WorldWideScience

Sample records for heavy oils produced

  1. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  2. Maximizing heavy oil value while minimizing environmental impact with HTL upgrading of heavy to light oil

    Energy Technology Data Exchange (ETDEWEB)

    Koshka, E. [Ivanhoe Energy Inc., Calgary, AB (Canada)

    2009-07-01

    This presentation described Ivanhoe Energy Inc.'s proprietary HTL upgrading technology which was designed to process heavy oil in the field to cost effectively produce an upgraded synthetic oil that meets pipeline requirements. Steam and electricity are generated from the energy produced during the process. HTL improves the economics of heavy oil production by reducing the need for natural gas and diluent, and by capturing most of the heavy to light oil price differential. Integrated HTL heavy oil production also provides many environmental benefits regarding greenhouse gas (GHG) emissions. The HTL upgrading process is ready for full scale application. tabs., figs.

  3. Water issues associated with heavy oil production.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  4. Heavy oils clean up

    International Nuclear Information System (INIS)

    Collitt, R.

    1997-01-01

    High production, transport and refining costs have long led oil companies to shun heavy crude oils. Advances in the technology of upgrading heavy oils, however, are likely to reduce transport costs and improve the refinery output. Research and development by Venezuela's state oil company, Petroleos de Venezuela (PDVSA), has resulted in a process called Aquaconversion which permits the upgrading of heavy crude oils using a catalyst and the hydrogen from steam. This may be carried out at the wellhead in small low-pressure and relatively inexpensive units. In addition, higher distillate yields of higher value could be produced by revamping the thermal cracking units of refineries to incorporate the new technology. This has generated considerable interest in Venezuela's large extra-heavy crude oil reserves and has led multinational oil companies along with PDVSA to pledge $17 billion to their development. Even at a $2 to $3 per barrel upgrading cost, Venezuela's extra heavy crudes are competitive with lighter oils from other countries. Other major markets for the new technology are likely to be China and Russia, given their own large heavy crude reserves. (UK)

  5. The heavy oil refiners needs in the future

    International Nuclear Information System (INIS)

    Sauer, J.W.

    1991-01-01

    In the 1970s oil crisis, the high price differential that developed between heavy and light crude led to an expansion in heavy crude processing geared to producing light oil products. The subsequent collapse in prices meant that heavy crudes with low netbacks were shut in, heavy crude refining capacity exceeded the restrained production of heavy crudes, and refineries were operating at losses. However, the low prices for oil rekindled demand and spare production capacity has been absorbed. The crude oil price is forecast to rise to ca $27/bbl by the late 1990s, which is favorable for heavy crude oil production. Nevertheless, investments in heavy crude production are exposed to a high degree of risk. A strategy for dealing with this risk is to integrate into downstream, which makes more sense for heavy crude producers than for conventional producers. On the other hand, such integration is capital-intensive, and light oils will likely be favored in crude oil production developments for the next several years. Low prices for natural gas will make it hard to find markets for residual fuel made from heavy crudes. 8 figs

  6. Heavy oil in Saskatchewan: Building on strengths

    International Nuclear Information System (INIS)

    1994-02-01

    Saskatchewan has reserves of 17.6 billion bbl of heavy oil located in the west-central part of the province. The first oil well was drilled in 1945 and production of heavy oil has increased gradually, reaching 79,000 bbl/d in 1992. In recent years, the production pattern has not matched trends in investment; since 1982/83, the relative proportion of heavy oil drilling has declined significantly. A study is presented which analyzes trends in heavy oil investment, production, economics, and markets, with a focus on determining the causes for lack of investment in the heavy oil sector and evaluating the opportunities and constraints for long-term sustainability of this industry. Industry background is provided, with presentation of the key resource characteristics, reserve potential, and production and investment trends. Markets both in Canada and the USA are analyzed in detail, possible future trends are suggested. The effect of development of refinery capacity on heavy oil developments is examined. The logistics of shipping heavy oil to markets are detailed. The economics of Saskatchewan heavy oil production are established, taking into account all relevant cost components including taxes, royalties, and netbacks to producers. Issues of relevance affecting the heavy oil industry are discussed, including the need for environmental safeguards. 25 figs., 24 tabs

  7. How equity markets view heavy oil

    International Nuclear Information System (INIS)

    Janisch, M.L.

    2001-01-01

    A review of heavy oil economics was presented in this power point presentation with particular focus on investor motivation, the importance of heavy oil, and an outlook on commodity price for oil and natural gas. Heavy oil from oil sands is playing a major role on the Canadian domestic production front as well as globally. Almost all senior Canadian producers have a major heavy oil project in the works. Oil prices are forecasted to remain strong, but a more bullish outlook is expected for natural gas prices for both the short and long term. Natural gas drilling has increased, but the number of natural gas wells as a percentage of total wells has decreased. Recent Canadian drilling activity has placed more emphasis on crude oil production which has contributed to the lower overall natural gas drilling success rate. It was shown that infrastructure issues regarding tankers, refining capacity (at or near capacity) will be the major factor affecting the availability of crude products to market. It was also shown that heavy oil differentials have increased substantially, which could be a potential issue if oil prices begin to weaken. 1 tab., 12 figs

  8. Canadian heavy oil supply and demand

    International Nuclear Information System (INIS)

    Eynon, G.

    1997-01-01

    The wealth of business opportunities presented by Canada's vast heavy oil and bitumen resources in the face of declining reserves of light and medium crude were discussed. It was argued that Western Canadian producers, as a group, appear to lack the appreciation of the impacts of midstream and downstream sectors of the heavy oil business. The vertical integration of the heavy oil industry in Venezuela was cited as an example of the direction that Canadian producers should travel to achieve the control over their own destiny through ownership of the means of transportation, refining and marketing that is commensurate with their growing importance in the energy sector. The opportunities are great, but long-term success will require a sophisticated and integrated business approach. 4 figs

  9. Placing Brazil's heavy acid oils on international markets

    International Nuclear Information System (INIS)

    Szklo, Alexandre Salem; Machado, Giovani; Schaeffer, Roberto; Felipe Simoes, Andre; Barboza Mariano, Jacqueline

    2006-01-01

    This paper identifies the international market niches of Brazil's heavy acid oils. It analyzes the perspectives for making wider use of heavy acid oils, assessing their importance for certain oil-producing regions such as Brazil, Venezuela, West Africa, the North Sea and China. Within this context, the oil produced in the Marlim Field offshore Brazil is of specific interest, spurred by the development of its commercial brand name for placement on international markets and backed by ample production volumes. This analysis indicates keener international competition among acid oils produced in Brazil, the North Sea and the West Coast of Africa, through to 2010. However, over the long term, refinery conversion capacity is the key factor for channeling larger volumes of heavy acid oils to the international market. In this case, the future of acid oil producers will depend on investments in refineries close to oil product consumption centers. For Brazil, this means investments in modifying its refineries and setting up partnerships in the downstream segment for consumer centers absorbing all products of high added value, such as the USA and even Southeast Asia and Western Europe

  10. Utah Heavy Oil Program

    Energy Technology Data Exchange (ETDEWEB)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  11. Value of NMR logging for heavy oil characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Chen, J.; Georgi, D. [Baker Hughes, Calgary, AB (Canada); Sun, B. [Chevron Energy Technology Co., Calgary, AB (Canada)

    2008-07-01

    Non-conventional, heavy oil fields are becoming increasingly important to the security of energy supplies and are becoming economically profitable to produce. Heavy oil reservoirs are difficult to evaluate since they are typically shallow and the connate waters are very fresh. Other heavy oil reservoirs are oil-wet where the resistivities are not indicative of saturation. Nuclear magnetic resonance (NMR) detects molecular level interactions. As such, it responds distinctively to different hydrocarbon molecules, thereby opening a new avenue for constituent analysis. This feature makes NMR a more powerful technique than bulk oil density or viscosity measurements for characterizing oils, and is the basis for detecting gas in heavy oil fields. NMR logging, which measures fluid in pore space directly, is capable of separating oil from water. It is possible to discern movable from bound water by analyzing NMR logs. The oil viscosity can be also quantified from NMR logs, NMR relaxation time and diffusivity estimates. The unique challenges for heavy oil reservoir characterization for the NMR technique were discussed with reference to the extra-fast decay of the NMR signal in response to extra-heavy oil/tars, and the lack of sensitivity in measuring very slow diffusion of heavy oil molecules. This paper presented various methods for analyzing heavy oil reservoirs in different viscosity ranges. Heavy oil fields in Venezuela, Kazakhstan, Canada, Alaska and the Middle East were analyzed using different data interpretation approaches based on the reservoir formation characteristics and the heavy oil type. NMR direct fluid typing was adequate for clean sands and carbonate reservoirs while integrated approaches were used to interpret extra heavy oils and tars. It was concluded that NMR logs can provide quantitative measures for heavy oil saturation, identify sweet spots or tar streaks, and quantify heavy oil viscosity within reasonable accuracy. 14 refs., 16 figs.

  12. Trends in heavy oil production and refining in California

    International Nuclear Information System (INIS)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10 degrees to 20 degrees API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources

  13. Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.K.; Johnson, W.I.

    1993-08-01

    This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

  14. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  15. New technology for producing petrochemical feedstock from heavy oils derived from Alberta oil sands

    International Nuclear Information System (INIS)

    Oballa, M.; Simanzhenkov, V.; Clark, P.; Laureshen, C.; Plessis du, D.

    2006-01-01

    This paper presented the results of a study demonstrating the feasibility of producing petrochemical feedstock or petrochemicals from vacuum gas oils derived from oil sands. A typical bitumen upgrader flow scheme was integrated with several new technologies and coupled with an ethane/propane cracker. Technologies included steam cracking, fluid catalytic cracking (FCC); and the catalytic pyrolysis process (CPP). The scheme was then integrated with the Nova Heavy Oil Cracking (NHC) technology. The NHC process uses a reactor to perform catalytic cracking followed by a main tower that separates gas and liquid products. Aromatic ring cleavage (ARORINCLE) technology was explored as a method of catalytic treatment. Experimental runs were conducted in a laboratory scale fixed bed reactor. A stacked catalyst bed was used, followed by a zeolite-based noble metal catalyst. Examples from process run results were presented. Results indicated that the NHC technology should be used on an FCC unit technology platform. The ARORINCLE technology was considered for use on a hydrotreating unit technology platform. Once the catalysts are fully developed and demonstrated, the economics of the technologies will be enhanced through the construction of world-scale complexes integrating upgrading, refining and petrochemical plants. refs., tabs., figs

  16. Catalytic hydroprocessing of heavy oil feedstocks

    International Nuclear Information System (INIS)

    Okunev, A G; Parkhomchuk, E V; Lysikov, A I; Parunin, P D; Semeikina, V S; Parmon, V N

    2015-01-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references

  17. Catalytic hydroprocessing of heavy oil feedstocks

    Science.gov (United States)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  18. Converting heavy oils into light oils, etc

    Energy Technology Data Exchange (ETDEWEB)

    Mony, H

    1915-12-22

    A process is described for transforming heavy oils obtained by the carbonization of lignites, peats, coals, shales into light oils, and also the heavy oils of mineral and vegetable origin, consisting of heating the heavy oils or tars in the presence of one or more solid substances or liquids suitably chosen to cause the distillation of the oils under atmospheric pressure at an appropriate temperature; solid and liquid substances which favor the production of light products under the influence of heat being added preferably to the oil to be treated before putting it in the retort and before heating, so that light oils are obtained by treatment of the heavy oils in a single operation.

  19. Thermal Cracking of Jatropha Oil with Hydrogen to Produce Bio-Fuel Oil

    Directory of Open Access Journals (Sweden)

    Yi-Yu Wang

    2016-11-01

    Full Text Available This study used thermal cracking with hydrogen (HTC to produce bio-fuel oil (BFO from jatropha oil (JO and to improve its quality. We conducted HTC with different hydrogen pressures (PH2; 0–2.07 MPa or 0–300 psig, retention times (tr; 40–780 min, and set temperatures (TC; 623–683 K. By applying HTC, the oil molecules can be hydrogenated and broken down into smaller molecules. The acid value (AV, iodine value, kinematic viscosity (KV, density, and heating value (HV of the BFO produced were measured and compared with the prevailing standards for oil to assess its suitability as a substitute for fossil fuels or biofuels. The results indicate that an increase in PH2 tends to increase the AV and KV while decreasing the HV of the BFO. The BFO yield (YBFO increases with PH2 and tr. The above properties decrease with increasing TC. Upon HTC at 0.69 MPa (100 psig H2 pressure, 60 min time, and 683 K temperature, the YBFO was found to be 86 wt%. The resulting BFO possesses simulated distillation characteristics superior to those of boat oil and heavy oil while being similar to those of diesel oil. The BFO contains 15.48% light naphtha, 35.73% heavy naphtha, 21.79% light gas oil, and 27% heavy gas oil and vacuum residue. These constituents can be further refined to produce gasoline, diesel, lubricants, and other fuel products.

  20. Outlook for Saskatchewan heavy oil

    International Nuclear Information System (INIS)

    Youzwa, P.

