WorldWideScience

Sample records for heavy quark symmetry

  1. Enhanced breaking of heavy quark spin symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng-Kun, E-mail: fkguo@hiskp.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Meißner, Ulf-G., E-mail: meissner@hiskp.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Shen, Cheng-Ping, E-mail: shencp@ihep.ac.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China)

    2014-11-10

    Heavy quark spin symmetry is useful to make predictions on ratios of decay or production rates of systems involving heavy quarks. The breaking of spin symmetry is generally of the order of O(Λ{sub QCD}/m{sub Q}), with Λ{sub QCD} the scale of QCD and m{sub Q} the heavy quark mass. In this paper, we will show that a small S- and D-wave mixing in the wave function of the heavy quarkonium could induce a large breaking in the ratios of partial decay widths. As an example, we consider the decays of the ϒ(10860) into the χ{sub bJ}ω(J=0,1,2), which were recently measured by the Belle Collaboration. These decays exhibit a huge breaking of the spin symmetry relation were the ϒ(10860) a pure 5S bottomonium state. We propose that this could be a consequence of a mixing of the S-wave and D-wave components in the ϒ(10860). Prediction on the ratio Γ(ϒ(10860)→χ{sub b0}ω)/Γ(ϒ(10860)→χ{sub b2}ω) is presented assuming that the decay of the D-wave component is dominated by the coupled-channel effects.

  2. Heavy quark symmetry at large recoil: The case of baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.; Kroll, P.

    1992-02-01

    We analyze the large recoil behaviour of heavy baryon transition form factors in semi-leptonic decays. We use a generalized Brodsky-Lepage hard scattering formalism where diquarks are considered as quasi-elementary constituents of baryons. In the limit of infinitely heavy quark masses the large recoil form factors exhibit a new model-independent heavy quark symmetry which is reminiscent but not identical to the Isgur-Wise symmetry at low recoil. (orig.)

  3. Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Friedrich, R.; Reinhardt, H.

    1994-06-01

    By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3) F symmetry breaking effects are estimated and, if possible, confronted with experiment. (orig.)

  4. Heavy-quark spin symmetry partners of the X(3872 revisited

    Directory of Open Access Journals (Sweden)

    V. Baru

    2016-12-01

    Full Text Available We revisit the consequences of the heavy-quark spin symmetry for the possible spin partners of the X(3872. We confirm that, if the X(3872 were a DD¯⁎ molecular state with the quantum numbers JPC=1++, then in the strict heavy-quark limit there should exist three more hadronic molecules degenerate with the X(3872, with the quantum numbers 0++, 1+−, and 2++ in line with previous results reported in the literature. We demonstrate that this result is robust with respect to the inclusion of the one-pion exchange interaction between the D mesons. However, this is true only if all relevant partial waves as well as particle channels which are coupled via the pion-exchange potential are taken into account. Otherwise, the heavy-quark symmetry is destroyed even in the heavy-quark limit. Finally, we solve the coupled-channel problem in the 2++ channel with nonperturbative pions beyond the heavy-quark limit and, contrary to the findings of previous calculations with perturbative pions, find for the spin-2 partner of the X(3872 a significant shift of the mass as well as a width of the order of 50 MeV.

  5. Hadrons of arbitrary spin and heavy quark symmetry

    International Nuclear Information System (INIS)

    Hussain, F.; Thompson, G.; Koerner, J.G.

    1993-11-01

    We present a general construction of the spin content of the Bethe-Salpeter amplitudes (covariant wave functions) for heavy hadrons with arbitrary orbital excitations, using representations of l x O(3, 1). These wave functions incorporate the symmetries manifest in the heavy quark limit. In the baryonic sector we clearly differentiate between the Λ and Σ-type excited baryons. We then use the trace formalism to evaluate the weak transitions of ground state heavy hadrons to arbitrary excited heavy hadrons. The contributions of excited states to the Bjorken sum rule are also worked out in detail. (author). 21 refs

  6. Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Hill, C.T.

    1994-01-01

    We study a solvable QCD-like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system, corresponding to a (0 - ,1 - ) multiplet and a (0 + ,1 + ) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger-Treiman relation and g A is found to be small. The Isgur-Wise function ξ(w), the decay constant f B , and other observables are studied

  7. Light-quark, heavy-quark systems: An update

    International Nuclear Information System (INIS)

    Grinstein, B.

    1993-01-01

    The author reviews many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorm, he describes striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of |B cb |. He discusses factorization and compares with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. He compiles many interesting results and discuss the validity of the calculations

  8. The heavy quark expansion of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Falk, A.F. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Physics and Astronomy

    1997-06-01

    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs.

  9. The heavy quark expansion of QCD

    International Nuclear Information System (INIS)

    Falk, A.F.

    1997-01-01

    These lectures contain an elementary introduction to heavy quark symmetry and the heavy quark expansion. Applications such as the expansion of heavy meson decay constants and the treatment of inclusive and exclusive semileptonic B decays are included. Heavy hadron production via nonperturbative fragmentation processes is also discussed. 54 refs., 7 figs

  10. The heavy top quark and supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)

    1997-01-01

    Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the Standard Model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the Standard Model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed.

  11. The heavy top quark and supersymmetry

    International Nuclear Information System (INIS)

    Hall, L.J.; Univ. of California, Berkeley, CA

    1996-01-01

    Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the standard model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the standard model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed

  12. The heavy top quark and supersymmetry

    International Nuclear Information System (INIS)

    Hall, L.J.

    1997-01-01

    Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the Standard Model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the Standard Model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed

  13. Chiral symmetry-breaking and the quark mass

    International Nuclear Information System (INIS)

    Gautam, V.P.; Kar, S.C.

    1988-01-01

    The generation of mass for light and heavy-quark sectors in the case of chiral symmetry-breaking is studied and an attempt is made to find the origin of quark mass and renormalization point corresponding to current-quark mass. (M.G.B.). 12 refs

  14. Light-quark, heavy-quark systems: An update

    Science.gov (United States)

    Grinstein, B.

    1993-06-01

    We review many of the recently developed applications of Heavy Quark Effective Theory techniques. After a brief update on Luke's theorem, we describe striking relations between heavy baryon form factors, and how to use them to estimate the accuracy of the extraction of (vert bar)V(sub cb)(vert bar). We discuss factorization and compare with experiment. An elementary presentation, with sample applications, of reparametrization invariance comes next. The final and most extensive chapter in this review deals with phenomenological lagrangians that incorporate heavy-quark spin-flavor as well as light quark chiral symmetries. We compile many interesting results and discuss the validity of the calculations.

  15. Ratios of B and D meson decay constants with heavy quarks symmetry

    International Nuclear Information System (INIS)

    Giri, A.K.; Maharana, L.; Mohanta, R.

    1996-01-01

    SU(3) flavor symmetry allows the decay constants f Ds , and f Dd as well as f Bs , and f Bd , to be equal. But due to SU(3) flavor symmetry breaking the ratios f Bs /f Bd and f Ds /f Dd are deviated from unity. We have estimated these ratios in the heavy quark effective theory and obtained f Bs /f Bd = 0.93, f Ds /f Dd = 0.94 and the double ratio (f Bs /f Bd )/(f Ds /f Dd ) = 0.99. (author). 22 refs

  16. Heavy-Quark Symmetry Implies Stable Heavy Tetraquark Mesons Q_{i}Q_{j}q[over ¯]_{k}q[over ¯]_{l}.

    Science.gov (United States)

    Eichten, Estia J; Quigg, Chris

    2017-11-17

    For very heavy quarks Q, relations derived from heavy-quark symmetry predict the existence of novel narrow doubly heavy tetraquark states of the form Q_{i}Q_{j}q[over ¯]_{k}q[over ¯]_{l} (subscripts label flavors), where q designates a light quark. By evaluating finite-mass corrections, we predict that double-beauty states composed of bbu[over ¯]d[over ¯], bbu[over ¯]s[over ¯], and bbd[over ¯]s[over ¯] will be stable against strong decays, whereas the double-charm states ccq[over ¯]_{k}q[over ¯]_{l}, mixed beauty+charm states bcq[over ¯]_{k}q[over ¯]_{l}, and heavier bbq[over ¯]_{k}q[over ¯]_{l} states will dissociate into pairs of heavy-light mesons. Observation of a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  17. Heavy quark production and spectroscopy

    International Nuclear Information System (INIS)

    Appel, J.A.

    1993-11-01

    This review covers many new experimental results on heavy flavor production and spectroscopy. It also shows some of the increasingly improved theoretical understanding of results in light of basic perturbative QCD and heavy quark symmetry. At the same time, there are some remaining discrepancies among experiments as well as significant missing information on some of the anticipated lowest lying heavy quark states. Most interesting, perhaps, are some clearly measured production effects awaiting full explanation

  18. A diquark model for baryons containing one heavy quark

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Kettner, C.; Reinhardt, H.

    1995-06-01

    We present a phenomenological ansatz for coupling a heavy quark with two light quarks to form a heavy baryon. The heavy quark is treated in the heavy mass limit, and the light quark dynamics is approximated by propagating scalar and axial vector 'diquarks'. The resulting effective lagrangian, which incorporates heavy quark and chiral symmetry, describes interactions of heavy baryons with Goldstone bosons in the low energy region. As an application, the Isgur-Wise formfactors are estimated. (orig.)

  19. The significance of the heavy top quark

    International Nuclear Information System (INIS)

    Simmons, Elizabeth H.

    1997-01-01

    Experiment shows that the top quark is far heavier than the other elementary fermions. This finding has stimulated research on theories of electroweak and flavor symmetry breaking that include physics beyond the standard model. Efforts to accommodate a heavy top quark within existing frameworks have revealed constraints on model-building. Other investigations have started from the premise that a large top quark mass could signal a qualitative difference between the top quark and other fermions, perhaps in the form of new interactions peculiar to the top quark. Such new dynamics may also help answer existing questions about electroweak and flavor physics. This talk explores the implications of the heavy top quark in the context of weakly-coupled (e.g., SUSY) and strongly-coupled (e.g., technicolor) theories of electroweak symmetry breaking

  20. Heavy-heavy and heavy-light quarks interactions generated by QCD vacuum

    Directory of Open Access Journals (Sweden)

    Musakhanov Mirzayusuf

    2017-01-01

    Full Text Available The QCD vacuum is populated by instantons that correspond to the tunneling processes in the vacuum. This mechanism creates the strong vacuum gluon fields. As result, the QCD vacuum instantons induce very strong interactions between light quarks, initially almost massless. Such a strong interactions bring a large dynamical mass M of the light quarks and bound them to produce almost massless pions in accordance with the spontaneous breaking of the chiral symmetry (SBCS. On the other hand, the QCD vacuum instantons also interact with heavy quarks and responsible for the generation of the heavy-heavy and heavy-light quarks interactions, with a traces of the SBCS. If we take the average instanton size ρ¯=0.33$\\bar \\rho = 0.33$ fm, and the average inter-instanton distance R¯=1$\\bar R = 1$ fm we obtain the dynamical light quark mass to be M = 365 MeV and the instanton media contribution to the heavy quark mass ΔM=70 MeV. These factors define the coupling between heavy-light and heavy-heavy quarks induced by the QCD vacuum instantons. We consider first the instanton effects on the heavy-heavy quarks potential, including its spin-dependent part. We also discuss those effects on the masses of the charmonia and their hyperfine mass splittings. At the second part we discuss the interaction between a heavy and light quarks generated by instantons and it’s effects.

  1. Heavy quark condensates from dynamically borken flavour symmetry

    International Nuclear Information System (INIS)

    Elliott, T.; King, S.F.

    1992-01-01

    We study the dynamics of top quark condensation induced by gauge interactions resulting from a broken flavour symmetry. The gap equation in dressed ladder approximation is solved numerically to obtain directly the top quark mass. The new high energy dynamics reduces the prediction of m t somewhat, but the usual problems of m t being too large and fine tuning remain. In order to solve these problems we extend our discussion to include fourth generation quark condensates. (orig.)

  2. Lowest-lying even-parity anti B{sub s} mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses

    Energy Technology Data Exchange (ETDEWEB)

    Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)

    2017-03-15

    The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)

  3. Heavy baryons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Koerner, J.G.; Thompson, G.

    1991-10-01

    We give a mini-review of recent results on current-induced transitions between heavy baryons (and between heavy and light baryons) in the light of the new spin and flavour symmetries of the Heavy Quark Effective Theory (HQET). We discuss the structure of the 1/m corrections to the heavy mass limit and outline a diagrammatic proof that there are no 0(1/m) correction to the Voloshin-Shifman normalization condition at zero recoil. (orig.)

  4. The heavy quark search at the LHC

    International Nuclear Information System (INIS)

    Holdom, Bob

    2007-01-01

    We explore further the discovery potential for heavy quarks at the LHC, with emphasis on the t' and b' of a sequential fourth family associated with electroweak symmetry breaking. We consider QCD multijets, t t-bar + jets, W + jets and single t backgrounds using event generation based on improved matrix elements and low sensitivity to the modeling of initial state radiation. We exploit a jet mass technique for the identification of hadronically decaying W's and t's, to be used in the reconstruction of the t' or b' mass. This along with other aspects of event selection can reduce backgrounds to very manageable levels. It even allows a search for both t' and b' in the absence of b-tagging, of interest for the early running of the LHC. A heavy quark mass of order 600 GeV is motivated by the connection to electroweak symmetry breaking, but our analysis is relevant for any new heavy quarks with weak decay modes

  5. Heavy-quark physics in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1991-04-01

    Heavy quarks can expose new symmetries and novel phenomena in QCD not apparent in ordinary hadronic systems. In these lectures I discuss the use of effective-Lagrangian and light-cone Fock methods to analyze exclusive heavy hadron decays such as Υ → p bar p and B → ππ, and also to derive effective Schroedinger and Dirac equations for heavy quark systems. Two contributions to the heavy quark structure functions of the proton and other light hadrons are identified: an ''extrinsic'' contribution associated with leading twist QCD evolution of the gluon distribution, and a higher twist ''intrinsic'' contribution due to the hardness of high-mass fluctuations of multi-gluon correlations in hadronic wavefunctions. A non-perturbative calculation of the heavy quark distribution of a meson in QCD in one space and one time is presented. The intrinsic higher twist contributions to the pion and proton structure functions can dominate the hadronic production of heavy quark systems at large longitudinal momentum fraction x F and give anomalous contributions to the quark structure functions of ordinary hadrons at large x bj . I also discuss a number of ways in which heavy quark production in nuclear targets can test fundamental QCD phenomena and provide constraints on hadronic wavefunctions. The topics include color transparency, finite formation time, and predictions for charm production at threshold, including nuclear-bound quarkonium. I also discuss a number of QCD mechanisms for the suppression of J/ψ and Υ production in nuclear collisions, including gluon shadowing, the peripheral excitation of intrinsic heavy quark components at large x F , and the coalescence of heavy quarks with co-moving spectators at low x F

  6. Heavy quark and magnetic moment

    International Nuclear Information System (INIS)

    Mubarak, Ahmad; Jallu, M.S.

    1979-01-01

    The magnetic moments and transition moments of heavy hadrons including the conventional particles are obtained under the SU(5) truth symmetry scheme. To this end state vectors are defined and the quark additivity principle is taken into account. (author)

  7. Comparison of potential models through heavy quark effective theory

    International Nuclear Information System (INIS)

    Amundson, J.F.

    1995-01-01

    I calculate heavy-light decay constants in a nonrelativistic potential model. The resulting estimate of heavy quark symmetry breaking conflicts with similar estimates from lattice QCD. I show that a semirelativistic potential model eliminates the conflict. Using the results of heavy quark effective theory allows me to identify and compensate for shortcomings in the model calculations in addition to isolating the source of the differences in the two models. The results lead to a rule as to where the nonrelativistic quark model gives misleading predictions

  8. Heavy quark spin symmetry and SU(3)-flavour partners of the X(3872)

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo-Duque, C., E-mail: carloshd@ific.uv.es [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia (Spain); Nieves, J. [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia (Spain); Pavón Valderrama, M. [Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, F-91406 Orsay Cedex (France)

    2013-09-20

    In this work, an Effective Field Theory (EFT) incorporating light SU(3)-flavour and heavy quark spin symmetries is used to describe charmed meson–antimeson bound states. At Lowest Order (LO), this means that only contact range interactions among the heavy meson and antimeson fields are involved. Besides, the isospin violating decays of the X(3872) will be used to constrain the interaction between the D and a D{sup ¯⁎} mesons in the isovector channel. Finally, assuming that the X(3915) and Y(4140) resonances are D{sup ⁎}D{sup ¯⁎} and D{sub s}{sup ⁎}D{sup ¯}{sub s}{sup ⁎} molecular states, we can determine the four Low Energy Constants (LECs) of the EFT that appear at LO and, therefore, the full spectrum of molecular states with isospin I=0, 1/2 and 1.

  9. Quark condensation, induced symmetry breaking and color superconductivity at high density

    International Nuclear Information System (INIS)

    Langfeld, Kurt; Rho, Mannque

    1999-01-01

    The phase structure of hadronic matter at high density relevant to the physics of compact stars and relativistic heavy-ion collisions is studied in a low-energy effective quark theory. The relevant phases that figure are (1) chiral condensation, (2) diquark color condensation (color superconductivity) and (3) induced Lorentz-symmetry breaking (''ISB''). For a reasonable strength for the effective four-Fermi current-current interaction implied by the low-energy effective quark theory for systems with a Fermi surface we find that the ''ISB'' phase sets in together with chiral symmetry restoration (with the vanishing quark condensate) at a moderate density while color superconductivity associated with scalar diquark condensation is pushed up to an asymptotic density. Consequently, color superconductivity seems rather unlikely in heavy-ion collisions although it may play a role in compact stars. Lack of confinement in the model makes the result of this analysis only qualitative but the hierarchy of the transitions we find seems to be quite robust

  10. Bethe-Salpeter dynamics and the constituent mass concept for heavy quark mesons

    International Nuclear Information System (INIS)

    Souchlas, N.; Stratakis, D.

    2010-01-01

    The definition of a quark as heavy requires a comparison of its mass with the nonperturbative chiral symmetry breaking scale which is about 1 GeV (Λ χ ∼1 GeV) or with the scale Λ QCD ∼0.2 GeV that characterizes the distinction between perturbative and nonperturbative QCD. For quark masses significantly larger than these scales, nonperturbative dressing effects, or equivalently nonperturbative self-energy contributions, and relativistic effects are believed to be less important for physical observables. We explore the concept of a constituent mass for heavy quarks in the Dyson-Schwinger equations formalism, for light-heavy and heavy-heavy quark mesons by studying their masses and electroweak decay constants.

  11. Chiral symmetry and quark-antiquark pair creation in a strong color-electromagnetic field

    International Nuclear Information System (INIS)

    Suganuma, Hideo; Tatsumi, Toshitaka.

    1993-01-01

    We study the manifestation of chiral symmetry and q-q-bar pair creation in the presence of the external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the compact formulae of the effective potential, the Dyson equation for the dynamical quark mass and the q-q-bar pair creation rate in the covariantly constant color-electromagnetic field. Our results are compared with those in other approaches. The chiral-symmetry restoration takes place by a strong color-electric field, and the rapid reduction of the dynamical quark mass is found around the critical field strength, ε cr ≅4GeV/fm. Natural extension to the three-flavor case including s-quarks is also done. Around quarks or antiquarks, chiral symmetry would be restored by the sufficiently strong color-electric field, which may lead to the chiral bag picture of hadrons. For the early stage for ultrarelativistic heavy-ion collisions, the possibility of the chiral-symmetry restoration is indicated in the central region just after the collisions. (author)

  12. Heavy quark fragmentation functions in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1996-01-01

    The fragmentation of b-bar-antiquark into polarized B c * -mesons and b-quark into P-wave (c-bar b) states in the Heavy Quark Effective Theory. The heavy quark fragmentation functions in longitudinally and transversely polarized S-wave b-bar c-states and P-wave mesons containing b-, c-quarks also, with the exact account of corrections of first order in 1/m b . 20 refs., 2 figs

  13. Heavy quark masses

    Science.gov (United States)

    Testa, Massimo

    1990-01-01

    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  14. Two-Quark Condensate Changes with Quark Current Mass

    International Nuclear Information System (INIS)

    Lu Changfang; Lue Xiaofu; Wu Xiaohua; Zhan Yongxin

    2009-01-01

    Using the Schwinger-Dyson equation and perturbation theory, we calculate the two-quark condensates for the light quarks u, d, strange quark s and a heavy quark c with their current masses respectively. The results show that the two-quark condensate will decrease when the quark mass increases, which hints the chiral symmetry may be restored for the heavy quarks.

  15. Spin degeneracy of Hadronic molecules in the heavy quark region

    Science.gov (United States)

    Yamaguchi, Yasuhiro

    2018-03-01

    Hadronic molecules have been considered to appear close to the hadron-hadron threshold. For the heavy mesons, \\bar D and B, the one pion exchange potential is enhanced by the mass degeneracy of heavy pseudoscalar and vector mesons, caused by the heavy quark spin symmetry. In this study, we investigate new hadronic molecules formed by the heavy meson {P≤ft( * \\right)} = {\\bar D≤ft( * \\right)},{B≤ft( * \\right)} and a nucleon N, being P (*) N. As the interaction between P (*) and N, the pion and vector meson (ρ and ω) exchanges are considered. By solving the coupled-channel Schrödinger equations for P N and P*N, we obtain the bound and resonant states in the charm and bottom sectors, and in the in nite heavy quark mass limit. In the molecular states, the PN - P*N mixing effect is important, where the tensor force of the one pion exchange potential generates the strong attraction. In the heavy quark limit, we obtain the degeneracy of the states for J P = 1/2- and 3/2-.

  16. Fields, symmetries, and quarks

    International Nuclear Information System (INIS)

    Mosel, U.

    1989-01-01

    'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)

  17. Heavy-quark fragmentation functions in the effective theory of heavy quarks

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1996-01-01

    The effective theory of heavy quarks is used to study b-bar-antiquark fragmentation in polarized Bc* mesons and b-quark fragmentation into P-wave (c-barb) states. The functions of heavy-quark fragmentation into longitudinally and transversely polarized S-wave (b-barc) states and into P-wave mesons containing b and c quarks are calculated. First-order corrections in 1/mb are taken into account exactly in these calculations. The results are shown to be consistent with the corresponding QCD calculations

  18. Broken colour symmetry and liberated quarks

    International Nuclear Information System (INIS)

    Ma, E.

    1976-01-01

    A quark model of hadrons is presented and discussed, in which local SU(3) gauge symmetry is completely broken and yet asymptotic freedom is preserved. There is no infrared slavery in this model, and isolated quarks are free to exist. Colour becomes a global symmetry which is only approximate under SU(3) but nearly exact under SU(2) x U(1), as far as the usual hadron spectroscopy is concerned. (Auth.)

  19. Exploring the Invisible Renormalon Renormalization of the Heavy-Quark Kinetic Energy

    CERN Document Server

    Neubert, M

    1997-01-01

    Using the virial theorem of the heavy-quark effective theory, we show that the mixing of the operator for the heavy-quark kinetic energy with the identity operator is forbidden at the one-loop order by Lorentz invariance. This explains why such a mixing was not observed in several one-loop calculations using regularization schemes with a Lorentz-invariant UV regulator, and why no UV renormalon singularity was found in the matrix elements of the kinetic operator in the bubble approximation (the ``invisible renormalon''). On the other hand, we show that the mixing is not protected in general by any symmetry, and it indeed occurs at the two-loop order. This implies that the parameter $\\lambda_1^H$ of the heavy-quark effective theory is not directly a physical quantity, but requires a non-perturbative subtraction.

  20. Quark diquark symmetry breaking

    International Nuclear Information System (INIS)

    Souza, M.M. de

    1980-01-01

    Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt

  1. Heavy-Quark Production

    CERN Document Server

    Frixione, Stefano; Nason, Paolo; Ridolfi, Giovanni

    1997-01-01

    We review the present theoretical and experimental status of heavy quark production in high-energy collisions. In particular, we cover hadro- and photoproduction at fixed target experiments, at HERA and at the hadron colliders, as well as aspects of heavy quark production in e+e- collisions at the Z0 peak.

  2. A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Papinutto, M. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Pena, C. [European Organization for Nuclear Research, Geneva (Switzerland). Theoretical Physics Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2006-04-15

    We discuss the renormalisation properties of the complete set of {delta}B=2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely. (Orig.)

  3. A strategy for implementing non-perturbative renormalisation of heavy-light four-quark operators in the static approximation

    International Nuclear Information System (INIS)

    Palombi, F.; Pena, C.; Wittig, H.

    2006-04-01

    We discuss the renormalisation properties of the complete set of ΔB=2 four-quark operators with the heavy quark treated in the static approximation. We elucidate the role of heavy quark symmetry and other symmetry transformations in constraining their mixing under renormalisation. By employing the Schroedinger functional, a set of non-perturbative renormalisation conditions can be defined in terms of suitable correlation functions. As a first step in a fully non-perturbative determination of the scale-dependent renormalisation factors, we evaluate these conditions in lattice perturbation theory at one loop. Thereby we verify the expected mixing patterns and determine the anomalous dimensions of the operators at NLO in the Schroedinger functional scheme. Finally, by employing twisted-mass QCD it is shown how finite subtractions arising from explicit chiral symmetry breaking can be avoided completely. (Orig.)

  4. Prediction of beauty particle masses with the heavy quark effective theory

    International Nuclear Information System (INIS)

    Aglietti, U.

    1992-01-01

    Using symmetry properties of the static theory for heavy quarks, the spectrum of beauty particles is predicted in terms of the spectrum of charmed particles. A simple technique for cancelling spin dependent corrections to the static theory is explained and systematically applied. (orig.)

  5. Recent developments in the theory of heavy-quark decays

    International Nuclear Information System (INIS)

    Neubert, M.

    1992-01-01

    I report on recent developments in the heavy-quark effective theory and its application to B meson decays. The parameters of the effective theory, the spin-flavor symmetry limit, and the leading symmetry-breaking corrections to it are discussed. The results of a QCD sum rule analysis of the universal Isgur-Wise functions that appear at leading and subleading order in the 1/m Q expansion are presented. The author illustrate the phenomenological applications of this formalism by focusing on two specific examples: the determination of V cb from the endpoint spectrum in semileptoinc decays, and the study of spin-symmetry violating effects in ratios of form factors. He also briefly comment on nonleptonic decays

  6. Recent developments in the theory of heavy-quark decays

    International Nuclear Information System (INIS)

    Neubert, M.

    1992-06-01

    I report on recent developments in the heavy-quark effective theory and its application to B meson decays. The parameters of the effective theory, the spin-flavor symmetry limit, and the leading symmetry-breaking corrections to it are discussed. The results of a QCD sum rule analysis of the universal Isgur-Wise functions that appear at leading and subleading order in the 1 /m Q expansion are presented. I illustrate the phenomenological applications of this formalism by focusing on two specific examples: the determination of V cb from the endpoint spectrum in semileptonic decays, and the study of spin-symmetry violating effects in ratios of form facts. I also briefly comment on nonleptonic decays

  7. Heavy quark production in quantum chromodynamics

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1986-09-01

    For very heavy quark masses, the inclusive hadronic production of hadron pairs containing heavy quarks is predicted to be governed by QCD fusion subprocesses. For intermediate mass scales other QCD mechanisms can be important including higher-twist intrinsic contributions and low relative velocity enchancements, possibly accounting for the anomalies observed in charm hadroproduction, such as the nuclear number dependence, the longitudinal momentum distributions, and beam flavor dependence. We also discuss scaling laws for exclusive processes involving heavy quarks and diffractive excitation into heavy quark systems

  8. Sub-color and leptoquark-quark symmetry

    International Nuclear Information System (INIS)

    Nakamura, Fumihiko

    1982-01-01

    On the basis of leptoquark-quark symmetry, we propose possible models, in which leptons and gauge bosons are constructed is SU(2) symmetry. In one of the cases, the subcolor is introduced as the quantum number of the leptoquark. Then the possibility of baryon decay is discussed. (author)

  9. Radiative origin of all quark and lepton masses through dark matter with flavor symmetry.

    Science.gov (United States)

    Ma, Ernest

    2014-03-07

    The fundamental issue of the origin of mass for all quarks and leptons (including Majorana neutrinos) is linked to dark matter, odd under an exactly conserved Z2 symmetry which may or may not be derivable from an U(1)D gauge symmetry. The observable sector interacts with a proposed dark sector which consists of heavy neutral singlet Dirac fermions and suitably chosen new scalars. Flavor symmetry is implemented in a renormalizable context with just the one Higgs doublet (ϕ(+), ϕ(0)) of the standard model in such a way that all observed fermions obtain their masses radiatively through dark matter.

  10. Heavy quarks - experimental

    International Nuclear Information System (INIS)

    Hollebeek, R.

    1990-01-01

    The purpose of these lectures, given at the 1989 SLAC Summer School, was to discuss the experimental aspects of heavy quark production. A companion set of lectures on the theoretical point of view were to be given by Keith Ellis. An experimentalist should gather together the measurements which have been made by various groups, compare, contrast and tabulate them, and if possible point out the ways in which these measurements confirm or contradict current theories. Here the authors has tried to do this, although the reader who expects to find here the latest of all experimental measurements should probably be forewarned that the field is moving extremely rapidly. In some cases, he has added and updated materials where crucial new information became available after or during the summer of 1989, but not in all cases. He has concentrated on trying to select those measurements which are at the moment most crucial in refining our understanding of heavy quarks as opposed to those which merely measure things which are perhaps too complicated to be enlightening at the moment. While theorists worry primarily about production mechanisms, cross sections, QCD corrections, and to some extent about signatures, the experimentalist must determine which measurements he is interested in making, and which signatures for heavy quark production are realistic and likely to produce results which will shed some new light on the underlying production model without undo theoretical complications. Experimentalists also need to evaluate the available experimental equipment, both machines and detectors to find the best way to investigate the properties of heavy quarks. In many cases, the things which we would like to measure are severely restricted by what we can measure. Nevertheless, many properties of heavy quark production and decay can be measured, and the results have already taught us much about the weak interactions and QCD

  11. Semileptonic Decays of Heavy Omega Baryons in a Quark Model

    International Nuclear Information System (INIS)

    Muslema Pervin; Winston Roberts; Simon Capstick

    2006-01-01

    The semileptonic decays of (Omega) c and (Omega) b are treated in the framework of a constituent quark model developed in a previous paper on the semileptonic decays of heavy Λ baryons. Analytic results for the form factors for the decays to ground states and a number of excited states are evaluated. For (Omega) b to (Omega) c the form factors obtained are shown to satisfy the relations predicted at leading order in the heavy-quark effective theory at the non-recoil point. A modified fit of nonrelativistic and semirelativistic Hamiltonians generates configuration-mixed baryon wave functions from the known masses and the measured Λ c + → Λe + ν rate, with wave functions expanded in both harmonic oscillator and Sturmian bases. Decay rates of (Omega) b to pairs of ground and excited (Omega) c states related by heavy-quark symmetry calculated using these configuration-mixed wave functions are in the ratios expected from heavy-quark effective theory, to a good approximation. Our predictions for the semileptonic elastic branching fraction of (Omega) Q vary minimally within the models we use. We obtain an average value of (84 ± 2%) for the fraction of (Omega) c → Ξ (*) decays to ground states, and 91% for the fraction of (Omega) c → (Omega) (*) decays to the ground state (Omega). The elastic fraction of (Omega) b → (Omega) c ranges from about 50% calculated with the two harmonic-oscillator models, to about 67% calculated with the two Sturmian models

  12. Heavy quarks and their experimental consequences

    International Nuclear Information System (INIS)

    Appelquist, T.

    1975-09-01

    Recent theoretical work on heavy quark dynamics is reviewed. In the context of a color gauge theory of strong interactions, the structure of heavy quark-antiquark bound states and their decay properties is discussed. The emphasis is on the dynamical differences between heavy and light quark bound states. It is suggested that the former will more directly reflect the structure of the underlying field theory

  13. Heavy-heavy-light quark potential in SU(3) lattice QCD

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo; Iida, Hideaki

    2008-01-01

    We perform the first study for the heavy-heavy-light quark (QQq) potential in SU(3) quenched lattice QCD with the Coulomb gauge. The calculations are done with the standard gauge and O(a)-improved Wilson fermion action on the 16 4 lattice at β=6.0. We calculate the energy of QQq systems as the function of the distance R between the two heavy quarks, and find that the QQq potential is well described with a Coulomb plus linear potential form up to the intermediate distance R≤0.8 fm. Compared to the static three-quark case, the effective string tension between the heavy quarks is significantly reduced by the finite-mass valence quark effect. This reduction is considered to be a general property for baryons

  14. Heavy quark production form jet conversions in a quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu , W.; Fries, R.

    2008-05-22

    Recently, it has been demonstrated that the chemical composition of jets in heavy ion collisions is significantly altered compared to the jets in the vacuum. This signal can be used to probe the medium formed in nuclear collisions. In this study we investigate the possibility that fast light quarks and gluons can convert to heavy quarks when passing through a quark-gluon plasma. We study the rate of light to heavy jet conversions in a consistent Fokker-Planck framework and investigate their impact on the production of high-p{sub T} charm and bottom quarks at the Relativistic Heavy Ion Collider and the Large Hadron Collider.

  15. Heavy quark energy loss in nuclear medium

    International Nuclear Information System (INIS)

    Zhang, Benr-Wei; Wang, Enke; Wang, Xin-Nian

    2003-01-01

    Multiple scattering, modified fragmentation functions and radiative energy loss of a heavy quark propagating in a nuclear medium are investigated in perturbative QCD. Because of the quark mass dependence of the gluon formation time, the medium size dependence of heavy quark energy loss is found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss is also significantly suppressed relative to a light quark due to the suppression of collinear gluon emission by a heavy quark

  16. Heavy meson form factors from QCD

    International Nuclear Information System (INIS)

    Falk, A.F.; Georgi, H.; Grinstein, B.

    1990-01-01

    We calculate the leading QCD radiative corrections to the relations which follow from the decoupling of the heavy quark spin as the quark mass goes infinity and from the symmetry between systems with different heavy quarks. One of the effects we calculate gives the leading q 2 -dependence of the form factor of a heavy quark, which in turn dominates the q 2 -dependence of the form factors of bound states of the heavy quark with light quarks. This, combined with the normalization of the form factor provided by symmetry, gives us a first principles calculation of the heavy meson (or baryon) form factors in the limit of very large heavy quark mass. (orig.)

  17. Phenomenology of heavy quark systems

    International Nuclear Information System (INIS)

    Gilman, F.J.

    1987-03-01

    The spectroscopy of heavy quark systems is examined with regards to spin independent and spin dependent potentials. It is shown that a qualitative picture exists of the spin-independent forces, and that a semi-quantitative understanding exists for the spin-dependent effects. A brief review is then given of the subject of the decays of hadrons containing heavy quarks, including weak decays at the quark level, and describing corrections to the spectator model

  18. New theoretical results in heavy quark hadroproduction

    International Nuclear Information System (INIS)

    Nason, P.

    1992-01-01

    We describe the status of the heavy quark hadroproduction theory. In particular, we discuss recent developments on production of heavy quarks in the high energy limit, and the results of a new calculation to next-to-leading accuracy of the fully exclusive parton cross section for heavy quark production. (orig.)

  19. Dynamical generation of a composite quark-lepton symmetry

    International Nuclear Information System (INIS)

    Yasue, Masaki.

    1981-05-01

    We demonstrate the possibility that a basic [SU(2)]sup(N) symmetry of N subconstituents, which describes particle and antiparticle transitions, generates at most an ''effective'' SO(2N) symmetry and at least an ''effective'' SU(N) x U(1) symmetry of composite quarks and leptons whose states are specified by the N different kinds of subconstituents. The generators of the ''effective'' symmetry, are identified by the correct algebraic properties specific to SO(2N) of composite operators constructed from the [SU(2)]sup(N)-operators acting on the composite quark-lepton states. The composite quarks and leptons are found to respect SO(4) x SO(6) or SU(2)sub(L) x U(1)sub(R) x SU(3)sub(c) x U(1)sub(B-L) according to a new selection rule, which are generated by the bilinear products of the raising and lowering operators of [SU(2)] 5 . This construction of the SO(4) x SO(6) generators allows us to uniquely define the five quantum numbers of that symmetry even at the subconstituent level. The full SO(10) generators can be also constructed; however, one needs a newly arranged [SU(2)] 5 symmetry only defined at the composite level, the generators of which turn out to be at most N body operators of the original [SU(2)] 5 . (author)

  20. Perturbative determination of mass-dependent renormalization and improvement coefficients for the heavy-light vector and axial-vector currents with relativistic heavy and domain-wall light quarks

    International Nuclear Information System (INIS)

    Yamada, Norikazu; Aoki, Sinya; Kuramashi, Yoshinobu

    2005-01-01

    We determine the mass-dependent renormalization as well as improvement coefficients for the heavy-light vector and axial-vector currents consisting of the relativistic heavy and the domain-wall light quarks through the standard matching procedure. The calculation is carried out perturbatively at the one-loop level to remove the systematic error of O(α s (am Q ) n ap) as well as O(α s (am Q ) n ) (n>=0), where p is a typical momentum scale in the heavy-light system. We point out that renormalization and improvement coefficients of the heavy-light vector current agree with those of the axial-vector current, thanks to the exact chiral symmetry for the light quark. The results obtained with three different gauge actions, plaquette, Iwasaki and DBW2, are presented as a function of heavy quark mass and domain-wall height

  1. Heavy quark effective theory and heavy baryon transitions

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    The heavy quark effective theory (HQET) is applied to study the weak decay of heavy mesons and heavy baryons and to predict the form factors for heavy to heavy and heavy to light transitions. 28 refs, 10 figs, 2 tabs

  2. Heavy quark spectroscopy and decay

    International Nuclear Information System (INIS)

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs

  3. Heavy quark symmetry and weak decays of the b-baryons in pentaquarks with a c anti c component

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Ahmed [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ahmed, Ishtiaq; Rehman, Abdur [Quaid-i-Azam Univ., Islamabad (Pakistan). National Centre for Physics; Aslam, M. Jamil [Quaid-i-Azam Univ., Islamabad (Pakistan). Physics Dept.

    2016-06-15

    341 MeV, we estimate the mass of the lower pentaquark J{sup P}=3/2{sup -} state to be about 4110 MeV and suggest to reanalyze the LHCb data to search for this third state. Extending these considerations to the pentaquark states having a c anti c pair and three light quarks (u,d,s) in their Fock space, we present the spectroscopy of the S- and P-wave states in an effective Hamiltonian approach. Some of these pentaquarks can be produced in weak decays of the b-baryons. Combining heavy quark symmetry and the SU(3){sub F} symmetry results in strikingly simple relations among the decay amplitudes which are presented here.

  4. Search for Pair Produced Heavy Quarks Decaying into a Z Boson and a Light Generation Jet

    CERN Document Server

    AUTHOR|(SzGeCERN)672562

    We present here our results from the search for the pair production of new massive quarks using $20\\ifb$ data collected by the ATLAS detector in 2012 proton-proton collisions at $\\rts=$8TeV centre of mass energy. There are many models extending beyond the well established Standard Model (SM) predicting additional massive quarks on top of the existing quark list. One of them is the grand unified theory (GUT) having the exceptional $E_{6}$ as its symmetry group. This model predicts an additional iso-singlet down type quark for each existing SM family with possible decay channels involving $\\Wpm,\\Zboson$ and $H$. Assuming a similar mass structure, the lightest of these quarks denoted by the letter $D$ would be the first one to be discovered at ATLAS. Our search focuses on the decay signature of $D$ quark decays via a $\\Zboson$ boson which would further decay into two leptons. The other heavy quark searches at ATLAS are carried out with the assumption that the new quarks should couple to the heavy generations $t$...

  5. Detecting heavy quarks

    International Nuclear Information System (INIS)

    Benenson, G.; Chau, L.L.; Ludlam, T.; Paige, F.E.; Platner, E.D.; Protopopescu, S.D.; Rehak, P.

    1983-01-01

    In this exercise we examine the performance of a detector specifically configured to tag heavy quark (HQ) jets through direct observations of D-meson decays with a high resolution vertex detector. To optimize the performance of such a detector, we assume the small diamond beam crossing configuration as described in the 1978 ISABELLE proposal, giving a luminosity of 10 32 cm -2 sec -1 . Because of the very large backgrounds from light quark (LQ) jets, most triggering schemes at this luminosity require high P/sub perpendicular to/ leptons and inevitably give missing neutrinos. If alternative triggering schemes could be found, then one can hope to find and calculate the mass of objects decaying to heavy quarks. A scheme using the high resolution detector will also be discussed in detail. The study was carried out with events generated by the ISAJET Monte Carlo and a computer simulation of the described detector system

  6. Soft Gluon Radiation off Heavy Quarks beyond Eikonal Approximation

    International Nuclear Information System (INIS)

    Mazumder, Surasree; Bhattacharyya, Trambak; Abir, Raktim

    2016-01-01

    We calculate the soft gluon radiation spectrum off heavy quarks (HQs) interacting with light quarks (LQs) beyond small angle scattering (eikonality) approximation and thus generalize the dead-cone formula of heavy quarks extensively used in the literatures of Quark-Gluon Plasma (QGP) phenomenology to the large scattering angle regime which may be important in the energy loss of energetic heavy quarks in the deconfined Quark-Gluon Plasma medium. In the proper limits, we reproduce all the relevant existing formulae for the gluon radiation distribution off energetic quarks, heavy or light, used in the QGP phenomenology.

  7. The average kinetic energy of the heavy quark in Λb in the Bethe-Salpeter equation approach

    International Nuclear Information System (INIS)

    Guo, X.-H.; Wu, H.-K.

    2007-01-01

    In the previous paper, based on the SU(2) f xSU(2) s heavy quark symmetries of the QCD Lagrangian in the heavy quark limit, the Bethe-Salpeter equation for the heavy baryon Λ b was established with the picture that Λ b is composed of a heavy quark and a scalar light diquark. In the present work, we apply this model to calculate μ π 2 for Λ b , the average kinetic energy of the heavy quark inside Λ b . This quantity is particularly interesting since it can be measured in experiments and since it contributes to the inclusive semileptonic decays of Λ b when contributions from higher order terms in 1/M b expansions are taken into account and consequently influences the determination of the Cabibbo-Kobayashi-Maskawa matrix elements V ub and V cb . We find that μ π 2 for Λ b is 0.25GeV 2 ∼0.95GeV 2 , depending on the parameters in the model including the light diquark mass and the interaction strength between the heavy quark and the light diquark in the kernel of the BS equation. We also find that this result is consistent with the value of μ π 2 for Λ b which is derived from the experimental value of μ π 2 for the B meson with the aid of the heavy quark effective theory

  8. Heavy quark spectroscopy

    International Nuclear Information System (INIS)

    Rosner, J.L.

    1985-10-01

    New experimental and theoretical developments in heavy quark spectroscopy are reviewed. From studies of J/psi decays, the eta' is found to have some ''glue'' or other inert component, while the iota (a glueball candidate) probably contains some quarks as well. The xi(2.2) persists in new Mark III data, but is not seen by the DM2 collaboration. The production of charmonium states by anti pp reactions is reviewed. First evidence for a P- wave charmed meson, D(2420), has been presented by the ARGUS group. Radiative UPSILON decay studies fail to confirm the zeta(8.3) and begin to place useful limits on Higgs bosons. First results from an experiment at Fermilab on low-background hadronic production of UPSILON states are shown. Accurate measurements of chi/sub b/(1P) masses by the ARGUS collaboration are noted, and interpreted as favoring scalar quark confinement. Studies of t and other heavy quarks will probe the q anti q interaction below 0.05 fm, are likely to be strongly affected by t anti t-Z interference, and can provide varied information on Higgs bosons. 144 refs., 21 figs

  9. Heavy quarks

    International Nuclear Information System (INIS)

    Khoze, V.A.

    1983-10-01

    We discuss the results accumulated during the last five years in heavy quark physics and try to draw a simple general picture of the present situation. The survey is based on a unified point of view resulting from quantum chromodynamics. (orig.)

  10. Formation of heavy quarks in ultrarelativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schneider, S.M.; Greiner, W.; Soff, G.

    1992-02-01

    We investigate the production of heavy quarks in continuum and bound states in nuclear collisions. Creation for free banti b and tanti t quark pairs and for bottomonium and toponium in the ground state are computed at RHIC, LHC and SSC energies. Central and peripheral heavy-ion collisions are discussed. For top quark creation we assumed a mass range of 90 GeV ≤ m t ≤ 250 GeV. The creation rate for top quarks on peripheral collisions is estimated to be by a factor 40 to 130 smaller compared with corresponding central collisions. For m t = 130 GeV we calculated a creation rate of about 4760 top quark pairs per day at the LHC (3.5 TeV/u) for Pb-Pb collisions. (orig.)

  11. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  12. Phenomenology of heavy leptons and heavy quarks

    International Nuclear Information System (INIS)

    Gilman, F.J.

    1978-11-01

    The review of the quark and lepton family includes properties of the tau, SU(2) x U(1) classification of the tau and its decays, heavier leptons, the spectroscopy of heavy hadrons composed of quarks, their strong and electromagnetic decays, the weak interaction properties of the c, b, and t quarks, and the decays of hadrons containing them expected within the context of the standard SU(2) x U(1) model. 76 references

  13. Weak decays of heavy quarks

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1978-08-01

    The properties that may help to identify the two additional quark flavors that are expected to be discovered. These properties are lifetime, branching ratios, selection rules, and lepton decay spectra. It is also noted that CP violation may manifest itself more strongly in heavy particle decays than elsewhere providing a new probe of its origin. The theoretical progress in the understanding of nonleptonic transitions among lighter quarks, nonleptonic K and hyperon decay amplitudes, omega minus and charmed particle decay predictions, and lastly the Kobayashi--Maskawa model for the weak coupling of heavy quarks together with the details of its implications for topology and bottomology are treated. 48 references

  14. Higgs boson mass bounds in the presence of a very heavy fourth quark generation

    International Nuclear Information System (INIS)

    Gerhold, P.; Kallarackal, J.; DESY, Zeuthen; Jansen, K.

