiday events as a primary meteorological cause of floods. Obviously other factors, such as antecedent soil moisture, play a role in determining the exact amount and temporal distribution of runoff for any particular event. This analysis thus represents a first-order look at possible changes in flooding due to climate change

  10. Rainfall erosivity factor estimation in Republic of Moldova

    Science.gov (United States)

    Castraveš, Tudor; Kuhn, Nikolaus

    2017-04-01

    Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.

  11. Soil erosion transport through multiple rainfall events in the presence of stone cover: Laboratory flume experiments and analysis with the Hairsine-Rose model

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Brovelli, A.; Heng, B. P.; Sander, G. C.; Parlange, J.

    2011-12-01

    Soil erosion is a major environmental problem that can lead to loss of fertility and degradation of agricultural fields. In order to develop efficient strategies to mitigate the impact of precipitation and reduce the erosion rate, a process-based understanding of the mechanisms that govern sediment transport and delivery is necessary. Soil state and physical properties prior to a precipitation event can affect significantly the erosion rate. Among the most important soil variables are moisture content, compaction and infiltration capacity. Additionally, the presence of stones on the topsoil surface retards the overland flow discharge, reduces runoff generation as well as the sediment delivery and prevents the development of a surface seal, which in turn maintains the infiltration rate. The aim of this study was to examine in detail the effect of surface stones, soil compaction and sealing for a sequence of rainfall events on soil erosion. Experiments were conducted using the EPFL erosion flume, which was divided into two identical flumes (one with stone and one without). The experiment involved four rainfall events with the precipitation rates: 28, 74, 74 and 28 mm h-1. After each 2-h event, the soil was allowed to air dry for 22 h. The total sediment concentration, the concentration of seven sediment size classes and the flow discharge were measured during each event at the outlet of each flume. Experimental results were analyzed using the Hairsine and Rose (H-R) soil erosion model. Results showed that (i) within each precipitation event, the proportion of each size class for the bare/stone-covered flume pairs at steady state were similar, whereas the initial response differed significantly; (ii) in all cases the effluent was enriched in finer particles relative to the original soil; and (iii) the effluent sediment composition was different from that of the original soil, and there was no clear trend towards the parent soil sediment size composition with time. The

  12. ANALYSIS OF EFFECTIVE RAINFALL INTENSITY AND WORKING RAINFALL FOR BASIC WARNING CRITERIA DEVELOPMENT ON LAHAR FLOW EVENT

    Directory of Open Access Journals (Sweden)

    Fitriyadi Fitriyadi

    2015-05-01

    The research results showed that the number of reviewed serial rain with total value ≥ 80 mm is 9.28% of the whole serial rain, and 12.5% of them caused lahar flow in Gendol River. Debris flow occurrence probability on total rainfall amount of ≥ 80 mm that may occur on Gendol River amounted to 1.89%. This value represents less possibility of debris flow in Gendol River, this is due to the rain conditions in the Gendol Watershed different from the situation in Japan as well as the limitations of the available data. It is recommended for further research on the limitation of total rainfall in accordance with the conditions in Gendol Watershed by considering other parameters becoming the lahar flow controller factor. Further, it is necessary to perform the analysis using rain catchment method by averaging rainfall values on each of serial rain.

  13. Characteristics of rainfall triggering of debris flows in the Chenyulan watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    J. C. Chen

    2013-04-01

    Full Text Available This paper reports the variation in rainfall characteristics associated with debris flows in the Chenyulan watershed, central Taiwan, between 1963 and 2009. The maximum hourly rainfall Im, the maximum 24 h rainfall Rd, and the rainfall index RI (defined as the product RdIm were analysed for each rainfall event that triggered a debris flow within the watershed. The corresponding number of debris flows initiated by each rainfall event (N was also investigated via image analysis and/or field investigation. The relationship between N and RI was analysed. Higher RI of a rainfall event would trigger a larger number of debris flows. This paper also discusses the effects of the Chi-Chi earthquake (CCE on this relationship and on debris flow initiation. The results showed that the critical RI for debris flow initiation had significant variations and was significantly lower in the years immediately following the CCE of 1999, but appeared to revert to the pre-earthquake condition about five years later. Under the same extreme rainfall event of RI = 365 cm2 h−1, the value of N in the CCE-affected period could be six times larger than that in the non-CCE-affected periods.

  14. Composition of heavy ions in solar energetic particle events

    International Nuclear Information System (INIS)

    Fan, C.Y.; Gloeckler, G.

    1983-01-01

    The elemental, charge state, and isotopic composition of approximately 1 to 20 MeV per nucleon ions in solar energetic particle (SEP) events was determined and current understanding of the nature of solar and interplanetary processes which may explain the observations are outlined. The composition within individual SEP events may vary both with time and energy, and will in general be different from that in other SEP events. Average values of relative abundances measured in a large number of SEP events, however are found to be roughly energy independent in the approximately 1 to approximately 20 MeV per nucleon range, and show a systematic deviation from photospheric abundances which seem to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs have revealed the surprisingly common presence of energetic He(+) along with heavy ions with typical coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events show these to be consistent with the universal composition except for the puzzling overabundance of the SEP Ne-22 relative to this isotopes ratio in the solar wind

  15. Research on the Relationship between Landslide of Farming Terraces and the Intensity of Rainfall and Slope Angle Based on the Indoor Rainfall Slide Slope Model

    Directory of Open Access Journals (Sweden)

    Dongqin Chen

    2016-03-01

    Full Text Available Due to the increase of geographical disaster in China, it is necessary to study the formation mechanism to make a preparation for the future prevention of geological disasters and effectively reduce the unnecessary financial loss and casualties. We found there is a powerful connection between heavy rainfall and landslide slope. Thus, this article takes the accumulation of gravel soil as the research material to set up indoor rainfall and landslide model test. By comparing the rules of pore water pressure and soil pressure responding to different rainfall intensity and slope angle, we discussed over the effects of rainfall intensity and slope angle on the sliding of accumulation gravelly soil.

  16. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert.

    Science.gov (United States)

    Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan

    2016-05-17

    In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics.

  17. Deterministic Approach for Estimating Critical Rainfall Threshold of Rainfall-induced Landslide in Taiwan

    Science.gov (United States)

    Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei

    2013-04-01

    Taiwan is an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin. The inherent complexities of geological nature create numerous discontinuities through rock masses and relatively steep hillside on the island. In recent years, the increase in the frequency and intensity of extreme natural events due to global warming or climate change brought significant landslides. The causes of landslides in these slopes are attributed to a number of factors. As is well known, rainfall is one of the most significant triggering factors for landslide occurrence. In general, the rainfall infiltration results in changing the suction and the moisture of soil, raising the unit weight of soil, and reducing the shear strength of soil in the colluvium of landslide. The stability of landslide is closely related to the groundwater pressure in response to rainfall infiltration, the geological and topographical conditions, and the physical and mechanical parameters. To assess the potential susceptibility to landslide, an effective modeling of rainfall-induced landslide is essential. In this paper, a deterministic approach is adopted to estimate the critical rainfall threshold of the rainfall-induced landslide. The critical rainfall threshold is defined as the accumulated rainfall while the safety factor of the slope is equal to 1.0. First, the process of deterministic approach establishes the hydrogeological conceptual model of the slope based on a series of in-situ investigations, including geological drilling, surface geological investigation, geophysical investigation, and borehole explorations. The material strength and hydraulic properties of the model were given by the field and laboratory tests. Second, the hydraulic and mechanical parameters of the model are calibrated with the long-term monitoring data. Furthermore, a two-dimensional numerical program, GeoStudio, was employed to perform the modelling practice. Finally

  18. Event-Based Analysis of Rainfall-Runoff Response to Assess Wetland-Stream Interaction in the Prairie Pothole Region

    Science.gov (United States)

    Haque, M. A.; Ross, C.; Schmall, A.; Bansah, S.; Ali, G.

    2016-12-01

    Process-based understanding of wetland response to precipitation is needed to quantify the extent to which non-floodplain wetlands - such as Prairie potholes - generate flow and transmit that flow to nearby streams. While measuring wetland-stream (W-S) interaction is difficult, it is possible to infer it by examining hysteresis characteristics between wetland and stream stage during individual precipitation events. Hence, to evaluate W-S interaction, 10 intact and 10 altered/lost potholes were selected for study; they are located in Broughton's Creek Watershed (Manitoba, Canada) on both sides of a 5 km creek reach. Stilling wells (i.e., above ground wells) were deployed in the intact and altered wetlands to monitor surface water level fluctuations while water table wells were drilled below drainage ditches to a depth of 1 m to monitor shallow groundwater fluctuations. All stilling wells and water table wells were equipped with capacitance water level loggers to monitor fluctuations in surface water and shallow groundwater every 15 minutes. In 2013 (normal year) and 2014 (wet year), 15+ precipitation events were identified and scatter plots of wetland (x-axis) versus stream (y-axis) stage were built to identify W-S hysteretic dynamics. Initial data analysis reveals that in dry antecedent conditions, intact and altered wetlands show clockwise W-S relations, while drained wetlands show anticlockwise W-S hysteresis. However, in wetter antecedent conditions, all wetland types show anticlockwise hysteresis. Future analysis will target the identification of thresholds in antecedent moisture conditions that determine significant changes in event wetland response characteristics (e.g., the delay between the start of rainfall and stream stage, the maximum water level rise in each wetland during each event, the delay between the start of rainfall and peak wetland stage) as well as hysteresis properties (e.g., gradient and area of the hysteresis loop).

  19. Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA

    Science.gov (United States)

    Sugiyama, Ayumi; Masuda, Suguru; Nagaosa, Kazuyo; Tsujimura, Maki; Kato, Kenji

    2018-02-01

    A total of 2 to 3 million tons of spring water flushes out from the foot of Mt. Fuji, the largest volcanic mountain in Japan. Based on the concept of piston flow transport, residence time of stored groundwater at Mt. Fuji was estimated at ˜ 15-30 years by the 36Cl / Cl ratio (Tosaki et al., 2011). This range, however, represents the average residence time of groundwater that was mixed before it flushed out. To elucidate the route of groundwater in a given system, we determined signatures of direct impacts of rainfall on groundwater, using microbial, stable isotopic (δ18O), and chemical analyses (concentration of silica). Chemical analysis of the groundwater gave an average value of the water, which was already mixed with waters from various sources and routes in the subsurface environment. The microbial analysis suggested locations of water origin and paths. In situ observation during four rainfall events revealed that the stable oxygen isotopic signature obtained from spring water (at 726 m a.s.l., site SP-0 m) and shallow groundwater (at 150 m a.s.l., site GW-42 m), where the average recharge height from rainfall was 1700-1800 m, became greater than values observed prior to a torrential rain producing more than 300 mm of precipitation. The concentration of silica decreased after this event. In addition, the abundance of Bacteria in spring water increased, suggesting the influence of heavy rain. Such changes did not appear when rainfall was less than 100 mm per event. The above findings indicate a rapid flow of rain through the shallow part of the aquifer, which appeared within a few weeks of torrential rain extracting abundant microbes from soil in the studied geologic setting. Interestingly, we found that after the torrential rain, the abundance of Archaea increased in the deep groundwater at site GW-550 m, ˜ 12 km downstream of SP-0 m. However, chemical parameters did not show any change after the event. This suggests that strengthened piston flow caused by

  20. Spatio-temporal trends of rainfall across Indian river basins

    Science.gov (United States)

    Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana

    2018-04-01

    Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.

  1. Quantitative Analysis of the Factors Influencing Soil Heavy Metal Lateral Migration in Rainfalls Based on Geographical Detector Software: A Case Study in Huanjiang County, China

    Directory of Open Access Journals (Sweden)

    Pengwei Qiao

    2017-07-01

    Full Text Available Quantitative analysis of the factors influencing heavy metal migration could be useful for controlling heavy metal migration. In this paper, a geographical detector was used to calculate the contributions of and interactions among factors in Huanjiang County, South China, covering an area of 273 km2. In this paper, nine factors were analyzed. The results showed that, among these factors, soil type was the main factor influencing the migration of As, Pb and Cd; the other eight factors did not have big differences and were lower than soil type. In addition, there were obvious synergistic effects between the soil type and concentration of water-soluble heavy metals (CWS and the concentration of water-insoluble heavy metals (CWI and NDVI. Therefore, these factors of the study area were especially focused on. Furthermore, the results of the key factor identification and the high-risk region identification in the nine factors were reliable, based on the geographical detector software. Therefore, the geographical detector software could be used as an effective tool to quantitatively analyze the contribution of the factors, and identify the high-risk regions for the factors influencing soil heavy metal lateral migration in rainfalls.

  2. The Effect of Rainfall Patterns on the Mechanisms of Shallow Slope Failure

    Directory of Open Access Journals (Sweden)

    Muhammad Suradi

    2014-04-01

    Full Text Available This paper examines how rainfall patterns affect the mechanisms of shallow slope failure. Numerical modelling, utilising the commercial software SVFlux and SVSlope, was carried out for a coupled analysis of rainfall-induced slope seepage and instability, with reference to a shallow landslide took place in Jabiru, Northern Territory (NT Australia in 2007. Rainfall events were varied in terms of pattern in this analysis. The results revealed that slopes are sensitive to rainfall pattern when the rainfall intensity has a high degree of fluctuation at around the same value as that of saturated hydraulic conductivity. Average rainfall intensity at the beginning of a rainfall period plays a primary role in determining the rate of decrease in initial factor of safety (Fi towards minimum factor of safety (Fmin. The effect of rainfall events on the slope instability is attributed to the amount of rainwater infiltration into slope associated with rainfall pattern.

  3. Do we really use rainfall observations consistent with reality in hydrological modelling?

    Science.gov (United States)

    Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves

    2017-04-01

    Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.

  4. Inconceivable events in handling material in a heavy mechanical engineering industry

    International Nuclear Information System (INIS)

    Oestberg, G.; Hoffstedt, H.; Holm, G.; Klingenstierna, B.; Rydnert, B.; Samsonowitz, V.; Sjoeberg, L.

    1977-05-01

    This report accounts for an exploratory project concerning so-called inconceivable events in a manufacturing process. The study was performed at a medium-sized mechanical engineering company manufacturing heavy welded constructions with high demands on reliability and safety. On the basis of experience gained in the present study the main study shall deal with inconceivable events during the manufacture of welded nuclear pressure vessels. First, a description is given of the background and conditions of the project. On this follows a technical description of the studied process, and an account is given of observations and results of interviews at the company as well. In the light of this, an attempt to find a pattern of inconceivable events was done, and a model for analysis of rare events was developed. By means of this model and earlier described events, causes of unpredicted or unexpected events are discussed. Finally the methodology applied in the study is accounted for and discussed

  5. Exploring changes in rainfall intensity and seasonal variability in the Southeastern U.S.: Stakeholder engagement, observations, and adaptation

    Directory of Open Access Journals (Sweden)

    Daniel R. Dourte

    2015-01-01

    Full Text Available The distribution of rainfall has major impacts in agriculture, affecting the soil, hydrology, and plant health in agricultural systems. The goal of this study was to test for recent changes in rainfall intensity and seasonal rainfall variability in the Southeastern U.S. by exploring the data collaboratively with agricultural stakeholders. Daily rainfall records from the Global Historical Climatology Network were used to analyze changes in rain intensity and seasonal rainfall variability. During the last 30 years (1985–2014, there has been a significant change (53% increase in the number of extreme rainfall days (>152.4 mm/day and there have been significant decreases in the number of moderate intensity (12.7–25.4 mm/day and heavy (25.4–76.2 mm/day rainfall days in the Southeastern U.S., when compared to the previous 30-year period (1955–1984. There have also been significant decreases in the return period of months in which greater than half of the monthly total rain occurred in a single day; this is an original, stakeholder-developed rainfall intensity metric. The variability in spring and summer rainfall increased during the last 30 years, but winter and fall showed less variability in seasonal totals in the last 30 years. In agricultural systems, rainfall is one of the leading factors affecting yield variability; so it can be expected that more variable rainfall and more intense rain events could bring new challenges to agricultural production. However, these changes can also present opportunities for producers who are taking measures to adjust management strategies to make their systems more resilient to increased rain intensity and variability.

  6. Determination of Areas Susceptible to Landsliding Using Spatial Patterns of Rainfall from Tropical Rainfall Measuring Mission Data, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Renato Fontes Guimarães

    2017-10-01

    Full Text Available Spatial patterns of shallow landslide initiation reflect both spatial patterns of heavy rainfall and areas susceptible to mass movements. We determine the areas most susceptible to shallow landslide occurrence through the calculation of critical soil cohesion and spatial patterns of rainfall derived from TRMM (Tropical Rainfall Measuring Mission data for Paraty County, State of Rio de Janeiro, Brazil. Our methodology involved: (a creating the digital elevation model (DEM and deriving attributes such as slope and contributing area; (b incorporating spatial patterns of rainfall derived from TRMM into the shallow slope stability model SHALSTAB; and (c quantitative assessment of the correspondence of mapped landslide scars to areas predicted to be most prone to shallow landsliding. We found that around 70% of the landslide scars occurred in less than 10% of the study area identified as potentially unstable. The greatest concentration of landslides occurred in areas where the root strength of vegetation is an important contribution to slope stability in regions of orographically-enhanced rainfall on the coastal topographic flank. This approach helps quantify landslide hazards in areas with similar geomorphological characteristics, but different spatial patterns of rainfall.

  7. Multifractal analysis of radar rainfall fields over the area of Rome

    Directory of Open Access Journals (Sweden)

    G. Calenda

    2005-01-01

    Full Text Available A scale-invariance analysis of space and time rainfall events monitored by meteorological radar over the area of Rome (Italy is proposed. The study of the scale-invariance properties of intense precipitation storms, particularly important in flood forecast and risk mitigation, allows to transfer rainfall information from the large scale predictive meteorological models to the small scale hydrological rainfall-runoff models. Precipitation events are monitored using data collected by the polarimetric Doppler radar Polar 55C (ISAC-CNR, located 15 km Southeast from downtown. The meteorological radar provides the estimates of rainfall intensity over an area of about 10 000 km2 at a resolution of 2×2 km2 in space and 5 min in time. Many precipitation events have been observed from autumn 2001 up to now. A scale-invariance analysis is performed on some of these events with the aim at exploring the multifractal properties and at understanding their dependence on the meteorological large-scale conditions.

  8. Prediction of Rainfall-Induced Landslides

    Science.gov (United States)

    Nadim, F.; Sandersen, F.

    2009-12-01

    Rainfall-induced landslides can be triggered by two main mechanisms: shear failure due to build-up of pore water pressure and erosion by surface water runoff when flow velocity exceeds a critical value. Field measurements indicate that, in the initial phase, the slip surface of a landslide often occurs along the top of a relatively impermeable layer located at some depth within the soil profile, e.g. at the contact with a shallow underlying bedrock or parent rock. The shear strength along this surface and hence the stability of the slope is governed by the pore water pressure. The pore pressure is in turn controlled by water seepage through the slope, either from infiltrated rain, or from groundwater that follows bedrock joints and soil layers with high permeability. When the infiltration rate of the underlying layer is too low for further downward penetration of water or when a wetting front is produced, pore water pressure builds up, reducing the soil shear strength. During high intensity rainfall, surface water runoff will exert shear stresses on the bed material. De-pending on the grain size distribution and specific gravity of the material, erosion might occur when the flow velocity exceeds a critical value. As erosion progresses and sediment concentration increases, the flow regime may become unstable with heavy erosion at high flow velocity locations triggering a debris flow. In many cases, previous landslides along steep gully walls have fed an abundance of loose soil material into the gullies. Landslides along gully walls that obstruct the water transport may also trigger debris flows when the landslide-dam collapses, creating a surge downstream. Both the long-duration (1 or more days) and short-duration precipitation (of the order of 1 hour) are significant in the triggering of shallow landslides, since the critical short-duration rainfall intensity reduces as the antecedent accumulated rainfall increases. Experiences in Norway indicate that the maxi

  9. Analysis of Historical Rainfall Data and Associated Risks on Rain ...

    African Journals Online (AJOL)

    distribution over the last six decades and tries to do a number of weather induced risk analysis in relation to different rainfall events that has special importance to the local farmers. Different type of rainfall events over the past six decades was assessed in relation to Ethiopian rain fed” tef” production. Tef is an important ...

  10. Fitting monthly Peninsula Malaysian rainfall using Tweedie distribution

    Science.gov (United States)

    Yunus, R. M.; Hasan, M. M.; Zubairi, Y. Z.

    2017-09-01

    In this study, the Tweedie distribution was used to fit the monthly rainfall data from 24 monitoring stations of Peninsula Malaysia for the period from January, 2008 to April, 2015. The aim of the study is to determine whether the distributions within the Tweedie family fit well the monthly Malaysian rainfall data. Within the Tweedie family, the gamma distribution is generally used for fitting the rainfall totals, however the Poisson-gamma distribution is more useful to describe two important features of rainfall pattern, which are the occurrences (dry months) and the amount (wet months). First, the appropriate distribution of the monthly rainfall was identified within the Tweedie family for each station. Then, the Tweedie Generalised Linear Model (GLM) with no explanatory variable was used to model the monthly rainfall data. Graphical representation was used to assess model appropriateness. The QQ plots of quantile residuals show that the Tweedie models fit the monthly rainfall data better for majority of the stations in the west coast and mid land than those in the east coast of Peninsula. This significant finding suggests that the best fitted distribution depends on the geographical location of the monitoring station. In this paper, a simple model is developed for generating synthetic rainfall data for use in various areas, including agriculture and irrigation. We have showed that the data that were simulated using the Tweedie distribution have fairly similar frequency histogram to that of the actual data. Both the mean number of rainfall events and mean amount of rain for a month were estimated simultaneously for the case that the Poisson gamma distribution fits the data reasonably well. Thus, this work complements previous studies that fit the rainfall amount and the occurrence of rainfall events separately, each to a different distribution.

  11. How is rainfall interception in urban area affected by meteorological parameters?

    Science.gov (United States)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2017-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The amount of rainfall reaching the ground depends on various meteorological and vegetation parameters. Rainfall, throughfall and stemflow have been measured in the city of Ljubljana, Slovenia since the beginning of 2014. Manual and automatic measurements are performed regularly under Betula pendula and Pinus nigra trees in urban area. In 2014, there were detected 178 rainfall events with total amount of 1672.1 mm. In average B. pendula intercepted 44% of rainfall and P. nigra intercepted 72% of rainfall. In 2015 we have detected 117 events with 1047.4 mm of rainfall, of which 37% was intercepted by B. pendula and 60% by P. nigra. The effect of various meteorological parameters on the rainfall interception was analysed in the study. The parameters included in the analysis were rainfall rate, rainfall duration, drop size distribution (average drop velocity and diameter), average wind speed, and average temperature. The results demonstrate decreasing rainfall interception with longer rainfall duration and higher rainfall intensity although the impact of the latter one is not statistically significant. In the case of very fast or very slow rainfall drops, the interception is higher than for the mean rain drop velocity values. In the case of P. nigra the impact of the rain drop diameter on interception is similar to the one of rain drop velocity while for B. pendula increasing of drop diameter also increases the interception. As expected, interception is higher for warmer events. This trend is more evident for P. nigra than for B. pendula. Furthermore, the amount of intercepted rainfall also increases with wind although it could be

  12. Preliminary Investigation on the Behavior of Pore Air Pressure During Rainfall Infiltration

    Science.gov (United States)

    Ashraf Mohamad Ismail, Mohd; Min, Ng Soon; Hasliza Hamzah, Nur; Hazreek Zainal Abidin, Mohd; Madun, Aziman; Tajudin, Saiful Azhar Ahmad

    2018-04-01

    This paper focused on the preliminary investigation of pore air pressure behaviour during rainfall infiltration in order to substantiate the mechanism of rainfall induced slope failure. The actual behaviour or pore air pressure during infiltration is yet to be clearly understood as it is regularly assumed as atmospheric. Numerical modelling of one dimensional (1D) soil column was utilized in this study to provide a preliminary insight of this highlighted uncertainty. Parametric study was performed by using rainfall intensities of 1.85 x 10-3m/s and 1.16 x 10-4m/s applied on glass beads to simulate intense and modest rainfall conditions. Analysis results show that the high rainfall intensity causes more development of pore air pressure compared to low rainfall intensity. This is because at high rainfall intensity, the rainwater cannot replace the pore air smoothly thus confining the pore air. Therefore, the effect of pore air pressure has to be taken into consideration particularly during heavy rainfall.

  13. Applications of heavy ion microprobe for single event effects analysis

    International Nuclear Information System (INIS)

    Reed, Robert A.; Vizkelethy, Gyorgy; Pellish, Jonathan A.; Sierawski, Brian; Warren, Kevin M.; Porter, Mark; Wilkinson, Jeff; Marshall, Paul W.; Niu, Guofu; Cressler, John D.; Schrimpf, Ronald D.; Tipton, Alan; Weller, Robert A.

    2007-01-01

    The motion of ionizing-radiation-induced rogue charge carriers in a semiconductor can create unwanted voltage and current conditions within a microelectronic circuit. If sufficient unwanted charge or current occurs on a sensitive node, a variety of single event effects (SEEs) can occur with consequences ranging from trivial to catastrophic. This paper describes the application of heavy ion microprobes to assist with calibration and validation of SEE modeling approaches

  14. Flourish or flush: effects of simulated extreme rainfall events on Sphagnum-dwelling testate amoebae in a subarctic bog (Abisko, Sweden).

    Science.gov (United States)

    Tsyganov, Andrey N; Keuper, Frida; Aerts, Rien; Beyens, Louis

    2013-01-01

    Extreme precipitation events are recognised as important drivers of ecosystem responses to climate change and can considerably affect high-latitude ombrotrophic bogs. Therefore, understanding the relationships between increased rainfall and the biotic components of these ecosystems is necessary for an estimation of climate change impacts. We studied overall effects of increased magnitude, intensity and frequency of rainfall on assemblages of Sphagnum-dwelling testate amoebae in a field climate manipulation experiment located in a relatively dry subarctic bog (Abisko, Sweden). The effects of the treatment were estimated using abundance, species diversity and structure of living and empty shell assemblages of testate amoebae in living and decaying layers of Sphagnum. Our results show that increased rainfall reduced the mean abundance and species richness of living testate amoebae. Besides, the treatment affected species structure of both living and empty shell assemblages, reducing proportions of hydrophilous species. The effects are counterintuitive as increased precipitation-related substrate moisture was expected to have opposite effects on testate amoeba assemblages in relatively dry biotopes. Therefore, we conclude that other rainfall-related factors such as increased infiltration rates and frequency of environmental disturbances can also affect testate amoeba assemblages in Sphagnum and that hydrophilous species are particularly sensitive to variation in these environmental variables.

  15. Mapping extreme rainfall in the Northwest Portugal region: statistical analysis and spatial modelling

    Science.gov (United States)

    Santos, Monica; Fragoso, Marcelo

    2010-05-01

    Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude

  16. Projections of West African summer monsoon rainfall extremes from two CORDEX models

    Science.gov (United States)

    Akinsanola, A. A.; Zhou, Wen

    2018-05-01

    Global warming has a profound impact on the vulnerable environment of West Africa; hence, robust climate projection, especially of rainfall extremes, is quite important. Based on two representative concentration pathway (RCP) scenarios, projected changes in extreme summer rainfall events over West Africa were investigated using data from the Coordinated Regional Climate Downscaling Experiment models. Eight (8) extreme rainfall indices (CDD, CWD, r10mm, r20mm, PRCPTOT, R95pTOT, rx5day, and sdii) defined by the Expert Team on Climate Change Detection and Indices were used in the study. The performance of the regional climate model (RCM) simulations was validated by comparing with GPCP and TRMM observation data sets. Results show that the RCMs reasonably reproduced the observed pattern of extreme rainfall over the region and further added significant value to the driven GCMs over some grids. Compared to the baseline period 1976-2005, future changes (2070-2099) in summer rainfall extremes under the RCP4.5 and RCP8.5 scenarios show statistically significant decreasing total rainfall (PRCPTOT), while consecutive dry days and extreme rainfall events (R95pTOT) are projected to increase significantly. There are obvious indications that simple rainfall intensity (sdii) will increase in the future. This does not amount to an increase in total rainfall but suggests a likelihood of greater intensity of rainfall events. Overall, our results project that West Africa may suffer more natural disasters such as droughts and floods in the future.

  17. Seasonality of mean and heavy precipitation in the area of the Vosges Mountains: dependence on the selection criterion

    Czech Academy of Sciences Publication Activity Database

    Minářová, J.; Müller, Miloslav; Clappier, A.

    2017-01-01

    Roč. 37, č. 5 (2017), s. 2654-2666 ISSN 0899-8418 Institutional support: RVO:68378289 Keywords : climate extremes * model * variability * events * statistics * weather * cops * Vosges Mountains * seasonality * annual course * extreme * heavy rainfall * precipitation * POT * GEV Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.4871/abstract

  18. Impact of carbonaceous materials in soil on the transport of soil-bound PAHs during rainfall-runoff events

    International Nuclear Information System (INIS)

    Luo, Xiaolin; Zheng, Yi; Wu, Bin; Lin, Zhongrong; Han, Feng; Zhang, Wei; Wang, Xuejun

    2013-01-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported from contaminated soils by surface runoff pose significant risk for aquatic ecosystems. Based on a rainfall-runoff simulation experiment, this study investigated the impact of carbonaceous materials (CMs) in soil, identified by organic petrology analysis, on the transport of soil-bound PAHs under rainfall conditions. The hypothesis that composition of soil organic matter significantly impacts the enrichment and transport of PAHs was proved. CMs in soil, varying significantly in content, mobility and adsorption capacity, act differently on the transport of PAHs. Anthropogenic CMs like black carbon (BC) largely control the transport, as PAHs may be preferentially attached to them. Eventually, this study led to a rethink of the traditional enrichment theory. An important implication is that CMs in soil have to be explicitly considered to appropriately model the nonpoint source pollution of PAHs (possibly other hydrophobic chemicals as well) and assess its environmental risk. -- Highlights: •Composition of SOM significantly impacts the enrichment and transport of PAHs. •Anthropogenic carbonaceous materials in soil largely control the transport of PAHs. •The classic enrichment theory is invalid if anthropogenic CMs are abundant in the soil. •Organic petrology analysis introduced to study the fate and transport of PAHs. -- Anthropogenic carbonaceous materials in soil, especially black carbon, largely control the transport of soil-bound PAHs during rainfall-runoff events

  19. Rainfall control of debris-flow triggering in the Réal Torrent, Southern French Prealps

    Science.gov (United States)

    Bel, Coraline; Liébault, Frédéric; Navratil, Oldrich; Eckert, Nicolas; Bellot, Hervé; Fontaine, Firmin; Laigle, Dominique

    2017-08-01

    This paper investigates the occurrence of debris flow due to rainfall forcing in the Réal Torrent, a very active debris flow-prone catchment in the Southern French Prealps. The study is supported by a 4-year record of flow responses and rainfall events, from three high-frequency monitoring stations equipped with geophones, flow stage sensors, digital cameras, and rain gauges measuring rainfall at 5-min intervals. The classic method of rainfall intensity-duration (ID) threshold was used, and a specific emphasis was placed on the objective identification of rainfall events, as well as on the discrimination of flow responses observed above the ID threshold. The results show that parameters used to identify rainfall events significantly affect the ID threshold and are likely to explain part of the threshold variability reported in the literature. This is especially the case regarding the minimum duration of rain interruption (MDRI) between two distinct rainfall events. In the Réal Torrent, a 3-h MDRI appears to be representative of the local rainfall regime. A systematic increase in the ID threshold with drainage area was also observed from the comparison of the three stations, as well as from the compilation of data from experimental debris-flow catchments. A logistic regression used to separate flow responses above the ID threshold, revealed that the best predictors are the 5-min maximum rainfall intensity, the 48-h antecedent rainfall, the rainfall amount and the number of days elapsed since the end of winter (used as a proxy of sediment supply). This emphasizes the critical role played by short intense rainfall sequences that are only detectable using high time-resolution rainfall records. It also highlights the significant influence of antecedent conditions and the seasonal fluctuations of sediment supply.

  20. Stoichiometric determination of nitrate fate in agricultural ecosystems during rainfall events.

    Science.gov (United States)

    Xu, Zuxin; Wang, Yiyao; Li, Huaizheng

    2015-01-01

    Ecologists have found a close relationship between the concentrations of nitrate (NO3-) and dissolved organic carbon (DOC) in ecosystems. However, it is difficult to determine the NO3- fate exactly because of the low coefficient in the constructed relationship. In the present paper, a negative power-function equation (r(2) = 0.87) was developed by using 411 NO3- data points and DOC:NO3- ratios from several agricultural ecosystems during different rainfall events. Our analysis of the stoichiometric method reveals several observations. First, the NO3- concentration demonstrated the largest changes when the DOC:NO3- ratio increased from 1 to 10. Second, the biodegradability of DOC was an important factor in controlling the NO3- concentration of agricultural ecosystems. Third, sediment was important not only as a denitrification site, but also as a major source of DOC for the overlying water. Fourth, a high DOC concentration was able to maintain a low NO3- concentration in the groundwater. In conclusion, this new stoichiometric method can be used for the accurate estimation and analysis of NO3- concentrations in ecosystems.