    1993-01-01

    Some of the opportunities and challenges currently facing the heavy oil industry in Saskatchewan are discussed from a government perspective. By the end of September 1993, 220 heavy oil wells were drilled in the province, and 26% of the land sales in 1993 were in heavy oil areas. About 41% of the wells drilled in heavy oil areas were horizontal oil wells. Of the total horizontal wells drilled in Saskatchewan, 48% are for heavy oil, and horizontal well production averages 85 bbl/d. Initial trends suggest that horizontal wells both accelerate production and contribute to ultimate recovery. Total heavy oil production in 1992 reached 28.9 million bbl and recoverable reserves in 1991 were 262.3 million bbl, or 1.5% of total oil in place. The low recovery is not only due to technical factors such as high viscosity but also to low investment in the heavy oil sector due to poor economics. It is hoped that lower interest and exchange rates, the success of horizontal wells and the provincial royalty structure will maintain the recent increase in heavy oil activity. The provincial government recently launched a comprehensive energy strategy in which development of a heavy oil strategy is an important component. Total heavy oil reserves exceed those of light and medium oil and have significant development potential. The Saskatchewan government wishes to adopt a cooperative and partnership approach in its dealings with the heavy oil industry to help realize this potential. 9 figs

  1. Government and industry roles in heavy oil resource development

    International Nuclear Information System (INIS)

    Sharp, D.A.

    1994-01-01

    Developing a heavy oil deposit in Canada requires proper reservoir selection and ongoing resrvoir management. The number of unexploited heavy oil reservoirs whch can be economically produced through primary methods is rapidly declining. In addition, primary recoveries of 5-10% of the heavy oil in place are unacceptable and recovery rates of over 50% are needed. Enhanced thermal recovery projects are therefore needed, but these entail significant technical and commodity pricing risks. It is suggested that provincial governments recognize those risks and offer incentives by not encumbering such projects with up-front royalties. If industry is to assume the risks, governments must develop a fiscal regime that allows for a satisfactory return on capital and acceptable sharing of profits. At the federal level, it is suggested to broaden the interpretation of research and development activity to include enhanced recovery projects, making the tax breaks available to scientific research also available to heavy oil development. Government policies favoring heavy oil in Saskatchewan and Alberta are cited as good examples of ways to encourage the heavy oil industry

  2. Pre-electrocoalescer unit adapted to the extra-heavy oil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Noik, C.; Dalmazzone, C. [IFP, Rueil-Malmaison (France); Glenat, P. [Total, Paris (France)

    2008-10-15

    This paper described a dehydration process that can break water oil emulsions to mobilize extra heavy oils and bitumen extra heavy oils. The dehydration process is based on solvent mixture with additives injection. It involves large amount of additives, fairly high operating temperatures, solvent addition, and long retention time inside the vessels. The process could be improved by electrocoalescence, thereby reducing the amount of additive and reducing the retention times of vessels to reach oil export specifications. However, commercial electrocoalescence processes are not suitable for extra heavy oils because of the presence of polar heavy components limiting the electrocoalescence effect and therefore, limiting the efficiency of electrostatic coalescer. This paper presented a study whose objective was to determine the most efficient electrocoalescence parameters considering the characteristics of two types of heavy crude oils issued from cold and thermal productions. The paper presented experimental results for electrocoalescence additive selection and for the optimization of electrical parameters. The paper described the materials and methods, including fluids characterization; viscosity; differential scanning calorimetry; dispersion rig; electrical stability tester; and electrocoalescer rig. It was concluded that crude oils produced by thermal production schemes seemed more sensitive to the temperature effect than crudes produced by cold production. 10 refs., 3 tabs., 23 figs.

  3. US refining capacity for Canadian heavy oil : current overview and future potential

    International Nuclear Information System (INIS)

    Paget, S.

    2006-01-01

    This presentation provided an overview of the Canadian oil sands industry and investigated the potential heavy oil refining capacity of the United States. An outline of the first commercial developments of steam assisted gravity drainage (SAGD) in Alberta's oil sands was provided. Canada's reserves were compared with oil shale and heavy oil reserves in the United States and Venezuela. Influences of Canadian developments from western Canadian conventional crude oil were reviewed, and an oil sands production forecast was provided. Recent refining developments in the United States include delayed coking; catalytic cracking; fluid coking; flexicoking; and LC-fining. However, many oil sand producers are now choosing to upgrade oil, and producers are currently saturating United States markets with heavy crude oil. Canadian crude prices reached $90 per barrel in 2006. Heavy oil pipelines are now being constructed and existing heavy oil pipelines are being expanded. ConocoPhillips is planning to invest $1 billion for a new heavy oil coker, while BP is investing $3 billion for a heavy oil refinery in Indiana which plans to refine Canadian crude oil supplies. However, bitumens from Alberta are volatile in price, and excess Canadian production must be exported. Less than 10 per cent of western Canadian crude has tidewater access, and capital providers are concerned about cost over-runs. In order for the Canadian oil sands industry to succeed, refining capacity in the United States must be expanded, and open access must be provided to the Gulf coast as well as to the Pacific Ocean. tabs., figs

  4. Viscous fingering effects in solvent displacement of heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Cuthiell, D. [Suncor Energy, Fort McMurray, AB (Canada); Kissel, G.; Jackson, C.; Frauenfeld, T.W.J.; Fisher, D. [Alberta Research Council, Devon, AB (Canada); Rispler, K. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2004-07-01

    Vapour Extraction (VAPEX) is a solvent-based process that is analogous to steam-assisted gravity drainage (SAGD) for the recovery of heavy oil. A cyclic solvent process is preferred for thin reservoirs, particularly primary-depleted reservoirs. In a cyclic steam stimulation process, a solvent is injected into the reservoir for a period of time before oil is produced from the well. Viscous fingering is a phenomena that characterizes several solvent-based processes for the recovery of heavy oil. A combined experimental and simulation study was conducted to characterize viscous fingering under heavy oil recovery conditions (high ratio of oil to solvent viscosity). Four experiments were conducted in heavy oil-saturated sand packs. Three involved injection of a miscible, liquid solvent at the bottom of the sand pack. The heavy oil in these experiments was displaced upwardly. The fourth experiment involved top-down injection of a gaseous solvent. The miscible liquid displacement was dominated by one solvent finger which broke through to a producing well at the other end of the sand pack. Breakthrough times were similar to that at lower viscosity. The fourth experiment showed fingering along with features of a gravity-driven VAPEX process. Key features of the experiment and realistic fingering patterns were numerically simulated using a commercial reservoir simulator. It was emphasized that accurate modelling of dispersion is necessary in matching the observed phenomena. The simulations should include the capillary effects because of their significance for gaseous fingering and the VAPEX processes. 17 refs., 2 tabs., 20 figs.

  5. Influence of Oil Viscosity on Alkaline Flooding for Enhanced Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Yong Du

    2013-01-01

    Full Text Available Oil viscosity was studied as an important factor for alkaline flooding based on the mechanism of “water drops” flow. Alkaline flooding for two oil samples with different viscosities but similar acid numbers was compared. Besides, series flooding tests for the same oil sample were conducted at different temperatures and permeabilities. The results of flooding tests indicated that a high tertiary oil recovery could be achieved only in the low-permeability (approximately 500 mD sandpacks for the low-viscosity heavy oil (Zhuangxi, 390 mPa·s; however, the high-viscosity heavy oil (Chenzhuang, 3450 mPa·s performed well in both the low- and medium-permeability (approximately 1000 mD sandpacks. In addition, the results of flooding tests for the same oil at different temperatures also indicated that the oil viscosity put a similar effect on alkaline flooding. Therefore, oil with a high-viscosity is favorable for alkaline flooding. The microscopic flooding test indicated that the water drops produced during alkaline flooding for oils with different viscosities differed significantly in their sizes, which might influence the flow behaviors and therefore the sweep efficiencies of alkaline fluids. This study provides an evidence for the feasibility of the development of high-viscosity heavy oil using alkaline flooding.

  6. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    International Nuclear Information System (INIS)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area

  7. Heavy crude oils - From Geology to Upgrading - An Overview

    International Nuclear Information System (INIS)

    Huc, A.Y.

    2010-01-01

    Heavy oils, extra-heavy oils and tar sands are major players for the future of energy. They represent a massive world resource, at least the size of conventional oils. They are found all over the world but Canada and Venezuela together account, by themselves, for more than half of world deposits. They share the same origin as the lighter conventional oils, but their geological fate drove them into thick, viscous tar-like crude oils. Most of them result from alteration processes mediated by microbial degradation. They are characterized by a low content of lighter cuts and a high content of impurities such as sulfur and nitrogen compounds and metals; so, their production is difficult and deployment of specific processes is required in order to enhance their transportability and to upgrade them into valuable products meeting market needs, and honouring environmental requirements. Although these resources are increasingly becoming commercially producible, less than 1% of total heavy crude oil deposits worldwide are under active development. The voluntarily wide scope of this volume encompasses geology, production, transportation, upgrading, economics and environmental issues of heavy oils. It does not pretend to be exhaustive, but to provide an authoritative view of this very important energy resource. Besides presenting the current status of knowledge and technology involved in exploiting heavy oils, the purpose is to provide an insight into technical, economic and environmental challenges that should be taken up in order to increase the efficiency of production and processing, and finally to give a prospective view of the emerging technologies which will contribute to releasing the immense potential reserves of heavy oil and tar deposits. Contents: Part 1. Heavy Crude Oils.1. Heavy Crude Oils in the Perspective of World Oil Demand. 2. Definitions and Specificities. 3. Geological Origin of Heavy Crude Oils. 4. Properties and composition. Part 2. Reservoir Engineering

  8. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  9. Proceedings of the heavy oil Latin America congress 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This conference brought experts together to explore the challenges faced and opportunities available in the dynamic emerging market for heavy oil which Latin America offers. The conference was attended by over 700 delegates from around the world representing official and private agencies, Latin American governments, national oil companies and service companies in heavy oil producing countries. These participants were given the opportunity to learn about the entire value chain of Latin America's heavy oil industry, with emphasis on balancing challenging environmental and social issues with operational best practices, and they also the opportunity to share their knowledge and expertise with their peers. 17 of the 29 papers presented during this conference have been catalogued separately for inclusion in this database.

  10. Greenhouse gases: How does heavy oil stack up?

    International Nuclear Information System (INIS)

    Ottenbreit, R.J.

    1991-01-01

    Life-cycle emissions of direct greenhouse gases (GHG) have been calculated to elucidate the global warming impacts of various fossil fuel feedstocks. Calculations were made for the transportation sector using five fossil fuel sources: natural gas, light crude oil, conventional heavy oil, crude bitumen recovered through in-situ steam stimulation, and crude bitumen recovered through mining. Results suggest that fuels sourced from light crude oil have the lowest GHG emissions, while conventional heavy oil has the highest GHG emission levels for this application. Emissions of methane can constitute a significant portion of the life-cycle GHG emissions of a fossil fuel. For all the fossil fuels examined, except conventional heavy oil, GHG emissions associated with their production, transport, processing, and distribution are less than one third of their total life-cycle emissions. The remainder is associated with end use. This confirms that consumers of fossil fuel products, rather than fossil fuel producers, have the most leverage to reduce GHG emissions. 2 figs

  11. The future for heavy crude oil

    International Nuclear Information System (INIS)

    Horsnell, P.

    1995-01-01

    The expectation, still held in 1993, that the light oil-heavy crude oil differential would go on increasing in favour of light oil has not been fulfilled. Current perceptions are that heavy oil will continue to be relatively strong and there is no inevitable upward trend in light-heavy crude differentials. Non-OPEC production has grown significantly lighter overall in recent years and is likely to continue so for several more years. This is due to expanded light oil production in the North Sea, Latin America and the Far East, and contractions in heavy oil production in Russia and the USA. OPEC production has also become lighter with, in particular, an expansion in light oil and contraction in heavy grades from Saudi Arabia. At the same time, the nature of the demand from refineries has changed with the introduction of new units designed to process the residium from heavy oil distillation. Thus the supply of light oil has expanded while demand for it has contracted with the reverse being true for heavy oil. (2 figures, 1 table) (UK)

  12. Reduction of light oil usage as power fluid for jet pumping in deep heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Li, H.; Yang, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada); Zhang, Q. [China Univ. of Petroleum, Dongying, Shandong (China); He, J. [China National Petroleum Corp., Haidan District, Beijing (China). PetroChina Tarim Oilfield Co.

    2008-10-15

    In deep heavy oil reservoirs, reservoir fluid can flow more easily in the formation as well as around the bottomhole. However, during its path along the production string, viscosity of the reservoir fluid increases dramatically due to heat loss and release of the dissolved gas, resulting in significant pressure drop along the wellbore. Artificial lifting methods need to be adopted to pump the reservoir fluids to the surface. This paper discussed the development of a new technique for reducing the amount of light oil used for jet pumping in deep heavy oil wells. Two approaches were discussed. Approach A uses the light oil as a power fluid first to obtain produced fluid with lower viscosity, and then the produced fluid is reinjected into the well as a power fluid. The process continues until the viscosity of the produced fluid is too high to be utilized. Approach B combines a portion of the produced fluid with the light oil at a reasonable ratio and then the produced fluid-light oil mixture is used as the power fluid for deep heavy oil well production. The viscosity of the blended power fluid continue to increase and eventually reach equilibrium. The paper presented the detailed processes of both approaches in order to indicate how to apply them in field applications. Theoretic models were also developed and presented to determine the key parameters in the field operations. A field case was also presented and a comparison and analysis between the two approaches were discussed. It was concluded from the field applications that, with a certain amount of light oil, the amount of reservoir fluid produced by using the new technique could be 3 times higher than that of the conventional jet pumping method. 17 refs., 3 tabs., 6 figs.