    2010-11-01

    We study the effect of a potential fourth quark generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  15. Heavy quark photoproduction in ultraperipheral heavy ion collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim; Vogt, Ramona

    2002-01-01

    Heavy quarks are copiously produced in ultraperipheral heavy ion collisions. In the strong electromagnetic fields, cc-bar and bb-bar are produced by photonuclear and two-photon interactions. Hadroproduction can also occur in grazing interactions. We calculate the total cross sections and the quark transverse momentum and rapidity distributions, as well as the QQ-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing

  16. Chiral symmetry breaking and the pion quark structure

    International Nuclear Information System (INIS)

    Bernard, V.

    1986-01-01

    The mechanism of dynamical breaking of chiral symmetry in hadronic matter is first studied in the framework of the Nambu and Jona-Lasinio model on one hand and its generalisation to finite hadron size on the other hand. The analysis uses a variational procedure modelled after the BCS superconductor. Our study indicates for example, a great sensitivity of various quantities characterizing the breaking of symmetry to the shape of the interaction. Also the mechanism of breaking of chiral symmetry is essentially related to the mechanism of confinement. When a symmetry is spontaneously broken, there exists a Goldstone particle of zero mass. This is true in our model. This particle, the pion, is obtained as solution of a Bethe Salpeter equation for a qantiq bound state. This enables us to establish a connection between the pion as a Goldstone boson related to spontaneous symmetry breaking and the quark-antiquark structure of the pion. The finite mass of the physical pion is obtained with non zero current quark mass. Various properties of this particle are then studied in the RPA formalism. One important point of our model is the highly collective character of the pion. 85 refs [fr

  17. Heavy baryon transitions and the heavy quark effective theory

    International Nuclear Information System (INIS)

    Hussain, F.

    1992-01-01

    Heavy baryon decays are studied in the context of the Bethe-Salpeter approach to the heavy quark effective theory. A drastic reduction, in the number of independent form factors, is found. Results are presented both for heavy to heavy and heavy to light baryon decays. (orig.)

  18. Large Top-Quark Mass and Nonlinear Representation of Flavor Symmetry

    International Nuclear Information System (INIS)

    Feldmann, Thorsten; Mannel, Thomas

    2008-01-01

    We consider an effective theory (ET) approach to flavor-violating processes beyond the standard model, where the breaking of flavor symmetry is described by spurion fields whose low-energy vacuum expectation values are identified with the standard model Yukawa couplings. Insisting on canonical mass dimensions for the spurion fields, the large top-quark Yukawa coupling also implies a large expectation value for the associated spurion, which breaks part of the flavor symmetry already at the UV scale Λ of the ET. Below that scale, flavor symmetry in the ET is represented in a nonlinear way by introducing Goldstone modes for the partly broken flavor symmetry and spurion fields transforming under the residual symmetry. As a result, the dominance of certain flavor structures in rare quark decays can be understood in terms of the 1/Λ expansion in the ET

  19. Properties of Doubly Heavy Baryons in the Relativistic Quark Model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.

    2005-01-01

    Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit

  20. A path integral for heavy-quarks in a hot plasma

    CERN Document Server

    Beraudo, A.; Faccioli, P.; Garberoglio, G.; 10.1016/j.nuclphysa.2010.06.007

    2010-01-01

    We propose a model for the propagation of a heavy-quark in a hot plasma, to be viewed as a first step towards a full description of the dynamics of heavy quark systems in a quark-gluon plasma, including bound state formation. The heavy quark is treated as a non relativistic particle interacting with a fluctuating field, whose correlator is determined by a hard thermal loop approximation. This approximation, which concerns only the medium in which the heavy quark propagates, is the only one that is made, and it can be improved. The dynamics of the heavy quark is given exactly by a quantum mechanical path integral that is calculated in this paper in the Euclidean space-time using numerical Monte Carlo techniques. The spectral function of the heavy quark in the medium is then reconstructed using a Maximum Entropy Method. The path integral is also evaluated exactly in the case where the mass of the heavy quark is infinite; one then recovers known results concerning the complex optical potential that controls the ...

  1. A4 family symmetry and quark-lepton unification

    International Nuclear Information System (INIS)

    King, Stephen F.; Malinsky, Michal

    2007-01-01

    We present a model of quark and lepton masses and mixings based on A 4 family symmetry, a discrete subgroup of an SO(3) flavour symmetry, together with Pati-Salam unification. It accommodates tri-bimaximal neutrino mixing via constrained sequential dominance with a particularly simple vacuum alignment mechanism emerging through the effective D-term contributions to the scalar potential

  2. Heavy quark correlations in hadronic collisions

    International Nuclear Information System (INIS)

    Mangano, M.L.; Ridolfi, G.

    1992-01-01

    The study of heavy quark production at hadron colliders will provide important tests and measurements within and possibly beyond the Standard Model. The results of a recent calculation of heavy quark hadronic production correlation properties at the full next-to-leading order (NLO) in perturbative QCD are presented. These properties are important for several applications. (R.P.) 8 refs.; 3 figs

  3. Heavy-quark free energies, internal-energy and entropy contributions

    International Nuclear Information System (INIS)

    Kaczmarek, O.

    2009-01-01

    We present lattice QCD results on heavy-quark free energies, extract from its temperature dependence the entropy and internal-energy contributions, and discuss the onset of medium effects that lead to screening of static quark-antiquark sources in a thermal medium. The detailed analysis of the temperature and distance dependence of the different contributions indicate the complex non-perturbative nature of strongly interacting matter. We shall discuss the necessity to include those effects in studies on the behavior of heavy quarks, heavy-quark bound states and their dissociation in the quark-gluon plasma phase. (orig.)

  4. Model for dynamical chiral symmetry breaking and quark condensate

    International Nuclear Information System (INIS)

    Nekrasov, M.L.; Rochev, V.E.

    1986-01-01

    In the framework of the model, proposed earlier to describe nonperturbative QCD, the singularity of the type 1/k 4 in the gluon propagator is shown to result in dynamical chiral symmetry breaking and appearance of quark condensate. The value, obtained for quark condensate, is close to the phenomenological one

  5. Heavy quark production processes in QCD

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Gunion, J.F.

    1984-12-01

    We have identified two novel effects in QCD, each of which acts to enhance the production of heavy quark and supersymmetric particles beyond what is conventionally expected from gluon fusion. Both effects are present in QED, but are compounded in QCD because of the increased number of diagrams and the much larger coupling constant. The intrinsic charm quark distribution in the nucleon could account for the observed enhancements of the charm structure function at large x and features of the charm production data but this mechanism is relatively suppressed for heavier systems. Prebinding distortion of the fusion cross section is, however, likely to be significant for the production at low p/sub T/ of all particles containing heavy colored constituents. At this stage the QCD calculations are highly model dependent although they agree with the general properties which can be inferred from the operator product expansion in the heavy quark mass. Much more theoretical analysis of these effects is clearly needed. It is also clear that much more experimental work is necessary to extend and confirm the reported anomalous heavy quark signals. 22 references

  6. Heavy mesons spectroscopy and new quarks

    International Nuclear Information System (INIS)

    Carvalho, H.F. de.

    1977-12-01

    The spectroscopy of new heavy mesons with masses above 2.8 GeV in the context of the asymptoticallty free gauge theories is analysed. To this end a power -law confinement potential is chosen. It is shown that the charmonium spectroscopy is best described by a potential where the exponent is around 0.5. It is observed that the spin-spin interaction is problematic. A possible interpretation of the γ resonances in the neighbourhood of 10 GeV is also discussed. The possible consequences of the existence of heavy quarks beyond charm with special reference to the processes initiated by neutral currents is also discussed. The present results on processes initiated by neutral current effects does not require introduction of right-handed heavy quarks beyond charm. Inclusion of the sea-quark contribution improves the agreements of the results of the Salam-Weinberg model with the recently observed results from CERN where 'ν anomaly' was not seen. The recently discovered γ resonances probably indicate the existence of heavy quarks probably with left handed coupling. Some preliminary study of this possibility was also carried out. (Author) [pt

  7. Heavy quarks and leptons

    International Nuclear Information System (INIS)

    Azimov, Ya.I.; Khoze, V.A.

    1979-01-01

    Experimental results which proved the reality of quarks are reviewed along with further experiments broadening the representation of quarks and leptons and providing the basis to develop the theory of elementary particles. The discovery of the J/psi particle is noted to give rise to the discovery of c-quark, the existance of which is confirmed by the discovery of charmed hadrons. The main aspects of quantum chromodynamics explaining the mechanism of strong interaction of quarks are considered along with those of the Weinberg-Salam theory proposed to describe weak and electromagnetic interactions of quarks and leptons. Experimental data testifying to the existance of heavy tausup(+-) leptons are presented. The history of discovery of γ mesons and of a new heavier b-quark is described. Perspectives for studying elementary particles are discussed. Further studies of γ mesons, discovery and investigation of charmed particles are noted to be immediate tasks along with the search for manifestation of t-quark considered to be a partner of b-quark from the viewpoint of the Weinberg-Salam model

  8. Thermodynamics of lattice QCD with 2 quark flavours : chiral symmetry and topology

    International Nuclear Information System (INIS)

    Lagae, J.-F.

    1998-01-01

    We have studied the restoration of chiral symmetry in lattice QCD at the finite temperature transition from hadronic matter to a quark-gluon plasma. By measuring the screening masses of flavour singlet and non-singlet meson excitations, we have seen evidence that, although flavour chiral symmetry is restored at this transition, flavour singlet (U(1)) axial symmetry is not. We conclude that this indicates that instantons continue to play an important role in the quark-gluon plasma phase

  9. Integrability in heavy quark effective theory

    Science.gov (United States)

    Braun, Vladimir M.; Ji, Yao; Manashov, Alexander N.

    2018-06-01

    It was found that renormalization group equations in the heavy-quark effective theory (HQET) for the operators involving one effective heavy quark and light degrees of freedom are completely integrable in some cases and are related to spin chain models with the Hamiltonian commuting with the nondiagonal entry C( u) of the monodromy matrix. In this work we provide a more complete mathematical treatment of such spin chains in the QISM framework. We also discuss the relation of integrable models that appear in the HQET context with the large-spin limit of integrable models in QCD with light quarks. We find that the conserved charges and the "ground state" wave functions in HQET models can be obtained from the light-quark counterparts in a certain scaling limit.

  10. Heavy quarks and CP: Moriond 1985

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1985-03-01

    The presentations at the Fifth Moriond Workshop on Heavy Quarks, Flavor Mixing, and CP Violation (La Plagne, France, January 13-19, 1985) are summarized. The following topics are reviewed. What's New (beyond the top, top quarks, bottom quarks, charm quarks, strange quarks, and others); why is all this being done (strong interactions and hadron structure, and electroweak properties); and what next (facilities and can one see CP violation in the B-anti B system). 64 refs., 10 figs

  11. Heavy-quark correlations in photon-hadron collisions

    International Nuclear Information System (INIS)

    Frixione, S.; Mangano, M.L.; Nason, P.; Ridolfi, G.

    1994-01-01

    We describe a next-to-leading-order calculation of the fully exclusive parton cross section at next-to-leading order for the photoproduction of heavy quarks. We use our result to compute quantities of interest for current fixed-target experiments. We discuss heavy-quark total cross sections, distributions, and correlations. (orig.)

  12. Heavy quark hadron mass scale

    International Nuclear Information System (INIS)

    Anderson, J.T.

    1994-01-01

    Without the spin interactions the hardron masses within a multiplet are degenerate. The light quark hadron degenerate mulitplet mass spectrum is extended from the 3 quark ground state multiplets at J P =0 - , 1/2 + , 1 - to include the excited states which follow the spinorial decomposition of SU(2)xSU(2). The mass scales for the 4, 5, 6, .. quark hadrons are obtained from the degenerate multiplet mass m 0 /M=n 2 /α with n=4, 5, 6, .. The 4, 5, 6, .. quark hadron degenerate multiplet masses follow by splitting of the heavy quark mass scales according to the spinorial decomposition of SU(2)xSU(2). (orig.)

  13. Quark condensates in nuclear matter in the global color symmetry model of QCD

    International Nuclear Information System (INIS)

    Liu Yuxin; Gao Dongfeng; Guo Hua

    2003-01-01

    With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks

  14. Heavy mesons in the bootstrap quark model

    International Nuclear Information System (INIS)

    Gerasyuta, S.M.; Sarantsev, A.V.

    1990-01-01

    In the frame of an approach developed for light quarks the scattering amplitudes of heavy quarks qQ-bar→qQ-bar→,QQ-bar→QQ-bar (q=u,d,s; Q=c,b,t) are calculated. The obtained mass values of the lowest c,b-mesons multiplets (J P =0 - ,1 - ,0 + ) are in a good agreement with the experimental ones. The masses of the new heavy particles with the t-quark are predicted. 46 refs.; 4 figs.; 5 tabs

  15. Towards the dynamical study of heavy-flavor quarks in the Quark-Gluon-Plasma

    International Nuclear Information System (INIS)

    Berrehrah, H; Bratkovskaya, E; Cassing, W; Gossiaux, P B; Aichelin, J

    2014-01-01

    Within the aim of a dynamical study of on- and off-shell heavy quarks Q in the quark gluon plasma (QGP) – as produced in relativistic nucleus-nucleus collisions – we study the heavy quark collisional scattering on partons of the QGP. The elastic cross sections σ q,g−Q are evaluated for perturbative partons (massless on-shell particles) and for dynamical quasi-particles (massive off-shell particles as described by the dynamical quasi-particles model D QPM ) using the leading order Born diagrams. We demonstrate that the finite width of the quasi-particles in the DQPM has little influence on the cross sections σ q,g−Q except close to thresholds. We, furthermore, calculate the heavy quark relaxation time as a function of temperature T within the different approaches using these cross sections

  16. Decoupling of heavy quarks in quantum chromodynamics

    International Nuclear Information System (INIS)

    Bernreuther, W.

    1983-01-01

    Decoupling of heavy quarks in quantum chromodynamics (QCD) defined by mass-independent renormalization is investigated. The structure of the relations between the parameters of f flavour QCD below a heavy-quark threshold is discussed to all orders in the loop expansion, and the relations are computed to two-loop approximation for the minimal subtraction schemes (MS) and to one-loop approximation for some Weinberg schemes. These matching relations can be used to systematically determine the renormalization group (RG)-invariant parameters of the effective theory in terms of the RG-invariant parameters of the theory which includes the heavy quark, or vice versa. For MS scheme the connection between Λ/sub f/-1 and Λ/sub f/ to two and three loops is given as well as the two-loop connection between the RG-invariant mass parameters of the f-1 and f flavour theory. The effect of heavy quarks on the evolution of the QCQ coupling is of significance for present QCD phenomenology based on next-to-leading-order perturbation theory. This is illustrated with a few examples within the MS scheme

  17. Diquark structure in heavy quark baryons in a geometric model

    International Nuclear Information System (INIS)

    Paria, Lina; Abbas, Afsar

    1996-01-01

    Using a geometric model to study the structure of hadrons, baryons having one, two and three heavy quarks have been studied here. The study reveals diquark structure in baryons with one and two heavy quarks but not with three heavy identical quarks. (author). 15 refs., 2 figs., 2 tabs

  18. Heavy quark effective theory and study of heavy hadron spectra

    International Nuclear Information System (INIS)

    Dong Yubing

    1995-01-01

    By employing the heavy quark effective theory, the spectra of heavy hadrons, such as heavy mesons (Q-barq), heavy baryons (QQq and Qqq) and heavy multiquark systems (Q-barQ-barqq) are studied systemically. The results are compared with the predictions for Q-barQ-barqq in potential model

  19. Cancellation of renormalon ambiguities in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Neubert, M.; Sachrajda, C.T.

    1995-01-01

    Recently, it has been shown that the concept of the pole mass of a heavy quark becomes ambiguous beyond perturbation theory, because of the presence of infrared renormalons. We argue that the predictions of the heavy quark effective theory, whose construction is based on the pole mass, are free of such ambiguities. In the 1/m Q expansion of physical quantities, infrared and ultraviolet renormalons compensate each other between coefficient functions and matrix elements. We trace the appearance of these compensations for current-induced exclusive heavy-to-heavy and heavy-to-light transitions, and for inclusive decays of heavy hadrons. In particular, we show that the structure of the heavy quark expansion is not obscured by renormalons, and none of the predictions of the heavy quark effective theory are invalidated. ((orig.))

  20. Heavy quarks photoproduction

    International Nuclear Information System (INIS)

    Cacciari, M.

    1996-08-01

    The state of the art of the theoretical calculations for heavy quarks photoproduction is reviewed. The full next-to-leading order calculation and two possible resummations, the high energy one for total cross sections and the large p T one for differential cross sections, are described. (orig.)

  1. SU(6) symmetry and the quark forces

    International Nuclear Information System (INIS)

    Bartnik, E.A.; Namyslowski, J.M.

    1984-01-01

    The short distance forces between 3 valence quarks in the proton are investigated in perturbative QCD formulated on the light cone. These forces are the driving terms in the Brodsky-Lepage type evolution equation for the partially decomposed distribution amplitudes. The one-gluon exchange force, which is the lowest order force in the running coupling constant αsub(s) retains the SU(6) symmetry, while the αsub(s) 2 -order force, corresponding to one Coulomb gluon and one transverse gluon, breaks the SU(6) symmetry. The latter force contributes to the deviation from 1/2 of the d/u ratio for the proton, observed experimentally. In the kinematical domain of one fast quark, the αsub(s) 2 -order force gives the leading (1-x) 3 behaviour of the deep inelastic structure function F 2 (x), in contrast to the αsub(s)-order force, which gives (1-x) 5 , for xapprox.=1. (orig.)

  2. Heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.; Saleev, V.A.

    1996-07-01

    In the framework of the relativistic quasipotential quark model the mass spectrum of baryons with two heavy quarks is calculated. The quasipotentials for interactions of two quarks and of a quark with a scalar and axial vector diquark are evaluated. The bound state masses of baryons with J P =1/2 + , 3/2 + are computed. (orig.)

  3. Heavy-quark production in gluon fusion at two loops in QCD

    International Nuclear Information System (INIS)

    Czakon, M.

    2007-07-01

    We present the two-loop virtual QCD corrections to the production of heavy quarks in gluon fusion. The results are exact in the limit when all kinematical invariants are large compared to the mass of the heavy quark up to terms suppressed by powers of the heavy-quark mass. Our derivation uses a simple relation between massless and massive QCD scattering amplitudes as well as a direct calculation of the massive amplitude at two loops. The results presented here together with those obtained previously for quark-quark scattering form important parts of the next-to-next-to-leading order QCD corrections to heavy-quark production in hadron-hadron collisions. (orig.)

  4. Multiple parton scattering in nuclei: heavy quark energy loss and modified fragmentation functions

    International Nuclear Information System (INIS)

    Zhang Benwei; Wang, Enke; Wang Xinnian

    2005-01-01

    Multiple scattering, induced radiative energy loss and modified fragmentation functions of a heavy quark in nuclear matter are studied within the framework of generalized factorization in perturbative QCD. Modified heavy quark fragmentation functions and energy loss are derived in detail with illustration of the mass dependencies of the Landau-Pomeranchuk-Migdal interference effects and heavy quark energy loss. Due to the quark mass dependence of the gluon formation time, the nuclear size dependencies of nuclear modification of the heavy quark fragmentation function and heavy quark energy loss are found to change from a linear to a quadratic form when the initial energy and momentum scale are increased relative to the quark mass. The radiative energy loss of the heavy quark is also significantly suppressed due to limited cone of gluon radiation imposed by the mass. Medium modification of the heavy quark fragmentation functions is found to be limited to the large z region due to the form of heavy quark fragmentation functions in vacuum

  5. Recent advances in heavy quark theory

    Energy Technology Data Exchange (ETDEWEB)

    Wise, M. [California Institute of Technology, Pasadena, CA (United States)

    1997-01-01

    Some recent developments in heavy quark theory are reviewed. Particular emphasis is given to inclusive weak decays of hadrons containing a b quark. The isospin violating hadronic decay D{sub s}* {yields} D{sub s}{sup pi}{sup 0} is also discussed.

  6. Elliptic flow and energy loss of heavy quarks in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Greiner, Carsten; Xu, Zhe

    2011-01-01

    The space-time propagation of heavy quarks in ultrarelativistic heavy ion collisions is studied within the partonic transport model Boltzmann approach of multiparton scatterings (BAMPS). In this model heavy quarks interact with the partonic medium via binary scatterings. The cross sections for these interactions are calculated with leading-order perturbative QCD, but feature a more precise Debye screening derived within the hard thermal loop approximation and obey the running of the coupling. Within this framework the elliptic flow and the nuclear modification factor of heavy quarks are computed for the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) energies and compared to available experimental data. It is found that binary scatterings alone cannot reproduce the data and therefore radiative corrections have to be taken into account.

  7. The Mixed Quark-Gluon Condensate from the Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; LU Xiao-Fu; WANG Fan; ZHAO En-Guang

    2002-01-01

    The mixed quark-gluon condensate from the global color symmetry model is derived. It is shown that themixed quark-gluon condensate depends explicitly on the gluon propagator. This interesting feature may be regarded asan additional constraint on the model of gluon propagator. The values of the mixed quark-gluon condensate from someansatz for the gluon propagator are compared with those determined from QCD sum rules.

  8. Searches for new heavy quarks in ATLAS

    CERN Document Server

    Nikiforou, Nikiforos; The ATLAS collaboration

    2018-01-01

    A search for new heavy quarks focusing on recent vector-like quark searches with the ATLAS detector at the CERN Large Hadron Collider is presented. Two recent searches targeting the pair production of type vector-like quarks are described. The first search is sensitive to vector-like up-type quark (T ) decays to a t quark and either a Standard Model Higgs boson or a Z boson. The second search is primarily sensitive to T decays to W boson and a b quark. Additionally, the results can be interpreted for alternative VLQ decays.

  9. An alternative approach to heavy quark bags

    International Nuclear Information System (INIS)

    Baacke, J.; Kasperidus, G.

    1980-01-01

    We discuss a formulation of quark bags where the quark wave function depends only on the relative coordinate and the bag boundary is fixed with respect to the center of mass of the quark system. For technical reasons we have to restrict ourselves to a heavy quark-antiquark system in an s-wave with spherical boundary. A phenomenological application to quarkonium states encourages further investigation of the approach. (orig.)

  10. A higher twist correction to heavy quark production

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Gunion, J.F.; Soper, D.E.

    1987-06-01

    The leading twist prediction for heavy quark production and a model for a higher twist correction that may be important for charm production was discussed. The correction arises from the interaction of the charm quark with spectator quarks

  11. Some Relations for Quark Confinement and Chiral Symmetry Breaking in QCD

    Directory of Open Access Journals (Sweden)

    Suganuma Hideo

    2017-01-01

    Full Text Available We analytically study the relation between quark confinement and spontaneous chiral-symmetry breaking in QCD. In terms of the Dirac eigenmodes, we derive some formulae for the Polyakov loop, its fluctuations, and the string tension from the Wilson loop. We also investigate the Polyakov loop in terms of the eigenmodes of theWilson, the clover and the domain wall fermion kernels, respectively. For the confinement quantities, the low-lying Dirac/fermion eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. These relations indicate no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD, which seems to be natural because confinement is realized independently of the quark mass.

  12. The influence of initial state fluctuations on heavy quark energy loss in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Cao, Shanshan; Bass, Steffen A; Huang, Yajing; Qin, Guang-You

    2015-01-01

    We study the effects of initial state fluctuations on the dynamical evolution of heavy quarks inside a quark–gluon plasma (QGP) created in relativistic heavy-ion collisions. The evolution of heavy quarks in QGP matter is described utilizing a modified Langevin equation that incorporates the contributions from both collisional and radiative energy loss. The spacetime evolution of the fireball medium is simulated with a (2 + 1)-dimensional viscous hydrodynamic model. We find that when the medium traversed by the heavy quark contains a fixed amount of energy, heavy quarks tend to lose more energy for greater fluctuations of the medium density. This may result in a larger suppression of heavy flavor observables in a fluctuating QGP matter than in a smooth one. The possibility of using hard probes to infer the information of initial states of heavy-ion collisions is discussed. (paper)

  13. Transverse Momentum Distributions for Heavy Quark Pairs

    OpenAIRE

    Berger, Edmond L.; Meng, Ruibin

    1993-01-01

    We study the transverse momentum distribution for a $pair$ of heavy quarks produced in hadron-hadron interactions. Predictions for the large transverse momentum region are based on exact order $\\alpha_s^3$ QCD perturbation theory. For the small transverse momentum region, we use techniques for all orders resummation of leading logarithmic contributions associated with initial state soft gluon radiation. The combination provides the transverse momentum distribution of heavy quark pairs for all...

  14. Study of heavy quark production with the Mark II at PEP

    International Nuclear Information System (INIS)

    Abrams, G.; Amidei, D.; Baden, A.

    1983-10-01

    The methods adopted by the Mark II collaboration to study heavy quark production at PEP are described. Two complementary techniques are used: D* tagging using the decay chain D* + . D 0 π + , D 0 → K - π + , and inclusive lepton tagging using the characteristic p/sub T/ distributions to distinguish contributions from b and c quarks. These techniques are used to derive information about heavy quark fragmentation and about the weak coupling of heavy quarks

  15. Baryons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Mannel, T.; Roberts, W.; Ryzak, Z.

    1990-08-01

    We show how to incorporate baryons in the heavy quark effective theory. A convenient formalism is exhibited and applied to semileptonic weak decays of heavy baryons and to exclusive production of heavy baryons in e + e - annihilation. (orig.)

  16. Scaling violation in the heavy quark fragmentation functian

    International Nuclear Information System (INIS)

    Avaliani, I.S.; Kartvelishvili, V.G.

    1981-01-01

    The scaling violation in the heavy quark fragmentation functions is analysed in the framework of the leading logarithmic approximation in QCD and it is shown, that the slaling violation effects are more essential for heavy quarks, than for light ones. These results indicate that the D-meson inclusive spectra measurement is a sensitive test for some standard assumptions [ru

  17. Implications of a high-mass diphoton resonance for heavy quark searches

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Shankha; Barducci, Daniele; Bélanger, Geneviève; Delaunay, Cédric [LAPTh, Université Savoie Mont Blanc, CNRS B.P. 110,F-74941 Annecy-le-Vieux (France)

    2016-11-25

    Heavy vector-like quarks coupled to a scalar S will induce a coupling of this scalar to gluons and possibly (if electrically charged) photons. The decay of the heavy quark into Sq, with q being a Standard Model quark, provides, if kinematically allowed, new channels for heavy quark searches. Inspired by naturalness considerations, we consider the case of a vector-like partner of the top quark. For illustration, we show that a singlet partner can be searched for at the 13 TeV LHC through its decay into a scalar resonance in the 2γ+ℓ+X final states, especially if the diphoton branching ratio of the scalar S is further enhanced by the contribution of non coloured particles. We then show that conventional heavy quark searches are also sensitive to this new decay mode, when S decays hadronically, by slightly tightening the current selection cuts. Finally, we comment about the possibility of disentangling, by scrutinising appropriate kinematic distributions, heavy quark decays to St from other standard decay modes.

  18. Heavy hybrid stars from multi-quark interactions

    International Nuclear Information System (INIS)

    Benic, Sanjin

    2014-01-01

    We explore the possibility of obtaining heavy hybrid stars within the framework of the two flavor Nambu-Jona-Lasinio model that includes 8-quark interactions in the scalar and in the vector channel. The main impact of the 8-quark scalar channel is to reduce the onset of quark matter, while the 8-quark vector channel acts to stiffen the equation of state at high densities. Within the parameter space where the 4-quark vector channel is small, and the 8-quark vector channel sizeable, stable stars with masses of 2 M ⊙ and above are found to hold quark matter in their cores. (orig.)

  19. Heavy quark production in ep collisions at HERA

    International Nuclear Information System (INIS)

    Derrick, M.

    1987-01-01

    There are substantial production rates of heavy quarks from ep collisions at HERA. The center of mass energy of about 300 GeV is well above any b-quark threshold effects, and for b/bar b/ production, the cross section is estimated to be 3.3 nb per event, leading to rates approaching 10 6 b mesons per year. The rates for c/bar c/ production are about two orders of magnitude greater. Two major detectors are under construction and a program of heavy quark physics will start in 1990. 3 refs., 4 figs

  20. Heavy quarks and squarks from W-gluon fusion

    International Nuclear Information System (INIS)

    Lindfors, J.

    1986-05-01

    We discuss Wg-fusion as a source of heavy quark and squark pairs at very high energy hadron colliders. Effective W approximation is used to calculate the cross-sections analytically in the forward scattering configuration; good agreement is obtained with exact numerical calculations. W-gluon fusion is found to be not nearly as important a production mechanism of heavy squarks as it is of heavy quarks. This is especially true when the mass-splitting within the SU(2) L doublet is small

  1. The errant life of a heavy quark in the quark-gluon plasma

    International Nuclear Information System (INIS)

    Meyer, Harvey B

    2011-01-01

    In the high-temperature phase of QCD, the heavy-quark momentum diffusion constant determines, via a fluctuation-dissipation relation, how fast a heavy quark kinetically equilibrates. This transport coefficient can be extracted from thermal correlators via a Kubo formula. We present a lattice calculation of the relevant Euclidean correlators in the gluon plasma, based on a recent formulation of the problem in heavy-quark effective field theory (HQET). We find a ∼20% enhancement of the Euclidean correlator at maximal time separation as the temperature is lowered from 6T c to 2T c , pointing to stronger interactions at lower temperatures. At the same time, the correlator becomes flatter from 6T c down to 2T c , indicating a relative shift of the spectral weight to lower frequencies. A recent next-to-leading order perturbative calculation of the correlator agrees with the time dependence of the lattice data at the few-per cent level. We estimate how much additional contribution from the ω∼ c .

  2. FONLL calculations for heavy quark production in nuclear collisions

    CERN Document Server

    Niel, Elisabeth Maria

    2017-01-01

    The ALICE detector at the LHC has been designed to study the collisions of heavy nuclei at energies much higher then the previous dedicated experiments at the Relativistic Heavy-Ion Collider (RHIC) of the Brookhaven National Laboratory. Colliding heavy nuclei allows to reproduce the hot and dense plasma of quarks and gluons (QGP) existing right after the Big Bang and hence study the very first instants of universe’s existence. In heavy ions collisions, heavy flavours, such as beauty and charm quark, are fundamental probes for the quark gluon plasma properties. That is because they experience the entire evolution of the system since they are produced at the very beginning. They are indeed a very powerful tool to test field theories such as Quantum Chromodynamics (QCD). Theoretical models predict that a fast parton(quark or gluon) looses energy while traversing a medium composed of colour charges. This phenomenon is called "jet quenching", it can be used to describe the QGP. It was first observed at RHIC by m...

  3. Polarized heavy baryon production in quark-diquark model considering two different scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Delpasand, M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of)

    2017-09-15

    At sufficiently large transverse momentum, the dominant production mechanism for heavy baryons is actually the fragmentation. In this work, we first study the direct fragmentation of a heavy quark into the unpolarized triply heavy baryons in the leading order of perturbative QCD. In a completely different approach, we also analyze the two-stage fragmentation of a heavy quark into a scalar diquark followed by the fragmentation of such a scalar diquark into a triply heavy baryon: quark-diquark model of baryons. The results of this model are in acceptable agreement with those obtained through a full perturbative regime. Relying on the quark-diquark model and considering two different scenarios we determine the spin-dependent fragmentation functions of polarized heavy baryons in such a way that a vector or a pseudoscalar heavy diquark is an intermediate particle between the initial heavy quark and the final state baryon. (orig.)

  4. Hadronic production of baryons containing two heavy quarks

    International Nuclear Information System (INIS)

    Berezhnoj, A.V.; Kiselev, V.V.; Likhoded, A.K.

    1995-01-01

    In the framework of the QCD perturbation theory, total and differential cross sections of the Ξ bc ' , Ξ bc ( * ) and Ξ cc ( * ) baryons production in gluon collisions are calculated in the leading order over α s for the doubly heavy (bc) and (cc) diquarks. At both small and large transverse momenta of baryons, a use of the mechanism of the heavy quark fragmentation into the heavy diquark is shown to underestimate the cross section values in comparison with the exact numerical calculations of a complete set of diagrams. The expected in Tevatron experiments yield of baryons with two heavy quarks is evaluated [ru

  5. Discrete quark-lepton symmetry need not pose a cosmological domain wall problem

    International Nuclear Information System (INIS)

    Lew, H.; Volkas, R.R.

    1992-01-01

    Quarks and leptons may be related to each other through a spontaneously broken discrete symmetry. Models with acceptable and interesting collider phenomenology have been constructed which incorporate this idea. However, the standard Hot Big Bang model of cosmology is generally considered to eschew spontaneously broken discrete symmetries because they often lead to the formation of unacceptably massive domain walls. It is pointed out that there are a number of plausible quark-lepton symmetric models in nature which do not produce cosmologically troublesome domain walls. 30 refs

  6. Far-from-equilibrium heavy quark energy loss at strong coupling

    CERN Document Server

    Chesler, Paul; Rajagopal, Krishna

    2013-01-01

    We study the energy loss of a heavy quark propagating through the matter produced in the collision of two sheets of energy [1]. Even though this matter is initially far-from-equilibrium we find that, when written in terms of the energy density, the equilibrium expression for heavy quark energy loss describes most qualitative features of our results well. At later times, once a plasma described by viscous hydrodynamics has formed, the equilibrium expression describes the heavy quark energy loss quantitatively. In addition to the drag force that makes it lose energy, a quark moving through the out-of-equilibrium matter feels a force perpendicular to its velocity.

  7. Why heavy and light quarks radiate energy with similar rates

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-01-01

    The dead-cone effect has been predicted to reduce the magnitude of energy loss and jet quenching for heavy flavors produced with large p T in heavy-ion collisions. On the contrary, data from the Relativistic Heavy Ion Collider demonstrate a strong suppression of high-p T electrons from charm and bottom decays. We show that vacuum radiation of a highly virtual quark produced at high p T with a stripped-off color field develops a much wider dead cone, which screens the one related to the quark mass. Lacking the field, gluons cannot be radiated within this cone until the color field is regenerated and the quark virtuality cools down to the scale of the order of the quark mass. However, this takes longer than is essential for the observed jet quenching, leading to similar nuclear effects for the light and charm quark jets. Open beauty is expected to radiate much less within the p T range studied so far in heavy-ion collisions.

  8. Heavy quark physics in ep collisions at LEP+LHC

    International Nuclear Information System (INIS)

    Ali, A.; Barreiro, F.; Troconiz, J.F. de; Schuler, G.A.; Bij, J.J. van der

    1990-12-01

    We study electroweak production of heavy quarks - charm, beauty, and top - in deep inelastic electron-proton collisions at the proposed LEP+LHC collider at CERN. The assumed energy for the collisions is E e =50 GeV, E p =8000 GeV, providing an ep center of mass energy, √s≅1.26 TeV. We invoke the boson-gluon fusion model to estimate theoretical cross sections and distributions for the heavy quarks. Higher order QCD corrections are only approximately taken into account, by assuming a (normalization) K-factor of 2 for the charm and beauty quark production rates and incorporating the parton shower cascades. With these assumptions and the parameterization of Eichten et al. for the structure functions (EHLQ, set 1), we find the following cross sections: σ(ep→c+X)≅O(3 μb), σ(ep→b+X)≅O(40 nb), and σ(ep→t+X)≅4 pb for m t =120 GeV, decreasing to 0.5 pb for m t =250 GeV. These cross sections would provide O(6x10 9 ) charmed hadrons, O(8x10 7 ) beauty hadrons, and O(10 3 ) top hadrons, for an integrated ep luminosity of 1000 pb -1 . The heavy quark rates in ep collisions are considerably smaller than the corresponding rates in pp collisions at LHC, with √s=16 TeV. This gives a clear advantage to pp collisions for top searches. However, for the charmed and beauty quarks only a tiny fraction of the cross sections in p+p→Q+X can be triggered in comparison to the corresponding cross sections in e+p→Q+X, resulting in comparable number of measured heavy quark events in the ep and pp mode. We sketch the energy-momentum profile of heavy quark events in ep collisions and illustrate the kind of analyses that experiments at the LEP+LHC collider would undertake to quantitatively study heavy quark physics. In particular, prospects of measuring the particle-antiparticle mixing parameter x s =ΔM/Γ for the B s 0 -anti B s 0 meson system are evaluated, and search strategies for the top quark in ep collisions are presented. (orig.)

  9. Screening of heavy quarks and hadrons at finite temperature and density

    Energy Technology Data Exchange (ETDEWEB)

    Doering, M.

    2006-09-22

    Heavy quarks and hadrons placed in a strongly interacting thermal and baryon chemical quantum field are screened by the medium. I calculate the free energies of heavy quarks and anti-quarks and hadron correlation functions on a 16{sup 3} x 4 lattice in 2-flavour QCD with a bare quark mass of m/T=0.4. The dependence on the interparticle distance determines the screening masses as a function of temperature and density. The Taylor expansion method is used for the baryon chemical potential. The heavy quark screening masses turn out to be in good agreement with perturbation theory for temperatures T>2T{sub c}. The hadron screening masses are consistent with the free quark propagation in the large temperature regime. (orig.)

  10. Screening of heavy quarks and hadrons at finite temperature and density

    International Nuclear Information System (INIS)

    Doering, M.

    2006-01-01

    Heavy quarks and hadrons placed in a strongly interacting thermal and baryon chemical quantum field are screened by the medium. I calculate the free energies of heavy quarks and anti-quarks and hadron correlation functions on a 16 3 x 4 lattice in 2-flavour QCD with a bare quark mass of m/T=0.4. The dependence on the interparticle distance determines the screening masses as a function of temperature and density. The Taylor expansion method is used for the baryon chemical potential. The heavy quark screening masses turn out to be in good agreement with perturbation theory for temperatures T>2T c . The hadron screening masses are consistent with the free quark propagation in the large temperature regime. (orig.)

  11. Long-distance behavior of the quark-antiquark static potential. Application to light-quark mesons and heavy quarkonia

    International Nuclear Information System (INIS)

    Gonzalez, P.

    2009-01-01

    Screening effects from sea pairs on the quark-antiquark static potential are analyzed phenomenologically from the light-quark to the heavy-quark meson spectra. From the high excited light-quark meson spectrum, a universal form for the screened static potential is proposed. This potential is then successfully applied to heavy quarkonia. Our results suggest the assignment of X(4260) to the 4s state of charmonium and the possible existence of a 5s bottomonium resonance around 10748 MeV.

  12. Analytical Formulae linking Quark Confinement and Chiral Symmetry Breaking

    International Nuclear Information System (INIS)

    Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo

    2016-01-01

    Dirac spectrum representations of the Polyakov loop fluctuations are derived on the temporally odd-number lattice, where the temporal length is odd with the periodic boundary condition. We investigate the Polyakov loop fluctuations based on these analytical relations. It is semi-analytically and numerically found that the low-lying Dirac eigenmodes have little contribution to the Polyakov loop fluctuations, which are sensitive probe for the quark deconfinement. Our results suggest no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD

  13. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  14. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    International Nuclear Information System (INIS)

    Zhou, Kai; Dai, Wei; Xu, Nu; Zhuang, Pengfei

    2016-01-01

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  15. Heavy quark energy loss far from equilibrium in a strongly coupled collision

    CERN Document Server

    Chesler, Paul M; Rajagopal, Krishna

    2013-01-01

    We compute and study the drag force acting on a heavy quark propagating through the matter produced in the collision of two sheets of energy in a strongly coupled gauge theory that can be analyzed holographically. Although this matter is initially far from equilibrium, we find that the equilibrium expression for heavy quark energy loss in a homogeneous strongly coupled plasma with the same instantaneous energy density or pressure as that at the location of the quark describes many qualitative features of our results. One interesting exception is that there is a time delay after the initial collision before the heavy quark energy loss becomes significant. At later times, once a liquid plasma described by viscous hydrodynamics has formed, expressions based upon assuming instantaneous homogeneity and equilibrium provide a semi-quantitative description of our results - as long as the rapidity of the heavy quark is not too large. For a heavy quark with large rapidity, the gradients in the velocity of the hydrodyna...

  16. Quark-level analogue of nuclear fusion with doubly heavy baryons.

    Science.gov (United States)

    Karliner, Marek; Rosner, Jonathan L

    2017-11-01

    The essence of nuclear fusion is that energy can be released by the rearrangement of nucleons between the initial- and final-state nuclei. The recent discovery of the first doubly charmed baryon , which contains two charm quarks (c) and one up quark (u) and has a mass of about 3,621 megaelectronvolts (MeV) (the mass of the proton is 938 MeV) also revealed a large binding energy of about 130 MeV between the two charm quarks. Here we report that this strong binding enables a quark-rearrangement, exothermic reaction in which two heavy baryons (Λ c ) undergo fusion to produce the doubly charmed baryon and a neutron n (), resulting in an energy release of 12 MeV. This reaction is a quark-level analogue of the deuterium-tritium nuclear fusion reaction (DT → 4 He n). The much larger binding energy (approximately 280 MeV) between two bottom quarks (b) causes the analogous reaction with bottom quarks () to have a much larger energy release of about 138 MeV. We suggest some experimental setups in which the highly exothermic nature of the fusion of two heavy-quark baryons might manifest itself. At present, however, the very short lifetimes of the heavy bottom and charm quarks preclude any practical applications of such reactions.

  17. General analysis of weak decay form factors in heavy to heavy and heavy to light baryon transitions

    International Nuclear Information System (INIS)

    Hussain, F.; Liu Dongsheng; Kraemer, M.; Koerner, J.G.; Tawfiq, S.

    1992-01-01

    We present a complete analysis of the heavy to heavy and heavy to light baryon semi-leptonic decays in the heavy quark effective theory within the framework of a Bethe-Salpeter (BS) approach and demonstrate the equivalence of this approach to other work in the field. We present in a compact form the baryon BS amplitudes which incorporate the symmetries manifest in the heavy quark limit and which also show clearly the light quark dynamics. A similar form of the BS amplitude is presented for light baryons. Using the BS amplitudes, the heavy to heavy and heavy to light semi-leptonic baryon decays are considered. As expected there is a dramatic reduction in the number of form factors. An advantage of our BS approach is demonstrated where the form factors are written as loop integrals which in principle can be calculated. (orig.)

  18. Two different formulations of the heavy quark effective theory

    International Nuclear Information System (INIS)

    Balk, S.; Ilakovac, A.; Koerner, J.G.; Pirjol, D.

    1994-01-01

    We point out that there exist two different formulations of the Heavy Quark Effective Theory (HQET). The one formulation of HQET was mostly developed at Harvard and involves the use of the equation of motion to eliminate the small components of the heavy quark field. The second formulation, developed in Mainz, involves a series of Foldy-Wouthuysen-type field transformations which diagonalizes the heavy quark Lagrangian in terms of an effective quark and antiquark sector. Starting at O(1/m Q 2 ) the two formulations are different in that their effective Lagrangians, their effective currents, and their effective wave functions differ. However, when these three differences are properly taken into account, the two alternative formulations lead to identical transition or S-matrix elements. This is demonstrated in an explicit example at O(1/m Q 2 ). We point to an essential difficulty of the Harvard HQET in that the Harvard effective fields are not properly normalized starting at order O(1/m Q 2 ). We provide explicit higher order expressions for the effective fields and the Lagrangian in the Mainz approach, and write down an O(1/m Q 2 ) nonabelian version of the Pauli equation for the heavy quark effective field. (orig.)

  19. Flavor physics without flavor symmetries

    Science.gov (United States)

    Buchmuller, Wilfried; Patel, Ketan M.

    2018-04-01

    We quantitatively analyze a quark-lepton flavor model derived from a six-dimensional supersymmetric theory with S O (10 )×U (1 ) gauge symmetry, compactified on an orbifold with magnetic flux. Two bulk 16 -plets charged under the U (1 ) provide the three quark-lepton generations whereas two uncharged 10 -plets yield two Higgs doublets. At the orbifold fixed points mass matrices are generated with rank one or two. Moreover, the zero modes mix with heavy vectorlike split multiplets. The model possesses no flavor symmetries. Nevertheless, there exist a number of relations between Yukawa couplings, remnants of the underlying grand unified theory symmetry and the wave function profiles of the zero modes, which lead to a prediction of the light neutrino mass scale, mν 1˜10-3 eV and heavy Majorana neutrino masses in the range from 1 012 to 1 014 GeV . The model successfully includes thermal leptogenesis.

  20. A model of quarks with Δ(6N2) family symmetry

    International Nuclear Information System (INIS)

    Ishimori, Hajime; King, Stephen F.

    2014-01-01

    We propose a first model of quarks based on the discrete family symmetry Δ(6N 2 ) in which the Cabibbo angle is correctly determined by a residual Z 2 ×Z 2 subgroup, and the smaller quark mixing angles may be qualitatively understood from the model. The present model of quarks may be regarded as a first step towards formulating a complete model of quarks and leptons based on Δ(6N 2 ), in which the lepton mixing matrix is fully determined by a Klein subgroup. For example, the choice N=28 provides an accurate determination of both the reactor angle and the Cabibbo angle

  1. Quark model and QCD

    International Nuclear Information System (INIS)

    Anisovich, V.V.

    1989-06-01

    Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs

  2. Several crucial problems in evaluating spectra of baryons with two heavy quarks

    International Nuclear Information System (INIS)

    Tong Shengping; Ding Yibing; Guo Xinheng; Shen Pengnian; Li Xueqian; Zhang Rui

    2000-01-01

    The spectra of baryons which include two heavy quarks and one light quark can be treated as a two-body system, where two heavy quarks constitute a bosonic diquark. The authors derive the effective potential between the light quark and the heavy diquark. In this work authors have discussed several serious problems: (1) the operator ordering, (2) the errors caused by the non-relativistic expansion, (3) spin-spin coupling and (4) the mixing between baryon states with scalar-diquark and vector-diquark

  3. Are there heavy quarks of mass 23 GeV

    International Nuclear Information System (INIS)

    Cornet, F.; Hagiwara, K.; Zeppenfeld, D.; Glover, E.W.N.; Martin, A.D.