  1. Solar wind heavy ions from energetic coronal events

    International Nuclear Information System (INIS)

    Bame, S.J.

    1978-01-01

    Ions heavier than those of He can be resolved in the solar wind with electrostatic E/q analyzers when the local thermal temperatures are low. Ordinarily this condition prevails in the low speed solar wind found between high speed streams, i.e. the interstream, IS, solar wind. Various ions of O, Si and Fe are resolved in IS heavy ion spectra. Relative ion peak intensities indicate that the O ionization state is established in the IS coronal source regions at approx. 2.1 x 10 6 K while the state of Fe is frozen in at approx. 1.5 x 10 6 K farther out. Occasionally, anomalous spectra are observed in which the usually third most prominent ion peak, O 8+ , is depressed as are the Fe peaks ranging from Fe 12+ to Fe 7+ . A prominent peak in the usual Si 8+ position of IS spectra is self-consistently shown to be Fe 16+ . These features demonstrate that the ionization states were frozen in at higher than usual coronal temperatures. The source regions of these hot heavy ion spectra are identified as energetic coronal events including flares and nonflare coronal mass ejections. 24 references

  2. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia

    Science.gov (United States)

    Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van

    2018-01-01

    Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.

  3. Influence of Speed and Rainfall on Large-Scale Wheat Lodging from 2007 to 2014 in China.

    Directory of Open Access Journals (Sweden)

    Liyuan Niu

    Full Text Available Strong wind and heavy rain remain the two most important causes of large acreage wheat (Triticum aestivum L. lodging in China. For research the influence of wind speed and rainfall-separately as well as together-on the extent and degree of lodging, five levels of the severity of lodging were defined based on a combination of the lodging area and the degree of tilting. Detailed meteorological information was studied on 52 instances of large-scale lodging that occurred from 2007 to 2014. The results showed that strong wind's lodging accounted for 8% of the instances studied, continuous rainfall's lodging accounted for 19% and strong winds-heavy rainfall's accounted for 73%. The minimum instantaneous wind speed that could cause large-scale lodging was closely related to rainfall. Without rainfall, the wind speed that resulted in lodging ranging in severity from slight to severe (Level 2 to Level 5 was 14.9 m/s, 19.3 m/s, 21.5 m/s, and 26.5 m/s, respectively; when accompanied by rainfall, the wind speed that resulted in lodging of the same severity decreased linearly with the increase of rainfall. These results will be particularly useful in preventing and alleviating wheat lodging as well screening wheat varieties with good lodging resistance.

  4. Significant influences of global mean temperature and ENSO on extreme rainfall over Southeast Asia

    Science.gov (United States)

    Villafuerte, Marcelino, II; Matsumoto, Jun

    2014-05-01

    Along with the increasing concerns on the consequences of global warming, and the accumulating records of disaster related to heavy rainfall events in Southeast Asia, this study investigates whether a direct link can be detected between the rising global mean temperature, as well as the El Niño-Southern Oscillation (ENSO), and extreme rainfall over the region. The maximum likelihood modeling that allows incorporating covariates on the location parameter of the generalized extreme value (GEV) distribution is employed. The GEV model is fitted to annual and seasonal rainfall extremes, which were taken from a high-resolution gauge-based gridded daily precipitation data covering a span of 57 years (1951-2007). Nonstationarities in extreme rainfall are detected over the central parts of Indochina Peninsula, eastern coasts of central Vietnam, northwest of the Sumatra Island, inland portions of Borneo Island, and on the northeastern and southwestern coasts of the Philippines. These nonstationarities in extreme rainfall are directly linked to near-surface global mean temperature and ENSO. In particular, the study reveals that a kelvin increase in global mean temperature anomaly can lead to an increase of 30% to even greater than 45% in annual maximum 1-day rainfall, which were observed pronouncedly over central Vietnam, southern coast of Myanmar, northwestern sections of Thailand, northwestern tip of Sumatra, central portions of Malaysia, and the Visayas island in central Philippines. Furthermore, a pronounced ENSO influence manifested on the seasonal maximum 1-day rainfall; a northward progression of 10%-15% drier condition over Southeast Asia as the El Niño develops from summer to winter is revealed. It is important therefore, to consider the results obtained here for water resources management as well as for adaptation planning to minimize the potential adverse impact of global warming, particularly on extreme rainfall and its associated flood risk over the region

  5. Interevent Time Distribution of Renewal Point Process, Case Study: Extreme Rainfall in South Sulawesi

    Science.gov (United States)

    Sunusi, Nurtiti

    2018-03-01

    The study of time distribution of occurrences of extreme rain phenomena plays a very important role in the analysis and weather forecast in an area. The timing of extreme rainfall is difficult to predict because its occurrence is random. This paper aims to determine the inter event time distribution of extreme rain events and minimum waiting time until the occurrence of next extreme event through a point process approach. The phenomenon of extreme rain events over a given period of time is following a renewal process in which the time for events is a random variable τ. The distribution of random variable τ is assumed to be a Pareto, Log Normal, and Gamma. To estimate model parameters, a moment method is used. Consider Rt as the time of the last extreme rain event at one location is the time difference since the last extreme rainfall event. if there are no extreme rain events up to t 0, there will be an opportunity for extreme rainfall events at (t 0, t 0 + δt 0). Furthermore from the three models reviewed, the minimum waiting time until the next extreme rainfall will be determined. The result shows that Log Nrmal model is better than Pareto and Gamma model for predicting the next extreme rainfall in South Sulawesi while the Pareto model can not be used.

  6. Positive response of Indian summer rainfall to Middle East dust

    KAUST Repository

    Jin, Qinjian

    2014-06-02

    Using observational and reanalyses data, we investigated the impact of dust aerosols over the Middle East and the Arabian Sea (AS) on the Indian summer monsoon (ISM) rainfall. Satellite and aerosol reanalysis data show extremely heavy aerosol loading, mainly mineral dust, over the Middle East and AS during the ISM season. Multivariate empirical orthogonal function analyses suggest an aerosol-monsoon connection. This connection may be attributed to dust-induced atmospheric heating centered over the Iranian Plateau (IP), which enhances the meridional thermal contrast and strengthens the ISM circulation and rainfall. The enhanced circulation further transports more dust to the AS and IP, heating the atmosphere (positive feedback). The aerosols over the AS and the Arabian Peninsula have a significant correlation with rainfall over central and eastern India about 2 weeks later. This finding highlights the nonlocal radiative effect of dust on the ISM circulation and rainfall and may improve ISM rainfall forecasts. © 2014. American Geophysical Union. All Rights Reserved.

  7. Positive response of Indian summer rainfall to Middle East dust

    KAUST Repository

    Jin, Qinjian; Wei, Jiangfeng; Yang, Zong-Liang

    2014-01-01

    Using observational and reanalyses data, we investigated the impact of dust aerosols over the Middle East and the Arabian Sea (AS) on the Indian summer monsoon (ISM) rainfall. Satellite and aerosol reanalysis data show extremely heavy aerosol loading, mainly mineral dust, over the Middle East and AS during the ISM season. Multivariate empirical orthogonal function analyses suggest an aerosol-monsoon connection. This connection may be attributed to dust-induced atmospheric heating centered over the Iranian Plateau (IP), which enhances the meridional thermal contrast and strengthens the ISM circulation and rainfall. The enhanced circulation further transports more dust to the AS and IP, heating the atmosphere (positive feedback). The aerosols over the AS and the Arabian Peninsula have a significant correlation with rainfall over central and eastern India about 2 weeks later. This finding highlights the nonlocal radiative effect of dust on the ISM circulation and rainfall and may improve ISM rainfall forecasts. © 2014. American Geophysical Union. All Rights Reserved.

  8. [Hydrology and water quality of rainfall-runoff in combined sewerage system along Suzhou Creek in central Shanghai].

    Science.gov (United States)

    Cheng, Jiang; Yang, Kai; Huang, Xiao-Fang; Lü, Yong-Peng

    2009-07-15

    In order to obtain the processes of hydrology and water quality of urban combined sewerage system (CSS) in highly urbanized region, the precipitation, discharge and pollutant concentration of four different intensity rainfall (light rain, moderate rain, heavy rain and storm) were measured from Jul. to Sep. 2007 in the Chendulu CSS along Suzhou Creek in Shanghai. The results show that the shapes of runoff graph are similar to rainfall graph, with a weaker fluctuation range and a 15-25 min delay between rainfall and runoff graph. Runoff coefficients of the four different rainfall are 0.33, 0.62, 0.67 and 0.73, respectively. The 30/30 first flush phenomenon is found in Chendulu CSS. The peak of pollutant concentration graph lags rainfall peak about 30-40 min. The pH and event mean concentration (EMC) of Cu, Zn, Cr, Cd, Pb and Ni totally measure up to environmental quality standards V for surface water of China besides COD, BOD5, NH4(+) -N and TP, and the EMC of COD, BOD5, NH4(+) -N and TP are 225.0-544.1, 31.5-98.9, 8.9-44.2 and 1.98-3.52 mg x L(-1), respectively. The rainfall-runoff pollutant concentration in Chendulu CSS is close to those of other foreign cites. At the confidence level of p < 0.01, good relationships exist between SS and COD, BOD5, NH4(+) -N and TP, respectively, and the average proportion of particulate organic pollutant and nutrient is 70.21%.

  9. Characterizing rainfall parameters which influence erosivity in southeastern Nigeria

    International Nuclear Information System (INIS)

    Obi, M.E.; Salako, F.K.

    1993-12-01

    An investigation was carried out to characterize some selected parameters which influence rainfall erosivity in southeastern Nigeria. Rainfall amount, distribution, duration, intensity, storm types, energy loads and frequency of rain events in the region were studied using data from stations located in three major agroecological zones. Raindrop size and detaching capacity were evaluated in one of the stations for two months. The mean annual rainfall erosivity values for southeastern Nigeria point to the fact that rainfall tend to be highly erosive. 25 refs, 6 figs, 8 tabs

  10. Local influence of south-east France topography and land cover on the distribution and characteristics of intense rainfall cells

    Science.gov (United States)

    Renard, Florent

    2017-04-01

    The Greater Lyon area is strongly built up, grouping 58 communes and a population of 1.3 million in approximately 500 km2. The flood risk is high as the territory is crossed by two large watercourses and by streams with torrential flow. Floods may also occur in case of runoff after heavy rain or because of a rise in the groundwater level. The whole territory can therefore be affected, and it is necessary to possess in-depth knowledge of the depths, causes and consequences of rainfall to achieve better management of precipitation in urban areas and to reduce flood risk. This study is thus focused on the effects of topography and land cover on the occurrence, intensity and area of intense rainfall cells. They are identified by local radar meteorology (C-band) combined with a processing algorithm running in a geographic information system (GIS) which identified 109,979 weighted mean centres of them in a sample composed of the five most intense rainfall events from 2001 to 2005. First, analysis of spatial distribution at an overall scale is performed, completed by study at a more detailed scale. The results show that the distribution of high-intensity rainfall cells is spread in cluster form. Subsequently, comparison of intense rainfall cells with the topography shows that cell density is closely linked with land slope but that, above all, urbanised zones feature nearly twice as many rainfall cells as farm land or forest, with more intense intensity.

  11. Water storage and evaporation as constituents of rainfall interception

    NARCIS (Netherlands)

    Klaassen, W; Bosveld, F; de Water, E

    1998-01-01

    Intercepted rainfall may be evaporated during or after the rain event. Intercepted rain is generally determined as the difference between rainfall measurements outside and inside the forest. Such measurements are often used to discriminate between water storage and evaporation during rain as well.

  12. Single-Event Effects in Power MOSFETs During Heavy Ion Irradiations Performed After Gamma-Ray Degradation

    Science.gov (United States)

    Busatto, G.; De Luca, V.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.

    2013-10-01

    The robustness of commercial power metal-oxide semiconductor field-effect transistors to combined gamma-heavy ion irradiation has been investigated, evidence that the degradation of the gate oxide caused by the γ irradiation can severely corrupt the robustness to single-event effects and drastically modify the physical behavior of the device under test after the impact of a heavy ion. A decrease of the critical voltages at which destructive burnouts and gate ruptures for heavy ion impact appear, has been detected in the devices under test, which were previously irradiated with γ rays. In addition, the amount of critical voltage reduction is strictly related to the amount of the absorbed γ-ray dose. Furthermore, at the failure voltage, the behavior of the device is affected by the conduction of a current through the gate oxide. Moreover, the single-event gate rupture” of the device appears at lower voltages because of the reduction of the Fowler-Nordheim limit in the γ-irradiated devices.

  13. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    Directory of Open Access Journals (Sweden)

    Carolien Toté

    2015-02-01

    Full Text Available Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT v2.0, Famine Early Warning System NETwork (FEWS NET Rainfall Estimate (RFE v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS are compared to independent gauge data (2001–2012. This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  14. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique

    Science.gov (United States)

    Tote, Carolien; Patricio, Domingos; Boogaard, Hendrik; van der Wijngaart, Raymond; Tarnavsky, Elena; Funk, Christopher C.

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Climatology And Time-series (TARCAT) v2.0, Famine Early Warning System NETwork (FEWS NET) Rainfall Estimate (RFE) v2.0, and Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)) are compared to independent gauge data (2001–2012). This is done using pairwise comparison statistics to evaluate the performance in estimating rainfall amounts and categorical statistics to assess rain-detection capabilities. The analysis was performed for different rainfall categories, over the seasonal cycle and for regions dominated by different weather systems. Overall, satellite products overestimate low and underestimate high dekadal rainfall values. The RFE and CHIRPS products perform as good, generally outperforming TARCAT on the majority of statistical measures of skill. TARCAT detects best the relative frequency of rainfall events, while RFE underestimates and CHIRPS overestimates the rainfall events frequency. Differences in products performance disappear with higher rainfall and all products achieve better results during the wet season. During the cyclone season, CHIRPS shows the best results, while RFE outperforms the other products for lower dekadal rainfall. Products blending thermal infrared and passive microwave imagery perform better than infrared only products and particularly when meteorological patterns are more complex, such as over the coastal, central and south regions of Mozambique, where precipitation is influenced by frontal systems.

  15. Strategies to take into account variations in extreme rainfall events for design storms in urban area: an example over Naples (Southern Italy)

    Science.gov (United States)

    Mercogliano, P.; Rianna, G.

    2017-12-01

    Eminent works highlighted how available observations display ongoing increases in extreme rainfall events while climate models assess them for future. Although the constraints in rainfall networks observations and uncertainties in climate modelling currently affect in significant way investigations, the huge impacts potentially induced by climate changes (CC) suggest adopting effective adaptation measures in order to take proper precautions. In this regard, design storms are used by engineers to size hydraulic infrastructures potentially affected by direct (e.g. pluvial/urban flooding) and indirect (e.g. river flooding) effects of extreme rainfall events. Usually they are expressed as IDF curves, mathematical relationships between rainfall Intensity, Duration, and the return period (frequency, F). They are estimated interpreting through Extreme Theories Statistical Theories (ETST) past rainfall records under the assumption of steady conditions resulting then unsuitable under climate change. In this work, a methodology to estimate future variations in IDF curves is presented and carried out for the city of Naples (Southern Italy). In this regard, the Equidistance Quantile Matching Approach proposed by Sivrastav et al. (2014) is adopted. According it, daily-subdaily maximum precipitation observations [a] and the analogous daily data provided by climate projections on current [b] and future time spans [c] are interpreted in IDF terms through Generalized Extreme Value (GEV) approach. After, quantile based mapping approach is used to establish a statistical relationship between cumulative distribution functions resulting by GEV of [a] and [b] (spatial downscaling) and [b] and [c] functions (temporal downscaling). Coupling so-obtained relations permits generating IDF curves under CC assumption. To account for uncertainties in future projections, all climate simulations available for the area in Euro-Cordex multimodel ensemble at 0.11° (about 12 km) are considered under

  16. Brief communication: Post-event analysis of loss of life due to hurricane Harvey

    OpenAIRE

    Jonkman, Sebastiaan N.; Godfroy, Maartje; Sebastian, Antonia; Kolen, Bas

    2018-01-01

    An analysis was made of the loss of life directly caused by hurricane Harvey. Information was collected for 70 fatalities that occurred directly due to the event. Most of the fatalities occurred in the greater Houston area, which was most severely affected by extreme rainfall and heavy flooding. The majority of fatalities in this area were recovered outside the designated 100 and 500 year flood zones. Most fatalities occurred due to drowning (81 %), particularly in and around vehicles...

  17. Boundary-Layer Characteristics of Persistent Regional Haze Events and Heavy Haze Days in Eastern China

    Directory of Open Access Journals (Sweden)

    Peng Huaqing

    2016-01-01

    Full Text Available This paper analyzed the surface conditions and boundary-layer climate of regional haze events and heavy haze in southern Jiangsu Province in China. There are 5 types with the surface conditions which are equalized pressure (EQP, the advancing edge of a cold front (ACF, the base of high pressure (BOH, the backside of high pressure (BAH, the inverted trough of low pressure (INT, and saddle pressure (SAP with the haze days. At that time, 4 types are divided with the regional haze events and each of which has a different boundary-layer structure. During heavy haze, the surface mainly experiences EQP, ACF, BOH, BAH, and INT which also have different boundary-layer structures.

  18. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    Science.gov (United States)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  19. Urban Run-off Volumes Dependency on Rainfall Measurement Method

    DEFF Research Database (Denmark)

    Pedersen, L.; Jensen, N. E.; Rasmussen, Michael R.

    2005-01-01

    Urban run-off is characterized with fast response since the large surface run-off in the catchments responds immediately to variations in the rainfall. Modeling such type of catchments is most often done with the input from very few rain gauges, but the large variation in rainfall over small areas...... resolutions and single gauge rainfall was fed to a MOUSE run-off model. The flow and total volume over the event is evaluated....

  20. The partitioning of litter carbon during litter decomposition under different rainfall patterns: a laboratory study

    Science.gov (United States)

    Yang, X.; Szlavecz, K. A.; Langley, J. A.; Pitz, S.; Chang, C. H.

    2017-12-01

    Quantifying litter C into different C fluxes during litter decomposition is necessary to understand carbon cycling under changing climatic conditions. Rainfall patterns are predicted to change in the future, and their effects on the fate of litter carbon are poorly understood. Soils from deciduous forests in Smithsonian Environmental Research Center (SERC) in Maryland, USA were collected to reconstruct soil columns in the lab. 13C labeled tulip poplar leaf litter was used to trace carbon during litter decomposition. Top 1% and the mean of 15-minute historical precipitation data from nearby weather stations were considered as extreme and control rainfall intensity, respectively. Both intensity and frequency of rainfall were manipulated, while the total amount was kept constant. A pulse of CO2 efflux was detected right after each rainfall event in the soil columns with leaf litter. After the first event, CO2 efflux of the control rainfall treatment soils increased to threefold of the CO2 efflux before rain event and that of the extreme treatment soils increased to fivefold. However, in soils without leaf litter, CO2 efflux was suppressed right after rainfall events. After each rainfall event, the leaf litter contribution to CO2 efflux first showed an increase, decreased sharply in the following two days, and then stayed relatively constant. In soil columns with leaf litter, the order of cumulative CO2 efflux was control > extreme > intermediate. The order of cumulative CO2 efflux in the bare soil treatment was extreme > intermediate > control. The order of volume of leachate from different treatments was extreme > intermediate > control. Our initial results suggest that more intense rainfall events result in larger pulses of CO2, which is rarely measured in the field. Additionally, soils with and without leaf litter respond differently to precipitation events. This is important to consider in temperate regions where leaf litter cover changes throughout the year

  1. Bayesian estimation of extreme flood quantiles using a rainfall-runoff model and a stochastic daily rainfall generator

    Science.gov (United States)

    Costa, Veber; Fernandes, Wilson

    2017-11-01

    Extreme flood estimation has been a key research topic in hydrological sciences. Reliable estimates of such events are necessary as structures for flood conveyance are continuously evolving in size and complexity and, as a result, their failure-associated hazards become more and more pronounced. Due to this fact, several estimation techniques intended to improve flood frequency analysis and reducing uncertainty in extreme quantile estimation have been addressed in the literature in the last decades. In this paper, we develop a Bayesian framework for the indirect estimation of extreme flood quantiles from rainfall-runoff models. In the proposed approach, an ensemble of long daily rainfall series is simulated with a stochastic generator, which models extreme rainfall amounts with an upper-bounded distribution function, namely, the 4-parameter lognormal model. The rationale behind the generation model is that physical limits for rainfall amounts, and consequently for floods, exist and, by imposing an appropriate upper bound for the probabilistic model, more plausible estimates can be obtained for those rainfall quantiles with very low exceedance probabilities. Daily rainfall time series are converted into streamflows by routing each realization of the synthetic ensemble through a conceptual hydrologic model, the Rio Grande rainfall-runoff model. Calibration of parameters is performed through a nonlinear regression model, by means of the specification of a statistical model for the residuals that is able to accommodate autocorrelation, heteroscedasticity and nonnormality. By combining the outlined steps in a Bayesian structure of analysis, one is able to properly summarize the resulting uncertainty and estimating more accurate credible intervals for a set of flood quantiles of interest. The method for extreme flood indirect estimation was applied to the American river catchment, at the Folsom dam, in the state of California, USA. Results show that most floods

  2. Distributed modelling of shallow landslides triggered by intense rainfall

    Directory of Open Access Journals (Sweden)

    G. B. Crosta

    2003-01-01

    Full Text Available Hazard assessment of shallow landslides represents an important aspect of land management in mountainous areas. Among all the methods proposed in the literature, physically based methods are the only ones that explicitly includes the dynamic factors that control landslide triggering (rainfall pattern, land-use. For this reason, they allow forecasting both the temporal and the spatial distribution of shallow landslides. Physically based methods for shallow landslides are based on the coupling of the infinite slope stability analysis with hydrological models. Three different grid-based distributed hydrological models are presented in this paper: a steady state model, a transient "piston-flow" wetting front model, and a transient diffusive model. A comparative test of these models was performed to simulate landslide occurred during a rainfall event (27–28 June 1997 that triggered hundreds of shallow landslides within Lecco province (central Southern Alps, Italy. In order to test the potential for a completely distributed model for rainfall-triggered landslides, radar detected rainfall intensity has been used. A new procedure for quantitative evaluation of distributed model performance is presented and used in this paper. The diffusive model results in the best model for the simulation of shallow landslide triggering after a rainfall event like the one that we have analysed. Finally, radar data available for the June 1997 event permitted greatly improving the simulation. In particular, radar data allowed to explain the non-uniform distribution of landslides within the study area.

  3. Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA

    Directory of Open Access Journals (Sweden)

    A. Sugiyama

    2018-02-01

    Full Text Available A total of 2 to 3 million tons of spring water flushes out from the foot of Mt. Fuji, the largest volcanic mountain in Japan. Based on the concept of piston flow transport, residence time of stored groundwater at Mt. Fuji was estimated at  ∼  15–30 years by the 36Cl ∕ Cl ratio (Tosaki et al., 2011. This range, however, represents the average residence time of groundwater that was mixed before it flushed out. To elucidate the route of groundwater in a given system, we determined signatures of direct impacts of rainfall on groundwater, using microbial, stable isotopic (δ18O, and chemical analyses (concentration of silica. Chemical analysis of the groundwater gave an average value of the water, which was already mixed with waters from various sources and routes in the subsurface environment. The microbial analysis suggested locations of water origin and paths. In situ observation during four rainfall events revealed that the stable oxygen isotopic signature obtained from spring water (at 726 m a.s.l., site SP-0 m and shallow groundwater (at 150 m a.s.l., site GW-42 m, where the average recharge height from rainfall was 1700–1800 m, became greater than values observed prior to a torrential rain producing more than 300 mm of precipitation. The concentration of silica decreased after this event. In addition, the abundance of Bacteria in spring water increased, suggesting the influence of heavy rain. Such changes did not appear when rainfall was less than 100 mm per event. The above findings indicate a rapid flow of rain through the shallow part of the aquifer, which appeared within a few weeks of torrential rain extracting abundant microbes from soil in the studied geologic setting. Interestingly, we found that after the torrential rain, the abundance of Archaea increased in the deep groundwater at site GW-550 m,  ∼  12 km downstream of SP-0 m. However, chemical parameters did not show any change

  4. Heavy metal accumulation during the last 30 years in the Karnaphuli River estuary, Chittagong, Bangladesh.

    Science.gov (United States)

    Wang, Ai-Jun; Kawser, Ahmed; Xu, Yong-Hang; Ye, Xiang; Rani, Seema; Chen, Ke-Liang

    2016-01-01

    Heavy metal contamination of aquatic environment has attracted global attention owing to its abundance, persistence, and environmental toxicity, especially in developing countries like Bangladesh. Five heavy metals, namely chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) were investigated in surface and core sediments of the Karnaphuli River (KR) estuary in Chittagong, Bangladesh, in order to reveal the heavy metal contamination history in estuarine sediments and its response to catastrophic events and human activities. The surface sediment was predominantly composed of silt and sand, and the surface sediment was contaminated with Cr and Pb. Based on the 210 Pb chronology, the sedimentation rate in the inter-tidal zone of KR estuary was 1.02 cm/a before 2007, and 1.14 cm/a after 2008. The core sediment collected from 8 to 20 cm below the surface mainly originated from terrestrial materials induced by catastrophic events such as cyclone, heavy rainfall and landslides in 2007 and 2008. The values of contamination factor ( CF ) showed that the sediment became moderately contaminated with Cr and Pb in the last 30 years. The variation and accumulation of heavy metals in core sediment before 2000 was mainly related to natural variations in sediment sources; however, in subsequent years, the anthropogenic inputs of heavy metals have increased due to rapid physical growth of urban and industrial areas in the Chittagong city. In general, the accumulation pattern of heavy metals after normalization to Aluminum in sediments of KR estuary indicated an accelerated rate of urbanization and industrialization in the last 30 years, and also suggested the influence of natural catastrophic event on estuarine environment.

  5. Rainfall-runoff and hydraulic modelling integration in the Blatina River

    International Nuclear Information System (INIS)

    Timko, J.

    2017-01-01

    This paper investigates the use and integration of rainfall-runoff modelling and hydrologic modelling of Blatina river catchment. Characteristics of physical-geographical sphere and its components were created within the model, enhancing the robustness of input data for the mathematical modelling of landscape runoff. Rainfall-runoff model HEC-HMS utilised in this research allows using a wide range of methodologies to determine the movement of water in the riverbed, water losses in the basin, hydraulic and hydrological methods of transformation and base-flow. Loss and transformation of water in the basin were modeled with curve numbers method SCS-CN. The simulated hydrograph was calibrated using rainfall-runoff event from June 2009. The same event was also modelled after the deforestation of the focus area. Using hydraulic model MIKE 21, a flood of focus rainfall-runoff area was simulated under both current real and changed land cover scenarios. (authors)

  6. Experiences of citizen-based reporting of rainfall events using lab-generated videos

    Science.gov (United States)

    Alfonso, Leonardo; Chacon, Juan

    2016-04-01

    Hydrologic studies rely on the availability of good-quality precipitation estimates. However, in remote areas of the world and particularly in developing countries, ground-based measurement networks are either sparse or nonexistent. This creates difficulties in the estimation of precipitation, which limits the development of hydrologic forecasting and early warning systems for these regions. The EC-FP7 WeSenseIt project aims at exploring the involvement of citizens in the observation of the water cycle with innovative sensor technologies, including mobile telephony. In particular, the project explores the use of a smartphone applications to facilitate the reporting water-related situations. Apart from the challenge of using such information for scientific purposes, the citizen engagement is one of the most important issues to address. To this end effortless methods for reporting need to be developed in order to involve as many people as possible in these experiments. A potential solution to overcome these drawbacks, consisting on lab-controlled rainfall videos have been produced to help mapping the extent and distribution of rainfall fields with minimum effort [1]. In addition, the quality of the collected rainfall information has also been studied [2] by means of different experiments with students. The present research shows the latest results of the application of this method and evaluates the experiences in some cases. [1] Alfonso, L., J. Chacón, and G. Peña-Castellanos (2015), Allowing Citizens to Effortlessly Become Rainfall Sensors, in 36th IAHR World Congress edited, The Hague, the Netherlands [2] Cortes-Arevalo, J., J. Chacón, L. Alfonso, and T. Bogaard (2015), Evaluating data quality collected by using a video rating scale to estimate and report rainfall intensity, in 36th IAHR World Congress edited, The Hague, the Netherlands

  7. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    Science.gov (United States)

    Hassan, Zulkarnain; Haidir, Ahmad; Saad, Farah Naemah Mohd; Ayob, Afizah; Rahim, Mustaqqim Abdul; Ghazaly, Zuhayr Md.

    2018-03-01

    The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015) data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM), as compared to Southwest monsoon (SWM). Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  8. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hassan Zulkarnain

    2018-01-01

    Full Text Available The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015 data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM, as compared to Southwest monsoon (SWM. Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  9. Analysis of rainfall-induced shallow landslides and debris flows in the Eastern Pyrenees

    Science.gov (United States)

    Portilla Gamboa, M.; Hürlimann, M.; Corominas, J.

    2009-09-01

    The inventory of rainfall-induced mass movements, rainfall data, and slope characteristics are considered the basis of the analysis determining appropriate rainfall thresholds for mass movements in a specific region. The rainfall-induced landslide thresholds established in the literature for the Catalan Pyrenees have been formulated referring to the rainfall events of November 1982, September 1992, December 1997, and others occurred after 1999. It has been shown that a rainfall intensity greater than 190 mm in 24 hours without antecedent rainfall would be necessary to produce mass movements (Corominas and Moya, 1999; Corominas et al, 2002) or 51mm in 24h with 61 mm of accumulated rainfall (Marco, 2007). Short duration-high intensity rainfalls have brought about several mass movements in some Catalonian regions throughout the course of twenty-first century (Berga, Bonaigua, Saldes, Montserrat, Port-Ainé, Riu Runer, and Sant Nicolau). Preliminary analysis of these events shows that it is necessary to review the thresholds defined so far and redo the existing inventory of mass movements for the Catalan Pyrenees. The present work shows the usefulness of aerial photographs in the reconstruction of the inventory of historic mass movements (Molló-Queralbs, 1940; Arties-Vielha, 1963; Barruera-Senet, 1940 and 1963, and Berga-Cercs, 1982, 1997 and 2008). Also, it highlights the treatment given to scarce and scattered rainfall data available inside these Catalonia’s regions, and the application of Geographic Information Systems (ArcGIS) in the management of the gathered information. The results acquired until now show that the historic rainfall events occurred in the Eastern Pyrenees have yielded many more mass movements than those reported in the literature. Besides, it can be said that the thresholds formulated for the Pyrenees are valid for longstanding regional rainfalls, and not for local downpours. In the latter cases it should be necessary to take into account the

  10. Soil losses from typic cambisols and red latosol as related to three erosive rainfall patterns

    Directory of Open Access Journals (Sweden)

    Regimeire Freitas Aquino

    2013-02-01

    Full Text Available Rainfall erosivity is one of the main factors related to water erosion in the tropics. This work focused on relating soil loss from a typic dystrophic Tb Haplic Cambisol (CXbd and a typic dystrophic Red Latosol (LVdf to different patterns of natural erosive rainfall. The experimental plots of approximately 26 m² (3 x 8.67 m consisted of a CXbd area with a 0.15 m m-1 slope and a LVdf area with 0.12 m m-1 slope, both delimited by galvanized plates. Drainpipes were installed at the lower part of these plots to collect runoff, interconnected with a Geib or multislot divisor. To calculate erosivity (EI30, rainfall data, recorded continuously at a weather station in Lavras, were used. The data of erosive rainfall events were measured (10 mm precipitation intervals, accuracy 0.2 mm, 24 h period, 20 min intervals, characterized as rainfall events with more than 10 mm precipitation, maximum intensity > 24 mm h-1 within 15 min, or kinetic energy > 3.6 MJ, which were used in this study to calculate the rainfall erosivity parameter, were classified according to the moment of peak precipitation intensity in advanced, intermediate and delayed patterns. Among the 139 erosive rainfall events with CXbd soil loss, 60 % were attributed to the advanced pattern, with a loss of 415.9 Mg ha-1, and total losses of 776.0 Mg ha-1. As for the LVdf, of the 93 erosive rainfall events with soil loss, 58 % were listed in the advanced pattern, with 37.8 Mg ha-1 soil loss and 50.9 Mg ha-1 of total soil loss. The greatest soil losses were observed in the advanced rain pattern, especially for the CXbd. From the Cambisol, the soil loss per rainfall event was greatest for the advanced pattern, being influenced by the low soil permeability.