  13. Heavy mineral concentration from oil sand tailings

    Energy Technology Data Exchange (ETDEWEB)

    Chachula, F.; Erasmus, N. [Titanium Corp. Inc., Regina, SK (Canada)

    2008-07-01

    This presentation described a unique technique to recover heavy minerals contained in the froth treatment tailings produced by oil sand mining extraction operations in Fort McMurray, Alberta. In an effort to process waste material into valuable products, Titanium Corporation is developing technology to recover heavy minerals, primarily zircon, and a portion of bitumen contained in the final stage of bitumen processing. The process technology is being developed to apply to all mined oil sands operations in the Fort McMurray region. In 2004, Titanium Corporation commissioned a pilot research facility at the Saskatchewan Research Council to test dry oil sands tailings. In 2005, a bulk sampling pilot plant was connected to the fresh oil sands tailings pipeline on-site in Fort McMurray, where washed sands containing heavy minerals were processed at a pilot facility. The mineral content in both deposited tailings and fresh pipeline tailings was assessed. Analysis of fresh tailings on a daily basis identified a constant proportion of zircon and higher levels of associated bitumen compared with the material in the deposited tailings. The process flow sheet design was then modified to remove bitumen from the heavy minerals and concentrate the minerals. A newly modified flotation process was shown to be a viable processing route to recover the heavy minerals from froth treatment tailings. 8 refs., 9 tabs., 12 figs.

  14. Heavy crude oil and synthetic crude market outlook

    International Nuclear Information System (INIS)

    Crandall, G.R.

    1997-01-01

    This presentation included an outline of the international heavy crude supply and demand versus Canadian heavy crude supply and disposition, and pricing outlook for synthetic crudes. Differences among crude oils such as light sweet, light sour, heavy and bitumen were described and illustrated with respect to their gravity, API, percentage of sulphur, metals and nitrogen. Internationally, heavy and sour crude supplies are forecast to increase significantly over the next four years. Discoveries of light sour crude in offshore Gulf of Mexico will provide a major new source of sour crude to U.S. Gulf Coast refineries. Venezuela's supplies of heavy and sour crude are also expected to increase over the next few years. Mexico and Canada have plans to increase their heavy crude production. All of the crudes will be aimed at the U.S. Gulf Coast and Midwest markets. Pentanes and condensates are also expected to increase based on the growing Canadian natural gas production. Diluent demand will also grow to match Canadian heavy crude/bitumen production. U.S. midwest refiners are proposing expansions to allow them to process more Canadian heavy crude oil. At present, only a few refineries are equipped to process significant amounts of synthetic crude. It was suggested that to absorb available heavy and synthetic production, increased penetration into both Canadian and U.S. markets will be required. Some refineries may have to be modified to process heavy and synthetic oil supplies. Heavy oil and synthetic producers may need to develop relationships with refiners such as joint ventures and term supply agreements to secure markets. 2 tabs., 12 figs

  15. Research on heavy oil degradation by four thermophilic bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Bao, M.; Chen, Q.; Liu, Z.; Li, Y. [Ocean Univ. of China, Qingdao, Shandong (China)

    2009-07-01

    The Shengli oilfield is the second largest onshore oil field in China, with a crude oil output of approximately 30 million tons per year. The large quantities of wastewater that are produced during thermal recovery methods have posed a challenge in terms of water reuse, reinjection and discharge. The important aspect of wastewater treatment is the removal of residual heavy oil. Biological methods are considered to be efficient in solving this problem. This paper reported on a study in which 4 thermophilic microorganisms which had the ability to biodegrade heavy oil were screened from heavy oil wastewater in the Shengli oilfield. Their degradation to heavy oil was discussed and the suitable biodegradation conditions of these bacteria were investigated. The study showed that the degrading efficiency of heavy oil by the 4 bacteria was up to 42.0, 47.6, 55.6 and 43.4 per cent in the wastewater which contained 500 mg per litre of heavy oil, respectively. The crude oil samples were analyzed using gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS) before and after degradation. The single 4 strains demonstrated strong biodegradability to normal alkanes and aromatics, and the average degrading efficiency was about 50 and 35 per cent. The degrading efficiency of the mixed 4 strains was better than the single ones, particularly for the poor biodegradable hydrocarbons such as phenanthrenes and fluorines. 21 refs., 2 tabs., 17 figs.

  16. How equity markets view heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Janisch, M. L. [Nesbitt Burns Research, Toronto, ON (Canada)

    1996-12-31

    Factors that influence the equity market in investment decisions vis-a-vis the oil sands/heavy oil industry were reviewed. The importance of financing methods (debt, royalty trusts, common equity), liquidity of investments, absolute vs. relative performance, comparative economics vis-a-vis conventional oil producers, oil prices, operating cost drivers (technology, natural gas costs, cost/availability of diluent), transportation and refining capacity, were summarized. In the final analysis, consistent economic success on a large scale, combined with an assessment of available alternatives, were considered to be the most likely motivators for portfolio managers. As a cautionary note, it was noted that traditionally, oil and gas investors have not been known to be in the forefront to invest in research and development.

  17. How equity markets view heavy oil

    International Nuclear Information System (INIS)

    Janisch, M. L.

    1996-01-01

    Factors that influence the equity market in investment decisions vis-a-vis the oil sands/heavy oil industry were reviewed. The importance of financing methods (debt, royalty trusts, common equity), liquidity of investments, absolute vs. relative performance, comparative economics vis-a-vis conventional oil producers, oil prices, operating cost drivers (technology, natural gas costs, cost/availability of diluent), transportation and refining capacity, were summarized. In the final analysis, consistent economic success on a large scale, combined with an assessment of available alternatives, were considered to be the most likely motivators for portfolio managers. As a cautionary note, it was noted that traditionally, oil and gas investors have not been known to be in the forefront to invest in research and development

  18. Case study in Venezuela : performance of multiphase meter in extra heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Marin, A. [Petroleos de Venezuela SA, Caracas (Venezuela); Bornia, O.; Pinguet, B. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-10-15

    The performance of a multiphase meter that combines Venturi and multi energy gamma rays was investigated during operation in an extra heavy oil field in Venezuela. The Orocual field in Monagas is one of the most diverse oilfields in Venezuela. It produces gas condensate, light and medium oil and has recently started to produce from a heavy and extra-heavy oil reservoir, with a gravity between 8.6 and 11 API and a viscosity range from 6 Pa.s to more than 20 Pa.s at line conditions. Petroleos de Venezuela SA (PDVSA) is currently using cold production systems in this field. PDVSA attempted to estimate the liquid flow rate using conventional storage tanks but was unable to evaluate the gas production in such an environment of low GOR with emulsion, large amounts of foam and high viscosity. Since the density of heavy oil is close to the density of water, gravity separation cannot be applied. Also, since heavy oil is very viscous, proper separation requires a long retention time, which is not feasible in terms of space or economy. In addition, gas bubbles could not flow freely and remained as a gas phase trapped inside the liquid, resulting in an overestimation of some of the liquid flow rate. In order to measure the field's oil, water and gas flow rates, PDVSA tried several multiphase meters but found that a Venturi and multi energy gamma ray combination was the only solution able to accurately measure multiphase flow in its extra heavy oil. A test demonstrated that, compared to a tank system, the overall uncertainty of the Venturi combination was better than 2 per cent. This extended the operating envelope for PDVSA for using this multiphase metering technology, providing the capability to monitor and optimize in real-time the production in this extra heavy oil field. 15 refs., 10 figs.

  19. Principles of heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Szasz, S.E.; Thomas, G.W.

    1965-10-01

    Rising exploration costs have prompted greater interest in the large known deposits of heavy oil in North America. Because of high oil viscosities in such reservoirs, recoveries are poor, fluid drives are inefficient and production rates are uneconomical. Viscosity reduction can best be accomplished by heating the reservoir. The basic aspects of reservoir heating are reviewed and those processes which are of practical importance in heavy oil reservoirs are discussed. Wellbore heating frequently can be applied to heavy oil reservoirs to increase production rates. In hot waterflooding, the water requirements are much higher than an ordinary waterflood. Steam floods are more attractive, but operating costs are generally high. Conduction heating processes appear most promising. Among these is included the cyclic steam-soak process. A simple method is presented for estimating the performance from the first cycle of steam injection into the formation, assuming gravity as the only driving energy. An example calculation for a typical heavy oil reservoir is given. (26 refs.)

  20. Applying CFD in the Analysis of Heavy Oil/Water Separation Process via Hydrocyclone

    OpenAIRE

    K Angelim; A De Lima; J Souza; S Neto; V Oliveira; G Moreira

    2017-01-01

    In recent years most of the oil reserves discovered has been related to heavy oil reservoirs whose reserves are abundant but still show operational difficulties. This fact provoked great interest of the petroleum companies in developing new technologies for increasing the heavy oil production. Produced water generation, effluent recovered from the production wells together with oil and natural gas, is among the greatest potential factors for environmental degradation. Thus, a new scenario of ...

  1. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  2. The role of Canadian heavy crude oil in the North American market

    Energy Technology Data Exchange (ETDEWEB)

    Mink, F J; Antonia, H A

    1977-01-01

    Canadian reserves of heavy gravity crude oil are vast and the potential producibility from those reserves is expected to be surplus to Canadian requirements into the 1990s. This study focuses on the impact that market constraints may have on the future supply of heavy gravity crude oils from the W. Canadian basin. It observes that severe export restrictions will not only limit the orderly development of available reserves in the area but also will impair the prospects of additional enhanced recovery of conventional heavy crude reserves and restrict future experimental applications of oil sands recovery in the Cold Lake deposit of Alberta. Since it is expected that export restrictions for heavy gravity crude oil will be lifted in the future, the outlook for expanded development of indigenous reserves is promising.

  3. Horizontal well impact on heavy oil supply

    International Nuclear Information System (INIS)

    Bowers, B.; Bielecki, J.; Hu, J.; Wall, B.; Drummond, K.

    1993-01-01

    Horizontal wells can take advantage of gravity drainage mechanisms, which can be important in conventional heavy oil and bitumen recovery. Horizontal drilling will impact on the development of established conventional heavy oil pools by infill drilling and application of enhanced recovery techniques. There will also be an impact on the development of extensions to established and newly discovered heavy oil pools, as well as a major impact on development of bitumen resources. To assess the impact of horizontal drilling on heavy oil supply, high-impact and low-impact scenarios were evaluated under specified oil-price assumptions for four heavy oil areas in Saskatchewan and Alberta. Horizontal well potential for infill drilling, waterflood projects, and thermal projects was assessed and estimates were made of such developments as reserves additions and heavy oil development wells under the two scenarios. In the low case, projected supply of conventional heavy oil and bitumen stabilizes at a level in the 90,000-94,000 m 3 /d after 1994. In the high case, overall supply continuously grows from 80,000 m 3 /d in 1992 to 140,000 m 3 /d in 2002. Through application of horizontal drilling, reserves additions in western Canada could be improved by ca 100 million m 3 by 2002. 14 figs., 6 tabs

  4. Oil Spill Related Heavy Metal: A Review

    International Nuclear Information System (INIS)

    Ahmad Dasuki Mustafa; Hafizan Juahir; Kamaruzzaman Yunus; Mohammad Azizi Amran; Che Noraini Che Hasnam; Fazureen Azaman; Ismail Zainal Abidin; Syahril Hirman Azmee; Nur Hishaam Sulaiman

    2015-01-01

    Oil spill occurs every day worldwide and oil contamination is a significant contributor for the higher levels of heavy metals in the environment. This study is purposely to summarize the heavy metals which significant to major oil spill incidents around the world and effects of toxic metals to human health. The study performed a comprehensive review of relevant scientific journal articles and government documents concerning heavy metals contamination and oil spills. Overall, the heavy metals most frequently been detected in oil spill related study where Pb>Ni>V>Zn>Cd and caused many effects to human health especially cancer. In conclusion, the comparison of heavy metal level between the post - spill and baseline levels must be done, and implementation of continuous monitoring of heavy metal. In addition, the result based on the strategies must be transparent to public in order to maintaining human health. (author)

  5. Relation of sulfur with hydrocarbons in Brazilian heavy and extra-heavy crude oil; Relacao do enxofre com os hidrocarbonetos em petroleos pesados e extra pesados brasileiros

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Sonia Maria Badaro Mangueira; Guimaraes, Regina Celia Lourenco; Silva, Maria do Socorro A. Justo da [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Costa, Alexander Vinicius Moraes da [Fundacao Gorceix, Ouro Preto, MG (Brazil)

    2008-07-01

    As the occurrence of heavy and extra-heavy oils increases sensitively, their participation in the refineries feeding also becomes greater. Heavy oils usually have lower price than a light one, because they produce lower quality derivatives and it's more difficult to meet the specifications. Crude oils are a complex mixture, mostly compounded by carbon and hydrogen and also by impurities like sulfur, nitrogen, oxygen and metals. Sulfur is the third most abundant component of crude oils, following carbon and hydrogen. In general there is a strong positive correlation between the concentrations of polar compounds (aromatics, resins and asphaltenes), and the sulfur content. This work presents graphically sulfur content and polar compounds concentrations for Brazilian and foreign heavy and extra-heavy oils (< 20 deg API). The results of the data analysis indicate that Brazilian crude oils behave differently from foreign heavy and extra-heavy oils. (author)

  6. Proceedings of ITOHOS 2008 : The 2008 SPE/PS/CHOA International Thermal Operations and Heavy Oil Symposium : Heavy Oil : Integrating the Pieces

    International Nuclear Information System (INIS)