    1986-02-01

    An excess of events with an isolated muon and low thrust observed by the MARK-J collaboration at the highest PETRA energy √s=46.7 GeV, is found to be consistent with the near threshold production of heavy quarks of charge -1/3. A natural candidate is a fourth generation 'down' quark or, possibly, a member of a 27 representation of E 6 . We investigate signatures of such heavy quark pair production at the CERN panti p collider and conclude that the present data have a chance to confirm the signal. (orig.)

  4. Heavy quarks thermalization in heavy-ion ultrarelativistic collisions: elastic or radiative?

    International Nuclear Information System (INIS)

    Gossiaux, Pol Bernard; Guiho, Vincent; Aichelin, Joerg

    2006-01-01

    We present a dynamical model of heavy quark evolution in the quark-gluon plasma (QGP) based on the Fokker-Planck equation. We then apply this model to the case of ultrarelativistic nucleus-nucleus collisions performed at RHIC in order to investigate which experimental observables might help to discriminate the fundamental process leading to thermalization

  5. Dibaryon states containing two different types of heavy quarks

    International Nuclear Information System (INIS)

    Leandri, J.; Silvestre-Brac, B.

    1995-01-01

    In a recent series of papers we have shown that including heavy quarks in the dibaryon sector can lead to configurations stable against decay into two baryons. In this study we extend our previous work by a study of all the physical Q 2 q 4 [Q denotes a heavy quark and q denotes a member of the SU(3) F triplet representation] systems in a solvable chromomagnetic model. We propose a number of new heavy states which could be stable under strong interactions

  6. Running heavy-quark masses in DIS

    International Nuclear Information System (INIS)

    Alekhin, S.; Moch, S.

    2011-07-01

    We report on determinations of the running mass for charm quarks from deep-inelastic scattering reactions. The method provides complementary information on this fundamental parameter from hadronic processes with space-like kinematics. The obtained values are consistent with but systematically lower than the world average as published by the PDG. We also address the consequences of the running mass scheme for heavy-quark parton distributions in global fits to deep-inelastic scattering data. (orig.)

  7. Quark-gluon plasma: Status of heavy ion physics

    Indian Academy of Sciences (India)

    Department of Theoretical Physics, Tata Institute of Fundamental Research, ... such as quark confinement and chiral symmetry breaking, and quantitative details ... attempts have been made, and are being made, to address these issues.

  8. Lattice QCD with light quark masses: Does chiral symmetry get broken spontaneously

    International Nuclear Information System (INIS)

    Barbour, I.M.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.

    1983-03-01

    We present a first direct calculation of the properties of QCD for the small quark masses of phenomenological interest without extrapolations. We describe methods specially adapted to invert the fermion matrix at small quark masses. We use these methods to calculate directly on presently used lattice sizes with different boundary conditions. As is to be expected for a finite system, we do not observe spontaneous chiral symmetry breaking. By comparing the results obtained on lattices of different size we see, however, indications that are consistent with eventual spontaneous chiral symmetry breaking in the infinite volume limit. Our calculations underline the importance of using antiperiodic boundary conditions for fermions. (orig.)

  9. FY07 LDRD Final Report Heavy Quark Jet Tomography

    International Nuclear Information System (INIS)

    Soltz, R.; Newby, J.; Glenn, A.; Klay, J.

    2008-01-01

    We propose and develop a new signature, the measurement of hadron-electron correlations to measure energy loss of heavy quarks in the quark-gluon plasma. This measurements will be used in future analyses to quantify the energy densities created in collisions of heavy ions at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab and the Large Hadron Collider (LHC) at CERN. In addition we develop and implement a computing model that will leverage LLNL expertise in cost-effective high performance computing to perform data analyses and simulations for the ALICE experiment at CERN

  10. QCD in heavy quark production and decay

    Energy Technology Data Exchange (ETDEWEB)

    Wiss, J. [Univ. of Illinois, Urbana, IL (United States)

    1997-06-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs.

  11. QCD in heavy quark production and decay

    International Nuclear Information System (INIS)

    Wiss, J.

    1997-01-01

    The author discusses how QCD is used to understand the physics of heavy quark production and decay dynamics. His discussion of production dynamics primarily concentrates on charm photoproduction data which are compared to perturbative QCD calculations which incorporate fragmentation effects. He begins his discussion of heavy quark decay by reviewing data on charm and beauty lifetimes. Present data on fully leptonic and semileptonic charm decay are then reviewed. Measurements of the hadronic weak current form factors are compared to the nonperturbative QCD-based predictions of Lattice Gauge Theories. He next discusses polarization phenomena present in charmed baryon decay. Heavy Quark Effective Theory predicts that the daughter baryon will recoil from the charmed parent with nearly 100% left-handed polarization, which is in excellent agreement with present data. He concludes by discussing nonleptonic charm decay which is traditionally analyzed in a factorization framework applicable to two-body and quasi-two-body nonleptonic decays. This discussion emphasizes the important role of final state interactions in influencing both the observed decay width of various two-body final states as well as modifying the interference between interfering resonance channels which contribute to specific multibody decays. 50 refs., 77 figs

  12. Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, C.W.; Oset, E. [Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Departamento de Fisica Teorica and IFIC, Valencia (Spain)

    2013-11-15

    Using a coupled-channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-baryon interaction with hidden beauty and obtain several new states of N around 11 GeV. We consider the basis of states {eta}{sub b} N, {Upsilon};N, B {Lambda}{sub b}, B {Sigma}{sub b}, B{sup *}{Lambda}{sub b}, B{sup *}{Sigma}{sub b}, B{sup *}{Sigma}{sub b}{sup *} and find four basic bound states which correspond to B {Sigma}{sub b}, B {Sigma}{sub b}{sup *}, B{sup *}{Sigma}{sub b} and B{sup *}{Sigma}{sub b}{sup *}, decaying mostly into {eta}{sub b} N and {Upsilon}N and with a binding energy about 50-130 MeV with respect to the thresholds of the corresponding channel. All of them have isospin I = 1/2, and we find no bound states or resonances in I = 3/2. The B {Sigma}{sub b} state appears in J = 1/2, the B {Sigma}{sub b}{sup *} in J = 3/2, the B{sup *}{Sigma}{sub b} appears nearly degenerate in J = 1/2, 3/2 and the B{sup *}{Sigma}{sub b}{sup *} appears nearly degenerate in J = 1/2, 3/2, 5/2. These states have a width from 2-110 MeV, with conservative estimates of uncertainties, except for the one in J = 5/2 which has zero width since it cannot decay into any of the states of the basis chosen. We make generous estimates of the uncertainties and find that within very large margins these states appear bound. (orig.)

  13. Energy change of a heavy quark in a viscous quark–gluon plasma with fluctuations

    International Nuclear Information System (INIS)

    Jiang, Bing-feng; Hou, De-fu; Li, Jia-rong

    2016-01-01

    When a heavy quark travels through the quark–gluon plasma, the polarization and fluctuating chromoelectric fields will be produced simultaneously in the plasma. The drag force due to those fields exerting in return on the moving heavy quark will cause energy change to it. Based on the dielectric functions derived from the viscous chromohydrodynamics, we have studied the collisional energy change of a heavy quark traversing the viscous quark–gluon plasma including fluctuations of chromoelectric field. Numerical results indicate that the chromoelectric field fluctuations lead to an energy gain of the moving heavy quark. Shear viscosity suppresses the fluctuation-induced energy gain and the viscous suppression effect for the charm quark is much more remarkable than that for the bottom quark. While, the fluctuation energy gain is much smaller than the polarization energy loss in magnitude and the net energy change for the heavy quark is at loss.

  14. Heavy quark fragmentation into polarized quarkonium in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1996-01-01

    Fragmentation of b-antiquark into polarized B* c -mesons is investigated within the framework of effective theory of heavy quarks. Functions of b fragmentation into longitudinally polarized and transversely polarized S-wave states of b c are calculated with an exact regard tot he first order corrections by 1/m b . Agreement of the results obtained with the corresponding calculations, performed in the quantum chromodynamics, is shown. 17 refs.; 2 figs

  15. Renormalons and the heavy quark effective theory

    CERN Document Server

    Martinelli, G; Martinelli, G; Sachrajda, C T

    1995-01-01

    We propose a non-perturbative method for defining the higher dimensional operators which appear in the Heavy Quark Effective Theory (HQET), such that their matrix elements are free of renormalon singularities, and diverge at most logarithmically with the ultra-violet cut-off. Matrix elements of these operators can be computed numerically in lattice simulations of the HQET. We illustrate our procedures by presenting physical definitions of the binding energy (\\lb) and of the kinetic energy (-\\lambda_1/2m_Q) of the heavy quark in a hadron. This allows us to define a ``subtracted pole mass", whose inverse can be used as the expansion parameter in applications of the HQET.

  16. Decay constants in the heavy quark limit in models a la Bakamjian and Thomas

    International Nuclear Information System (INIS)

    Morenas, V.; Le Yaouanc, A.; Oliver, L.; Pene, O.; Raynal, J.C.

    1997-07-01

    In quark models a la Bakamjian and Thomas, that yield covariance and Isgur-Wise scaling of form factors in the heavy quark limit, the decay constants f (n) and f 1/2 (n) of S-wave and P-wave mesons composed of heavy and light quarks are computed. Different Ansaetze for the dynamics of the mass operator at rest are discussed. Using phenomenological models of the spectrum with relativistic kinetic energy and regularized short distance part the decay constants in the heavy quark limit are calculated. The convergence of the heavy quark limit sum rules is also studied. (author)

  17. Non-perturbative subtractions in the heavy quark effective field theory

    International Nuclear Information System (INIS)

    Maiani, L.; Martinelli, G.; Sachrajda, C.T.

    1992-01-01

    We demonstrate the presence of ultraviolet power divergences in the O(1/m h ) corrections to matrix elements of hadronic operators containing a heavy quark field (where m h is the mass of the heavy quark). These power divergences must be subtracted non-perturbatively. The implications for lattice computations are discussed in detail. (orig.)

  18. Heavy baryons

    International Nuclear Information System (INIS)

    Koerner, J.G.

    1994-06-01

    We review the experimental and theoretical status of baryons containing one heavy quark. The charm and bottom baryon states are classified and their mass spectra are listed. The appropriate theoretical framework for the description of heavy baryons is the Heavy Quark Effective Theory, whose general ideas and methods are introduced and illustrated in specific examples. We present simple covariant expressions for the spin wave functions of heavy baryons including p-wave baryons. The covariant spin wave functions are used to determine the Heavy Quark Symmetry structure of flavour-changing current-induced transitions between heavy baryons as well as one-pion and one-photon transitions between heavy baryons of the same flavour. We discuss 1/m Q corrections to the current-induced transitions as well as the structure of heavy to light baryon transitions. Whenever possible we attempt to present numbers to compare with experiment by making use of further model-dependent assumptions as e.g. the constituent picture for light quarks. We highlight recent advances in the theoretical understanding of the inclusive decays of hadrons containing one heavy quark including polarization. For exclusive semileptonic decays we discuss rates, angular decay distributions and polarization effects. We provide an update of the experimental and theoretical status of lifetimes of heavy baryons and of exclusive nonleptonic two body decays of charm baryons. (orig.)

  19. When is a heavy quark not a parton? Charged Higgs production and heavy quark mass effects in the QCD-based parton model

    International Nuclear Information System (INIS)

    Olness, F.I.; Tung, Wu-Ki

    1989-10-01

    Applications of the QCD-based parton model to new physics processes involving heavy partons are illustrated using charged Higgs production. The naive parton model predictions are found to over-estimate the actual cross section by a factor of 2 to 5. The role of the top quark as a ''parton'' is examined, and the energy range over which heavy quarks (or other particles) should or should not be naturally treated as ''partons'' is delineated. 12 refs., 5 figs

  20. Influence of broken flavor and C and P symmetry on the quark propagator

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Axel; Mian, Walid Ahmed [University of Graz, Institute of Physics, NAWI Graz, Graz (Austria)

    2017-02-15

    Embedding QCD into the standard model breaks various symmetries of QCD explicitly, especially C and P. While these effects are usually perturbatively small, they can be amplified in extreme environments like merging neutron stars or by the interplay with new physics. To correctly treat these cases requires fully backcoupled calculations. To pave the way for later investigations of hadronic physics, we study the QCD quark propagator coupled to an explicit breaking. This substantially increases the tensor structure even for this simplest correlation function. To cope with the symmetry structure, and covering all possible quark masses, from the top quark mass to the chiral limit, we employ Dyson-Schwinger equations. While at weak breaking the qualitative effects have similar trends as in perturbation theory, even moderately strong breakings lead to qualitatively different effects, non-linearly amplified by the strong interactions. (orig.)

  1. CP violation for electroweak baryogenesis from mixing of standard model and heavy vector quarks

    International Nuclear Information System (INIS)

    McDonald, J.

    1996-01-01

    It is known that the CP violation in the minimal standard model is insufficient to explain the observed baryon asymmetry of the Universe in the context electroweak baryogenesis. In this paper we consider the possibility that the additional CP violation required could originate in the mixing of the standard model quarks and heavy vector quark pairs. We consider the baryon asymmetry in the context of the spontaneous baryogenesis scenario. It is shown that, in general, the CP-violating phase entering the mass matrix of the standard model and heavy vector quarks must be space dependent in order to produce a baryon asymmetry, suggesting that the additional CP violation must be spontaneous in nature. This is true for the case of the simplest models which mix the standard model and heavy vector quarks. We derive a charge potential term for the model by diagonalizing the quark mass matrix in the presence of the electroweak bubble wall, which turns out to be quite different from the fermionic hypercharge potentials usually considered in spontaneous baryogenesis models, and obtain the rate of baryon number generation within the wall. We find, for the particular example where the standard model quarks mix with weak-isodoublet heavy vector quarks via the expectation value of a gauge singlet scalar, that we can account for the observed baryon asymmetry with conservative estimates for the uncertain parameters of electroweak baryogenesis, provided that the heavy vector quarks are not heavier than a few hundred GeV and that the coupling of the standard model quarks to the heavy vector quarks and gauge singlet scalars is not much smaller than order of 1, corresponding to a mixing angle of the heavy vector quarks and standard model quarks not much smaller than order of 10 -1 . copyright 1996 The American Physical Society

  2. Investigation of heavy quark and multiple interactions at HERA

    International Nuclear Information System (INIS)

    Magro, L.M.

    2005-09-01

    This thesis is oriented to the study of heavy quark photoproduction and multiple interactions, MI. For this reason we search for D* Mesons, in order to tag the charm quark, and we restrict ourselves in the region: Q 2 2 . For the theoretical calculations we use two Monte Carlo event generators: RAPGAP 3.1 and PYTHIA 6.2. Heavy quark production provides a large hard scale and therefore a small α s , which allows to test the perturbative QCD theory. On the other hand, MI has been proven to be important in hadron-hadron collisions. In this thesis, using MC event generators, we search for possible signals of MI in heavy quark production in electron-proton, ep, collisions. The thesis begins with a Theoretical Overview, with an introduction to ep collisions physics and the heavy quark photoproduction. We also give an introduction to the MI model included in PYTHIA. The next chapter introduces the concept of jet and presents some methods for the Heavy Quark Identification. After these two theoretical chapters there is a study of the direct and photon resolved processes, as well as the parton showering with RAPGAP. Since this thesis is oriented to the study of MI, PYTHIA plays a very important role because it includes a MI model also for ep collisions. Therefore, the fourth chapter is oriented to study the different steps in the event generation in PYTHIA. Chapter 7 is a D* Meson photoproduction study, where we include a comparison between the data, taken from the PhD Thesis of Gero Flucke. Finally, chapter 8 is a search for possible signals on MI. In hadron-hadron collisions it is clear that MI play a role. In ep collisions it is not so clear although MI could play a role in resolved photon events. The aim of this chapter is to find signals where HERA measurements could be sensitive to MI. (orig.)

  3. Parameters of heavy quark effective theory from N{sub f}=2 lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [CNRS, Orsay (France). LPT; Paris-11 Univ., 91 - Orsay (France); Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Simma, Hubert; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Tantalo, Nazario [Rome-3 Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Roma (Italy)

    2012-07-15

    We report on a non-perturbative determination of the parameters of the lattice Heavy Quark Effective Theory (HQET) Lagrangian and of the time component of the heavy-light axial-vector current with N{sub f} = 2 flavors of massless dynamical quarks. The effective theory is considered at the 1/m{sub h} order, and the heavy mass m{sub h} covers a range from slightly above the charm to beyond the beauty region. These HQET parameters are needed to compute, for example, the b-quark mass, the heavy-light spectrum and decay constants in the static approximation and to order 1/m{sub h} in HQET. The determination of the parameters is done non-perturbatively. The computation reported in this paper uses the plaquette gauge action and two different static actions for the heavy quark described by HQET. For the light-quark action we choose non-perturbatively O(a)-improved Wilson fermions.

  4. Nambu mechanism of dynamical symmetry breaking by the top quark

    Science.gov (United States)

    Pham, Xuan-Yem

    1990-05-01

    It may be possible that the gauge symmetry breaking of the standard electroweak interactions is not due to the elementary scalar Higgs fields but has a dynamic origin intimately involving the top quark. A prototype of this dynamical scenario is the Nambu and Jona-Lasinio model in which both the top quark and the gauge bosons become massive by some strong attractive nonlinear interactions similar to the gap energy produced in BCS superconductivity. Self-consistent equations for the charged Goldstone boson and for the vector meson are used to get an upper bound for the top quark mass. In the bubble approximation of keeping only fermion loops, we obtain an equation relating the top quark mass to the W boson one; from the top mass is found to be around 84 GeV. Its typical dominant decay mode t→W+s then follows. Also discussed are distinctive signatures of the scalar overlinett bound state identified as the physical Higgs particle whose mass is twice that of the top quark.

  5. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H. [Columbia Univ., New York, NY (United States); Flynn, Jonathan M. [Univ. of Southampton, Southampton (United Kingdom); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States); Kawanai, Taichi [RIKEN, Wako (Japan); Brookhaven National Lab. (BNL), Upton, NY (United States); Lehner, Christoph [Brookhaven National Lab. (BNL), Upton, NY (United States); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Van de Water, Ruth S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Witzel, Oliver [Boston Univ., Boston, MA (United States)

    2015-03-10

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59), and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.

  6. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Nicmorus Marinescu, Diana

    2007-01-01

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N→Δγ transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit within this

  7. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nicmorus Marinescu, Diana

    2007-06-14

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit

  8. Spontaneous chiral symmetry breaking and effective quark masses in quantum chromodynamics

    International Nuclear Information System (INIS)

    Miransky, V.A.

    1982-01-01

    The ultraviolet asymptotics of the dynamical effective quark mass is determined directly from the equation for the fermion mass function. The indications about the character of the dynamics of the spontaneous chiral symmetry breaking in QCD are obtained

  9. Compatibility of various approaches to heavy-quark fragmentation

    International Nuclear Information System (INIS)

    Bodwin, G. T.; Harris, B. W.

    2001-01-01

    We find that the definition of the heavy-quark fragmentation function given by Jaffe and Randall differs by a factor of the longitudinal-momentum fraction z from the standard Collins-Soper definition. Once this factor is taken into account, the explicit calculation of Braaten is found to be in agreement with the general analysis of Jaffe and Randall. We also examine the model of Peterson for heavy-quark fragmentation and find that the quoted values of the width and of the value of z at the maximum are in error. The corrected values are in agreement with the analysis of Jaffe and Randall

  10. Quark confinement through hidden breaking of colour symmetry

    International Nuclear Information System (INIS)

    Werle, J.

    1993-01-01

    The aim of this paper is to study of a non-linear mechanism of quark confinement. The sets of coupled equation for Dirac fields carrying colours and flavours are discussed. They contain non-linear self-interaction and mutual interaction terms of the same fractional form that was studied before for single Dirac fields (Phys.Lett. 71B, 357 (1977); Phys.Lett. 76B, 391 (1980); Acta Phys.Pol. B12, 601 (1981)). It turns out that the only way of preventing creation of isolated coloured objects consists in breaking global colour symmetry. An explicit form of the symmetry breaking term is proposed (different from that used in Acta Phys.Pol. B19, 203 (1988)), which implies that only white currents are conserved and the three colours are truly inseparable. Moreover, the new equations have the advantage of having strictly colour symmetric (white) solution that correspond to an absolute minimum of the symmetry breaking term of energy. (author). 4 refs

  11. Searches for exotic heavy quarks decaying into a W-Boson and a b-Quark with the ATLAS experiment

    CERN Document Server

    Nektarijevic, Snezana

    In this thesis, searches for two hypothetical heavy quarks are presented: the fourth Standard Model generation up-type quark t’, and the vector-like quark T, predicted by the new physics models involving extra dimensions or a composite Higgs boson. Both searches assume pair production of the heavy quarks decaying to a W-boson and a b-quark, and are performed in final states with one electron or muon, at least three jets, and significant missing transverse energy. The first search employs the kinematic fitting of the reconstructed quark mass, while the second relies on the artificial neural network method. In both searches no excess of data over the Standard Model expectation is observed, resulting in observed lower bounds on the quark masses of mt’>404 GeV and mT>618 GeV. Both searches are based on proton-proton collision data at 7 TeV centre-of-mass energy collected by the ATLAS experiment at CERN’s Large Hadron Collider in 2011.

  12. New symmetries in heavy flavor physics

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1990-06-01

    Isgur and Wise have found that the formal limit M b , M c → ∞ leads to very great simplification in the general structure of the electroweak matrix elements of hadrons containing those quarks. In additions, interesting new symmetries appear in this limit. Their results are discussed, as well as some natural extensions to matrix elements of products of currents. 11 refs

  13. Hyperon-nucleon interaction in the quark cluster model

    International Nuclear Information System (INIS)

    Straub, U.; Zhang Zongye; Braeuer, K.; Faessler, A.; Khadkikar, S.B.; Luebeck, G.

    1988-01-01

    The lambda-nucleon and sigma-nucleon interaction is described in the nonrelativistic quark cluster model. The SU(3) flavor symmetry breaking due to the different quark masses is taken into account, i.e. different wavefunctions for the light (up, down) and heavy (strange) quarks are used in flavor and orbital space. The six-quark wavefunction is fully antisymmetrized. The model hamiltonian contains gluon exchange, pseudoscalar meson exchange and a phenomenological σ-meson exchange. The six-quark scattering problem is solved within the resonating group method. The experimental lambda-nucleon and sigma-nucleon cross sections are well reproduced. (orig.)

  14. 1/M corrections to baryonic form factors in the quark model

    International Nuclear Information System (INIS)

    Cheng, H.; Tseng, B.

    1996-01-01

    Weak current-induced baryonic form factors at zero recoil are evaluated in the rest frame of the heavy parent baryon using the nonrelativistic quark model. Contrary to previous similar work in the literature, our quark model results do satisfy the constraints imposed by heavy quark symmetry for heavy-heavy baryon transitions at the symmetric point v·v'=1 and are in agreement with the predictions of the heavy quark effective theory for antitriplet-antitriplet heavy baryon form factors at zero recoil evaluated to order 1/m Q . Furthermore, the quark model approach has the merit that it is applicable to any heavy-heavy and heavy-light baryonic transitions at maximum q 2 . Assuming a dipole q 2 behavior, we have applied the quark model form factors to nonleptonic, semileptonic, and weak radiative decays of the heavy baryons. It is emphasized that the flavor suppression factor occurring in many heavy-light baryonic transitions, which is unfortunately overlooked in most literature, is very crucial towards an agreement between theory and experiment for the semileptonic decay Λ c →Λe + ν e . Predictions for the decay modes Λ b →J/ψΛ, Λ c →pφ, Λ b →Λγ, Ξ b →Ξγ, and for the semileptonic decays of Λ b , Ξ b, c, and Ω b are presented. copyright 1996 The American Physical Society

  15. Deconfinement phase transition in QCD with heavy quarks

    International Nuclear Information System (INIS)

    Attig, N.; Petersson, B.; Wolff, M.; Gavai, R.V.

    1988-01-01

    Using the pseudo-fermion method to simulate QCD with dynamical quarks we investigate the effects of heavy dynamical quarks of 2 flavours on the deconfinement phase transition in the quenched QCD. As the mass of the quark is decreased the phase transition weakens as expected. Compared to the earlier results with leading order hopping parameter expansion, however, the weakening is less rapid. Our estimated upper bound on the critical mass where the transition becomes continuous is 1.5-2 times lower than earlier results. (orig.)

  16. Proceedings of the Helmholtz international school physics of heavy quarks and hadrons (HQ2013)

    International Nuclear Information System (INIS)

    Ali, Ahmed; Bystritskiy, Yury; Ivanov, Mikhail

    2014-07-01

    The following topics were dealt with: Higgs boson production and couplings with the ATLAS detector, recent CMS results on heavy quarks and hadrons, mesons with open charm and beauty, new-physics searches in B→D (*) τν τ , spectroscopy and Regge trajectories of heavy quarkonia, weak decays of B s mesons, the possible role of scalar glueball-quarkonia mixing in the f 0 (1370,1500,17100) resonances produced in charmonia decays, effective weak Lagrangians in the Standard Model and B decays, heavy-quark physics in the covariant quark model, application of QCD sum rules to heavy-quark physics, top-quark production, helicity amplitudes and angular decay distributions, small-x behavior of deep-inelastic structure functions F 2 and F 2 cc , XYZ stated, recent Belle results, light and heavy hadrons in AdS/QCD, renorm dynamics, valence quarks and multiparticle production, prompt photons and associated b,c-tagged jet production within the k T factorization approach, heavy quarkonium production at the LHC in the framework of NRQCD and parton Reggeization approach, light-cone distribution amplitudes of bottom baryons, rare semileptonic B + → π + l + l - decay, bimodality phenomenon in finite and infinite systems within an exactly solvable statistical model, CP violation in D meson decays, the scalar mesons in multichannel ππ scattering and decays of the ψ and Υ families, the latest results of the ATLAS experiment on heavy-quark physics, relativistic corrections to pair charmonium production at the LHC, the rise and fall of the fourth quark-lepton generation. (HSI)

  17. Inverted radiative hierarchy of quark masses

    International Nuclear Information System (INIS)

    Berezhiani, Z.G.; Rattazzi, R.

    1992-01-01

    Inverted radiative hierarchy of quark masses is investigated. The authors suggest that the mass hierarchy is first generated in a sector of heavy isosinglet fermions due to radiative effects and then projected in the inverted way to the usual quarks by means of a universal seesaw. The simple left-right symmetric gauge model is presented with the P- and CP-parities and the exact isotopical symmetry which are softly (or spontaneously) broken in the Higgs potential. This approach naturally explains the observed pattern of quark masses and mixing, providing the quantitatively correct formula for the Cabibbo angle. Top quark is predicted to be in the 90-150 GeV range

  18. Parity doublers in chiral potential quark models

    International Nuclear Information System (INIS)

    Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.

    2007-01-01

    The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated

  19. Structure of the vacuum in the color dielectric model: confinement and chiral symmetry

    International Nuclear Information System (INIS)

    Mazzolo, A.

    1992-01-01

    Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied

  20. Semileptonic (Λb → Λc eV) decay in a field theoretic quark model

    International Nuclear Information System (INIS)

    Das, R.K.; Panda, A.R.; Sahoo, R.K.; Swain, M.R.

    2002-01-01

    The semileptonic decay width of heavy baryons such as (Λ b → Λ c eV) has been estimated in the framework of a nonrelativistic field theoretic quark model where four component quark field operators along with a harmonic oscillator wave function are used to describe translationally invariant hadronic states. The present estimation does not make an explicit use of heavy quark symmetry and has a reasonable agreement with the experimentally measured decay width, polarisation ratio and form factors with the harmonic oscillator radii and quark momentum distribution inside the hadron as free parameters. (author)

  1. Ellipsoidal bag model for heavy quark system

    International Nuclear Information System (INIS)

    Bi Pinzhen; Fudan Univ., Shanghai

    1991-01-01

    The ellipsoidal bag model is used to describe heavy quark systems such as Qanti Q, Qanti Qg and Q 2 anti Q 2 . Instead of two step model, these states are described by an uniform picture. The potential derived from the ellipsoidal bag for Qanti Q is almost equivalent to the Cornell potential. For a Q 2 anti Q 2 system with large quark pair separation, an improvement of 70 MeV is obtained comparing with the spherical bag. (orig.)

  2. Probing the Quark Gluon Plasma with Heavy Flavours: recent results from ALICE

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The study of open heavy-flavour physics allows us to investigate the key properties of the Quark-Gluon Plasma (QGP) and the microscopic processes ongoing in the medium produced in heavy-ion collisions at relativistic energies. Heavy quarks are produced in the early stages of heavy-ion collisions and their further production and annihilation rates in the medium are expected to be very small throughout the evolution of the system. Therefore, they serve as penetrating probes that traverse the hot and dense medium, interact with the partonic constituents of the plasma and lose energy. Understanding the interactions of heavy quarks with the medium requires precise measurements over a wide momentum range in heavy-ion collisions, but also in smaller systems like pp collisions, which also test next-to-leading order perturbative QCD calculations, and proton-nucleus collisions, which are sensitive to Cold Nuclear Matter effects (CNM), such as the modification of the parton distribution functions of nuclei, and parton ...

  3. Quark seesaw mechanism, dark U (1 ) symmetry, and the baryon-dark matter coincidence

    Science.gov (United States)

    Gu, Pei-Hong; Mohapatra, Rabindra N.

    2017-09-01

    We attempt to understand the baryon-dark matter coincidence problem within the quark seesaw extension of the standard model where parity invariance is used to solve the strong C P problem. The S U (2 )L×S U (2 )R×U (1 )B -L gauge symmetry of this model is extended by a dark U (1 )X group plus inclusion of a heavy neutral vector-like fermion χL ,R charged under the dark group which plays the role of dark matter. All fermions are Dirac type in this model. Decay of heavy scalars charged under U (1 )X leads to simultaneous asymmetry generation of the dark matter and baryons after sphaleron effects are included. The U (1 )X group not only helps to stabilize the dark matter but also helps in the elimination of the symmetric part of the dark matter via χ -χ ¯ annihilation. For dark matter mass near the proton mass, it explains why the baryon and dark matter abundances are of similar magnitude (the baryon-dark matter coincidence problem). This model is testable in low threshold (sub-keV) direct dark matter search experiments.

  4. Search for heavy quarks at panti p colliders

    International Nuclear Information System (INIS)

    Kroll, I.J.

    1989-01-01

    At present, the Fermilab and CERN panti p colliders with √s = 1.8 TeV and 0.63 TeV, respectively, provide the highest mass reach of existing accelerators for finding new particles. In particular, these colliders can be used to search for heavy quarks. The upper limit of 1.2x10 -3 (90% CL) on BR(B 0 → μ + μ - X) is strong indirect evidence that the charge 2/3 SU(2) partner of the bottom quark, usually called the top quark, exists. In addition, present experimental data do not exclude a fourth generation of quarks and leptons. A search for a fourth-generation, charge 1/3 quark (here referred to as the b' quark) should be made. The present limits from e + e - colliders on the masses of these particles are m t > 27.4 GeV/c 2 (95% CL) and m b ' > 25.5 GeV/c 2 (95% CL). (orig.)

  5. From quarks to pions chiral symmetry and confinement

    CERN Document Server

    Creutz, Michael

    2018-01-01

    At a fundamental level, the interaction of quarks with gluon fields lies at the heart of our understanding of the strong nuclear force. Experimentally, however, we only observe physical hadrons such as protons and pions. This book explores the fascinating physics involved in the path between these contrasting pictures of the world. Along the way, the book discusses symmetries, which play a crucial role in understanding the parameters of the theory, and details of the spectrum of physical particles. This would be the first book to elaborate on the detailed connections between confinement and chiral symmetry, with an emphasis on a unified treatment of the non-perturbative nature of these phenomena. As such, it should be a valuable title on any particle theorist's bookshelf, containing extensive pedagogical material for scientists at the graduate level and above.

  6. Heavy quark threshold dynamics in higher order

    Energy Technology Data Exchange (ETDEWEB)

    Piclum, J.H.

    2007-05-15

    In this work we discuss an important building block for the next-to-next-to-next-to leading order corrections to the pair production of top quarks at threshold. Specifically, we explain the calculation of the third order strong corrections to the matching coefficient of the vector current in non-relativistic Quantum Chromodynamics and provide the result for the fermionic part, containing at least one loop of massless quarks. As a byproduct, we obtain the matching coefficients of the axial-vector, pseudo-scalar and scalar current at the same order. Furthermore, we calculate the three-loop corrections to the quark renormalisation constants in the on-shell scheme in the framework of dimensional regularisation and dimensional reduction. Finally, we compute the third order strong corrections to the chromomagnetic interaction in Heavy Quark Effective Theory. The calculational methods are discussed in detail and results for the master integrals are given. (orig.)

  7. Ground-state triply and doubly heavy baryons in a relativistic three-quark model

    International Nuclear Information System (INIS)

    Martynenko, A.P.

    2008-01-01

    Mass spectra of the ground-state baryons consisting of three or two heavy (b or c) and one light (u,d,s) quarks are calculated in the framework of the relativistic quark model and the hyperspherical expansion. The predictions of masses of the triply and doubly heavy baryons are obtained by employing the perturbation theory for the spin-independent and spin-dependent parts of the three-quark Hamiltonian

  8. Status and prospects for lattice calculations in heavy quark physics

    International Nuclear Information System (INIS)

    Wittig, H.; Forschungszentrum Juelich GmbH

    1996-06-01

    The current status of lattice calculation of weak matrix elements for heavy quark systems is reviewed. After an assessment of systematic errors in present simulations, results for the B meson decay constant, the B parameter B B and semi-leptonic heavy-to-light and heavy-to-heavy transitions are discussed. The final topic are lattice results for heavy baryon spectroscopy. (orig.)

  9. Towards a Unified Quark-Hadron-Matter Equation of State for Applications in Astrophysics and Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Niels-Uwe F. Bastian

    2018-05-01

    Full Text Available We outline an approach to a unified equation of state for quark-hadron matter on the basis of a Φ − derivable approach to the generalized Beth-Uhlenbeck equation of state for a cluster decomposition of thermodynamic quantities like the density. To this end we summarize the cluster virial expansion for nuclear matter and demonstrate the equivalence of the Green’s function approach and the Φ − derivable formulation. As an example, the formation and dissociation of deuterons in nuclear matter is discussed. We formulate the cluster Φ − derivable approach to quark-hadron matter which allows to take into account the specifics of chiral symmetry restoration and deconfinement in triggering the Mott-dissociation of hadrons. This approach unifies the description of a strongly coupled quark-gluon plasma with that of a medium-modified hadron resonance gas description which are contained as limiting cases. The developed formalism shall replace the common two-phase approach to the description of the deconfinement and chiral phase transition that requires a phase transition construction between separately developed equations of state for hadronic and quark matter phases. Applications to the phenomenology of heavy-ion collisions and astrophysics are outlined.

  10. Semileptonic Decays of Heavy Lambda Baryons in a Quark Model

    Energy Technology Data Exchange (ETDEWEB)

    Winston Roberts; Muslema Pervin; Simon Capstick

    2005-03-01

    The semileptonic decays of {Lambda}{sub c} and {Lambda}{sub b} are treated in the framework of a constituent quark model. Both nonrelativistic and semirelativistic Hamiltonians are used to obtain the baryon wave functions from a fit to the spectra, and the wave functions are expanded in both the harmonic oscillator and Sturmian bases. The latter basis leads to form factors in which the kinematic dependence on q{sup 2} is in the form of multipoles, and the resulting form factors fall faster as a function of q{sup 2} in the available kinematic ranges. As a result, decay rates obtained in the two models using the Sturmian basis are significantly smaller than those obtained using the harmonic oscillator basis. In the case of the {Lambda}{sub c}, decay rates calculated using the Sturmian basis are closer to the experimentally reported rates. However, we find a semileptonic branching fraction for the {Lambda}{sub c} to decay to excited {Lambda}* states of 11% to 19%, in contradiction with what is assumed in available experimental analyses. Our prediction for the {Lambda}{sub b} semileptonic decays is that decays to the ground state {Lambda}{sub c} provide a little less than 70% of the total semileptonic decay rate. For the decays {Lambda}{sub b} {yields} {Lambda}{sub c}, the analytic form factors we obtain satisfy the relations expected from heavy-quark effective theory at the non-recoil point, at leading and next-to-leading orders in the heavy-quark expansion. In addition, some features of the heavy-quark limit are shown to naturally persist as the mass of the heavy quark in the daughter baryon is decreased.

  11. Physical and cut-off effects of heavy sea quarks

    CERN Document Server

    Knechtli, Francesco; Bruno, Mattia; Finkenrath, Jacob; Leder, Björn; Marinkovic, Marina; Sommer, Rainer

    2014-01-01

    We simulate a theory with two dynamical O($a$) improved Wilson quarks whose mass $M$ ranges from a factor eight up to a factor two below the charm quark mass and at three values of the lattice spacing ranging from 0.066 to 0.034 fm. This theory is a prototype to study the decoupling of heavy quarks. We measure the mass and cut-off dependence of ratios of gluonic observables defined from the Wilson flow or the static potential. The size of the 1/$M$ corrections can be determined and disentangled from the lattice artifacts. The difference with the pure gauge theory is at the percent level when two quarks with a mass of the charm quark are present.

  12. Quark solitons as constituents of hadrons

    International Nuclear Information System (INIS)

    Ellis, J.; Frishman, Y.; Hanany, A.; Karlinev, M.

    1992-01-01

    We exhibit static solutions of multi-flavour QCD in two dimensions that have the quantum numbers of baryons and mesons, constructed out of quark and anti-quark solitons. In isolation the latter solitons have infinite energy, corresponding to the presence of a string carrying the non-singlet colour flux off to spatial infinity. When N c solitons of this type are combined, a static, finite-energy, colour singlet solution is formed, corresponding to a baryon. Similarly, static meson solutions are formed out of a soliton and an anti-soliton of different flavours. The stability of the mesons against annihilation is ensured by flavour conservation. The static solutions exist only when the fundamental fields of the bosonized lagrangian belong to U(N c xN f ) rather than to SU(N c )xU(N f ). Discussion of flavour-symmetry breaking requires a careful treatment of the normal-ordering ambiguity. Our results can be viewed as a derivation of the constituent quark model in QCD 2 , allowing a detailed study of constituent mass generation and of the heavy-quark symmetry. (orig.)

  13. Heavy quarks and nuclei, or the charm & beauty of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Kharzeev, D.

    1997-09-22

    This report contains viewgraphs on the following: why heavy quarks? Heavy quarkonium in QCD vacuum and in matter; Phenomenology of quarkonium production; Induced decay of QCD vacuum in heavy ion collisions? Implications for quarkonium production; and Outlook.

  14. Lattice Yang-Mills theory at finite densities of heavy quarks

    International Nuclear Information System (INIS)

    Langfeld, Kurt; Shin, Gwansoo

    2000-01-01

    SU(N c ) Yang-Mills theory is investigated at finite densities of N f heavy quark flavors. The calculation of the (continuum) quark determinant in the large-mass limit is performed by analytic methods and results in an effective gluonic action. This action is then subject to a lattice representation of the gluon fields and computer simulations. The approach maintains the same number of quark degrees of freedom as in the continuum formulation and a physical heavy quark limit (to be contrasted with the quenched approximation N f →0). The proper scaling towards the continuum limit is manifest. We study the partition function for given values of the chemical potential as well as the partition function which is projected onto a definite baryon number. First numerical results for an SU(2) gauge theory are presented. We briefly discuss the breaking of the color-electric string at finite densities and shed light onto the origin of the overlap problem inherent in the Glasgow approach

  15. Heavy Quark Effective Theory

    Science.gov (United States)

    Manohar, A. V.

    2003-02-01

    These lecture notes present some of the basic ideas of heavy quark effective theory. The topics covered include the classification of states, the derivation of the HQET Lagrangian at tree level, hadron masses, meson form factors, Luke's theorem, reparameterization invariance and inclusive decays. Radiative corrections are discussed in some detail, including an explicit computation of a matching correction for HQET. Borel summability, renormalons, and their connection with the QCD perturbation series is covered, as well as the use of the upsilon expansion to improve the convergence of the perturbation series.

  16. Magnetic moments of triply heavy baryons in quark-diquark model

    International Nuclear Information System (INIS)

    Thakkar, Kaushal; Majethiya, Ajay; Vinodkumar, P.C.

    2016-01-01

    Along with the well-established triply flavoured (uuu) and strange (sss) baryons, QCD predicts similar states made up of charm quarks, the triply-charmed baryon, ccc and bottom quarks, the triply-bottom baryon, bbb. Such a state has yet to be observed experimentally. After the observation of the doubly charmed baryon by the SELEX group, it is expected that the triply heavy flavour baryonic state may be in the offing very soon. Though considerable amount of data on the properties of the singly-heavy baryons are available in literature, only sparse attention has been paid to the spectroscopy of double and triple-heavy flavour baryons, perhaps mainly due to the lack of experimental incentives

  17. Searches for Heavy Quark States at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00357007; The ATLAS collaboration

    2016-01-01

    This talk highlights the latest results of heavy quark searches from the ATLAS collaboration, mainly on resonance searches and vector-like quarks (VLQs) searches. Searches for $t\\bar{t}$ resonances using lepton-plus-jets events in proton-proton collisions at center-of-mass energy at 8 and 13 TeV are presented. Limits are set for BSM particles such as topcolor-assisted technicolor $Z'$ , Kaluza-Klein (K-K) gluons $g_{KK}$ and K-K excitations of graviton $G_{KK}$ in the TC Randall-Sundrum (R-S) model of extra dimensions. VLQs arise naturally in many models such as Little Higgs and Composite Higgs and typically couple preferably to the third generation SM quarks and weak bosons. Limits are set for vector-like bottom (B) and top (T) quarks decay to lepton-plus-jets final states via Hb+X and Ht+X channels in two analyses using 8 and 13 TeV datasets from ATLAS.

  18. Searches for Heavy Quark States at ATLAS

    CERN Document Server

    Cheng, Hok Chuen; The ATLAS collaboration

    2016-01-01

    This talk highlights the latest results of heavy quark searches from the ATLAS collaboration, mainly on resonance searches and vector-like quarks (VLQs) searches. Searches for t\\bar{t} resonances using lepton-plus-jets events in proton-proton collisions at center-of-mass energy at 8 and 13 TeV are presented. Limits are set for BSM particles such as topcolor-assisted technicolor Z'_{TC} , Kaluza-Klein(K-K) gluons g_{KK} and K-K excitations of graviton G_{KK} in the Randall-Sundrum model of extra dimensions. VLQs arise naturally in many models such as Little Higgs and Composite Higgs and typically couple preferably to the third generation SM quarks and weak bosons. Limits are set for vector-like bottom (B) and top (T) quarks decay to lepton-plus-jets final states via Hb+X and Ht+X channels in two analyses using 8 and 13 TeV datasets from ATLAS.

  19. High-energy manifestations of heavy quarks in axial-vector neutral currents

    International Nuclear Information System (INIS)

    Kizukuri, Y.; Ohba, I.; Okano, K.; Yamanaka, Y.

    1981-01-01

    A recent work by Collins, Wilczek, and Zee has attempted to manifest the incompleteness of the decoupling theorem in the axial-vector neutral currents at low energies. In the spirit of their work, we calculate corrections of the axial-vector neutral currents by virtual-heavy-quark exchange in the high-energy e + e - processes and estimate some observable quantities sensitive to virtual-heavy-quark masses which may be compared with experimental data at LEP energies

  20. Radiation by a heavy quark in N=4 SYM at strong coupling

    CERN Document Server

    Hatta, Y; Mueller, A H; Triantafyllopoulos, D N

    2011-01-01

    Using the AdS/CFT correspondence in the supergravity approximation, we compute the energy density radiated by a heavy quark undergoing some arbitrary motion in the vacuum of the strongly coupled N=4 supersymmetric Yang-Mills theory. We find that this energy is fully generated via backreaction from the near-boundary endpoint of the dual string attached to the heavy quark. Because of that, the energy distribution shows the same space-time localization as the classical radiation that would be produced by the heavy quark at weak coupling. We believe that this and some other unnatural features of our result (like its anisotropy and the presence of regions with negative energy density) are artifacts of the supergravity approximation, which will be corrected after including string fluctuations. For the case where the quark trajectory is bounded, we also compute the radiated power, by integrating the energy density over the surface of a sphere at infinity. For sufficiently large times, we find agreement with a previo...

  1. Quark Loop Effects on Dressed Gluon Propagator in Framework of Global Color Symmetry Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    Based on the global color symmetry model (GCM), a method for obtaining the quark loop effects on the dressed gluon propagator in GCM is developed. In the chiral limit, it is found that the dressed gluon propagator containing the quark loop effects in the Nambu-Goldstone and Wigner phases are quite different. In solving the quark self-energy functions in the two different phases and subsequent study of bag constant one should use the above dressed gluon propagator as input. The above approach for obtaining the current quark mass effects on the dressed gluon propagator is quite general and can also be used to calculate the chemical potential dependence of the dressed gluon propagator.

  2. Symmetry relations and ambiguities in a free-quark model

    International Nuclear Information System (INIS)

    Battistel, O.A.; Nemes, M.C.; Battistel, O.L.

    1998-01-01

    We present a systematic study of one, two and three point functions of vector axial-vector scalar and pseudoscalar densities constructed in a free-quark model in a point of view of a alternative strategy to manipulate and calculate divergent amplitudes. The divergent content of the amplitudes in this technique are left in the form of (external momenta independent) 4-D integrals. Ambiguities and Symmetry Violations in all cases are shown to be associated to terms which involved relations between divergent integrals of the same degree of divergence. We conclude then that it's possible to avoid all these problems. For this purpose a set of conditions must be fulfilled the same ones we need for preserving gauge symmetry in QED. The implications of our studies to others theories and models are also discussed. (author)

  3. Experimental studies on the heavy quark fragmentation functions

    International Nuclear Information System (INIS)

    Bethke, S.