  11. Rainfall erosivity in Europe.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  12. Rainfall Runoff Mitigation by Retrofitted Permeable Pavement in an Urban Area

    Directory of Open Access Journals (Sweden)

    Muhammad Shafique

    2018-04-01

    Full Text Available Permeable pavement is an effective low impact development (LID practice that can play an important role in reducing rainfall runoff amount in urban areas. Permeable interlocking concrete pavement (PICP was retrofitted in a tremendously developed area of Seoul, Korea and the data was monitored to evaluate its effect on the hydrology and stormwater quality performance for four months. Rainfall runoff was first absorbed by different layers of the PICP system and then contributed to the sewage system. This not only helps to reduce the runoff volume, but also increase the time of concentration. In this experiment, different real rain events were observed and the field results were investigated to check the effectiveness of the PICP system for controlling the rainfall runoff in Songpa, Korea. From the analysis of data, results showed that the PCIP system was very effective in controlling rainfall runoff. Overall runoff reduction performance from the PCIP was found to be around 30–65% during various storm events. In addition, PICP significantly reduced peak flows in different storm events which is very helpful in reducing the chances of water-logging in an urbanized area. Research results also allow us to sum up that retrofitted PICP is a very effective approach for rainfall runoff management in urban areas.

  13. Development of a multi-sensor based urban discharge forecasting system using remotely sensed data: A case study of extreme rainfall in South Korea

    Science.gov (United States)

    Yoon, Sunkwon; Jang, Sangmin; Park, Kyungwon

    2017-04-01

    Extreme weather due to changing climate is a main source of water-related disasters such as flooding and inundation and its damage will be accelerated somewhere in world wide. To prevent the water-related disasters and mitigate their damage in urban areas in future, we developed a multi-sensor based real-time discharge forecasting system using remotely sensed data such as radar and satellite. We used Communication, Ocean and Meteorological Satellite (COMS) and Korea Meteorological Agency (KMA) weather radar for quantitative precipitation estimation. The Automatic Weather System (AWS) and McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) were used for verification of rainfall accuracy. The optimal Z-R relation was applied the Tropical Z-R relationship (Z=32R1.65), it has been confirmed that the accuracy is improved in the extreme rainfall events. In addition, the performance of blended multi-sensor combining rainfall was improved in 60mm/h rainfall and more strong heavy rainfall events. Moreover, we adjusted to forecast the urban discharge using Storm Water Management Model (SWMM). Several statistical methods have been used for assessment of model simulation between observed and simulated discharge. In terms of the correlation coefficient and r-squared discharge between observed and forecasted were highly correlated. Based on this study, we captured a possibility of real-time urban discharge forecasting system using remotely sensed data and its utilization for real-time flood warning. Acknowledgement This research was supported by a grant (13AWMP-B066744-01) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport (MOLIT) of Korean government.

  14. Enrichment behavior and transport mechanism of soil-bound PAHs during rainfall-runoff events.

    Science.gov (United States)

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Bin; Han, Feng; Lin, Zhongrong; Wang, Xuejun

    2012-12-01

    Polycyclic Aromatic Hydrocarbons (PAHs) transported by surface runoff result in nonpoint source pollution and jeopardize aquatic ecosystems. The transport mechanism of PAHs during rainfall-runoff events has been rarely studied regarding pervious areas. An experimental system was setup to simulate the runoff pollution process on PAHs-contaminated soil. The enrichment behavior of soil-bound PAHs was investigated. The results show that soil organic matters (SOM), rather than clay particles, seem to be the main carrier of PAHs. The enrichment is highly conditioned on runoff and erosion processes, and its magnitude varies among PAH compounds. It is not feasible to build a simple and universal relationship between enrichment ratio and sediment discharge following the traditional enrichment theory. To estimate the flux of PAHs from pervious areas, soil erosion process has to be clearly understood, and both organic carbon content and composition of SOM should be factored into the calculation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    International Nuclear Information System (INIS)

    Hansen, Brage B; Isaksen, Ketil; Benestad, Rasmus E; Kohler, Jack; Pedersen, Åshild Ø; Loe, Leif E; Coulson, Stephen J; Larsen, Jan Otto; Varpe, Øystein

    2014-01-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January–February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (∼5–20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties. (letter)

  16. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  17. Analysis of warm convective rain events in Catalonia

    Science.gov (United States)

    Ballart, D.; Figuerola, F.; Aran, M.; Rigo, T.

    2009-09-01

    Between the end of September and November, events with high amounts of rainfall are quite common in Catalonia. The high sea surface temperature of the Mediterranean Sea near to the Catalan Coast is one of the most important factors that help to the development of this type of storms. Some of these events have particular characteristics: elevated rain rate during short time periods, not very deep convection and low lightning activity. Consequently, the use of remote sensing tools for the surveillance is quite useless or limited. With reference to the high rain efficiency, this is caused by internal mechanisms of the clouds, and also by the air mass where the precipitation structure is developed. As aforementioned, the contribution of the sea to the air mass is very relevant, not only by the increase of the big condensation nuclei, but also by high temperature of the low layers of the atmosphere, where are allowed clouds with 5 or 6 km of particles in liquid phase. In fact, the freezing level into these clouds can be detected by -15ºC. Due to these characteristics, this type of rainy structures can produce high quantities of rainfall in a relatively brief period of time, and, in the case to be quasi-stationary, precipitation values at surface could be very important. From the point of view of remote sensing tools, the cloud nature implies that the different tools and methodologies commonly used for the analysis of heavy rain events are not useful. This is caused by the following features: lightning are rarely observed, the top temperatures of clouds are not cold enough to be enhanced in the satellite imagery, and, finally, reflectivity radar values are lower than other heavy rain cases. The third point to take into account is the vulnerability of the affected areas. An elevated percentage of the Catalan population lives in the coastal region. In the central coast of Catalonia, the urban areas are surrounded by a not very high mountain range with small basins and

  18. Synoptic thermodynamic and dynamic patterns associated with Quitandinha River flooding events in Petropolis, Rio de Janeiro (Brazil)

    Science.gov (United States)

    da Silva, Fabricio Polifke; Justi da Silva, Maria Gertrudes Alvarez; Rotunno Filho, Otto Corrêa; Pires, Gisele Dornelles; Sampaio, Rafael João; de Araújo, Afonso Augusto Magalhães

    2018-05-01

    Natural disasters are the result of extreme or intense natural phenomena that cause severe impacts on society. These impacts can be mitigated through preventive measures that can be aided by better knowledge of extreme phenomena and monitoring of forecasting and alert systems. The city of Petropolis (in a mountainous region of the state of Rio de Janeiro, Brazil) is prone to heavy rain events, often leading to River overflows, landslides, and loss of life. In that context, this work endeavored to characterize the thermodynamic and dynamic synoptic patterns that trigger heavy rainfall episodes and the corresponding flooding of Quitandinha River. More specifically, we reviewed events from the time period between January 2013 and December 2014 using reanalysis data. We expect that the overall description obtained of synoptic patterns should provide adequate qualitative aid to the decision-making processes involved in operational forecasting procedures. We noticed that flooding events were related to the presence of the South Atlantic Convergence Zone (SACZ), frontal systems (FS), and convective storms (CS). These systems showed a similar behavior on high-frequency wind components, notably with respect to northwest winds before precipitation and to a strong southwest wind component during rainfall events. Clustering analyses indicated that the main component for precipitation formation with regard to CS systems comes from daytime heating, with the dynamic component presenting greater efficiency for the FS configurations. The SACZ events were influenced by moisture availability along the vertical column of the atmosphere and also due to dynamic components of precipitation efficiency and daytime heating, the latter related to the continuous transport of moisture from the Amazon region and South Atlantic Ocean towards Rio de Janeiro state.

  19. Validation and evaluation of epistemic uncertainty in rainfall thresholds for regional scale landslide forecasting

    Science.gov (United States)

    Gariano, Stefano Luigi; Brunetti, Maria Teresa; Iovine, Giulio; Melillo, Massimo; Peruccacci, Silvia; Terranova, Oreste Giuseppe; Vennari, Carmela; Guzzetti, Fausto

    2015-04-01

    Prediction of rainfall-induced landslides can rely on empirical rainfall thresholds. These are obtained from the analysis of past rainfall events that have (or have not) resulted in slope failures. Accurate prediction requires reliable thresholds, which need to be validated before their use in operational landslide warning systems. Despite the clear relevance of validation, only a few studies have addressed the problem, and have proposed and tested robust validation procedures. We propose a validation procedure that allows for the definition of optimal thresholds for early warning purposes. The validation is based on contingency table, skill scores, and receiver operating characteristic (ROC) analysis. To establish the optimal threshold, which maximizes the correct landslide predictions and minimizes the incorrect predictions, we propose an index that results from the linear combination of three weighted skill scores. Selection of the optimal threshold depends on the scope and the operational characteristics of the early warning system. The choice is made by selecting appropriately the weights, and by searching for the optimal (maximum) value of the index. We discuss weakness in the validation procedure caused by the inherent lack of information (epistemic uncertainty) on landslide occurrence typical of large study areas. When working at the regional scale, landslides may have occurred and may have not been reported. This results in biases and variations in the contingencies and the skill scores. We introduce two parameters to represent the unknown proportion of rainfall events (above and below the threshold) for which landslides occurred and went unreported. We show that even a very small underestimation in the number of landslides can result in a significant decrease in the performance of a threshold measured by the skill scores. We show that the variations in the skill scores are different for different uncertainty of events above or below the threshold. This

  20. Effect of variations in rainfall intensity on slope stability in Singapore

    Directory of Open Access Journals (Sweden)

    Christofer Kristo

    2017-12-01

    Full Text Available Numerous scientific evidence has given credence to the true existence and deleterious impacts of climate change. One aspect of climate change is the variations in rainfall patterns, which affect the flux boundary condition across ground surface. A possible disastrous consequence of this change is the occurrence of rainfall-induced slope failures. This paper aims to investigate the variations in rainfall patterns in Singapore and its effect on slope stability. Singapore's historical rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 were obtained and analysed by duration using linear regression. A general increasing trend was observed in both weather stations, with a possible shift to longer duration rainfall events, despite being statistically insignificant according to the Mann-Kendall test. Using the derived trends, projected rainfall intensities in 2050 and 2100 were used in the seepage and slope stability analyses performed on a typical residual soil slope in Singapore. A significant reduction in factor of safety was observed in the next 50 years, with only a marginal decrease in factor of safety in the subsequent 50 years. This indicates a possible detrimental effect of variations in rainfall patterns on slope stability in Singapore, especially in the next 50 years. The statistical analyses on rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 indicated that rainfall intensity tend to increase over the years, with a possible shift to longer duration rainfall events in the future. The stability analyses showed a significant decrease in factor of safety from 2003 to 2050 due to increase in rainfall intensity, suggesting that a climate change might have existed beyond 2009 with possibly detrimental effects to slope stability. Keywords: Climate change, Rainfall, Seepage, Slope stability

  1. TEMPORAL AND SPATIAL ANALYSIS OF EXTREME RAINFALL ON THE SLOPE AREA OF MT. MERAPI

    Directory of Open Access Journals (Sweden)

    Dhian Dharma Prayuda

    2015-02-01

    Full Text Available Rainfall has temporal and spatial characteristics with certain pattern which are affected by topographic variations and climatology of an area. The intensity of extreme rainfall is one of important characteristics related to the trigger factors for debris flow. This research will discuss the result of analysis on short duration rainfall data in the south and west slope of Mt. Merapi. Measured hourly rainfall data in 14 rainfall stations for the last 27 years were used as analysis input. The rainfall intensity-duration-frequency relationship (IDF was derived using empirical formula of Sherman, Kimijima, Haspers, and Mononobe method. The analysis on the characteristics of extreme rainfall intensity was performed by conducting spatial interpolation using Inverse Distance Weighted (IDW method. Result of analysis shows that IDF of rainfall in the research area fits to Sherman’s formula. Besides, the spatial distribution pattern of maximum rainfall intensity was assessed on the basis of area rainfall. Furthermore, the difference on the result of spatial map for one hour extreme rainfall based on isolated event and non-isolated event method can be evaluated. The result of this preliminary research is expected to be inputs in the establishment of debris flow early warning in Mt. Merapi slope area.

  2. Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs

    Science.gov (United States)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-04-01

    Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the end of the rainfall events due to emerging bed-load transport

  3. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique

    OpenAIRE

    Carolien Toté; Domingos Patricio; Hendrik Boogaard; Raymond van der Wijngaart; Elena Tarnavsky; Chris Funk

    2015-01-01

    Satellite derived rainfall products are useful for drought and flood early warning and overcome the problem of sparse, unevenly distributed and erratic rain gauge observations, provided their accuracy is well known. Mozambique is highly vulnerable to extreme weather events such as major droughts and floods and thus, an understanding of the strengths and weaknesses of different rainfall products is valuable. Three dekadal (10-day) gridded satellite rainfall products (TAMSAT African Rainfall Cl...

  4. Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy

    Directory of Open Access Journals (Sweden)

    R. Giannecchini

    2006-01-01

    Full Text Available The Apuan Alps region is one of the rainiest areas in Italy (more than 3000 mm/year, in which frequently heavy and concentrated rainfall occurs. This is particularly due to its geographical position and conformation: the Apuan chain is located along the northern Tuscan coast, close to the Ligurian Sea, and the main peaks reach almost 2000 m. In several cases, the storms that hit the area have triggered many shallow landslides (soil slip-debris flows, which exposed the population to serious risks (during the 19 June 1996 rainstorm about 1000 landslides were triggered and 14 people died. The assessment of the rainfall thresholds is very important in order to prepare efficient alarm systems in a region particularly dedicated to tourism and marble activities. With the aim of contributing to the landslide hazard evaluation of the southern Apuan Alps territory (upper Versilia area, a detailed analysis of the main pluviometric events was carried out. The data recorded at the main rain gauge of the area from 1975 to 2002 were analysed and compared with the occurrence of soil slips, in order to examine the relationship between soil slip initiation and rainfall. The most important rainstorms which triggered shallow landslides occurred in 1984, 1992, 1994, 1996, 1998 and 2000. Many attempts were made to obtain a possible correlation between rainfall parameters and the occurrence of soil slip phenomena and to identify the local rainfall threshold for triggering shallow landslides. A threshold for soil slip activity in terms of mean intensity, duration and mean annual precipitation (MAP was defined for the study area. The thresholds obtained for the southern Apuan Alps were also compared with those proposed by other authors for several regions in the world. This emphasized the high value of the rain threshold for shallow landslide activity in the Apuan area. The high threshold is probably also linked to the high mean annual precipitation and to the high

  5. Persistence Characteristics of Australian Rainfall Anomalies

    Science.gov (United States)

    Simmonds, Ian; Hope, Pandora

    1997-05-01

    Using 79 years (1913-1991) of Australian monthly precipitation data we examined the nature of the persistence of rainfall anomalies. Analyses were performed for four climate regions covering the country, as well as for the entire Australian continent. We show that rainfall over these regions has high temporal variability and that annual rainfall amounts over all five sectors vary in phase and are, with the exception of the north-west region, significantly correlated with the Southern Oscillation Index (SOI). These relationships were particularly strong during the spring season.It is demonstrated that Australian rainfall exhibits statistically significant persistence on monthly, seasonal, and (to a limited extent) annual time-scales, up to lags of 3 months and one season and 1 year. The persistence showed strong seasonal dependence, with each of the five regions showing memory out to 4 or 5 months from winter and spring. Many aspects of climate in the Australasian region are known to have undergone considerable changes about 1950. We show this to be true for persistence also; its characteristics identified for the entire record were present during the 1951--1980 period, but virtually disappeared in the previous 30-year period.Much of the seasonal distribution of rainfall persistence on monthly time-scales, particularly in the east, is due to the influence of the SOI. However, most of the persistence identified in winter and spring in the north-west is independent of the ENSO phenomenon.Rainfall anomalies following extreme dry and wet months, seasons and years (lowest and highest two deciles) persisted more than would be expected by chance. For monthly extreme events this was more marked in the winter semester for the wet events, except in the south-east region. In general, less persistence was found for the extreme seasons. Although the persistence of dry years was less than would have been expected by chance, the wet years appear to display persistence.

  6. Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning

    Science.gov (United States)

    Cannon, S.H.; Boldt, E.M.; Laber, J.L.; Kean, J.W.; Staley, D.M.

    2011-01-01

    Following wildfires, emergency-response and public-safety agencies can be faced with evacuation and resource-deployment decisions well in advance of coming winter storms and during storms themselves. Information critical to these decisions is provided for recently burned areas in the San Gabriel Mountains of southern California. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands is used to develop a system for classifying magnitudes of hydrologic response. The four-class system describes combinations of reported volumes of individual debris flows, consequences of debris flows and floods in an urban setting, and spatial extents of the hydrologic response. The range of rainfall conditions associated with different magnitude classes is defined by integrating local rainfall data with the response magnitude information. Magnitude I events can be expected when within-storm rainfall accumulations (A) of given durations (D) fall above the threshold A = 0.4D0.5 and below A = 0.5D0.6 for durations greater than 1 h. Magnitude II events will be generated in response to rainfall accumulations and durations between A = 0.4D0.5 and A = 0.9D0.5 for durations less than 1 h, and between A = 0.5D0.6 and A = 0.9D0.5 or durations greater than 1 h. Magnitude III events can be expected in response to rainfall conditions above the threshold A = 0.9D0.5. Rainfall threshold-magnitude relations are linked with potential emergency-response actions as an emergency-response decision chart, which leads a user through steps to determine potential event magnitudes and identify possible evacuation and resource-deployment levels. Use of this information in planning and response decision-making process could result in increased safety for both the public and emergency responders. ?? 2011 US Government.

  7. The influence of Atmospheric Rivers over the South Atlantic on rainfall in South Africa

    Science.gov (United States)

    Ramos, A. M.; Trigo, R. M.; Blamey, R. C.; Tome, R.; Reason, C. J. C.

    2017-12-01

    An automated atmospheric river (AR) detection algorithm is used for the South Atlantic Ocean basin, allowing the identification of the major ARs impinging on the west coast of South Africa during the austral winter months (April-September) for the period 1979-2014, using two reanalysis products (NCEP-NCAR and ERA-Interim). The two products show relatively good agreement, with 10-15 persistent ARs (lasting 18h or longer) occurring on average per winter and nearly two thirds of these systems occurring poleward of 35°S. The relationship between persistent AR activity and winter rainfall is demonstrated using South African Weather Service rainfall data. Most stations positioned in areas of high topography contained the highest percentage of rainfall contributed by persistent ARs, whereas stations downwind, to the east of the major topographic barriers, had the lowest contributions. Extreme rainfall days in the region are also ranked by their magnitude and spatial extent. It is found that around 70% of the top 50 daily winter rainfall extremes in South Africa were in some way linked to ARs (both persistent and non-persistent). Results suggest that although persistent ARs are important contributors to heavy rainfall events, they are not necessarily a prerequisite. Overall, the findings of this study support akin assessments in the last decade on ARs in the northern hemisphere bound for the western coasts of USA and Europe. AcknowledgementsThe financial support for attending this workshop was possible through FCT project UID/GEO/50019/2013 - Instituto Dom Luiz. The author wishes also to acknowledge the contribution of project IMDROFLOOD - Improving Drought and Flood Early Warning, Forecasting and Mitigation using real-time hydroclimatic indicators (WaterJPI/0004/2014, Funded by Fundação para a Ciência e a Tecnologia, Portugal (FCT)), with the data provided to achieve this work. A. M. Ramos was also supported by a FCT postdoctoral grant (FCT/DFRH/ SFRH/BPD/84328/2012).

  8. Comparison between Pludix and impact/optical disdrometers during rainfall measurement campaigns

    Science.gov (United States)

    Caracciolo, Clelia; Prodi, Franco; Uijlenhoet, Remko

    2006-11-01

    The performances of two couples of disdrometers based on different measuring principles are compared: a classical Joss-Waldvogel disdrometer and a recently developed device, called the Pludix tested in Ferrara, Italy, and Pludix and the two-dimensional video disdrometer (2DVD) tested in Cabauw, The Netherlands. First, the measuring principles of the different instruments are presented and compared. Secondly, the performances of the two pairs of disdrometers are analysed by comparing their rain amounts with nearby tipping bucket rain gauges and the inferred drop size distributions. The most important rainfall integral parameters (e.g. rain rate and radar reflectivity) and drop size distribution parameters are also analysed and compared. The data set for Ferrara comprises 13 rainfall events, with a total of 20 mm of rainfall and a maximum rain rate of 4 mm h - 1 . The data set for Cabauw consists of 9 events, with 25-50 mm of rainfall and a maximum rain rate of 20-40 mm h - 1 . The Pludix tends to underestimate slightly the bulk rainfall variables in less intense events, whereas it tends to overestimate with respect to the other instruments in heavier events. The correspondence of the inferred drop size distributions with those measured by the other disdrometers is reasonable, particularly with the Joss-Waldvogel disdrometer. Considering that the Pludix is still in a calibration and testing phase, the reported results are encouraging. A new signal inversion algorithm, which will allow the detection of rain drops throughout the entire diameter interval between 0.3 and 7.0 mm, is under development.

  9. [Output characteristics of rainfall runoff phosphorus pollution from a typical small watershed in Yimeng mountainous area].

    Science.gov (United States)

    Yu, Xing-xiu; Li, Zhen-wei; Liu, Qian-jin; Jing, Guang-hua

    2012-08-01

    Relationships between phosphorus pollutant concentrations and precipitation-runoff were analyzed by monitoring pollutant losses at outlets of the Menglianggu watershed in 2010. A typical small watershed was selected to examine the runoff and quality parameters such as total phosphorus (TP), particle phosphorus (PP), dissolve phosphorus (DP) and dissolve inorganic phosphorus (DIP) in rainfall-runoff of 10 rainfall events. Precipitation was above 2 mm for all the 10 rainfall events. The results showed that the peak of phosphorus concentrations occurred before the peak of water flows, whereas change processes of the phosphorus fluxes were consistent with that of the water flows and the phosphorus flux also have a strong linear relationship with the water flows. The minimums of the phosphorus concentrations in every 10 natural rainfall events have small differences with each other, but the maximum and EMCs of the phosphorus concentrations have significant differences with each rainfall event. This was mainly influenced by the precipitation, maximum rainfall intensity and mean rainfall intensity (EMCs) and was less influenced by rainfall duration. DP and TP were mainly composed of DIP and PP, respectively. There were no significant correlations between DIP/DP dynamic changes and rainfall characteristics, whereas significant correlations between PP/TP dynamic changes and maximum rainfall intensity were detected. The production of DIP, DP, AND TP were mainly influenced by the direct runoff (DR) and base flow (BF). The EMCs of DIP, DP, TP and the variations of DIP/DP were all found to have significant polynomial relationships with DR/TR., but the dynamic changes of PP/ TP and the EMCS of PP were less influenced by the DR/TR.

  10. Impact of La Niña and La Niña Modoki on Indonesia rainfall variability

    Science.gov (United States)

    Hidayat, R.; Juniarti, MD; Ma’rufah, U.

    2018-05-01

    La Niña events are indicated by cooling SST in central and eastern equatorial Pacific. While La Niña Modoki occurrences are indicated by cooling SST in central Pacific and warming SST in western and eastern equatorial Pacific. These two events are influencing rainfall variability in several regions including Indonesia. The objective of this study is to analyse the impact of La Niña and La Niña Modoki on Indonesian rainfall variability. We found the Nino 3.4 index is highly correlated (r = -0.95) with Indonesian rainfall. Positive rainfall anomalies up to 200 mm/month occurred mostly in Indonesian region during La Niña events, but in DJF several areas of Sumatera, Kalimantan and eastern Indonesia tend to have negative rainfall. During La Niña Modoki events, positive rainfall anomaly (up to 50 mm/month) occurred in Sumatera Island, Kalimantan, Java and eastern Indonesia in DJF and up to 175 mm/month occurred only in Java Island in MAM season. La Niña events have strong cooling SST in central and eastern equatorial Pacific (-1.5°C) in DJF. While La Niña Modoki events warming SST occurred in western and eastern equatorial Pacific (0.75°C) and cooling SST in central Pacific (- 0.75°C) in DJF and MAM. Walker circulation in La Niña Modoki events (on DJF and MAM) showed strong convergence in eastern Pacific, and weak convergence in western Pacific (Indonesia).

  11. Coupled prediction of flood response and debris flow initiation during warm and cold season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2013-07-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are

  12. Evaluation of the in situ, time-integrated DGT technique by monitoring changes in heavy metal concentrations in estuarine waters

    International Nuclear Information System (INIS)

    Dunn, R.J.K.; Teasdale, P.R.; Warnken, J.; Jordan, M.A.; Arthur, J.M.

    2007-01-01

    Various natural and anthropogenic processes influence heavy metal concentrations within estuaries. In situ, time-integrated DGT measurements made over concurrent tidal phases found significantly higher concentrations of Cu (probability p = 0.017), Zn (p = 0.003) and Ni (p = 0.003) during the flood phase, because the incoming tide passes several point sources. DGT-reactive Cu concentrations significantly decreased with increased tidal-flushing and vice versa within a marina (correlation r = -0.788, p = 0.02). DGT measurements also recorded significant increases in Cu (4 out of 4 sites, p < 0.001) and Zn (3 out of 4 sites, p ≤ 0.015) after a 24 mm rainfall event. Finally, DGT-reactive Cu increased significantly (p < 0.001) during peak boating times, due to increased numbers of Cu-antifouled boats. This study demonstrates that, with judicious selection of deployment times, DGT measurements enable changes in heavy metal concentrations to be related to various cycles and events within estuaries. - Demonstration of the usefulness of DGT as a monitoring tool for heavy metals in dynamic estuaries

  13. Heavy rain effects

    Science.gov (United States)

    Dunham, R. Earl, Jr.

    1994-01-01

    This paper summarizes the current state of knowledge of the effect of heavy rain on airplane performance. Although the effects of heavy rain on airplane systems and engines are generally known, only recently has the potential aerodynamic effect of heavy rain been recognized. In 1977 the United States Federal Aviation Administration (FAA) conducted a study of 25 aircraft accidents and incidents which occurred between 1964 and 1976 in which low-altitude wind shear could have been a contributing factor. Of the 25 cases (23 approach or landing and 2 take-off) in the study, ten cases had occurred in a rain environment, and in five cases these were classified as intense or heavy rain encounters. These results led to the reconsideration of high-intensity, short-duration rainfall as a potential weather-related aircraft safety hazard, particularly in the take-off and/or approach phases of flight.

  14. Event-based model diagnosis of rainfall-runoff model structures

    International Nuclear Information System (INIS)

    Stanzel, P.

    2012-01-01

    The objective of this research is a comparative evaluation of different rainfall-runoff model structures. Comparative model diagnostics facilitate the assessment of strengths and weaknesses of each model. The application of multiple models allows an analysis of simulation uncertainties arising from the selection of model structure, as compared with effects of uncertain parameters and precipitation input. Four different model structures, including conceptual and physically based approaches, are compared. In addition to runoff simulations, results for soil moisture and the runoff components of overland flow, interflow and base flow are analysed. Catchment runoff is simulated satisfactorily by all four model structures and shows only minor differences. Systematic deviations from runoff observations provide insight into model structural deficiencies. While physically based model structures capture some single runoff events better, they do not generally outperform conceptual model structures. Contributions to uncertainty in runoff simulations stemming from the choice of model structure show similar dimensions to those arising from parameter selection and the representation of precipitation input. Variations in precipitation mainly affect the general level and peaks of runoff, while different model structures lead to different simulated runoff dynamics. Large differences between the four analysed models are detected for simulations of soil moisture and, even more pronounced, runoff components. Soil moisture changes are more dynamical in the physically based model structures, which is in better agreement with observations. Streamflow contributions of overland flow are considerably lower in these models than in the more conceptual approaches. Observations of runoff components are rarely made and are not available in this study, but are shown to have high potential for an effective selection of appropriate model structures (author) [de

  15. Trends and variation in monthly rainfall and temperature in Suriname

    International Nuclear Information System (INIS)

    Raid, Nurmohamed

    2004-01-01

    As Surinam lies within the equatorial trough zone, climate is mainly influenced by the movement and intensity of the Inter-tropical Convergence Zone and the El Nino Southern Oscillation. Scientist predict that global climate change will directly effect the hydrological cycle such as rainfall and temperature, and extreme events such as a El Nino and La Nina. The aim of this study is to analyze historical changes in monthly rainfall and temperature and to predict future changes, with respect to climate change (doubling of carbon dioxide (CO 2 ) by 2100) and variability. Linear extrapolation and five Global Circulations Models (GCMS) (HadCM2, ECHAM4, GFDL-TR, CSIRO2-EQ, CCSR-NIES) will be used. Results of GCMs have showed that under global climate change by 2100, the monthly rainfall is predicted to change with -82 to 66 mm during January and August, and -36 to 47 mm during September and November. The monthly temperature is predicted to increase with 1.3 to 4.3 C by 2100. El Nino events have showed that along the coastal zone and in the center of Surinam, most months (>50%) during the year are drier than normal (88 to 316 mm), while in the west part of Surinam, most months (>50%) are wetter than normal (110 to 220 mm). La Nina events have showed that over entire Surinam, most of the months are wetter than normal (19 to 122 mm), with respect to the minimum rainfall. It can be concluded that the changes in rainfall due to El Nino and La Nina events may have significant impacts on the design, planning and management of water resources systems in Surinam and should therefore be incorporated in future water resources planning. (Author)

  16. Stochastic Urban Pluvial Flood Hazard Maps Based upon a Spatial-Temporal Rainfall Generator

    Directory of Open Access Journals (Sweden)

    Nuno Eduardo Simões

    2015-06-01

    Full Text Available It is a common practice to assign the return period of a given storm event to the urban pluvial flood event that such storm generates. However, this approach may be inappropriate as rainfall events with the same return period can produce different urban pluvial flooding events, i.e., with different associated flood extent, water levels and return periods. This depends on the characteristics of the rainfall events, such as spatial variability, and on other characteristics of the sewer system and the catchment. To address this, the paper presents an innovative contribution to produce stochastic urban pluvial flood hazard maps. A stochastic rainfall generator for urban-scale applications was employed to generate an ensemble of spatially—and temporally—variable design storms with similar return period. These were used as input to the urban drainage model of a pilot urban catchment (~9 km2 located in London, UK. Stochastic flood hazard maps were generated through a frequency analysis of the flooding generated by the various storm events. The stochastic flood hazard maps obtained show that rainfall spatial-temporal variability is an important factor in the estimation of flood likelihood in urban areas. Moreover, as compared to the flood hazard maps obtained by using a single spatially-uniform storm event, the stochastic maps generated in this study provide a more comprehensive assessment of flood hazard which enables better informed flood risk management decisions.

  17. Rainfall thresholds for the possible occurrence of landslides in Italy

    Directory of Open Access Journals (Sweden)

    M. T. Brunetti

    2010-03-01

    Full Text Available In Italy, rainfall is the primary trigger of landslides that frequently cause fatalities and large economic damage. Using a variety of information sources, we have compiled a catalogue listing 753 rainfall events that have resulted in landslides in Italy. For each event in the catalogue, the exact or approximate location of the landslide and the time or period of initiation of the slope failure is known, together with information on the rainfall duration D, and the rainfall mean intensity I, that have resulted in the slope failure. The catalogue represents the single largest collection of information on rainfall-induced landslides in Italy, and was exploited to determine the minimum rainfall conditions necessary for landslide occurrence in Italy, and in the Abruzzo Region, central Italy. For the purpose, new national rainfall thresholds for Italy and new regional rainfall thresholds for the Abruzzo Region were established, using two independent statistical methods, including a Bayesian inference method and a new Frequentist approach. The two methods proved complementary, with the Bayesian method more suited to analyze small data sets, and the Frequentist method performing better when applied to large data sets. The new regional thresholds for the Abruzzo Region are lower than the new national thresholds for Italy, and lower than the regional thresholds proposed in the literature for the Piedmont and Lombardy Regions in northern Italy, and for the Campania Region in southern Italy. This is important, because it shows that landslides in Italy can be triggered by less severe rainfall conditions than previously recognized. The Frequentist method experimented in this work allows for the definition of multiple minimum rainfall thresholds, each based on a different exceedance probability level. This makes the thresholds suited for the design of probabilistic schemes for the prediction of rainfall-induced landslides. A scheme based on four

  18. Engineering of an Extreme Rainfall Detection System using Grid Computing

    Directory of Open Access Journals (Sweden)

    Olivier Terzo

    2012-10-01

    Full Text Available This paper describes a new approach for intensive rainfall data analysis. ITHACA's Extreme Rainfall Detection System (ERDS is conceived to provide near real-time alerts related to potential exceptional rainfalls worldwide, which can be used by WFP or other humanitarian assistance organizations to evaluate the event and understand the potentially floodable areas where their assistance is needed. This system is based on precipitation analysis and it uses rainfall data from satellite at worldwide extent. This project uses the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis dataset, a NASA-delivered near real-time product for current rainfall condition monitoring over the world. Considering the great deal of data to process, this paper presents an architectural solution based on Grid Computing techniques. Our focus is on the advantages of using a distributed architecture in terms of performances for this specific purpose.