    2008-10-01

    This multi-disciplinary conference and exhibition combined the Society of Petroleum Engineers (SPE) and the Petroleum Society's (PS) international thermal operations and heavy oil symposium, and the Canadian Heavy Oil Association's (CHOA) annual business meeting. The conference provided a forum to examine emerging technologies and other critical issues affecting the global heavy oil and bitumen industry. The most current technologies from around the world that enhance the recovery of heavy oil and bitumen from oil sand deposits were also showcased. The technical program encompassed the economic, technical, and environmental challenges that the petroleum industry is currently facing. The sessions of the conference were entitled: artificial lift; mining, extraction and cold production; simulation; solvent processes; reservoir characterization; steam generation and water treatment; and, in-situ combustion in Canada. The conference also featured a series of short courses and tutorials on heavy oil wellbore completions and design; drilling horizontal heavy oil wells and steam assisted gravity drainage (SAGD) wells; geomechanical based reservoir monitoring; thermal well design; fiber optic thermal monitoring; heavy oil thermal recovery and economics; wellbore slotting; advanced geomechanics; and, an overview of cold heavy oil production with sand (CHOPS). All 91 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs

  7. Proceedings of ITOHOS 2008 : The 2008 SPE/PS/CHOA International Thermal Operations and Heavy Oil Symposium : Heavy Oil : Integrating the Pieces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    This multi-disciplinary conference and exhibition combined the Society of Petroleum Engineers (SPE) and the Petroleum Society's (PS) international thermal operations and heavy oil symposium, and the Canadian Heavy Oil Association's (CHOA) annual business meeting. The conference provided a forum to examine emerging technologies and other critical issues affecting the global heavy oil and bitumen industry. The most current technologies from around the world that enhance the recovery of heavy oil and bitumen from oil sand deposits were also showcased. The technical program encompassed the economic, technical, and environmental challenges that the petroleum industry is currently facing. The sessions of the conference were entitled: artificial lift; mining, extraction and cold production; simulation; solvent processes; reservoir characterization; steam generation and water treatment; and, in-situ combustion in Canada. The conference also featured a series of short courses and tutorials on heavy oil wellbore completions and design; drilling horizontal heavy oil wells and steam assisted gravity drainage (SAGD) wells; geomechanical based reservoir monitoring; thermal well design; fiber optic thermal monitoring; heavy oil thermal recovery and economics; wellbore slotting; advanced geomechanics; and, an overview of cold heavy oil production with sand (CHOPS). All 91 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  8. Directions in refining and upgrading of heavy oil and bitumen

    International Nuclear Information System (INIS)

    Dawson, B.; Parker, R. J.; Flint, L.

    1997-01-01

    The expansion of heavy oil transportation, marketing and refining facilities over the past two decades have been reviewed to show the strides that several Canadian refiners have taken to build up the facilities required to process synthetic crude oil (SCO). Key points made at a conference, convened by the National Centre for Upgrading Technology (NCUT), held in Edmonton during September 1997 to discuss current and future directions in the refining and marketing of heavy oil, bitumen and SCO, were summarized. Among the key points mentioned were: (1) the high entry barriers faced by centralized upgraders, (2) the advantages of integrating SCO or heavy oil production with downstream refining, (3) the stiff competition from Venezuela and Mexico that both SCO and heavy oil will face in the U.S. PADD II market, (4) the differences between Canadian refiners who have profited from hydrocracking and are better able to handle coker-based SCO, and American refiners who rely chiefly on catalytic cracking and are less able to process the highly aromatic SCO, and (5) the disproportionate cost in the upgrading process represented by the conversion of asphaltenes. Challenges and opportunities for key stakeholders, i.e. producers, refiners, marketers and technology licensors also received much attention at the Edmonton conference

  9. Geothermal and heavy-oil resources in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Seni, S.J.; Walter, T.G.

    1994-01-01

    In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

  10. Heavy oil : PetroChina's perspective

    Energy Technology Data Exchange (ETDEWEB)

    He, C. [PetroChina Co., Ltd., Beijing (China)

    2010-07-01

    This keynote presentation discussed China's future in relation to heavy oil refining. An overview of PetroChina's overseas operations was also presented. China currently has six 200,000 bpd refineries as well as an additional 12 refineries with a 100,000 bpd capacity that are able to process lower quality feedstocks with a high acid and sulphur content. Seven new 200,000 bpd refineries will be built by 2020. Poor and heavy crude oil from global heavy oil reserves will form a significant percentages of China's refinery feedstocks, and Canada is expected to provide a significant portion of its heavy oil and bitumen resources for further refining in China. China's existing refineries are being reconfigured and optimized for the processing of heavy crude oils. Additional hydrotreating and hydrocracking technologies have been added, and resid fluid catalytic cracking technologies have been retrofitted. China envisages a future with steady increases in oil consumption, high oil prices, and an increased reliance on heavy and poor quality crude oils. China's strong economic growth will increase demand for petrochemical feedstocks. Various research organizations and institutions have been established to accelerate innovation and technology development for ensuring that clean fuels standards are met. New refineries in China will include resid upgrading and new generation catalyst technologies. Details of various technologies were included. tabs., figs.

  11. Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant-producing Pseudomonas aeruginosa AK6U.

    Science.gov (United States)

    Ismail, Wael Ahmed; Mohamed, Magdy El-Said; Awadh, Maysoon N; Obuekwe, Christian; El Nayal, Ashraf M

    2017-11-01

    Heavy vacuum gas oil (HVGO) is a complex and viscous hydrocarbon stream that is produced as the bottom side product from the vacuum distillation units in petroleum refineries. HVGO is conventionally treated with thermochemical process, which is costly and environmentally polluting. Here, we investigate two petroleum biotechnology applications, namely valorization and bioupgrading, as green approaches for valorization and upgrading of HVGO. The Pseudomonas aeruginosa AK6U strain grew on 20% v/v of HVGO as a sole carbon and sulfur source. It produced rhamnolipid biosurfactants in a growth-associated mode with a maximum crude biosurfactants yield of 10.1 g l -1 , which reduced the surface tension of the cell-free culture supernatant to 30.6 mN m -1 within 1 week of incubation. The rarely occurring dirhamnolipid Rha-Rha-C 12 -C 12 dominated the congeners' profile of the biosurfactants produced from HVGO. Heavy vacuum gas oil was recovered from the cultures and abiotic controls and the maltene fraction was extracted for further analysis. Fractional distillation (SimDist) of the biotreated maltene fraction showed a relative decrease in the high-boiling heavy fuel fraction (BP 426-565 °C) concomitant with increase in the lighter distillate diesel fraction (BP 315-426 °C). Analysis of the maltene fraction revealed compositional changes. The number-average (Mn) and weight-average (Mw) molecular weights, as well as the absolute number of hydrocarbons and sulfur heterocycles were higher in the biotreated maltene fraction of HVGO. These findings suggest that HVGO can be potentially exploited as a carbon-rich substrate for production of the high-value biosurfactants by P. aeruginosa AK6U and to concomitantly improve/upgrade its chemical composition. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Production of jet fuel using heavy crude oil; Producao de combustiveis de aviacao a partir de petroleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Om, Neyda [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Cavado, Alberto; Reyes, Yordanka [Centro de Pesquisas do Petroleo, Cidade de Havana (Cuba); Dominguez, Zulema [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2004-07-01

    The production of heavy crude oils increased in the last years in the world. Crude oils with high density, viscosity, acidity and sulfur, nitrogen, metals and asphaltenes contents, by the others hand, low stability and low product quality. The challenger of many refiners is find solutions to refine the heavy crude oils, and produce fuels with certify quality, such as Jet Fuel. The principal aviation technique on the world work with gas turbines engines feted for jet fuel (JET A1). The quality specifications of this fuel are establish by International Norms: ASTM-1655, DEF STAN 91-91-3 (DERD 2494) and joint Fuelling System Check List. The world technologies to obtain jet fuel from mixtures of heavy crude oil with middle crude oils are: Atmospheric distillation, with a posterior hydrogenation and finally the additivation. Studies carried out have demonstrates that the Cubans heavy crude oils is characterized for having API less than 10, raised viscosity, high sulfur content (>6%) and asphaltenes content (more than 15%). These properties provide to its derivatives of low quality. This paper define the characteristic of Cuban heavy crude oil, the technology and operational conditions to produce jet fuel (Jet A1) and the quality of fuel produced. (author)

  13. In situ upgrading of heavy oil under steam injection with tetralin and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, A.A. [Texas A and M Univ., College Station, TX (United States); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    Steam injection has become the most successful thermal recovery method for heavy oil production. Heavy oil refineries use upgrading processes to improve oil quality. They generally involve the use of catalysts that are used to remove heavy metals, sulfur and nitrogen, or used in hydro-treating and hydro-cracking. In-situ upgrading is thought to have advantages over conventional surface upgrading technology. Experiments were performed to verify the feasibility of in-situ upgrading of heavy crude oil. A hydrogen donor called tetralin was used along with an organometallic catalyst, at steam injection temperatures and pressures normally encountered in the field. Crude oil from the Jobo Oil Field, located in Venezuela was used. The paper described the experimental methodology with reference to the injection cell; fluid injection system; fluid production system; data measurement and recording system; and experimental procedure. It also discussed the extent of upgrading by comparing the properties of the original and produced oil. Oil properties that were measured and compared included hydrogen-to-carbon ratio; heavy metal content; viscosity; and API gravity. The paper also presented a comparison of oil recovery and fluid production between all cases. It was concluded that in the field, the reaction time was significantly longer than encountered in the experiments and may lead to further upgrading, assuming the catalyst could be dispersed in the formation. 10 refs., 1 tab., 9 figs.

  14. Pacific Basin Heavy Oil Refining Capacity

    Directory of Open Access Journals (Sweden)

    David Hackett

    2013-02-01

    Full Text Available The United States today is Canada’s largest customer for oil and refined oil products. However, this relationship may be strained due to physical, economic and political influences. Pipeline capacity is approaching its limits; Canadian oil is selling at substantive discounts to world market prices; and U.S. demand for crude oil and finished products (such as gasoline, has begun to flatten significantly relative to historical rates. Lower demand, combined with increased shale oil production, means U.S. demand for Canadian oil is expected to continue to decline. Under these circumstances, gaining access to new markets such as those in the Asia-Pacific region is becoming more and more important for the Canadian economy. However, expanding pipeline capacity to the Pacific via the proposed Northern Gateway pipeline and the planned Trans Mountain pipeline expansion is only feasible when there is sufficient demand and processing capacity to support Canadian crude blends. Canadian heavy oil requires more refining and produces less valuable end products than other lighter and sweeter blends. Canadian producers must compete with lighter, sweeter oils from the Middle East, and elsewhere, for a place in the Pacific Basin refineries built to handle heavy crude blends. Canadian oil sands producers are currently expanding production capacity. Once complete, the Northern Gateway pipeline and the Trans Mountain expansion are expected to deliver an additional 500,000 to 1.1 million barrels a day to tankers on the Pacific coast. Through this survey of the capacity of Pacific Basin refineries, including existing and proposed facilities, we have concluded that there is sufficient technical capacity in the Pacific Basin to refine the additional Canadian volume; however, there may be some modifications required to certain refineries to allow them to process Western Canadian crude. Any additional capacity for Canadian oil would require refinery modifications or

  15. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  16. Process of transforming into light oils heavy oils from carbonization of lignites, coals, etc

    Energy Technology Data Exchange (ETDEWEB)

    Mony, H

    1926-12-20

    A process is described for transforming into light oils the heavy oils coming from the carbonization of lignites, peats, coals, and shales, and heavy oils from original minerals and vegetables, consisting of heating the heavy oils or tars in the presence of one or more solid or liquid substances conveniently chosen, with a veiw to effect distillation of the oils under atmospheric pressure at an appropriate temperature, the solids or liquid substances favoring the formation of light products under the influence of heat, being preferably added to the oil before admitting it to the retort and heating, so that the light oils are obtained from the heavy oils in a single operation.

  17. Increasing oil recovery from heavy oil waterfloods

    Energy Technology Data Exchange (ETDEWEB)

    Brice, B.W. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[BP Exploration, Calgary, AB (Canada)

    2008-10-15

    In an effort to optimize waterflood strategies in Alaska, the authors examined the results of up to 50 years of waterflooding on 166 western Canadian waterfloods recovering oil of less than 30 degrees API. The study determined the best operating practices for heavy oil waterflooding by investigating the difference between waterflooding of heavy oil and lighter oil counterparts. Operators of light oil waterflooding are advised to begin waterflooding early and maintain the voidage replacement ratio (VRR) at 1. However, this study showed that it is beneficial to delay the start of waterflooding until a certain fraction of the original oil in place was recovered. Varying the VRR was also shown to correlate with increased ultimate recovery. This statistical study of 166 western Canadian waterfloods also examined the effect of injection strategy and the effect of primary production before waterflooding. Some pre-waterflood production and under injection time is advantageous for ultimate recovery by waterfloods. Specific recommendations were presented for waterfloods in reservoirs with both high and low API gravity ranges. Each range showed a narrow sweet spot window where improved recovery occurred. 27 refs., 13 figs.

  18. Heavy oil supply economics and supply response to low oil prices

    International Nuclear Information System (INIS)

    Fisher, L.