    1985-07-01

    The influence of perturbative QCD gluon radiation and initial state photon radiation on the experimental determination of the heavy quark fragmentation functions is studied in order to extract , the mean of the charm fragmentation function, from the recent measurements of inclusive Dsup(*) production in e + e - annihilation processes. The result is =0.71+-0.014+-0.03, which is scale invariant in the c.m. energy range of 10 GeV to 34 GeV. This result is interpreted in terms of kinematical calculations on heavy quark fragmentation and also compared with results from ν-N-reactions and from investigations of inclusive lepton production in e + e - annihilation. Results of a QCD shower model are in good agreement with the data and offer an alternative description of phenomenological fragmentation functions. (orig.)

  4. Covariant trace formalism for heavy meson s-wave to p-wave transitions

    International Nuclear Information System (INIS)

    Balk, S.; Koerner, J.G.; Thompson, G.; Hussain, F.

    1992-06-01

    Heavy meson, s- to p-wave, weak transitions are studied in the context of the Heavy Quark Effective Theory using covariant meson wave functions. We use the trace formalism to evaluate the weak transitions. As expected from heavy quark symmetry, the eight transitions between s- and p-wave states are described in terms of only two universal form factors which are given in terms of explicit wave function overlap integrals. We present our results in terms of both invariant and helicity amplitudes. Using our helicity amplitude expressions we discuss rate formulae, helicity structure functions and joint angular decay distributions in the decays B-bar→D**(→(D,D*)+π)+W - (→l - ν l ). The heavy quark symmetry predictions for the one-pion transitions D**→(D,D*)+π are similarly worked out by using trace techniques. (author). 35 refs, 3 figs, 2 tabs

  5. Effective potential for heavy quark antiquark bound system

    Energy Technology Data Exchange (ETDEWEB)

    Barik, B K; Deo, B B

    1985-12-01

    A heavy quark antiquark potential is suggested connecting asymptotic freedom and quark confinement in a unified way. The ..cap alpha../sub g/(q/sup 2/) calculated using Borel summation technique with three loop agrees with the two loop ..beta..-function up to g/sup 2//4..pi.. -- 1.1 but changes appreciably after g/sup 2//4..pi.. = 1.5. The potential so derived satisfactorily explains the c overlined c and b overlined b spectrum. 13 refs., 4 figures, 3 tables.

  6. The effect of meson wave function on heavy-quark fragmentation function

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of)

    2016-05-15

    We calculate the process-independent fragmentation functions (FFs) for a heavy quark to fragment into heavy mesons considering the effects of meson wave function. In all previous works, where the FFs of heavy mesons or heavy baryons were calculated, a delta function form was approximated for the wave function of hadrons. Here, for the first time, we consider a typical mesonic wave function which is different from the delta function and is the nonrelativistic limit of the solution of Bethe-Salpeter equation with the QCD kernel. We present our numerical results for the heavy FFs and show how the proposed wave function improves the previous results. As an example, we focus on the fragmentation function for c-quark to split into S-wave D{sup 0} -meson and compare our results with experimental data from BELLE and CLEO. (orig.)

  7. Heavy Quark Dynamics toward thermalization: RAA, υ1, υ2, υ3

    Directory of Open Access Journals (Sweden)

    Plumari Salvatore

    2018-01-01

    Full Text Available We describe the propagation of Heavy quarks (HQs in the quark-gluon plasma (QGP within a relativistic Boltzmann transport (RBT approach. The interaction between heavy quarks and light quarks is described within quasi-particle approach which is able to catch the main features of non-perturbative interaction as the increasing of the interaction in the region of low temperature near TC. In our calculations the hadronization of charm quarks in D mesons is described by mean of an hybrid model of coalescence plus fragmentation. We show that the coalescence play a key role to get a good description of the experimental data for the nuclear suppression factor RAA and the elliptic flow υ2(pT at both RHIC and LHC energies. Moreover, we show some recent results on the direct flow υ1 and triangular flow υ3 of D meson.

  8. Gel'fand and Tsetlin technique and heavy quarks

    International Nuclear Information System (INIS)

    Mubarak, Ahmad; Jallu, M.S.

    1979-04-01

    Here the authors present the SU(5) symmetry scheme by chosing the truth quark (t) as the fifth quark. To classify baryons and mesons, including the upsilon mesons and the associated hadrons, the Gel'fand and Tsetlin technique is exploited. This proves to be an elegant technique in this analysis. Also some relations are found between the masses of the truthful (3 + /2) baryons and the (3 + /2) non-truthful baryons by applying the Feldman and Matthews parallelogram rule to the different parallelograms formed by different baryons in the weight diagram. The results obtained by applying this rule are almost consistent with the corresponding results obtained from the mass spectrum of 3 + /2 baryons. (author)

  9. New results on CLEO`s heavy quarks - bottom and charm

    Energy Technology Data Exchange (ETDEWEB)

    Menary, S. [Univ. of California, Santa Barbara, CA (United States)

    1997-01-01

    While the top quark is confined to virtual reality for CLEO, the increased luminosity of the Cornell Electron Storage Ring (CESR) and the improved photon detection capabilities of the CLEO`s {open_quotes}heavy{close_quotes} quarks - bottom and charm. I will describe new results in the B meson sector including the first observation of exclusive b {yields} ulv decays, upper limits on gluonic penguin decay rates, and precise measurements of semileptonic and hadronic b {yields} c branching fractions. The charmed hadron results that are discussed include the observation of isospin violation in D{sub s}*{sup +} decays, an update on measurements of the D{sub s}{sup +} decay constant, and the observation of a new excited {Xi}{sub c} charmed baryon. These measurements have had a large impact on our understanding of heavy quark physics.

  10. Indirect serarches for very heavy quarks

    International Nuclear Information System (INIS)

    Bigi, I.I.

    1987-03-01

    Detailed studies of weak decays can reveal the presence of very massive quanta like heavy top quarks or fourth family quarks. The decay K + → π + ν anti ν and B/sub d/ - anti B/sub d/ mixing are particularly promising fields for such searches. We infer a rather conservative lower limit of 70 GeV on the top mass form recent ARGUS data on B/sub d/ - anti B/sub d/ mixing, near-maximal B 8 - anti B 8 mixing is another consequence. If on the other hand top were detected in Z 0 decays, then the presence of New Physics would be established in B 0 decays. The ratio between tau(B 0 ) and tau(B +- ) is of considerable phenomenological relevance here

  11. Study of heavy quarks production with ALEPH

    International Nuclear Information System (INIS)

    Perret, P.

    1990-05-01

    The first data collected by the ALEPH detector at LEP have provided the matter of this study concerning the measure of the partial widths of the Z boson decay into heavy quarks from an analysis of inclusive leptons spectrum. After a presentation of the expected Z decay width into bantib, we explain the phase during which the b quark becomes observable as a beautiful hadron and discuss the present model validity describing this transition by a comparison with the data. Come afterwards the beautiful mesons semileptonic decays description. A more specific work, the possibility of testing the B mesons semileptonic decay model with the D * polarisation measure, is also presented. By fitting the momentum-transverse momentum spectrum of the electrons observed in the hadronic Z decays, we measure the partial widths. We extract Z → bantib, first in an ample dominated by leptons coming from b decays, and then Z → bantib and Z → cantic simultaneously by a global fit of the electron spectrum, including also a determination of the heavy quarks fragmentation parameters in the Peterson framework. We have measured the ratio of the b partial width and the total hadronic width (0.212 ± 0.024) and that of the c (0.182 ± 0.070) in good agreement with the Standard Model. Statistic and systematic errors have comparable values [fr

  12. Chiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarks

    CERN Document Server

    Giusti, Leonardo

    2009-01-01

    The Banks--Casher relation links the spontaneous breaking of chiral symmetry in QCD to the presence of a non-zero density of quark modes at the low end of the spectrum of the Dirac operator. Spectral observables like the number of modes in a given energy interval are renormalizable and can therefore be computed using the Wilson formulation of lattice QCD even though the latter violates chiral symmetry at energies on the order of the inverse lattice spacing. Using numerical simulations, we find (in two-flavour QCD) that the low quark modes do condense in the expected way. In particular, the chiral condensate can be accurately calculated simply by counting the low modes on large lattices. Other spectral observables can be considered as well and have a potentially wide range of uses.

  13. Heavy-light flavor correlations and the QCD phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Chihiro [Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw (Poland); Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main (Germany); Redlich, Krzysztof [Institute of Theoretical Physics, University of Wroclaw, PL-50204 Wroclaw (Poland)

    2016-12-15

    We discuss correlations between the light and heavy-light flavored mesons at finite temperature within a chiral effective theory implementing heavy quark symmetry. We show that the thermodynamics of the charmed mesons is strongly dragged by the chiral crossover dominated by the non-strange flavors. Consequently, the fluctuations carried by the states with strangeness can be used to characterize the onset of the chiral symmetry restoration.

  14. Heavy quark effective theory, interpolating fields and Bethe-Salpeter amplitudes

    International Nuclear Information System (INIS)

    Hussain, F.; Thomspon, G.

    1994-07-01

    We use the LSZ reduction theorem and interpolating fields, along with the heavy quark effective theory, to investigate the structure of the Bethe-Salpeter amplitude for heavy hadrons. We show how a simple form of this amplitude, used extensively in heavy hadron decay calculations, follows naturally up to O(1/M) from these field theoretic considerations. (author). 13 refs, 1 tab

  15. Ultra relativistic heavy ions collisions or the search for quark-gluon plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1985-03-01

    This paper reviews some aspects of the physics of ultra-relativistic heavy ion collisions. The qualitative changes expected in the properties of hadronic matter at high temperature and/or large baryon density are described in terms of simple models. We discuss a scenario giving the space-time evolution of a quark-gluon plasma. Finally we address the difficult question of the possible signatures of the formation of a quark-gluon plasma in heavy ion collisions

  16. Fragmentation functions of polarized heavy quarkonium

    International Nuclear Information System (INIS)

    Ma, Yan-Qing; Qiu, Jian-Wei; Zhang, Hong

    2015-01-01

    Investigating the production of polarized heavy quarkonia in terms of recently proposed QCD factorization formalism requires the knowledge of a large number of input fragmentation functions (FFs) from a single parton or a heavy quark-antiquark pair to a polarized heavy quarkonium. We study these universal FFs at the input factorization scale μ 0 ≳2m Q , with heavy quark mass m Q , in the framework of nonrelativistic QCD (NRQCD) factorization. We express these FFs in terms of perturbatively calculable coefficients for producing a heavy quark-antiquark pair in all possible NRQCD states, multiplied by corresponding NRQCD long-distance matrix elements for the pair to transmute into a polarized heavy quarkonium. We derive all relevant NRQCD operators for the long-distance matrix elements based on symmetries, and introduce a self-consistent scheme to define them in arbitrary d-dimensions. We compute, up to the first non-trivial order in α s , the perturbative coefficients for producing a heavy quark pair in all possible S-wave and P-wave NRQCD states. We also discuss the role of the polarized FFs in generating QCD predictions for the polarization of J/ψ produced at collider energies.

  17. Heavy ion collisions, the quark-gluon plasma and antinucleon annihilation

    International Nuclear Information System (INIS)

    Sarma, Nataraja

    1985-01-01

    Studies in high energy physics have indicated that nucleon and mesons are composed of quarks confined in bags by the strong colours mediated by gluons. It is reasonably expected that at suitably high baryon density and temperature of the nucleus, these bags of nucleon and mesons fuse into a big bag of quarks or gluons i.e. hadronic matter undergoes transition to a quark-gluon phase. Two techniques to achieve this transition in a laboratory are: (1) collision of two heavy nuclei, and (2) annihilation of antinucleons and antinuclei in nuclear matter. Theoretical studies as well as experimental studies associated with the transition to quark-gluon phase are reviewed. (author)

  18. An effective potential for heavy quark antiquark bound system

    International Nuclear Information System (INIS)

    Barik, B.K.; Deo, B.B.

    1985-01-01

    A heavy quark antiquark potential is suggested connecting asymptotic freedom and quark confinement in a unified way. The α g (q 2 ) calculated using Borel summation technique with three loop agrees with the two loop β-function up to g 2 /4π ∼ 1.1 but changes appreciably after g 2 /4π = 1.5. The potential so derived satisfactorily explains the c overlined c and b overlined b spectrum. (author)

  19. Heavy quark production in semihard interactions of nucleons

    International Nuclear Information System (INIS)

    Levin, E.M.; Ryskin, M.G.; Shabel'skij, Yu.M.; Shuvaev, A.G.

    1991-01-01

    Cross section of semihard process (heavy quark production) in the interactions of high-energy nucleons is calculated. The normalization of gluon structure function at small x and the role of absorption corrections are discussed in detail. The virtuality of interacting gluons as well as their transverse motion and possible various polarizations are accounted for in calculations. Comparatively large cross section of the high-energy inclusive b-quark production (σ(b-barb) is predicted, in particular, σ(p-barp→b-barb)=150-300 μb at √s=1.8 TeV

  20. Heavy quark radiation in NLO+PS POWHEG generators

    Energy Technology Data Exchange (ETDEWEB)

    Buonocore, Luca; Tramontano, Francesco [Universita di Napoli ' ' Federico II' ' , Napoli (Italy); INFN, Sezione di Napoli, Napoli (Italy); Nason, Paolo [CERN, Theoretical Physics Department, Geneve (Switzerland); INFN, Sezione di Milano-Bicocca, Milano (Italy)

    2018-02-15

    In this paper we deal with radiation from heavy quarks in the context of next-to-leading order calculations matched to parton shower generators. A new algorithm for radiation from massive quarks is presented that has considerable advantages over the one previously employed. We implement the algorithm in the framework of the POWHEG-BOX, and compare it with the previous one in the case of the hvq generator for bottom production in hadronic collisions, and in the case of the bb4l generator for top production and decay. (orig.)

  1. Top quark asymmetry from a non-Abelian horizontal symmetry

    CERN Document Server

    Jung, Sunghoon; Wells, James D

    2011-01-01

    Motivated by the persistence of a large measured top quark forward-backward asymmetry at the Tevatron, we examine a model of non-Abelian flavor gauge symmetry. The exchange of the gauge bosons in the $t$-channel can give a large $\\Afb$ due to the forward Rutherford scattering peak. We address generic constraints on non-Abelian $t$-channel physics models including flavor diagonal resonances and potentially dangerous contributions to inclusive top pair cross sections. We caution on the general difficulty of comparing theoretical predictions for top quark signals to the existing experimental results due to potentially important acceptance effects. The first signature at the Large Hadron Collider can be a large inclusive top pair cross section, or like-sign dilepton events, although the latter signal is much smaller than in Abelian models. Deviations of the invariant mass distributions at the LHC will also be promising signatures. A more direct consistency check of the Tevatron asymmetry through the LHC asymmetry...

  2. Lattice analysis of SU(2) chromodynamics with light quarks

    International Nuclear Information System (INIS)

    Laermann, E.

    1986-01-01

    I report on the Monte-Carlo simulation of a SU(2) lattice gauge theory which includes dynamical Kogut-Susskind quarks. On a 16*8 3 lattice the masses of ρ and π mesons are studied, the condensate measuring the chiral symmetry breaking determined, and the potential between static quarks measured. Extrapolations to vanishing quark mass yield a finite ρ mass but a value for the π mass which is compatible with zero, as well as a result different from zero for the quark condensate in accordance with the spontaneous breaking of the chiral symmetry of massless non-Abelian gauge theories. The shape of the q-anti q potential equals the pure gauge potential for small to intermediate distances. However at large distances (σ(fm)) deviations from the linear increase are indicated as they are expected due to the breakup of the flux tube between heavy quarks because of spontaneous quark-pair production. For all numerical calculations it is common that they favor a value for the scale parameter Λsub(anti Manti S)(N F =4) of quantum chromodynamics which is smaller than in the pure gauge field theory. (orig.) [de

  3. Supersymmetric models for quarks and leptons with nonlinearly realized E8 symmetry

    International Nuclear Information System (INIS)

    Ong, C.L.

    1985-01-01

    We propose three supersymmetric nonlinear sigma models with global symmetry E 8 . The models can accommodate three left-handed families of quarks and leptons without incurring the Adler-Bell-Jackiw anomaly with respect to either the standard SU(3) x SU(2) x U(1) gauge group, or the SU(5), or SO(10) grand unifying gauge group. They also predict unambiguously a right-handed, fourth family of quarks and leptons. In order to explore the structure of the models, we develop a differential-form formulation of the Kahler manifolds, resulting in general expressions for the curvature tensors and other geometrical objects in terms of the structure constants of the algebra, and the squashing parameters. These results, in turn, facilitate a general method for determining the Lagrangian to quartic order, and so the structure of the inherent four-fermion interactions of the models. We observe that the Kahlerian condition dω = 0 on the fundamental two-form ω greatly reduces the number of the independent squashing parameters. We also point out two plausible mechanisms for symmetry breaking, involving gravity

  4. Ground states for light and heavy quark hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J T [Physics Dept., Philippines Univ., Manila (Philippines)

    1994-01-01

    According to de Rujula et al. if the degenerate multiplet masses are known then it is not necessary to parametrize the interactions. With degenerate multiplet masses calculated from the spinorial decomposition of the SU(2)xSU(2) part of the SU(6)xSU(6) symmetry, the ground states for 3, 4 and 5 quark hadrons are calculated in terms of the Cartan matrix integers n[sub [alpha

  5. Interactions of heavy quarks in quantum chromodynamics

    International Nuclear Information System (INIS)

    Dine, M.

    1978-01-01

    The interactions of heavy quarks in quantum chromodynamics (QCD) are analyzed in detail. The problem of extracting instantaneous interaction potentials from quantum field theory is first reviewed, in the context of simple models. How such a potential for a fermion-antifermion system may be extracted is indicated. After a review of the quantization of non-Abelian gauge theories in Coulomb gauge, the interaction of a heavy quark-antiquark (Q anti Q) pair is considered. A Ward identity relating the Coulomb-gluon-fermion vertex to the fermion self-energy is derived. This identity is used to prove the mass independence of the static potential. The potential is shown to be infrared finite through two loops, and its general structure in perturbation theory is indicated. At three loops, divergences associated with long-lived intermediate states appear. A method to resolve this problem for static sources is given, but the result cannot readily be identified as a potential appropriate to the description of a Q anti Q bound state. This problem is discussed in detail. Then the spin-dependent interactions in these systems are analyzed. It is shown that the spin-dependent potentials depend in a nontrivial way on the quark mass. The phenomenological implications of these results are considered. In conclusion, the implications of the results for nonperturbative attacks on the potential problem are discussed. The importance of source-field correlations is stressed. The limitations of schemes introduced recently to compute spin-dependent forces due to instantons are illustrated

  6. Evaluation of the spectra of baryons containing two heavy quarks in a bag model

    International Nuclear Information System (INIS)

    He Daheng; Qian Ke; Ding Yibing; Li Xueqian; Shen Pengnian

    2004-01-01

    In this work, we evaluate the mass spectra of baryons which consist of two heavy quarks and one light quark in the MIT bag model. The two heavy quarks constitute a heavy scalar or axial-vector diquark. Concretely, we calculate the spectra of vertical bar q(QQ ' )> 1/2 and vertical bar q(QQ ' )> 3/2 where Q and Q ' stand for b and/or c quarks. Especially, for vertical bar q(bc)> 1/2 there can be a mixing between vertical bar q(bc) 0 > 1/2 and vertical bar q(bc) 1 > 1/2 where the subscripts 0 and 1 refer to the spin state of the diquark (bc), the mixing is not calculable in the framework of quantum mechanics as the potential model is employed, but can be evaluated by the quantum field theory. Our numerical results indicate that the mixing is sizable

  7. Constituent quarks and multi-strange baryon production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Sahoo, Raghunath; Behera, Nirbhay K.; Nandi, Basanta K.; Varma, Raghava

    2009-01-01

    Relativistic heavy-ion collisions aim at creating matter at extreme conditions of energy density and temperature which is governed by the partonic degrees of freedom called Quark-Gluon Plasma (QGP). In the early phase of ultra-relativistic heavy ion collisions, when a hot and dense region is formed in the core of the reaction zone, different quark flavors are produced copiously. The produced matter then undergoes transverse expansion and the produced particles suffer multiple scattering among themselves. The formation of the hadrons from the partonic phase is accomplished through further expansion and cooling of the system

  8. Heavy quark and sparticle phenomenology

    International Nuclear Information System (INIS)

    Barger, V.

    1985-01-01

    Data from the CERN p anti p collider provide a new avenue for the study of heavy-quark production and possibly also provide the first indication for the sparticles of supersymmetry. This discussion of the associated phenomenology begins with charm and bottom quarks, proceeds to the strategies that lead to top quark identification, and concludes with possible supersymmetry scenarios to explain the events observed by the UA1 collaboration with large missing transverse momentum. The fusion predictions of single muon and dimuon rates are in the ballpark of UA1 observations. The discovery of isolated like-sign dimuons is at present an anomaly. The p anti p collider is a good place to do B physics, and answer the question of whether B 0 - anti B 0 mixing occurs. Also, it should soon be possible to identify a few dimuon events of W → t anti b and t anti t origins. Finally, enhanced charm in jets, if established, would have to be ascribed to non-perturbative QCD effects. In conclusion, if the UA1 monojets are of supersymmetry origin, then squark and gluino masses are already tightly constrained and dijet events with large missing transverse momentum should help distinguish between the two most promising scenarios. The top signal is not being faked by sparticles. (Nogami, K.)

  9. Topics in the theory of heavy-quark systems

    International Nuclear Information System (INIS)

    Flory, C.A.

    1981-04-01

    Due to the kinematic and dynamic simplifications possible because of the large mass of heavy quark bound states, certain properties of these systems can be quantitatively analyzed within the framework of quantum chromodynamics. It is clear that dimensionally the size of the bound state is proportional to the inverse quark mass, and for very heavy quarkonia the radius of the system should become smaller than that of normal hadrons. When this small system interacts with external long wavelength field quanta, the natural expansion that results is of a multipole type, analogous to the familiar multipole expansion in electrodynamics. This multipole expansion has better convergence properties than the standard perturbative treatment in certain kinematic regimes, which opens up a new area for strong interaction physics calculations. More specifically, it is ideally suited to investigate soft non-perturbative effects in QCD which appear to be so crucial to present day phenomenology and the conjectured confinement mechanism

  10. Symmetry breaking effect on determination of polarized and unpolarized parton distributions

    International Nuclear Information System (INIS)

    Arbabifar, F.; Khorramian, Ali N.; Khanpour, H.; Atashbar Tehrani, S.

    2013-01-01

    We perform a new extraction for unpolarized and polarized parton distribution functions considering a flavor decompositions for sea quarks and applying very recent deep inelastic scattering (DIS) and semi inclusive deep inelastic scattering (SIDIS) data in the fixed flavor number scheme (FFNS) framework. In the new symmetry breaking scenario the light quark and antiquark densities are extracted separately and new parametrization forms are determined for them. The heavy flavors contribution, including charm and bottom quarks, are also taken to be account for unpolarized distributions

  11. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  12. Heavy quark jets as technicolour signatures in pp and pantip collisions

    International Nuclear Information System (INIS)

    Girardi, G.; Sorba, P.

    1981-02-01

    Within the framework of technicolour models many heavy bosons are expected. In this paper we propose heavy quark jets as a good way to find some of these particles. Our calculation suggest that the collider at BNL is the most adequate machine for such hunting

  13. Restored symmetries, quark puzzle, and the Pomeron as a Josephson current. [Clustering effects, quantum supercurrents, cross sections, phase transitions, narrowing gap mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, R V [Instituto de Fisica e Matematica, Lisbon (Portugal)

    1976-07-01

    A special type of symmetry is studied, wherein manifest invariance is restored by direct integration over a set of spontaneously broken ground states. In addition to invariant states and multiplets these symmetry realizations are shown to lead, in general, to clustering effects and quantum supercurrents. A systematic exploration of these symmetry realizations is proposed, mostly in physical situations where it has so far been believed that the only consequences of the symmetry are invariant states and multiplets. An application of these ideas to the quark system yields a possible explanation for the unobservability of free quarks and an interpretation of the Pomeron as a generalized Josephson current. Furthermore, the 'narrowing gap mechanism' suggests an explanation for the behavior of the e/sup +/ e/sup -/ ..-->.. hadrons cross section and a speculation on an approaching phase transition in hadronic production and the observation of free quarks.

  14. The b-quark mass from non-perturbative $N_f=2$ Heavy Quark Effective Theory at $O(1/m_h)$

    DEFF Research Database (Denmark)

    Bernardoni, F.; Blossier, B.; Bulava, J.

    2014-01-01

    We report our final estimate of the b-quark mass from $N_f=2$ lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at $O(1/m_h)$. Treating systematic and statistical errors in a conservative manner, we obtain $\\overline{m}_{\\rm b}^{\\overline{\\rm MS}}(2 {\\rm...

  15. Energy loss effects on heavy quark production in heavy-ion collisions at sq root s = 5.5 A TeV

    CERN Document Server

    Lin Zi Wei

    1999-01-01

    We study the effect of energy loss on charm and bottom quarks in high-energy heavy-ion collisions including hadronization, longitudinal expansion and partial thermalization. We consider in detail the detector geometry and single lepton energy cuts of the ALICE and CMS detectors at the Large Hadron Collider (LHC) to show the large suppression of high P sub T heavy quarks and the consequences on their semileptonic decays.

  16. Higher order and heavy quark mass effects in the determination of parton distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Valerio

    2013-07-01

    The present thesis was devoted to the study of the inclusion of higher-order corrections and heavy quark mass effects in a PDF determination. This has been carried out in the NNPDF framework resulting originally in the NNPDF2.1 sets, which were at a later stage supplemented by the first LHC data leading to the most recent NNPDF2.3 sets. In Chapter 1 the concept of Parton Distribution Function (PDF) was introduced. We have shown how the analytical computation of the Deep-Inelastic-Scattering (DIS) process at order α{sub s} in QCD leads to initial-stale collinear divergences which, using the factorization theorem, can be reabsorbed into the PDFs. The energy dependence of PDFs is fully determined and the task is then reduced to the determination of the x (Bjorken variable) dependence. In Chapter 2 a detailed discussion of the factorization schemes presently available to include heavy quark mass effects into DIS structure functions has been given. It emerged that there are two possible basic approaches to the calculation of the DIS structure functions. In the first approach, the so-called Fixed-Flavour-Number Scheme (FFNS), the calculation is performed retaining the quark mass of the heavy flavours which provide a ''natural'' regulator for the infrared divergences. In the second approach, called Zero-Mass Variable-Flavour-Number Scheme (ZM-VFNS), the heavy quark masses are instead set to zero and this gives rise to the usual final-state collinear divergences that are absorbed into the PDFs. In addition, in the ZM-VFNS, the number of active flavours is assumed to increase by one unity as the energy of the process crosses the energy threshold of a given heavy quark. In order to obtain a factorization scheme that is accurate both at large and low energies, several prescriptions that interpolate between FFNS at low energy and ZM-VFNS at large energy have been proposed and implemented in as many PDF fits. In Chapter 2 they have been described showing how they behave for

  17. Higher order and heavy quark mass effects in the determination of parton distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Valerio

    2013-07-01

    The present thesis was devoted to the study of the inclusion of higher-order corrections and heavy quark mass effects in a PDF determination. This has been carried out in the NNPDF framework resulting originally in the NNPDF2.1 sets, which were at a later stage supplemented by the first LHC data leading to the most recent NNPDF2.3 sets. In Chapter 1 the concept of Parton Distribution Function (PDF) was introduced. We have shown how the analytical computation of the Deep-Inelastic-Scattering (DIS) process at order α{sub s} in QCD leads to initial-stale collinear divergences which, using the factorization theorem, can be reabsorbed into the PDFs. The energy dependence of PDFs is fully determined and the task is then reduced to the determination of the x (Bjorken variable) dependence. In Chapter 2 a detailed discussion of the factorization schemes presently available to include heavy quark mass effects into DIS structure functions has been given. It emerged that there are two possible basic approaches to the calculation of the DIS structure functions. In the first approach, the so-called Fixed-Flavour-Number Scheme (FFNS), the calculation is performed retaining the quark mass of the heavy flavours which provide a ''natural'' regulator for the infrared divergences. In the second approach, called Zero-Mass Variable-Flavour-Number Scheme (ZM-VFNS), the heavy quark masses are instead set to zero and this gives rise to the usual final-state collinear divergences that are absorbed into the PDFs. In addition, in the ZM-VFNS, the number of active flavours is assumed to increase by one unity as the energy of the process crosses the energy threshold of a given heavy quark. In order to obtain a factorization scheme that is accurate both at large and low energies, several prescriptions that interpolate between FFNS at low energy and ZM-VFNS at large energy have been proposed and implemented in as many PDF fits. In Chapter 2 they have been described showing

  18. Higher order and heavy quark mass effects in the determination of parton distribution functions

    International Nuclear Information System (INIS)

    Bertone, Valerio

    2013-01-01

    The present thesis was devoted to the study of the inclusion of higher-order corrections and heavy quark mass effects in a PDF determination. This has been carried out in the NNPDF framework resulting originally in the NNPDF2.1 sets, which were at a later stage supplemented by the first LHC data leading to the most recent NNPDF2.3 sets. In Chapter 1 the concept of Parton Distribution Function (PDF) was introduced. We have shown how the analytical computation of the Deep-Inelastic-Scattering (DIS) process at order α s in QCD leads to initial-stale collinear divergences which, using the factorization theorem, can be reabsorbed into the PDFs. The energy dependence of PDFs is fully determined and the task is then reduced to the determination of the x (Bjorken variable) dependence. In Chapter 2 a detailed discussion of the factorization schemes presently available to include heavy quark mass effects into DIS structure functions has been given. It emerged that there are two possible basic approaches to the calculation of the DIS structure functions. In the first approach, the so-called Fixed-Flavour-Number Scheme (FFNS), the calculation is performed retaining the quark mass of the heavy flavours which provide a ''natural'' regulator for the infrared divergences. In the second approach, called Zero-Mass Variable-Flavour-Number Scheme (ZM-VFNS), the heavy quark masses are instead set to zero and this gives rise to the usual final-state collinear divergences that are absorbed into the PDFs. In addition, in the ZM-VFNS, the number of active flavours is assumed to increase by one unity as the energy of the process crosses the energy threshold of a given heavy quark. In order to obtain a factorization scheme that is accurate both at large and low energies, several prescriptions that interpolate between FFNS at low energy and ZM-VFNS at large energy have been proposed and implemented in as many PDF fits. In Chapter 2 they have been described showing how

  19. Impact of the heavy quark matching scales in PDF fits

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, V. [VU Univ., Amsterdam (Netherlands). Dept. of Physics and Astronomy; Nikhef Theory Goup, Amsterdam (Netherlands); Britzger, D. [DESY, Hamburg (Germany); Camarda, S. [CERN, Geneva (Switzerland); Collaboration: The xFitter Developers' Team; and others

    2017-07-15

    We investigate the impact of displaced heavy quark matching scales in a global fit. The heavy quark matching scale μ{sub m} determines at which energy scale μ the QCD theory transitions from N{sub F} to N{sub F}+1 in the Variable Flavor Number Scheme (VFNS) for the evolution of the Parton Distribution Functions (PDFs) and strong coupling α{sub S}(μ). We study the variation of the matching scales, and their impact on a global PDF fit of the combined HERA data. As the choice of the matching scale μ{sub m} effectively is a choice of scheme, this represents a theoretical uncertainty; ideally, we would like to see minimal dependence on this parameter. For the transition across the charm quark (from N{sub F}=3 to 4), we find a large μ{sub m}=μ{sub c} dependence of the global fit χ{sup 2} at NLO, but this is significantly reduced at NNLO. For the transition across the bottom quark (from N{sub F}=4 to 5), we have a reduced μ{sub m}=μ{sub b} dependence of the χ{sup 2} at both NLO and NNLO as compared to the charm. This feature is now implemented in xFitter 2.0.0, an open source QCD fit framework.

  20. Quark-antiquark condensates in the hadronic phase

    International Nuclear Information System (INIS)

    Tawfik, A.; Toublan, D.

    2005-01-01

    We use a hadron resonance gas model to calculate the quark-antiquark condensates for light (up and down) and strange quark flavors at finite temperatures and chemical potentials. At zero chemical potentials, we find that at the temperature where the light quark-antiquark condensates entirely vanish the strange quark-antiquark condensate still keeps a relatively large fraction of its value in the vacuum. This is in agreement with results obtained in lattice simulations and in chiral perturbation theory at finite temperature and zero chemical potentials. Furthermore, we find that this effect slowly disappears at larger baryon chemical potential. These results might have significant consequences for our understanding of QCD at finite temperatures and chemical potentials. Concretely, our results imply that there might be a domain of temperatures where chiral symmetry is restored for light quarks, but still broken for strange quark that persists at small chemical potentials. This might have practical consequences for heavy ion collision experiments

  1. Heavy-quark fragmentation functions at next-to-leading perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Moosavi Nejad, S.M. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, Tehran (Iran, Islamic Republic of); Sartipi Yarahmadi, P. [Yazd University, Faculty of Physics, Yazd (Iran, Islamic Republic of)

    2016-10-15

    It is well known that the dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation. This mechanism is described by the fragmentation functions (FFs) which are the universal and process-independent functions. Here, we review the perturbative FFs formalism as an appropriate tool for studying these hadronization processes and detail the extension of this formalism at next-to-leading order (NLO). Using Suzuki's model, we calculate the perturbative QCD FF for a heavy quark to fragment into a S-wave heavy meson at NLO. As an example, we study the LO and NLO FFs for a charm quark to split into the S-wave D-meson and compare our analytic results both with experimental data and well-known phenomenological models. (orig.)

  2. Heavy quark production in photon-Pomeron interactions at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Machado, M. M. [Instituto Federal de Ciencia, Educacao e Tecnologia Farroupilha, Campus Sao Borja, Rua Otaviano Castilho Mendes, 355, CEP 97670-000, Sao Borja, RS (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica - IFM, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, RS (Brazil)

    2013-03-25

    The diffractive heavy quark cross sections are estimated considering photon-Pomeron interactions in hadron - hadron at RHIC, Tevatron, and CERN LHC energies. We assume the validity of the hard diffractive factorization and calculate the charm and bottom total cross sections and rapidity distributions using the diffractive parton distribution functions of the Pomeron obtained by the H1 Collaboration at DESY-HERA. Such processes are sensitive to the gluon content of the Pomeron at high energies and are a good place to constrain the behavior of this distribution. We also compare our predictions with those obtained using the dipole model, and verify that these processes are a good test of the different mechanisms for heavy quarks diffractive production at hadron colliders.

  3. Study of heavy-flavor quarks produced in association with top-quark pairs at $\\sqrt{s}$ = 7 TeV using the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Damiani, Daniel; Daniells, Andrew Christopher; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Doi, Yoshikuni; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Duxfield, Robert; Dwuznik, Michal; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Andrea; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gandrajula, Reddy Pratap; Gao, Yongsheng; Gaponenko, Andrei; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giunta, Michele; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Göpfert, Thomas; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Haefner, Petra; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmgren, Sven-Olof; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jeske, Carl; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koenig, Sebastian; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madar, Romain; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Möser, Nicolas; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Müller, Thomas; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Ritsch, Elmar; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Tuna, Alexander Naip; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Williams, Sarah; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-04-21

    Using a sample of dilepton top-quark pair ($t\\bar{t}$) candidate events, a study is performed of the production of top-quark pairs together with heavy-flavor (HF) quarks, the sum of $t\\bar{t}+b+X$ and $t\\bar{t}$+c+X, collectively referred to as $t\\bar{t}$ + HF. The data set used corresponds to an integrated luminosity of 4.7  $fb{−1}$ of proton-proton collisions at a center-of-mass energy of 7 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The presence of additional HF (b or c) quarks in the $t\\bar{t}$ sample is inferred by looking for events with at least three b-tagged jets, where two are attributed to the b quarks from the $t\\bar{t}$ decays and the third to additional HF production. The dominant background to $t\\bar{t}$ + HF in this sample is $t\\bar{t}$+jet events in which a light-flavor jet is misidentified as a heavy-flavor jet. To determine the heavy- and light-flavor content of the additional b-tagged jets, a fit to the vertex mass distribution of b-tagged jets in t...

  4. Aspects of the heavy-quark photoproduction in the semihard approach

    International Nuclear Information System (INIS)

    Mariotto, C. Brenner; Ducati, M.B. Gay; Machado, M.V.T.

    2002-01-01

    In this contribution we report on the calculations of heavy-quark photoproduction using the K p erpendicular to-factorization (semihard) approach, emphasizing the results obtained with the phenomenological saturation model. (author)

  5. Baryons and baryonic matter in the large Nc and heavy quark limits

    International Nuclear Information System (INIS)

    Cohen, Thomas D.; Kumar, Nilay; Ndousse, Kamal K.

    2011-01-01

    This paper explores properties of baryons and finite density baryonic matter in an artificial world in which N c , the number of colors, is large and the quarks of all species are degenerate and much larger than Λ QCD . It has long been known that in large N c quantum chromodynamics (QCD), baryons composed entirely of heavy quarks are accurately described in the mean-field approximation. However, the detailed properties of baryons in the combined large N c and heavy-quark limits have not been fully explored. Here some basic properties of baryons are computed using a variational approach. At leading order in both the large N c and heavy-quark expansions the baryon mass is shown to be M baryon ≅N c M Q (1-0.054 26α-tilde s 2 ), where α-tilde s ≡N c α s . The baryon form factor is also computed. Baryonic matter, the analog of nuclear matter in this artificial world, should also be well described in the mean-field approximation. In the special case where all baryons have an identical spin-flavor structure, it is shown that in the formal heavy-quark and large N c limit interactions between baryons are strictly repulsive at low densities. The energy per baryon is computed in this limit and found to be exponentially small. It is shown that when the restriction to baryons with an identical spin-flavor structure is dropped, a phase of baryonic matter exists with a density of 2N f times that for the restricted case but with the same energy (where N f is the number of degenerate flavors). It is shown that this phase is at least metastable.

  6. Preface to the Special Issue: Chiral Symmetry in Hadrons and Nuclei

    International Nuclear Information System (INIS)

    Geng, Lisheng; Meng, Jie; Zhao, Qiang; Zou, Bingsong

    2014-01-01

    The recent past years have seen a remarkable progress towards a unified description of nonperturbative strong interaction phenomena based on the fundamental theory of the strong interaction, quantum chromodynamics, and effective field theories. The papers collected in this special issue focus on the recent progress in hadron and nuclear physics related to the chiral symmetry. They are written based on presentations at the Seventh International Symposium on Chiral Symmetry in Hadron and Nuclei which took place at Beihang University, Beijing, 27-30 October 2013. The sub-topics discussed in these papers include chiral and heavy-quark spin symmetry; chiral dynamics of few-body hadron systems; chiral symmetry and hadrons in a nuclear medium; chiral dynamics in nucleon-nucleon interaction and atomic nuclei; chiral symmetry in rotating nuclei; hadron structure and interactions; exotic hadrons, heavy flavor hadrons and nuclei; mesonic atoms and nuclei

  7. Quark matter and quark stars at finite temperature in Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peng-Cheng; Wang, Bin; Dong, Yu-Min; Jia, Yu-Yue; Wang, Shu-Mei; Ma, Hong-Yang [Qingdao Technological University, School of Science, Qingdao (China); Li, Xiao-Hua [University of South China, School of Nuclear Science and Technology, Hengyang (China); University of South China, Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, Hengyang (China)

    2017-08-15

    We extend the SU(3) Nambu-Jona-Lasinio (NJL) model to include two types of vector interaction. Using these two types of vector interaction in NJL model, we study the quark symmetry free energy in asymmetric quark matter, the constituent quark mass, the quark fraction, the equation of state (EOS) for β-equilibrium quark matter, the maximum mass of QSs at finite temperature, the maximum mass of proto-quark stars (PQSs) along the star evolution, and the effects of the vector interaction on the QCD phase diagram. We find that comparing zero temperature case, the values of quark matter symmetry free energy get larger with temperature increasing, which will reduce the difference between the fraction of u, d and s quarks and stiffen the EoS for β-equilibrium quark matter. In particular, our results indicate that the maximum masses of the quark stars increase with temperature because of the effects of the quark matter symmetry free energy, and we find that the heating(cooling) process for PQSs will increase (decrease) the maximum mass within NJL model. (orig.)

  8. The heavy quark form factors at two loops

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de; Marquard, P.; Rana, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Falcioni, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Nikhef, Amsterdam (Netherlands). Theory Group

    2017-12-15

    We compute the two-loop QCD corrections to the heavy quark form factors in case of the vector, axial-vector, scalar and pseudo-scalar currents up to second order in the dimensional parameter ε=(4-D)/2. These terms are required in the renormalization of the higher order corrections to these form factors.

  9. The (0+,1+) heavy meson multiplet in an extended NJL model

    International Nuclear Information System (INIS)

    Ebert, T.; Feldmann, T.; Friedrich, R.; Reinhardt, H.

    1994-09-01

    In this letter we reconsider the previously given description of heavy mesons with a bosonized extended NJL model that combines heavy quark and chiral symmetry. In that work the naive gradient expansion of the quark determinant was used, which satisfactorily works in the light sector but does not adequately describe the heavy (0 + , 1 + ) mesons. By investigating the exact momentum dependence of the quark loop we demonstrate that the naive gradient expansion in the heavy sector is not the right method to treat the unphysical q anti q-thresholds which would be absent in confining theories. We propose a modified gradient expansion which adequately extrapolates from the low-momentum region beyond threshold. This expansion gives a satisfactory description even of the (0 + , 1 + ) heavy mesons whose masses are significantly above threshold. (orig.)

  10. Baryon axial-vector couplings and SU(3)-symmetry breaking in chiral quark models

    International Nuclear Information System (INIS)

    Horvat, D.; Ilakovac, A.; Tadic, D.

    1986-01-01

    SU(3)-symmetry breaking is studied in the framework of the chiral bag models. Comparisons are also made with the MIT bag model and the harmonic-oscillator quark model. An important clue for the nature of the symmetry breaking comes from the isoscalar axial-vector coupling constant g/sub A//sup S/ which can be indirectly estimated from the Bjorken sum rules for deep-inelastic scattering. The chiral bag model with two radii reasonably well accounts for the empirical values of g/sub A//sup S/ and of the axial-vector coupling constants measured in hyperon semileptonic decays

  11. Toward a solution to the RAA and v2 puzzle for heavy quarks

    Directory of Open Access Journals (Sweden)

    Santosh K. Das

    2015-07-01

    Full Text Available The heavy quarks constitute a unique probe of the quark–gluon plasma properties. A puzzling relation between the nuclear modification factor RAA(pT and the elliptic flow v2(pT has been observed both at RHIC and LHC energies. Predicting correctly both observables has been a challenge to all existing models, especially for D mesons. We discuss how the temperature dependence of the heavy quark drag coefficient is responsible for a large part of such a puzzle. In particular, we have considered four different models to evaluate the temperature dependence of drag and diffusion coefficients propagating through a quark gluon plasma (QGP. All the four different models are set to reproduce the same RAA(pT observed in experiments at RHIC and LHC energy. We point out that for the same RAA(pT one can generate 2–3 times more v2 depending on the temperature dependence of the heavy quark drag coefficient. A non-decreasing drag coefficient as T→Tc is a major ingredient for a simultaneous description of RAA(pT and v2(pT.

  12. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    Science.gov (United States)

    Bratkovskaya, E. L.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.

    2017-07-01

    The effect of the chiral symmetry restoration (CSR) on observables from heavy-ion collisions is studied in the energy range \\sqrt{{s}NN}=3-20 {GeV} within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear σ - ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ-term we adopt Σ π ≈ 45 MeV which corresponds to some ‘world average’. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at \\sqrt{{s}NN}=3-20 {GeV}, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the “horn” structure in the excitation function of the K +/π + ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to \\sqrt{{s}NN}≈ 7 {GeV}, while the drop at higher energies is associated to the appearance of a deconfined partonic medium.

  13. Heavy-quark production in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf; Hamburg Univ.

    2013-08-01

    We report recent experimental and theoretical progress concerning the heavy-quark electro-production in the context of the ABM11 parton distribution function (PDF) fit. In the updated ABM11 analysis, including the recent combined HERA charm data, the MS-values of the c-quark mass m c (m c )=1.24±0.03(exp) +0.03 -0.02 (scale) +0.00 -0.07 (th) and m c (m c )=1.15±0.04(exp) +0.04 -0.00 (scale) are determined at NNLO and NLO, respectively. The values of m c obtained are compared to other determinations including the ones based on the various variable-flavor-number (VFN) scheme prescriptions.The VFN scheme uncertainties related to the matching of the 4(5)-flavor PDFs with the 3(4)-flavor ones are discussed.

  14. Vectorlike quarks and heavy colored bosons at the LHC

    Science.gov (United States)

    Deandrea, A.; Iyer, A. M.

    2018-03-01

    We investigate the production of heavy colored scalars and vectors and their relevance at the LHC for the study of vectorlike quarks (T ). These colored states (C ) are present in a large number of extensions of the standard model, in particular, in composite models and in extradimensional models. Assuming that these bosonic states are heavier than the vectorlike quarks (VLQ), we consider their production through the process p p →C →t T . Large QCD production cross sections for C enable us to probe heavier masses for the VLQ, thereby allowing us to put stronger limits on the vectorlike quarks which are produced in their decay chain. We adopt a universal analysis strategy by including leptons under the classification of "jets," thereby limiting the bias towards a specific combination of final state. We also study the possibility of disentangling these scenarios from supersymmetric extensions of the standard model by using simple discriminants based on jet multiplicity and missing energy. We demonstrate that a simple set of cuts is sufficient to disentangle the VLQ signal from the backgrounds. In models with a moderate B .R .(C →T t ) , the analysis enables one to get a hint of VLQ masses as heavy as 3 TeV.