  19. ICUD-0147 Extreme event statistics of urban pluvial floods – Return period assessment and rainfall variability impacts

    DEFF Research Database (Denmark)

    Tuyls, Damian Murla; Nielsen, Rasmus; Thorndahl, Søren Liedtke

    2017-01-01

    A return period assessment of urban flood has been performed and its adhered impact of rainfall variability studied over a urban drainage catchment area in Aalborg, Denmark. Recorded rainfall from 7 rain gauges has been used, located in a range of 7.5Km and for a period varying form 18-37 years....... Return period of rainfall and flood at catchment and local scale has been estimated, its derived ambiguities analysed and the variability of rain gauge based rainfall investigated regarding to flood estimation results. Results show a clear contrast between rainfall and flood return period estimates...

  20. Multifragmentation of a very heavy nuclear system (I): selection of single-source events

    Energy Technology Data Exchange (ETDEWEB)

    Frankland, J.D.; Bacri, Ch.O.; Borderie, B. [Paris-11 Univ., Inst. de Physique Nucleaire, 91 - Orsay (France)] [and others

    2000-07-01

    A sample of 'single-source' events, compatible with the multifragmentation of very heavy fused systems, are isolated among well-measured {sup 155}Gd + {sup nat}U 36 A.MeV reactions by examining the evolution of the kinematics of fragments with Z {>=} 5 as a function of the dissipated energy and loss of memory of the entrance channel. Single-source events are found to be the result of very central collisions. Such central collisions may also lead to multiple fragment emission due to the decay of excited projectile- and target-like nuclei and so-called 'neck' emission, and for this reason the isolation of single-source events is very difficult. Event-selection criteria based on centrality of collisions, or on the isotropy of the emitted fragments in each event, are found to be inefficient to separate the two mechanisms, unless they take into account the redistribution of fragments' kinetic energies into directions perpendicular to the beam axis. The selected events are good candidates to look for bulk effects in the multifragmentation process. (authors)

  1. Multifragmentation of a very heavy nuclear system (I): selection of single-source events

    International Nuclear Information System (INIS)

    Frankland, J.D.; Bacri, Ch.O.; Borderie, B.; Rivet, M.F.; Squalli, M.; Auger, G.; Bellaize, N.; Bocage, F.; Bougault, R.; Brou, R.; Buchet, Ph.; Chbihi, A.; Colin, J.; Cussol, D.; Dayras, R.; Demeyer, A.; Dore, D.; Durand, D.; Galichet, E.; Genouin-Duhamel, E.; Gerlic, E.; Guinet, D.; Lautesse, Ph.; Laville, J.L.; Lecolley, J.F.; Legrain, R.; Le Neindre, N.; Lopez, O.; Louvel, M.; Maskay, A.M.; Nalpas, L.; Nguyen, A.D.; Parlog, M.; Peter, J.; Plagnol, E.; Rosato, E.; Saint-Laurent, F.; Salou, S.; Steckmeyer, J.C.; Stern, M.; Tabacaru, G.; Tamain, B.; Tirel, O.; Tassan-Got, L.; Vient, E.; Volant, C.; Wieleczko, J.P.

    2001-01-01

    A sample of 'single-source' events, compatible with the multifragmentation of very heavy fused systems, are isolated among well-measured 155 Gd+ nat U 36 A MeV reactions by examining the evolution of the kinematics of fragments with Z≥5 as a function of the dissipated energy and loss of memory of the entrance channel. Single-source events are found to be the result of very central collisions. Such central collisions may also lead to multiple fragment emission due to the decay of excited projectile- and target-like nuclei and so-called 'neck' emission, and for this reason the isolation of single-source events is very difficult. Event-selection criteria based on centrality of collisions, or on the isotropy of the emitted fragments in each event, are found to be inefficient to separate the two mechanisms, unless they take into account the redistribution of fragments' kinetic energies into directions perpendicular to the beam axis. The selected events are good candidates to look for bulk effects in the multifragmentation process

  2. Detection of rainfall-induced landslides on regional seismic networks

    Science.gov (United States)

    Manconi, Andrea; Coviello, Velio; Gariano, Stefano Luigi; Picozzi, Matteo

    2017-04-01

    Seismic techniques are increasingly adopted to detect signals induced by mass movements and to quantitatively evaluate geo-hydrological hazards at different spatial and temporal scales. By analyzing landslide-induced seismicity, it is possible obtaining significant information on the source of the mass wasting, as well as on its dynamics. However, currently only few studies have performed a systematic back analysis on comprehensive catalogues of events to evaluate the performance of proposed algorithms. In this work, we analyze a catalogue of 1058 landslides induced by rainfall in Italy. Among these phenomena, there are 234 rock falls, 55 debris flows, 54 mud flows, and 715 unspecified shallow landslides. This is a subset of a larger catalogue collected by the Italian research institute for geo-hydrological protection (CNR IRPI) during the period 2000-2014 (Brunetti et al., 2015). For each record, the following information are available: the type of landslide; the geographical location of the landslide (coordinates, site, municipality, province, and 3 classes of geographic accuracy); the temporal information on the landslide occurrence (day, month, year, time, date, and 3 classes of temporal accuracy); the rainfall conditions (rainfall duration and cumulated event rainfall) that have resulted in the landslide. We consider here only rainfall-induced landslides for which exact date and time were known from chronicle information. The analysis of coeval seismic data acquired by regional seismic networks show clear signals in at least 3 stations for 64 events (6% of the total dataset). Among them, 20 are associated to local earthquakes and 2 to teleseisms; 10 are anomalous signals characterized by irregular and impulsive waveforms in both time and frequency domains; 33 signals are likely associated to the landslide occurrence, as they have a cigar-shaped waveform characterized by emerging onsets, duration of several tens of seconds, and low frequencies (1-10 Hz). For

  3. Attribution of extreme rainfall from Hurricane Harvey, August 2017

    Science.gov (United States)

    van Oldenborgh, Geert Jan; van der Wiel, Karin; Sebastian, Antonia; Singh, Roop; Arrighi, Julie; Otto, Friederike; Haustein, Karsten; Li, Sihan; Vecchi, Gabriel; Cullen, Heidi

    2017-12-01

    During August 25-30, 2017, Hurricane Harvey stalled over Texas and caused extreme precipitation, particularly over Houston and the surrounding area on August 26-28. This resulted in extensive flooding with over 80 fatalities and large economic costs. It was an extremely rare event: the return period of the highest observed three-day precipitation amount, 1043.4 mm 3dy-1 at Baytown, is more than 9000 years (97.5% one-sided confidence interval) and return periods exceeded 1000 yr (750 mm 3dy-1) over a large area in the current climate. Observations since 1880 over the region show a clear positive trend in the intensity of extreme precipitation of between 12% and 22%, roughly two times the increase of the moisture holding capacity of the atmosphere expected for 1 °C warming according to the Clausius-Clapeyron (CC) relation. This would indicate that the moisture flux was increased by both the moisture content and stronger winds or updrafts driven by the heat of condensation of the moisture. We also analysed extreme rainfall in the Houston area in three ensembles of 25 km resolution models. The first also shows 2 × CC scaling, the second 1 × CC scaling and the third did not have a realistic representation of extreme rainfall on the Gulf Coast. Extrapolating these results to the 2017 event, we conclude that global warming made the precipitation about 15% (8%-19%) more intense, or equivalently made such an event three (1.5-5) times more likely. This analysis makes clear that extreme rainfall events along the Gulf Coast are on the rise. And while fortifying Houston to fully withstand the impact of an event as extreme as Hurricane Harvey may not be economically feasible, it is critical that information regarding the increasing risk of extreme rainfall events in general should be part of the discussion about future improvements to Houston’s flood protection system.

  4. Spatial and temporal variation in rainfall erosivity in a Himalayan watershed

    NARCIS (Netherlands)

    Ma, X.; Noordwijk, van M.; Xu, J.; Lu, X.

    2014-01-01

    Global climate change can modify rainfall patterns, leading to more extremes with associated erosion events. Rainfall erosivity, or the R-factor based on the Revised Universal Soil Loss Equation (RUSLE), indicates the potential water erosion risk and it plays an important role in water and soil

  5. The evaluation of rainfall influence on combined sewer overflows characteristics: the Berlin case study.

    Science.gov (United States)

    Sandoval, S; Torres, A; Pawlowsky-Reusing, E; Riechel, M; Caradot, N

    2013-01-01

    The present study aims to explore the relationship between rainfall variables and water quality/quantity characteristics of combined sewer overflows (CSOs), by the use of multivariate statistical methods and online measurements at a principal CSO outlet in Berlin (Germany). Canonical correlation results showed that the maximum and average rainfall intensities are the most influential variables to describe CSO water quantity and pollutant loads whereas the duration of the rainfall event and the rain depth seem to be the most influential variables to describe CSO pollutant concentrations. The analysis of partial least squares (PLS) regression models confirms the findings of the canonical correlation and highlights three main influences of rainfall on CSO characteristics: (i) CSO water quantity characteristics are mainly influenced by the maximal rainfall intensities, (ii) CSO pollutant concentrations were found to be mostly associated with duration of the rainfall and (iii) pollutant loads seemed to be principally influenced by dry weather duration before the rainfall event. The prediction quality of PLS models is rather low (R² < 0.6) but results can be useful to explore qualitatively the influence of rainfall on CSO characteristics.

  6. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania.

    Science.gov (United States)

    Msongaleli, Barnabas M; Tumbo, S D; Kihupi, N I; Rwehumbiza, Filbert B

    2017-01-01

    Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly.

  7. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter.

    Science.gov (United States)

    Chen, Bing; Stein, Ariel F; Castell, Nuria; Gonzalez-Castanedo, Yolanda; Sanchez de la Campa, A M; de la Rosa, J D

    2016-01-01

    Metal smelting and processing are highly polluting activities that have a strong influence on the levels of heavy metals in air, soil, and crops. We employ an atmospheric transport and dispersion model to predict the pollution levels originated from the second largest Cu-smelter in Europe. The model predicts that the concentrations of copper (Cu), zinc (Zn), and arsenic (As) in an urban area close to the Cu-smelter can reach 170, 70, and 30 ng m−3, respectively. The model captures all the observed urban pollution events, but the magnitude of the elemental concentrations is predicted to be lower than that of the observed values; ~300, ~500, and ~100 ng m−3 for Cu, Zn, and As, respectively. The comparison between model and observations showed an average correlation coefficient of 0.62 ± 0.13. The simulation shows that the transport of heavy metals reaches a peak in the afternoon over the urban area. The under-prediction in the peak is explained by the simulated stronger winds compared with monitoring data. The stronger simulated winds enhance the transport and dispersion of heavy metals to the regional area, diminishing the impact of pollution events in the urban area. This model, driven by high resolution meteorology (2 km in horizontal), predicts the hourly-interval evolutions of atmospheric heavy metal pollutions in the close by urban area of industrial hotspot.

  8. A Machine Learning-based Rainfall System for GPM Dual-frequency Radar

    Science.gov (United States)

    Tan, H.; Chandrasekar, V.; Chen, H.

    2017-12-01

    Precipitation measurement produced by the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) plays an important role in researching the water circle and forecasting extreme weather event. Compare with its predecessor - Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), GRM DPR measures precipitation in two different frequencies (i.e., Ku and Ka band), which can provide detailed information on the microphysical properties of precipitation particles, quantify particle size distribution and quantitatively measure light rain and falling snow. This paper presents a novel Machine Learning system for ground-based and space borne radar rainfall estimation. The system first trains ground radar data for rainfall estimation using rainfall measurements from gauges and subsequently uses the ground radar based rainfall estimates to train GPM DPR data in order to get space based rainfall product. Therein, data alignment between space DPR and ground radar is conducted using the methodology proposed by Bolen and Chandrasekar (2013), which can minimize the effects of potential geometric distortion of GPM DPR observations. For demonstration purposes, rainfall measurements from three rain gauge networks near Melbourne, Florida, are used for training and validation purposes. These three gauge networks, which are located in Kennedy Space Center (KSC), South Florida Water Management District (SFL), and St. Johns Water Management District (STJ), include 33, 46, and 99 rain gauge stations, respectively. Collocated ground radar observations from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) in Melbourne (i.e., KMLB radar) are trained with the gauge measurements. The trained model is then used to derive KMLB radar based rainfall product, which is used to train GPM DPR data collected from coincident overpasses events. The machine learning based rainfall product is compared against the GPM standard products

  9. A pair of new moisture-dynamic diagnostic parameters for heavy rain location

    Science.gov (United States)

    Yuan, Kai; Zhu, Zhiwei; Li, Ming

    2018-06-01

    In this study, the regional persistent heavy rain process occurred in the middle and lower reaches of the Yangtze River valley from 30 June 2016 to 7 July 2016 is analyzed. We find that the pure dynamic parameters [e.g., vorticity ( V) and divergence ( D)] and two-dimensional moisture-dynamic parameters [e.g., moist vorticity ( MV), moist divergence ( MD)] have difficulty in capturing the rainfall location during such a critical process. Given the poor performance of these traditional parameters, a pair of new parameters [namely, one-dimensional moist vorticity ( ODMV) and one-dimensional moist divergence ( ODMD)] based on low-level jet is proposed for diagnosing heavy rain location. The results show that (1) ODMV and ODMD have better relations with rain belt in terms of spatial distribution. Precipitation occurs in positive (negative) region of ODMV ( ODMD), and heavy rainfall accurately locates in the positive (negative) center of ODMV ( ODMD); (2) ODMV and ODMD also have good correlation with the precipitation in terms of temporal variation (significant at the 99% confidence level). When ODMV ( ODMD) is in strong positive (negative) phase, precipitation is large, and vice versa; (3) the threat score of ODMV and ODMD for the areal-mean rainfall is improved by 119% and 16%, respectively, compared to V/ D and MV/ MD. It is anticipated that the proposed new parameters would facilitate the skills of diagnosing and forecasting the heavy rainfall.

  10. Predicting of soil erosion with regarding to rainfall erosivity and soil erodibility

    Science.gov (United States)

    Suif, Zuliziana; Razak, Mohd Amirun Anis Ab; Ahmad, Nordila

    2018-02-01

    The soil along the hill and slope are wearing away due to erosion and it can take place due to occurrence of weak and heavy rainfall. The aim of this study is to predict the soil erosion degree in Universiti Pertahanan Nasional Malaysia (UPNM) area focused on two major factor which is soil erodibility and rainfall erosivity. Soil erodibility is the possibilities of soil to detach and carried away during rainfall and runoff. The "ROM" scale was used in this study to determine the degree of soil erodibility, namely low, moderate, high, and very high. As for rainfall erosivity, the erosive power caused by rainfall that cause soil loss. A daily rainfall data collected from January to April was analyzed by using ROSE index classification to identify the potential risk of soil erosion. The result shows that the soil erodibilty are moderate at MTD`s hill, high at behind of block Lestari and Landslide MTD hill, and critical at behind the mess cadet. While, the highest rainfall erosivity was recorded in March and April. Overall, this study would benefit the organization greatly in saving cost in landslide protection as relevant authorities can take early measures repairing the most affected area of soil erosion.

  11. Towards large scale stochastic rainfall models for flood risk assessment in trans-national basins

    Science.gov (United States)

    Serinaldi, F.; Kilsby, C. G.

    2012-04-01

    While extensive research has been devoted to rainfall-runoff modelling for risk assessment in small and medium size watersheds, less attention has been paid, so far, to large scale trans-national basins, where flood events have severe societal and economic impacts with magnitudes quantified in billions of Euros. As an example, in the April 2006 flood events along the Danube basin at least 10 people lost their lives and up to 30 000 people were displaced, with overall damages estimated at more than half a billion Euros. In this context, refined analytical methods are fundamental to improve the risk assessment and, then, the design of structural and non structural measures of protection, such as hydraulic works and insurance/reinsurance policies. Since flood events are mainly driven by exceptional rainfall events, suitable characterization and modelling of space-time properties of rainfall fields is a key issue to perform a reliable flood risk analysis based on alternative precipitation scenarios to be fed in a new generation of large scale rainfall-runoff models. Ultimately, this approach should be extended to a global flood risk model. However, as the need of rainfall models able to account for and simulate spatio-temporal properties of rainfall fields over large areas is rather new, the development of new rainfall simulation frameworks is a challenging task involving that faces with the problem of overcoming the drawbacks of the existing modelling schemes (devised for smaller spatial scales), but keeping the desirable properties. In this study, we critically summarize the most widely used approaches for rainfall simulation. Focusing on stochastic approaches, we stress the importance of introducing suitable climate forcings in these simulation schemes in order to account for the physical coherence of rainfall fields over wide areas. Based on preliminary considerations, we suggest a modelling framework relying on the Generalized Additive Models for Location, Scale

  12. Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia

    Science.gov (United States)

    Rahmawati, Novi; Lubczynski, Maciek W.

    2017-11-01

    Satellite rainfall products have different performances in different geographic regions under different physical and climatological conditions. In this study, the objective was to select the most reliable and accurate satellite rainfall products for specific, environmental conditions of Bali Island. The performances of four spatio-temporal satellite rainfall products, i.e., CMORPH25, CMORPH8, TRMM, and PERSIANN, were evaluated at the island, zonation (applying elevation and climatology as constraints), and pixel scales, using (i) descriptive statistics and (ii) categorical statistics, including bias decomposition. The results showed that all the satellite products had low accuracy because of spatial scale effect, daily resolution and the island complexity. That accuracy was relatively lower in (i) dry seasons and dry climatic zones than in wet seasons and wet climatic zones; (ii) pixels jointly covered by sea and mountainous land than in pixels covered by land or by sea only; and (iii) topographically diverse than uniform terrains. CMORPH25, CMORPH8, and TRMM underestimated and PERSIANN overestimated rainfall when comparing them to gauged rain. The CMORPH25 had relatively the best performance and the PERSIANN had the worst performance in the Bali Island. The CMORPH25 had the lowest statistical errors, the lowest miss, and the highest hit rainfall events; it also had the lowest miss rainfall bias and was relatively the most accurate in detecting, frequent in Bali, ≤ 20 mm day-1 rain events. Lastly, the CMORPH25 coarse grid better represented rainfall events from coastal to inlands areas than other satellite products, including finer grid CMORPH8.

  13. Landslides, floods and sinkholes in a karst environment: the 1-6 September 2014 Gargano event, southern Italy

    Science.gov (United States)

    Martinotti, Maria Elena; Pisano, Luca; Marchesini, Ivan; Rossi, Mauro; Peruccacci, Silvia; Brunetti, Maria Teresa; Melillo, Massimo; Amoruso, Giuseppe; Loiacono, Pierluigi; Vennari, Carmela; Vessia, Giovanna; Trabace, Maria; Parise, Mario; Guzzetti, Fausto

    2017-03-01

    In karst environments, heavy rainfall is known to cause multiple geohydrological hazards, including inundations, flash floods, landslides and sinkholes. We studied a period of intense rainfall from 1 to 6 September 2014 in the Gargano Promontory, a karst area in Puglia, southern Italy. In the period, a sequence of torrential rainfall events caused severe damage and claimed two fatalities. The amount and accuracy of the geographical and temporal information varied for the different hazards. The temporal information was most accurate for the inundation caused by a major river, less accurate for flash floods caused by minor torrents and even less accurate for landslides. For sinkholes, only generic information on the period of occurrence of the failures was available. Our analysis revealed that in the promontory, rainfall-driven hazards occurred in response to extreme meteorological conditions and that the karst landscape responded to the torrential rainfall with a threshold behaviour. We exploited the rainfall and the landslide information to design the new ensemble-non-exceedance probability (E-NEP) algorithm for the quantitative evaluation of the possible occurrence of rainfall-induced landslides and of related geohydrological hazards. The ensemble of the metrics produced by the E-NEP algorithm provided better diagnostics than the single metrics often used for landslide forecasting, including rainfall duration, cumulated rainfall and rainfall intensity. We expect that the E-NEP algorithm will be useful for landslide early warning in karst areas and in other similar environments. We acknowledge that further tests are needed to evaluate the algorithm in different meteorological, geological and physiographical settings.

  14. Detecting Climate Variability in Tropical Rainfall

    Science.gov (United States)

    Berg, W.

    2004-05-01

    A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to

  15. Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils.

    Science.gov (United States)

    Meite, Fatima; Alvarez-Zaldívar, Pablo; Crochet, Alexandre; Wiegert, Charline; Payraudeau, Sylvain; Imfeld, Gwenaël

    2018-03-01

    The combined influence of soil characteristics, pollutant aging and rainfall patterns on the export of pollutants from topsoils is poorly understood. We used laboratory experiments and parsimonious modeling to evaluate the impact of rainfall characteristics on the ponding and the leaching of a pollutant mixture from topsoils. The mixture included the fungicide metalaxyl, the herbicide S-metolachlor, as well as copper (Cu) and zinc (Zn). Four rainfall patterns, which differed in their durations and intensities, were applied twice successively with a 7days interval on each soil type. To evaluate the influence of soil type and aging, experiments included crop and vineyard soils and two stages of pollutant aging (0 and 10days). The global export of pollutants was significantly controlled by the rainfall duration and frequency (Pexport of metalaxyl (44.5±21.5% of the initial mass spiked in the soils), S-metolachlor (8.1±3.1%) and Cu (3.1±0.3%). Soil compaction caused by the first rainfall reduced in the second rainfall the leaching of remaining metalaxyl, S-metolachlor, Cu and Zn by 2.4-, 2.9-, 30- and 50-fold, respectively. In contrast, soil characteristics and aging had less influence on pollutant mass export. The soil type significantly influenced the leaching of Zn, while short-term aging impacted Cu leaching. Our results suggest that rainfall characteristics predominantly control export patterns of metalaxyl and S-metolachlor, in particular when the aging period is short. We anticipate our study to be a starting point for more systematic evaluation of the dissolved pollutant ponding/leaching partitioning and the export of pollutant mixtures from different soil types in relation to rainfall patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Rainfall variation and child health: effect of rainfall on diarrhea among under 5 children in Rwanda, 2010.

    Science.gov (United States)

    Mukabutera, Assumpta; Thomson, Dana; Murray, Megan; Basinga, Paulin; Nyirazinyoye, Laetitia; Atwood, Sidney; Savage, Kevin P; Ngirimana, Aimable; Hedt-Gauthier, Bethany L

    2016-08-05

    Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitation measurements collected between 2009 and 2011. Using these data and the 2010 Rwanda Demographic and Health Survey database, we measured the association between total monthly rainfall, monthly rainfall intensity, runoff water and anomalous rainfall and the occurrence of diarrhea in children under 5 years of age. Among the 8601 children under 5 years of age included in the survey, 13.2 % reported having diarrhea within the 2 weeks prior to the survey. We found that higher levels of runoff were protective against diarrhea compared to low levels among children who lived in households with unimproved toilet facilities (OR = 0.54, 95 % CI: [0.34, 0.87] for moderate runoff and OR = 0.50, 95 % CI: [0.29, 0.86] for high runoff) but had no impact among children in household with improved toilets. Our finding that children in households with unimproved toilets were less likely to report diarrhea during periods of high runoff highlights the vulnerabilities of those living without adequate sanitation to the negative health impacts of environmental events.

  17. Application of rain scanner SANTANU and transportable weather radar in analyze of Mesoscale Convective System (MCS) events over Bandung, West Java

    Science.gov (United States)

    Nugroho, G. A.; Sinatra, T.; Trismidianto; Fathrio, I.

    2018-05-01

    Simultaneous observation of transportable weather radar LAPAN-GMR25SP and rain-scanner SANTANU were conducted in Bandung and vicinity. The objective is to observe and analyse the weather condition in this area during rainy and transition season from March until April 2017. From the observation result reported some heavy rainfall with hail and strong winds occurred on March 17th and April 19th 2017. This events were lasted within 1 to 2 hours damaged some properties and trees in Bandung. Mesoscale convective system (MCS) are assumed to be the cause of this heavy rainfall. From two radar data analysis showed a more local convective activity in around 11.00 until 13.00 LT. This local convective activity are showed from the SANTANU observation supported by the VSECT and CMAX of the Transportable radar data that signify the convective activity within those area. MCS activity were observed one hour after that. This event are confirm by the classification of convective-stratiform echoes from radar data and also from the high convective index from Tbb Himawari 8 satellite data. The different MCS activity from this two case study is that April 19 have much more MCS activity than in March 17, 2017.

  18. Establishing a rainfall threshold for flash flood warnings based on the DFFG method in Yunnan province, China

    Science.gov (United States)

    Ma, M.; Wang, H.; Chen, Y.; Tang, G.; Hong, Z.; Zhang, K.; Hong, Y.

    2017-12-01

    Flash floods, one of the deadliest natural hazards worldwide due to their multidisciplinary nature, rank highly in terms of heavy damage and casualties. Such as in the United States, flash flood is the No.1 cause of death and the No. 2 most deadly weather-related hazard among all storm-related hazards, with approximately 100 lives lost each year. According to China Floods and Droughts Disasters Bullet in 2015 (http://www.mwr.gov.cn/zwzc/hygb/zgshzhgb), about 935 deaths per year on average were caused by flash floods from 2000 to 2015, accounting for 73 % of the fatalities due to floods. Therefore, significant efforts have been made toward understanding flash flood processes as well as modeling and forecasting them, it still remains challenging because of their short response time and limited monitoring capacity. This study advances the use of high-resolution Global Precipitation Measurement forecasts (GPMs), disaster data obtained from the government officials in 2011 and 2016, and the improved Distributed Flash Flood Guidance (DFFG) method combining the Distributed Hydrologic Model and Soil Conservation Service Curve Numbers. The objectives of this paper are (1) to examines changes in flash flood occurrence, (2) to estimate the effect of the rainfall spatial variability ,(2) to improve the lead time in flash floods warning and get the rainfall threshold, (3) to assess the DFFG method applicability in Dongchuan catchments, and (4) to yield the probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the GPMs. Results indicate: (1) flash flood occurrence increased in the study region, (2) the occurrence of predicted flash floods show high sensitivity to total infiltration and soil water content, (3) the DFFG method is generally capable of making accurate predictions of flash flood events in terms of their locations and time of occurrence, and (4) the accumulative rainfall over a certain time span is an

  19. Critical Phenomena of Rainfall in Ecuador

    Science.gov (United States)

    Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.

    2014-02-01

    Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).

  20. Daily rainfall statistics of TRMM and CMORPH: A case for trans-boundary Gandak River basin

    Science.gov (United States)

    Kumar, Brijesh; Patra, Kanhu Charan; Lakshmi, Venkat

    2016-07-01

    Satellite precipitation products offer an opportunity to evaluate extreme events (flood and drought) for areas where rainfall data are not available or rain gauge stations are sparse. In this study, daily precipitation amount and frequency of TRMM 3B42V.7 and CMORPH products have been validated against daily rain gauge precipitation for the monsoon months (June-September or JJAS) from 2005-2010 in the trans-boundary Gandak River basin. The analysis shows that the both TRMM and CMORPH can detect rain and no-rain events, but they fail to capture the intensity of rainfall. The detection of precipitation amount is strongly dependent on the topography. In the plains areas, TRMM product is capable of capturing high-intensity rain events but in the hilly regions, it underestimates the amount of high-intensity rain events. On the other hand, CMORPH entirely fails to capture the high-intensity rain events but does well with low-intensity rain events in both hilly regions as well as the plain region. The continuous variable verification method shows better agreement of TRMM rainfall products with rain gauge data. TRMM fares better in the prediction of probability of occurrence of high-intensity rainfall events, but it underestimates intensity at high altitudes. This implies that TRMM precipitation estimates can be used for flood-related studies only after bias adjustment for the topography.

  1. Producing Daily and Embedded Hourly Rainfall Data Using a Novel Weather Generator

    Directory of Open Access Journals (Sweden)

    Ching-Pin Tung

    2013-01-01

    Full Text Available The number of worldwide extreme drought and flood events has risen significantly in recent years. Many studies confer that climate change may cause more intensive and extreme events. Simulating the impact of climate change often requires weather data as inputs to assessment models. Stochastic weather generators have been developed to produce weather data with the same temporal resolution based on the outputs of GCMs. Reservoir simulation normally uses operational rules in daily and hourly time steps for water supply and flood reduction, respectively. Simulating consecutive drought and flood events simultaneously requires a weather generator to produce different temporal resolution data. This work develops a continuous weather generator to generate daily and hourly precipitation data for regular wet days and severe storms, respectively. Daily rainfall data is generated for regular wet days using Exponential distribution or Weibull distribution, while the total rainfall data for severe storms is generated using the Pearson type III or Log Pearson type III distribution. Moreover, hourly rainfall is determined based on generated hyetographs. Simulation results indicate that the proposed continuous weather generator can generate daily and hourly rainfall reasonably. The proposed weather generator is thus highly promising for use in evaluating how climate change impacts reservoir operations that are significantly influenced by more frequent and intensive consecutive drought and flood events.

  2. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  3. Diagnosis of Moist Vorticity and Moist Divergence for a Heavy Precipitation Event in Southwestern China

    Institute of Scientific and Technical Information of China (English)

    Gang LI; Daoyong YANG; Xiaohua JIANG; Jing PAN; Yanke TAN

    2017-01-01

    A regional heavy precipitation event that occurred over Sichuan Province on 8-9 September 2015 is analyzed based on hourly observed precipitation data obtained from weather stations and NCEP FNL data.Two moist dynamic parameters, i.e., moist vorticity (mζ) and moist divergence (mδ), are used to diagnose this heavy precipitation event.Results show that the topography over southwestern China has a significant impact on the ability of these two parameters to diagnose precipitation.When the impact of topography is weak (i.e., low altitude), mζ cannot exactly depict the location of precipitation in the initial stage of the event.Then, as the precipitation develops, its ability to depict the location improves significantly.In particular, mζ coincides best with the location of precipitation during the peak stage of the event.Besides, the evolution of the mζ center shows high consistency with the evolution of the precipitation center.For mδ,although some false-alarm regions are apparent, it reflects the location of precipitation almost entirely during the precipitation event.However, the mδ center shows inconsistency with the precipitation center.These results suggest that both mζ and mδ have a significant ability to predict the location of precipitation.Moreover, mζ has a stronger ability than mδ in terms of predicting the variability of the precipitation center.However, when the impact of topography is strong (i.e., high altitude), both of these two moist dynamic parameters are unable to depict the location and center of precipitation during the entire precipitation event, suggesting their weak ability to predict precipitation over complex topography.

  4. Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain)

    Science.gov (United States)

    Valenzuela, Pablo; Luís Zêzere, José; José Domínguez-Cuesta, María; Mora García, Manuel Antonio

    2017-04-01

    Rainfall-triggered landslides are common and widespread phenomena in Asturias, a mountainous region in the NW of Spain where the climate is characterized by average annual precipitation and temperature values of 960 mm and 13.3°C respectively. Different types of landslides (slides, flows and rockfalls) frequently occur during intense rainfall events, causing every year great economic losses and sometimes human injuries or fatalities. For this reason, its temporal forecast is of great interest. The main goal of the present research is the calculation of empirical rainfall thresholds for the triggering of landslides in the Asturian region, following the methodology described by Zêzere et al., 2015. For this purpose, data from 559 individual landslides collected from press archives during a period of eight hydrological years (October 2008-September 2016) and gathered within the BAPA landslide database (http://geol.uniovi.es/BAPA) were used. Precipitation data series of 37 years came from 6 weather stations representative of the main geographical and climatic conditions within the study area. Applied methodology includes: (i) the definition of landslide events, (ii) the reconstruction of the cumulative antecedent rainfall for each event from 1 to 90 consecutive days, (iii) the estimation of the return period for each cumulated rainfall-duration condition using Gumbel probability distribution, (iv) the definition of the critical cumulated rainfall-duration conditions taking into account the highest return period, (v) the calculation of the thresholds considering both the conditions for the occurrence and non-occurrence of landslides. References: Zêzere, J.L., Vaz, T., Pereira, S., Oliveira, S.C., Marqués, R., García, R.A.C. 2015. Rainfall thresholds for landslide activity in Portugal: a state of the art. Environmental Earth Sciences, 73, 2917-2936. doi: 10.1007/s12665-014-3672-0

  5. What aspects of future rainfall changes matter for crop yields in West Africa?

    Science.gov (United States)

    Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.