    1999-01-01

    The dynamics of the heavy oil industry are examined, including prices, market demand, supply and supply costs. Price assumptions are provided for the reference case oil price (west Texas intermediate at Cushing). Supply cost methodology is explained. Capital and operating costs for various heavy oil and synthetic sources are derived from modeling results. The range of supply costs for heavy oil and bitumen from various sources, supply costs in terms of reference case market values and in terms of 1995-1996 average market values for Bow River crude, are derived. The CERI long term supply forecast model is explained. Western Canada upstream oil and gas cash flow and capital expenditures, eastern Canada exploration and expenditures by hydrocarbon type, and Canadian heavy oil and bitumen production based on reference case prices are estimated. Based on these projections the outlook for heavy oil at reference case prices for better than average quality resources is judged to be economic. Lower quality resources will require technology gains for successful commercialization. SAGD is a likely candidate in this respect. Again based on reference prices, production is forecast to decline by 100 Kb/d over the next five years. Diluent supply is considered to be adequate throughout the forecast period. As far as thermal bitumen is concerned, the growth could, in fact, exceed the projection, but if so, more upgrading will be required. 11 figs

  19. Oil flow in deep waters: comparative study between light oils and heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Andreolli, Ivanilto [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Ultra deeper waters fields are being exploited due to technological development. Under this scenario, the flow design is accomplished through pipelines subjected to low temperature and high pressure. Moreover, these flow lines are usually long causing a fast fluid cooling, which may affect flow assurance in some cases. Problems during topsides production plant's restart might occur if the oil is viscous and even in steady state a significant different behavior can be noticed, if compared to a less viscous oil. A comparison between light and heavy oil through a case study with the objective to show some heavy oil flow particularities is the purpose of this paper. Permanent and transient analyses for a specific geometry are presented. The results showed that thermal and proper viscosity modeling are required for heavy oil flow, differently from that of light oil flow, due to the exponential viscosity dependence to temperature and because the predominant laminar regime. In addition, on heavier and heavier oil flow systems, it is essential to consider exportation system's restart. (author)

  20. Oil sands and heavy oil development issues and prospects under a Liberal government

    International Nuclear Information System (INIS)

    Shiry, J.

    1993-01-01

    A short review is presented of some of the factors affecting development of the western Canadian oil sands and heavy oil deposits to the year 2000. The Alberta oil sands resource has at least 1 trillion bbl of recoverable oil. At current prices, technology is the key to reducing costs to a more economic level. Cash operating costs have halved to $15/bbl over the past decade and the oil sands companies have programs to halve that figure again. A problem is the rising cost of natural gas as a fuel, which could jeopardize further development of both oil sand and heavy oil resources. In Saskatchewan, over 25 billion bbl of heavy oil are estimated to be in place. The biggest question is what percentage can be recovered; again, technology such as horizontal wells, 3-dimensional seismic, and steam assisted recovery is playing an important role. Concerns are expressed about the intentions of the new Liberal government concerning oil sand/heavy oil development, especially on the issues of foreign investment, exports, and environmental policy. A Liberal energy policy is not likely to allow U.S. direct investment in an oil sands plant to be tied to export of production, and the energy- and emissions-intensive nature of the oil sand/heavy oil industry will tend to make environmental approvals difficult

  1. Applying CFD in the Analysis of Heavy Oil/Water Separation Process via Hydrocyclone

    Directory of Open Access Journals (Sweden)

    K Angelim

    2017-06-01

    Full Text Available In recent years most of the oil reserves discovered has been related to heavy oil reservoirs whose reserves are abundant but still show operational difficulties. This fact provoked great interest of the petroleum companies in developing new technologies for increasing the heavy oil production. Produced water generation, effluent recovered from the production wells together with oil and natural gas, is among the greatest potential factors for environmental degradation. Thus, a new scenario of the oil industry appears requiring improvement in treatment units for produced water. Among the technological improvements in the facilities, the use of hydrocyclones has been applied in the treatment of the oily water. In this sense, this study aims to investigate numerically the separation process of heavy oil from a water stream via hydrocyclone, using the computational fluid dynamics technique. In the mathematical modeling was considered a two-phase, three-dimensional, stationary, isothermal and turbulent flow. Results of streamlines, pressure and volume fraction fields of the involved phases (oil and water into the hydrocyclone, and mechanical efficiency and pumping power of the fluids are shown and analyzed. In conclusion, it seems that with increasing fluid input velocity in the device there is an increase in pressure drop, indicating a greater pumping energy consumption of the mixture, and greatly influences the separation process efficiency.

  2. Experimental and numerical modeling of heavy-oil recovery by electrical heating

    Energy Technology Data Exchange (ETDEWEB)

    Hascakir, B.; Akin, S. [Middle East Technical Univ., Ankara (Turkey); Babadagli, T. [Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    This study examined the applicability of electrical heating as a heavy oil recovery system in 2 heavy oil fields in Turkey. The physical and chemical properties of samples from the 2 fields were compiled and measured. The samples were then subjected to electrical heating. A retort technique was used to determine oil recovery performance under various conditions. Different types of iron powders were also applied in order to reduce oil viscosity. In situ viscosity reduction levels during the heating process were measured using a history matching procedure that considered data obtained during the laboratory experiments. The study demonstrated that the addition of iron power to the oil samples caused the polar components of the oil to decrease. Oil viscosity was strongly influenced by the magnetic fields created by the iron powders. An analysis of the experimental data showed that significant viscosity reductions of 88 per cent were obtained for the samples when iron additions of 0.5 per cent were used. Data from the experiments were used to develop mathematical models in order to consider thermal diffusion coefficients, oil viscosity, and relative permeability parameters. It was concluded that the cost of producing 1 barrel of oil using the method cost approximately US $5. After a period of 70 days, 320 barrels of petroleum were produced using the method. Oil production rates increased to 440 barrels over the same time period when iron additions were used. 30 refs., 6 tabs., 12 figs.

  3. Proceedings of the 2002 Petroleum Society of CIM/SPE/CHOA International Thermal Operations and Heavy Oil Symposium, International Conference on Horizontal Well Technology, and Canadian Heavy Oil Association Business Conference : Resources 2 Reserves 2 Results. CD ROM ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This three day conference combined the Petroleum Society's International Horizontal Well and Technology Conference, the Society of Petroleum Engineer's (SPE) International Thermal Operations and Heavy Oil Symposium, and the Canadian Heavy Oil Association's (CHOA) Annual Business Meeting. The 87 presentations covered all aspects of heavy oil, thermal, and horizontal well technology from geosciences and drilling to economics and environment. The themes included financing, turning projects into results, eliminating the downstream barriers to oil sand development in North America and the world, and emerging technologies for horizontal or heavy oil applications. The conference included the following 20 sessions: (1) thermal operations/engineering, (2) well testing/productivity of horizontal wells, (3) heavy oil operations, (4) environmental aspects of heavy oil projects, (5) upgrading/pipelines, (6) economics and project appraisal, (7) simulation studies of thermal projects, (8) multilaterals, (9) horizontal wells in conventional reservoirs, (10) cold production of heavy oil, (11) horizontal drilling in thermal projects, (12) simulation studies of horizontal wells, (13) horizontal drilling technology, (14) thermal field studies and horizontal wells in heavy oil, (15) completion/production technology of horizontal and thermal wells, (16) physics and PVT of heavy oil recovery processes, (17) reservoir characterization/geosciences, (18) horizontal injectors/produced water technology, (19) emerging technologies, and (20) reservoir geomechanics/fracturing. Tutorials were also organized to provide opportunity to review areas that have undergone major changes. A total of 73 papers were indexed separately for inclusion in the database. refs., tabs., figs.

  4. Well performance relationships in heavy foamy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Mahadevan, J. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Tulsa Univ., Tulsa, OK (United States)

    2008-10-15

    The viscosities and thermodynamic properties of heavy oils are different from conventional oils. Heavy oil reservoirs have foamy behaviour and the gas/oil interface stabilizes in the presence of asphaltenes. In the case of conventional oils, gas evolves from the solution when the formation pressure reaches the bubble point pressure. This study modelled the fluid properties of heavy foamy oils and their influence on the inflow performance relationship (IPR). An expression for inflow performance in heavy oil was developed by including the properties of foamy oil into a space averaged flow equation assuming pseudo-steady state conditions. The unique feature of this study was that the density, formation volume factor and solution gas-oil ratio were modelled as functions of entrained gas fraction. The newly developed expression for inflow performance of foamy oils may also be used to model conventional oil inflow by setting the entrained gas fraction to zero in the fluid property models. The results of the inflow performance of foamy oil and conventional oil were compared and an outflow performance relationship was calculated. The study showed that the inflow performance in foamy oil is influenced by entrained gas. The surface flow rates and bottom-hole flow rates are also influenced by the presence of entrained gas, with heavy foamy oil showing a higher volumetric production rate than conventional oil. The outflow performance curve depended on the fluid properties of the foamy oil. A nodal analysis of the well performance showed that the conventional calculation methods underestimate the production from foamy oil wells because they do not consider the effect of entrained gas which lowers density and improves the mobility of foamy oil. 14 refs., 2 tabs., 20 figs., 1 appendix.

  5. Design and implementation of a caustic flooding EOR pilot at Court Bakken heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Chung, B.; Leung, L. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Nexen Inc., Calgary, AB (Canada)

    2008-10-15

    Successful waterflooding has been ongoing since 1988 at the Court Bakken heavy oil field in west central Saskatchewan. There are currently 20 injectors and 28 active oil producers in the Court main unit which is owned by Nexen and Pengrowth. The Court pool has an estimated 103.8 mmbbl of original oil in place (OOIP), of which 24 per cent has been successfully recovered after 20 years of waterflooding. A high-level enhanced oil recovery (EOR) screening study was conducted to evaluate other EOR technologies for a heavy oil reservoir of this viscosity range (17 degrees API). Laboratory studies showed that caustic flooding may enhance oil recovery after waterflooding at the Court Bakken heavy oil pool. A single well test demonstrated that caustic injection effectively reduced residual oil saturation. A sector model reservoir simulation revealed that caustic flood could achieve 9 per cent incremental oil recovery in the pilot area. Following the promising laboratory results, a successful caustic flood pilot was implemented at Court heavy oil pool where the major challenges encountered were low reservoir pressure and water channeling. 6 refs., 2 tabs., 6 figs.

  6. Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis

    International Nuclear Information System (INIS)

    Kim, Tae-Seung; Oh, Shinyoung; Kim, Jae-Young; Choi, In-Gyu; Choi, Joon Weon

    2014-01-01

    Crude bio-oil produced from fast pyrolysis of yellow poplar wood was subjected to HDO (hydrodeoxygenation) for the purpose of reducing water content as well as increasing heating value. HDO was performed in an autoclave reactor at three different reaction factors: temperature (250–370 °C), reaction time (40–120 min), and Pd/C catalyst loading (0–6 wt%) under hydrogen atmosphere. After completion of HDO, gas, char, and two immiscible liquid products (light oil and heavy oil) were obtained. Liquid products were less acidic and contained less water than crude bio-oil. Water content of heavy oil was ranged between 0.4 wt% and 1.9 wt%. Heating values of heavy oil were estimated between 28.7 and 37.4 MJ/kg, which was about twice higher than that of crude bio-oil. Elemental analysis revealed that heavy oil had a lower O/C ratio (0.17–0.36) than crude bio-oil (0.71). H/C ratio of heavy oil decreased from 1.50 to 1.32 with an increase of temperature from 250 °C to 350 °C, respectively. - Highlights: • Bio-oil was subjected to hydrodeoxygenation with Pd/C catalyst in supercritical ethanol. • Gas, char and two immiscible liquids (light/heavy oil) were obtained as final products. • Ethanol addition reduced the char formation during hydrodeoxygenation. • The heavy oil was characteristic to less acidic and less water content than bio-oil. • Higher heating value of the heavy oil was measured to 28.7–37.4 MJ/kg

  7. Development of the Write Process for Pipeline-Ready Heavy Oil

    Energy Technology Data Exchange (ETDEWEB)

    Lee Brecher; Charles Mones; Frank Guffey

    2009-03-07

    Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to

  8. Radioactivity concentration and heavy metal content in fuel oil and oil-ashes in Venezuela

    International Nuclear Information System (INIS)

    Barros, H.; Sajo-Bohus, L.; Abril, J.M.; Greaves, E.D.

    2004-01-01

    During the last years an intensive national program was developed to determine the environmental radioactivity levels in Venezuela. Gamma dose and the radon concentrations indoors, in drinking water, in caves and in artificial cavities including the effect of radon transported to the surface with the earth gas have been studied. To continue this project the oil and other natural energy resource should be considered. It is expected that the environmental radiation level is modified in regions where the oil industrial activity is more aggressive such as in the Zulia State and the Faja Petrolifera del Orinoco, (Central Region). In these regions Venezuela is producing 1.750 thousand barrels of oil from the near-to-the- surface or deep oil drilling. Petroleum constitutes an important source of energy and as the majority of natural source contains radionuclides and their disintegration products, being U, Ra, Pb, Bi, Po and K the most often encountered. The combustion of petroleum concentrate in the ashes those radioelements, and later enter the environment by different ways producing adverse effects on the quality of man life. The concentration of radioelements varies greatly between oil fields, then we still requiring local survey studies in this area. Moreover due to the recent national interest in recycling processes, it becomes important to take precaution in the selection of materials that may contain by-products of industrial origin, including oil. In fact the oil ashes, oil slurry and other mining by-products are thought to be employable in the building industry. The concentration of radioactivity in the ash from thermoelectric power plants that use petroleum as a primary energy source was determined. The analysis include the two major thermoelectric power plants in Venezuela, Ricardo Zuluaga on the northern sea side of Caracas and Planta Centro on the littoral of Carabobo State. The study cover different samples: fuel oil No 6, ashes, heavy and medium petroleum

  9. SO2 pollution of heavy oil-fired steam power plants in Iran

    International Nuclear Information System (INIS)

    Nazari, S.; Shahhoseini, O.; Sohrabi-Kashani, A.; Davari, S.; Sahabi, H.; Rezaeian, A.