  15. Constituent quarks and enhancement of multi-strange baryons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Behera, Nirbhay Kumar; Nandi, Basanta Kumar; Sahoo, Raghunath

    2011-01-01

    Heavy-ion collisions at relativistic energies aim to produce a state of matter which is governed by partonic degrees of freedom, known as Quark-Gluon Plasma (QGP). In the central rapidity region, strangeness enhancement has been proposed as a potential signature of QGP. It has been observed that a quark participant scaling of the multi-strange baryon production and also a strangeness scaling of the enhancement. This confirms that the partonic degrees of freedom is playing a major role in the particle production mechanism and may therefore significantly determine the formation of QGP in heavy ion collisions

  16. 1-- and 0++ heavy four-quark and molecule states in QCD

    International Nuclear Information System (INIS)

    Albuquerque, R.M.; Fanomezana, F.; Narison, S.; Rabemananjara, A.

    2012-01-01

    We estimate the masses of the 1 -- heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in α s but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50-110) MeV and the ones of about (250-300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavor independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y c (4260,4360,4660) and Y b (10890)1 -- experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure1 -- four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0 ++ four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1 -- states, while the splittings between the 0 ++ lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1 -- and 0 ++ four-quark states which are tiny and which exhibit a 1/M Q behavior. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHC b and some other hadron factories.

  17. New results on CLEO's heavy quarks - bottom and charm

    International Nuclear Information System (INIS)

    Menary, S.

    1997-01-01

    While the top quark is confined to virtual reality for CLEO, the increased luminosity of the Cornell Electron Storage Ring (CESR) and the improved photon detection capabilities of the CLEO's open-quotes heavyclose quotes quarks - bottom and charm. I will describe new results in the B meson sector including the first observation of exclusive b → ulv decays, upper limits on gluonic penguin decay rates, and precise measurements of semileptonic and hadronic b → c branching fractions. The charmed hadron results that are discussed include the observation of isospin violation in D s * + decays, an update on measurements of the D s + decay constant, and the observation of a new excited Ξ c charmed baryon. These measurements have had a large impact on our understanding of heavy quark physics

  18. Impact of the heavy-quark matching scales in PDF fits

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, V. [VU University, Department of Physics and Astronomy, Amsterdam (Netherlands); Nikhef Theory Group Science Park 105, Amsterdam (Netherlands); Britzger, D.; Geiser, A.; Glazov, A.; Zenaiev, O. [DESY, Hamburg (Germany); Camarda, S. [CERN, Geneva (Switzerland); Cooper-Sarkar, A.; Giuli, F. [University of Oxford (United Kingdom); Godat, E.; Lyonnet, F.; Olness, F. [SMU Physics, Dallas, TX (United States); Kusina, A. [Universite Grenoble Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Luszczak, A. [T. Kosciuszko Cracow University of Technology, Krakow (Poland); Placakyte, R. [Universitaet Hamburg, Institut fuer Theoretische Physik, Hamburg (Germany); Radescu, V. [DESY, Hamburg (Germany); CERN, Geneva (Switzerland); Schienbein, I. [Universite Grenoble Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Collaboration: The xFitter Developers' Team

    2017-12-15

    We investigate the impact of displaced heavy-quark matching scales in a global fit. The heavy-quark matching scale μ{sub m} determines at which energy scale μ the QCD theory transitions from N{sub F} to N{sub F} + 1 in the variable flavor number scheme (VFNS) for the evolution of the parton distribution functions (PDFs) and strong coupling α{sub S}(μ). We study the variation of the matching scales, and their impact on a global PDF fit of the combined HERA data. As the choice of the matching scale μ{sub m} effectively is a choice of scheme, this represents a theoretical uncertainty; ideally, we would like to see minimal dependence on this parameter. For the transition across the charm quark (from N{sub F} = 3 to 4), we find a large μ{sub m} = μ{sub c} dependence of the global fit χ{sup 2} at NLO, but this is significantly reduced at NNLO. For the transition across the bottom quark (from N{sub F} = 4 to 5), we have a reduced μ{sub m} = μ{sub b} dependence of the χ{sup 2} at both NLO and NNLO as compared to the charm. This feature is now implemented in xFitter 2.0.0, an open source QCD fit framework. (orig.)

  19. Experimental Highlights: Heavy Quark Physics in Heavy-Ion Collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2017-01-01

    Full Text Available The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √sNN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1 PHENIX Collaboration installed silicon vertex tracker (VTX at midrapidity region and forward silicon vertex tracker (FVTX at the forward rapidity region, and (2 STAR Collaboration installed the heavy flavor tracker (HFT and the muon telescope detector (MTD both at the mid-rapidity region. The PHENIX experiments established measurements of ψ (1S and ψ (2S production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √sNN = 200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ (2S /ψ (1S ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ (2S is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ ψ measurements in the di-muon decay channel in Au + Au at √sNN = 200 GeV at mid-rapidity. We observe a clear J/ψ RAA suppression and qualitatively well described by transport models, including dissociation and regeneration simultaneously.

  20. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  1. Improved lattice fermion action for heavy quarks

    International Nuclear Information System (INIS)

    Cho, Yong-Gwi; Hashimoto, Shoji; Jüttner, Andreas; Kaneko, Takashi; Marinkovic, Marina; Noaki, Jun-Ichi; Tsang, Justus Tobias

    2015-01-01

    We develop an improved lattice action for heavy quarks based on Brillouin-type fermions, that have excellent energy-momentum dispersion relation. The leading discretization errors of O(a) and O(a"2) are eliminated at tree-level. We carry out a scaling study of this improved Brillouin fermion action on quenched lattices by calculating the charmonium energy-momentum dispersion relation and hyperfine splitting. We present a comparison to standard Wilson fermions and domain-wall fermions.

  2. Spin-dependent hadro- and photoproduction of heavy quarks at next-to-leading order of QCD

    International Nuclear Information System (INIS)

    Riedl, Johann

    2014-01-01

    In this thesis, we have studied heavy quark hadro- and photoproduction in detail and examined the possibilities of using heavy quark production for the extraction of the polarised parton distribution functions. All calculations are performed at O(α s 3 ) and O(αα s 2 ) accuracy, respectively, and theoretical uncertainties due to the choice of scales μ f,r and the heavy quark mass m Q have been discussed in detail. Based on our theoretical results we have presented detailed phenomenological studies for the existing PHENIX and STAR experiments at BNL-RHIC and the COMPASS experiment at CERN. Predictions have been made for possible future experiments at a low-energy antiproton-proton collider at GSI-FAIR, a proton-proton collider at J-PARC and an upcoming high-energy electron-ion collider (EIC).

  3. Vector-like quarks at the origin of light quark masses and mixing

    Energy Technology Data Exchange (ETDEWEB)

    Botella, Francisco J. [Universitat de Valencia-CSIC, Departament de Fisica Teorica and IFIC, Burjassot (Spain); Branco, G.C.; Nebot, Miguel; Rebelo, M.N.; Silva-Marcos, J.I. [Universidade de Lisboa, Departamento de Fisica and Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico (IST), Lisbon (Portugal)

    2017-06-15

    We show how a novel fine-tuning problem present in the Standard Model can be solved through the introduction of a Z{sub 6} flavour symmetry, together with three Q = -1/3 quarks, three Q = 2/3 quarks, as well as a complex singlet scalar. The Z{sub 6} symmetry is extended to the additional fields and it is an exact symmetry of the Lagrangian, only softly broken in the scalar potential, in order to avoid the domain-wall problem. Specific examples are given and a phenomenological analysis of the main features of the model is presented. It is shown that even for vector-like quarks with masses accessible at the LHC, one can have realistic quark masses and mixing, while respecting the strict constraints on processes arising from flavour changing neutral currents. The vector-like quark decay channels are also described. (orig.)

  4. Static spin-dependent forces between heavy quarks in the classical approximation to dual QCD

    International Nuclear Information System (INIS)

    Baker, M.; Ball, J.S.; Zachariasen, F.

    1991-01-01

    We compute the static spin-dependent forces V S (R) (proportional to σ 1 ·σ 2 ) and V T (R) (proportional to 3σ 1 ·Rσ 2 ·R-σ 1 ·σ 2 ) between two quarks separated by R. This is done by treating the (weak) spin-dependent effects as a perturbation on the spin-independent potentials and fields computed earlier for dual QCD. What results is a definite prediction for the heavy-quark potentials which are similar to, but different in form from, those used in phenomenological treatments. Calculations of the masses and splittings of heavy-quark states using our potentials will provide a further test of the dual superconductor picture of QCD

  5. Heavy quark pair production in polarized photon-photon collisions

    International Nuclear Information System (INIS)

    Jikia, G.; Tkabladze, A.

    2000-04-01

    We present the cross sections of the heavy quark-antiquark pair production in polarized photon photon collision for the general case of photon polarizations. The numerical results for top-antitop production cross sections together with production asymmetries are obtained for linearly polarized photon-photon collisions, including QCD radiative corrections. (orig.)

  6. Asymmetries in heavy quark pair and dijet production at an EIC

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Daniël [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Mulders, Piet J. [Nikhef and Department of Physics and Astronomy, VU University Amsterdam,De Boelelaan 1081, NL-1081 HV Amsterdam (Netherlands); Pisano, Cristian [Dipartimento di Fisica, Università di Pavia,via Bassi 6, I-27100 Pavia (Italy); INFN Sezione di Pavia,via Bassi 6, I-27100 Pavia (Italy); Zhou, Jian [School of physics, Key Laboratory of Particle Physics and Particle Irradiation (MOE),Shandong University,Jinan, Shandong 250100 (China); Nikhef and Department of Physics and Astronomy, VU University Amsterdam,De Boelelaan 1081, NL-1081 HV Amsterdam (Netherlands)

    2016-08-01

    Asymmetries in heavy quark pair and dijet production in electron-proton collisions allow studies of gluon TMDs in close analogy to studies of quark TMDs in semi-inclusive DIS. Here we present expressions for azimuthal asymmetries for both unpolarized and transversely polarized proton cases and consider the maximal asymmetries allowed. The latter are found to be rather sizeable, except in certain kinematic limits which are pointed out. In addition, we consider the small-x limit and expectations from a McLerran-Venugopalan model for unpolarized and linearly polarized gluons and from a perturbative, large transverse momentum calculation for the T-odd gluon TMDs. Comparison to related observables at RHIC and LHC is expected to provide valuable information about the process dependence of the gluon TMDs. In particular this will offer the possibility of a sign change test of the gluon Sivers TMD and two other T-odd gluon TMDs. This provides additional motivation for studies of azimuthal asymmetries in heavy quark pair and dijet production at a future Electron-Ion Collider.

  7. Excited State Contributions to the Heavy Baryon Fragmentation Functions in a Quark-Diquark Model

    CERN Document Server

    Adamov, A D; Goldstein, Gary R.

    2001-01-01

    Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. The resulting $\\Lambda_b$ production rate and polarization at LEP energies are in agreement with experiment. The $\\Lambda_c$ and $\\Xi_c$ functions are also obtained. The spin independent $f_1(z)$ is compared to data. The integrated values for production rates agree with the data.

  8. Aspects of the dynamics of heavy-quark systems

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1983-12-01

    The analysis of bound states composed of heavy quarks and antiquarks has provided a window into the structure of the strong interactions. These systems contain our best evidence that the quarks from which the hadrons are built are ordinary fermions which obey the Dirac equation and which couple to electromagnetism just as electrons do. However, the heavy-quark systems which have been studied to date, the systems of c- anti c and b- anti b bound states, seem to be bound by forces which bear no obvious relation to the gluons which we expect are the fundamental mediators of the strong interactions. The essential difficulty in understanding this connection arises from the fact that the c- anti c and b- anti b systems occupy an intermediate regime in the behavior of the gauge theory. At very small distances the q- anti q potential is expected to become a Coulomb potential, directly reflecting one-gluon exchange. At very large distances, the potential should be proportional to the q- anti q separation, reflecting the formation of confining strings of color flux. For a proper understanding, one would need to see precisely how the collective behavior of gluons modifies and alters single gluon effects. We seem very far from such a detailed understanding. It is possible, however, to gain some insight into the nature of this intermediate regime by considering the behavior of q- anti q systems from a broad perspective, assembling a variety of distinct aspects of these systems which are sensitive to the properties of gauge theories at intermediate distances. 46 references

  9. Weak leptonic decay of light and heavy pseudoscalar mesons in an independent quark model

    International Nuclear Information System (INIS)

    Barik, N.; Dash, P.C.

    1993-01-01

    Weak leptonic decays of light and heavy pseudoscalar mesons are studied in a field-theoretic framework based on the independent quark model with a scalar-vector harmonic potential. Defining the quark-antiquark momentum distribution amplitude obtainable from the bound quark eigenmodes of the model with the assumption of a strong correlation between quark-antiquark momenta inside the decaying meson in its rest frame, we derive the partial decay width with correct kinematical factors from which we extract an expression for the pseudoscalar decay constants f M . Using the model parameters determined from earlier studies in the light-flavor sector and heavy-quark masses m c and m b from the hyperfine splitting of (D * ,D) and (B * ,B), we calculate the pseudoscalar decay constants. We find that while (f π ,f K )≡(138,157 MeV); (f D ,f Ds )≡(161,205 MeV), (f B ,f Bs )≡(122,154 MeV), and f Bc =221 MeV. We also obtain the partial decay widths and branching ratios for some kinematically allowed weak leptonic decay processes

  10. A search for quarks produced in heavy-ion interactions

    CERN Multimedia

    2002-01-01

    We propose to search for free fractional charges produced in 225~GeV/A heavy-ion collisions at the SPS. A tank of mercury placed in the NA38 beam stop will serve both as a production target and as an absorber to stop reaction products. Mercury from the tank will subsequently be distilled.\\\\ \\\\ This process will decrease the amount of mercury that has to be processed by a factor of about $10^{5}$. The concentrate will be searched for quarks using the proven SFSU automated Millikan apparatus.\\\\ \\\\ This experiment will be sensitive to about one quark produced per $2 \\times 10^{8}$ beam particles.

  11. QCD improved exclusive rare B-decays at the heavy b-quark limit

    International Nuclear Information System (INIS)

    Liu Dongsheng.

    1993-09-01

    The renormalization effects from the b-quark scale down to the non-perturbative QCD regime are studied for rare B-decays at the heavy b-quark limit. Phenomenological consequences of these effects are investigated. We find that the anomalous scaling behaviour plays a positive role in making non-perturbative model calculations consistent with recent CLEO measurements of B → K*γ. (author). 21 refs, 3 tabs

  12. Duality and quarks

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    As it has shown, the study of vacuum transitions in dual models makes it possible to establish certain relations between duality, on the one hand, and the quark structure of resonances and the internal symmetries, on the other. In the case of Veneziano model the corresponding quark structure of resonances is determined by the infinity number of quarks of increasing mass. The intercents of the main trajectory and all adopted trajectories are additive with respect to squares of mass-forming quarks. The latter circumstance results in a number of important consequences: the presence of quadratic mass formulas for resonance states; the exact SU(infinity)-symmetry for the three-resonance coupling constants; the validity of Adler's self-consistency principle for external particles composed of different quarks and anti-quarks, etc

  13. QCD measurements with heavy quarks at LEP

    International Nuclear Information System (INIS)

    Maettig, P.

    1991-10-01

    Recent experimental results from LEP on strong interactions using heavy quarks are reviewed. By identifying bottom and charm decays, a model independent evidence for the string effect has been found together with a softer fragmentation function of gluons compared to quarks. The comparison of jet properties and the value of the strong coupling constant α s in bottom events and average events provides evidence for the flavour independence of QCD: α b0tt0m s /α s udsc = 1.00 ± 0.05 ± 0.06. The average scaled energy of charmed and bottom hadrons at Z 0 energies is found to be + )> = 0.507 +0.012 -0.015 ± 0.010 = 0.705 ± 0,008 ± 0.010. A comparison with results at lower c.m. energies exhibits significant scaling violations. These are interpreted in the context of various QCD calculations. (orig.)

  14. Heavy quark masses in the continuum limit of quenched Lattice QCD

    International Nuclear Information System (INIS)

    De Divitiis, G.M.; Guagnelli, M.; Palombi, F.; Petronzio, R.; Tantalo, N.

    2003-01-01

    We compute charm and bottom quark masses in the quenched approximation and in the continuum limit of lattice QCD. We make use of a step scaling method, previously introduced to deal with two scale problems, that allows to take the continuum limit of the lattice data. We determine the RGI quark masses and make the connection to the MS-bar scheme. The continuum extrapolation gives us a value m b RGI =6.73(16) GeV for the b-quark and m c RGI =1.681(36) GeV for the c-quark, corresponding, respectively, to m b MS-bar (m b MS-bar =4.33(10) GeV and m c MS-bar (m c MS-bar =1.319(28) GeV. The latter result, in agreement with current estimates, is for us a check of the method. Using our results on the heavy quark masses we compute the mass of the B c meson, M B c =6.46(15) GeV

  15. Supersymmetric Lifshitz-like backgrounds from N=4 SYM with heavy quark density

    Energy Technology Data Exchange (ETDEWEB)

    Faedo, Anton F.; Fraser, Benjo; Kumar, S. Prem [Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2014-02-17

    We examine a class of gravity backgrounds obtained by considering the backreaction of a spatially uniform density of mutually BPS Wilson lines or heavy quarks in N=4 SUSY Yang-Mills theory. The configurations preserve eight supercharges and an SO(5) subgroup of the SO(6) R-symmetry. They are obtained by considering the (1/4)-BPS geometries associated to smeared string/D3-brane (F1-D3) intersections. We argue that for the (partially) localized intersection, the geometry exhibits a flow from AdS{sub 5}×S{sup 5} in the UV to a novel IR scaling solution displaying anisotropic Lifshitz-like scaling with dynamical critical exponent z=7, hyperscaling violation and a logarithmic running dilaton. We also obtain a two-parameter family of smeared (1/4)-BPS solutions on the Coulomb branch of N=4 SYM exhibiting Lifshitz scaling and hyperscaling violation. For a certain parametric range these yield IR geometries which are conformal to AdS{sub 2}×ℝ{sup 3}, and which have been argued to be relevant for fermionic physics.

  16. Heavy-quark QCD vacuum polarisation function. Analytical results at four loops

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kotikov, A.V.

    2006-07-01

    The first two moments of the heavy-quark vacuum polarisation function at four loops in quantum chromo-dynamics are found in fully analytical form by evaluating the missing massive four-loop tadpole master integrals. (orig.)

  17. Searches for heavy resonances in all-jet final states with top quarks using jet substructure techniques with the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Usai, Emanuele

    2017-12-15

    While the Standard Model is very successful in describing subnuclear phenomena, it is not a complete theory of particle physics. Several new theories have been developed to address its issues. Many extensions of the Standard Model predict the existence of high-mass resonances. In some cases these resonances have an enhanced coupling to third generation quarks or to a hypothetical new generation of heavy non-chiral quarks. This thesis describes two searches for new phenomena compatible with these theories, in particular a search is presented for resonant top-antitop production, and the first search for heavy resonances decaying to a top quark and a heavy top quark partner T is shown. The searches target the all-jets decay channels and use data collected by the CMS Experiment at the CERN LHC between 2012 and 2015 at a center-of-mass energy of 8 TeV and 13 TeV. Due to the high mass of the resonances considered, the final state particles have a high Lorentz-boost. To reconstruct the hadronic decay of the top quarks and W bosons, jet substructure techniques such as top quark and W boson tagging algorithms, and boosted b jet identification are employed. These algorithms are studied with a particular focus on their validation and performance assessment. No signs of physics beyond the Standard Model are observed, but stringent limits are placed on the production of heavy resonances decaying to top-antitop quark pairs or a top quark and a heavy T quark.

  18. Searches for heavy resonances in all-jet final states with top quarks using jet substructure techniques with the CMS experiment

    International Nuclear Information System (INIS)

    Usai, Emanuele

    2017-12-01

    While the Standard Model is very successful in describing subnuclear phenomena, it is not a complete theory of particle physics. Several new theories have been developed to address its issues. Many extensions of the Standard Model predict the existence of high-mass resonances. In some cases these resonances have an enhanced coupling to third generation quarks or to a hypothetical new generation of heavy non-chiral quarks. This thesis describes two searches for new phenomena compatible with these theories, in particular a search is presented for resonant top-antitop production, and the first search for heavy resonances decaying to a top quark and a heavy top quark partner T is shown. The searches target the all-jets decay channels and use data collected by the CMS Experiment at the CERN LHC between 2012 and 2015 at a center-of-mass energy of 8 TeV and 13 TeV. Due to the high mass of the resonances considered, the final state particles have a high Lorentz-boost. To reconstruct the hadronic decay of the top quarks and W bosons, jet substructure techniques such as top quark and W boson tagging algorithms, and boosted b jet identification are employed. These algorithms are studied with a particular focus on their validation and performance assessment. No signs of physics beyond the Standard Model are observed, but stringent limits are placed on the production of heavy resonances decaying to top-antitop quark pairs or a top quark and a heavy T quark.

  19. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  20. Analyzing the Anomalous Dipole Moment Type Couplings of Heavy Quarks with FCNC Interactions at the CLIC

    International Nuclear Information System (INIS)

    Senol, A.; Tasci, A. T.; Verep, C.

    2014-01-01

    We examine both anomalous magnetic and dipole moment type couplings of a heavy quark via its single production with subsequent dominant standard model decay modes at the compact linear collider (CLIC). The signal and background cross sections are analyzed for heavy quark masses 600 and 700 GeV. We make the analysis to delimitate these couplings as well as to find the attainable integrated luminosities for 3σ observation limit

  1. Variational approach to chiral quark models

    Energy Technology Data Exchange (ETDEWEB)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira

    1987-03-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.

  2. Current s - quark mass corrections to the form factors of D - meson semileptonic decays

    International Nuclear Information System (INIS)

    Hussain, F.; Ivanov, A.N.; Troitskaya, N.I.

    1994-11-01

    The infinite mass effective theory, when a heavy quark mass tends to infinity, and Chiral perturbation theory at the quark level, based on the extended Nambu - Jona - Lasinio model with linear realization of chiral U(3) x U(3) symmetry, are applied to the calculations of current s - quark mass corrections to the form factors of the D → K-bar e + ν e and D → K-bar * e + ν e decays. These corrections turn out to be quite significant, of the order of 7 - 20%. The theoretical results are compared with experimental data. (author). 17 refs

  3. Lepton-flavour violation in a Pati-Salam model with gauged flavour symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Feldmann, Thorsten; Luhn, Christoph; Moch, Paul [Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät,Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen (Germany)

    2016-11-11

    Combining Pati-Salam (PS) and flavour symmetries in a renormalisable setup, we devise a scenario which produces realistic masses for the charged leptons. Flavour-symmetry breaking scalar fields in the adjoint representations of the PS gauge group are responsible for generating different flavour structures for up- and down-type quarks as well as for leptons. The model is characterised by new heavy fermions which mix with the Standard Model quarks and leptons. In particular, the partners for the third fermion generation induce sizeable sources of flavour violation. Focusing on the charged-lepton sector, we scrutinise the model with respect to its implications for lepton-flavour violating processes such as μ→eγ, μ→3e and muon conversion in nuclei.

  4. NNLO O(α4s) results for heavy quark pair production in quark-antiquark collisions. The one-loop squared contributions

    International Nuclear Information System (INIS)

    Koerner, J.G.

    2008-02-01

    We calculate the NNLO O(α 4 s ) one-loop squared corrections to the production of heavy quark pairs in quark-antiquark annihilations. These are part of the NNLO O(α 4 s ) radiative QCD corrections to this process. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in the dimensional regularization scheme. We find very intriguing factorization properties for the finite part of the amplitudes. (orig.)

  5. Introduction to heavy meson decays and CP asymmetries

    International Nuclear Information System (INIS)

    Ligeti, Zoltan

    2003-01-01

    These lectures are intended to provide an introduction to heavy meson decays and CP violation. The first lecture contains a brief review of the standard model and how the CKM matrix and CP violation arise, mixing and CP violation in neutral meson systems, and explanation of the cleanliness of the sin 2β measurement. The second lecture deals with the heavy quark limit, some applications of heavy quark symmetry and the operator product expansion for exclusive and inclusive semileptonic B decays. The third lecture concerns with theoretically clean CP violation measurements that may become possible in the future, and some developments toward a better understanding of nonleptonic B decays. The conclusions include a subjective best buy list for the near future

  6. The mass spectrum of double heavy baryons in new potential quark models

    Directory of Open Access Journals (Sweden)

    Kovalenko Vladimir

    2017-01-01

    Full Text Available A new approach to study the mass spectrum of double heavy baryons (QQ′q containing strange and charmed quarks is proposed. It is based on the separation of variables in the Schrodinger equation in the prolate spheroidal coordinates. Two nonrelativistic potential models are considered. In the first model, the interaction potential of the quarks is the sum of the Coulomb and non-spherically symmetrical linear confinement potential. In the second model it is assumed that the quark confinement provided by a spherically symmetric harmonic oscillator potential. In both models the mass spectrum is calculated, and a comparison with previous results from other models is performed.

  7. Heavy quark form factors at two loops in perturbative QCD

    International Nuclear Information System (INIS)

    Ablinger, J.; Schneider, C.; Behring, A.; Falcioni, G.

    2017-11-01

    We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.

  8. The heavy quark-antiquark potential from lattice and perturbative QCD

    OpenAIRE

    Laschka, Alexander; Kaiser, Norbert; Weise, Wolfram

    2009-01-01

    The heavy quark-antiquark potential in perturbative QCD is subject to ambiguities. We show how to derive a well-defined and stable short-distance potential that can be matched to results from lattice QCD simulations at intermediate distances. The static potential as well as the order 1/m potential are discussed.

  9. Heavy quark form factors at two loops in perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Bluemlein, J.; Freitas, A. de; Marquard, P.; Rana, N. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Falcioni, G. [Nikhef, Amsterdam (Netherlands). Theory Group

    2017-11-15

    We present the results for heavy quark form factors at two-loop order in perturbative QCD for different currents, namely vector, axial-vector, scalar and pseudo-scalar currents, up to second order in the dimensional regularization parameter. We outline the necessary computational details, ultraviolet renormalization and corresponding universal infrared structure.

  10. Dynamical symmetry breaking of the electroweak interactions and the renormalization group

    International Nuclear Information System (INIS)

    Hill, C.T.

    1990-08-01

    We discuss dynamical symmetry breaking with an emphasis on the renormalization group as the key tool to obtaining reliable predictions. In particular we discuss the mechanism for breaking the electroweak interactions which relies upon the formation of condensates involving the conventional quarks and leptons. Such a scheme indicates that the top quark is heavy, greater than or of order 200 GeV, and gives further predictions for the Higgs boson mass. We also briefly describe recent attempts to incorporate a 4th generation in a more natural scheme. 13 refs., 3 figs., 1 tab

  11. Heavy leptons: theoretical study of the implications of their existence

    International Nuclear Information System (INIS)

    Ragiadakos, C.

    1978-01-01

    The following points are studied: the possibility of an internal structure of heavy leptons and its manifestation; a study of the production of neutral heavy leptons in e + -e - collisions; consequences of the lumaton (heavy lepton having strong interactions) hypothesis; the introduction of a muon number violating mechanism in gauge theories. A gauge model characterized by the symmetries: left-right and quarks-leptons is also studied. A general review of the heavy leptons is given [fr

  12. Charge symmetry breaking via Δ I = 1 group theory or by the u-d quark mass difference and direct photon exchange

    International Nuclear Information System (INIS)

    Coon, S.A.; Scadron, M.D.

    2000-01-01

    Charge symmetry breaking (CSB) in the strong N N interaction is believed to have its origins at the quark level. However, the meson-exchange potentials which successfully describe the empirical CSB utilize instead values of the Δ I = 1 π η and ρ ω mixing obtained with the aid of group theory from a hadronic tadpole Hamiltonian introduced by Coleman and Glashow to describe electromagnetic mass splitting in hadronic isospin multiplets. We review i) the CSB N N potentials so constructed and their nuclear charge asymmetry effects, i i) the universal scale of the Coleman-Glashow tadpole, and i i i) the quark loop evaluation of both meson mass differences and meson mixing. The latter quark loop calculations, which use chiral symmetry to evaluate the integrals, demonstrate clearly that the u-d constituent quark mass difference, long suspected as the origin of CSB, does quantitatively yield the universal Coleman-Glashow tadpole scale which underlies the successful meson-exchange description of CSB in nuclear physics. (Author) 38 refs., 3 figs

  13. 1{sup --} and 0{sup ++} heavy four-quark and molecule states in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, R.M., E-mail: rma@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05389-970 Sao Paulo, SP (Brazil); Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugene Bataillon, 34095 Montpellier (France); Fanomezana, F., E-mail: fanfenos@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar); Narison, S., E-mail: snarison@yahoo.fr [Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugene Bataillon, 34095 Montpellier (France); Rabemananjara, A., E-mail: achris_01@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar)

    2012-08-29

    We estimate the masses of the 1{sup --} heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in {alpha}{sub s} but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50-110) MeV and the ones of about (250-300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavor independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y{sub c}(4260,4360,4660) and Y{sub b}(10890)1{sup --} experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure1{sup --} four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0{sup ++} four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1{sup --} states, while the splittings between the 0{sup ++} lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1{sup --} and 0{sup ++} four-quark states which are tiny and which exhibit a 1/M{sub Q} behavior. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHC{sub b} and some other hadron factories.

  14. SU(5) finite unified theories and the mass of the top quark

    International Nuclear Information System (INIS)

    Mondragon, M.; Zoupanos, G.

    1994-01-01

    We present results of a study of phenomenologically interesting SU(5) supersymmetric GUT's, which are finite to all-loops before spontaneous symmetry breaking. The finiteness conditions provide the spontaneously broken theory with relationships among the Yukawa and gauge couplings at the unification point. These in turn predict a heavy top quark mass (∼175-190 GeV). (orig.)

  15. On exact account of heavy quark thresholds in hard processes

    International Nuclear Information System (INIS)

    Dokshitzer, Yu. L.

    1993-01-01

    We study the problem to accurately account for the heavy quark threshold effects in hard processes. We employ the direction perturbative Feynman diagram analysis and the Stueckelberg-Bogoliubov massive renormalization group formalism to show that both methods results in the same prescription for the 'physical' mass-dependent QCD effective coupling as an argument of anomalous dimensions that determine the evolution of structure function (parton distributions). By considering the one-loop example, we demonstrate that an intrinsic ambiguity of the standard approach based on the notion of 'effective number of quark flavours' may affect the α s determination at the level of two-loop effects

  16. Heavy quark physics from SLD

    International Nuclear Information System (INIS)

    Messner, R.

    1997-01-01

    This report covers preliminary measurements from SLD on heavy quark production at the Z 0 , using 150,000 hadronic Z 0 decays accumulated during the 1993-1995 runs. A measurement of R b with a lifetime double tag is presented. The high electron beam polarization of the SLC is employed in the direct measurement of the parity-violating parameters A b and A c by use of the left-right forward-backward asymmetry. The lifetimes of B + and B 0 mesons have been measured by two analyses. The first identifies semileptonic decays of B mesons with high (p,p t ) leptons; the second analysis isolates a sample of B meson decays with a two-dimensional impact parameter tag and reconstructs the decay length and charge using a topological vertex reconstruction method

  17. Weak mixing and CP-violation involving heavy quarks and possible measurements in e+e- experiments

    International Nuclear Information System (INIS)

    Ali, A.; Aydin, Z.Z.

    1978-09-01

    We evaluate weak mass mixing among the neutral heavy mesons with a bottom (Q = -1/3) or top (Q = +2/3) quark and CP-violation in the frame work of six quark (V - A) models. It is argued that bottom and top mesons may distinguish the Higgs exchange mechanism of CP-violation from a complex phase in the quark mass matrix, if bottom and top quark masses are sufficiently different. Estimates of weak mixing-and CP-violating effects for e + e - experiments at PETRA, PEP and CESR energies are presented. (orig.) [de

  18. Non-perturbative heavy quark effective theory. Introduction and status

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin

    2015-01-01

    We give an introduction to Heavy Quark Effective Theory (HQET). Our emphasis is on its formulation non-perturbative in the strong coupling, including the non-perturbative determination of the parameters in the HQET Lagrangian. In a second part we review the present status of HQET on the lattice, largely based on work of the ALPHA collaboration in the last few years. We finally discuss opportunities and challenges.

  19. Heavy Quark Impact Factor at Next-to-leading Level

    OpenAIRE

    Ciafaloni, Marcello; Rodrigo, German

    2000-01-01

    We further analyze the definition and the calculation of the heavy quark impact factor at next-to-leading (NL) log(s) level, and we provide its analytical expression in a previously proposed k-factorization scheme. Our results indicate that k-factorization holds at NL level with a properly chosen energy scale, and with the same gluonic Green's function previously found in the massless probe case.

  20. Constituent quarks and charge particle production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Mazumder, Rakesh; Sahoo, Raghunath; Nandi, Basanta Kumar

    2012-01-01

    Relativistic heavy-ion collisions aims at producing a state of matter which is governed by partonic degree of freedom. The pseudorapidity density of particle multiplicity and transverse energy are the key observables which provide the properties of matter produced in heavy-ion collisions. Study of their dependence on centrality and collision energy is of paramount importance to understand the particle production mechanism. This may provide insight into the partonic phase that might be created in nuclear collisions. Here, in a constituent quarks framework, charged particle and transverse energy production in heavy-ion collisions are studied both as a function of centrality and collision energy, and hence the study gives a prediction for Pb + Pb collisions

  1. Third-order QCD corrections to heavy quark pair production near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Kurt

    2008-11-07

    The measurement of the top quark mass is an important task at the future International Linear Collider. The most promising process is the top quark pair production in the threshold region. In this region the top quarks behave non-relativistically and a perturbative treatment using effective field theories is possible. Current second order theoretical predictions in a fixed order approach show an uncertainty which is bigger than the expected experimental errors. Therefore, an improvement of the cross section calculation is desirable. There are two ways to incorporate higher order effects, one is to calculate the full next order in the fixed order approach, another possibility is to resum large logarithms. In this work, the fixed order calculation has been extended to the third order in perturbation theory for the QCD corrections. The result is a strongly improved scale behavior and a better understanding of heavy quarkonium systems. The Green function result is given in a semi-analytic form. The energy levels and wave functions for heavy quarkonium states have been calculated from the poles of the Green function and are presented for arbitrary quantum number n. The results have been implemented in a Mathematica program which makes the data easily accessible. Once some missing matching coefficients are calculated, and a complete electroweak calculation is available, the results of this work can be used to improve the precision of the top quark mass measurement to an uncertainty of less than 50 MeV. An inclusion of initial state radiation and beam effects are essential for a realistic observable. In the future, the results obtained could be used for a third order resummation of large logarithms. Further applications are also the extraction of the bottom quark mass with sum rules. (orig.)

  2. AAMQS: A non-linear QCD analysis of new HERA data at small-x including heavy quarks

    International Nuclear Information System (INIS)

    Albacete, Javier L.; Armesto, Nestor; Salgado, Carlos A.; Milhano, Jose Guilherme; Quiroga Arias, Paloma

    2011-01-01

    We present a global analysis of available data on inclusive structure functions and reduced cross sections measured in electron-proton scattering at small values of Bjorken-x, x<0.01, including the latest data from HERA on reduced cross sections. Our approach relies on the dipole formulation of DIS together with the use of the non-linear running coupling Balitsky-Kovchegov equation for the description of the small-x dynamics. We improve our previous studies by including the heavy quark (charm and beauty) contribution to the reduced cross sections, and also by considering a variable flavor scheme for the running of the coupling. We obtain a good description of the data, with the fit parameters remaining stable with respect to our previous analyses where only light quarks were considered. The inclusion of the heavy quark contributions resulted in a good description of available experimental data for the charm component of the structure function and reduced cross section provided the initial transverse distribution of heavy quarks was allowed to differ from (more specifically, to have a smaller radius than) that of the light flavors. (orig.)

  3. AAMQS: A non-linear QCD analysis of new HERA data at small-x including heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Albacete, Javier L. [CEA/Saclay, URA 2306, Unite de Recherche Associee au CNRS, Institut de Physique Theorique, Gif-sur-Yvette cedex (France); Armesto, Nestor; Salgado, Carlos A. [Universidade de Santiago de Compostela, Departamento de Fisica de Particulas and IGFAE, Santiago de Compostela (Spain); Milhano, Jose Guilherme [Instituto Superior Tecnico (IST), Universidade Tecnica de Lisboa, CENTRA, Lisboa (Portugal); Theory Unit, CERN, Physics Department, Geneve 23 (Switzerland); Quiroga Arias, Paloma [UPMC Univ. Paris 6 and CNRS UMR7589, LPTHE, Paris (France)

    2011-07-15

    We present a global analysis of available data on inclusive structure functions and reduced cross sections measured in electron-proton scattering at small values of Bjorken-x, x<0.01, including the latest data from HERA on reduced cross sections. Our approach relies on the dipole formulation of DIS together with the use of the non-linear running coupling Balitsky-Kovchegov equation for the description of the small-x dynamics. We improve our previous studies by including the heavy quark (charm and beauty) contribution to the reduced cross sections, and also by considering a variable flavor scheme for the running of the coupling. We obtain a good description of the data, with the fit parameters remaining stable with respect to our previous analyses where only light quarks were considered. The inclusion of the heavy quark contributions resulted in a good description of available experimental data for the charm component of the structure function and reduced cross section provided the initial transverse distribution of heavy quarks was allowed to differ from (more specifically, to have a smaller radius than) that of the light flavors. (orig.)

  4. LEP1 measurement of heavy quark forward-backward asymmetries with Opal detector

    International Nuclear Information System (INIS)

    Lafoux, H.

    1996-01-01

    Using all data collected by OPAL during the first phase of LEP operation, called LEP1, we have measured the b and c quark forward-backward asymmetries on and around the Z 0 peak. The measurement, which is based on prompt leptons produced in semileptonic decays of heavy quarks, has been optimized using artificial neural networks whenever necessary, that is whenever the problem to solve implied taking into account simultaneously a large number of parameters. Our results are compatible with other LEP measurements and with the Standard Model predictions for a top quark of 174±31 GeV/c□ and a Higgs boson mass between 60 and 1000 GeV/c□. (author). 159 refs., 88 figs., 37 tabs

  5. An exploratory study of heavy domain wall fermions on the lattice

    CERN Document Server

    Boyle, Peter; Marinkovic, Marina Krstic; Sanfilippo, Francesco; Spraggs, Matthew; Tsang, Justus Tobias

    2016-01-01

    We report on an exploratory study of domain wall fermions (DWF) as a lattice regularisation for heavy quarks. Within the framework of quenched QCD with the tree-level improved Symanzik gauge action we identify the DWF parameters which minimise discretisation effects. We find the corresponding effective 4$d$ overlap operator to be exponentially local, independent of the quark mass. We determine a maximum bare heavy quark mass of $am_h\\approx 0.4$, below which the approximate chiral symmetry and O(a)-improvement of DWF are sustained. This threshold appears to be largely independent of the lattice spacing. Based on these findings, we carried out a detailed scaling study for the heavy-strange meson dispersion relation and decay constant on four ensembles with lattice spacings in the range $2.0-5.7\\,\\mathrm{GeV}$. We observe very mild $a^2$ scaling towards the continuum limit. Our findings establish a sound basis for heavy DWF in dynamical simulations of lattice QCD with relevance to Standard Model phenomenology.

  6. A variational approach to chiral quark models

    International Nuclear Information System (INIS)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.

    1987-01-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)

  7. Chiral symmetry breaking in a semilocalized magnetic field

    Science.gov (United States)

    Cao, Gaoqing

    2018-03-01

    In this work, we explore the pattern of chiral symmetry breaking and restoration in a solvable magnetic field configuration within the Nambu-Jona-Lasinio model. The special semilocalized static magnetic field can roughly mimic the realistic situation in peripheral heavy ion collisions; thus, the study is important for the dynamical evolution of quark matter. We find that the magnetic-field-dependent contribution from discrete spectra usually dominates over the contribution from continuum spectra and chiral symmetry breaking is locally catalyzed by both the magnitude and scale of the magnetic field. The study is finally extended to the case with finite temperature or chemical potential.

  8. Factorization of heavy-to-light baryonic transitions in SCET

    International Nuclear Information System (INIS)

    Wang Wei

    2012-01-01

    In the framework of the soft-collinear effective theory, we demonstrate that the leading-power heavy-to-light baryonic form factors at large recoil obey the heavy quark and large energy symmetries. Symmetry breaking effects are suppressed by Λ/m b or Λ/E, where Λ is the hadronic scale, m b is the b quark mass and E∼m b is the energy of light baryon in the final state. At leading order, the leading power baryonic form factor ξ Λ,p (E), in which two hard-collinear gluons are exchanged in the baryon constituents, can factorize into the soft and collinear matrix elements convoluted with a hard-kernel of order α s 2 . Including the energy release dependence, we derive the scaling law ξ Λ,p (E)∼Λ 2 /E 2 . We also find that this form factor ξ Λ (E) is numerically smaller than the form factor governed by soft processes, although the latter is formally power-suppressed.

  9. Asymmetries in heavy meson production from light quark fragmentation

    International Nuclear Information System (INIS)

    Dias de Deus, J.; Duraes, F.

    2000-01-01

    We discuss the possibility of the asymmetry in D - /D + production from π - beams, being a direct consequence of the properties of the light quark fragmentation function into heavy mesons. The main features of the asymmetry, as a function of x F , are easily described. An integrated sum rule for the D - , D + multiplicity difference is presented. Predictions for the asymmetry in B meson production are given. (orig.)

  10. Heavy quark physics from SLD

    Energy Technology Data Exchange (ETDEWEB)

    Messner, R. [Stanford Univ., CA (United States)

    1997-01-01

    This report covers preliminary measurements from SLD on heavy quark production at the Z{sup 0}, using 150,000 hadronic Z{sup 0} decays accumulated during the 1993-1995 runs. A measurement of R{sub b} with a lifetime double tag is presented. The high electron beam polarization of the SLC is employed in the direct measurement of the parity-violating parameters A{sub b} and A{sub c} by use of the left-right forward-backward asymmetry. The lifetimes of B{sup +} and B{sup 0} mesons have been measured by two analyses. The first identifies semileptonic decays of B mesons with high (p,p{sub t}) leptons; the second analysis isolates a sample of B meson decays with a two-dimensional impact parameter tag and reconstructs the decay length and charge using a topological vertex reconstruction method.

  11. Identification of bottom-quarks in searches for new heavy resonances decaying into boosted top-quarks with the ATLAS detector and a development of an improved $b$-tagging algorithm

    CERN Document Server

    AUTHOR|(SzGeCERN)700216

    From all the so far discovered elementary particles, the top-quark is the heaviest. Its large mass of $173.34\\GeV$ is unexplained and suggests that the top-quark may play a special role in nature, as it occurs in many beyond the Standard Model predictions. Several of these theories anticipate, the existence of heavy particles that decay predominantly into top-quark pairs. Searches for such new particles have been already performed by the experiments of the TEVATRON collider located at the Fermi National Accelerator Laboratory as well as by the two largest LHC experiments, ATLAS and CMS. Meanwhile, the exclusion limits on some of these models extend already up to $\\TeV$ mass scales. Thus the ongoing searches for new heavy particles decaying into top-quark pairs focus more strongly on events that contain high-$\\pt$ top-quarks. The decay products of a boosted top-quark (or any other highly boosted particle) can be strongly collimated and their signatures in the detector system might even have a significant overl...

  12. Exploring heavy-quark energy loss via b-tagging in heavy-ion collisions at the LHC

    International Nuclear Information System (INIS)

    Klay, Jennifer L

    2005-01-01

    A strategy to study flavour-dependent parton energy loss by tagging heavy quark jets in p+p, p+Pb and Pb+Pb collisions at the LHC is discussed. Estimates for production cross-sections and experimental techniques employed at collider detectors to search QQ-bar jets are presented and a brief evaluation of the capabilities of CMS, ALICE and ATLAS detectors are given

  13. Entanglement of heavy quark impurities and generalized gravitational entropy

    Science.gov (United States)

    Kumar, S. Prem; Silvani, Dorian

    2018-01-01

    We calculate the contribution from non-conformal heavy quark sources to the entanglement entropy (EE) of a spherical region in N=4 SUSY Yang-Mills theory. We apply the generalized gravitational entropy method to non-conformal probe D-brane embeddings in AdS5×S5, dual to pointlike impurities exhibiting flows between quarks in large-rank tensor representations and the fundamental representation. For the D5-brane embedding which describes the screening of fundamental quarks in the UV to the antisymmetric tensor representation in the IR, the EE excess decreases non-monotonically towards its IR asymptotic value, tracking the qualitative behaviour of the one-point function of static fields sourced by the impurity. We also examine two classes of D3-brane embeddings, one which connects a symmetric representation source in the UV to fundamental quarks in the IR, and a second category which yields the symmetric representation source on the Coulomb branch. The EE excess for the former increases from the UV to the IR, whilst decreasing and becoming negative for the latter. In all cases, the probe free energy on hyperbolic space with β = 2 π increases monotonically towards the IR, supporting its interpretation as a relative entropy. We identify universal corrections, depending logarithmically on the VEV, for the symmetric representation on the Coulomb branch.

  14. Highlights from STAR heavy ion program arXiv

    CERN Document Server

    Okorokov, V.A.

    Recent experimental results obtained in STAR experiment at the Relativistic heavy-ion collider (RHIC) with ion beams will be discussed. Investigations of different nuclear collisions in some recent years focus on two main tasks, namely, detail study of quark-gluon matter properties and exploration of the quantum chromodynamics (QCD) phase diagram. Results at top RHIC energy show clearly the collective behavior of heavy quarks in nucleus-nucleus interactions. Jet and heavy hadron measurements lead to new constraints for energy loss models for various flavors. Heavy-ion collisions are unique tool for the study of topological properties of theory as well as the magneto-hydrodynamics of strongly interacting matter. Experimental results obtained for discrete QCD symmetries at finite temperatures confirm indirectly the topologically non-trivial structure of QCD vacuum. Finite global vorticity observed in non-central Au+Au collisions can be considered as important signature for presence of various chiral effects in ...