    2015-10-01

    How rainfall arrives, in terms of its frequency, intensity, the timing and duration of rainy season, may have a large influence on rainfed agriculture. However, a thorough assessment of these effects is largely missing. This study combines a new synthetic rainfall model and two independently validated crop models (APSIM and SARRA-H) to assess sorghum yield response to possible shifts in seasonal rainfall characteristics in West Africa. We find that shifts in total rainfall amount primarily drive the rainfall-related crop yield change, with less relevance to intraseasonal rainfall features. However, dry regions (total annual rainfall below 500 mm/yr) have a high sensitivity to rainfall frequency and intensity, and more intense rainfall events have greater benefits for crop yield than more frequent rainfall. Delayed monsoon onset may negatively impact yields. Our study implies that future changes in seasonal rainfall characteristics should be considered in designing specific crop adaptations in West Africa.

  6. The analysis of dependence between extreme rainfall and storm surge in the coastal zone

    Science.gov (United States)

    Zheng, F.; Westra, S.

    2012-12-01

    Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as

  7. Temporal and spatial variations of rainfall erosivity in Southern Taiwan

    Science.gov (United States)

    Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang

    2014-05-01

    Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.

  8. Soil erodibility variability in laboratory and field rainfall simulations

    Science.gov (United States)

    Szabó, Boglárka; Szabó, Judit; Jakab, Gergely; Centeri, Csaba; Szalai, Zoltán

    2017-04-01

    Rainfall simulation experiments are the most common way to observe and to model the soil erosion processes in in situ and ex situ circumstances. During modelling soil erosion, one of the most important factors are the annual soil loss and the soil erodibility which represent the effect of soil properties on soil loss and the soil resistance against water erosion. The amount of runoff and soil loss can differ in case of the same soil type, while it's characteristics determine the soil erodibility factor. This leads to uncertainties regarding soil erodibility. Soil loss and soil erodibility were examined with the investigation of the same soil under laboratory and field conditions with rainfall simulators. The comparative measurement was carried out in a laboratory on 0,5 m2, and in the field (Shower Power-02) on 6 m2 plot size where the applied slope angles were 5% and 12% with 30 and 90 mm/h rainfall intensity. The main idea was to examine and compare the soil erodibility and its variability coming from the same soil, but different rainfall simulator type. The applied model was the USLE, nomograph and other equations which concern single rainfall events. The given results show differences between the field and laboratory experiments and between the different calculations. Concerning for the whole rainfall events runoff and soil loss, were significantly higher at the laboratory experiments, which affected the soil erodibility values too. The given differences can originate from the plot size. The main research questions are that: How should we handle the soil erodibility factors and its significant variability? What is the best solution for soil erodibility determination?

  9. A Study of Precipitation Climatology and Its Variability over Europe Using an Advanced Regional Model (WRF)

    KAUST Repository

    Dasari, Hari Prasad

    2015-03-06

    In recent years long-term precipitation trends on a regional scale have been given emphasis due to the impacts of global warming on regional hydrology. In this study, regional precipitation trends are simulated over the Europe continent for a 60-year period in 1950-2010 using an advanced regional model, WRF, to study extreme precipitation events over Europe. The model runs continuously for each year during the period at a horizontal resolution of 25 km with initial/ boundary conditions derived from the National Center for Environmental Prediction (NCEP) 2.5 degree reanalysis data sets. The E-OBS 0.25 degree rainfall observation analysis is used for model validation. Results indicate that the model could reproduce the spatial annual rainfall pattern over Europe with low amounts (250 - 750 mm) in Iberian Peninsula, moderate to large amounts (750 - 1500 mm) in central, eastern and northeastern parts of Europe and extremely heavy falls (1500 - 2000 mm) in hilly areas of Alps with a slight overestimation in Alps and underestimation in other parts of Europe. The regional model integrations showed increasing errors (mean absolute errors) and decreasing correlations with increasing time scale (daily to seasonal). Rainfall is simulated relatively better in Iberian Peninsula, northwest and central parts of Europe. A large spatial variability with the highest number of wet days over eastern, central Europe and Alps (~200 days/year) and less number of wet days over Iberian Peninsula (≤150 days/year) is also found in agreement with observations. The model could simulate the spatial rainfall climate variability reasonably well with low rainfall days (1 - 10 mm/days) in almost all zones, heavy rainfall events in western, northern, southeastern hilly and coastal zones and extremely heavy rainfall events in northern coastal zones. An increasing trend of heavy rainfall in central, southern and southeastern parts, a decreasing trend in Iberian Peninsula and a steady trend in other

  10. Monthly variations of diurnal rainfall in north coast of West Java Indonesia during boreal winter periods

    Science.gov (United States)

    Yulihastin, E.; Trismidianto

    2018-05-01

    Diurnal rainfall during the active monsoon period is usually associated with the highest convective activity that often triggers extreme rainfall. Investigating diurnal rainfall behavior in the north coast of West Java is important to recognize the behavioral trends of data leading to such extreme events in strategic West Java because the city of Jakarta is located in this region. Variability of diurnal rainfall during the period of active monsoon on December-January-February (DJF) composite during the 2000-2016 period was investigated using hourly rainfall data from Tropical Rainfall Measuring Mission (TRMM) 3B41RT dataset. Through the Empirical Mode Decomposition method was appears that the diurnal rain cycle during February has increased significantly in its amplitude and frequency. It is simultaneously shows that the indication of extreme rainfall events is related to diurnal rain divergences during February shown through phase shifts. The diurnal, semidiurnal, and terdiurnal cycles appear on the characteristics of the DJF composite rainfall data during the 2000-2016 period.The significant increases in amplitude occurred during February are the diurnal (IMF 3) and terdiurnal (IMF 1) of rainfall cycles.

  11. Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the

  12. Boreal Summer Intraseasonal Oscillation Impact on Western North Pacific Typhoons and Rainfall in Taiwan

    OpenAIRE

    Chih-wen Hung; Ho-Jiunn Lin; Pei-ken Kao; Ming-fu Shih; Wei-yi Fong

    2016-01-01

    This study discusses the boreal summer intraseasonal oscillation (BSISO) impact on the western North Pacific (WNP) typhoons and the summer rainfall in Taiwan. The real time BSISO1 and BISISO2 indices are created using the first two and the third and fourth principal components of the multivariate empirical orthogonal function analysis, based on outgoing long-wave radiation and zonal wind at 850 hPa from Lee et al. (2013). The results show that heavy rainfall in Taiwan and the associated WNP t...

  13. Based on the rainfall system platform raindrops research and analysis of pressure loss

    Science.gov (United States)

    Cao, Gang; Sun, Jian

    2018-01-01

    With the rapid development of China’s military career, land, sea and air force all services and equipment of modern equipment need to be in the rain test, and verify its might suffer during transportation, storage or use a different environment temperature lower water or use underwater, the water is derived from the heavy rain, the wind and rain, sprinkler system, splash water, water wheel, a violent shock waves or use underwater, etcTest the product performance and quality, under the condition of rainfall system platform in the process of development, how to control the raindrops pressure loss becomes the key to whether the system can simulate the real rainfall [1], this paper is according to the rainfall intensity, nozzle flow resistance, meet water flow of rain pressure loss calculation and analysis, and system arrangement of the optimal solution of rainfall is obtained [2].

  14. Investigation of radial dose effect on single event upset cross-section due to heavy ions using GEANT4

    International Nuclear Information System (INIS)

    Boorboor, S.; Feghhi, S.A.H.; Jafari, H.

    2015-01-01

    The heavy ions are the main cause to produce single event upset (SEU) damage on electronic devices since they are high LET radiations. The dimension of electronic components in new technology, arise a challenge in radiation effect estimations. Accurate investigations require fully considering the ion track in energy deposition as a radial dose distribution. In this work, the distribution of delta rays as well as LET have been calculated to determine ionization structure around ion track by a Monte Carlo code, GEANT4. The radial dose of several heavy ions with different energy in silicon was investigated and compared with the works by other authors in this field. The results showed that heavy ions with identical LET can have different SEU cross-section in silicon transistors. As a demonstrative example, according to our results, the error probability for 4.8 GeV iron was 8 times greater than that for 15 MeV carbon ions, in transistors with new process technology which have small dimension and low critical charges. Our results show that considering radial dose distribution considerably improves the accuracy of the SEU cross-section estimation in electronic devices especially for new technologies. - Highlights: • The single event upset is produced by heavy ions interaction on electronic devices. • The radial dose of several heavy ions in silicon was calculated by GEANT4. • Heavy ions with identical LET had different SEU cross-section in silicon transistors. • Low dimension and critical charge devices were more sensitive to radial dose effect

  15. Genetic Programming for the Downscaling of Extreme Rainfall Events on the East Coast of Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Sahar Hadi Pour

    2014-11-01

    Full Text Available A genetic programming (GP-based logistic regression method is proposed in the present study for the downscaling of extreme rainfall indices on the east coast of Peninsular Malaysia, which is considered one of the zones in Malaysia most vulnerable to climate change. A National Centre for Environmental Prediction reanalysis dataset at 42 grid points surrounding the study area was used to select the predictors. GP models were developed for the downscaling of three extreme rainfall indices: days with larger than or equal to the 90th percentile of rainfall during the north-east monsoon; consecutive wet days; and consecutive dry days in a year. Daily rainfall data for the time periods 1961–1990 and 1991–2000 were used for the calibration and validation of models, respectively. The results are compared with those obtained using the multilayer perceptron neural network (ANN and linear regression-based statistical downscaling model (SDSM. It was found that models derived using GP can predict both annual and seasonal extreme rainfall indices more accurately compared to ANN and SDSM.

  16. The relative contribution of synoptic types to rainfall over the Cape south coast region

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2013-09-01

    Full Text Available independently identified. During 1979-2011, 179 COL events (286 COL days) were associated with rainfall over the study region. COL induced rainfall over the study region is mostly associated with COLs located over the southwestern interior (Fig. 2). Fig.../h (following Favre et al., 2012). The tracking procedure is developed in such a manner that geopotential minimums can only be employed in one track (one potential COL event). All these potential COL events are then subjected to a cold-core test...

  17. On the distributions of annual and seasonal daily rainfall extremes in central Arizona and their spatial variability

    Science.gov (United States)

    Mascaro, Giuseppe

    2018-04-01

    This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.

  18. Development of extreme rainfall PRA methodology for sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2016-01-01

    The objective of this study is to develop a probabilistic risk assessment (PRA) methodology for extreme rainfall with focusing on decay heat removal system of a sodium-cooled fast reactor. For the extreme rainfall, annual excess probability depending on the hazard intensity was statistically estimated based on meteorological data. To identify core damage sequence, event trees were developed by assuming scenarios that structures, systems and components (SSCs) important to safety are flooded with rainwater coming into the buildings through gaps in the doors and the SSCs fail when the level of rainwater on the ground or on the roof of the building becomes higher than thresholds of doors on first floor or on the roof during the rainfall. To estimate the failure probability of the SSCs, the level of water rise was estimated by comparing the difference between precipitation and drainage capacity. By combining annual excess probability and the failure probability of SSCs, the event trees led to quantification of core damage frequency, and therefore the PRA methodology for rainfall was developed. (author)

  19. A space-time hybrid hourly rainfall model for derived flood frequency analysis

    Directory of Open Access Journals (Sweden)

    U. Haberlandt

    2008-12-01

    Full Text Available For derived flood frequency analysis based on hydrological modelling long continuous precipitation time series with high temporal resolution are needed. Often, the observation network with recording rainfall gauges is poor, especially regarding the limited length of the available rainfall time series. Stochastic precipitation synthesis is a good alternative either to extend or to regionalise rainfall series to provide adequate input for long-term rainfall-runoff modelling with subsequent estimation of design floods. Here, a new two step procedure for stochastic synthesis of continuous hourly space-time rainfall is proposed and tested for the extension of short observed precipitation time series.

    First, a single-site alternating renewal model is presented to simulate independent hourly precipitation time series for several locations. The alternating renewal model describes wet spell durations, dry spell durations and wet spell intensities using univariate frequency distributions separately for two seasons. The dependence between wet spell intensity and duration is accounted for by 2-copulas. For disaggregation of the wet spells into hourly intensities a predefined profile is used. In the second step a multi-site resampling procedure is applied on the synthetic point rainfall event series to reproduce the spatial dependence structure of rainfall. Resampling is carried out successively on all synthetic event series using simulated annealing with an objective function considering three bivariate spatial rainfall characteristics. In a case study synthetic precipitation is generated for some locations with short observation records in two mesoscale catchments of the Bode river basin located in northern Germany. The synthetic rainfall data are then applied for derived flood frequency analysis using the hydrological model HEC-HMS. The results show good performance in reproducing average and extreme rainfall characteristics as well as in

  20. The role of regional information in estimation of extreme point rainfalls

    DEFF Research Database (Denmark)

    Rosbjerg, Dan; Madsen, Henrik

    1996-01-01

    Previous analysis has shown that inclusion of regional information improves at-site estimation of point rainfalls and makes it possible to obtain estimates at non-monitored sites. The basis for this analysis was a partial duration series (PDS) modelling of individual rainfall observations and use...... point rainfall data into one sample from a common parent distribution and modelling with disregard of either the dependence between stations or the regional heterogeneity. The different models are analysed and compared with respect to the uncertainty of the predicted extreme events....

  1. Rainfall variation and child health: effect of rainfall on diarrhea among under 5 children in Rwanda, 2010

    Directory of Open Access Journals (Sweden)

    Assumpta Mukabutera

    2016-08-01

    Full Text Available Abstract Background Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. Methods We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitation measurements collected between 2009 and 2011. Using these data and the 2010 Rwanda Demographic and Health Survey database, we measured the association between total monthly rainfall, monthly rainfall intensity, runoff water and anomalous rainfall and the occurrence of diarrhea in children under 5 years of age. Results Among the 8601 children under 5 years of age included in the survey, 13.2 % reported having diarrhea within the 2 weeks prior to the survey. We found that higher levels of runoff were protective against diarrhea compared to low levels among children who lived in households with unimproved toilet facilities (OR = 0.54, 95 % CI: [0.34, 0.87] for moderate runoff and OR = 0.50, 95 % CI: [0.29, 0.86] for high runoff but had no impact among children in household with improved toilets. Conclusion Our finding that children in households with unimproved toilets were less likely to report diarrhea during periods of high runoff highlights the vulnerabilities of those living without adequate sanitation to the negative health impacts of environmental events.

  2. Radar–rain-gauge rainfall estimation for hydrological applications in small catchments

    Directory of Open Access Journals (Sweden)

    S. Gabriele

    2017-07-01

    Full Text Available The accurate evaluation of the precipitation's time–spatial structure is a critical step for rainfall–runoff modelling. Particularly for small catchments, the variability of rainfall can lead to mismatched results. Large errors in flow evaluation may occur during convective storms, responsible for most of the flash floods in small catchments in the Mediterranean area. During such events, we may expect large spatial and temporal variability. Therefore, using rain-gauge measurements only can be insufficient in order to adequately depict extreme rainfall events. In this work, a double-level information approach, based on rain gauges and weather radar measurements, is used to improve areal rainfall estimations for hydrological applications. In order to highlight the effect that precipitation fields with different level of spatial details have on hydrological modelling, two kinds of spatial rainfall fields were computed for precipitation data collected during 2015, considering both rain gauges only and their merging with radar information. The differences produced by these two precipitation fields in the computation of the areal mean rainfall accumulation were evaluated considering 999 basins of the region Calabria, southern Italy. Moreover, both of the two precipitation fields were used to carry out rainfall–runoff simulations at catchment scale for main precipitation events that occurred during 2015 and the differences between the scenarios obtained in the two cases were analysed. A representative case study is presented in detail.

  3. Stochastic generation of hourly rainstorm events in Johor

    International Nuclear Information System (INIS)

    Nojumuddin, Nur Syereena; Yusof, Fadhilah; Yusop, Zulkifli

    2015-01-01

    Engineers and researchers in water-related studies are often faced with the problem of having insufficient and long rainfall record. Practical and effective methods must be developed to generate unavailable data from limited available data. Therefore, this paper presents a Monte-Carlo based stochastic hourly rainfall generation model to complement the unavailable data. The Monte Carlo simulation used in this study is based on the best fit of storm characteristics. Hence, by using the Maximum Likelihood Estimation (MLE) and Anderson Darling goodness-of-fit test, lognormal appeared to be the best rainfall distribution. Therefore, the Monte Carlo simulation based on lognormal distribution was used in the study. The proposed model was verified by comparing the statistical moments of rainstorm characteristics from the combination of the observed rainstorm events under 10 years and simulated rainstorm events under 30 years of rainfall records with those under the entire 40 years of observed rainfall data based on the hourly rainfall data at the station J1 in Johor over the period of 1972–2011. The absolute percentage error of the duration-depth, duration-inter-event time and depth-inter-event time will be used as the accuracy test. The results showed the first four product-moments of the observed rainstorm characteristics were close with the simulated rainstorm characteristics. The proposed model can be used as a basis to derive rainfall intensity-duration frequency in Johor

  4. Stochastic generation of hourly rainstorm events in Johor

    Science.gov (United States)

    Nojumuddin, Nur Syereena; Yusof, Fadhilah; Yusop, Zulkifli

    2015-02-01

    Engineers and researchers in water-related studies are often faced with the problem of having insufficient and long rainfall record. Practical and effective methods must be developed to generate unavailable data from limited available data. Therefore, this paper presents a Monte-Carlo based stochastic hourly rainfall generation model to complement the unavailable data. The Monte Carlo simulation used in this study is based on the best fit of storm characteristics. Hence, by using the Maximum Likelihood Estimation (MLE) and Anderson Darling goodness-of-fit test, lognormal appeared to be the best rainfall distribution. Therefore, the Monte Carlo simulation based on lognormal distribution was used in the study. The proposed model was verified by comparing the statistical moments of rainstorm characteristics from the combination of the observed rainstorm events under 10 years and simulated rainstorm events under 30 years of rainfall records with those under the entire 40 years of observed rainfall data based on the hourly rainfall data at the station J1 in Johor over the period of 1972-2011. The absolute percentage error of the duration-depth, duration-inter-event time and depth-inter-event time will be used as the accuracy test. The results showed the first four product-moments of the observed rainstorm characteristics were close with the simulated rainstorm characteristics. The proposed model can be used as a basis to derive rainfall intensity-duration frequency in Johor.

  5. Stochastic generation of hourly rainstorm events in Johor

    Energy Technology Data Exchange (ETDEWEB)

    Nojumuddin, Nur Syereena; Yusof, Fadhilah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Yusop, Zulkifli [Institute of Environmental and Water Resources Management, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-02-03

    Engineers and researchers in water-related studies are often faced with the problem of having insufficient and long rainfall record. Practical and effective methods must be developed to generate unavailable data from limited available data. Therefore, this paper presents a Monte-Carlo based stochastic hourly rainfall generation model to complement the unavailable data. The Monte Carlo simulation used in this study is based on the best fit of storm characteristics. Hence, by using the Maximum Likelihood Estimation (MLE) and Anderson Darling goodness-of-fit test, lognormal appeared to be the best rainfall distribution. Therefore, the Monte Carlo simulation based on lognormal distribution was used in the study. The proposed model was verified by comparing the statistical moments of rainstorm characteristics from the combination of the observed rainstorm events under 10 years and simulated rainstorm events under 30 years of rainfall records with those under the entire 40 years of observed rainfall data based on the hourly rainfall data at the station J1 in Johor over the period of 1972–2011. The absolute percentage error of the duration-depth, duration-inter-event time and depth-inter-event time will be used as the accuracy test. The results showed the first four product-moments of the observed rainstorm characteristics were close with the simulated rainstorm characteristics. The proposed model can be used as a basis to derive rainfall intensity-duration frequency in Johor.

  6. Regionalization of monthly rainfall erosivity patternsin Switzerland

    Science.gov (United States)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of

  7. Tropical intraseasonal rainfall variability in the CFSR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiande [I.M. System Group Inc. at NOAA/NCEP/EMC, Camp Springs, MD (United States); Wang, Wanqiu [NOAA/NCEP/CPC, Camp Springs, MD (United States); Fu, Xiouhua [University of Hawaii at Manoa, IPRC, SOEST, Honolulu, HI (United States); Seo, Kyong-Hwan [Pusan National University, Department of Atmospheric Sciences, Busan (Korea, Republic of)

    2012-06-15

    While large-scale circulation fields from atmospheric reanalyses have been widely used to study the tropical intraseasonal variability, rainfall variations from the reanalyses are less focused. Because of the sparseness of in situ observations available in the tropics and strong coupling between convection and large-scale circulation, the accuracy of tropical rainfall from the reanalyses not only measures the quality of reanalysis rainfall but is also to some extent indicative of the accuracy of the circulations fields. This study analyzes tropical intraseasonal rainfall variability in the recently completed NCEP Climate Forecast System Reanalysis (CFSR) and its comparison with the widely used NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2). The R1 produces too weak rainfall variability while the R2 generates too strong westward propagation. Compared with the R1 and R2, the CFSR produces greatly improved tropical intraseasonal rainfall variability with the dominance of eastward propagation and more realistic amplitude. An analysis of the relationship between rainfall and large-scale fields using composites based on Madden-Julian Oscillation (MJO) events shows that, in all three NCEP reanalyses, the moisture convergence leading the rainfall maximum is near the surface in the western Pacific but is above 925 hPa in the eastern Indian Ocean. However, the CFSR produces the strongest large-scale convergence and the rainfall from CFSR lags the column integrated precipitable water by 1 or 2 days while R1 and R2 rainfall tends to lead the respective precipitable water. Diabatic heating related to the MJO variability in the CFSR is analyzed and compared with that derived from large-scale fields. It is found that the amplitude of CFSR-produced total heating anomalies is smaller than that of the derived. Rainfall variability from the other two recently produced reanalyses, the ECMWF Re-Analysis Interim (ERAI), and the Modern Era Retrospective-analysis for Research and

  8. Characterization of the Sahelian-Sudan rainfall based on observations and regional climate models

    Science.gov (United States)

    Salih, Abubakr A. M.; Elagib, Nadir Ahmed; Tjernström, Michael; Zhang, Qiong

    2018-04-01

    The African Sahel region is known to be highly vulnerable to climate variability and change. We analyze rainfall in the Sahelian Sudan in terms of distribution of rain-days and amounts, and examine whether regional climate models can capture these rainfall features. Three regional models namely, Regional Model (REMO), Rossby Center Atmospheric Model (RCA) and Regional Climate Model (RegCM4), are evaluated against gridded observations (Climate Research Unit, Tropical Rainfall Measuring Mission, and ERA-interim reanalysis) and rain-gauge data from six arid and semi-arid weather stations across Sahelian Sudan over the period 1989 to 2008. Most of the observed rain-days are characterized by weak (0.1-1.0 mm/day) to moderate (> 1.0-10.0 mm/day) rainfall, with average frequencies of 18.5% and 48.0% of the total annual rain-days, respectively. Although very strong rainfall events (> 30.0 mm/day) occur rarely, they account for a large fraction of the total annual rainfall (28-42% across the stations). The performance of the models varies both spatially and temporally. RegCM4 most closely reproduces the observed annual rainfall cycle, especially for the more arid locations, but all of the three models fail to capture the strong rainfall events and hence underestimate its contribution to the total annual number of rain-days and rainfall amount. However, excessive moderate rainfall compensates this underestimation in the models in an annual average sense. The present study uncovers some of the models' limitations in skillfully reproducing the observed climate over dry regions, will aid model users in recognizing the uncertainties in the model output and will help climate and hydrological modeling communities in improving models.

  9. Measurement of initial soil moisture conditions for purposes of rainfall simulation experiments

    OpenAIRE

    TEREZA, Davidová; VÁCLAV, David

    2015-01-01

    The research on rainfall-runoff processes has become even more important in recent decades with respect to both flood and drought events as well as to expected impacts of considered climate changes. It is researched in different ways and at different scales according to the purpose. The rainfall simulator developed at Department of Irrigation, Drainage and Landscape Engineering is being used for purposes of detail analysis of rainfall-runoff process in order to research infiltration process w...

  10. Energy dependence and temporal evolution of the 3He/4He ratios in heavy-ion-rich energetic particle events

    International Nuclear Information System (INIS)

    Moebius, E.; Hovestadt, D.; Klecker, B.; Gloeckler, G.

    1980-01-01

    The energy dependence of the 3 He/ 4 He ratio between 0.44 and 4.1 MeV per nucleon has been studied for six heavy-ion--rich events observed in 1974 and 1976 using the low-energy dE/dx versus E Ultralow-Energy Particle telescope (ULET) on IMP 8. We find that all selected heavy-ion--rich events are also enriched in 3 He, that the 3 He/ 4 He He ratio decreases with decreasing energies, and that a rapid temporal evolution of the 3 He/ 4 He and the Fe/(H+He) ratios is strongly correlated during one event with the maximum value at the onset. These results are discussed in terms of a model which is based on preferential injection of 3 He and Fe resulting from turbulent ion heating and subsequent Fermi acceleration

  11. Along the Rainfall-Runoff Chain: From Scaling of Greatest Point Rainfall to Global Change Attribution

    Science.gov (United States)

    Fraedrich, K.

    2014-12-01

    Processes along the continental rainfall-runoff chain cover a wide range of time and space scales which are presented here combining observations (ranging from minutes to decades) and minimalist concepts. (i) Rainfall, which can be simulated by a censored first-order autoregressive process (vertical moisture fluxes), exhibits 1/f-spectra if presented as binary events (tropics), while extrema world wide increase with duration according to Jennings' scaling law. (ii) Runoff volatility (Yangtze) shows data collapse which, linked to an intra-annual 1/f-spectrum, is represented by a single function not unlike physical systems at criticality and the short and long return times of extremes are Weibull-distributed. Atmospheric and soil moisture variabilities are also discussed. (iii) Soil moisture (in a bucket), whose variability is interpreted by a biased coinflip Ansatz for rainfall events, adds an equation of state to energy and water flux balances comprising Budyko's frame work for quasi-stationary watershed analysis. Eco-hydrologic state space presentations in terms of surface flux ratios of energy excess (loss by sensible heat over supply by net radiation) versus water excess (loss by discharge over gain by precipitation) allow attributions of state change to external (or climate) and internal (or anthropogenic) causes. Including the vegetation-greenness index (NDVI) as an active tracer extends the eco-hydrologic state space analysis to supplement the common geographical presentations. Two examples demonstrate the approach combining ERA and MODIS data sets: (a) global geobotanic classification by combining first and second moments of the dryness ratio (net radiation over precipitation) and (b) regional attributions (Tibetan Plateau) of vegetation changes.

  12. Flooding from Intense Rainfall: an overview of project SINATRA

    Science.gov (United States)

    Cloke, Hannah

    2014-05-01

    Project SINATRA (Susceptibility of catchments to INTense RAinfall and flooding) is part of the UK NERC's Flooding From Intense Rainfall (FFIR) research programme which aims to reduce the risks of damage and loss of life caused by surface water and flash floods through improved identification, characterisation and prediction of interacting meteorological, hydrological and hydro-morphological processes that contribute to flooding associated with high-intensity rainfall events. Extreme rainfall events may only last for a few hours at most, but can generate terrifying and destructive floods. Their impact can be affected by a wide range factors (or processes) such as the location and intensity of the rainfall, the shape and steepness of the catchment it falls on, how much sediment is moved by the water and the vulnerability of the communities in the flood's path. Furthermore, FFIR are by their nature rapid, making it very difficult for researchers to 'capture' measurements during events. The complexity, speed and lack of field measurements on FFIR make it difficult to create computer models to predict flooding and often we are uncertain as to their accuracy. In addition there is no consensus on how to identify how particular catchments may be vulnerable to FFIR, due to factors such as catchment area, shape, geology and soil type as well as land-use. Additionally, the catchments most susceptible to FFIR are often small and un-gauged. Project SINATRA will: (1) Increase our understanding of what factors cause FFIR and gathering new, high resolution measurements of FFIR by: assembling an archive of past FFIR events in Britain and their impacts, as a prerequisite for improving our ability to predict future occurrences of FFIR; making real time observations of flooding during flood events as well as post-event surveys and historical event reconstruction, using fieldwork and crowd-sourcing methods; and characterizing the physical drivers for UK summer flooding events by

  13. Building rainfall thresholds for large-scales landslides by extracting occurrence time of landslides from seismic records

    Science.gov (United States)

    Yen, Hsin-Yi; Lin, Guan-Wei

    2017-04-01

    Understanding the rainfall condition which triggers mass moment on hillslope is the key to forecast rainfall-induced slope hazards, and the exact time of landslide occurrence is one of the basic information for rainfall statistics. In the study, we focused on large-scale landslides (LSLs) with disturbed area larger than 10 ha and conducted a string of studies including the recognition of landslide-induced ground motions and the analyses of different terms of rainfall thresholds. More than 10 heavy typhoons during the periods of 2005-2014 in Taiwan induced more than hundreds of LSLs and provided the opportunity to characterize the rainfall conditions which trigger LSLs. A total of 101 landslide-induced seismic signals were identified from the records of Taiwan seismic network. These signals exposed the occurrence time of landslide to assess rainfall conditions. Rainfall analyses showed that LSLs occurred when cumulative rainfall exceeded 500 mm. The results of rainfall-threshold analyses revealed that it is difficult to distinct LSLs from small-scale landslides (SSLs) by the I-D and R-D methods, but the I-R method can achieve the discrimination. Besides, an enhanced three-factor threshold considering deep water content was proposed as the rainfall threshold for LSLs.

  14. A systematic assessment of watershed-scale nonpoint source pollution during rainfall-runoff events in the Miyun Reservoir watershed.

    Science.gov (United States)

    Qiu, Jiali; Shen, Zhenyao; Wei, Guoyuan; Wang, Guobo; Xie, Hui; Lv, Guanping

    2018-03-01

    The assessment of peak flow rate, total runoff volume, and pollutant loads during rainfall process are very important for the watershed management and the ecological restoration of aquatic environment. Real-time measurements of rainfall-runoff and pollutant loads are always the most reliable approach but are difficult to carry out at all desired location in the watersheds considering the large consumption of material and financial resources. An integrated environmental modeling approach for the estimation of flash streamflow that combines the various hydrological and quality processes during rainstorms within the agricultural watersheds is essential to develop targeted management strategies for the endangered drinking water. This study applied the Hydrological Simulation Program-Fortran (HSPF) to simulate the spatial and temporal variation in hydrological processes and pollutant transport processes during rainstorm events in the Miyun Reservoir watershed, a drinking water resource area in Beijing. The model performance indicators ensured the acceptable applicability of the HSPF model to simulate flow and pollutant loads in the studied watershed and to establish a relationship between land use and the parameter values. The proportion of soil and land use was then identified as the influencing factors of the pollution intensities. The results indicated that the flush concentrations were much higher than those observed during normal flow periods and considerably exceeded the limits of Class III Environmental Quality Standards for Surface Water (GB3838-2002) for the secondary protection zones of the drinking water resource in China. Agricultural land and leached cinnamon soils were identified as the key sources of sediment, nutrients, and fecal coliforms. Precipitation volume was identified as a driving factor that determined the amount of runoff and pollutant loads during rainfall processes. These results are useful to improve the streamflow predictions, provide

  15. Monsoon Rainfall and Landslides in Nepal

    Science.gov (United States)

    Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.

    2009-12-01

    A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of

  16. Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics

    Science.gov (United States)

    Sreekanth, T. S.

    Large Micro-Physical characterisation of Convective & Stratiform Rainfall at Tropics begin{center} begin{center} Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar, Peroorkada, Thiruvananthapuram ABSTRACT Micro-physical parameters of rainfall such as rain drop size & fall speed distribution, mass weighted mean diameter, Total no. of rain drops, Normalisation parameters for rain intensity, maximum & minimum drop diameter from different rain intensity ranges, from both stratiform and convective rain events were analysed. Convective -Stratiform classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill was also used. Events which cannot be included in both types are termed as 'mixed precipitation' and identified separately. For the three years 2011, 2012 & 2013, rain events from both convective & stratiform origin are identified from three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Micro-physical characterisation was done for each rain events and analysed. Ground based and radar observations were made and classification of stratiform and convective rainfall was done by the method followed by Testud et al (2001). Radar bright band and non bright band analysis was done for confimation of stratifom and convective rain respectievely. Atmospheric electric field data from electric field mill is also used for confirmation of convection during convective events. Statistical analyses revealed that the standard deviation of rain drop size in higher rain rates are higher than in lower rain rates. Normalised drop size distribution is ploted for selected events from both forms. Inter relations between various precipitation parameters were analysed in three

  17. Technical note: Space-time analysis of rainfall extremes in Italy: clues from a reconciled dataset

    Science.gov (United States)

    Libertino, Andrea; Ganora, Daniele; Claps, Pierluigi

    2018-05-01

    Like other Mediterranean areas, Italy is prone to the development of events with significant rainfall intensity, lasting for several hours. The main triggering mechanisms of these events are quite well known, but the aim of developing rainstorm hazard maps compatible with their actual probability of occurrence is still far from being reached. A systematic frequency analysis of these occasional highly intense events would require a complete countrywide dataset of sub-daily rainfall records, but this kind of information was still lacking for the Italian territory. In this work several sources of data are gathered, for assembling the first comprehensive and updated dataset of extreme rainfall of short duration in Italy. The resulting dataset, referred to as the Italian Rainfall Extreme Dataset (I-RED), includes the annual maximum rainfalls recorded in 1 to 24 consecutive hours from more than 4500 stations across the country, spanning the period between 1916 and 2014. A detailed description of the spatial and temporal coverage of the I-RED is presented, together with an exploratory statistical analysis aimed at providing preliminary information on the climatology of extreme rainfall at the national scale. Due to some legal restrictions, the database can be provided only under certain conditions. Taking into account the potentialities emerging from the analysis, a description of the ongoing and planned future work activities on the database is provided.