    2012-01-01

    Steam power plants using heavy oil provided about 17.4%, equivalent to 35.49 TWh, of electricity in Iran in 2007. However, having 1.55–3.5 weight percentage of sulfur, heavy oil produces SO 2 pollutant. Utilization of Flue Gas Desulfurization systems (FGD) in Iran's steam power plants is not common and thereby, this pollutant is dispersed in the atmosphere easily. In 2007, the average emission factor of SO 2 pollutant for steam power plants was 15.27 g/kWh, which means regarding the amount of electricity generated by steam power plants using heavy oil, 541,000 Mg of this pollutant was produced. In this study, mass distribution of SO 2 in terms of Mg/yr is considered and dispersion of this pollutant in each of the 16 steam power plants under study is modeled using Atmospheric Dispersion Modeling System (ADMS). Details of this study are demonstrated using Geographical Information System (GIS) software, ArcGIS. Finally, the average emission factor of SO 2 and the emission of it in Iran's steam power plants as well as SO 2 emission reduction programs of this country are compared with their alternatives in Turkey and China.

  10. A study on ultra heavy oil gasification technology

    Energy Technology Data Exchange (ETDEWEB)

    Kidoguchi, Kazuhiro; Ashizawa, Masami; Taki, Masato; Ishimura, Masato; Takeno, Keiji

    2000-07-01

    Raising the thermal efficiency of a thermal power plant is an important issue from viewpoints of effective energy utilization and environmental protection. In view of raising the thermal efficiency, a gas turbine combined cycle power generation is considered to be very effective. The thermal efficiency of the latest LNG combined cycle power plant has been raised by more than 50%. On the other hand, the diversification of fuels to ensure supply stability is also an important issue, particularly in Japan where natural resources are scarce. Because of excellent handling characteristics petroleum and LNG which produces clean combustion are used in many sectors, and so the demand for such fuels is expected to grow. However, the availability of such fuels is limited, and supplies will be exhausted in the near future. The development of a highly efficient and environment-friendly gas turbine combined cycle using ultra heavy oil such as Orimulsion{trademark} (trademark of BITOR) is thus a significant step towards resolving these two issues. Chubu Electric Power Co, Inc., the Central Research Institute of Electric Power Industry (CRIEPI), and Mitsubishi Heavy Industries, Ltd. (MHI) conducted a collaboration from 1994 to 1998 with the objective of developing an ultra heavy oil integrated gasification combined cycle (IGCC). Construction of the ultra heavy oil gasification testing facility (fuel capacity:2.4t/d) was completed in 1995, and Orimulsion{trademark} gasification tests were carried out in 1995 and 1996. In 1997, the hot dedusting facility with ceramic filter and the water scrubber used as a preprocessor of a wet desulfurization process were installed. Gasification and clean up the syngs tests were carried out on Orimulsion{trademark}, Asmulsion{trademark} (trademark of Nisseki Mitsubishi K.K.), and residue oil in 1997 and 1998. The results of the collaboration effort are described below.

  11. Non-aqueous heavy oil extraction from oil sand

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George [National Nuclear Security Administration (United States)

    2011-07-01

    The Kansas City plant operated by Honeywell has a long history of working with DOE NNSA on engineering and manufacturing services supporting national security requirements. The plant has developed a non-aqueous method for heavy oil extraction from oil sands. This method is environmentally friendly as it does not use any external body of water, which would normally be contaminated in the conventional method. It is a 2 phase process consisting of terpene, limonene or alpha pinene, and carbon dioxide. The CO2 and terpene phases are both closed loop systems which minimizes material loss. The limonene and alpha pinene are both naturally derived solvents that come from citrus sources or pine trees respectively. Carbon dioxide is an excellent co-solvent with terpene. There is also a possibility for heat loss recovery during the distillation phase. This process produces clean dry sand. Laboratory tests have concluded that this using non-aqueous liquids process works effectively.

  12. Density and viscosity modeling and characterization of heavy oils

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Andersen, Simon Ivar; Creek, J

    2005-01-01

    to thousands of mPa center dot s. Essential to the presented extended approach for heavy oils is, first, achievement of accurate P nu T results for the EOS-characterized fluid. In particular, it has been determined that, for accurate viscosity modeling of heavy oils, a compressibility correction in the way...... are widely used within the oil industry. Further work also established the basis for extending the approach to heavy oils. Thus, in this work, the extended f-theory approach is further discussed with the study and modeling of a wider set of representative heavy reservoir fluids with viscosities up...

  13. Using Polymer Alternating Gas to Enhance Oil Recovery in Heavy Oil

    Science.gov (United States)

    Yang, Yongzhi; Li, Weirong; Zhou, Tiyao; Dong, Zhenzhen

    2018-02-01

    CO2 has been used to recover oil for more than 40 years. Currently, about 43% of EOR production in U.S. is from CO2 flooding. CO2 flooding is a well-established EOR technique, but its density and viscosity nature are challenges for CO2 projects. Low density (0.5 to 0.8 g/cm3) causes gas to rise upward in reservoirs and bypass many lower portions of the reservoir. Low viscosity (0.02 to 0.08 cp) leads to poor volumetric sweep efficiency. So water-alternating-gas (WAG) method was used to control the mobility of CO2 and improve sweep efficiency. However, WAG process has some other problems in heavy oil reservoir, such as poor mobility ratio and gravity overriding. To examine the applicability of carbon dioxide to recover viscous oil from highly heterogeneous reservoirs, this study suggests a new EOR method--polymer-alternating gas (PAG) process. The process involves a combination of polymer flooding and CO2 injection. To confirm the effectiveness of PAG process in heavy oils, a reservoir model from Liaohe Oilfield is used to compare the technical and economic performance among PAG, WAG and polymer flooding. Simulation results show that PAG method would increase oil recovery over 10% compared with other EOR methods and PAG would be economically success based on assumption in this study. This study is the first to apply PAG to enhance oil recovery in heavy oil reservoir with highly heterogeneous. Besides, this paper provides detailed discussions and comparison about PAG with other EOR methods in this heavy oil reservoir.

  14. Solar-Assisted Fast Cleanup of Heavy Oil Spill by a Photothermal Sponge

    KAUST Repository

    Chang, Jian

    2018-04-16

    Rapid cleanup of heavy oil spill is always considered as a great challenge because the conventional porous oil sorbents cannot efficiently remove them due to the high viscosity of the oil (>1000 mPa·s). In this work, we take advantage of the photothermal effect to heating the heavy oil by using sunlight as energy source to significantly reduce the viscosity of the heavy oil and thus to achieve a fast heavy oil cleanup. A carbon nanotube (CNT) modified polyurethane sponge was fabricated as photothermal sorbent that exhibited superhydrophobicity, superoleophilicity, as well as outstanding absorption capacity of heavy oil. Thanks to the excellent photothermal effect of CNTs, the modified sponge achieved nearly full sunlight absorption (99%). The resulting solar heating effectively reduced the viscosity of the heavy oil, which enabled the modified sponge to quickly absorb heavy oil of 20 times its own weight under sun illumination. This solar-assisted heavy oil sorbent design is promising for future remediation of viscous oil-spills.

  15. Early Decomposition of Retained Heavy Silicone Oil Droplets

    Directory of Open Access Journals (Sweden)

    Touka Banaee

    2012-01-01

    Full Text Available Purpose: To report a case of early decomposition of retained heavy silicone oil droplets. Case Report: The single highly myopic eye of a 16-year-old boy with history of scleral buckling and buckle revision developed redetachment due to inferior retinal dialysis. The patient underwent pars plana vitrectomy and injection of heavy silicone oil. Early emulsification of the silicone oil was observed following surgery, which was removed 4 weeks later in another operation. Retained heavy silicone droplets lost their heavier- than-water specific gravity within 2 months together with extensive iris depigmentation, and release of pigment granules into the anterior chamber and vitreous cavity. Conclusion: This case report demonstrates that heavy silicone oil droplets can undergo in vivo chemical decomposition with possible toxic effects on ocular tissues.

  16. Proceedings of the oil sands and heavy oil technologies conference and exhibition

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for oil sands industry leaders to review the current and future state of technology in this frontier environment. Presentations were delivered by key personnel involved in groundbreaking projects with a renewed focus on oil sands technology and equipment, viewed from the strategic level with case studies and reports on application technologies designed to optimize oil sands operations. The presentations addressed a wide range of issues related to the environmental impacts of oil sands processing facilities, including innovative water and wastewater solutions for heavy oil producers for bitumen mining, in-situ and upgrading facilities. New advances in sulphur treatment technologies were highlighted along with technologies designed to increase the energy efficiency and energy consumption rates of upgrader and processing facilities. Advances in carbon dioxide (CO 2 ) capture and storage systems were also discussed along with geopolitical and economic evaluations of the future of the oil sands industry. The conference featured 59 presentations, of which 48 have been catalogued separately for inclusion in this database. refs., tabs., figs

  17. Preparation Of Pure Carbon From Heavy Oil Fly Ash

    International Nuclear Information System (INIS)

    ABU ZAID, A.H.M.

    2010-01-01

    The Egyptian production of heavy oil is approximately 12 million tons of heavy oil per year and approximately 5.3 million tons of this amount is used as fuel in the electric power stations. Based on the fact that the ash content of Egyptian heavy oil is approximately 0.2 %, about 10600 tons of fly ash is produced per/year which causes a lot of environmental problems such as dusting, release of the acidic liquids and heavy metals such as vanadium, nickel, zinc and unburned carbon. Treatment of fly ash by leaching of vanadium and zinc was carried out under different conditions to achieve the best leaching efficiency of both vanadium and zinc by sodium hydroxide. The leaching efficiency obtained was 91% for vanadium and 98% for zinc. This study was concerned with the precipitation of zinc at pH 7.5 as zinc hydroxide and the precipitation of vanadium as ammonium metavanadate at pH 8.5. Leaching of nickel, iron and other elements from the residue was carried out by 2M HCl under different conditions. The achieved leaching efficiency of nickel was 95% where as that of iron was 92%. Precipitation efficiency of both nickel and iron were 99.9%. The residue, which contains mainly unburned carbon, have been washed two times with water and dried at 200 o C then ground to < 300μm. According to the achieved analysis of the obtained carbon, it can be characterized as pure carbon

  18. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  19. Canadian operators boost heavy oil production

    International Nuclear Information System (INIS)

    Perdue, J.M.

    1996-01-01

    Recent technological advances in slurry pipelining, horizontal wells, and thermal recovery techniques have made recovery of Canadian heavy oil resources more economical. In addition, reduced government royalties have made investment in these difficult reservoirs more attractive. As a result, activity has increased in heavy-oil fields in Alberta and Saskatchewan. This paper review the various oil sand recovery projects under development in the area and the current government policies which are helping to develop them. The paper also provides brief descriptions of the equipment and technologies that have allowed a reduced cost in the development. Items discussed include surface mining techniques, horizontal drilling, reservoir engineering techniques, separation processes, and thermal recovery

  20. Coal fired steam generation for heavy oil recovery

    International Nuclear Information System (INIS)

    Firmin, K.

    1992-01-01

    In Alberta, some 21,000 m 3 /d of heavy oil and bitumen are produced by in-situ recovery methods involving steam injection. The steam generation requirement is met by standardized natural-gas-fired steam generators. While gas is in plentiful supply in Alberta and therefore competitively priced, significant gas price increases could occur in the future. A 1985 study investigating the alternatives to natural gas as a fuel for steam generation concluded that coal was the most economic alternative, as reserves of subbituminous coal are not only abundant in Alberta but also located relatively close to heavy oil and bitumen production areas. The environmental performance of coal is critical to its acceptance as an alternate fuel to natural gas, and proposed steam generator designs which could burn Alberta coal and control emissions satisfactorily are assessed. Considerations for ash removal, sulfur dioxide sorption, nitrogen oxides control, and particulate emission capture are also presented. A multi-stage slagging type of coal-fired combustor has been developed which is suitable for application with oilfield steam generators and is being commissioned for a demonstration project at the Cold Lake deposit. An economic study showed that the use of coal for steam generation in heavy oil in-situ projects in the Peace River and Cold Lake areas would be economic, compared to natural gas, at fuel price projections and design/cost premises for a project timing in the mid-1990s. 7 figs., 3 tabs

  1. The properties of heavy oils and Orimulsion : another look

    International Nuclear Information System (INIS)

    Fingas, M.; Hollebone, B.; Wang, Z.; Smith, P.

    2003-01-01

    A comparison was made between the physical properties and behaviour indicators of several heavy oils, including Orimulsion. Most heavy oils are rich in resins, asphaltenes, heavy saturates and heavy aromatics and their behaviour may vary during spills due to their different densities. The authors examined the change in density with changes in weathering and temperature. The authors noted two phenomena associated with the behaviour of heavy oils in water, namely sinking and over-washing. Sinking was defined as the bulk sinking of oil to the bottom or an intermediate layer. Over-washing was described as the washing of a layer of water over dense oil at sea while the oil is still close to the surface. The problem with over-washing is that it is not always visible to observers from a ship. The authors briefly reviewed the literature on the topic of dense oil behaviour. To determine whether extensive weathering could render oils heavier than water, weathering experiments were performed on dense oils. Results showed that weathering is rarely a sole factor in the bulk sinking of oil. For the oil to sink after weathering, its density would have to be very close to that of water. Weathering studies have shown that little weathering occurs on sunken oil after it is submerged. The uptake of particulate matter is the most important process in increasing density. The authors also discussed sinking prediction equations and provided a mathematical description of the conditions required for oil to be covered by a layer of water. A summary of the dynamics of Orimulsion as measured in a test tank was also included. 21 refs., 3 tabs., 3 figs

  2. Building on comparative experience : the Venezuelan extra-heavy crude oil projects

    International Nuclear Information System (INIS)

    Valentine, T.E.