  15. Strange quark distribution and parton charge symmetry violation in a semi-inclusive process

    International Nuclear Information System (INIS)

    Kitagawa, Hisashi; Sakemi, Yasuhiro

    2000-01-01

    It is possible to observe a semi-inclusive reaction with tagged charged kaons using the RICH detector at DESY-HERA. Using the semi-inclusive process we study two kinds of parton properties in the nucleon. We study relations between cross sections and strange quark distributions, which are expected to be measured more precisely in such a process than in the process in which pions are tagged. We also investigate charge symmetry violation (CSV) in the nucleon, which appears in the region x ≤ 0.1. (author)

  16. Impact of LHCb heavy-quark production cross sections on parton distribution functions at very low x

    Energy Technology Data Exchange (ETDEWEB)

    Zenaiev, Oleksandr [DESY, Notkestrasse 85, Hamburg 22607 (Germany)

    2015-07-01

    The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour-number scheme at next-to-leading order. Differential cross sections of charm- and beauty-quark production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at very low partonic fractions of the proton momenta, x < 10{sup -4}. This kinematic range is currently not covered by other experimental data in perturbative QCD fits.

  17. Physics of the quark - gluon plasma

    International Nuclear Information System (INIS)

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p T physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B → J/Ψ production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation

  18. Physics of the quark - gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    This document gathers 31 contributions to the workshop on the physics of quark-gluon plasma that took place in Palaiseau in september 2001: 1) gamma production in heavy collisions, 2) BRAHMS, 3) experimental conference summary, 4) modelling relativistic nuclear collisions, 5) microscopic reaction dynamics at SPS and RHIC, 6) direct gamma and hard scattering at SPS, 7) soft physics at RHIC, 8) results from the STAR experiment, 9) quarkonia: experimental possibilities, 10) elliptic flow measurements with PHENIX, 11) charmonium production in p-A collisions, 12) anisotropic flow at the SPS and RHIC, 13) deciphering the space-time evolution of heavy ion collisions with correlation measurements, 14) 2-particle correlation at RHIC, 15) particle spectra at AGS, SPS and RHIC, 16) strangeness production in STAR, 17) strangeness production in Pb-Pb collisions at SPS, 18) heavy ion physics at CERN after 2000 and before LHC, 19) NEXUS guideline and theoretical consistency, 20) introduction to high p{sub T} physics at RHIC, 21) a novel quasiparticle description of the quark-gluon plasma, 22) dissociation of excited quarkonia states, 23) high-mass dimuon and B {yields} J/{psi} production in ultrarelativistic heavy ion collisions, 24) strange hyperon production in p + p and p + Pb interactions from NA49, 25) heavy quarkonium hadron cross-section, 26) a new method of flow analysis, 27) low mass dilepton production and chiral symmetry restoration, 28) classical initial conditions for nucleus-nucleus collisions, 29) numerical calculation of quenching weights, 30) strangeness enhancement energy dependence, and 31) heavy quarkonium dissociation.

  19. Experimental developments in relativistic heavy-ion collisions published between Quark Matter 2002 and the beginning of Quark Matter 2004

    International Nuclear Information System (INIS)

    Hemmick, Thomas K

    2004-01-01

    The Quark Matter conference is the 'meeting of record' for the field of relativistic heavy-ion physics. Each such conference is filled with exciting new data frequently presented to the world for the first time. However, the field also makes significant progress during the 18 months between Quark Matter conferences. Such progress is summarized in a single talk near the beginning of the conference and sets the stage for the newest data and discoveries. This paper is the experimental summary of selected results published in journals and presented at conferences between the end of QM2002 and the beginning of QM2004

  20. Hidden-beauty charged tetraquarks and heavy quark spin conservation

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Maiani, L.; Polosa, A.D.; Riquer, V. [Rome-3 Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Roma (Italy)

    2014-12-15

    Assuming the dominance of the spin-spin interaction in a diquark, we point out that the mass differences in the beauty sector M(Z'{sub b}){sup ±}-M(Z{sub b}){sup ±} scale with quark masses as expected in QCD, with respect to the corresponding mass difference M(Z'{sub c}){sup ±}-M(Z{sub c}){sup ±}. Notably, we show that the decays Υ(10890)→(h{sub b}(1P),h{sub b}(2P))π{sup +}π{sup -} are compatible with heavy-quark spin conservation once the contributions of Z{sub b},Z'{sub b} intermediate states are taken into account, Υ(10890) being either a Υ(5S) or the beauty analog of Y{sub c}(4260). We also consider the role of Z{sub b},Z'{sub b} in Υ(10890)→Υ(nS)ππ decays and of light quark spin non-conservation in Z{sub b}, Z'{sub b} decays into BB{sup *} and B{sup *}B{sup *}. Indications on possible signatures of the still missing X{sub b} resonance are proposed.

  1. Heavy quarks fragmentation in charmed mesons in DELPHI experiment at LEP

    International Nuclear Information System (INIS)

    Levy, J.M.

    1994-04-01

    With the big statistics expected at LEP, the electroweak sector of the Standard Model can be tested as well as the theory of strong interactions. Quantum Chromo-Dynamics is indeed predictive for quarks properties, but does not explain how quarks fragment into hadrons. So far the hadronization can only be described with phenomenological models. The work presented in this thesis was performed on the DELPHI experiment at LEP and concerns the production and the fragmentation of heavy quarks into charmed mesons D , D* and D**. With the whole statistics of 1991 and 1992 (1 013 300 hadronic decays of the Z), more than 4500 charmed mesons decays have been reconstructed in the channels D 0 → K - π + , D + → K - π + π+ and D * +→ D 0 π + followed by D 0 → K - π + . Using also 1993 data and the channel D 0 → K - π + π + π - , evidence for D** production is presented. For the first time, the production rate is measured for each D meson separately for cc and bb contributions. In fact, D mesons can be produced either directly from the fragmentation of c quark or un-directly from the fragmentation of b quark into B mesons which decay into D mesons. (authors). 120 refs

  2. Gravity dual corrections to the heavy quark potential at finite-temperature

    International Nuclear Information System (INIS)

    Grigoryan, Hovhannes R.; Kovchegov, Yuri V.

    2011-01-01

    We apply gauge/gravity duality to compute 1/N c 2 corrections to the heavy quark potentials of a quark-anti-quark pair (QQ-bar) and of a quark-quark pair (QQ) immersed into the strongly coupled N=4 SYM plasma. On the gravity side these corrections come from the exchanges of supergravity modes between two string worldsheets stretching from the UV boundary of AdS space to the black hole horizon in the bulk and smeared over S 5 . We find that the contributions to the QQ-bar potential coming from the exchanges of all of the relevant modes (such as dilaton, massive scalar, 2-form field, and graviton) are all attractive, leading to an attractive net QQ-bar potential. We show that at large separations r and/or high-temperature T the potential is of Yukawa-type, dominated by the graviton exchange, in agreement with earlier findings. On the other hand, at small-rT the QQ-bar potential scales as ∼(1/r)ln(1/rT). In the case of QQ potential the 2-form contribution changes sign and becomes repulsive: however, the net QQ potential remains attractive. At large-rT it is dominated by the graviton exchange, while at small-rT the QQ potential becomes Coulomb-like.

  3. Challenges to quantum chromodynamics: Anomalous spin, heavy quark, and nuclear phenomena

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1989-11-01

    The general structure of QCD meshes remarkably well with the facts of the hadronic world, especially quark-based spectroscopy, current algebra, the approximate point-like structure of large momentum transfer inclusive reactions, and the logarithmic violation of scale invariance in deep inelastic lepton-hadron reactions. QCD has been successful in predicting the features of electron-positron and photon-photon annihilation into hadrons, including the magnitude and scaling of the cross sections, the shape of the photon structure function, the production of hadronic jets with patterns conforming to elementary quark and gluon subprocesses. The experimental measurements appear to be consistent with basic postulates of QCD, that the charge and weak currents within hadrons are carried by fractionally-charged quarks, and that the strength of the interactions between the quarks, and gluons becomes weak at short distances, consistent with asymptotic freedom. Nevertheless in some cases, the predictions of QCD appear to be in dramatic conflict with experiment. The anomalies suggest that the proton itself as a much more complex object than suggested by simple non-relativistic quark models. Recent analyses of the proton distribution amplitude using QCD sum rules points to highly-nontrival proton structure. Solutions to QCD in one-space and one-time dimension suggest that the momentum distributions of non-valence quarks in the hadrons have a non-trival oscillatory structure. The data seems also to be suggesting that the ''intrinsic'' bound state structure of the proton has a non- negligible strange and charm quark content, in addition to the ''extrinsic'' sources of heavy quarks created in the collision itself. 144 refs., 46 figs., 2 tabs

  4. Chiral symmetry in the strong color-electric field in terms of Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Suganuma, Hideo

    1990-01-01

    We examine the behavior of chiral symmetry in an external gluon field using Nambu-Jona-Lasinio model, which is an effective theory of QCD. The Dyson equation for the dynamical quark mass in the presence of the external color-electric field is obtained. By solving it in the color flux tube inside mesons, chiral symmetry would be restored in the flux tube of mesons and this result supports Chiral Bag picture for mesons. Next we consider the flux tubes formed in the central region for ultra-relativistic heavy-ion collisions, and find the chiral restoration occurs there, so that the current quark mass seems to be suitable in calculating the q-q-bar pair creation rate by the Schwinger formula in the flux-tube picture. (author)

  5. Confinement of quarks

    International Nuclear Information System (INIS)

    Nambu, J.

    1978-01-01

    Three quark models of hadron structure, which suggest an explanation of quarks confinement mechanism in hadrons are considered. Quark classifications, quark flawors and colours, symmetry model of hadron structure based on the colour theory of strong interaction are discussed. Diagrams of colour combinations of quarks and antiquarks, exchange of gluons, binding quarks in hadron. Quark confinement models based on the field theory, string model rotating and bag model are discussed. Diagrams of the colour charge distribution explaining the phenomena of infrared ''slavery'' and ultraviolet ''freedom'' are given. The models considered explain but some quark properties, creating prerequisites for the development of the consequent theory of hadron structure

  6. Di-Jet Conical Correlations Associated with Heavy Quark Jets in anti-de Sitter Space/Conformal Field Theory Correspondence

    International Nuclear Information System (INIS)

    Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio

    2009-01-01

    We show that far zone Mach and diffusion wake 'holograms' produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N c →∞ supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium 'neck' zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence

  7. Di-jet conical correlations associated with heavy quark jets in anti-de sitter space/conformal field theory correspondence.

    Science.gov (United States)

    Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio

    2009-03-13

    We show that far zone Mach and diffusion wake "holograms" produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N_{c}-->infinity supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium "neck" zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence.

  8. A T-matrix calculation for in-medium heavy-quark gluon scattering

    International Nuclear Information System (INIS)

    Huggins, K.; Rapp, R.

    2012-01-01

    The interactions of charm and bottom quarks in a quark-gluon plasma (QGP) are evaluated using a thermodynamic 2-body T-matrix. We specifically focus on heavy-quark (HQ) interactions with thermal gluons with an input potential motivated by lattice-QCD computations of the HQ free energy. The latter is implemented into a field-theoretic ansatz for color-Coulomb and (remnants of) confining interactions. This, in particular, enables to discuss corrections to the potential approach, specifically hard-thermal-loop corrections to the vertices, relativistic corrections deduced from pertinent Feynman diagrams, and a suitable projection on transverse thermal gluons. The resulting potentials are applied to compute scattering amplitudes in different color channels and utilized for a calculation of the corresponding HQ drag coefficient in the QGP. A factor of ∼2-3 enhancement over perturbative results is obtained, mainly driven by the resummation in the attractive color-channels.

  9. Heavy-light semileptonic decays in staggered chiral perturbation theory

    Science.gov (United States)

    Aubin, C.; Bernard, C.

    2007-07-01

    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (SχPT), working to leading order in 1/mQ, where mQ is the heavy-quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered “fourth-root trick” within SχPT by insertions of factors of 1/4 for each sea-quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Bećirević, Prelovsek, and Zupan, which we generalize to the staggered (and nondegenerate) case. As a byproduct, we obtain the continuum partially quenched results with nondegenerate sea quarks. We analyze the effects of nonleading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors B→π and D→K, when the light quarks are simulated with the staggered action.

  10. NNLO O({alpha}{sup 4}{sub s}) results for heavy quark pair production in quark-antiquark collisions. The one-loop squared contributions

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, J.G. [Mainz Univ. (Germany). Inst. fuer Physik; Merebashvili, Z. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-02-15

    We calculate the NNLO O({alpha}{sup 4}{sub s}) one-loop squared corrections to the production of heavy quark pairs in quark-antiquark annihilations. These are part of the NNLO O({alpha}{sup 4}{sub s}) radiative QCD corrections to this process. Our results, with the full mass dependence retained, are presented in a closed and very compact form, in the dimensional regularization scheme. We find very intriguing factorization properties for the finite part of the amplitudes. (orig.)

  11. Hierarchy spectrum of SM fermions: from top quark to electron neutrino

    International Nuclear Information System (INIS)

    Xue, She-Sheng

    2016-01-01

    In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν_R"f. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν_R"f and their left-handed conjugated fields ν_R"f"c. Light masses of gauged Majorana neutrinos in the normal hierarchy (10"−"5−10"−"2 eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).

  12. Hierarchy spectrum of SM fermions: from top quark to electron neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Xue, She-Sheng [ICRANet,Piazza della Repubblica 10, 65122 Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2016-11-10

    In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν{sub R}{sup f}. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν{sub R}{sup f} and their left-handed conjugated fields ν{sub R}{sup fc}. Light masses of gauged Majorana neutrinos in the normal hierarchy (10{sup −5}−10{sup −2} eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).

  13. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  14. Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory

    Science.gov (United States)

    Lee, Jong-Wan

    2015-05-01

    We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.

  15. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schemm, E.R., E-mail: eschemm@alumni.stanford.edu [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Levenson-Falk, E.M. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kapitulnik, A. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Stanford Institute of Energy and Materials Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2017-04-15

    Highlights: • Polar Kerr effect (PKE) probes broken time-reversal symmetry (TRS) in superconductors. • Absence of PKE below Tc in CeCoIn{sub 5} is consistent with dx2-y2 order parameter symmetry. • PKE in the B phase of the multiphase superconductor UPt3 agrees with an E2u model. • Data on URu2Si2 show broken TRS and additional structure in the superconducting state. - Abstract: The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of {sup 3}He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  16. Big break for charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)

    2003-06-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of {sup i}sospin{sup ,} and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while the down quark has a negative charge of -1/3. If charge symmetry was exact, the proton and the neutron would have the same mass and they would both be electrically neutral. This is because the proton is made of two up quarks and a down quark, while the neutron comprises two downs and an up. Replacing up quarks with down quarks, and vice versa, therefore transforms a proton into a neutron. Charge-symmetry breaking causes the neutron to be about 0.1% heavier than the proton because the down quark is slightly heavier than the up quark. Physicists had already elucidated certain aspects of charge-symmetry breaking, but our spirits were raised greatly when we heard of the recent work of Allena Opper of Ohio University in the US and co-workers at the TRIUMF laboratory in British Columbia, Canada. Her team has been trying to observe a small charge-symmetry-breaking effect for several years, using neutron beams at the TRIUMF accelerator. The researchers studied the

  17. Some peculiarities of conjoined hadroproduction of standard Higgs boson and heavy quark pair

    International Nuclear Information System (INIS)

    Bagdasaryan, A.S.; Egoryan, R.Sh.; Grigoryan, S.G.; Matinyan, S.G.

    1986-01-01

    A contribution to total cross section of conjoined hadroproduction of the H 0 -boson and the heavy quark pair Q and Q-bar (Q=c, b, t,...) from the H 0 -boson ''gluonic'' production diagrams (the so-called GGH-diagrams) is being discussed. A comparison is carried out between contributions to total cross sections from the GGH-diagrams and the H 0 -boson ''direct'' quark production diagrams (QH-diagrams). It is shown that with increasing M H the enhancement effect of the GGH contribution ''enters the game''

  18. 3-loop heavy flavor corrections in deep-inelastic scattering with two heavy quark lines

    International Nuclear Information System (INIS)

    Ablinger, J.; Schneider, C.; Hasselhuhn, A.; Round, M.; Manteuffel, A. von

    2014-07-01

    We consider gluonic contributions to the heavy flavor Wilson coefficients at 3-loop order in QCD with two heavy quark lines in the asymptotic region Q 2 >> m 2 1(2) . Here we report on the complete result in the case of two equal masses m 1 =m 2 for the massive operator matrix element A (3) gg,Q , which contributes to the corresponding heavy flavor transition matrix element in the variable flavor number scheme. Nested finite binomial sums and iterated integrals over square-root valued alphabets emerge in the result for this quantity in N and x-space, respectively. We also present results for the case of two unequal masses for the flavor non-singlet OMEs and on the scalar integrals ic case of A (3) gg,Q , which were calculated without a further approximation. The graphs can be expressed by finite nested binomial sums over generalized harmonic sums, the alphabet of which contains rational letters in the ratio η=m 2 1 /m 2 2 .

  19. Possibility of new dibaryons containing heavy flavors

    International Nuclear Information System (INIS)

    Leandri, J.; Silvestre-Brac, B.

    1993-01-01

    In a recent paper we have shown that the possibility of including heavy flavor in the dibaryon sector can lead to some new favored configurations (relative to the baryon-baryon threshold). In this study we extend our previous work by a systematic study of all the physical Qq 5 systems in a simple chromomagnetic model. In the first part we assume that the q quarks belong to the fundamental irrep of SU(3) F and that the Q quark has infinite mass. These assumptions are subsequently relaxed by introducing two mass parameters δ and η. Once these symmetries are broken we gain access in our model to a large number of new dibaryons containing heavy flavor. Some of them could be stable against decay via strong interactions, and we indicate the most favorable cases

  20. Estimates for the parameters of the heavy quark expansion

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Johannes; Mannel, Thomas [Universitaet Siegen (Germany)

    2015-07-01

    We give improved estimates for the non-perturbative parameters appearing in the heavy quark expansion for inclusive decays. While the parameters appearing in low orders of this expansion can be extracted from data, the number of parameters in higher orders proliferates strongly, making a determination of these parameters from data impossible. Thus, one has to rely on theoretical estimates which may be obtained from an insertion of intermediate states. We refine this method and attempt to estimate the uncertainties of this approach.

  1. Effects of final-state interaction and screening on strange and heavy quark production

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Cheuk-Yin [Oak Ridge National Lab., TN (United States); Chatterjee, L. [Oak Ridge National Lab., TN (United States)]|[Tennessee Univ., Knoxville, TN (United States)]|[Jadavpur Univ., Calcutta (India)

    1996-10-01

    Final-state interaction and screening have a great influence on {ital q{anti q}} production cross sections, which are important quantities in many problems in quark-gluon plasma physics. They lead to an enhancement of the cross section for a {ital q{anti q}} color-singlet state and a suppression for a color-octet state. The effects are large near the production threshold. The presence of screening gives rise to resonances for {ital q{anti q}} production just above the threshold at specific plasma temperatures. These resonances, especially {ital c{anti c}} and {ital b{anti b}} resonances, may be utilized to search for the quark-gluon plasma by studying the temperature dependence of heavy-quark pair production just above the threshold.

  2. Semileptonic decays of atomlike hadrons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Ito, Toshiaki; Morii, Toshiyuki; Tanimoto, Morimitsu.

    1992-01-01

    Semileptonic decays of heavy flavored hadrons are analyzed in the heavy quark effective theory (HQET) with leading 1/m Q corrections. All existing date for B-bar→D (*) lν-bar and D-bar→K (*) lν-bar are reproduced well in virtue of 1/m Q corrections, while the value of |V cb | derived by the HQET is almost independent of those corrections. In particular, 1/m s corrections are remarkable for D-bar→K (*) l ν -bar. Semiloptonic decays of Λ c and Λ b are also discussed including the 1/m Q corrections. (author)

  3. Symmetries and aggregates of quarks as constituents of hadrons

    International Nuclear Information System (INIS)

    Kibler, M.

    1982-07-01

    The interest of the Lie algebra of the group SU(n) for the classification of hadrons and the description of some of their static properties is emphasized for n=3, 4, 6, 8. The cases n=3 and 4 allow to introduce the quark flavors (u,d,s,) and (u,d,c,s), respectively, and the consideration of the spin of hadrons leads to the chain SU(2m) contains SU(m) x SU(2). The hadrons are described as bound states or aggregates of quarks of type quark-quark-quark for baryons and quark-antiquark for mesons. The Pauli exclusion principle applied to the three-quark baryons requires the introduction of a new quantum number, the color: each flavor of quark then comes in three colors

  4. Factorization of heavy-to-light baryonic transitions in SCET

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei

    2011-12-15

    In the framework of the soft-collinear effective theory, we demonstrate that the leading-power heavy-to-light baryonic form factors at large recoil obey the heavy quark and large energy symmetries. Symmetry breaking effects have several origins but all of them are suppressed by {lambda}/m{sub b} or {lambda}/E, where {lambda} is the hadronic scale, m{sub b} is the b quark mass and E{proportional_to}m{sub b} is the energy of light baryon in the final state. Including the energy release dependence, we derive the scaling law for form factors {xi}{sub {lambda}}{sub ,p}{proportional_to}{lambda}{sup 2} /E{sup 2}, which is in accordance with the implication from the experimental measurement on the branching ratio of {lambda}{sub b} {yields} p{pi}{sup -}. At leading order in {alpha}{sub s}, the leading-power baryonic form factors can factorize into the soft and collinear matrix elements without encountering any divergence. A leading-power factorization formula for nonleptonic b-baryon decays is also established. (orig.)

  5. X(3872) and its partners in the heavy quark limit of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo-Duque, C., E-mail: carloshd@ific.uv.es [Instituto de Física Corpuscular (centro mixto CSIC–UV), Institutos de Investigación de Paterna, Aptdo. 22085, 46071, Valencia (Spain); Nieves, J., E-mail: jmnieves@ific.uv.es [Instituto de Física Corpuscular (centro mixto CSIC–UV), Institutos de Investigación de Paterna, Aptdo. 22085, 46071, Valencia (Spain); Ozpineci, A., E-mail: ozpineci@metu.edu.tr [Instituto de Física Corpuscular (centro mixto CSIC–UV), Institutos de Investigación de Paterna, Aptdo. 22085, 46071, Valencia (Spain); Zamiralov, V., E-mail: zamir@depni.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov MSU, Moscow (Russian Federation)

    2013-12-18

    In this Letter, we propose interpolating currents for the X(3872) resonance, and show that, in the heavy quark limit of QCD, the X(3872) state should have degenerate partners, independent of its internal structure. Magnitudes of possible I=0 and I=1 components of the X(3872) are also discussed.

  6. X(3872) and its partners in the heavy quark limit of QCD

    International Nuclear Information System (INIS)

    Hidalgo-Duque, C.; Nieves, J.; Ozpineci, A.; Zamiralov, V.

    2013-01-01

    In this Letter, we propose interpolating currents for the X(3872) resonance, and show that, in the heavy quark limit of QCD, the X(3872) state should have degenerate partners, independent of its internal structure. Magnitudes of possible I=0 and I=1 components of the X(3872) are also discussed

  7. Energy Lossand Flow of Heavy Quarks in Au+Au Collisions at root-s=200GeV

    Energy Technology Data Exchange (ETDEWEB)

    Soltz, R; Klay, J; Enokizono, A; Newby, J; Heffner, M; Hartouni, E

    2007-02-26

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured electrons with 0.3 < p{sub rmT} < 9 GeV/c at midrapidity (|y| < 0.35) from heavy flavor (charm and bottom) decays in Au+Au collisions at {radical}s{sub NN} = 200 GeV. The nuclear modification factor R{sub AA} relative to p+p collisions shows a strong suppression in central Au+Au collisions, indicating substantial energy loss of heavy quarks in the medium produced at RHIC energies. A large azimuthal anisotropy, v{sub 2}, with respect to the reaction plane is observed for 0.5 < p{sub rmT} < 5 GeV/c indicating non-zero heavy flavor elliptic flow. A simultaneous description of R{sub AA}(p{sub rmT}) and v{sub 2}(p{sub rmT}) constrains the existing models of heavy-quark rescattering in strongly interacting matter and provides information on the transport properties of the produced medium. In particular, a viscosity to entropy density ratio close to the conjectured quantum lower bound, i.e. near a perfect fluid, is suggested.

  8. Overview on heavy flavour measurements in lead-lead collisions at the CERN-LHC

    CERN Document Server

    Mischke, Andre

    2013-01-01

    High energy collisions of heavy atomic nuclei allow to create and carefully study a high-density, colour-deconfined state of strongly-interacting matter. According to calculations from lattice Quantum-Chromodynamics, under the conditions of high energy density and temperature reached in such collisions, the phase transition to a quark-gluon plasma (QGP) is expected to occur, where the colour confinement of quarks and gluons into hadrons should vanish and chiral symmetry should be restored. Heavy-flavour particles, containing charm and beauty, are unique probes of the conditions of the medium formed in nucleus-nucleus collisions at high energy. In this report recent measurements on open and hidden heavy-flavour production in lead-lead collisions at CERN's Large Hadron Collider are presented and discussed.

  9. QCD corrections, virtual heavy quark effects and electroweak precision measurements

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kuehn, J.H.; Stuart, R.G.

    1988-01-01

    QCD corrections to virtual heavy quark effects on electroweak parameters are calculated, which may affect planned precision measurements at SLC and LEP. The influence of toponium and T b resonances is incorporated as well as the proper threshold behaviour of the imaginary part of the vacuum polarization function. The shift of the W-boson mass from these corrections and their influence on the polarization asymmetry are calculated and compared to the envisaged experimental precision. (orig.)

  10. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  11. Hadron spectra and quarks

    International Nuclear Information System (INIS)

    Gasiorowicz, S.; Rosner, J.L.

    1982-01-01

    The quark model began as little more than a quantum-number counting device. After a brief period during which quarks only played a symmetry role, serious interest in quark dynamics developed. The marriage of the principle of local gauge invariance and quarks has been astonishingly productive. Although many questions still need to be be answered, there is little doubt that the strong, weak and electroweak interactions of matter are described by gauge theories of interactions of the quarks. This review is focussed on the successes

  12. Evidence for SU(3) symmetry breaking from hyperon production

    International Nuclear Information System (INIS)

    Yang Jianjun

    2002-01-01

    We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD) by considering two typical sets of quark contributions to the spin content of the octet baryons: set 1 with SU(3) flavor symmetry and set 2 with SU(3) flavor symmetry breaking in the HSD. The quark distributions of the octet baryons are calculated with a successful statistical model. Using an approximate relation between the quark fragmentation functions and the quark distributions, we predict the polarizations of the octet baryons produced in e + e - annihilation and semi-inclusive deep lepton-nucleon scattering in order to reveal the SU(3) symmetry breaking effect on the spin structure of the octet baryons. We find that the SU(3) symmetry breaking significantly affects the hyperon polarization. The available experimental data on the Λ polarization seem to favor the theoretical predictions with SU(3) symmetry breaking. We conclude that there is a possibility to get collateral evidence for SU(3) symmetry breaking from hyperon production. The theoretical errors for our predictions are discussed

  13. Bootstrapping quarks and gluons

    Energy Technology Data Exchange (ETDEWEB)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces.

  14. Bootstrapping quarks and gluons

    International Nuclear Information System (INIS)

    Chew, G.F.

    1979-04-01

    Dual topological unitarization (DTU) - the approach to S-matrix causality and unitarity through combinatorial topology - is reviewed. Amplitudes associated with triangulated spheres are shown to constitute the core of particle physics. Each sphere is covered by triangulated disc faces corresponding to hadrons. The leading current candidate for the hadron-face triangulation pattern employs 3-triangle basic subdiscs whose orientations correspond to baryon number and topological color. Additional peripheral triangles lie along the hadron-face perimeter. Certain combinations of peripheral triangles with a basic-disc triangle can be identified as quarks, the flavor of a quark corresponding to the orientation of its edges that lie on the hadron-face perimeter. Both baryon number and flavor are additively conserved. Quark helicity, which can be associated with triangle-interior orientation, is not uniformly conserved and interacts with particle momentum, whereas flavor does not. Three different colors attach to the 3 quarks associated with a single basic subdisc, but there is no additive physical conservation law associated with color. There is interplay between color and quark helicity. In hadron faces with more than one basic subdisc, there may occur pairs of adjacent flavorless but colored triangles with net helicity +-1 that are identifiable as gluons. Broken symmetry is an automatic feature of the bootstrap. T, C and P symmetries, as well as up-down flavor symmetry, persist on all orientable surfaces

  15. Searches for heavy resonances in all-jet final states with top quarks using jet substructure techniques with the CMS Experiment

    CERN Document Server

    Usai, Emanuele; Haller, Johannes

    2017-01-01

    While the Standard Model is very successful in describing subnuclear phenomena, it is not acomplete theory of particle physics. Several new theories have been developed to address itsissues. Many extensions of the Standard Model predict the existence of high-mass resonances.In some cases these resonances have an enhanced coupling to third generation quarks or toa hypothetical new generation of heavy non-chiral quarks. This thesis describes two searchesfor new phenomena compatible with these theories, in particular a search is presented forresonant top-antitop production, and the first search for heavy resonances decaying to a topquark and a heavy top quark partner T is shown.The searches target the all-jets decay channels and use data collected by the CMS Experiment at the CERN LHC between 2012 and 2015 at a center-of-mass energy of 8 TeV and13 TeV. Due to the high mass of the resonances considered, the final state particles have ahigh Lorentz-boost. To reconstruct the hadronic decay of the top quarks and W...

  16. Flavour symmetry breaking and tuning the strange quark mass for 2+1 quark flavours

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Bornyakov, V. [Institute for High Energy Physics, Protovino (Russian Federation); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2010-12-15

    QCD lattice simulations with 2+1 flavours typically start at rather large up-down and strange quark masses and extrapolate first the strange quark mass to its physical value and then the updown quark mass. An alternative method of tuning the quark masses is discussed here in which the singlet quark mass is kept fixed, which ensures that the kaon always has mass less than the physical kaon mass. Using group theory the possible quark mass polynomials for a Taylor expansion about the flavour symmetric line are found, which enables highly constrained fits to be used in the extrapolation of hadrons to the physical pion mass. Numerical results confirm the usefulness of this expansion and an extrapolation to the physical pion mass gives hadron mass values to within a few percent of their experimental values. (orig.)

  17. Theory of hadronic production of heavy quarks

    International Nuclear Information System (INIS)

    Peterson, C.

    1981-07-01

    Conventional theoretical predictions for hadronic production of heavy quarks (Q anti Q) are reviewed and confronted with data. Perturbative hard scattering predictions agree qualitatively well with hidden Q anti Q production (e.g., psi, chi, T) whereas for open Q anti Q-production (e.g., pp → Λ/sub c/ + X) additional mechanisms or inputs are needed to explain the forwardly produced Λ/sub c/ + at ISR. It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data. The theoretical foundations of the intrinsic charm hypotheses together with its consequences for lepton-induced reactions is discussed in some detail

  18. Lifetime measurements of hadrons containing heavy quarks

    International Nuclear Information System (INIS)

    Forden, G.E.

    1985-01-01

    Recent lifetime measurements of heavy particles at PETRA and PEP are reviewed. A comparison of the methods used is given. The world averages for the lifetimes of the D 0 and D +- mesons are found to be (tau/dub D/ 0 ) - 3.97 +/- 0.3 x 10 -13 sec and (tau/dub D +-/) = 8.6 +/- 0.7 x 10 -13 sec. This difference in lifetimes is discussed in light of recent information about exclusive decays. The world average for the lifetime of bottom hadrons is determined to be (tau/sub b/) = 11.0 +/- 1.5 x 10 -13 sec and new estimates for the b quark mixing elements, absolute value V/sub bu/ and absolute value V/sub bc/, are given

  19. Heavy quark mass effects and improved tests of the flavor independence of strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, P.N. [Univ. of Oxford (United Kingdom); SLD Collaboration

    1998-08-01

    A review is given of latest results on tests of the flavor independence of strong interactions. Heavy quark mass effects are evident in the data and are now taken into account at next-to-leading order in QCD perturbation theory. The strong-coupling ratios {alpha}{sub s}{sup b}/{alpha}{sub s}{sup uds} and {alpha}{sub s}{sup c}/{alpha}{sub s}{sup uds} are found to be consistent with unity. Determinations of the b-quark mass m{sub b} (M{sub Z}) are discussed.

  20. The Impact of Intrinsic Heavy Quark Distributions in the Proton on New Physics Searches at the High Intensity Frontier

    International Nuclear Information System (INIS)

    Broksky, Stanley

    2012-01-01

    The possibility of an intense proton facility, at 'Project X' or elsewhere, will provide many new opportunities for searches for physics beyond the Standard Model. A Project X can serve a yet broader role in the search for new physics, and in this note we highlight the manner in which thus-enabled studies of the flavor structure of the proton, particularly of its intrinsic heavy quark content, facilitate other direct and indirect searches for new physics. Intrinsic heavy quarks in both light and heavy hadrons play a key role in searches for physics BSM with hadrons - and their study at the Intensity Frontier may prove crucial to establishing its existence.

  1. Heavy quarks at hadron colliders

    International Nuclear Information System (INIS)

    Paige, F.E.

    1989-01-01

    This paper discusses a conference at which the standard model requiring the existence of a top quark + to form a weak isospin doublet with the b quark is explored. Collaboration suggestions are offered. Results are explored

  2. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  3. Flavor Physics in the Quark Sector

    CERN Document Server

    Antonelli, Mario; Bauer, Daniel Adams; Becher, Thomas G.; Beneke, M.; Bevan, Adrian John; Blanke, Monika; Bloise, C.; Bona, Marcella; Bondar, Alexander E.; Bozzi, Concezio; Brod, Joachim; Buras, Andrzej J.; Cabibbo, N.; Carbone, A.; Cavoto, Gianluca; Cirigliano, Vincenzo; Ciuchini, Marco; Coleman, Jonathon P.; Cronin-Hennessy, Daniel P.; Dalseno, J.P.; Davies, C.H.; Di Lodovico, Francesca; Dingfelder, Jochen C.; Dolezal, Zdenek; Donati, Simone; Dungel, W.; Egede, Ulrik; Eigen, Gerald; Faccini, Riccardo; Feldmann, Thorsten; Ferroni, Fernando; Flynn, Jonathan M.; Franco, Enrico; Fujikawa, M.; Furic, Ivan K.; Gambino, Paolo; Gardi, E.; Gershon, Timothy John; Giagu, Stefano; Golowich, Eugene; Goto, Toru; Greub, C.; Grojean, Christophe; Guadagnoli, Diego; Haisch, U.A.; Harr, Robert Francis; Hoang, Andre H.; Hurth, Tobias; Isidori, Gino; Jaffe, D.E.; Juttner, Andreas; Jager, Sebastian; Khodjamirian, Alexander; Koppenburg, Patrick Stefan; Kowalewski, Robert V.; Krokovny, P.; Kronfeld, Andreas Samuel; Laiho, J.; Lanfranchi, G.; Latham, Thomas Edward; Libby, James F.; Limosani, A.; Lopes Pegna, David; Lu, Cai-Dian; Lubicz, Vittorio; Lunghi, Enrico; Luth, Vera G.; Maltman, K.; Marciano, William Joseph; Martin, Emilie Claire Mutsumi; Martinelli, Guido; Martinez-Vidal, Fernando; Masiero, A.; Mateu, V.; Mescia, Federico; Mohanty, Gagan Bihari; Moulson, Matthew; Neubert, Matthias; Neufeld, Helmut; Nishida, Shohei; Offen, Nils; Palutan, M.; Paradisi, Paride; Parsa, Z.; Passemar, Emilie; Patel, M.; Pecjak, B.D.; Petrov, Alexey A.; Pich, Antonio; Pierini, Maurizio; Plaster, Brad; Powell, Brian Alfred; Prell, Soeren Andre; Rademaker, J.; Rescigno, Marco; Ricciardi, Stefania; Robbe, Patrick; Rodrigues, E.; Rotondo, Marcello; Sacco, Roberto; Schilling, Christopher James; Schneider, Olivier; Scholz, Enno E.; Schumm, Bruce Andrew; Schwanda, C.; Schwartz, Alan Jay; Sciascia, Barbara; Serrano, Justine; Shigemitsu, J.; Shipsey, Ian P.J.; Sibidanov, A.L.; Silvestrini, Luca; Simonetto, Franco; Simula, Silvano; Smith, Christopher; Soni, A.; Sonnenschein, Lars; Sordini, Viola; Sozzi, Marco S.; Spadaro, Tommaso; Spradlin, Patrick Michael; Stocchi, Achille; Tantalo, Nazario; Tarantino, Cecilia; Telnov, Alexandre V.; Tonelli, Diego; Towner, I.S.; Trabelsi, K.; Urquijo, Phillip; Van de Water, R.S.; Van Kooten, Richard J.; Virto, Javier; Volpi, Guido; Wanke, R.; Westhoff, Susanne; Wilkinson, G.; Wingate, Matthew Bowen; Xie, Y.; Zupan, Jure

    2010-01-01

    One of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor and measurements and theoretical interpretations of their results have advanced tremendously: apart from masses and quantum numbers of flavor particles, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. Till early 1990s observations of CP violation were confined to neutral $K$ mesons, but since then a large number of CP-violating processes have been studied in detail in neutral $B$ mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of $K, D$, and $B$ mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near...

  4. [Search for strange quark matter and antimatter produced in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the development and progress of our group's research program in high energy heavy ion physics. We are a subset of the Yale experimental high energy physics effort (YAUG group) who became interested in the physics of high energy heavy ions in 1988. Our interest began with the possibility of performing significant searches for strange quark matter. As we learned more about the subject and as we gained experimental experience through our participation in AGS experiment 814, our interests have broadened. Our program has focused on the study of new particles, including (but not exclusively) strange quark matter, and the high sensitivity measurement of other composite nuclear systems such as antinuclei and various light nuclei. The importance of measurements of the known, but rare, nuclear systems lies in the study of production mechanisms. A good understanding of the physics and phenomenology of rare composite particle production in essential for the interpretation of limits to strange quark matter searches. We believe that such studies will also be useful in probing the mechanisms involved in the collision process itself. We have been involved in the running and data analysis for AGS E814. We have also worked on the R ampersand D for AGS E864, which is an approved experiment designed to reach sensitivities where there will be a good chance of discovering strangelets or of setting significant limits on the parameters of strange quark matter

  5. Unlocking color and flavor in superconducting strange quark matter

    International Nuclear Information System (INIS)

    Alford, Mark; Berges, Juergen; Rajagopal, Krishna

    1999-01-01

    We explore the phase diagram of strongly interacting matter with massless u and d quarks as a function of the strange quark mass m s and the chemical potential μ for baryon number. Neglecting electromagnetism, we describe the different baryonic and quark matter phases at zero temperature. For quark matter, we support our model-independent arguments with a quantitative analysis of a model which uses a four-fermion interaction abstracted from single-gluon exchange. For any finite m s , at sufficiently large μ we find quark matter in a color-flavor-locked state which leaves a global vector-like SU(2) color+L+R symmetry unbroken. As a consequence, chiral symmetry is always broken in sufficiently dense quark matter. As the density is reduced, for sufficiently large m s we observe a first-order transition from the color-flavor-locked phase to color superconducting phase analogous to that in two-flavor QCD. At this unlocking transition chiral symmetry is restored. For realistic values of m s our analysis indicates that chiral symmetry breaking may be present for all densities down to those characteristic of baryonic matter. This supports the idea that quark matter and baryonic matter may be continuously connected in nature. We map the gaps at the quark Fermi surfaces in the high density color-flavor-locked phase onto gaps at the baryon Fermi surfaces at low densities

  6. Polarization in heavy quark decays

    Energy Technology Data Exchange (ETDEWEB)

    Alimujiang, K.

    2006-07-01

    In this thesis I concentrate on the angular correlations in top quark decays and their next.to.leading order (NLO) QCD corrections. I also discuss the leading.order (LO) angular correlations in unpolarized and polarized hyperon decays. In the first part of the thesis I calculate the angular correlation between the top quark spin and the momentum of decay products in the rest frame decay of a polarized top quark into a charged Higgs boson and a bottom quark in Two-Higgs-Doublet-Models: t({up_arrow}) {yields} b + H{sup +}. I provide closed form formulae for the O({alpha}{sub s}) radiative corrections to the unpolarized and the polar correlation functions for m{sub b}{ne}0 and m{sub b}=0. In the second part I concentrate on the semileptonic rest frame decay of a polarized top quark into a bottom quark and a lepton pair: t({up_arrow}){yields}X{sub b}+l{sup +}+{nu}{sub l}. I present closed form expressions for the O({alpha}{sub s}) radiative corrections to the unpolarized part and the polar and azimuthal correlations for m{sub b}{ne}0 and m{sub b}=0. In the last part I turn to the angular distribution in semileptonic hyperon decays. Using the helicity method I derive complete formulas for the leading order joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. (orig.)

  7. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  8. Evidence for dynamic SU(5) symmetry breaking in meson mass multiplets

    International Nuclear Information System (INIS)

    Frikkee, E.

    1994-07-01

    It is shown that the mass differences and multiplet pattern for pseudoscalar and vector mesons correspond to a chain of dynamic symmetry reductions SU(n) contains SU(n-1)xU(1). In this symmetry-reduction model, the differences between the masses of the quark flavours are the result of intra-hadronic interactions. Quark confinement is explained as a consequence of the fact that this symmetry breaking chain only occurs in hadrons. The results of a quantitative analysis of mass splittings in meson multiplets indicate that SU(5) is probably the highest symmetry for hadron states. In the proposed dynamic symmetry breaking scheme with five quark flavours there is no one-to-one correspondence between lepton and quark generations. (orig.)

  9. Top quark as a window to new physics: recent ATLAS results

    CERN Document Server

    Serkin, Leonid; The ATLAS collaboration

    2017-01-01

    The Large Hadron Collider proton-proton collision centre-of-mass energy was recently increased to 13 TeV, opening a unique window to search for signatures with mass scales higher than ever before and involving several high-mass particles. One attractive possibility is to focus on the heaviest known elementary particle described by the Standard Model, the top quark. With a mass close to the scale of electroweak symmetry breaking, the top quark is predicted to have a very large coupling to the Higgs boson and in many physics models beyond the Standard Model also to other new resonances. Possible new phenomena may enhance the SM cross-sections through the production of heavy objects in association with a top-quark pair. In this talk, I will present recent results from the ATLAS Collaboration which target a variety of scenarios and improve the sensitivity to a wider class of BSM processes.

  10. Diffractive heavy quark production in AA collisions at the LHC at NLO

    Science.gov (United States)

    Machado, M. M.; Ducati, M. B. Gay; Machado, M. V. T.

    2011-07-01

    The single and double diffractive cross sections for heavy quarks production are evaluated at NLO accuracy for hadronic and heavy ion collisions at the LHC. Diffractive charm and bottom production is the main subject of this work, providing predictions for CaCa, PbPb and pPb collisions. The hard diffraction formalism is considered using the Ingelman-Schlein model where a recent parametrization for the Pomeron structure function (DPDF) is applied. Absorptive corrections are taken into account as well. The diffractive ratios are estimated and theoretical uncertainties are discussed. Comparison with competing production channels is also presented.

  11. An overview of heavy quark energy loss puzzle at RHIC

    International Nuclear Information System (INIS)

    Djordjevic, Magdalena

    2006-01-01

    We give a theoretical overview of the heavy quark tomography puzzle posed by recent non-photonic single electron data from central Au+Au collisions at √s = 200A GeV. We show that radiative energy loss mechanisms alone are not able to explain large single electron suppression data, as long as realistic parameter values are assumed. We argue that a combined collisional and radiative pQCD approach can solve a substantial part of the non-photonic single electron puzzle

  12. The self-energy of a heavy quark in the gluonic vacuum and the effective mass

    International Nuclear Information System (INIS)

    Ishizuka, W.; Kikuchi, Y.

    1983-01-01

    We calculate, be use of the multipole expansion, the self-energy of the heavy quark in the gluonic vacuum from which the momentum dependent effective mass is derived. A phenomenological consequence is discussed also. (orig.)

  13. Large lepton mixings from continuous symmetries

    International Nuclear Information System (INIS)

    Everett, Lisa; Ramond, Pierre

    2007-01-01

    Within the broad context of quark-lepton unification, we investigate the implications of broken continuous family symmetries which result from requiring that in the limit of exact symmetry, the Dirac mass matrices yield hierarchical masses for the quarks and charged leptons, but lead to degenerate light neutrino masses as a consequence of the seesaw mechanism, without requiring hierarchical right-handed neutrino mass terms. Quark mixing is then naturally small and proportional to the size of the perturbation, but lepton mixing is large as a result of degenerate perturbation theory, shifted from maximal mixing by the size of the perturbation. Within this approach, we study an illustrative two-family prototype model with an SO(2) family symmetry, and discuss extensions to three-family models

  14. Back-to-back heavy quark pair production in semi-inclusive DIS

    Science.gov (United States)

    Zhang, Guang-Peng

    2017-11-01

    The one-loop correction to heavy quark pair back-to-back production in unpolarized semi-inclusive deep inelastic scattering is given in this work in the framework of transverse momentum dependent(TMD) factorization. Both unpolarized and linearly polarized TMD gluon distribution functions are taken into account. A subtraction method based on diagram expansion is used to get finite hard coefficients. It is found the soft and collinear divergences of one-loop amplitude is proportional to tree level ones and can be expressed through several basic scalar triangle and bubble integrals. The subtraction of these divergences is spin independent. Beyond tree level an additional soft factor related to final heavy quark pair must be added into the factorization formula. This soft factor affects the azimuthal angle distribution of virtual photon in a nonperturbative way. Integrating over virtual photon azimuthal angle we construct three weighted cross sections, which depend on only three additional integrated soft factors. These weighted cross sections can be used to extract linearly polarized gluon distribution function. In addition, lepton azimuthal angle is unintegrated in this work, which provides more observables. All hard coefficients relevant to lepton and virtual photon azimuthal angle distributions are given at one-loop level.