  18. Development of Deep Learning Based Data Fusion Approach for Accurate Rainfall Estimation Using Ground Radar and Satellite Precipitation Products

    Science.gov (United States)

    Chen, H.; Chandra, C. V.; Tan, H.; Cifelli, R.; Xie, P.

    2016-12-01

    Rainfall estimation based on onboard satellite measurements has been an important topic in satellite meteorology for decades. A number of precipitation products at multiple time and space scales have been developed based upon satellite observations. For example, NOAA Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space based rainfall estimates. The CMORPH products are essentially derived based on geostationary satellite IR brightness temperature information and retrievals from passive microwave measurements (Joyce et al. 2004). Although the space-based precipitation products provide an excellent tool for regional and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, its accuracy is limited due to the sampling limitations, particularly for extreme events such as very light and/or heavy rain. On the other hand, ground-based radar is more mature science for quantitative precipitation estimation (QPE), especially after the implementation of dual-polarization technique and further enhanced by urban scale radar networks. Therefore, ground radars are often critical for providing local scale rainfall estimation and a "heads-up" for operational forecasters to issue watches and warnings as well as validation of various space measurements and products. The CASA DFW QPE system, which is based on dual-polarization X-band CASA radars and a local S-band WSR-88DP radar, has demonstrated its excellent performance during several years of operation in a variety of precipitation regimes. The real-time CASA DFW QPE products are used extensively for localized hydrometeorological applications such as urban flash flood forecasting. In this paper, a neural network based data fusion mechanism is introduced to improve the satellite-based CMORPH precipitation product by taking into account the ground radar measurements. A deep learning system is

  19. An Establishment of Rainfall-induced Soil Erosion Index for the Slope Land in Watershed

    Science.gov (United States)

    Tsai, Kuang-Jung; Chen, Yie-Ruey; Hsieh, Shun-Chieh; Shu, Chia-Chun; Chen, Ying-Hui

    2014-05-01

    With more and more concentrated extreme rainfall events as a result of climate change, in Taiwan, mass cover soil erosion occurred frequently and led to sediment related disasters in high intensity precipiton region during typhoons or torrential rain storms. These disasters cause a severely lost to the property, public construction and even the casualty of the resident in the affected areas. Therefore, we collected soil losses by using field investigation data from the upstream of watershed where near speific rivers to explore the soil erosion caused by heavy rainfall under different natural environment. Soil losses induced by rainfall and runoff were obtained from the long-term soil depth measurement of erosion plots, which were established in the field, used to estimate the total volume of soil erosion. Furthermore, the soil erosion index was obtained by referring to natural environment of erosion test plots and the Universal Soil Loss Equation (USLE). All data collected from field were used to compare with the one obtained from laboratory test recommended by the Technical Regulation for Soil and Water Conservation in Taiwan. With MATLAB as a modeling platform, evaluation model for soil erodibility factors was obtained by golden section search method, considering factors contributing to the soil erosion; such as degree of slope, soil texture, slope aspect, the distance far away from water system, topography elevation, and normalized difference vegetation index (NDVI). The distribution map of soil erosion index was developed by this project and used to estimate the rainfall-induced soil losses from erosion plots have been established in the study area since 2008. All results indicated that soil erodibility increases with accumulated rainfall amount regardless of soil characteristics measured in the field. Under the same accumulated rainfall amount, the volume of soil erosion also increases with the degree of slope and soil permeability, but decreases with the

  20. Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2014-01-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm-season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold-season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. We further hypothesize that the transient mass fluxes associated with the temporal-spatial dynamics of interflow govern the timing of shallow landslide initiation, and subsequent debris flow mobilization. The first objective of this study is to investigate this relationship. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations; availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions; and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions

  1. Watershed soil Cd loss after long-term agricultural practice and biochar amendment under four rainfall levels.

    Science.gov (United States)

    Ouyang, Wei; Huang, Weijia; Hao, Xin; Tysklind, Mats; Haglund, Peter; Hao, Fanghua

    2017-10-01

    Some heavy metals in farmland soil can be transported into the waterbody, affecting the water quality and sediment at the watershed outlet, which can be used to determine the historical loss pattern. Cd is a typical heavy metal leached from farmland that is related to phosphate fertilizers and carries serious environmental risk. The spatial-vertical pattern of Cd in soil and the vertical trend of Cd in the river sediment core were analyzed, which showed the migration and accumulation of Cd in the watershed. To prevent watershed Cd loss, biochar was employed, and leaching experiments were conducted to investigate the Cd loss from soil depending on the initial concentration. Four rainfall intensities, 1.25 mm/h, 2.50 mm/h, 5.00 mm/h, and 10.00 mm/h, were used to simulate typical rainfall scenarios for the study area. Biochar was prepared from corn straw after pretreatment with ammonium dihydrogen phosphate (ADP) and pyrolysis at 400 °C under anoxic conditions. To identify the effects of biochar amendment on Cd migration, the biochar was mixed with soil for 90 days at concentrations of 0%, 0.5%, 1.0%, 3.0%, and 5.0% soil by weight. The results showed that the Cd leaching load increased as the initial load and rainfall intensity increased and that eluviation caused surface Cd to diffuse to the deep soils. The biochar application caused more of the heavy metals to be immobilized in the amended soil rather than transported into the waterbody. The sorption efficiency of the biochar for Cd increased as the addition level increased to 3%, which showed better performance than the 5% addition level under some initial concentration and rainfall conditions. The research indicated that biochar is a potential material to prevent diffuse heavy metal pollution and that a lower addition makes the application more feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Comparison and applicability of landslide susceptibility models based on landslide ratio-based logistic regression, frequency ratio, weight of evidence, and instability index methods in an extreme rainfall event

    Science.gov (United States)

    Wu, Chunhung

    2016-04-01

    Few researches have discussed about the applicability of applying the statistical landslide susceptibility (LS) model for extreme rainfall-induced landslide events. The researches focuses on the comparison and applicability of LS models based on four methods, including landslide ratio-based logistic regression (LRBLR), frequency ratio (FR), weight of evidence (WOE), and instability index (II) methods, in an extreme rainfall-induced landslide cases. The landslide inventory in the Chishan river watershed, Southwestern Taiwan, after 2009 Typhoon Morakot is the main materials in this research. The Chishan river watershed is a tributary watershed of Kaoping river watershed, which is a landslide- and erosion-prone watershed with the annual average suspended load of 3.6×107 MT/yr (ranks 11th in the world). Typhoon Morakot struck Southern Taiwan from Aug. 6-10 in 2009 and dumped nearly 2,000 mm of rainfall in the Chishan river watershed. The 24-hour, 48-hour, and 72-hours accumulated rainfall in the Chishan river watershed exceeded the 200-year return period accumulated rainfall. 2,389 landslide polygons in the Chishan river watershed were extracted from SPOT 5 images after 2009 Typhoon Morakot. The total landslide area is around 33.5 km2, equals to the landslide ratio of 4.1%. The main landslide types based on Varnes' (1978) classification are rotational and translational slides. The two characteristics of extreme rainfall-induced landslide event are dense landslide distribution and large occupation of downslope landslide areas owing to headward erosion and bank erosion in the flooding processes. The area of downslope landslide in the Chishan river watershed after 2009 Typhoon Morakot is 3.2 times higher than that of upslope landslide areas. The prediction accuracy of LS models based on LRBLR, FR, WOE, and II methods have been proven over 70%. The model performance and applicability of four models in a landslide-prone watershed with dense distribution of rainfall

  3. Investigation of the possible influence of Urbanization on Rainfall ...

    African Journals Online (AJOL)

    Higher rainfall is experienced on the western part of area as compared to the eastern side of the city. The reducing albedo over the city is a good indicator that the city is getting urbanized. The intensity of wet events is higher than dry events, characterized by high positive anomaly values. The number of rainy days is ...

  4. Gastrointestinal illness among triathletes swimming in non-polluted versus polluted seawater affected by heavy rainfall, Denmark, 2010-2011.

    Directory of Open Access Journals (Sweden)

    Nina Majlund Harder-Lauridsen

    Full Text Available Recent years have seen an increase in the frequency of extreme rainfall and subsequent flooding across the world. Climate change models predict that such flooding will become more common, triggering sewer overflows, potentially with increased risks to human health. In August 2010, a triathlon sports competition was held in Copenhagen, Denmark, shortly after an extreme rainfall. The authors took advantage of this event to investigate disease risks in two comparable cohorts of physically fit, long distance swimmers competing in the sea next to a large urban area. An established model of bacterial concentration in the water was used to examine the level of pollution in a spatio-temporal manner. Symptoms and exposures among athletes were examined with a questionnaire using a retrospective cohort design and the questionnaire investigation was repeated after a triathlon competition held in non-polluted seawater in 2011. Diagnostic information was collected from microbiological laboratories. The results showed that the 3.8 kilometer open water swimming competition coincided with the peak of post-flooding bacterial contamination in 2010, with average concentrations of 1.5x10(4 E. coli per 100 ml water. The attack rate of disease among 838 swimmers in 2010 was 42% compared to 8% among 931 swimmers in the 2011 competition (relative risk (RR 5.0; 95% CI: 4.0-6.39. In 2010, illness was associated with having unintentionally swallowed contaminated water (RR 2.5; 95% CI: 1.8-3.4; and the risk increased with the number of mouthfuls of water swallowed. Confirmed aetiologies of infection included Campylobacter, Giardia lamblia and diarrhoeagenic E. coli. The study demonstrated a considerable risk of illness from water intake when swimming in contaminated seawater in 2010, and a small but measureable risk from non-polluted water in 2011. This suggests a significant risk of disease in people ingesting small amounts of flood water following extreme rainfall in

  5. Gastrointestinal illness among triathletes swimming in non-polluted versus polluted seawater affected by heavy rainfall, Denmark, 2010-2011.

    Science.gov (United States)

    Harder-Lauridsen, Nina Majlund; Kuhn, Katrin Gaardbo; Erichsen, Anders Christian; Mølbak, Kåre; Ethelberg, Steen

    2013-01-01

    Recent years have seen an increase in the frequency of extreme rainfall and subsequent flooding across the world. Climate change models predict that such flooding will become more common, triggering sewer overflows, potentially with increased risks to human health. In August 2010, a triathlon sports competition was held in Copenhagen, Denmark, shortly after an extreme rainfall. The authors took advantage of this event to investigate disease risks in two comparable cohorts of physically fit, long distance swimmers competing in the sea next to a large urban area. An established model of bacterial concentration in the water was used to examine the level of pollution in a spatio-temporal manner. Symptoms and exposures among athletes were examined with a questionnaire using a retrospective cohort design and the questionnaire investigation was repeated after a triathlon competition held in non-polluted seawater in 2011. Diagnostic information was collected from microbiological laboratories. The results showed that the 3.8 kilometer open water swimming competition coincided with the peak of post-flooding bacterial contamination in 2010, with average concentrations of 1.5x10(4) E. coli per 100 ml water. The attack rate of disease among 838 swimmers in 2010 was 42% compared to 8% among 931 swimmers in the 2011 competition (relative risk (RR) 5.0; 95% CI: 4.0-6.39). In 2010, illness was associated with having unintentionally swallowed contaminated water (RR 2.5; 95% CI: 1.8-3.4); and the risk increased with the number of mouthfuls of water swallowed. Confirmed aetiologies of infection included Campylobacter, Giardia lamblia and diarrhoeagenic E. coli. The study demonstrated a considerable risk of illness from water intake when swimming in contaminated seawater in 2010, and a small but measureable risk from non-polluted water in 2011. This suggests a significant risk of disease in people ingesting small amounts of flood water following extreme rainfall in urban areas.

  6. Quality-control of an hourly rainfall dataset and climatology of extremes for the UK.

    Science.gov (United States)

    Blenkinsop, Stephen; Lewis, Elizabeth; Chan, Steven C; Fowler, Hayley J

    2017-02-01

    Sub-daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non-operation of gauges. Given the prospect of an intensification of short-duration rainfall in a warming climate, the identification of such errors is essential if sub-daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near-complete hourly records for 1992-2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n-largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north-south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub-daily rainfall, with convection dominating during summer. The resulting quality-controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality-control procedures for sub-daily data, the validation of the new generation of very high

  7. Rainfall threshold calculation for debris flow early warning in areas with scarcity of data

    Science.gov (United States)

    Pan, Hua-Li; Jiang, Yuan-Jun; Wang, Jun; Ou, Guo-Qiang

    2018-05-01

    Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008-2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other

  8. A scattering-based over-land rainfall retrieval algorithm for South Korea using GCOM-W1/AMSR-2 data

    Science.gov (United States)

    Kwon, Young-Joo; Shin, Hayan; Ban, Hyunju; Lee, Yang-Won; Park, Kyung-Ae; Cho, Jaeil; Park, No-Wook; Hong, Sungwook

    2017-08-01

    Heavy summer rainfall is a primary natural disaster affecting lives and properties in the Korean Peninsula. This study presents a satellite-based rainfall rate retrieval algorithm for the South Korea combining polarization-corrected temperature ( PCT) and scattering index ( SI) data from the 36.5 and 89.0 GHz channels of the Advanced microwave Scanning Radiometer 2 (AMSR-2) onboard the Global Change Observation Mission (GCOM)-W1 satellite. The coefficients for the algorithm were obtained from spatial and temporal collocation data from the AMSR-2 and groundbased automatic weather station rain gauges from 1 July - 30 August during the years, 2012-2015. There were time delays of about 25 minutes between the AMSR-2 observations and the ground raingauge measurements. A new linearly-combined rainfall retrieval algorithm focused on heavy rain for the PCT and SI was validated using ground-based rainfall observations for the South Korea from 1 July - 30 August, 2016. The validation presented PCT and SI methods showed slightly improved results for rainfall > 5 mm h-1 compared to the current ASMR-2 level 2 data. The best bias and root mean square error (RMSE) for the PCT method at AMSR-2 36.5 GHz were 2.09 mm h-1 and 7.29 mm h-1, respectively, while the current official AMSR-2 rainfall rates show a larger bias and RMSE (4.80 mm h-1 and 9.35 mm h-1, respectively). This study provides a scatteringbased over-land rainfall retrieval algorithm for South Korea affected by stationary front rain and typhoons with the advantages of the previous PCT and SI methods to be applied to a variety of spaceborne passive microwave radiometers.

  9. Multi-catchment rainfall-runoff simulation for extreme flood estimation

    Science.gov (United States)

    Paquet, Emmanuel

    2017-04-01

    The SCHADEX method (Paquet et al., 2013) is a reference method in France for the estimation of extreme flood for dam design. The method is based on a semi-continuous rainfall-runoff simulation process: hundreds of different rainy events, randomly drawn up to extreme values, are simulated independently in the hydrological conditions of each day when a rainy event has been actually observed. This allows generating an exhaustive set of crossings between precipitation and soil saturation hazards, and to build a complete distribution of flood discharges up to extreme quantiles. The hydrological model used within SCHADEX, the MORDOR model (Garçon, 1996), is a lumped model, which implies that hydrological processes, e.g. rainfall and soil saturation, are supposed to be homogeneous throughout the catchment. Snow processes are nevertheless represented in relation with altitude. This hypothesis of homogeneity is questionable especially as the size of the catchment increases, or in areas of highly contrasted climatology (like mountainous areas). Conversely, modeling the catchment with a fully distributed approach would cause different problems, in particular distributing the rainfall-runoff model parameters trough space, and within the SCHADEX stochastic framework, generating extreme rain fields with credible spatio-temporal features. An intermediate solution is presented here. It provides a better representation of the hydro-climatic diversity of the studied catchment (especially regarding flood processes) while keeping the SCHADEX simulation framework. It consists in dividing the catchment in several, more homogeneous sub-catchments. Rainfall-runoff models are parameterized individually for each of them, using local discharge data if available. A first SCHADEX simulation is done at the global scale, which allows assigning a probability to each simulated event, mainly based on the global areal rainfall drawn for the event (see Paquet el al., 2013 for details). Then the

  10. Sensitivity of Rainfall Extremes Under Warming Climate in Urban India

    Science.gov (United States)

    Ali, H.; Mishra, V.

    2017-12-01

    Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.

  11. Estimate of annual daily maximum rainfall and intense rain equation for the Formiga municipality, MG, Brazil

    Directory of Open Access Journals (Sweden)

    Giovana Mara Rodrigues Borges

    2016-11-01

    Full Text Available Knowledge of the probabilistic behavior of rainfall is extremely important to the design of drainage systems, dam spillways, and other hydraulic projects. This study therefore examined statistical models to predict annual daily maximum rainfall as well as models of heavy rain for the city of Formiga - MG. To do this, annual maximum daily rainfall data were ranked in decreasing order that best describes the statistical distribution by exceedance probability. Daily rainfall disaggregation methodology was used for the intense rain model studies and adjusted with Intensity-Duration-Frequency (IDF and Exponential models. The study found that the Gumbel model better adhered to the data regarding observed frequency as indicated by the Chi-squared test, and that the exponential model best conforms to the observed data to predict intense rains.

  12. Development of a landlside EWS based on rainfall thresholds for Tuscany Region, Italy

    Science.gov (United States)

    Rosi, Ascanio; Segoni, Samuele; Battistini, Alessandro; Rossi, Guglielmo; Catani, Filippo; Casagli, Nicola

    2017-04-01

    We present the set-up of a landslide EWS based on rainfall thresholds for the Tuscany region (central Italy), that shows a heterogeneous distribution of reliefs and precipitation. The work started with the definition of a single set of thresholds for the whole region, but it resulted unsuitable for EWS purposes, because of the heterogeneity of the Tuscan territory and non-repeatability of the analyses, that were affected by a high degree of subjectivity. To overcome this problem, the work started from the implementation of a software capable of objectively defining the rainfall thresholds, since some of the main issues of these thresholds are the subjectivity of the analysis and therefore their non-repeatability. This software, named MaCumBA, is largely automated and can analyze, in a short time, a high number of rainfall events to define several parameters of the threshold, such as the intensity (I) and the duration (D) of the rainfall event, the no-rain time gap (NRG: how many hours without rain are needed to consider two events as separated) and the equation describing the threshold. The possibility of quickly perform several analyses lead to the decision to divide the territory in 25 homogeneous areas (named alert zones, AZ), so as a single threshold for each AZ could be defined. For the definition of the thresholds two independent datasets (of joint rainfall-landslide occurrences) have been used: a calibration dataset (data from 2000 to 2007) and a validation dataset (2008-2009). Once the thresholds were defined, a WebGIS-based EWS has been implemented. In this system it is possible to focus both on monitoring of real-time data and on forecasting at different lead times up to 48 h; forecasting data are collected from LAMI (Limited Area Model Italy) rainfall forecasts. The EWS works on the basis of the threshold parameters defined by MaCumBA (I, D, NRG). An important feature of the warning system is that the visualization of the thresholds in the Web

  13. Heavy rainfall: An underestimated environmental risk for buildings?

    Directory of Open Access Journals (Sweden)

    Golz Sebastian

    2016-01-01

    Second, heavy rain may result in urban pluvial flooding due to sewer overflow that cause severe damage to buildings. A comprehensive study of the impacts and the consequences in Dresden (Germany, presented in the paper, revealed that the potential risks of flooding from sewers due to hydraulic overload can be estimated on building scale using the model approach IVART (Integrated Spatial Vulnerability and Risk Assessment Tool. Modelling results provide the basis to quantify the effectiveness and efficiency of flood resilience technologies.

  14. Trends in rainfall erosivity in NE Spain at annual, seasonal and daily scales, 1955–2006

    Directory of Open Access Journals (Sweden)

    S. Beguería

    2012-10-01

    Full Text Available Rainfall erosivity refers to the ability of precipitation to erode soil, and depends on characteristics such as its total volume, duration, and intensity and amount of energy released by raindrops. Despite the relevance of rainfall erosivity for soil degradation prevention, very few studies have addressed its spatial and temporal variability. In this study the time variation of rainfall erosivity in the Ebro Valley (NE Spain is assessed for the period 1955–2006. The results show a general decrease in annual and seasonal rainfall erosivity, which is explained by a decrease of very intense rainfall events whilst the frequency of moderate and low events increased. This trend is related to prevailing positive conditions of the main atmospheric teleconnection indices affecting the West Mediterranean, i.e. the North Atlantic Oscillation (NAO, the Mediterranean Oscillation (MO and the Western Mediterranean Oscillation (WeMO.

  15. Investigations on heavy ion induced Single-Event Transients (SETs) in highly-scaled FinFETs

    Energy Technology Data Exchange (ETDEWEB)

    Gaillardin, M., E-mail: marc.gaillardin@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Raine, M.; Paillet, P. [CEA, DAM, DIF, F-91297 Arpajon (France); Adell, P.C. [Jet Propulsion Laboratory, Pasadena, CA 91101 (United States); Girard, S. [Université de Saint-Etienne, Laboratoire H. Curien, UMR-5516, 42000 Saint-Etienne (France); Duhamel, O. [CEA, DAM, DIF, F-91297 Arpajon (France); Andrieu, F.; Barraud, S.; Faynot, O. [CEA, LETI-Minatec, 17 avenue des Martyrs, 38000 Grenoble (France)

    2015-12-15

    We investigate Single-Event Transients (SET) in different designs of multiple-gate devices made of FinFETs with various geometries. Heavy ion experimental results are explained by using a thorough charge collection analysis of fast transients measured on dedicated test structures. Multi-level simulations are performed to get new insights into the charge collection mechanisms in multiple-gate devices. Implications for multiple-gate device design hardening are finally discussed.

  16. Comparison of Satellite Rainfall Estimates and Rain Gauge Measurements in Italy, and Impact on Landslide Modeling

    Directory of Open Access Journals (Sweden)

    Mauro Rossi

    2017-12-01

    Full Text Available Landslides can be triggered by intense or prolonged rainfall. Rain gauge measurements are commonly used to predict landslides even if satellite rainfall estimates are available. Recent research focuses on the comparison of satellite estimates and gauge measurements. The rain gauge data from the Italian network (collected in the system database “Verifica Rischio Frana”, VRF are compared with the National Aeronautics and Space Administration (NASA Tropical Rainfall Measuring Mission (TRMM products. For the purpose, we couple point gauge and satellite rainfall estimates at individual grid cells, evaluating the correlation between gauge and satellite data in different morpho-climatological conditions. We then analyze the statistical distributions of both rainfall data types and the rainfall events derived from them. Results show that satellite data underestimates ground data, with the largest differences in mountainous areas. Power-law models, are more appropriate to correlate gauge and satellite data. The gauge and satellite-based products exhibit different statistical distributions and the rainfall events derived from them differ. In conclusion, satellite rainfall cannot be directly compared with ground data, requiring local investigation to account for specific morpho-climatological settings. Results suggest that satellite data can be used for forecasting landslides, only performing a local scaling between satellite and ground data.

  17. Observation-Based Estimates of Surface Cooling Inhibition by Heavy Rainfall under Tropical Cyclones

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N; Lengaigne, M.; Vialard, J.; Madec, G.; Menkes, C.E.; Vincent, E.M.; Jullien, E.; Barnier, B.

    Tropical cyclones drive intense ocean vertical mixing that explains most of the surface cooling observed in their wake (the "cold wake"). The influence of cyclonic rainfall on the cold wake at a global scale over the 2002-09 period is investigated...

  18. Sub-seasonal Predictability of Heavy Precipitation Events: Implication for Real-time Flood Management in Iran

    Science.gov (United States)

    Najafi, H.; Shahbazi, A.; Zohrabi, N.; Robertson, A. W.; Mofidi, A.; Massah Bavani, A. R.

    2016-12-01

    Each year, a number of high impact weather events occur worldwide. Since any level of predictability at sub-seasonal to seasonal timescale is highly beneficial to society, international efforts is now on progress to promote reliable Ensemble Prediction Systems for monthly forecasts within the WWRP/WCRP initiative (S2S) project and North American Multi Model Ensemble (NMME). For water resources managers in the face of extreme events, not only can reliable forecasts of high impact weather events prevent catastrophic losses caused by floods but also contribute to benefits gained from hydropower generation and water markets. The aim of this paper is to analyze the predictability of recent severe weather events over Iran. Two recent heavy precipitations are considered as an illustration to examine whether S2S forecasts can be used for developing flood alert systems especially where large cascade of dams are in operation. Both events have caused major damages to cities and infrastructures. The first severe precipitation was is in the early November 2015 when heavy precipitation (more than 50 mm) occurred in 2 days. More recently, up to 300 mm of precipitation is observed within less than a week in April 2016 causing a consequent flash flood. Over some stations, the observed precipitation was even more than the total annual mean precipitation. To analyze the predictive capability, ensemble forecasts from several operational centers including (European Centre for Medium-Range Weather Forecasts (ECMWF) system, Climate Forecast System Version 2 (CFSv2) and Chinese Meteorological Center (CMA) are evaluated. It has been observed that significant changes in precipitation anomalies were likely to be predicted days in advance. The next step will be to conduct thorough analysis based on comparing multi-model outputs over the full hindcast dataset developing real-time high impact weather prediction systems.

  19. Urbanization Induces Nonstationarity in Extreme Rainfall Characteristics over Contiguous United States

    Science.gov (United States)

    Singh, J.; Paimazumder, D.; Mohanty, M. P.; Ghosh, S.; Karmakar, S.

    2017-12-01

    The statistical assumption of stationarity in hydrologic extreme time/event series has been relied heavily in frequency analysis. However, due to the perceivable impacts of climate change, urbanization and land use pattern, assumption of stationarity in hydrologic time series will draw erroneous results, which in turn may affect the policy and decision-making. Also, it may no longer be reasonable to model rainfall extremes as a stationary process, yet nearly all-existing infrastructure design, water resource planning methods assume that historical extreme rainfall events will remain unchanged in the future. Therefore, a comprehensive multivariate nonstationary frequency analysis has been conducted for the CONUS to identify the precipitation characteristics (intensity, duration and depth) responsible for significant nonstationarity. We use 0.250 resolution of precipitation data for a period of 1948-2006, in a Generalized Additive Model for Location, Scale and Shape (GAMLSS) framework. A cluster of 74 GAMLSS models has been developed by considering nonstationarity in different combinations of distribution parameters through different regression techniques, and the best-fit model is further applied for bivariate analysis. Next, four demographic variables i.e. population density, housing unit, low income population and population below poverty line, have been utilized to identify the urbanizing regions through developing urbanization index. Furthermore to strengthen the analysis, Land cover map for 1992, 2001 and 2006 have been utilized to identify the location with the high change in impervious surface. The results show significant differences in the 50- and 100-year intensity, volume and duration estimated under the both stationary and nonstationary condition in urbanizing regions. Further results exhibit that rainfall duration has been decreased while, rainfall volume has been increased under nonstationary condition, which indicates increasing flood potential of

  20. Characterization of rainfall in the central South African Highveld for application in water harvesting

    NARCIS (Netherlands)

    Zerizghy, M.G.; Rensburg, van L.D.; Stigter, C.J.

    2012-01-01

    In-field rainwater harvesting (IRWH), a runoff farming system, is a beneficial water management technique for crop production in arid and semi-arid areas. In-field rainwater harvesting is influenced by rainfall characteristics, and hence this study aimed to identify and characterize rainfall events,

  1. The cross wavelet and wavelet coherence analysis of spatio-temporal rainfall-groundwater system in Pingtung plain, Taiwan

    Science.gov (United States)

    Lin, Yuan-Chien; Yu, Hwa-Lung

    2013-04-01

    The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between

  2. A Semi Risk-Based Approach for Managing Urban Drainage Systems under Extreme Rainfall

    Directory of Open Access Journals (Sweden)

    Carlos Salinas-Rodriguez

    2018-03-01

    Full Text Available Conventional design standards for urban drainage systems are not set to deal with extreme rainfall events. As these events are becoming more frequent, there is room for proposing new planning approaches and standards that are flexible enough to cope with a wide range of rainfall events. In this paper, a semi risk-based approach is presented as a simple and practical way for the analysis and management of rainfall flooding at the precinct scale. This approach uses various rainfall events as input parameters for the analysis of the flood hazard and impacts, and categorises the flood risk in different levels, ranging from very low to very high risk. When visualised on a map, the insight into the risk levels across the precinct will enable engineers and spatial planners to identify and prioritise interventions to manage the flood risk. The approach is demonstrated for a sewer district in the city of Rotterdam, the Netherlands, using a one-dimensional (1D/two-dimensional (2D flood model. The risk level of this area is classified as being predominantly very low or low, with a couple of locations with high and very high risk. For these locations interventions, such as disconnection and lowering street profiles, have been proposed and analysed with the 1D/2D flood model. The interventions were shown to be effective in reducing the risk levels from very high/high risk to medium/low risk.

  3. Predictability of heavy sub-hourly precipitation amounts for a weather radar based nowcasting system

    Science.gov (United States)

    Bech, Joan; Berenguer, Marc

    2015-04-01

    Heavy precipitation events and subsequent flash floods are one of the most dramatic hazards in many regions such as the Mediterranean basin as recently stressed in the HyMeX (HYdrological cycle in the Mediterranean EXperiment) international programme. The focus of this study is to assess the quality of very short range (below 3 hour lead times) precipitation forecasts based on weather radar nowcasting system. Specific nowcasting amounts of 10 and 30 minutes generated with a nowcasting technique (Berenguer et al 2005, 2011) are compared against raingauge observations and also weather radar precipitation estimates observed over Catalonia (NE Spain) using data from the Meteorological Service of Catalonia and the Water Catalan Agency. Results allow to discuss the feasibility of issuing warnings for different precipitation amounts and lead times for a number of case studies, including very intense convective events with 30minute precipitation amounts exceeding 40 mm (Bech et al 2005, 2011). As indicated by a number of verification scores single based radar precipitation nowcasts decrease their skill quickly with increasing lead times and rainfall thresholds. This work has been done in the framework of the Hymex research programme and has been partly funded by the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M Gayà, J Arús, J Montanyà, O van der Velde, 2011: A Mediterranean nocturnal heavy rainfall and tornadic event. Part I: Overview, damage survey and radar analysis. Atmospheric Research 100:621-637 http://dx.doi.org/10.1016/j.atmosres.2010.12.024 Bech J, R Pascual, T Rigo, N Pineda, JM López, J Arús, and M Gayà, 2007: An observational study of the 7 September 2005 Barcelona tornado outbreak. Natural Hazards and Earth System Science 7:129-139 http://dx.doi.org/10.5194/nhess-7-129-2007 Berenguer M, C Corral, R Sa0nchez-Diezma, D Sempere-Torres, 2005: Hydrological validation of a radar based nowcasting technique. Journal of

  4. Satellite observations of rainfall effect on sea surface salinity in the waters adjacent to Taiwan

    Science.gov (United States)

    Ho, Chung-Ru; Hsu, Po-Chun; Lin, Chen-Chih; Huang, Shih-Jen

    2017-10-01

    Changes of oceanic salinity are highly related to the variations of evaporation and precipitation. To understand the influence of rainfall on the sea surface salinity (SSS) in the waters adjacent to Taiwan, satellite remote sensing data from the year of 2012 to 2014 are employed in this study. The daily rain rate data obtained from Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring Mission's Microwave Imager (TRMM/TMI), Advanced Microwave Scanning Radiometer (AMSR), and WindSat Polarimetric Radiometer. The SSS data was derived from the measurements of radiometer instruments onboard the Aquarius satellite. The results show the average values of SSS in east of Taiwan, east of Luzon and South China Sea are 33.83 psu, 34.05 psu, and 32.84 psu, respectively, in the condition of daily rain rate higher than 1 mm/hr. In contrast to the rainfall condition, the average values of SSS are 34.07 psu, 34.26 psu, and 33.09 psu in the three areas, respectively at no rain condition (rain rate less than 1 mm/hr). During the cases of heavy rainfall caused by spiral rain bands of typhoon, the SSS is diluted with an average value of -0.78 psu when the average rain rate is higher than 4 mm/hr. However, the SSS was increased after temporarily decreased during the typhoon cases. A possible reason to explain this phenomenon is that the heavy rainfall caused by the spiral rain bands of typhoon may dilute the sea surface water, but the strong winds can uplift the higher salinity of subsurface water to the sea surface.