    2004-01-01

    This paper reviewed legal considerations regarding heavy and extra heavy oil production in both Canada and Venezuela. The paper focused on Venezuela's extra heavy oil projects in the Orinoco Oil Belt, one of the world's largest accumulation of bitumen with an estimated reserve of 1.2 trillion barrels. The paper described the following four projects: the Petrozuata, Cerro Negro, SINCOR, and Hamaca heavy oil projects which are all congressionally approved joint ventures for extra-heavy crudes in the Orinoco Belt. It also described the legal regime which governs heavy oil projects in Venezuela, including the Organic Gaseous Hydrocarbon Law and the Organic Hydrocarbon Law. Twenty congressional conditions which have been imposed were also outlined along with the legal considerations and lessons learned regarding new extra-heavy crude projects under the two legal regimes. 1 fig

  3. Testing Method of Degrading Heavy Oil Pollution by Microorganisms

    Science.gov (United States)

    Wu, Qi; Zhao, Lin; Ma, Aijin

    2018-01-01

    With the development of human society, we are more and more relying on the petrochemical energy. The use of petrochemical energy not only brings us great convenience, but is also accompanied by a series of environmental pollution problems, especially oil pollution. Since it is impractical to restore all pollution problems, the proper use of some remedial measures, under the guidance of functional orientation, may be sufficient to minimize the risk of persistent and diffusing pollutants. In recent years, bioremediation technology has been gradually developed into a promising stage and has played a crucial role in the degradation of heavy oil pollution. Specially, microbes in the degradation of heavy oil have made a great contribution. This paper mainly summarizes the different kinds of microorganisms for degrading heavy oil and the detection method for degradation efficiency of heavy oil pollution.

  4. Pipeline capacity and heavy oil markets

    International Nuclear Information System (INIS)

    Scott, G.R.

    1993-01-01

    Aspects of transporting heavy crude to markets from Canadian sources are discussed, with reference to pipeline expansion, western Canadian crude supply, and exports to various Petroleum Administration for Defense Districts (PADDs) in the USA. Pipeline expansions have been proposed by Interprovincial Pipeline, Trans Mountain Pipeline, Rangeland, and Wascana, and some of these proposals are in the review stage. Western Canadian crude supply is expected to peak at 1.9 million bbl/d in 1996. An increase in heavy crude supply is expected but this increase will not be sufficient to offset a decline in light crude supply. Adequate pipeline capacity should exist with the Interprovincial expansion volume of 170,000 bbl/d and the Trans Mountain expansion of 38,000 bbl/d forecast to be in place by 1995. Canadian crude exports to the USA have steadily increased since 1989, and heavy crude exports have grown an average of 20,000 bbl/d each year. In PADD Region IV, oil production is declining and ca 20,000 bbl/d of heavy crude will be needed by the year 2000; additional pipeline capacity will be required. In PADD Region II, Canadian heavy crude imports are ca 390,000 bbl/d and further market opportunities exist, after the Interprovincial expansion is complete. When the various combinations of possible pipeline expansions or reversals are considered, a range of heavy crude near-term growth potentials is obtained in which Canadian heavy oil would displace offshore heavy oil supplied to USA refineries. This potential is seen to range from 35,000 bbl/d to 200,000 bbl/d. 7 refs., 20 figs., 3 tabs

  5. Pipeline flow of heavy oil with temperature-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br

    2010-07-01

    The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)

  6. Producing Biosurfactants from Purified Microorganisms Obtained from Oil-contaminated Soil

    Directory of Open Access Journals (Sweden)

    Nader Mokhtarian

    2010-09-01

    Full Text Available Contamination of soil by crude oil can pose serious problems to ecosystems. Soil washing by solutions containing biosurfactants is one of the most efficient methods for the remediation of contaminated soil by crude oil because it removes not only the crude oil but also heavy metals. In this study, five soil samples were taken from fields exposed to oil compounds over the years in order to produce biosurfactants from microorganisms that were capable of degrading oil compounds. Sixteen such microorganisms were isolated. After cultivation, their emulsification strength was examined using E24 test. From among the experimental microorganisms, a gram-negative and rod-shape microorganism called A-12 showed the greatest value of the E24 test index (36%. For each liter of the culture medium containing 365 mg of microorganisms, 3 gr of the biosurfactant compound was produced and separated as dried powder. The purified biosurfactant was used in the soil washing process. Also, the insulated microorganisms were capable of degrading crude oil floating on wastewaters.

  7. Air toxics from heavy oil production and consumption

    International Nuclear Information System (INIS)

    Lipfert, F.W.; DePhillips, M.P.; Moskowitz, P.D.

    1992-01-01

    This report assesses the potential impact of recent Federal and state regulations for airborne toxic substances on the production and consumption of heavy fuel oils. Emissions of nickel from heavy oil production in California are considered in some detail, in conjunction with California state regulations for toxic emissions. Although the use of thermal energy from heavy crude oils could in theory be impacted by toxic air pollution regulations, recent trends towards the use of natural gas for the required extraction energy appear to provide substantial relief, in addition to reducing emissions of criteria air pollutants. However, the consumption of residual fuel oils containing toxic metals could result in higher population exposures to these substances and their attendant risks may be worthy of more detailed analysis

  8. Heavy Oil Recovery Ohmsett Test Report

    Science.gov (United States)

    2012-06-01

    U.S. The first phase of separation is to refloat the oil for physical collection using a conveyor belt or rope mop oil skimmer. The open discharge is...inverted cone-shroud installed in the Frac tank for physical collection using a conveyor belt or rope mop oil skimmer. Heavy Oil Recovery Ohmsett Test...develop and test viable designs for systems which can detect and recover oil from subsurface environments. This is the second major report within this

  9. Proceedings of the world heavy oil congress 2011

    International Nuclear Information System (INIS)

    2011-01-01

    The World Heavy Oil Congress 2011 took place March 2011 in Edmonton, Alberta, Canada. This congress is an international gathering of heavy oil experts and professionals which takes place every 18 months to discuss issues and opportunities facing the heavy oil industry in terms of commercial, technical, regulatory and geo-political areas. Innovative solutions for improving performance, reducing costs and mitigating environmental impacts are presented. Hundreds of presentations were made, courses were delivered, and over 100 companies from 30 countries exhibited. The congress had support from various companies and government entities.This conference featured 133 papers, all of have been catalogued separately for inclusion in this database.

  10. Asphaltene precipitation and its effects on the vapour extraction (VAPEX) heavy oil recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.; Wang, X.; Gu, Y. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada). Petroleum Technology Research Centre; Zhang, H. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Core Laboratories Canada Ltd., Calgary, AB (Canada); Moghadam, L. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-10-15

    One of the most important physical phenomena during the solvent vapour extraction (VAPEX) of heavy oil recovery is asphaltene precipitation. After the asphaltene precipitation occurs, the produced heavy oil is deasphalted in-situ, resulting in a lower viscosity and better quality. However, precipitated asphaltenes may plug some small pores of the reservoir formation, thus reducing its permeability. This paper examined the effects of three operating factors on the asphaltene precipitation during the VAPEX process, notably solvent type; operating pressure; and sand-pack permeability. Eight VAPEX tests were conducted to recover two different Lloydminster heavy oil samples from a rectangular sand-packed physical model with a butane mixture and propane as the respective solvents. The accumulative heavy oil and solvent production from the physical model were measured in the entire VAPEX process. The paper described the materials, experimental set-up, and experimental preparation. The VAPEX test was also explained. Results were presented for sand consolidation; solvent effect; pressure effect; and permeability effect. It was concluded that when the extracting solvent is in a liquid-gas state, asphaltene precipitation occurs and leads to in-situ deasphalting. 15 refs., 3 tabs., 6 figs.

  11. Maximizing heavy-oil recovery by containing steam through optimized cementing

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, K.; Hunter, B.; Kulakofsky, D [Halliburton Energy Services, Calgary, AB (Canada)

    2008-10-15

    As the world's oil and gas reserves decline, interest in unconventional sources, such as heavy oil, is increasing in response to global energy demand. Conventional methods are not sufficient to produce highly viscous heavy oil, and measures must be taken to decrease its viscosity. Although steam injection is an option, steam heats the casing and the cement sheath posing considerable thermal stress on the casing and the cement sheath. This paper described the design procedures that are required for evaluating the properties needed in the cement sheath in order to assist in withstanding thermal stresses. The steps needed to deliver an optimized cement system were presented. The paper presented an illustration of a typical wellbore for heavy-oil application and listed the parameters responsible for the extent of heat loss. These included formation properties; cement sheath thermal conductivity; steam-injection rate; and steam quality. The paper also described the Zhang unified mechanistic model which involved the temperature, pressure, steam quality, and heat loss changes as a function of the depth and the surroundings. Recommendations for withstanding well operations, hole cleaning, and slurry placement were also presented. Insurance for incomplete drilling fluid displacement and cement with the ability to react and respond were also proposed. It was concluded that in thermal recovery wells, energy loss to the surroundings could be reduced by lowering the thermal conductivity of the cement sheath. This could greatly improve the economics of such wells. 9 refs., 5 figs.

  12. Heavy Silicone Oil and Intraocular Inflammation

    Directory of Open Access Journals (Sweden)

    Francesco Morescalchi

    2014-01-01

    Full Text Available In the past two decades, many advances have been made in vitrectomy instrumentation, surgical techniques, and the use of different tamponade agents. These agents serve close retinal breaks, confine eventual retinal redetachment, and prevent proliferative vitreoretinopathy (PVR. Long-acting gases and silicone oil are effective internal tamponade agents; however, because their specific gravity is lower than that of the vitreous fluid, they may provide adequate support for the superior retina but lack efficacy for the inferior retina, especially when the fill is subtotal. Thus, a specific role may exist for an internal tamponade agent with a higher specific gravity, such as heavy silicone oils (HSOs, Densiron 68, Oxane HD, HWS 45-300, HWS 46-3000, and HeavySil. Some clinical evidence seems to presume that heavy tamponades are more prone to intraocular inflammation than standard silicone if they remain in the eye for several months. In this review, we discuss the fundamental clinical and biochemical/molecular mechanisms involved in the inflammatory response after the use of heavy tamponade: toxicity due to impurities or instability of the agent, direct toxicity and immunogenicity, oil emulsification, and mechanical injury due to gravity. The physical and chemical properties of various HSOs and their efficacy and safety profiles are also described.

  13. Chinese refining capacity for Canadian heavy oil

    International Nuclear Information System (INIS)

    Bruce, G.W.

    2006-01-01

    This paper discussed China's refining capacity in relation to exports of Canadian heavy oil. Demand for oil is increasing throughout the world, and China is expected to consume 25 per cent of the projected yearly oil supplies. Alberta currently has an estimated 174 billion barrels of recoverable bitumen, and produces 1.06 million barrels per day. Production is expected to increase to 4.5 million barrels per day by the year 2020. Currently bitumen blends are refined and diluted with naphtha and sweet synthetic crude oil. Bitumen is a challenging feedstock for refineries, and requires thermal production methods or gasification processes. Primary conversion into sour synthetic crude is typically followed by hydrocracking and further refining into finished petroleum products. There are currently 50 refineries in China with a 7.4 million barrel per day capacity. Coastal refineries using imported crude oil have a 4 million barrel per day capacity. New facilities are being constructed and existing plants are being upgraded in order to process heavier and more sour crude oils. However, current refining capabilities in Chinese refineries have a limited ability for resid conversion. It was concluded that while China has a refining infrastructure, only refineries on the coast will use oil sands-derived feedstocks. However, there are currently opportunities to design refineries to match future feedstocks. tabs., figs

  14. Increase oil recovery of heavy oil in combustion tube using a new catalyst based nickel ionic solution

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Garnica, M.A.; Hernandez-Perez, J.R.; Cabrera-Reves, M.C.; Schacht-Hernandez, P. [Inst. Mexicano del Petroleo, Mexico City (Mexico); Mamora, D.D. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas A and M Univ., College Station, TX (United States)

    2008-10-15

    An ionic liquid-based nickel catalyst was used in conjunction with a combustion tube as an in situ process for heavy oil. The experimental system was comprised of a fluid injection system; a combustion tube; a fluid production system; a gas chromatograph; and a data recording system. Injected nitrogen and air was controlled by a mass flow controller. Nitrogen was used to pressurize the combustion tube and flush the system. Air was injected at a rate of 3 L per minute throughout the combustion run. Liquids leaving the combustion tube passed through a 2-stage separation process. Gases passing through the condenser were kept at low temperatures. Fractions of produced gas were analyzed by the chromatograph. Data loggers were used to obtain data at 30 second intervals. Two combustion experiments were conducted to obtain production times, temperature profiles, and the quality of the oil produced by the catalyst. Combustion tests were conducted with and without the catalyst. An analysis of the experimental data showed that use of the nickel catalyst resulted in increases in oil production as well as higher combustion efficiencies. Use of the catalyst also resulted in a faster combustion front and accelerated oil production. It was concluded that the produced oil contained fewer impurities than oil produced during the control experiment. 23 refs., 3 tabs., 9 figs.

  15. Structural Study of Asphaltenes from Iranian Heavy Crude Oil

    Directory of Open Access Journals (Sweden)

    Davarpanah L.