  15. Mass effects in the emission of gluons from heavy quarks at high energies

    CERN Document Server

    Fuster, J A; Tortosa, P

    2001-01-01

    The effects in the emission of gluons due to the mass of the heavy quarks have clearly been observed by the experiments at LEP and SLC. The analyses of the data using theoretical corrections computed at Next-to-Leading Order have allowed to either test the flavour independence of the strong coupling constant with very high precision (~1%) or measure the b-quark mass at high energy, square root s~M/sub Z/. The results obtained by the various experiments, ALEPH, DELPHI, OPAL and SLD, agree well within errors. The systematic uncertainties limit present determinations though new methods and strategies are being developed to overcome the present bounds. (15 refs).

  16. Quark masses from quark-gluon condensates in a modified perturbative QCD

    CERN Document Server

    Cabo-Montes de Oca, Alejandro

    2003-01-01

    In this note, it is argued that the mass matrix for the six quarks can be generated in first approximation by introducing fermion condensates on the same lines as was done before for gluons, within the modified perturbative expansion for QCD proposed in former works. Thus, the results point in the direction of the conjectured link of the approximate `Democratic' symmetry of the quark mass matrix and `gap' effects similar to the ones occuring in superconductivity. The condensates are introduced here non-dynamically and therefore the question of the possibility for their spontaneous generation remains open. However, possible ways out of the predicted lack of the `Democratic' symmetry of the condensates resulting from the spontaneous breaking of the flavour symmetry are suggested. They come from an analysis based on the Cornwall--Jackiw--Tomboulis (CJT) effective potential for composite operators

  17. Lattice calculation of heavy-light decay constants with two flavors of dynamical quarks

    International Nuclear Information System (INIS)

    Bernard, C.; Datta, S.; DeGrand, T.; DeTar, C.; Gottlieb, Steven; Heller, Urs M.; McNeile, C.; Orginos, K.; Sugar, R.; Toussaint, D.

    2002-01-01

    We present results for f B , f B s , f D , f D s and their ratios in the presence of two flavors of light sea quarks (N f =2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical u, d masses; that is, the central values are ''partially quenched.'' A calculation using 'fat-link clover' valence fermions is also discussed but is not included in our final results. We find, for example, f B =190(7)( -17 +24 )( -2 +11 )( -0 +8 ) MeV, f B s /f B =1.16(1)(2)(2)( -0 +4 ), f D s =241(5)( -26 +27 )( -4 +9 )( -0 +5 ) MeV, and f B /f D s =0.79(2)( -4 +5 )(3)( -0 +5 ), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched N f =2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,d quark masses are not very light and chiral log effects may not be fully under control

  18. Weak decays and the dynamics of heavy quark production

    International Nuclear Information System (INIS)

    Milani, P.

    1980-02-01

    The parent-child relation governing the yield of particles arising from the subsequent decay of primarily-produced hadrons is investigated in the high-Psub(T) regime. An approximation scheme is developed and applied to the study of leptons and kaons coming from charged mesons produced in hadronic collisions. Correlations of the final particles are considered and a generalised Sternheimer relation, whereby given the moments of the decay distribution, the parent correlations may be simply extracted from the decay products, is developed. Finally the predictions of QCD for heavy quark production as observed through their weak decays, are investigated. (author)

  19. Higher Order Heavy Quark Corrections to Deep-Inelastic Scattering

    Science.gov (United States)

    Blümlein, Johannes; DeFreitas, Abilio; Schneider, Carsten

    2015-04-01

    The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q2. We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring αs (MZ), the charm quark mass mc, and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.

  20. Higher order heavy quark corrections to deep-inelastic scattering

    International Nuclear Information System (INIS)

    Bluemlein, J.; Freitas, A. de; Johannes Kepler Univ., Linz; Schneider, C.

    2014-11-01

    The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q 2 . We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring α s (M Z ), the charm quark mass m c , and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.

  1. Quest for quark soup

    Energy Technology Data Exchange (ETDEWEB)

    Goldhaber, J.

    1986-11-13

    The paper concerns the experimental search for quark-gluon plasma. The theory of a quark-gluon plasma is first given. Then the method which researchers hope will create the quark-gluon plasma is described; the idea is to use heavy ion beams in, the CERN SPS. The CERN 'heavy-ion programme' involves research groups mainly from CERN, Lawrence Berkeley Laboratory and Gellsellschaft fuer Schwerionenforschung. The experiments in the research programme are outlined, together with the detector equipment employed in the experiments.

  2. Heavy ion physics : Exhibition Lepton-Photon 2001

    CERN Multimedia

    2001-01-01

    High-energy Heavy Ion Physics studies strongly interacting matter at extreme energy densities.QCD predicts that at such densities hadronic matter turns into a plasma of deconfined quarks and gluons,the Quark Gluon Plasma (QGP).Matter in the Universe must have existed in this state up to about 10 ms after the Big Bang.Today QGP might exist in the c re of neutron stars.The study of the phase diagram of matter is a new approach to investigate QCD at its natural scale,L QCD ,and to address the fundamental questions of confinement and chiral-symmetry breaking.The combined results obtained by the SPS heavy ion experiments,in particular those obtained with the Pb beam,pr vide compelling evidence for the existence of a new state of matter featuring many of the characteristics predicted for the QGP.The ALICE experiment will carry this research into the LHC era.

  3. A rationale for long-lived quarks and leptons at the LHC: low energy flavour theory

    Science.gov (United States)

    Éboli, O. J. P.; Savoy, C. A.; Funchal, R. Zukanovich

    2012-02-01

    In the framework of gauged flavour symmetries, new fermions in parity symmetric representations of the standard model are generically needed for the compensation of mixed anomalies. The key point is that their masses are also protected by flavour symmetries and some of them are expected to lie way below the flavour symmetry breaking scale(s), which has to occur many orders of magnitude above the electroweak scale to be compatible with the available data from flavour changing neutral currents and CP violation experiments. We argue that, actually, some of these fermions would plausibly get masses within the LHC range. If they are taken to be heavy quarks and leptons, in (bi)-fundamental representations of the standard model symmetries, their mixings with the light ones are strongly constrained to be very small by electroweak precision data. The alternative chosen here is to exactly forbid such mixings by breaking of flavour symmetries into an exact discrete symmetry, the so-called proton-hexality, primarily suggested to avoid proton decay. As a consequence of the large value needed for the flavour breaking scale, those heavy particles are long-lived and rather appropriate for the current and future searches at the LHC for quasi-stable hadrons and leptons. In fact, the LHC experiments have already started to look for them.

  4. Color sextet quarks and new high-energy interactions

    International Nuclear Information System (INIS)

    White, A.R.; Kang, Kyungsik

    1992-01-01

    We review the implications of adding a flavor doublet of color sextet quarks to QCD. Theoretical attractions include -- ''minimal'' dynamical symmetry breaking of the electroweak interaction, solution of the Strong CP problem via the ''heavy axion'' η 6 , and Critical Pomeron Scaling at asymptotic energies. Related experimental phenomena, which there may be evidence for, include -- production of the η 6 at LEP, large cross-sections for W + W - and Z o Z o pairs and very high energy jets in hadron colliders, and a hadronic threshold above which high-energy ''exotic'' diffractive processes appear in Cosmic Ray events

  5. Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, J.F. (ed.)

    1991-01-01

    This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K{sup 0} decays at CERN; recent K{sup 0} decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results from CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN {rho}{bar {rho}} collider; B physics at CDF; and review of particle astrophysics.

  6. Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics

    International Nuclear Information System (INIS)

    Hawthorne, J.F.

    1991-01-01

    This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K 0 decays at CERN; recent K 0 decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results from CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction? New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN ρ bar ρ collider; B physics at CDF; and review of particle astrophysics

  7. Heavy quark fragmentation functions for D-wave quarkonium and charmed beauty mesons

    International Nuclear Information System (INIS)

    Cheung, K.; Yuan, T.C.

    1995-09-01

    At the large transverse momentum region, the production of heavy-heavy bound-states such as charmonium, bottomonium, and anti bc mesons in high energy e + e - and hadronic collisions is dominated by parton fragmentation. The authors calculate the heavy quark fragmentation functions into the D-wave quarkonium and anti bc mesons to leading order in the strong coupling constant and in the non-relativistic expansion. In the anti bc meson case, one set of its D-wave states is expected to lie below the open flavor threshold. The total fragmentation probability for a anti b antiquark to split into the D-wave anti bc mesons is about 2 x 10 -5 , which implies that only 2% of the total pseudo-scalar ground state B c comes from the cascades of these orbitally excited states

  8. Phenomenology of the standard model under conditions of spontaneously broken mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dyatlov, I. T., E-mail: dyatlov@thd.pnpi.spb.ru [National Research Center Kurchatov Institute, Petersburg Nuclear Physics Institute (Russian Federation)

    2017-03-15

    Spontaneously broken mirror symmetry is able to reproduce observed qualitative properties of weak mixing for quark and leptons. Under conditions of broken mirror symmetry, the phenomenology of leptons—that is, small neutrino masses and a mixing character other than that in the case of quarks—requires the Dirac character of the neutrinos and the existence of processes violating the total lepton number. Such processes involve heavy mirror neutrinos; that is, they proceed at very high energies. Here, CP violation implies that a P-even mirror-symmetric Lagrangian must simultaneously be T-odd and, according to the CPT theorem, C-odd. All these properties create preconditions for the occurrence of leptogenesis, which is a mechanism of the emergence of the baryon–lepton asymmetry of the universe in models featuring broken mirror symmetry.

  9. Search for Dark Matter In events with heavy quarks and missing transverse energy with the ATLAS detector

    CERN Document Server

    Afik, Yoav; The ATLAS collaboration

    2017-01-01

    A wide search program is being carried at the LHC under the hypothesis that Dark Matter (DM) consists of weakly interacting massive particles (WIMPs). Final states with heavy flavour quarks and large momentum imbalance represent an interesting discovery signature which allows to probe models with scalar or pseudo-scalar interactions between the Standard Model and the dark sector under the assumption of Minimal Flavour Violation. We present the most recent results of searches for DM produced in association with a pair of heavy flavour quarks (DM+HF) in ATLAS [1-2] based on 36.1 fb-1 of proton-proton collision data collected at a centre of mass energy of 13 TeV.

  10. Quark-lepton unification and proton decay

    International Nuclear Information System (INIS)

    Pati, J.C.; Salam, A.

    1980-05-01

    Complexions for proton decay arising within a maximal symmetry for quark-lepton unification, which leads to spontaneous rather than intrinsic violations of B, L and F are considered. Four major modes satisfying δB=-1 and δF=0, -2, -4 and -6 are noted. It is stressed that some of these modes can coexist in accord with allowed solutions for renormalization group equations for coupling constants for a class of unifying symmetries. None of these remarks is dependent on the nature of quark charges. It is noted that if quarks and leptons are made of constituent preons, the preon binding is likely to be magnetic. (author)

  11. Heavy Quark Production at HERA in KT Factorization Supplemented With CCFM Evolution

    International Nuclear Information System (INIS)

    Jung, H.

    2001-01-01

    The application of k t - factorization, supplemented with the CCFM small-x evolution equation, to heavy quark production is discussed. Differential cross sections of bb production and also inelastic J/ψ production as measured at HERA are compared to the hadron level CCFM Monte Carlo generator Cascade, using the unintegrated gluon density obtained within the CCFM evolution approach from a fit to HERA F 2 data. (author)

  12. Form factors of heavy mesons in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M A; Vysotsky, M I [Moskovskii Inst. Theoreticheskoj i Ehksperimental' noj Fiziki (USSR)

    1981-08-10

    We discuss logarithmic corrections to form factors of mesons built from heavy quarks. The reactions e/sup +/e/sup -/ ..-->.. etasub(c)..gamma.. and H ..-->.. J/psi..gamma.. are considered as an example. A novel feature as compared to the well-studied problem of the pion form factor is the existence of transitions between the quark-antiquark state canti c and the gluonic one. O(..cap alpha..sub(s)) corrections are calculated exactly. An infinite series of the leading logarithmic terms (..cap alpha..sub(s)ln(Q/sup 2//m/sup 2/sub(c)))sup(n) is summed up with the help of the operator technique. Apart from results already known for quark operators, we use some new results referring to gluon operator and their mixing with those made from quarks. Two alternative derivations of the multiplicatively renormalizable operators are given. The first one reduces to a direct computation of the mixing matrix and its diagonalization, the second is based on conformal symmetry considerations.

  13. Form factors of heavy mesons in QCD

    International Nuclear Information System (INIS)

    Shifman, M.A.; Vysotsky, M.I.

    1980-01-01

    Logarithmic corrections to form factors of mesons built from heavy quarks are dirived in the framework of quantum chromodynamics. The reactions e + e - → etasub(c)γ and H → J/PSIγ are considered as an example. A novel feature as compared to the well studied problem of the pion form factor is the existence of the transformations between the quark-antiquark state c anti c and the gluonic one. O(αsub(s)) corrections are calculated exactly. An infinite series of the leading logarithmic terms is summed up with the help of the operator technique. Apart from already known results for quark operators some new results referring to gluon operators and their mixing with the quark ones are used. Two alternative derivations of the multiplicatively renormalizable operators are given. The first one reduces to a direct computation of the mixing matrix and its diagonalization, the second derivation is based on conformal symmetry considerations

  14. Probing new physics at the LHC: searches for heavy top-like quarks with the ATLAS experiment

    CERN Document Server

    Succurro, Antonella; Casado Lechuga, María Pilar

    Is our Standard Model (SM) of the fundamental particle interactions complete? Apparently, the answer is “no”. Many theories have been proposed to explain what is currently not understood, like the nature of Dark Matter, or the reason why the Higgs boson is so light. Now that the Large Hadron Collider (LHC) at CERN is fully operational, it is possible for experiments like ATLAS to explore very high-energy regimes where new physics can be probed. The work presented in this dissertation consists of two analyses aimed at the discovery (or exclusion) of a signal from a new particle: a quark similar to the top quark (the heaviest particle of the Standard Model) but with a larger mass. This new “top-like” quark could be a simple replica of the SM top quark, just with higher mass, i.e. a chiral fourth-generation up-type quark, or it could have exotic features. The latter hypothesis is particularly interesting as many “beyond-Standard Model” theories predict new heavy so-called vector-like quarks. Both sea...

  15. Phenomenology of renormalons and the OPE from lattice regularization: The gluon condensate and the heavy quark pole mass

    Energy Technology Data Exchange (ETDEWEB)

    Bali, Gunnar S. [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany); Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Pineda, Antonio [Grup de Física Teòrica and IFAE, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Barcelona (Spain)

    2016-01-22

    We study the operator product expansion of the plaquette (gluon condensate) and the self-energy of an infinitely heavy quark. We first compute their perturbative expansions to order α{sup 35} and α{sup 20}, respectively, in the lattice scheme. In both cases we reach the asymptotic regime where the renormalon behavior sets in. Subtracting the perturbative series, we obtain the leading non-perturbative corrections of their respective operator product expansions. In the first case we obtain the gluon condensate and in the second the binding energy of the heavy quark in the infinite mass limit. The results are fully consistent with the expectations from renormalons and the operator product expansion.

  16. Possible reason why leptons are lighter than quarks

    International Nuclear Information System (INIS)

    Volkas, R.R.

    1994-01-01

    The minimal model of spontaneously broken leptonic colour and discrete quark-lepton symmetry predicts that charged leptons have the same masses as their partner charge +2/3 quarks up to small radiative corrections. By invoking a different pattern of symmetry braking, a similar model can be constructed with the structural feature that charged leptons have to be lighter than their partner quarks because of fermion mixing effects. As well as furnishing a new model-building tool, this is phenomenologically interesting because the scale of the new physics responsible for the quark-lepton mass hierarchy could be as low as several hundred GeV. 8 refs

  17. Weak mixing and CP violation involving heavy quarks and possible measurements in e/sup +/e/sup -/ experiments. [Higgs exchange mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A; Aydin, Z Z [Hamburg Univ. (Germany, F.R.). 2. Inst. fuer Theoretische Physik

    1979-01-01

    The authors evaluate weak mass mixing among the neutral heavy mesons with a bottom (Q=-1/3) or top (Q=+2/3) quark and CP violation in this framework of six quark V-A models. It is argued that bottom and top mesons may distinguish the Higgs exchange mechanism of CP violation from a complex phase in the quark mass matrix, if bottom and top quark masses are sufficiently different. Estimates of weak mixing and CP violating effects for e/sup +/e/sup -/ experiments at PETRA, PEP and CESR energies are presented.

  18. Recent Developments in Heavy Quark and Quarkonium Production

    International Nuclear Information System (INIS)

    Thomas Mehen

    2004-01-01

    Recent measurements of J/ψ production in e + e - colliders pose a challenge to the NRQCD factorization theorem for quarkonium production. Discrepancies between leading order calculations of color-octet contributions and the momentum distribution of J/ψ observed by Belle and BaBar are resolved by resumming large perturbative and nonperturbative corrections that are enhanced near the kinematic endpoint. The large cross sections for J/ψ + c + (bar c) and double quarkonium production remain poorly understood. Nonperturbative effects in fixed-target hadroproduction of open charm are also discussed. Large asymmetries in the production of charm mesons and baryons probe nonperturbative corrections to the QCD factorization theorem. A power correction called heavy-quark recombination can economically explain these asymmetries with a few universal parameters

  19. Charged particle multiplicities in heavy and light quark initiated events above the $Z^0$ peak

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Amaral, P.; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Buesser, K.; Burckhart, H.J.; Campana, S.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Elfgren, E.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Gagnon, P.; Gary, John William; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Howard, R.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kormos, Laura L.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kruger, K.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Layter, J.G.; Leins, A.; Lellouch, D.; Lettso, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, J.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.J.; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Roney, J.M.; Rosati, S.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schoerner-Sadenius, Thomas; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Siroli, G.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2002-01-01

    We have measured the mean charged particle multiplicities separately for bbbar, ccbar and light quark (uubar, ddbar, ssbar) initiated events produced in e+e- annihilations at LEP. The data were recorded with the OPAL detector at eleven different energies above Z0 peak, corresponding to the full statistics collected at LPE1.5 and LEP2. The difference in mean charged and particle multiplicities for bbbar and light quark events, delta_bl, measured over this energy range is consistent with an energy independent behaviour, as predicted by QCD, but is inconsistent with the prediction of a more phenomenological approach which assumes that the multiplicity accompanying the decay of a heavy quark is independent of the quark mass itself. Our results, which can be combined into the single measurement delta_bl = 3.44+-0.40(stat)+-0.89(syst) at a luminosity weighted average centre-of mass energy of 195 GeV, are also consistent with an energy independent behaviour as extrapolated from lower energy data.

  20. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  1. Dihedral flavor symmetries

    International Nuclear Information System (INIS)

    Blum, Alexander Simon

    2009-01-01

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  2. Heavy-quark hadroproduction in kT-factorization approach with unintegrated gluon distributions

    International Nuclear Information System (INIS)

    Shabelski, Yu.M.; Shuvaev, A.G.

    2006-01-01

    The processes of heavy-quark production using the unintegrated gluon distributions are considered. The numerical predictions for high-energy nucleon-nucleon and photon-nucleon collisions of the k T -factorization approach (semihard theory) are compared with the experimental data from Tevatron collider and HERA. The total production cross sections and p T distributions are considered and they are in reasonable agreement with the data for reasonable values of QCD scale [ru

  3. Properties of heavy quark jets produced by e+e- annihilation at 29 GeV

    International Nuclear Information System (INIS)

    Rowson, P.C.

    1985-10-01

    The Mark II detector in the e + e - storage ring PEP at the Stanford Liner Accelerator Center (SLAC) is used to measure selected properties of hadronic events corresponding to produced bottom or charm quarks. Heavy flavor enrichment is accomplished by tagging events with prompt electrons or muons. Differences between bottom, charm and average jets are observed for momentum, transverse momentum, rapidity and jet mass distributions. A detailed study of the charged multiplicity of b- and c-enriched events finds the mean multiplicity of bottom and charm events to be 16.2 +- 0.5 +- 1.0 and 13.2 +- 0.5 +- 0.9, respectively, where the first error is statistical and the second is systematic. The corresponding 'non-leading' multiplicities of charged particles accompanying the pair of heavy hadrons are 5.2 +- 0.5 +- 0.9 for bottom, and 8.0 +- 0.5 +- 0.9 for charm. We find from these non-leading multiplicities that bottom and charm hadrons fragment with mean energy fractions of /sub b/ = 0.79/sub -0.05//sup +0.10/ and /sub c/ = 0.60/sub -0.11//sup +0.09/. These results confirm the expected hard fragmentation of heavy quarks and agree with previous measurements based on leptonic inclusive spectra and D* fragmentation. 48 refs., 29 figs

  4. Light-light and heavy-light mesons in the model of QCD string with quarks at the ends

    CERN Document Server

    Nefediev, A V

    2002-01-01

    The variational einbein field method is applied to the model of the QCD string with quarks at the ends for the case of light-light and heavy-light mesons. Special attention is payed to the proper string dynamics. The correct string slope of the Regge trajectories is reproduced for light-light states which comes out from the picture of rotating string. Masses of several low-lying orbitally and radially excited states in the D, D_s, B, and B_s meson spectra are calculated and a good agreement with the experimental data as well as with recent lattice calculations is found. The role of the string correction to the interquark interaction is discussed at the example of the identification of D*'(2637) state recently claimed by DELPHI Collaboration. For the heavy-light mesons the standard constants used in Heavy Quark Effective Theory are extracted and compared to the results of other approaches.

  5. Top quark soliton and its anomalous chromomagnetic moment

    International Nuclear Information System (INIS)

    Berger, J.; Blotz, A.; Kim, H.; Goeke, K.

    1996-01-01

    We show that under the assumption of dynamical symmetry breaking of electroweak interactions by a top quark condensate, motivated by the top mode standard model, the top quark in this effective theory can be considered then as a chiral color soliton. This is realized in an effective four-fermion interaction with chiral SU(3) c as well as SU(2) L circle-times U Y (1) symmetry. In the pure top quark sector the soliton consists of a top valence quark and a Dirac sea of top quarks and top antiquarks coupled to a color octet of Goldstone pions. The mass spectra, isoscalar quadratic radii, and the anomalous chromomagnetic moment because of a nontrivial color form factor are calculated with zero and finite current top quark masses and effects at the hadron colliders are discussed. The anomalous chromomagnetic moment turns out to have a value consistent with the top quark production rates of the D0 and CDF measurements. copyright 1996 The American Physical Society

  6. Anatomy of the sign-problem in heavy-dense QCD

    International Nuclear Information System (INIS)

    Garron, Nicolas; Langfeld, Kurt

    2016-01-01

    QCD at finite densities of heavy quarks is investigated using the density-of-states method. The phase factor expectation value of the quark determinant is calculated to unprecedented precision as a function of the chemical potential. Results are validated using those from a reweighting approach where the latter can produce a significant signal-to-noise ratio. We confirm the particle-hole symmetry at low temperatures, find a strong sign problem at intermediate values of the chemical potential, and an inverse Silver Blaze feature for chemical potentials close to the onset value: here, the phase-quenched theory underestimates the density of the full theory. (orig.)

  7. Search for vector-like quarks and excited quarks at CMS

    CERN Document Server

    Rauco, Giorgia

    2017-01-01

    We present the results of the latest searches for new hypothetical heavy quarks using proton-proton collisions data collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV. Vector-like quarks are postulated to solve the hierarchy problem and stabilize the Higgs mass and they are not constrained by the Higgs discovery and electroweak measurements, as for the case of a fourth generation of fermions. They can either be produced singly or pair-wise and their decays result in a variety of final states, containing massive standard model quarks and bosons (Z, W, H). Being these new particles expected to be appearing at the TeV scale, they give rise to boosted topologies, in which jet substructures techniques play a fundamental role. An alternative type of heavy quark resonance are the excited quarks, which are predicted by the compositeness model, being their evidence a clear signature of the composite structure of the ordinary matter. Their decay leads to the corresponding ordinary qua...

  8. Unified flavor symmetry from warped dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Mariana, E-mail: mariana.frank@concordia.ca [Department of Physics, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6 (Canada); Hamzaoui, Cherif, E-mail: hamzaoui.cherif@uqam.ca [Groupe de Physique Théorique des Particules, Département des Sciences de la Terre et de L' Atmosphère, Université du Québec à Montréal, Case Postale 8888, Succ. Centre-Ville, Montréal, Québec, H3C 3P8 (Canada); Pourtolami, Nima, E-mail: n_pour@live.concordia.ca [Department of Physics, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6 (Canada); Toharia, Manuel, E-mail: mtoharia@physics.concordia.ca [Department of Physics, Concordia University, 7141 Sherbrooke St. West, Montreal, Quebec, H4B 1R6 (Canada)

    2015-03-06

    In a model of warped extra-dimensions with all matter fields in the bulk, we propose a scenario which explains all the masses and mixings of the SM fermions. In this scenario, the same flavor symmetric structure is imposed on all the fermions of the Standard Model (SM), including neutrinos. Due to the exponential sensitivity on bulk fermion masses, a small breaking of this symmetry can be greatly enhanced and produce seemingly un-symmetric hierarchical masses and small mixing angles among the charged fermion zero-modes (SM quarks and charged leptons), thus washing out visible effects of the symmetry. If the Dirac neutrinos are sufficiently localized towards the UV boundary, and the Higgs field leaking into the bulk, the neutrino mass hierarchy and flavor structure will still be largely dominated and reflect the fundamental flavor structure, whereas localization of the quark sector would reflect the effects of the flavor symmetry breaking sector. We explore these features in an example based on which a family permutation symmetry is imposed in both quark and lepton sectors.

  9. Search for pair and single production of new heavy quarks that decay to a $Z$ boson and a third-generation quark in $pp$ collisions at $\\sqrt{s}=8$ TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-11-19

    A search is presented for the production of new heavy quarks that decay to a $Z$ boson and a third-generation Standard Model quark. In the case of a new charge +2/3 quark ($T$), the decay targeted is $T \\rightarrow Zt$, while the decay targeted for a new charge -1/3 quark ($B$) is $B \\rightarrow Zb$. The search is performed with a dataset corresponding to 20.3 fb$^{-1}$ of $pp$ collisions at $\\sqrt{s}=8$ TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Selected events contain a high transverse momentum $Z$ boson candidate reconstructed from a pair of oppositely charged same-flavor leptons (electrons or muons), and are analyzed in two channels defined by the absence or presence of a third lepton. Hadronic jets, in particular those with properties consistent with the decay of a $b$-hadron, are also required to be present in selected events. Different requirements are made on the jet activity in the event in order to enhance the sensitivity to either heavy quark pair production me...

  10. Search for pair and single production of new heavy quarks that decay to a $Z$ boson and a third generation quark in $pp$ collisions at $\\sqrt{s}=8$ TeV with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2014-01-01

    A search is presented for the production of new heavy quarks that decay to a $Z$ boson and a third generation Standard Model quark. In the case of a new charge $+2/3$ quark ($T$), the decay targeted is $T \\rightarrow Zt$, while the decay targeted for a new charge $-1/3$ quark ($B$) is $B \\rightarrow Zb$. The search uses a dataset corresponding to $20.3~\\mathrm{fb}^{-1}$ of $pp$ collisions at $\\sqrt{s}=8$~TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Selected events contain a high transverse momentum $Z$ boson candidate reconstructed from a pair of oppositely-charged same-flavor leptons (electrons or muons), and are analyzed in two channels defined by the presence or absence of a third lepton. Hadronic jets, in particular those with properties consistent with the decay of a $b$ hadron, are also required to be present in selected events. Different requirements are made on the jet activity in the event in order to enhance the sensitivity to either heavy quark pair production med...

  11. The Quark Puzzle: A Novel Approach to Visualizing the Color Symmetries of Quarks

    Science.gov (United States)

    Gettrust, Eric

    2010-01-01

    This paper describes a simple hands-on and visual-method designed to introduce physics students of many age groups to the topic of quarks and their role in forming composite particles (baryons and mesons). A set of puzzle pieces representing individual quarks that fit together in ways consistent with known restrictions of flavor, color, and charge…

  12. Composite quarks and their magnetic moments

    International Nuclear Information System (INIS)

    Parthasarathy, R.

    1980-08-01

    A composite quark model based on the symmetry group SU(10)sub(flavour) x SU(10)sub(colour) with the assumption of mass non-degenerate sub-quarks is considered. Magnetic moments of quarks and sub-quarks are obtained from the observed nucleon magnetic moments. Using these quark and sub-quark magnetic moments, a satisfactory agreement for the radiative decays of vector mesons (rho,ω) is obtained. The ratio of the masses of the sub-quarks constituting the u,d,s quarks are found to be Msub(p)/Msub(n) = 0.3953 and Msub(p)/Msub(lambda) = 0.596, indicating a mass hierarchy Msub(p) < Msub(n) < Msub(lambda) for the sub-quarks. (author)

  13. Heavy-quark potential at finite temperature using the holographic correspondence

    International Nuclear Information System (INIS)

    Albacete, Javier L.; Kovchegov, Yuri V.; Taliotis, Anastasios

    2008-01-01

    We revisit the calculation of a heavy-quark potential in N=4 supersymmetric Yang-Mills theory at finite temperature using the AdS/CFT correspondence. As is widely known, the potential calculated in the pioneering works of Rey et al.[Nucl. Phys. B527, 171 (1998)] and Brandhuber et al.[Phys. Lett. B 434, 36 (1998)] is zero for separation distances r between the quark and the antiquark above a certain critical separation, at which the potential has a kink. We point out that by analytically continuing the string configurations into the complex plane, and using a slightly different renormalization subtraction, one obtains a smooth nonzero (negative definite) potential without a kink. The obtained potential also has a nonzero imaginary (absorptive) part for separations r>r c =0.870/πT. Most importantly, at large separations r the real part of the potential does not exhibit the exponential Debye falloff expected from perturbation theory and instead falls off as a power law, proportional to 1/r 4 for r>r 0 =2.702/πT.

  14. Mass spectrum of low-lying baryons in the ground state in a relativistic potential model of independent quarks with chiral symmetry

    International Nuclear Information System (INIS)

    Barik, N.; Dash, B.K.

    1986-01-01

    Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+γ 0 )(ar 2 +V 0 ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant α/sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory

  15. Heavy quark free energies for three quark systems at finite temperature

    International Nuclear Information System (INIS)

    Huebner, Kay; Karsch, Frithjof; Kaczmarek, Olaf; Vogt, Oliver

    2008-01-01

    We study the free energy of static three quark systems in singlet, octet, decuplet, and average color channels in the quenched approximation and in 2-flavor QCD at finite temperature. We show that in the high temperature phase singlet and decuplet free energies of three quark systems are well described by the sum of the free energies of three diquark systems plus self-energy contributions of the three quarks. In the confining low temperature phase we find evidence for a Y-shaped flux tube in SU(3) pure gauge theory, which is less evident in 2-flavor QCD due to the onset of string breaking. We also compare the short distance behavior of octet and decuplet free energies to the free energies of single static quarks in the corresponding color representations.

  16. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  17. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  18. A Search for Anomalous Heavy-Flavor Quark Production in Association with W Bosons

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Wade Cameron [Princeton Univ., NJ (United States). Dept. of Physics

    2005-01-01

    The production of W bosons in association with jets at the Fermilab Tevatron provides an opportunity to test predictions for electroweak and QCD processes described by the standard model. Complicating this picture, evidence for anomalous production of heavy-flavor quarks (t,b,c) in association with W bosons was reported in Run I by the CDF collaboration. In this dissertation, I present an examination of the exclusive jet spectrum in the W +jets final state in which the heavy-flavor quark content has been enhanced by requiring at least one b-tagged jet in an event. For this measurement, W bosons have been selected in W → ev and W → μv decay channels. I present a measurement of the exclusive jet spectrum for events which contain one jet tagged with more than one b-tagging algorithm. I compare data on e + jets (164.3 pb-1) and μ + jets (145.3 pb-1) channels, collected with the DØ detector during Run II of the Fermilab Tevatron pp¯ collider, to expectations from the standard model. The results of the search are used to set upper limits on anomalous production of such events.

  19. Quark flavor identification in electron-positron annihilation

    International Nuclear Information System (INIS)

    Kaye, H.S.

    1983-09-01

    The theoretical issues relevant to inclusive muon analysis, the MAC detector and its data flow structure, the identification of muons in hadronic events and the measurement of their momenta, and the selection of events so as to minimize background are described. Experimental results are presented describing the fragmentation of heavy quarks into hadrons, the semimuonic branching fractions of the heavy quarks, the asymmetry in the angular distribution of the heavy quarks, and the invariant mass and charged multiplicity of heavy quark jets. In addition, lower limits are set on the masses of certain proposed particles that are expected to decay semileptonically. Finally, events containing two muons are analyzed in order to investigate the possibility of mixing in the B-B system and whether the b might form its own SU(2) singlet

  20. CONFERENCE: Quark matter 88

    International Nuclear Information System (INIS)

    Jacob, Maurice

    1988-01-01

    The 'Quark Matter' Conference caters for physicists studying nuclear matter under extreme conditions. The hope is that relativistic (high energy) heavy ion collisions allow formation of the long-awaited quark-gluon plasma, where the inter-quark 'colour' force is no longer confined inside nucleon-like dimensions

  1. Quark distribution distortion in heavy nuclei

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1984-10-01

    Further consequences of sea-quark pairing are studied by looking at the underlying collective phenomena. We are led to variations of the quark distribution of single protons due to nuclear binding. A new prediction, subject to experimental verification, is discussed. (author)

  2. Variable-flavor-number scheme in analysis of heavy-quark electro-production data

    International Nuclear Information System (INIS)

    Alekhin, S.; Bluemlein, J.; Klein, S.; Moch, S.

    2009-08-01

    We check the impact of the factorization scheme employed in the calculation of the heavy-quark deep-inelastic scattering (DIS) electro-production on the PDFs determined in the NNLO QCD analysis of the world inclusive neutral-current DIS data combined with the ones on the neutrino-nucleon DIS di-muon production and the fixed-target Drell-Yan process. The charm-quark DIS contribution is calculated in the general-mass variable-flavor-number (GMVFN) scheme: At asymptotically large values of the momentum transfer Q it is given by the zero-mass 4-flavor scheme and at the value of Q equal to the charm-quark mass it is smoothly matched with the 3-flavor scheme using the Buza-Matiounine-Smith-van Neerven prescription. The PDFs obtained in this variant of the fit are very similar to the ones obtained in the fit with a 3-flavor scheme employed. Our 5-flavor PDFs derived from the 3-flavor ones using the NNLO matching conditions are used to calculate the rates of W ± /Z and t anti t production at the Tevatron collider and the LHC at NNLO. (orig.)

  3. Scaling behaviour of leptonic decay constants for heavy quarkonia and heavy mesons

    International Nuclear Information System (INIS)

    Kiselev, V.V.

    1994-01-01

    In the framework of QCD sum rules one uses a scheme, allowing one to apply the conditions of both nonrelativistic heavy quark motion inside mesons and the heavy quark flavour independence of nonsplitting nS-state density. In the leading order an analitic expression is derived for leptonic constants of both heavy quarkonia and heavy mesons with a single heavy quark. The expression allows one explicitly to determine scaling properties of the constants. 24 refs., 2 tabs

  4. Parastatistics and gauge symmetries

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1982-01-01

    A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed

  5. Chiral symmetry breaking parameters from QCD sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik; Bern Univ. (Switzerland). Inst. fuer Theoretische Physik)

    1982-10-04

    We obtain new QCD sum rules by considering vacuum expectation values of two-point functions, taking all the five quark bilinears into account. These sum rules are employed to extract values of different chiral symmetry breaking parameters in QCD theory. We find masses of light quarks, m=1/2msub(u)+msub(d)=8.4+-1.2 MeV, msub(s)=205+-65 MeV. Further, we obtain corrections to certain soft pion (kaon) PCAC relations and the violation of SU(3) flavour symmetry by the non-strange and strange quark-antiquark vacuum condensate.

  6. Evidence for chiral symmetry restoration in heavy-ion collisions

    Science.gov (United States)

    Moreau, P.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Bratkovskaya, E. L.

    2017-11-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sNN} = 3- 20GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for particle production. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sNN} = 3- 20GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. Our results provide a microscopic explanation for the horn structure in the excitation function of the K+ /π+ ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sNN} ≈ 7GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance/disappearance of the horn structure is investigated as a function of the system size. We additionally present an analysis of strangeness production in the (T ,μB)-plane (as extracted from the PHSD for central Au+Au collisions) and discuss the perspectives to identify a possible critical point in the phase diagram.

  7. Nuclear matter from effective quark-quark interaction.

    Science.gov (United States)

    Baldo, M; Fukukawa, K

    2014-12-12

    We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.

  8. Quark motional effects on the interquark potential in baryons

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo

    2008-01-01

    We study the heavy-heavy-light quark (QQq) system in a nonrelativistic potential model, and investigate the quark motional effect on the inter-two-quark potential in baryons. We adopt the Hamiltonian with the static three-quark potential which is obtained by the first-principle calculation of lattice QCD, rather than the two-body force in ordinary quark models. Using the renormalization-group inspired variational method in discretized space, we calculate the ground-state energy of QQq systems and the light-quark spatial distribution. We find that the effective string tension between the two heavy quarks is reduced compared to the static three-quark case. This reduction of the effective string tension originates from the geometrical difference between the interquark distance and the flux-tube length, and is conjectured to be a general property for baryons

  9. Quark gluon plasma

    CERN Document Server

    Nayak, Tapan; Sarkar, Sourav

    2014-01-01

    At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.

  10. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    Energy Technology Data Exchange (ETDEWEB)

    Buchheim, Thomas

    2017-04-11

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  11. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    International Nuclear Information System (INIS)

    Buchheim, Thomas

    2017-01-01

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  12. Baryon magnetic moments: Symmetries and relations

    Energy Technology Data Exchange (ETDEWEB)

    Parreno, Assumpta [University of Barcelona; Savage, Martin [Univ. of Washington, Seattle, WA (United States); Tiburzi, Brian [City College of New York, NY (United States); City Univ. (CUNY), NY (United States); Wilhelm, Jonas [Justus-Liebig-Universitat Giessen, Giessen, Germany; Univ. of Washington, Seattle, WA (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.

  13. The gluonic field of a heavy quark in conformal field theories at strong coupling

    Science.gov (United States)

    Chernicoff, Mariano; Güijosa, Alberto; Pedraza, Juan F.

    2011-10-01

    We determine the gluonic field configuration sourced by a heavy quark undergoing arbitrary motion in mathcal{N} = 4 super-Yang-Mills at strong coupling and large number of colors. More specifically, we compute the expectation value of the operator Tr[ F 2 + …] in the presence of such a quark, by means of the AdS/CFT correspondence. Our results for this observable show that signals propagate without temporal broadening, just as was found for the expectation value of the energy density in recent work by Hatta et al. We attempt to shed some additional light on the origin of this feature, and propose a different interpretation for its physical significance. As an application of our general results, we examine (Tr[ F 2 + …])when the quark undergoes oscillatory motion, uniform circular motion, and uniform acceleration. Via the AdS/CFT correspondence, all of our results are pertinent to any conformal field theory in 3 + 1 dimensions with a dual gravity formulation.

  14. Search for heavy toplike quarks using lepton plus jets events in 1.96 TeV pp collisions.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-04-25

    We present the results of a search for pair production of a new heavy toplike quark t' decaying to a W boson and another quark using the Collider Detector at Fermilab II detector in run II of the Tevatron pp collider. Using a data sample corresponding to 760 pb(-1) of integrated luminosity, we fit the observed spectrum of total transverse energy and reconstructed t' quark mass to a combination of standard model processes and t' pair production. We see no evidence for t't' production, and we infer a lower limit of 256 GeV/c(2) on the mass of the t' at 95% C.L. assuming standard strong couplings for the t'.

  15. Search for heavy resonances decaying to heavy-flavor quarks at ATLAS

    CERN Document Server

    Lin, Kuan-yu; The ATLAS collaboration

    2018-01-01

    Searches for new resonances whose decay contain top quarks and/or b-quarks cover a wide range of beyond the Standard Model (SM) physics. These searches offer great potential as well as significant challenges in reconstructing and identifying the decay products as well as modeling the SM background. 2 recent results: W' and top-quark pair resonance searching will be presented.

  16. 1{sup −−} and 0{sup ++} heavy four-quark and molecule states in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, R.M., E-mail: rma@if.usp.br [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05389-970 São Paulo, SP (Brazil); Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugène Bataillon, 34095 - Montpellier (France); Fanomezana, F., E-mail: fanfenos@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar); Narison, S., E-mail: snarison@yahoo.fr [Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugène Bataillon, 34095 - Montpellier (France); Rabemananjara, A., E-mail: achris_01@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar)

    2013-01-15

    We estimate the masses of the 1{sup −−} heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in α{sub s} but including non-perturbative terms up to the complete dimension-six condensate contributions. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. The SU(3) mass-splittings of about (50–110) MeV and the ones of about (250–300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavour independent. The mass predictions summarized in Table 2 are compared with the ones in the literature (when available) and with the three Y{sub c}(4260,4360,4660) and Y{sub b}(10890)1{sup −−} experimental candidates. We conclude that the lowest observed state cannot be a pure1{sup −−} four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0{sup ++} four-quark and molecule states which are about (0.5–1) GeV heavier than the corresponding 1{sup −−} states, while the splittings between the 0{sup ++} lowest ground state and the 1st radial excitation is about (300–500) MeV. We complete the analysis by estimating the decay constants of the 1{sup −−} and 0{sup ++} four-quark states. Our predictions can be tested using some alternative non-perturbative approaches or/and at LHC{sub b} or some other hadron factories.

  17. Higgs boson mass bounds in the presence of a heavy fourth quark family

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-01-15

    We present Higgs boson mass bounds in a lattice regularization allowing thus for non-perturbative investigations. In particular, we employ a lattice modified chiral invariant Higgs-Yukawa model using the overlap operator. We show results for the upper and lower Higgs boson mass bounds in the presence of a heavy mass-degenerate quark doublet with masses ranging up to 700 GeV. We perform infinite volume extrapolations in most cases, and examine several values of the lattice cutoff. Furthermore, we argue that the lower Higgs boson mass bound is stable with respect to the addition of higher dimensional operators to the scalar field potential. Our results have severe consequences for the phenomenology of a fourth generation of quarks if a light Higgs boson is discovered at the LHC.

  18. Higgs boson mass bounds in the presence of a heavy fourth quark family

    CERN Document Server

    Bulava, John; Nagy, Attila; Kallarackal, Jim; Jansen, Karl

    2012-01-01

    We present Higgs boson mass bounds in a lattice regularization allowing thus for non-perturbative investigations. In particular, we employ a lattice modified chiral invariant Higgs-Yukawa model using the overlap operator. We show results for the upper and lower Higgs boson mass bounds in the presence of a heavy mass-degenerate quark doublet with masses ranging up to 700 GeV. We perform infinite volume extrapolations in most cases, and examine several values of the lattice cutoff. Furthermore, we argue that the lower Higgs boson mass bound is stable with respect to the addition of higher dimensional operators to the scalar field potential. Our results have severe consequences for the phenomenology of a fourth generation of quarks if a light Higgs boson is discovered at the LHC.

  19. Population of multi-quark states in exotic multiplets and thermalization in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Scherer, S.; Bleicher, M.; Haussler, S.; Stoecker, H.

    2008-01-01

    The recent discussion about experimental evidence for pentaquark states has revitalized the interest in exotic hadrons. If such states really exist, it is natural to assume that they will be formed at the late hadronization stage of ultra-relativistic heavy ion collisions, given the success of quark recombination models in the description of hadronization. Here, we apply the qMD model to study the formation of color neutral exotic multi-quark clusters at hadronization. We search for color neutral clusters made up of up to six color charges, respectively. We thus obtain estimates for the numbers and phase space distributions of exotic hadronic states produced by clustering in heavy ion collisions, including the members of the pentaquark multiplets. We obtain particle abundances that are smaller than thermal model predictions. Moreover, the results obtained in recombination from ultra-relativistic heavy ion collisions can be compared to the estimates based on equal population of the corresponding multiplets, and to results from fully thermalized systems. We find that the distribution of exotic hadrons from recombination over large multiplets provides a sensitive signal for thermalization and decorrelation of the initial, non-equilibrium state of the collision. (author)

  20. Heavy quarks and strong binding: A field theory of hadron structure

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Chanowitz, M.S.; Drell, S.D.; Weinstein, M.; Yan, T.

    1975-01-01

    We investigate in canonical field theory the possibility that quarks may exist in isolation as very heavy particles, M/sub quark/) very-much-greater-than 1 GeV, yet form strongly bound hadronic states, M/sub hadron/) approx. 1 GeV. In a model with spin-1/2 quarks coupled to scalar gluons we find that a mechanism exists for the formation of bound states which are much lighter than the free constituents. Following Nambu, we introduce a color interaction mediated by gauge vector mesons to guarantee that all states with nonvanishing triality have masses much larger than 1 GeV. The possibility of such a solution to a stronly coupled field theory is exhibited by a calculation employing the variational principle in tree approximation. This procedure reduces the field-theoretical problem to a set of coupled differential equations for classical fields which are just the free parameters of the variational state. A striking property of the solution is that the quark wave function is confined to a thin shell at the surface of the hadronic bound state. Though the quantum corrections to this procedure remain to be investigated systematically, we explore some of the phenomenological implications of the trial wave functions so obtained. In particular, we exhibit the low-lying meson and baryon multiplets of SU(6); their magnetic moments, charge radii, and radiative decays, and the axial charge of the baryons. States of nonvanishing momenta are constructed and the softness of the hadron shell to deformations in scattering processes is discussed qualitatively along with the implications for deep-inelastic electron scattering and dual resonance models

  1. Heavy quark production by neutrinos and antineutrinos

    International Nuclear Information System (INIS)

    Scott, D.M.; Tanaka, K.