  5. Study of heavy metals transport by runoff and sediments from an abandoned mine: Alagoa, Portugal

    Science.gov (United States)

    Gerardo, R.; de Lima, J. L. M. P.; de Lima, M. I. P.

    2009-04-01

    Over time, several studies have been designed to understand heavy metals fate and its impact on the environment and on human health. However, only a few studies have focused on the transport of heavy metals in mining areas through the various hydrological processes such as runoff, infiltration, and subsurface flow. In particular, heavy rainfall events have a great impact on the dispersion of metals existing in the soil. This problem is often more serious in abandoned and inactive mining sites causing environmental problems. In Portugal, there are 175 identified abandoned mines that continuously threaten the environment through acid drainage waters that pollute the soil as well as surface and groundwater. An example is the abandoned mine of Alagoa, located near the village of Penacova (Centre of Portugal); in this site mining activities ceased about 30 years ago. The area is characterized by very steep slopes that are confining with a small stream; the mining excavation by-products were deposited on these slopes. We have selected this mine as a case study, aiming at understanding the transport mechanisms and dispersion of heavy metals and at contributing to the definition of the most appropriate mitigation measures for this area that is contaminated by heavy metals from the mine tailings. So far a total of 30 soil samples from 3 contaminated zones were collected and analysed for pH, texture and heavy metal content, using atomic absorption spectroscopy. Results indicate that the contents of Zn and Pb in the soil samples are in the range from 95-460 mg/kg and 67-239 mg/kg, respectively, which exceed the critical limit-values defined by the Portuguese legislation. These metals are dispersed downslope and downstream from the mine tailings by storm water. The next step of this work is to investigate the transport of heavy metals by runoff, by mobilization of sediments and by subsurface flow. Three spatial scales tests will be conducted: on the mine tailings, on the slope

  6. Comparison study between traditional and finite element methods for slopes under heavy rainfall

    Directory of Open Access Journals (Sweden)

    M. Rabie

    2014-08-01

    Moreover, slope stability concerning rainfall and infiltration is analyzed. Specially, two kinds of infiltrations (saturated and unsaturated are considered. Many slopes become saturated during periods of intense rainfall or snowmelt, with the water table rising to the ground surface, and water flowing essentially parallel to the direction of the “slope” and “Influence” of the change in shear strength, density, pore-water pressure and seepage force in soil slices on the slope stability is explained. Finally, it is found that classical limit equilibrium methods are highly conservative compared to the finite element approach. For assessment the factor of safety for slope using the later technique, no assumption needs to be made in advance about the shape or location of the failure surface, slice side forces and their directions. This document outlines the capabilities of the finite element method in the analysis of slope stability problems.

  7. How important is the spatiotemporal structure of a rainfall field when generating a streamflow hydrograph? An investigation using Reverse Hydrology

    Science.gov (United States)

    Kretzschmar, Ann; Tych, Wlodek; Beven, Keith; Chappell, Nick

    2017-04-01

    Flooding is the most widely occurring natural disaster affecting thousands of lives and businesses worldwide each year, and the size and frequency of flood-events are predicted to increase with climate change. The main input-variable for models used in flood prediction is rainfall. Estimating the rainfall input is often based on a sparse network of raingauges, which may or may not be representative of the salient rainfall characteristics responsible for generating of storm-hydrographs. A method based on Reverse Hydrology (Kretzschmar et al 2014 Environ Modell Softw) has been developed and is being tested using the intensively-instrumented Brue catchment (Southwest England) to explore the spatiotemporal structure of the rainfall-field (using 23 rain gauges over the 135.2 km2 basin). We compare how well the rainfall measured at individual gauges, or averaged over the basin, represent the rainfall inferred from the streamflow signal. How important is it to get the detail of the spatiotemporal rainfall structure right? Rainfall is transformed by catchment processes as it moves to streams, so exact duplication of the structure may not be necessary. 'True' rainfall estimated using 23 gauges / 135.2 km2 is likely to be a good estimate of the overall-catchment-rainfall, however, the integration process 'smears' the rainfall patterns in time, i.e. reduces the number of and lengthens rain-events as they travel across the catchment. This may have little impact on the simulation of stream-hydrographs when events are extensive across the catchment (e.g., frontal rainfall events) but may be significant for high-intensity, localised convective events. The Reverse Hydrology approach uses the streamflow record to infer a rainfall sequence with a lower time-resolution than the original input time-series. The inferred rainfall series is, however, able simulate streamflow as well as the observed, high resolution rainfall (Kretzschmar et al 2015 Hydrol Res). Most gauged catchments in

  8. Rainfall and runoff characteristics of Namman Basin in the Kingdom of Saudi Arabia

    International Nuclear Information System (INIS)

    Al-Wagdany, A.S.

    2008-01-01

    Namman basin is an arid mountainous basin located in the western region of Saudi Arabia and has drainage area of about 650 km2. Namman unconfined groundwater aquifer is the source of water to the historic underground galleries known as Ain Zubaidah. The galleries became dry due to the fall of groundwater levels dramatically in the last few decades. The galleries can only be restored only if a proper water resources management is utilized in the basin. The aim of this research is to investigate two major hydrological components, namely rainfall and runoff, which are essential for a proper management of the water resources of the basin. Rainfall and runoff records for ten rain gauge stations and one runoff gauge station are used to investigate major characteristics of rainfall and runoff in Namman basin. Rainfall records are analyzed to derive conclusion about rainfall occurrence, depth duration, temporal distribution and extreme values. The relation between rainfall depth and elevation is also investigated. Runoff records are utilized to investigate seasonal variation of runoff. Values of runoff coefficient for all runoff events are computed and the relation between rainfall and runoff for the basin are discussed. The results show that there are more than 30 rainstorms per year and only about two runoff events are usually observed. The temporal analysis of rainfall and runoff indicates that there are two rainy seasons, one is during fall and winter season and other is during spring seasons while runoff is mainly observed in the winter season and the other is during spring seasons while runoff is mainly observed in the winter season. Values of runoff coefficient were very low with mean value of 0.013, which indicate that most rainfall infiltrate through the alluvial channels of the basin. (author)

  9. Detection of Anomalies and Changes of Rainfall in the Yellow River Basin, China, through Two Graphical Methods

    Directory of Open Access Journals (Sweden)

    Hao Wu

    2017-12-01

    Full Text Available This study aims to reveal rainfall anomalies and changes over the Yellow River Basin due to the fragile ecosystem and rainfall-related disasters. Common trend analyses relate to overall trends in mean values. Therefore, we used two graphical methods: the quantile perturbation method (QPM was used to investigate anomalies over time in extreme rainfall, and the partial trend method (PTM was used to analyze rainfall changes at different intensities. A nonparametric bootstrap procedure is proposed in order to identify significant PTM indices. The QPM indicated prevailing positive anomalies in extreme daily rainfall 50 years ago and in the middle reaches during the 1970s and 1980s. The PTM detected significant decreases in annual rainfall mainly in the latter half of the middle reaches, two-thirds of which occurred in high and heavy rainfall. Most stations in the middle and lower reaches showed significant decreases in rainy days. Daily rainfall intensity had a significant increase at 13 stations, where rainy days were generally decreasing. The combined effect of these opposing changes explains the prevailing absence of change in annual rainfall, and the observed decreases in annual rainfall can be attributed to the decreasing number of rainy days. The changes in rainy days and rainfall intensity were dominated by the wet season and dry season, respectively.

  10. Asymmetry of the El Nino-Spring Rainfall Relationship in Taiwan

    OpenAIRE

    Jau-Ming, CHEN; Tim, LI; Ching-Feng, SHIH; Institute of Navigation Science and Technology, National Kaohsiung Marine University; International Pacific Research Center, University of Hawaii; Research and Development Center, Central Weather Bureau

    2008-01-01

    Spring rainfall in Taiwan can be either enhanced or suppressed by an El Nino event, revealing an asymmetric relationship. This observational study aims at examining this asymmetric relationship and associated large-scale dynamic processes. Analysis results disclose four major El Nino/Southern Oscillation (ENSO)-spring rainfall relationship types during 1950-2003: El Nino-anomalous wet (EN-w) type, La Nina-anomalous dry (LN-d) type, El Nino-anomalous dry (EN-d) type, and La Nina-anomalous wet ...

  11. Comparison of different multi-objective calibration criteria using a conceptual rainfall-runoff model of flood events

    Directory of Open Access Journals (Sweden)

    R. Moussa

    2009-04-01

    Full Text Available A conceptual lumped rainfall-runoff flood event model was developed and applied on the Gardon catchment located in Southern France and various single-objective and multi-objective functions were used for its calibration. The model was calibrated on 15 events and validated on 14 others. The results of both the calibration and validation phases are compared on the basis of their performance with regards to six criteria, three global criteria and three relative criteria representing volume, peakflow, and the root mean square error. The first type of criteria gives more weight to large events whereas the second considers all events to be of equal weight. The results show that the calibrated parameter values are dependent on the type of criteria used. Significant trade-offs are observed between the different objectives: no unique set of parameters is able to satisfy all objectives simultaneously. Instead, the solution to the calibration problem is given by a set of Pareto optimal solutions. From this set of optimal solutions, a balanced aggregated objective function is proposed, as a compromise between up to three objective functions. The single-objective and multi-objective calibration strategies are compared both in terms of parameter variation bounds and simulation quality. The results of this study indicate that two well chosen and non-redundant objective functions are sufficient to calibrate the model and that the use of three objective functions does not necessarily yield different results. The problems of non-uniqueness in model calibration, and the choice of the adequate objective functions for flood event models, emphasise the importance of the modeller's intervention. The recent advances in automatic optimisation techniques do not minimise the user's responsibility, who has to choose multiple criteria based on the aims of the study, his appreciation on the errors induced by data and model structure and his knowledge of the

  12. Analysis of the sensitivity to rainfall spatio-temporal variability of an operational urban rainfall-runoff model in a multifractal framework

    Science.gov (United States)

    Gires, A.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.

    2011-12-01

    In large urban areas, storm water management is a challenge with enlarging impervious areas. Many cities have implemented real time control (RTC) of their urban drainage system to either reduce overflow or limit urban contamination. A basic component of RTC is hydraulic/hydrologic model. In this paper we use the multifractal framework to suggest an innovative way to test the sensitivity of such a model to the spatio-temporal variability of its rainfall input. Indeed the rainfall variability is often neglected in urban context, being considered as a non-relevant issue at the scales involve. Our results show that on the contrary the rainfall variability should be taken into account. Universal multifractals (UM) rely on the concept of multiplicative cascade and are a standard tool to analyze and simulate with a reduced number of parameters geophysical processes that are extremely variable over a wide range of scales. This study is conducted on a 3 400 ha urban area located in Seine-Saint-Denis, in the North of Paris (France). We use the operational semi-distributed model that was calibrated by the local authority (Direction Eau et Assainnissement du 93) that is in charge of urban drainage. The rainfall data comes from the C-Band radar of Trappes operated by Météo-France. The rainfall event of February 9th, 2009 was used. A stochastic ensemble approach was implemented to quantify the uncertainty on discharge associated to the rainfall variability occurring at scales smaller than 1 km x 1 km x 5 min that is usually available with C-band radar networks. An analysis of the quantiles of the simulated peak flow showed that the uncertainty exceeds 20 % for upstream links. To evaluate a potential gain from a direct use of the rainfall data available at the resolution of X-band radar, we performed similar analysis of the rainfall fields of the degraded resolution of 9 km x 9 km x 20 min. The results show a clear decrease in uncertainty when the original resolution of C

  13. Chase the direct impact of rainfall into groundwater in Mt. Fuji from multiple analyses including microbial DNA

    Science.gov (United States)

    Kato, Kenji; Sugiyama, Ayumi; Nagaosa, Kazuyo; Tsujimura, Maki

    2016-04-01

    A huge amount of groundwater is stored in subsurface environment of Mt. Fuji, the largest volcanic mountain in Japan. Based on the concept of piston flow transport of groundwater an apparent residence time was estimated to ca. 30 years by 36Cl/Cl ratio (Tosaki et al., 2011). However, this number represents an averaged value of the residence time of groundwater which had been mixed before it flushes out. We chased signatures of direct impact of rainfall into groundwater to elucidate the routes of groundwater, employing three different tracers; stable isotopic analysis (delta 18O), chemical analysis (concentration of silica) and microbial DNA analysis. Though chemical analysis of groundwater shows an averaged value of the examined water which was blended by various water with different sources and routes in subsurface environment, microbial DNA analysis may suggest the place where they originated, which may give information of the source and transport routes of the water examined. Throughout the in situ observation of four rainfall events showed that stable oxygen isotopic ratio of spring water and shallow groundwater obtained from 726m a.s.l. where the average recharge height of rainfall was between 1500 and 1800 m became higher than the values before a torrential rainfall, and the concentration of silica decreased after this event when rainfall exceeded 300 mm in precipitation of an event. In addition, the density of Prokaryotes in spring water apparently increased. Those changes did not appear when rainfall did not exceed 100 mm per event. Thus, findings shown above indicated a direct impact of rainfall into shallow groundwater, which appeared within a few weeks of torrential rainfall in the studied geological setting. In addition, increase in the density of Archaea observed at deep groundwater after the torrential rainfall suggested an enlargement of the strength of piston flow transport through the penetration of rainfall into deep groundwater. This finding was

  14. Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics

    Science.gov (United States)

    Lee, Donghyun; Min, Seung-Ki; Fischer, Erich; Shiogama, Hideo; Bethke, Ingo; Lierhammer, Ludwig; Scinocca, John F.

    2018-04-01

    This study investigates the impacts of global warming of 1.5 °C and 2.0 °C above pre-industrial conditions (Paris Agreement target temperatures) on the South Asian and East Asian monsoon rainfall using five atmospheric global climate models participating in the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project. Mean and extreme precipitation is projected to increase under warming over the two monsoon regions, more strongly in the 2.0 °C warmer world. Moisture budget analysis shows that increases in evaporation and atmospheric moisture lead to the additional increases in mean precipitation with good inter-model agreement. Analysis of daily precipitation characteristics reveals that more-extreme precipitation will have larger increase in intensity and frequency responding to the half a degree additional warming, which is more clearly seen over the South Asian monsoon region, indicating non-linear scaling of precipitation extremes with temperature. Strong inter-model relationship between temperature and precipitation intensity further demonstrates that the increased moisture with warming (Clausius-Clapeyron relation) plays a critical role in the stronger intensification of more-extreme rainfall with warming. Results from CMIP5 coupled global climate models under a transient warming scenario confirm that half a degree additional warming would bring more frequent and stronger heavy precipitation events, exerting devastating impacts on the human and natural system over the Asian monsoon region.

  15. Seasonal variation and climate change impact in Rainfall Erosivity across Europe

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano

    2017-04-01

    Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop

  16. National Scale Rainfall Map Based on Linearly Interpolated Data from Automated Weather Stations and Rain Gauges

    Science.gov (United States)

    Alconis, Jenalyn; Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo; Lester Saddi, Ivan; Mongaya, Candeze; Figueroa, Kathleen Gay

    2014-05-01

    In response to the slew of disasters that devastates the Philippines on a regular basis, the national government put in place a program to address this problem. The Nationwide Operational Assessment of Hazards, or Project NOAH, consolidates the diverse scientific research being done and pushes the knowledge gained to the forefront of disaster risk reduction and management. Current activities of the project include installing rain gauges and water level sensors, conducting LIDAR surveys of critical river basins, geo-hazard mapping, and running information education campaigns. Approximately 700 automated weather stations and rain gauges installed in strategic locations in the Philippines hold the groundwork for the rainfall visualization system in the Project NOAH web portal at http://noah.dost.gov.ph. The system uses near real-time data from these stations installed in critical river basins. The sensors record the amount of rainfall in a particular area as point data updated every 10 to 15 minutes. The sensor sends the data to a central server either via GSM network or satellite data transfer for redundancy. The web portal displays the sensors as a placemarks layer on a map. When a placemark is clicked, it displays a graph of the rainfall data for the past 24 hours. The rainfall data is harvested by batch determined by a one-hour time frame. The program uses linear interpolation as the methodology implemented to visually represent a near real-time rainfall map. The algorithm allows very fast processing which is essential in near real-time systems. As more sensors are installed, precision is improved. This visualized dataset enables users to quickly discern where heavy rainfall is concentrated. It has proven invaluable on numerous occasions, such as last August 2013 when intense to torrential rains brought about by the enhanced Southwest Monsoon caused massive flooding in Metro Manila. Coupled with observations from Doppler imagery and water level sensors along the

  17. The Influence of the Madden-Julian Oscillation (mjo) on Extreme Rainfall Over the Central and Southern Peruvian Andes

    Science.gov (United States)

    Heidinger, H.; Jones, C.; Carvalho, L. V.

    2015-12-01

    Extreme rainfall is important for the Andean region because of the large contribution of these events to the seasonal totals and consequent impacts on water resources for agriculture, water consumption, industry and hydropower generation, as well as the occurrence of floods and landslides. Over Central and Southern Peruvian Andes (CSPA), rainfall exceeding the 90th percentile contributed between 44 to 100% to the total Nov-Mar 1979-2010 rainfall. Additionally, precipitation from a large majority of stations in the CSPA exhibits statistically significant spectral peaks on intraseasonal time-scales (20 to 70 days). The Madden-Julian Oscillation (MJO) is the most important intraseasonal mode of atmospheric circulation and moist convection in the tropics and the occurrence of extreme weather events worldwide. Mechanisms explaining the relationships between the MJO and precipitation in the Peruvian Andes have not been properly described yet. The present study examines the relationships between the activity and phases of the MJO and the occurrence of extreme rainfall over the CSPA. We found that the frequency of extreme rainfall events increase in the CSPA when the MJO is active. MJO phases 5, 6 and 7 contribute to the overall occurrence of extreme rainfall events over the CSPA. However, how the MJO phases modulate extreme rainfall depends on the location of the stations. For instance, extreme precipitation (above the 90th percentile) in stations in the Amazon basin are slightly more sensitive to phases 2, 3 and 4; the frequency of extremes in stations in the Pacific basin increases in phases 5, 6 and 7 whereas phase 2, 3 and 7 modulates extreme precipitation in stations in the Titicaca basin. Greater variability among stations is observed when using the 95th and 99th percentiles to identify extremes. Among the main mechanisms that explain the increase in extreme rainfall events in the Peruvian Andes is the intensification of the easterly moisture flux anomalies, which

  18. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds. The two-CN system approach

    OpenAIRE

    K. X. Soulis; J. D. Valiantzas

    2011-01-01

    The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN values can be estimated by being selected from tables. However, it is more accurate to estimate the CN value from measured rainfall-runoff data (assumed available) in a watershed. Previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. The...

  19. Spatial interpolation of hourly rainfall – effect of additional information, variogram inference and storm properties

    Directory of Open Access Journals (Sweden)

    A. Verworn

    2011-02-01

    Full Text Available Hydrological modelling of floods relies on precipitation data with a high resolution in space and time. A reliable spatial representation of short time step rainfall is often difficult to achieve due to a low network density. In this study hourly precipitation was spatially interpolated with the multivariate geostatistical method kriging with external drift (KED using additional information from topography, rainfall data from the denser daily networks and weather radar data. Investigations were carried out for several flood events in the time period between 2000 and 2005 caused by different meteorological conditions. The 125 km radius around the radar station Ummendorf in northern Germany covered the overall study region. One objective was to assess the effect of different approaches for estimation of semivariograms on the interpolation performance of short time step rainfall. Another objective was the refined application of the method kriging with external drift. Special attention was not only given to find the most relevant additional information, but also to combine the additional information in the best possible way. A multi-step interpolation procedure was applied to better consider sub-regions without rainfall.

    The impact of different semivariogram types on the interpolation performance was low. While it varied over the events, an averaged semivariogram was sufficient overall. Weather radar data were the most valuable additional information for KED for convective summer events. For interpolation of stratiform winter events using daily rainfall as additional information was sufficient. The application of the multi-step procedure significantly helped to improve the representation of fractional precipitation coverage.

  20. Comparison between intensity- duration thresholds and cumulative rainfall thresholds for the forecasting of landslide

    Science.gov (United States)

    Lagomarsino, Daniela; Rosi, Ascanio; Rossi, Guglielmo; Segoni, Samuele; Catani, Filippo

    2014-05-01

    This work makes a quantitative comparison between the results of landslide forecasting obtained using two different rainfall threshold models, one using intensity-duration thresholds and the other based on cumulative rainfall thresholds in an area of northern Tuscany of 116 km2. The first methodology identifies rainfall intensity-duration thresholds by means a software called MaCumBA (Massive CUMulative Brisk Analyzer) that analyzes rain-gauge records, extracts the intensities (I) and durations (D) of the rainstorms associated with the initiation of landslides, plots these values on a diagram, and identifies thresholds that define the lower bounds of the I-D values. A back analysis using data from past events can be used to identify the threshold conditions associated with the least amount of false alarms. The second method (SIGMA) is based on the hypothesis that anomalous or extreme values of rainfall are responsible for landslide triggering: the statistical distribution of the rainfall series is analyzed, and multiples of the standard deviation (σ) are used as thresholds to discriminate between ordinary and extraordinary rainfall events. The name of the model, SIGMA, reflects the central role of the standard deviations in the proposed methodology. The definition of intensity-duration rainfall thresholds requires the combined use of rainfall measurements and an inventory of dated landslides, whereas SIGMA model can be implemented using only rainfall data. These two methodologies were applied in an area of 116 km2 where a database of 1200 landslides was available for the period 2000-2012. The results obtained are compared and discussed. Although several examples of visual comparisons between different intensity-duration rainfall thresholds are reported in the international literature, a quantitative comparison between thresholds obtained in the same area using different techniques and approaches is a relatively undebated research topic.

  1. Asian Summer Monsoon Rainfall associated with ENSO and its Predictability

    Science.gov (United States)

    Shin, C. S.; Huang, B.; Zhu, J.; Marx, L.; Kinter, J. L.; Shukla, J.

    2015-12-01

    The leading modes of the Asian summer monsoon (ASM) rainfall variability and their seasonal predictability are investigated using the CFSv2 hindcasts initialized from multiple ocean analyses over the period of 1979-2008 and observation-based analyses. It is shown that the two leading empirical orthogonal function (EOF) modes of the observed ASM rainfall anomalies, which together account for about 34% of total variance, largely correspond to the ASM responses to the ENSO influences during the summers of the developing and decaying years of a Pacific anomalous event, respectively. These two ASM modes are then designated as the contemporary and delayed ENSO responses, respectively. It is demonstrated that the CFSv2 is capable of predicting these two dominant ASM modes up to the lead of 5 months. More importantly, the predictability of the ASM rainfall are much higher with respect to the delayed ENSO mode than the contemporary one, with the predicted principal component time series of the former maintaining high correlation skill and small ensemble spread with all lead months whereas the latter shows significant degradation in both measures with lead-time. A composite analysis for the ASM rainfall anomalies of all warm ENSO events in this period substantiates the finding that the ASM is more predictable following an ENSO event. The enhanced predictability mainly comes from the evolution of the warm SST anomalies over the Indian Ocean in the spring of the ENSO maturing phases and the persistence of the anomalous high sea surface pressure over the western Pacific in the subsequent summer, which the hindcasts are able to capture reasonably well. The results also show that the ensemble initialization with multiple ocean analyses improves the CFSv2's prediction skill of both ENSO and ASM rainfall. In fact, the skills of the ensemble mean hindcasts initialized from the four different ocean analyses are always equivalent to the best ones initialized from any individual ocean

  2. Hydrodynamic modelling of extreme flood events in the Kashmir valley in India

    Science.gov (United States)

    Jain, Manoj; Parvaze, Sabah

    2017-04-01

    Floods are one of the most predominant, costly and deadly hazards of all natural vulnerabilities. Every year, floods exert a heavy toll on human life and property in many parts of the world. The prediction of river stages and discharge during flood extremes plays a vital role in planning structural and non-structural measures of flood management. The predictions are also valuable to prepare the flood inundation maps and river floodplain zoning. In the Kashmir Valley, floods occur mainly and very often in the Jhelum Basin mostly due to extreme precipitation events and rugged mountainous topography of the basin. These floods cause extreme damage to life and property in the valley from time to time. Excessive rainfall, particularly in higher sub-catchments causes the snow to melt resulting in excessive runoff downhill to the streams causing floods in the Kashmir Valley where Srinagar city is located. However, very few hydrological studies have been undertaken for the Jhelum Basin mainly due to non-availability of hydrological data due to very complex mountainous terrain. Therefore, the present study has been conducted to model the extreme flood events in the Jhelum Basin in Kashmir Valley. An integrated NAM and MIKE 11 HD model has been setup for Jhelum basin up to Ram Munshi Bagh gauging site and then four most extreme historical flood events in the time series has been analyzed separately including the most recent and most extreme flood event of 2014. In September 2014, the Kashmir Valley witnessed the most severe flood in the past 60 years due to catastrophic rainfall from 1st to 6th September wherein the valley received unprecedented rainfall of more than 650 mm in just 3 days breaking record of many decades. The MIKE 11 HD and NAM model has been calibrated using 21 years (1985-2005) data and validated using 9 years (2006-2014) data. The efficiency indices of the model for calibration and validation period is 0.749 and 0.792 respectively. The model simulated

  3. Event Generators for Simulating Heavy Ion Interactions of Interest in Evaluating Risks in Human Spaceflight

    Science.gov (United States)

    Wilson, Thomas L.; Pinsky, Lawrence; Andersen, Victor; Empl, Anton; Lee, Kerry; Smirmov, Georgi; Zapp, Neal; Ferrari, Alfredo; Tsoulou, Katerina; Roesler, Stefan; hide

    2005-01-01

    Simulating the Space Radiation environment with Monte Carlo Codes, such as FLUKA, requires the ability to model the interactions of heavy ions as they penetrate spacecraft and crew member's bodies. Monte-Carlo-type transport codes use total interaction cross sections to determine probabilistically when a particular type of interaction has occurred. Then, at that point, a distinct event generator is employed to determine separately the results of that interaction. The space radiation environment contains a full spectrum of radiation types, including relativistic nuclei, which are the most important component for the evaluation of crew doses. Interactions between incident protons with target nuclei in the spacecraft materials and crew member's bodies are well understood. However, the situation is substantially less comfortable for incident heavier nuclei (heavy ions). We have been engaged in developing several related heavy ion interaction models based on a Quantum Molecular Dynamics-type approach for energies up through about 5 GeV per nucleon (GeV/A) as part of a NASA Consortium that includes a parallel program of cross section measurements to guide and verify this code development.

  4. Analysis of rainfall characteristics and its related disasters of slag disposal pit of a certain Gold-Copper Deposit in Fujian province

    Science.gov (United States)

    Pan, Huali; Hu, Mingjian; Ou, Guoqiang

    2017-04-01

    According to the geological investigation in Fujian province, the total number of geological disasters was 9513, in which the number of landslide, collapse, unstable slope and surface collapse was 5816, 1888, 1591, 103 and 115 respectively. The main geological disaster was the landslide with 61.1% of total geological disasters. Among all these geological disasters, only 6.0% was relative stable, 17.0% was basic stable, nearly 76.0% was unstable. The slope disaster was the main geological disaster, if the unstable slope was the potential landslide or collapse; the slope collapse was 98.0% of all geological disasters. The rainfall, in particular the heavy rain, was direct dynamic factor for geological disasters, but the occurrence probability of geological disasters was different because of the sensitivity of the geological environment though of the same intensity rainfall. To obtain the characteristics of soil erosion under the rainfall condition, the rainfall characteristics and its related disasters of slag disposal pit of a certain Gold-Copper Deposit in Fujian province was analyzed by the meteorological and rainfall data. According to the distribution of monitoring stations of hydrological and rainfall in Longyan city of Fujian province and the location of gold-copper deposit, the Shanghang monitoring station of hydrological and rainfall was chosen, which is the nearest one to the gold-copper deposit. Then main parameters of the prediction model, the antecedent precipitation, the rainfall on the day and the rainfall threshold, were calculated by using the rainfall data from 2002 to 2010. And the relationship between geological disasters and the rainfall characteristics were analyzed. The results indicated that there was high risk for the debris flow with landslide collapse when either the daily rainfall was more than 100.0 mm, or the total rainfall was more than 136.0mm in the gold-copper deposit and the Shanghang region. At the same time, although there was few

  5. Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City

    Science.gov (United States)

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries. PMID:25774922

  6. Stormwater runoff pollutant loading distributions and their correlation with rainfall and catchment characteristics in a rapidly industrialized city.

    Science.gov (United States)

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.

  7. ANALYSIS OF DEBRIS FLOW DISASTER DUE TO HEAVY RAIN BY X-BAND MP RADAR DATA

    Directory of Open Access Journals (Sweden)

    M. Nishio

    2016-06-01

    Full Text Available On August 20 of 2014, Hiroshima City (Japan was struck by local heavy rain from an autumnal rain front. The resultant debris flow disaster claimed 75 victims and destroyed many buildings. From 1:30 am to 4:30 am on August 20, the accumulated rainfall in Hiroshima City exceeded 200 mm. Serious damage occurred in the Asakita and Asaminami wards of Hiroshima City. As a disaster prevention measure, local heavy rain (localized torrential rains is usually observed by the Automated Meteorological Data Acquisition System (AMeDAS operated by the Japan Meteorological Agency (JMA and by the C-band radar operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT of Japan, with spatial resolutions of 2.5 km and 1 km, respectively. The new X-band MP radar system enables more detailed rainfall observations than the C-band radar. In fact, this radar can observe local rainfall throughout Japan in near-real time over a minimum mesh size of 250 m. A fine-scale accumulated rainfall monitoring system is crucial for disaster prevention, and potential disasters can be alerted by the hazard levels of the accumulated rainfall.

  8. Correlations between rainfall data and insurance damage data related to sewer flooding for the case of Aarhus, Denmark

    DEFF Research Database (Denmark)

    Spekkers, Matthieu; Zhou, Qianqian; Arnbjerg-Nielsen, Karsten

    Sewer flooding due to extreme rainfall may result in considerable damage. Damage data to quantify costs of cleaning, drying, and replacing materials and goods are rare in literature. In this study, insurance claim data related to property damages were analysed for the municipality of Aarhus...... to underestimations of correlations between rainfall and damage variables. Rainfall data from two rain gauges were used to extract rainfall characteristics. From cross correlations between time series of rainfall and claim data, it can be concluded that rainfall events induce claims mostly on the same day, but also...

  9. A Review on Flood Events for Kelantan River Watershed in Malaysia for Last Decade (2001-2010)

    Science.gov (United States)

    Aminah Shakirah, J.; Sidek, L. M.; Hidayah, B.; Nazirul, M. Z.; Jajarmizadeh, M.; Ros, F. C.; Roseli, ZA

    2016-03-01

    Malaysia is located at tropical zone and high precipitation area that frequently hit by flood events when it is near monsoon season. This hydro hazard has been one of the main concerns for governmental and non-governmental sectors. High floods lead in financial damages and they are related with human’s life. Kelantan watershed is one of the challenging watersheds which mostly suffer from flood events and heavy rainfall events. Flood in Kelantan watershed is related with monetary misfortunes and lives. Clearly, flood have significant influence on various water sectors such water supply, agriculture, human health and ecosystems therefore study of this topic and presentation of available of any data and information can be a valuable baseline for upcoming research in vulnerable case studies. In this study, Kelantan watershed is selected because it is prone to flooding and urban areas classified as vulnerable districts. This overview is discussed on the last decade (2001-2010) floods events in Kelantan.

  10. Debris-flow and flooding hazards associated with the December 1999 storm in coastal Venezuela and strategies for mitigation

    Science.gov (United States)

    Wieczorek, G.F.; Larsen, M.C.; Eaton, L.S.; Morgan, B.A.; Blair, J.L.

    2001-01-01

    Heavy rainfall from the storm of December 14-16, 1999 triggered thousands of landslides on steep slopes of the Sierra de Avila north of Caracas, Venezuela. In addition to landslides, heavy rainfall caused flooding and massive debris flows that damaged coastal communities in the State of Vargas along the Caribbean Sea. Examination of the rainfall pattern obtained from the GOES-8 satellite showed that the pattern of damage was generally consistent with the area of heaviest rainfall. Field observations of the severely affected drainage basins and historical records indicate that previous flooding and massive debris-flow events of similar magnitude to that of December 1999 have occurred throughout this region. The volume of debris-flow deposits and the large boulders that the flows transported qualifies the 1999 event amongst the largest historical rainfall-induced debris flows documented worldwide.

  11. Runoff generation in a Mediterranean semi-arid landscape: Thresholds, scale, rainfall and catchment characteristics

    Science.gov (United States)

    Ries, Fabian; Schmidt, Sebastian; Sauter, Martin; Lange, Jens

    2016-04-01

    Surface runoff acts as an integrated response of catchment characteristics and hydrological processes. In the Eastern Mediterranean region, a lack of runoff data has hindered a better understanding of runoff generation processes on the catchment scale, despite the importance of surface runoff as a water resource or flood hazard. Our main aim was to identify and explain differences in catchment runoff reactions across a variety of scales. Over a period of five years, we observed runoff in ephemeral streams of seven watersheds with sizes between 3 and 129 km2. Landuse and surface cover types (share of vegetation, bare soil and rock outcrops) were derived from aerial images by objective classification techniques. Using data from a dense rainfall network we analysed the effects of scale, catchment properties and aridity on runoff generation. Thereby we extracted rainfall and corresponding runoff events from our time-series to calculate event based rainfall characteristics and catchment runoff coefficients. Soil moisture observations provided additional information on antecedent moisture conditions, infiltration characteristics and the evolution of saturated areas. In contrast to the prevailing opinion that the proportion of Hortonian overland flow increases with aridity, we found that in our area the largest share (> 95 %) of runoff is generated by saturation excess overland flow in response to long lasting, rainfall events of high amount. This was supported by a strong correlation between event runoff and precipitation totals. Similar rainfall thresholds (50 mm) for runoff generation were observed in all investigated catchments. No scale effects on runoff coefficients were found; instead we identified up to three-fold runoff coefficients in catchments with larger extension of arid areas, higher percentage of rock outcrops and urbanization. Comparing two headwater catchments with noticeable differences in extent of olive orchards, no difference in runoff generation was

  12. Analysis and modelling of spatio-temporal properties of daily rainfall over the Danube basin

    Science.gov (United States)

    Serinaldi, F.; Kilsby, C. G.

    2012-04-01

    Central and Eastern Europe are prone to severe floods due to heavy rainfall that cause societal and economic damages, ranging from agriculture to water resources, from the insurance/reinsurance sector to the energy industry. To improve the flood risk analysis, a better characterisation and modelling of the rainfall patterns over this area, which involves the Danube river watershed, is strategically important. In this study, we analyse the spatio-temporal properties of a large data set of daily rainfall time series from 15 countries in the Central Eastern Europe through different lagged and non-lagged indices of associations that quantify both the overall dependence and extreme dependence of pairwise observations. We also show that these measures are linked to each other and can be written in a unique and coherent notation within the copula framework. Moreover, the lagged version of these measures allows exploring some important spatio-temporal properties of the rainfall fields. The exploratory analysis is complemented by the preliminary results of a spatio-temporal rainfall simulation performed via a compound model based upon the Generalized Additive Models for Location, Scale and Shape (GAMLSS) and meta-elliptical multivariate distributions.

  13. A protocol for conducting rainfall simulation to study soil runoff.

    Science.gov (United States)

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B

    2014-04-03

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  14. RainyDay: An Online, Open-Source Tool for Physically-based Rainfall and Flood Frequency Analysis

    Science.gov (United States)

    Wright, D.; Yu, G.; Holman, K. D.

    2017-12-01

    Flood frequency analysis in ungaged or changing watersheds typically requires rainfall intensity-duration-frequency (IDF) curves combined with hydrologic models. IDF curves only depict point-scale rainfall depth, while true rainstorms exhibit complex spatial and temporal structures. Floods result from these rainfall structures interacting with watershed features such as land cover, soils, and variable antecedent conditions as well as river channel processes. Thus, IDF curves are traditionally combined with a variety of "design storm" assumptions such as area reduction factors and idealized rainfall space-time distributions to translate rainfall depths into inputs that are suitable for flood hydrologic modeling. The impacts of such assumptions are relatively poorly understood. Meanwhile, modern precipitation estimates from gridded weather radar, grid-interpolated rain gages, satellites, and numerical weather models provide more realistic depictions of rainfall space-time structure. Usage of such datasets for rainfall and flood frequency analysis, however, are hindered by relatively short record lengths. We present RainyDay, an open-source stochastic storm transposition (SST) framework for generating large numbers of realistic rainfall "scenarios." SST "lengthens" the rainfall record by temporal resampling and geospatial transposition of observed storms to extract space-time information from regional gridded rainfall data. Relatively short (10-15 year) records of bias-corrected radar rainfall data are sufficient to estimate rainfall and flood events with much longer recurrence intervals including 100-year and 500-year events. We describe the SST methodology as implemented in RainyDay and compare rainfall IDF results from RainyDay to conventional estimates from NOAA Atlas 14. Then, we demonstrate some of the flood frequency analysis properties that are possible when RainyDay is integrated with a distributed hydrologic model, including robust estimation of flood

  15. Should seasonal rainfall forecasts be used for flood preparedness?

    Directory of Open Access Journals (Sweden)

    E. Coughlan de Perez

    2017-09-01

    Full Text Available In light of strong encouragement for disaster managers to use climate services for flood preparation, we question whether seasonal rainfall forecasts should indeed be used as indicators of the likelihood of flooding. Here, we investigate the primary indicators of flooding at the seasonal timescale across sub-Saharan Africa. Given the sparsity of hydrological observations, we input bias-corrected reanalysis rainfall into the Global Flood Awareness System to identify seasonal indicators of floodiness. Results demonstrate that in some regions of western, central, and eastern Africa with typically wet climates, even a perfect tercile forecast of seasonal total rainfall would provide little to no indication of the seasonal likelihood of flooding. The number of extreme events within a season shows the highest correlations with floodiness consistently across regions. Otherwise, results vary across climate regimes: floodiness in arid regions in southern and eastern Africa shows the strongest correlations with seasonal average soil moisture and seasonal total rainfall. Floodiness in wetter climates of western and central Africa and Madagascar shows the strongest relationship with measures of the intensity of seasonal rainfall. Measures of rainfall patterns, such as the length of dry spells, are least related to seasonal floodiness across the continent. Ultimately, identifying the drivers of seasonal flooding can be used to improve forecast information for flood preparedness and to avoid misleading decision-makers.

  16. Centrifuge model tests of rainfall-induced slope failures for the investigation of the initiation conditions

    Science.gov (United States)

    Matziaris, Vasileios; Marshall, Alec; Yu, Hai-Sui

    2015-04-01

    Rainfall-induced landslides are very common natural disasters which cause damage to properties and infrastructure and may result in the loss of human lives. These phenomena often take place in unsaturated soil slopes and are triggered by the saturation of the soil profile, due to rain infiltration, which leads to a loss of shear strength. The aim of this study is to determine rainfall thresholds for the initiation of landslides under different initial conditions. Model tests of rainfall-induced landslides are conducted in the Nottingham Centre for Geomechanics 50g-T geotechnical centrifuge. Initially unsaturated plane-strain slope models made with fine silica sand are prepared at varying densities at 1g and accommodated within a climatic chamber which provides controlled environmental conditions. During the centrifuge flight at 60g, rainfall events of varying intensity and duration are applied to the slope models causing the initiation of slope failure. The impact of soil state properties and rainfall characteristics on the landslide initiation process are discussed. The variation of pore water pressures within the slope before, during and after simulated rainfall events is recorded using miniature pore pressure transducers buried in the soil model. Slope deformation is determined by using a high-speed camera and digital image analysis techniques.

  17. Reducing bias in rainfall estimates from microwave links by considering variable drop size distribution

    Science.gov (United States)

    Fencl, Martin; Jörg, Rieckermann; Vojtěch, Bareš

    2015-04-01

    Commercial microwave links (MWL) are point-to-point radio systems which are used in backhaul networks of cellular operators. For several years, they have been suggested as rainfall sensors complementary to rain gauges and weather radars, because, first, they operate at frequencies where rain drops represent significant source of attenuation and, second, cellular networks almost completely cover urban and rural areas. Usually, path-average rain rates along a MWL are retrieved from the rain-induced attenuation of received MWL signals with a simple model based on a power law relationship. The model is often parameterized based on the characteristics of a particular MWL, such as frequency, polarization and the drop size distribution (DSD) along the MWL. As information on the DSD is usually not available in operational conditions, the model parameters are usually considered constant. Unfortunately, this introduces bias into rainfall estimates from MWL. In this investigation, we propose a generic method to eliminate this bias in MWL rainfall estimates. Specifically, we search for attenuation statistics which makes it possible to classify rain events into distinct groups for which same power-law parameters can be used. The theoretical attenuation used in the analysis is calculated from DSD data using T-Matrix method. We test the validity of our approach on observations from a dedicated field experiment in Dübendorf (CH) with a 1.85-km long commercial dual-polarized microwave link transmitting at a frequency of 38 GHz, an autonomous network of 5 optical distrometers and 3 rain gauges distributed along the path of the MWL. The data is recorded at a high temporal resolution of up to 30s. It is further tested on data from an experimental catchment in Prague (CZ), where 14 MWLs, operating at 26, 32 and 38 GHz frequencies, and reference rainfall from three RGs is recorded every minute. Our results suggest that, for our purpose, rain events can be nicely characterized based on

  18. Rainfall variability over southern Africa: an overview of current research using satellite and climate model data

    Science.gov (United States)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, satellite-derived rainfall data are used as a basis for undertaking model experiments using a state-of-the-art climate model, run at both high and low spatial resolution. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, a brief overview is given of the authors' research to date, pertaining to southern African rainfall. This covers (i) a description of present-day rainfall variability over southern Africa; (ii) a comparison of model simulated daily rainfall with the satellite-derived dataset; (iii) results from sensitivity testing of the model's domain size; and (iv) results from the idealised SST experiments.

  19. Be-7 measured at ground air level and rainfall in the city of Sao Paulo

    International Nuclear Information System (INIS)

    Damatto, Sandra R.; Souza, Joseilton M.; Frujuele, Jonatan V.; Maduar, Marcelo F.; Leonardo, Lucio; Pecequilo, Brigitte R.S.

    2013-01-01

    The cosmogenic radionuclide 7 Be (T 1/2 = 53.3 d), produced in the upper atmosphere by cosmic ray spallation of oxygen and nitrogen, is one of the cosmogenic radionuclides that can be used as tracer for heavy metals and pollutants in the environment, tracer of soil erosion and sedimentation in lakes, among other examples. Their subsequent deposition to the land surface occurs as both wet and dry fallout, although it has been demonstrated that 7 Be fallout is primarily associated with precipitation. There is limited data on the concentration of 7 Be in rainfall and in particulate in the Southern Hemisphere and in Brazil, compared with data from the Northern Hemisphere. This paper presents the results obtained of 7 Be concentrations measured from April 2011 to June 2013, in samples of air at ground level, each fifteen days, and rainfall in all the rainy events that occurred at Instituto de Pesquisas Energeticas e Nucleares (IPEN), which has its campus located in the city of Sao Paulo, state of Sao Paulo, Brazil. The concentrations of 7 Be were measured by non-destructive gamma-ray spectrometry using an extended range closed-end coaxial Be-layer HPGe detector with 25% relative efficiency and associated electronic devices and live counting time varying from 100,000 s to 300,000 s. The results obtained of 7 Be in particulate and in rainfall were correlated to seasons, precipitation, temperature and sunspot number. The higher values obtained for the concentrations were in spring and summer time presenting good correlations with the amount of precipitation and sunspot number and a clear seasonal variation. (author)

  20. Evaluate Hydrologic Response on Spatiotemporal Characteristics of Rainfall Using High Resolution Radar Rainfall Data and WRF-Hydro Model

    Science.gov (United States)

    Gao, S.; Fang, N. Z.

    2017-12-01

    A previously developed Dynamic Moving Storm (DMS) generator is a multivariate rainfall model simulating the complex nature of precipitation field: spatial variability, temporal variability, and storm movement. Previous effort by the authors has investigated the sensitivity of DMS parameters on corresponding hydrologic responses by using synthetic storms. In this study, the DMS generator has been upgraded to generate more realistic precipitation field. The dependence of hydrologic responses on rainfall features was investigated by dissecting the precipitation field into rain cells and modifying their spatio-temporal specification individually. To retrieve DMS parameters from radar rainfall data, rain cell segmentation and tracking algorithms were respectively developed and applied on high resolution radar rainfall data (1) to spatially determine the rain cells within individual radar image and (2) to temporally analyze their dynamic behavior. Statistics of DMS parameters were established by processing a long record of rainfall data (10 years) to keep the modification on real storms within the limit of regional climatology. Empirical distributions of the DMS parameters were calculated to reveal any preferential pattern and seasonality. Subsequently, the WRF-Hydro model forced by the remodeled and modified precipitation was used for hydrologic simulation. The study area was the Upper Trinity River Basin (UTRB) watershed, Texas; and two kinds of high resolution radar data i.e. the Next-Generation Radar (NEXRAD) level III Digital Hybrid Reflectivity (DHR) product and Multi-Radar Multi-Sensor (MRMS) precipitation rate product, were utilized to establish parameter statistics and to recreate/remodel historical events respectively. The results demonstrated that rainfall duration is a significant linkage between DMS parameters and their hydrologic impacts—any combination of spatiotemporal characteristics that keep rain cells longer over the catchment will produce higher

  1. Impact of climate change on heavy precipitation events of the Mediterranean basin; Impact du changement climatique sur les evenements de pluie intense du bassin mediterraneen

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, D.; Beaulant, A.L.; Deque, M.; Ducrocq, V.; Joly, A.; Joly, B.; Martin, E.; Nuissier, O.; Quintana Segui, P.; Ribes, A.; Sevault, F.; Somot, S. [Meteo-France et CNRS, Groupe d' Etude de l' Atmosphere Meteorologique (GAME), 31 - Toulouse (France); Boe, J. [California Univ., Dept. of Atmospheric and Oceanic Sciences, Los Angeles, CA (United States)

    2009-11-15

    A second topic covered by the CYPRIM project aims to characterize the evolution of heavy precipitation events in Mediterranean in the context of climate change. To this end, a continuous climate simulation from 1960 to 2099 has been run using a regional ocean-atmosphere coupled model under IPCC A2 emission scenario. Various techniques of down-scaling, down to the very fine 2 km scale, and methods to highlight synoptic environments favourable to heavy rain, have been used to estimate the impact of climate change on precipitation and hydrology over South-East France, both for the whole autumn season and the heavy rain events. (authors)

  2. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea

    Directory of Open Access Journals (Sweden)

    Muhammad Shafique

    2018-03-01

    Full Text Available This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas.

  3. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea.

    Science.gov (United States)

    Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon

    2018-03-16

    This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas.

  4. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea

    Science.gov (United States)

    Shafique, Muhammad; Kim, Reeho; Kyung-Ho, Kwon

    2018-01-01

    This field study elaborates the role of grass swale in the management of stormwater in an urban parking lot. Grass swale was constructed by using different vegetations and local soil media in the parking lot of Mapu-gu Seoul, Korea. In this study, rainfall runoff was first retained in soil and the vegetation layers of the grass swale, and then infiltrated rainwater was collected with the help of underground perforated pipe, and passed to an underground storage trench. In this way, grass swale detained a large amount of rainwater for a longer period of time and delayed peak discharge. In this field study, various real storm events were monitored and the research results were analyzed to evaluate the performance of grass swale for managing rainfall runoff in an urban area. From the analysis of field experiments, grass swale showed the significant rainfall runoff retention in different rain events. Grass swale markedly reduced total rainfall runoff volume and peak flow during the small storm events of intensity about 30 mm/h. From the analysis, on average rainfall runoff retention from the grass swale was found around 40 to 75% during the various small rain events. From the results, we can say that grass swale is a stormwater mitigation practice which can help avoid flash flooding problems in urban areas. PMID:29547567

  5. Prediction of rainfall-induced shallow landslides at national scale in Italy

    Science.gov (United States)

    Montrasio, Lorella; Valentino, Roberto; Rossi, Lauro; Rudari, Roberto; Terrone, Andrea

    2013-04-01

    In Italy, landslides are very frequent, widespread and dangerous phenomena. In the last decades, climate changes, which provoked weather conditions characterized by localized rainfall events of high intensity and short duration, together with modifications of land use and an increase of urban areas, have led to a progressive increase of the frequency and extent of rainfall-induced landslides. These phenomena caused, in turn, considerable damage to structures, infrastructure and crops, as well as casualties. These natural and anthropogenic factors determine a series of hydrogeological problems for both land resource and for inhabited areas, industrial areas and for the infrastructural network. The need for a continued monitoring activity that ensures the preservation of life and human activities, and for a real-time assessment of landslide risk, in close correlation with rainfall forecasts, is therefore increasing. The paper deals with the application, on national scale in the Italian territory, of the physically-based stability model SLIP (Shallow Landslides Instability Prediction). The SLIP model has been firstly developed at the Department of Civil Engineering at the University of Parma since 1997, in order to describe the triggering mechanism of rainfall-induced landslides. More recently, the SLIP model has been tested as a prototype early warning system for rainfall-induced landslides in Italy, using rainfall data and geospatial datasets. The model, which is based on the limit equilibrium method, is deliberately simplified, in order to evaluate the safety factor of a slope in function of the geotechnical characteristics of the soil, the geometrical features of the slope and the rainfall depth. A back analysis concerning the occurrence of some recent case-histories of rainfall-induced shallow landslides in the Italian territory is carried out and the main results are shown. The main features of the SLIP model are briefly recalled and particular attention is

  6. Event-shape-engineering study of charge separation in heavy-ion collisions

    Science.gov (United States)

    Wen, Fufang; Bryon, Jacob; Wen, Liwen; Wang, Gang

    2018-01-01

    Recent measurements of charge-dependent azimuthal correlations in high-energy heavy-ion collisions have indicated charge-separation signals perpendicular to the reaction plane, and have been related to the chiral magnetic effect (CME). However, the correlation signal is contaminated with the background caused by the collective motion (flow) of the collision system, and an effective approach is needed to remove the flow background from the correlation. We present a method study with simplified Monte Carlo simulations and a multi-phase transport model, and develop a scheme to reveal the true CME signal via event-shape engineering with the flow vector of the particles of interest. Supported by a grant (DE-FG02-88ER40424) from U.S. Department of Energy, Office of Nuclear Physics

  7. Added value of distribution in rainfall-runoff models for the Meuse basin

    NARCIS (Netherlands)

    de Boer, T.

    2017-01-01

    Why do equal precipitation events not lead to equal discharge events across space and time? The easy answer would be because catchments are different, which then leads to the second question: Why do hydrologists often use the same rainfall-runoff model for different catchments? Probably because

  8. A preliminary investigation of radar rainfall estimation in the Ardennes region and a first hydrological application for the Ourthe catchment

    Directory of Open Access Journals (Sweden)

    A. Berne

    2005-01-01

    Full Text Available This paper presents a first assessment of the hydrometeorological potential of a C-band doppler weather radar recently installed by the Royal Meteorological Institute of Belgium near the village of Wideumont in the southern Ardennes region. An analysis of the vertical profile of reflectivity for two contrasting rainfall events confirms the expected differences between stratiform and convective precipitation. The mean areal rainfall over the Ourthe catchment upstream of Tabreux estimated from the Wideumont weather radar using the standard Marshall-Palmer reflectivity-rain rate relation shows biases between +128% and –42% for six selected precipitation events. For two rainfall events the radar-estimated mean areal rainfall is applied to the gauge-calibrated (lumped HBV-model for the Ourthe upstream of Tabreux, resulting in a significant underestimation with respect to the observed discharge for one event and a closer match for another. A bootstrap analysis using the radar data reveals that the uncertainty in the hourly discharge from the ~1600km2} catchment associated with the sampling uncertainty of the mean areal rainfall estimated from 10 rain gauges evenly spread over the catchment amounts to ±25% for the two events analyzed. This uncertainty is shown to be of the same order of magnitude as that associated with the model variables describing the initial state of the model.

  9. Numerical Study on Interdecadal Modulations of ENSO-related Spring Rainfall over South China by the Pacific Decadal Oscillation

    Science.gov (United States)

    MAO, J.; WU, X.

    2017-12-01

    The spatio-temporal variations of eastern China spring rainfall are identified via empirical orthogonal function (EOF) analysis of rain-gauge (gridded) precipitation datasets for the period 1958-2013 (1920-2013). The interannual variations of the first two leading EOF modes are linked with the El Niño-Southern Oscillation (ENSO), with this linkage being modulated by the Pacific Decadal Oscillation (PDO). The EOF1 mode, characterized by predominant rainfall anomalies from the Yangtze River to North China (YNC), is more likely associated with out-of-phase PDO-ENSO events [i.e., El Niño during cold PDO (EN_CPDO) and La Niña during warm PDO (LN_WPDO)]. The sea surface temperature anomaly (SSTA) distributions of EN_CPDO (LN_WPDO) events induce a significant anomalous anticyclone (cyclone) over the western North Pacific stretching northwards to the Korean Peninsula and southern Japan, resulting in anomalous southwesterlies (northeasterlies) prevailing over eastern China and above-normal (below-normal) rainfall over YNC. In contrast, EOF2 exhibits a dipole pattern with predominantly positive rainfall anomalies over southern China along with negative anomalies over YNC, which is more likely connected to in-phase PDO-ENSO events [i.e., El Niño during warm PDO (EN_WPDO) and La Niña during cold PDO (LN_CPDO)]. EN_WPDO (LN_CPDO) events force a southwest-northeast oriented dipole-like circulation pattern leading to significant anomalous southwesterlies (northeasterlies) and above-normal (below-normal) rainfall over southern China. Numerical experiments with the CAM5 model forced by the SSTA patterns of EN_WPDO and EN_CPDO events reproduce reasonably well the corresponding anomalous atmospheric circulation patterns and spring rainfall modes over eastern China, validating the related mechanisms.

  10. Effect of rainfall infiltration into unsaturated soil using soil column

    Science.gov (United States)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  11. Numerical simulation of heavy precipitation events using mesoscale weather forecast models. Validation with radar data and diagnosis of the atmospheric moisture budget; Numerische Simulation von Starkniederschlagsereignissen mit mesoskaligen Wettervorhersagemodellen. Ueberpruefung mit Radar-Daten und Diagnose der atmosphaerischen Wasserbilanz

    Energy Technology Data Exchange (ETDEWEB)

    Keil, C.

    2000-07-01

    Convective precipitation systems contribute substantially to the summertime rainfall maximum in the northern Alpine region. The capability of mesoscale weather forecast models in capturing such heavy precipitation events is investigated. The complementary application of so far hardly used areal radar data and conventional rain gauge observations enables a case-study-type evaluation of summertime precipitation episodes. Different rainfall episodes are simulated with the former operational model (DM, meshsize 14 km) of Deutscher Wetterdienst (DWD). The influence of the horizontal resolution and the parameterization of moist convection is subsequently studied with a higher resolution atmospheric model (MC2, meshsize 2 km). Diagnostic studies on the atmospheric water budget regarding the rainfall episode, which instigated the Oder-flood in summer 1997, allow an examination of the origin of the moisture and the genesis of the copious precipitation. (orig.) [German] Konvektive Niederschlagssysterne tragen im Nordalpenraum wesentlich zum sommerlichen Niederschlagsmaximum bei. Die Faehigkeit mesoskaliger Wettervorhersagemodelle, solche Starkniederschlagsereignisse zu erfassen, wird in dieser Arbeit untersucht. Durch den komplementaeren Gebrauch von, bisher kaum genutzten, flaechendeckenden Radardaten und konventionellen Niederschlagsmessungen des Bodenmessnetzes werden Modellergebnisse sommerlicher Niederschlagssysteme fallstudienhaft detailliert ueberprueft. Fuer verschiedene Starkniederschlagsereignisse werden dazu Modellsimulationen mit dem in den 90er Jahren operationellen Modell (DM, Maschenweite 14 km) des Deutschen Wetterdienstes (DWD) durchgefuehrt. Zur Untersuchung des Einflusses der horizontalen Maschenweite und der Niederschlagsparametrisierung werden ferner numerische Simulationen mit einem hoeher aufloesdenden Atmosphaerenmodell (MC2, Maschenweite 2 km) behandelt. Anhand diagnostischer Untersuchungen der atmosphaerischen Wasserbilanz laesst sich ausserdem die

  12. Water quality during storm events from two constructed wetlands receiving mine drainage

    International Nuclear Information System (INIS)

    Stark, L.R.; Brooks, R.P.; Williams, F.M.; Stevens, S.E. Jr.; Davis, L.K.

    1994-01-01

    Flow rates, pH, iron concentration, and manganese concentration were measured during several storm event at two constructed wetlands receiving mine water. During a substantial rain event, flow rates at both the wetland outlets surpassed flow rates at the wetland inlets, reflecting incident rainfall and differences in wetland area at the two sites. A significant positive correlation existed between local rainfall and outflow rates at the larger wetland, but not between rainfall and inflow rates. During storm events, outlet pH, relative to inlet pH, was slightly elevated at the larger wetland, and depressed at the smaller wetland. However, over the course of one year, rainfall was uncorrelated to outlet pH in the larger wetland. A substantial rain event at the smaller wetland resulted in a temporary elevation in outlet iron concentrations, with treatment efficiency reduced to near zero. However, in the larger wetland, outlet iron concentrations were not significantly affected by storm events. 14 refs., 7 figs., 4 tabs

  13. High Severity Wildfire Effect On Rainfall Infiltration And Runoff: A Cellular Automata Based Simulation

    Science.gov (United States)

    Vergara-Blanco, J. E.; Leboeuf-Pasquier, J.; Benavides-Solorio, J. D. D.

    2017-12-01

    A simulation software that reproduces rainfall infiltration and runoff for a storm event in a particular forest area is presented. A cellular automaton is utilized to represent space and time. On the time scale, the simulation is composed by a sequence of discrete time steps. On the space scale, the simulation is composed of forest surface cells. The software takes into consideration rain intensity and length, individual forest cell soil absorption capacity evolution, and surface angle of inclination. The software is developed with the C++ programming language. The simulation is executed on a 100 ha area within La Primavera Forest in Jalisco, Mexico. Real soil texture for unburned terrain and high severity wildfire affected terrain is employed to recreate the specific infiltration profile. Historical rainfall data of a 92 minute event is used. The Horton infiltration equation is utilized for infiltration capacity calculation. A Digital Elevation Model (DEM) is employed to reproduce the surface topography. The DEM is displayed with a 3D mesh graph where individual surface cells can be observed. The plot colouring renders water content development at the cell level throughout the storm event. The simulation shows that the cumulative infiltration and runoff which take place at the surface cell level depend on the specific storm intensity, fluctuation and length, overall terrain topography, cell slope, and soil texture. Rainfall cumulative infiltration for unburned and high severity wildfire terrain are compared: unburned terrain exhibits a significantly higher amount of rainfall infiltration.It is concluded that a cellular automaton can be utilized with a C++ program to reproduce rainfall infiltration and runoff under diverse soil texture, topographic and rainfall conditions in a forest setting. This simulation is geared for an optimization program to pinpoint the locations of a series of forest land remediation efforts to support reforestation or to minimize runoff.

  14. [Rainfall effects on the sap flow of Hedysarum scoparium.

    Science.gov (United States)

    Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng

    2016-03-01

    In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.

  15. The 1970 Clean Air Act and termination of rainfall suppression in a U.S. urban area

    Science.gov (United States)

    Diem, Jeremy E.

    2013-08-01

    The purpose of this paper is to determine the impact of reduced atmospheric particulate resulting from the Clean Air Act of 1970 on changes in summer rainfall in the Atlanta, Georgia USA region. In order to determine if rainfall at nine candidate stations in the metropolitan area was influenced by changes in particulate concentrations within the 1948-2009 period, predicted rainfall characteristics were derived from rainfall frequencies at nine reference stations located more than 80 km from downtown Atlanta. Both parametric and non-parametric tests were used to test for significant differences between observed values and predicted values within 34 overlapping 30-year periods. For the country as a whole, emissions of PM10 (i.e. particulates with a diameter less than or equal to 10 μm) decreased by approximately 40% from 1970 to 1975. The reduction in emissions caused a rapid rebound in summer rainfall in the Atlanta region. There was suppression of rainfall over and downwind of the Atlanta urbanized area during 30-yr periods that comprise all or portions of the decades of the 1950s, 1960s, and 1970s. This suppression occurred even while urban-related factors that promote rainfall enhancement were present. During the 1948-1977 suppression period, there was a decrease in rainfall of at least 40 mm at affected locales, which is substantial given that the mean seasonal rainfall was approximately 300 mm. The rainfall suppression involved a decrease of heavy-rainfall days. Atlanta is most likely not a unique case; therefore, particulate-induced rainfall suppression might have occurred over and downwind of other U.S. urban areas prior to the late 1970s.

  16. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  17. Analysis of Central Events in the Interactions of Relativistic Heavy Ions with Emulsion Nuclei at 118.4 GeV

    International Nuclear Information System (INIS)

    EL-Falaky, E.

    2007-01-01

    Data on the multiplicity of the secondary produced particles in the central events from the interactions of 32S with AgBr nuclei at 118.4 GeV. A different selection criteria of the central collision in heavy ion interactions was investigated. The multiplicity distributions of the different produced shower particles (mainly pions) in the central events for each criteria was studied. The multiplicity distributions of the target fragments emitted in the central events was fitted by a Gaussian distribution. The target analysis of the experimental data shows agreement with the limiting fragmentation hypothesis

  18. Convective and nonconvective rainfall partitioning over a mixed Sudanian Savanna Agriculture Catchment: Use of a distributed sensor network

    Science.gov (United States)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Repetti, A.; Yacouba, H.; Tyler, S. W.; Parlange, M. B.

    2011-12-01

    A hydro-meteorological field campaign (joint EPFL-2iE) in a mixed agricultural and forest region in the southern Burkina Faso Savanna aims to identify and understand convective rainfall processes and the link to soil moisture. A simple slab Mixed Layer and Lifting Condensation Level model is implemented to separate convective and nonconvective rainfall. Data for this research were acquired during the 2010 rainy season using an array of wireless weather stations (SensorScope) as well as surface energy balance stations that based upon eddy correlation heat flux measurements. The precipitation was found to be variable over the basin with some 200 mm of difference in total seasonal rainfall between agricultural fields and savanna forest. Convective rainfall represents more than 30% of the total rainfall. The convective rainfall events are short (less than hour), intense (greater than 3 mm/minute) and occur both in the early morning and in the afternoons. These events can have an important impact on soil erosion, which we discuss in more detail along with seasonal stream-aquifer interactions.

  19. The development of a sub-daily gridded rainfall product to improve hydrological predictions in Great Britain

    Science.gov (United States)

    Quinn, Niall; Freer, Jim; Coxon, Gemma; O'Loughlin, Fiachra; Woods, Ross; Liguori, Sara

    2015-04-01

    In Great Britain and many other regions of the world, flooding resulting from short duration, high intensity rainfall events can lead to significant economic losses and fatalities. At present, such extreme events are often poorly evaluated using hydrological models due, in part, to their rarity and relatively short duration and a lack of appropriate data. Such storm characteristics are not well represented by daily rainfall records currently available using volumetric gauges and/or derived gridded products. This research aims to address this important data gap by developing a sub-daily gridded precipitation product for Great Britain. Our focus is to better understand these storm events and some of the challenges and uncertainties in quantifying such data across catchment scales. Our goal is to both improve such rainfall characterisation and derive an input to drive hydrological model simulations. Our methodology involves the collation, error checking, and spatial interpolation of approximately 2000 rain gauges located across Great Britain, provided by the Scottish Environment Protection Agency (SEPA) and the Environment Agency (EA). Error checking was conducted over the entirety of the TBR data available, utilising a two stage approach. First, rain gauge data at each site were examined independently, with data exceeding reasonable thresholds marked as suspect. Second, potentially erroneous data were marked using a neighbourhood analysis approach whereby measurements at a given gauge were deemed suspect if they did not fall within defined bounds of measurements at neighbouring gauges. A total of eight error checks were conducted. To provide the user with the greatest flexibility possible, the error markers associated with each check have been recorded at every site. This approach aims to enable the user to choose which checks they deem most suitable for a particular application. The quality assured TBR dataset was then spatially interpolated to produce a national

  20. Condições termodinâmicas de eventos de precipitação extrema em Belém-PA durante a estação chuvosa Thermodynamic conditions of extreme rainfall events in Belém-PA, Brazil, during the rainy season

    Directory of Open Access Journals (Sweden)

    João Paulo Nardin Tavares

    2012-07-01

    , however, events with low values of CAPE in the 1200 UTC sounding at the day of the event, but larger values in the day before, which indicates that the rain in question may have begun in the early hours and have last for several hours, crossing the time of the sounding, explaining the decrease of this parameter. The K, TT and LI instability indexes showed a close representation of the environment, predicting storms with heavy rainfall with 74% of correct identification, if taken into account the events on which all indexes showed the same indication of strong instability. Therefore, thermodynamic conditions of strong instability may lead to storms, but are not the only responsible factors for convective storms with extreme rainfall.