    1979-01-01

    The rate for producing t- and b-quarks in, respectively, neutrino and antineutrino interactions with nucleons are estimated. Experimental quark parton distribution functions, SU(2) x SU(2) x U(1) gauge group mixing angles, and threshold suppression through rescaling are used in the calculation. The ratios to total cross sections of b-quark production by anti nu, R/sub b//sup anti nu/, and t-quark production by ν, R/sub t//sup nu/, are, respectively, R/sub b//sup anti nu/ approximately equal to 10 -4 and R/sub t//sup nu/ approximately equal to 10 -5 for an incident energy of 200 GeV. 13 references

  2. PT Symmetry and QCD: Finite Temperature and Density

    Directory of Open Access Journals (Sweden)

    Michael C. Ogilvie

    2009-04-01

    Full Text Available The relevance of PT symmetry to quantum chromodynamics (QCD, the gauge theory of the strong interactions, is explored in the context of finite temperature and density. Two significant problems in QCD are studied: the sign problem of finite-density QCD, and the problem of confinement. It is proven that the effective action for heavy quarks at finite density is PT-symmetric. For the case of 1+1 dimensions, the PT-symmetric Hamiltonian, although not Hermitian, has real eigenvalues for a range of values of the chemical potential μ, solving the sign problem for this model. The effective action for heavy quarks is part of a potentially large class of generalized sine-Gordon models which are non-Hermitian but are PT-symmetric. Generalized sine-Gordon models also occur naturally in gauge theories in which magnetic monopoles lead to confinement. We explore gauge theories where monopoles cause confinement at arbitrarily high temperatures. Several different classes of monopole gases exist, with each class leading to different string tension scaling laws. For one class of monopole gas models, the PT-symmetric affine Toda field theory emerges naturally as the effective theory. This in turn leads to sine-law scaling for string tensions, a behavior consistent with lattice simulations.

  3. Results on top-quark physics and top-quark-like signatures by CMS

    Science.gov (United States)

    Chabert, Eric; CMS Collaboration

    2017-07-01

    This report reviews the results obtained by the CMS Collaboration on top quark physics, focusing on the latest ones based on p-p collisions provided by the LHC at \\sqrt{s}=13{{TeV}} during Run II. It covers measurements of single-top, top quark pairs and associated productions as well as measurements of top quark properties. Finally several beyond the standard model searches involving top quark in the final states are presented, such as searches for supersymmetry in the third generation, heavy resonances decaying into a top quark pair, or dark matter produced in association to a single-top or a top quark pair.

  4. Matter Formed at the BNL Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Brown, G.E.; Gelman, B.A.; Rho, Mannque

    2006-01-01

    We suggest that the 'new form of matter' found just above T c by the Relativistic Heavy Ion Collider is made up of tightly bound quark-antiquark pairs, essentially 32 chirally restored (more precisely, nearly massless) mesons of the quantum numbers of π, σ, ρ, and a 1 . Taking the results of lattice gauge simulations (LGS) for the color Coulomb potential from the work of the Bielefeld group and feeding this into a relativistic two-body code, after modifying the heavy-quark lattice results so as to include the velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go to zero at T c just as they do from below T c as predicted by the vector manifestation of hidden local symmetry. This could explain the rapid rise in entropy up to T c found in LGS calculations. We argue that how the dynamics work can be understood from the behavior of the hard and soft glue

  5. Multileptons from heavy quarks

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1984-03-01

    The paper is concerned with a brief look at the various multilepton signals that are expected at p-barp colliders from the production and cascade decay of top quarks, plus the backgrounds from b and c production. (author)

  6. Spontaneous symmetry breakdown in gauge theories

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1982-01-01

    The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-photon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electro-weak gauge symmetry. (author)

  7. Static quark-antiquark potential

    International Nuclear Information System (INIS)

    Deo, B.B.; Barik, B.K.

    1983-01-01

    A heavy-quark--antiquark potential is suggested which connects asymptotic freedom and quark confinement in a unified manner by formal methods of field theory using some plausible assumptions. The potential has only one additional adjustable parameter B which is proportional to (M/sub q//m/sub q/), where M/sub q/ and m/sub q/ are the constituent and current quark masses, respectively

  8. The coupling of heavy mesons to the pion on the lattice

    International Nuclear Information System (INIS)

    Herdoiza, G.

    2004-04-01

    The QCD non-perturbative effects are among the main sources of uncertainty in our present knowledge of the Standard Model phenomenology. I will present some of the methods which can be used to study these effects, and I will particularly treat the case of lattice QCD. Effective theories can be combined to the lattice approach in order to study the chiral and the heavy quark sectors. I will give some examples of how these properties can be successfully applied to the quark flavour phenomenology. The coupling of heavy mesons to the pion is related to a non-perturbative quantity, noted g-bar, which is required to extract physical results from the effective theory combining both chiral and heavy quark symmetry. This coupling is also involved in the study of the form factors appearing in the heavy to light semi-leptonic decays. These heavy meson decays are used to extract some of the CKM matrix elements which are know, up to now, only with large uncertainties. Moreover, the chiral effects of heavy mesons depend on pion loops whose vertices are precisely the coupling g-bar. These are some of the reasons why the theoretical and experimental determination of this coupling is required. I will present the results of its studies on the lattice and I will compare them to those obtained through several other methods. I will therefore describe these different approaches, their limitations and possible improvements, both from the point of view of the method and of its application to the determination of the coupling g-bar. (author)

  9. Quark masses: An environmental impact statement

    International Nuclear Information System (INIS)

    Jaffe, Robert L.; Jenkins, Alejandro; Kimchi, Itamar

    2009-01-01

    We investigate worlds that lie on a slice through the parameter space of the standard model over which quark masses vary. We allow as many as three quarks to participate in nuclei, while fixing the mass of the electron and the average mass of the lightest baryon flavor multiplet. We classify as congenial worlds that satisfy the environmental constraint that the quark masses allow for stable nuclei with charge one, six, and eight, making organic chemistry possible. Whether a congenial world actually produces observers capable of measuring those quark masses depends on a multitude of historical contingencies, beginning with primordial nucleosynthesis and including other astrophysical processes, which we do not explore. Such constraints may be independently superimposed on our results. Environmental constraints such as the ones we study may be combined with information about the a priori distribution of quark masses over the landscape of possible universes to determine whether the measured values of the quark masses are determined environmentally, but our analysis is independent of such an anthropic approach. We estimate baryon masses as functions of quark masses via first-order perturbation theory in flavor SU(3) breaking. We estimate nuclear masses as functions of the baryon masses using two separate tools: for a nucleus made of two baryon species, when possible we consider its analog in our world, a nucleus with a similar binding energy, up to Coulomb contributions. For heavy nuclei or nuclei made of more than two baryons, we develop a generalized Weizsaecker semiempirical mass formula, in which strong kinematic flavor symmetry violation is modeled by a degenerate Fermi gas . We check for the stability of nuclei against fission, strong particle emission (analogous to α decay), and weak nucleon emission. For two light quarks with charges 2/3 and -1/3 , we find a band of congeniality roughly 29 MeV wide in their mass difference, with our own world lying comfortably

  10. Search for heavy quarks decaying into a top quark and a W or Z boson using lepton + jets events in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Vanelderen, Lukas; Barth, Christian; Berger, Joram; Böser, Christian; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Hauth, Thomas; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Lobelle Pardo, Patricia; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mehta, Pourus; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Nespolo, Massimo; Pazzini, Jacopo; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Ansari, Muhammad Hamid; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; Dabrowski, Anne; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lee, Yen-Jie; Lenzi, Piergiulio; Lourenco, Carlos; Magini, Nicolo; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wan, Xia; Wang, Minzu; Asavapibhop, Burin; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Stoye, Markus; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Park, Myeonghun; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Apyan, Aram; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Krajczar, Krisztian; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Nash, David; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Safdi, Ben; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Walker, Matthew; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Palmonari, Francesco; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2013-01-24

    Results are presented from a search for the pair-production of heavy quarks, Q Q-bar, that decay exclusively into a top quark and a W or Z boson. The search is performed using a sample of proton-proton collisions at $\\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns, collected by the Compact Muon Solenoid experiment. The signal region is defined using a sample of events containing one electron or muon, missing transverse momentum, and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark. No significant excess of events is observed with respect to the standard model expectations. Assuming a strong pair-production mechanism, quark masses below 675 (625) GeV decaying into tW (tZ) are excluded at the 95% confidence level.

  11. Search for heavy quarks decaying into a top quark and a W or Z boson using lepton + jets events in pp collisions at $ \\sqrt{s}=7 $ TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D’Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D’Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Ronchese, P.; Simonetto, F.; Torassa, E.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D’Agnolo, R. T.; Dell’Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Ricca, G. Della; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D’Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Negra, M. Della; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D’Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O’Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O’Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-01-01

    Results are presented from a search for the pair-production of heavy quarks, Q Q-bar, that decay exclusively into a top quark and a W or Z boson. The search is performed using a sample of proton-proton collisions at $\\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 5.0 inverse femtobarns, collected by the Compact Muon Solenoid experiment. The signal region is defined using a sample of events containing one electron or muon, missing transverse momentum, and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark. No significant excess of events is observed with respect to the standard model expectations. Assuming a strong pair-production mechanism, quark masses below 675 (625) GeV decaying into tW (tZ) are excluded at the 95% confidence level.

  12. Symmetry breaking and generational mixing in top-color-assisted technicolor

    International Nuclear Information System (INIS)

    Lane, K.

    1996-01-01

    Top-color-assisted technicolor provides a dynanamical explanation for electroweak and flavor symmetry breaking and for the large mass of the top quark without unnatural fine-tuning. A major challenge is to generate the observed mixing between heavy and light generations while breaking the strong top-color interactions near 1 TeV. I argue that these phenomena, as well as electroweak symmetry breaking, are intimately connected and I present a scenario for them based on nontrivial patterns of technifermion condensation. I also exhibit a class of models realizing this scenario. This picture leads to a rich phenomenology, especially in hadron and lepton collider experiments in the few hundred GeV to few TeV region and in precision electroweak tests at the Z 0 , atomic parity violation, and polarized Mo/ller scattering. copyright 1996 The American Physical Society

  13. Search for heavy bottom-like quarks in 4.9 inverse femtobarns of pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cerny, Karel; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Rurua, Lali; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Fischer, David; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Habib, Shiraz; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Lincoln, Don; Lipton, Ron; Lueking, Lee; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Evdokimov, Olga; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Chung, Kwangzoo; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Korjenevski, Sergey; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Richards, Alan; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Engh, Daniel; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2012-01-01

    Results are presented from a search for heavy bottom-like quarks, pair-produced in pp collisions at sqrt(s) = 7 TeV, undertaken with the CMS experiment at the LHC. The b' quarks are assumed to decay exclusively to tW. The b' anti-b' to t W(+) anti-t W(-) process can be identified by its distinctive signatures of three leptons or two leptons of same charge, and at least one b-quark jet. Using a data sample corresponding to an integrated luminosity of 4.9 inverse femtobarns, observed events are compared to the standard model background predictions, and the existence of b' quarks having masses below 611 GeV/$c^2$ is excluded at 95% confidence level.

  14. Broken superfluid in dense quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Parganlija, Denis; Schmitt, Andreas [Institut fuer Theoretische Physik, Technische Universitaet Wien, 1040 Vienna (Austria); Alford, Mark [Department of Physics, Washington University St Louis, MO, 63130 (United States)

    2014-07-01

    Quark matter at high densities is a superfluid. Properties of the superfluid become highly non-trivial if the effects of strange-quark mass and the weak interactions are considered. These properties are relevant for a microscopic description of compact stars. We discuss the effect of a (small) explicitly symmetry-breaking term on the properties of a zero-temperature superfluid in a relativistic φ{sup 4} theory. If the U(1) symmetry is exact, chemical potential and superflow can be equivalently introduced either via (1) a background gauge field or (2) a topologically nontrivial mode. However, in the case of the explicitly broken symmetry, we demonstrate that the scenarios (1) and (2) lead to quantitatively different results for the mass of the pseudo-Goldstone mode and the critical velocity for superfluidity.

  15. Exclusive description of multiple production on nuclei in the additive quark model. Multiplicity distributions in interactions with heavy nuclei

    International Nuclear Information System (INIS)

    Levchenko, B.B.; Nikolaev, N.N.

    1985-01-01

    In the framework of the additive quark model of multiple production on nuclei we calculate the multiplicity distributions of secondary particles and the correlations between secondary particles in πA and pA interactions with heavy nuclei. We show that intranuclear cascades are responsible for up to 50% of the nuclear increase of the multiplicity of fast particles. We analyze the sensitivity of the multiplicities and their correlations to the choice of the quark-hadronization function. We show that with good accuracy the yield of relativistic secondary particles from heavy and intermediate nuclei depends only on the number N/sub p/ of protons knocked out of the nucleus, and not on the mass number of the nucleus (N/sub p/ scaling)

  16. Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei

    International Nuclear Information System (INIS)

    Li Baoan; Das, Champak B.; Das Gupta, Subal; Gale, Charles

    2004-01-01

    Using an isospin- and momentum-dependent transport model we study effects of the momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. It is found that symmetry potentials with and without the momentum-dependence but corresponding to the same density-dependent symmetry energy E sym (ρ) lead to significantly different predictions on several E sym (ρ)-sensitive experimental observables especially for energetic nucleons. The momentum- and density-dependence of the symmetry potential have to be determined simultaneously in order to extract the E sym (ρ) accurately. The isospin asymmetry of midrapidity nucleons at high transverse momenta is particularly sensitive to the momentum-dependence of the symmetry potential. It is thus very useful for investigating accurately the equation of state of dense neutron-rich matter

  17. LEP1 measurement of heavy quark forward-backward asymmetries with Opal detector; Mesure de l`asymetrie avant-arriere des quarks lourds a LEP1 avec le detecteur Opal

    Energy Technology Data Exchange (ETDEWEB)

    Lafoux, H

    1996-04-30

    Using all data collected by OPAL during the first phase of LEP operation, called LEP1, we have measured the b and c quark forward-backward asymmetries on and around the Z{sup 0} peak. The measurement, which is based on prompt leptons produced in semileptonic decays of heavy quarks, has been optimized using artificial neural networks whenever necessary, that is whenever the problem to solve implied taking into account simultaneously a large number of parameters. Our results are compatible with other LEP measurements and with the Standard Model predictions for a top quark of 174{+-}31 GeV/c{open_square} and a Higgs boson mass between 60 and 1000 GeV/c{open_square}. (author). 159 refs., 88 figs., 37 tabs.

  18. Traces of chiral symmetry on light planes

    International Nuclear Information System (INIS)

    Sazdjian, Hagop.

    1975-01-01

    The possibility of a description of the hadronic world by field theories defined on light planes and formulated in terms of three interacting quark field variables has been investigated. The framework of models where the chiral symmetry breaking is produced by the only mechanical masses of quarks has been considered. The hypothesis that the light plane charges generate in the real world approximate symmetries of one particle states has also been emitted. The projection of the algebraic structure of the observables in the space of physical states have yielded various relations in terms of the masses and couplings of the low lying mesons. They seem to be in agreement with experimental data, and suggest the consistency of the adopted model to describe symmetry breaking phenomena. The quark mechanical masses m(u) approximately 30MeV and m(s) approximately 200MeV have also been estimated. The smallness of these masses in respect to those of hadrons seems to indicate that they do not constitute the only mass scale of the hadronic world, but that there should exist another scale parameter, independent of the quark mechanical masses, and symmetric of SU(3) [fr

  19. Quark matter brings heavy ions to Oakland

    International Nuclear Information System (INIS)

    Klein, Spencer; Nystrand, Joakim

    2004-01-01

    The Quark Matter 2004 conference, held in Oakland, California, in January, provided participants with evidence for the elusive quark-gluon plasma. Spencer Klein and Joakim Nystrand describe the highlights of the meeting

  20. Heavy quark potential in a static and strong homogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mujeeb; Chatterjee, Bhaswar; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-11-15

    We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB >> T{sup 2} and eB >> m{sup 2}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (anti Q) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind Q anti Q together. For example, the J/ψ is dissociated at eB ∝ 10 m{sub π}{sup 2} and Υ is dissociated at eB ∝ 100 m{sub π}{sup 2} whereas its excited states, ψ{sup '} and Υ{sup '} are dissociated at smaller magnetic field eB = m{sub π}{sup 2}, 13 m{sub π}{sup 2}, respectively. (orig.)

  1. Heavy-residue isoscaling as a probe of the symmetry energy of hot fragments

    International Nuclear Information System (INIS)

    Souliotis, G.A.; Shetty, D.V.; Keksis, A.; Bell, E.; Jandel, M.; Veselsky, M.; Yennello, S.J.

    2006-01-01

    The isoscaling properties of isotopically resolved projectile residues from peripheral collisions of 86 Kr (25 MeV/nucleon) 64 Ni (25 MeV/nucleon), and 136 Xe (20 MeV/nucleon) beams on various target pairs are employed to probe the symmetry energy coefficient of the nuclear binding energy. The present study focuses on heavy projectile fragments produced in peripheral and semiperipheral collisions near the onset of multifragment emission (E * /A=2-3 MeV). For these fragments, the measured average velocities are used to extract excitation energies. The excitation energies, in turn, are used to estimate the temperatures of the fragmenting quasiprojectiles in the framework the Fermi gas model. The isoscaling analysis of the fragment yields provided the isoscaling parameters α that, in combination with temperatures and isospin asymmetries provided the symmetry energy coefficient of the nuclear binding energy of the hot fragmenting quasiprojectiles. The extracted values of the symmetry energy coefficient at this excitation energy range (2-3 MeV/nucleon) are lower than the typical liquid-drop model value ∼25 MeV corresponding to ground-state nuclei and show a monotonic decrease with increasing excitation energy. This result is of importance in the formation of hot nuclei in heavy-ion reactions and in hot stellar environments such as supernova

  2. The flavor-changing single-top quark production in the littlest Higgs model with T parity at the LHC

    International Nuclear Information System (INIS)

    Wang Xuelei; Zhang Yanju; Jin Huiling; Xi Yanhui

    2009-01-01

    The littlest Higgs model with discrete symmetry named 'T-parity' (LHT) is an interesting new physics model which does not suffer strong constraints from electroweak precision data. One of the important features of the LHT model is the existence of new source of FC interactions between the SM fermions and the mirror fermions. These FC interactions can make significant loop-level contributions to the couplings tcV, and furthermore enhance the cross sections of the FC single-top quark production processes. In this paper, we study some FC single-top quark production processes, pp→tc-bar and pp→tV, at the LHC in the LHT model. We find that the cross sections of these processes strongly depend on the mirror quark masses. The processes pp→tc-bar and pp→tg have large cross sections with heavy mirror quarks. The observation of these FC processes at the LHC is certainly the clue of new physics, and further precise measurements of the cross sections can provide useful information about the free parameters in the LHT model, specially about the mirror quark masses

  3. Thermal recombination: Beyond the valence quark approximation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: fries@physics.umn.edu; Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2005-07-07

    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.

  4. Prediction of new Quarks, Generations and Quark Masses

    Science.gov (United States)

    Lach, Thedore

    2002-04-01

    The Standard model currently suggests no relationship between the quark and lepton masses. The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an up quark mass of 237.31 MeV/c2 and a dn quark mass of 42.392 MeV/c2. These two new quarks help explain the numerical relationship between all the quark and lepton masses in a single function. The mass of each SNU-P (quark or lepton) is just the geometric mean of two related SNU-Ps, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.743828 (predicted), 117.3520, 1778.38, 26950.08 MeV. The resulting slope of these masses when plotted on semi log paper is "e" to 5 significant figures using the currently accepted mass for Tau. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these quarks, and lepton.

  5. Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at sqrt{s} =7 TeV with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Hruška, I.; Jakoubek, Tomáš; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lipinský, L.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav; Zeman, Martin

    2012-01-01

    Roč. 712, 1-2 (2012), s. 22-39 ISSN 0370-2693 R&D Projects: GA MŠk LA08032 Institutional research plan: CEZ:AV0Z10100502 Keywords : heavy quark * pp scattering * ATLAS * intermedia Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.569, year: 2012 http://www. science direct.com/ science /article/pii/S0370269312003802

  6. Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shanshan [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Qin, Guang-You [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, 430079 (China); Bass, Steffen A. [Department of Physics, Duke University, Durham, NC 27708 (United States)

    2016-12-15

    We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.

  7. Gauge invariant description of heavy quark bound states in quantum chromodynamics

    International Nuclear Information System (INIS)

    Moore, S.E.

    1980-08-01

    A model for a heavy quark meson is proposed in the framework of a gauge-invariant version of quantum chromodynamics. The field operators in this formulation are taken to be Wilson loops and strings with quark-antiquark ends. The fundamental differential equations of point-like Q.C.D. are expressed as variational equations of the extended loops and strings. The 1/N expansion is described, and it is assumed that nonleading effects such as intermediate quark pairs and nonplanar gluonic terms can be neglected. The action of the Hamiltonian in the A 0 = 0 gauge on a string operator is derived. A trial meson wave functional is constructed consisting of a path-averaged string operator applied to the full vacuum. A Gaussian in the derivative of the path location is assumed for the minimal form of the measure over paths. A variational parameter is incorporated in the measure as the exponentiated coefficient of the squared path location. The expectation value of the Hamiltonian in the trial state is evaluated for the assumption that the negative logarithm of the expectation value of a Wilson loop is proportional to the loop area. The energy is then minimized by deriving the equivalent quantum mechanical Schroedinger's equation and using the quantum mechanical 1/n expansion to estimate the effective eigenvalues. It is found that the area law behavior of the Wilson loop implies a nonzero best value of the variational parameter corresponding to a quantum broadening of the flux tube

  8. Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1.

    Science.gov (United States)

    Blanke, Monika; Buras, Andrzej J; Recksiegel, Stefan

    2016-01-01

    The Littlest Higgs model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. The latter originate in the interactions of ordinary quarks and leptons with heavy mirror quarks and leptons that are mediated by new heavy gauge bosons. Also a heavy fermionic top partner is present in this model which communicates with the SM fermions by means of standard [Formula: see text] and [Formula: see text] gauge bosons. We present a new analysis of quark flavour observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare K and B decays are still allowed to depart from their SM values. This includes [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. Taking into account the constraints from [Formula: see text] processes, significant departures from the SM predictions for [Formula: see text] and [Formula: see text] are possible, while the effects in B decays are much smaller. In particular, the LHT model favours [Formula: see text], which is not supported by the data, and the present anomalies in [Formula: see text] decays cannot be explained in this model. With the recent lattice and large N input the imposition of the [Formula: see text] constraint implies a significant suppression of the branching ratio for [Formula: see text] with respect to its SM value while allowing only for small modifications of [Formula: see text]. Finally, we investigate how the LHT physics could be distinguished from other models by means of indirect measurements and

  9. Hidden Fine Tuning In The Quark Sector Of Little Higgs Models

    CERN Document Server

    Grinstein, Benjamin; Uttayarat, Patipan

    2010-01-01

    In Little Higgs models a collective symmetry prevents the higgs from acquiring a quadratically divergent mass at one loop. We have previously shown that the couplings in the Littlest Higgs model introduced to give the top quark a mass do not naturally respect the collective symmetry. We extend our previous work showing that the problem is generic: it arises from the fact that the would be collective symmetry of any one top quark mass term is broken by gauge interactions.

  10. A single quark effective potential model

    International Nuclear Information System (INIS)

    Bodmann, B.E.J.; Vasconcellos, C.A.Z.

    1994-01-01

    In the present work we construct a radial spherical symmetric single quark potential model for the nucleon, consistent with asymptotic freedom and confinement. The quark mass enters as potential parameter and that way induces indirectly an isospin dependence in the interaction. As a consequence, a contribution to the negative charge square radius of the neutron arises an an effect of the quark core, which simulates an isospin symmetry breaking effect in the nucleon due to strong interaction. (author)

  11. Hadron production at RHIC: recombination of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.

  12. Physics with relativistic heavy ions: QGP and other delicacies

    International Nuclear Information System (INIS)

    Young, G.R.

    1995-01-01

    Conditions favorable to formation and observation of a deconfined state of quarks and gluons (often called the quark-gluon plasma) are thought to exist following the collision of very heavy nuclei at center-of-mass energies exceeding several tens of GeV/nucleon. The Relativistic Heavy Ion Collider under construction at BNL since 1991 is designed to provide such collisions at energies up to √s/A = 200 GeV. Two large dedicated experiments are being built to operate there; these two experiments take rather different approaches to the problem of classifying such collisions and probing for signals of QGP formation. Two smaller experiments are proposed to focus on specific aspects of these collisions. Recent developments in the understanding of the initial state formed in such collisions include, particularly, the possible rapid equilibration of the gluon density, leading in an equilibrium picture to such high temperatures that sizable thermal excitation of charm becomes probable. Recent theoretical conjectures have focussed on the possible formation of a disordered chiral condensate following chiral symmetry restoration in heavy-nucleus collisions, which might be a consequence of nonequilibrium deexcitation of a dense partonic state

  13. Axial-vector gluons and the fine structure of heavy quark--antiquark systems

    International Nuclear Information System (INIS)

    Feinberg, G.; Lynn, B.; Sucher, J.

    1979-01-01

    We point out that two models of the origin of spin-dependent forces in heavy quark systems make very different predictions about the relative size of these forces in c-barc and b-barb. The model in which these forces are relativistic corrections to vector or scalar gluon exchange predicts smaller spin-dependent effects in b-barb than in c-barc while a model in which these forces are due to exchange of axial-vector gluons predicts a similar size for spin-dependent splittings in the two systems

  14. Search for vector like quarks and heavy resonances decaying to top quarks

    CERN Document Server

    Camincher, Clement; The ATLAS collaboration

    2017-01-01

    Vector like quarks appear in many theories beyond the Standard Model as a way to cancel the mass divergence for the Higgs boson. The current status of the ATLAS searches for the production of vector like quarks will be reviewed for proton-proton collisions at 13 TeV. This presentation will address the analysis techniques, in particular the selection criteria, the background modeling and the related experimental uncertainties. The phenomenological implications of the obtained results will also be discussed. Searches for new resonances that decay either to pairs of top quarks or a top and a b-quark will be presented. The searches are performed with the ATLAS experiment at the LHC using proton-proton collision data collected in 2015 and 2016 with a centre-of-mass energy of 13 TeV. The invariant mass spectrum of hypothetical resonances are examined for local excesses or deficits that are inconsistent with the Standard Model prediction.

  15. QCD phase transition with chiral quarks and physical quark masses.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  16. Decay constants and radiative decays of heavy mesons in light-front quark model

    International Nuclear Information System (INIS)

    Choi, Ho-Meoyng

    2007-01-01

    We investigate the magnetic dipole decays V→Pγ of various heavy-flavored mesons such as (D,D*,D s ,D s *,η c ,J/ψ) and (B,B*,B s ,B s *,η b ,Υ) using the light-front quark model constrained by the variational principle for the QCD-motivated effective Hamiltonian. The momentum dependent form factors F VP (q 2 ) for V→Pγ* decays are obtained in the q + =0 frame and then analytically continued to the timelike region by changing q perpendicular to iq perpendicular in the form factors. The coupling constant g VPγ for real photon case is then obtained in the limit as q 2 →0, i.e. g VPγ =F VP (q 2 =0). The weak decay constants of heavy pseudoscalar and vector mesons are also calculated. Our numerical results for the decay constants and radiative decay widths for the heavy-flavored mesons are overall in good agreement with the available experimental data as well as other theoretical model calculations

  17. Radiative seesaw-type mechanism of fermion masses and non-trivial quark mixing

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, Carolina; Hernandez, A.E.C.; Kovalenko, Sergey; Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Centro Cientifico-Tecnologico de Valparaiso-CCTVal, Valparaiso (Chile)

    2017-06-15

    We propose a predictive inert two-Higgs doublet model, where the standard model (SM) symmetry is extended by S{sub 3} x Z{sub 2} x Z{sub 12} and the field content is enlarged by extra scalar fields, charged exotic fermions and two heavy right-handed Majorana neutrinos. The charged exotic fermions generate a non-trivial quark mixing and provide one-loop-level masses for the first- and second-generation charged fermions. The masses of the light active neutrinos are generated from a one-loop-level radiative seesaw mechanism. Our model successfully explains the observed SM fermion mass and mixing pattern. (orig.)

  18. Quark mass relations to four-loop order

    International Nuclear Information System (INIS)

    Marquard, Peter; Smirnov, Alexander V.; Smirnov, Vladimir A.; Steinhauser, Matthias

    2015-02-01

    We present results for the relation between a heavy quark mass defined in the on-shell and MS scheme to four-loop order. The method to compute the four-loop on-shell integral is briefly described and the new results are used to establish relations between various short-distance masses and the MS quark mass to next-to-next-to-next-to-leading order accuracy. These relations play an important role in the accurate determination of the MS heavy quark masses.

  19. Family symmetries in F-theory GUTs

    CERN Document Server

    King, S F; Ross, G G

    2010-01-01

    We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.

  20. Emergence of a new S U (4 ) symmetry in the baryon spectrum

    Science.gov (United States)

    Denissenya, M.; Glozman, L. Ya.; Pak, M.

    2015-10-01

    Recently, a large degeneracy of J =1 mesons—that is, larger than the S U (2 )L×S U (2 )R×U (1 )A symmetry of the QCD Lagrangian—has been discovered upon truncation of the near-zero modes from the valence quark propagators. It has been found that this degeneracy represents the S U (4 ) group that includes the chiral rotations as well as the mixing of left- and right-handed quarks. This symmetry group turns out to be a symmetry of confinement in QCD. Consequently, one expects that the same symmetry should persist upon the near-zero mode removal in other hadron sectors as well. It has been shown that indeed the J =2 mesons follow the same symmetry pattern upon the low-lying mode elimination. Here we demonstrate the S U (4 ) symmetry of baryons once the near-zero modes are removed from the quark propagators. We also show a degeneracy of states belonging to different irreducible representations of S U (4 ). This implies a larger symmetry that includes S U (4 ) as a subgroup.

  1. The exact analytical form for the box diagram with one heavy external quark

    International Nuclear Information System (INIS)

    He Xiao-Gang; McKellar, B.H.J.; Pallaghy, P.K.

    1989-01-01

    The exact analytical form for the box-diagram amplitude with one non-vanishing external quark mass is presented. The consequences of this work for meson mixing and the CP violating charge asymmetry are investigated in heavy quark systems. In the T 0 - T -0 system with the three generation model the charge asymmetry is typically of order (∼10 -4 ) but the mixing is extremely small ( -18 ). In the four generation case, the mixing can be greatly enhanced. With a normal KM matrix, the mixing is still very small ( -10 ) but with a flavour-flipped KM matrix, the mixing can be as large as a few percent while the charge asymmetry is still small ( -4 ). In the B '0 - B -'0 system, the mixing and charge asymmetry can be of order a few percent whereas in the T '0 - T -'0 system, the mixing is small. 13 refs., 4 figs

  2. Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton-proton collisions at 13 TeV

    Science.gov (United States)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Stoykova, S.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elgammal, S.; Mahrous, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Passaseo, M.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Snigirev, A.; Volkov, P.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration

    2018-02-01

    A search is presented for narrow heavy resonances decaying to a top quark and a bottom quark using data collected by the CMS experiment at √{ s } = 13TeV in 2016. The data set analyzed corresponds to an integrated luminosity of 35.9fb-1 . Final states that include a single lepton (e, μ), multiple jets, and missing transverse momentum are analyzed. No evidence is found for the production of a W‧ boson, and the production of right-handed W‧ bosons is excluded at 95% confidence level for masses up to 3.6TeV depending on the scenario considered. Exclusion limits for W‧ bosons are also presented as a function of their coupling strength to left- and right-handed fermions. These limits on a W‧ boson decaying via a top and a bottom quark are the most stringent published to date.

  3. Octet baryon mass splittings from up-down quark mass differences

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Juelich Research Centre, Juelich (Germany); Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, School of Chemistry and Physics; Collaboration: QCDSF-UKQCD Collaboration

    2012-12-15

    Using an SU(3) flavour symmetry breaking expansion in the quark mass, we determine the QCD component of the neutron-proton, Sigma and Xi mass splittings of the baryon octet due to updown (and strange) quark mass differences. Provided the average quark mass is kept constant, the expansion coefficients in our procedure can be determined from computationally cheaper simulations with mass degenerate sea quarks and partially quenched valence quarks.

  4. Two-color lattice QCD with staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David

    2015-07-20

    The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking

  5. Heavy-quark meson spectrum tests of the Oktay-Kronfeld action

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Jon A.; Lee, Weonjong [Seoul National University, Department of Physics and Astronomy, Lattice Gauge Theory Research Center, FPRD, and CTP, Seoul (Korea, Republic of); DeTar, Carleton [University of Utah, Department of Physics and Astronomy, Salt Lake City, UT (United States); Jang, Yong-Chull [Seoul National University, Department of Physics and Astronomy, Lattice Gauge Theory Research Center, FPRD, and CTP, Seoul (Korea, Republic of); Los Alamos National Laboratory, Theoretical Division T-2, Los Alamos, NM (United States); Kronfeld, Andreas S. [Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States); Technische Universitaet Muenchen, Institute for Advanced Study, Garching (Germany); Oktay, Mehmet B. [University of Utah, Department of Physics and Astronomy, Salt Lake City, UT (United States); University of Iowa, Department of Physics and Astronomy, Iowa City, IA (United States)

    2017-11-15

    The Oktay-Kronfeld (OK) action extends the Fermilab improvement program for massive Wilson fermions to higher order in suitable power-counting schemes. It includes dimension-six and -seven operators necessary for matching to QCD through order O(Λ{sup 3}{sub QCD}/m{sub Q}{sup 3}) in HQET power counting, for applications to heavy-light systems, and O(v{sup 6}) in NRQCD power counting, for applications to quarkonia. In the Symanzik power counting of lattice gauge theory near the continuum limit, the OK action includes all O(a{sup 2}) and some O(a{sup 3}) terms. To assess whether the theoretical improvement is realized in practice, we study combinations of heavy-strange and quarkonia masses and mass splittings, designed to isolate heavy-quark discretization effects. We find that, with one exception, the results obtained with the tree-level-matched OK action are significantly closer to the continuum limit than those obtained with the Fermilab action. The exception is the hyperfine splitting of the bottom-strange system, for which our statistical errors are too large to draw a firm conclusion. These studies are carried out with data generated with the tadpole-improved Fermilab and OK actions on 500 gauge configurations from one of MILC's a ∼ 0.12 fm, N{sub f} = 2 + 1-flavor, asqtad-staggered ensembles. (orig.)

  6. Search for pair production of a new heavy quark that decays into a $W$ boson and a light quark in $pp$ collisions at $\\sqrt{s} = 8$ TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-12-22

    A search is presented for pair production of a new heavy quark ($Q$) that decays into a $W$ boson and a light quark ($q$) in the final state where one $W$ boson decays leptonically (to an electron or muon plus a neutrino) and the other $W$ boson decays hadronically. The analysis is performed using an integrated luminosity of 20.3 fb$^{-1}$ of $pp$ collisions at $\\sqrt{s} = 8$ TeV collected by the ATLAS detector at the LHC. No evidence of $Q\\bar{Q}$ production is observed. New chiral quarks with masses below 690 GeV are excluded at 95% confidence level, assuming BR$(Q\\to Wq)=1$. Results are also interpreted in the context of vectorlike quark models, resulting in the limits on the mass of a vectorlike quark in the two-dimensional plane of BR$(Q\\to Wq)$ versus BR$(Q\\to Hq)$.

  7. Heavy-Quark Production in the Target Fragmentation Region

    CERN Document Server

    Graudenz, Dirk

    1997-01-01

    Fixed-target experiments permit the study of hadron production in the target fragmentation region. It is expected that the tagging of specific particles in the target fragments can be employed to introduce a bias in the hard scattering process towards a specific flavour content. The case of hadrons containing a heavy quark is particularly attractive because of the clear experimental signatures and the applicability of perturbative QCD. The standard approach to one-particle inclusive processes based on fragmentation functions is valid in the current fragmentation region and for large transverse momenta $p_T$ in the target fragmentation region, but it fails for particle production at small $p_T$ in the target fragmentation region. A collinear singularity, which cannot be absorbed in the standard way into the phenomenological distribution functions, prohibits the application of this procedure. This situation is remedied by the introduction of a new set of distribution functions, the target fragmentation function...

  8. Spin dependent fragmentation functions for heavy flavor baryons and single heavy hyperon polarization

    CERN Document Server

    Goldstein, G R

    2001-01-01

    Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. $\\Lambda_b$ , $\\Lambda_c$ and $\\Xi_c$ production rate and polarization at LEP energies are calculated and, where possible, compared with experiment. A different approach, also relying on a heavy quark-diquark model, is proposed for the small momentum transfer inclusive production of polarized heavy flavor hyperons. The predicted $\\Lambda_c$ polarization is roughly in agreement with experiment.

  9. Valence QCD: Connecting QCD to the quark model

    International Nuclear Information System (INIS)

    Liu, K.F.; Dong, S.J.; Draper, T.; Sloan, J.; Leinweber, D.; Woloshyn, R.M.

    1999-01-01

    A valence QCD theory is developed to study the valence quark properties of hadrons. To keep only the valence degrees of freedom, the pair creation through the Z graphs is deleted in the connected insertions, whereas the sea quarks are eliminated in the disconnected insertions. This is achieved with a new 'valence QCD' Lagrangian where the action in the time direction is modified so that the particle and antiparticle decouple. It is shown in this valence version of QCD that the ratios of isovector to isoscalar matrix elements (e.g., F A /D A and F S /D S ratios) in the nucleon reproduce the SU(6) quark model predictions in a lattice QCD calculation. We also consider how the hadron masses are affected on the lattice and discover new insights into the origin of dynamical mass generation. It is found that, within statistical errors, the nucleon and the Δ become degenerate for the quark masses we have studied (ranging from 1 to 4 times the strange mass). The π and ρ become nearly degenerate in this range. It is shown that valence QCD has the C, P, T symmetries. The lattice version is reflection positive. It also has the vector and axial symmetries. The latter leads to a modified partially conserved axial Ward identity. As a result, the theory has a U(2N F ) symmetry in the particle-antiparticle space. Through lattice simulation, it appears that this is dynamically broken down to U q (N F )xU bar q (N F ). Furthermore, the lattice simulation reveals spin degeneracy in the hadron masses and various matrix elements. This leads to an approximate U q (2N F )xU bar q (2N F ) symmetry which is the basis for the valence quark model. In addition, we find that the masses of N, Δ,ρ,π,a 1 , and a 0 all drop precipitously compared to their counterparts in the quenched QCD calculation. This is interpreted as due to the disappearance of the 'constituent' quark mass which is dynamically generated through tadpole diagrams. The origin of the hyperfine splitting in the baryon is

  10. Dynamical symmetry breaking: Exotic quarks and the strong CP problem

    International Nuclear Information System (INIS)

    Furlong, R.C.

    1988-10-01

    Decuplet quarks (quens) transforming as 10's under SU(3)/sub C/ are shown to be superior to sextet quarks (quixes) in their ability to resolve the Strong CP problem, resulting in composite invisible axions (CIAs). 8 refs

  11. Prediction of new Quarks, Generations & low Mass Quarks

    Science.gov (United States)

    Lach, Theodore

    2003-04-01

    The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.

  12. Translational Symmetry Breaking and Gapping of Heavy-Quasiparticle Pocket in URu2Si2

    Science.gov (United States)

    Yoshida, Rikiya; Tsubota, Koji; Ishiga, Toshihiko; Sunagawa, Masanori; Sonoyama, Jyunki; Aoki, Dai; Flouquet, Jacques; Wakita, Takanori; Muraoka, Yuji; Yokoya, Takayoshi

    2013-01-01

    URu2Si2 is a uranium compound that exhibits a so-called ‘hidden-order’ transition at ~17.5 K. However, the order parameter of this second-order transition as well as many of its microscopic properties remain unclarified despite considerable research. One of the key questions in this regard concerns the type of spontaneous symmetry breaking occurring at the transition; although rotational symmetry breaking has been detected, it is not clear whether another type of symmetry breaking also occurs. Another key question concerns the property of Fermi-surface gapping in the momentum space. Here we address these key questions by a momentum-dependent observation of electronic states at the transition employing ultrahigh-resolution three-dimensional angle-resolved photoemission spectroscopy. Our results provide compelling evidence of the spontaneous breaking of the lattice's translational symmetry and particle-hole asymmetric gapping of a heavy quasiparticle pocket at the transition. PMID:24084937

  13. Logarithmic correction in the deformed AdS5 model to produce the heavy quark potential and QCD beta function

    International Nuclear Information System (INIS)

    He Song; Huang Mei; Yan Qishu

    2011-01-01

    We study the holographic QCD model, which contains a quadratic term -σz 2 and a logarithmic term -c 0 log[(z IR -z)/z IR ] with an explicit infrared cutoff z IR in the deformed AdS 5 warp factor. We investigate the heavy-quark potential for three cases, i.e., with only a quadratic correction, with both quadratic and logarithmic corrections, and with only a logarithmic correction. We solve the dilaton field and dilation potential from the Einstein equation and investigate the corresponding beta function in the Guersoy-Kiritsis-Nitti framework. Our studies show that in the case with only a quadratic correction, a negative σ or the Andreev-Zakharov model is favored to fit the heavy-quark potential and to produce the QCD beta function at 2-loop level; however, the dilaton potential is unbounded in the infrared regime. One interesting observation for the case of positive σ is that the corresponding beta function exists in an infrared fixed point. In the case with only a logarithmic correction, the heavy-quark Cornell potential can be fitted very well, the corresponding beta function agrees with the QCD beta function at 2-loop level reasonably well, and the dilaton potential is bounded from below in the infrared. At the end, we propose a more compact model which has only a logarithmic correction in the deformed warp factor and has less free parameters.

  14. Chemical Evolution of Strongly Interacting Quark-Gluon Plasma

    International Nuclear Information System (INIS)

    Pan, Ying-Hua; Zhang, Wei-Ning

    2014-01-01

    At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (~1 fm/c). However, the quark-gluon plasma (QGP) system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperature T=400 MeV to T=150 MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations

  15. Confinement, Chiral Symmetry Breaking and it's Restoration using Dual QCD Formalism

    Directory of Open Access Journals (Sweden)

    Punetha Garima

    2018-01-01

    Full Text Available Utilizing the dual QCD model in term of magnetic symmetry structure of non- Abelian gauge theories, the dynamical chiral-symmetry breaking using Schwinger-Dyson equation has been investigated. A close relation among the color confinement and chiralsymmetry breaking has been observed and demonstrated by computing dynamical parameters. The recovery of the chiral symmetry has also been discussed at finite temperature through the variation of quark mass function and quark condensate which gradually decreases with temperature and vanishes suddenly near the critical temperature.

  16. Weak form factors of beauty baryons

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Lyubovitskij, V.E.

    1992-01-01

    Full analysis of semileptonic decays of beauty baryons with J p =1/2 2 and J p =3/2 2 into charmed ones within the Quark Confinement Model is reported. Weak form factors and decay rates are calculated. Also the heavy quark limit m Q →∞ (Isgur-Wise symmetry) is examined. The weak heavy-baryon form factors in the Isgur-Wise limit and 1/m Q -corrections to them are computered. The Ademollo-Gatto theorem is spin-flavour symmetry of heavy quarks is checked. 33 refs.; 1 fig.; 9 tabs

  17. Vector-like bottom quarks in composite Higgs models

    DEFF Research Database (Denmark)

    Gillioz, M.; Grober, R.; Kapuvari, A.

    2014-01-01

    Like many other models, Composite Higgs Models feature the existence of heavy vector-like quarks. Mixing effects between the Standard Model fields and the heavy states, which can be quite large in case of the top quark, imply deviations from the SM. In this work we investigate the possibility of ...

  18. Cosmoparticle physics of family symmetry breaking

    International Nuclear Information System (INIS)

    Khlopov, M.Yu.

    1993-07-01

    The foundations of both particle theory and cosmology are hidden at super energy scale and can not be tested by direct laboratory means. Cosmoparticle physics is developed to probe these foundations by the proper combination of their indirect effects, thus providing definite conclusions on their reliability. Cosmological and astrophysical tests turn to be complementary to laboratory searches of rare processes, induced by new physics, as it can be seen in the case of gauge theory of broken symmetry of quark and lepton families, ascribing to the hierarchy of the horizontal symmetry breaking the observed hierarchy of masses and the mixing between quark and lepton families. 36 refs

  19. Spectroscopy of doubly heavy baryons

    International Nuclear Information System (INIS)

    Gershtein, S.S.; Kiselev, V.V.; Likhoded, A.K.; Onishchenko, A.I.

    2000-01-01

    Within a nonrelativistic quark model featuring a QCD-motivated Buchmueller-Tye potential, the mass spectra for the families of doubly heavy baryons are calculated by assuming the quark-diquark structure of the baryon wave functions and by taking into account spin-dependent splitting. Physically motivated evidence that, in the case where heavy quarks have identical flavors, quasistationary excited states may be formed in the heavy-diquark subsystem is analyzed

  20. Analysis of chiral symmetry breaking mechanism

    International Nuclear Information System (INIS)

    Guo, X. H.; Academia Sinica, Beijing; Huang, T.; CCAST

    1997-01-01

    The renormalization group invariant quark condensate μ is determined both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like δ (q) which is associated with the gluon condensate. The solutions of μ in these two equations are consistent. The authors also obtain the critical strong coupling constant α c above which chiral symmetry breaks in these two approaches. The nonperturbative kernel of the SD equation makes α c smaller and μ bigger. An intuitive picture of the condensation above α c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity they derive the equations for the nonperturbative quark propagator from the SD equation in the presence of the intermediate range force and find that the intermediate-range force is also responsible for dynamical chiral symmetry breaking