    2015-11-01

    Full Text Available In the present study, asphaltene precipitation from Iranian heavy crude oil (Persian Gulf off-shore was performed using n-pentane (n-C5 and n-heptane (n-C7 as light alkane precipitants. Several analytical techniques, each following different principles, were then used to structurally characterize the precipitated asphaltenes. The yield of asphaltene obtained using n-pentane precipitant was higher than asphaltene precipitated with the use of n-heptane. The asphaltene removal affected the n-C5 and n-C7 maltene fractions at temperatures below 204°C, as shown by the data obtained through the simulated distillation technique. Viscosity of heavy oil is influenced by the asphaltene content and behavior. The viscosity dependence of the test heavy oil on the shear rate applied was determined and the flow was low at y. above 25 s-1 . The reconstituted heavy oil samples were prepared by adding different amounts of asphaltenes to the maltenes (deasphalted heavy oil and asphaltene effects were more pronounced at the low temperature of 25°C as compared with those at the higher temperatures. According to the power law model used in this study the flowability of the test heavy oil exhibited a pseudoplastic character. Structural results obtained from Fourier Transform InfraRed (FTIR spectroscopy showed the presence of the different functional groups in the precipitated asphaltenes. For instance, the presence of different hydrocarbons (aliphatic, aromatic and alicyclic based on their characteristics in the FTIR spectra was confirmed. Resins are effective dispersants, and removal of this fraction from the crude oil is disturbing to the colloidal nature of heavy oil; asphaltene flocculation and precipitation eventually occur. Appearance of pores in the Scanning Electron Microscopy (SEM images was used as an indicator of the resin detachment. With the use of 1H and 13C Nuclear Magnetic Resonance (NMR spectroscopy, two important structural parameters of the

  16. Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-12-01

    On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt. The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, published work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degrees} C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3--5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).

  17. Analysis of heavy oils: Method development and application to Cerro Negro heavy petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Carbognani, L.; Hazos, M.; Sanchez, V. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)); Green, J.A.; Green, J.B.; Grigsby, R.D.; Pearson, C.D.; Reynolds, J.W.; Shay, J.Y.; Sturm, G.P. Jr.; Thomson, J.S.; Vogh, J.W.; Vrana, R.P.; Yu, S.K.T.; Diehl, B.H.; Grizzle, P.L.; Hirsch, D.E; Hornung, K.W.; Tang, S.Y.

    1989-12-01

    On March 6, 1980, the US Department of Energy (DOE) and the Ministry of Energy and Mines of Venezuela (MEMV) entered into a joint agreement which included analysis of heavy crude oils from the Venezuelan Orinoco oil belt.The purpose of this report is to present compositional data and describe new analytical methods obtained from work on the Cerro Negro Orinoco belt crude oil since 1980. Most of the chapters focus on the methods rather than the resulting data on Cerro Negro oil, and results from other oils obtained during the verification of the method are included. In addition, published work on analysis of heavy oils, tar sand bitumens, and like materials is reviewed, and the overall state of the art in analytical methodology for heavy fossil liquids is assessed. The various phases of the work included: distillation and determination of routine'' physical/chemical properties (Chapter 1); preliminary separation of >200{degree}C distillates and the residue into acid, base, neutral, saturated hydrocarbon and neutral-aromatic concentrates (Chapter 2); further separation of acid, base, and neutral concentrates into subtypes (Chapters 3-5); and determination of the distribution of metal-containing compounds in all fractions (Chapter 6).

  18. NEB view of development potential and markets for heavy crude oil. [Canada

    Energy Technology Data Exchange (ETDEWEB)

    Scotland, W A; Gutek, A M.H.

    1977-01-01

    The phased reduction in total crude oil and equivalent exports, from 911 Mpbd in 1974 to 465 Mbpd in 1976, has no doubt had a disruptive effect on the rate of development of heavy crude oil reserves. The effect could have become more series as total exports continued to drop. However, the separate licensing of heavy crude oil for export will allow heavy crude oil to enter available markets until the early 1980s. The construction of one or several upgrading facilities by the early 1980s, combined with growing domestic requirements for heavy crude oil feedstock, could make the disposition of heavy oil largely independent of the purchasing patterns of export markets. The prospect of increased market stability combined with increasing cash flows should provide an appropriate environment to optimize the role that heavy oil resources can play in Canada's future energy balance. (12 refs.)

  19. Recent technological advances in the application of nano-catalytic technology to the enhanced recovery and upgrading of bitumen and heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Almao, P. [Calgary Univ., AB (Canada). Schulich School of Engineering

    2013-11-01

    Advances in Nanotechnology, such as manufacturing of nano-catalysts allow the online (during processing) and on site production of nano-catalysts for heavy oils upgrading. These inventions have also facilitated the development of two lines of heavy oils upgrading processes that make use of nano-catalysts for producing upgraded oil: In Situ Upgrading and Field Upgrading. Producing chemical upgrading of heavy oils is achievable and economically viable at lower temperatures and lower pressures than used in most upgraders if the use of nano-catalysts were implemented. The spontaneity of thermal, steam and hydro processing reactions for converting the different chemical families of hydrocarbons present in the heaviest fractions of heavy oils and bitumen (HO-B) into lighter products was shown recently. Spontaneity was measured by the value of the change of free energy at low pressure. These undesirable paths are spontaneous and uncontrollable under thermal cracking conditions, and require providing years of residence time for intermolecular hydrogen redistribution to minimize olefins polymerization, if at all possible. Instead, hydroprocessing in the presence of hydrogen activating catalysts would create an abundance of hydrogen radicals impeding large molecules condensation and olefins proliferation. In Situ Upgrading: performs coupled Enhanced Oil Recovery with In Reservoir Upgrading via Hot Fluid Injection (HFI). The heat handling of this HFI process and the production of transportable oil with no need of diluent from the start of operation completes the originality of it. This technology uses heavy fractions separated from produced oil to reintroduce heat into the reservoir along with suspended nano-catalysts and hydrogen. These components react in the well bore and inside the reservoir to release more heat (hydroprocessing reactions are exothermic) producing light gases and volatile hydrocarbons that contribute to increase oil detachment from the rock resulting in

  20. Pore-scale modelling of the effect of viscous pressure gradients during heavy oil depletion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bondino, I. [Total E and P UK Ltd., London (United Kingdom); McDougall, S.R. [Heriot-Watt Univ., Edinburgh (United Kingdom); Hamon, G. [Total E and P Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    In solution gas drive, when the reservoir pressure is lowered below the bubble point, bubbles nucleate and grow within saturated oil. A period of internal gas-phase expansion maintains reservoir pressure, driving oil to the wellbore region. Continued pressure reduction eventually leads to the formation of a connected gas phase that is capable of being produced along with the oleic phase. As a result, the total produced gas-oil ratio in the well begins to increase. Once the connected gas phase develops, oil production begins to decrease. This general description can be inadequate in the context of heavy oils where additional characteristics, such as foamy oil, and atypically high recoveries are observed. In order to improve the simulation of solution gas drive for heavy oil in the framework of a pre-existing pore-scale network simulator, a dynamic gas-oil interface tracking algorithm was used to determine the mobilization of bubbles under intense pressure gradients. The model was used to characterize both the stationary capillary controlled growth of bubbles characteristic of slow depletion rates in the far wellbore region and the flow phenomena in the near wellbore region. A rationale for interpreting a range of flow mechanism, their associated gas relative permeabilities and critical gas saturations was also proposed. The paper first presented a description of the dynamic pore network model in terms of its' ability to model the porous space; and mobilize gas under viscous pressure gradients and unsteady-state gas relative permeabilities. The dynamic network modelling of heavy oil depletion experiments at different rates and the prediction of the experimental gas saturations were then presented along with a discussion on critical gas saturations. It was concluded that foamy oil behaviour can be observed in situations where capillary pressures are overcome by viscous pressure gradients. 47 refs., 5 tabs., 17 figs.

  1. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    Science.gov (United States)

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  2. Solar-Assisted Fast Cleanup of Heavy Oil Spill by a Photothermal Sponge

    KAUST Repository

    Chang, Jian; Shi, Yusuf; Wu, Mengchun; Li, Renyuan; Shi, Le; Jin, Yong; Qing, Weihua; Tang, Chuyang; Wang, Peng

    2018-01-01

    of the photothermal effect to heating the heavy oil by using sunlight as energy source to significantly reduce the viscosity of the heavy oil and thus to achieve a fast heavy oil cleanup. A carbon nanotube (CNT) modified polyurethane sponge was fabricated

  3. Microbial ecology of methanogenic crude oil biodegradation; from microbial consortia to heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Head, Ian M.; Maguire, Michael J.; Sherry, Angela; Grant, Russell; Gray, Neil D.; Aitken, Carolyn M.; Martin Jones, D.; Oldenburg, Thomas B.P.; Larter, Stephen R. [Petroleum Research Group, Geosciences, University of Calgary (Canada)

    2011-07-01

    This paper presents the microbial ecology of methanogenic crude oil biodegradation. Biodegraded petroleum reservoirs are one of the most dramatic indications of the deep biosphere. It is estimated that heavy oil and oil sands will account for a considerable amount of energy production in the future. Carbon, a major resource for deep subsurface microorganisms, and energy are contained in large quantities in petroleum reservoirs. The aerobic to anaerobic paradigm shift is explained. A key process for in-situ oil biodegradation in petroleum reservoirs is methanogenesis. New paradigms for in-reservoir crude oil biodegradation are discussed. Variations in anaerobic degradation of crude oil hydrocarbons are also discussed. A graph shows the different patterns of crude oil biodegradation under sulfate-reducing and methanogenic conditions. Alternative anaerobic alkane activation mechanisms are also shown. From the study, it can be concluded that methanogenic crude oil degradation is of global importance and led to the establishment of the world's enormous heavy oil deposits.

  4. A Review of Laboratory-Scale Research on Upgrading Heavy Oil in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Ning Li

    2015-08-01

    Full Text Available With the growing demand for energy and the depletion of conventional crude oil, heavy oil in huge reserve has attracted extensive attention. However, heavy oil cannot be directly refined by existing processes unless they are upgraded due to its complex composition and high concentration of heteroatoms (N, S, Ni, V, etc.. Of the variety of techniques for heavy oil upgrading, supercritical water (SCW is gaining popularity because of its excellent ability to convert heavy oil into valued, clean light oil by the suppression of coke formation and the removal of heteroatoms. Based on the current status of this research around the world, heavy oil upgrading in SCW is summarized from three aspects: Transformation of hydrocarbons, suppression of coke, and removal of heteroatoms. In this work, the challenge and future development of the orientation of upgrading heavy oil in SCW are pointed out.

  5. Utilizing natural gas huff and puff to enhance production in heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wenlong, G.; Shuhong, W.; Jian, Z.; Xialin, Z. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[PetroChina Co. Ltd., Beijing (China); Jinzhong, L.; Xiao, M. [China Univ. of Petroleum, Beijing (China)

    2008-10-15

    The L Block in the north structural belt of China's Tuha Basin is a super deep heavy oil reservoir. The gas to oil ratio (GOR) is 12 m{sup 3}/m{sup 3} and the initial bubble point pressure is only 4 MPa. The low production can be attributed to high oil viscosity and low flowability. Although steam injection is the most widely method for heavy oil production in China, it is not suitable for the L Block because of its depth. This paper reviewed pilot tests in which the natural gas huff and puff process was used to enhance production in the L Block. Laboratory experiments that included both conventional and unconventional PVT were conducted to determine the physical property of heavy oil saturated by natural gas. The experiments revealed that the heavy oil can entrap the gas for more than several hours because of its high viscosity. A pseudo bubble point pressure exists much lower than the bubble point pressure in manmade foamy oils, which is relative to the depressurization rate. Elastic energy could be maintained in a wider pressure scope than natural depletion without gas injection. A special experimental apparatus that can stimulate the process of gas huff and puff in the reservoir was also introduced. The foamy oil could be seen during the huff and puff experiment. Most of the oil flowed to the producer in a pseudo single phase, which is among the most important mechanisms for enhancing production. A pilot test of a single well demonstrated that the oil production increased from 1 to 2 cubic metres per day to 5 to 6 cubic metres per day via the natural gas huff and puff process. The stable production period which was 5 to 10 days prior to huff and puff, was prolonged to 91 days in the first cycle and 245 days in the second cycle. 10 refs., 1 tab., 12 figs.

  6. Proceedings of the World Heavy Oil Congress : unconventional oil challenging conventional expectations

    International Nuclear Information System (INIS)

    2008-01-01

    This international technical and business conference provided a forum to promote heavy oil technology and foster relationships between supply and demand countries. The interactive forum between global industry professionals addressed technological, strategic and environmental challenges facing the unconventional oil industry, including seeking innovative, low cost technologies, driving high costs down; educating and leading the workforce to maintain high standards of production; and ensuring that the footprint on the land is as light as possible. It emphasized that as demand for the uses of heavy oil grows, so does the responsibility of managing sustainability not just from an environmental and social perspective, but also with respect to supply, including manpower and infrastructure. The technical conference featured sessions on advanced and enhanced processes; combustion processes; drilling and completions; geology and reservoir; heavy oil exploitation and development; mining, extraction and transportation; non thermal processes; production and operations; reservoir monitoring; SAGD processes; sustainable development; thermal processes; and, upgrading technology. All 124 presentations from the technical conference were catalogued separately for inclusion in this database. refs., tabs., figs

  7. An Estimate of Recoverable Heavy Oil Resources of the Orinoco Oil Belt, Venezuela

    Science.gov (United States)

    Schenk, Christopher J.; Cook, Troy A.; Charpentier, Ronald R.; Pollastro, Richard M.; Klett, Timothy R.; Tennyson, Marilyn E.; Kirschbaum, Mark A.; Brownfield, Michael E.; Pitman, Janet K.

    2009-01-01

    The Orinoco Oil Belt Assessment Unit of the La Luna-Quercual Total Petroleum System encompasses approximately 50,000 km2 of the East Venezuela Basin Province that is underlain by more than 1 trillion barrels of heavy oil-in-place. As part of a program directed at estimating the technically recoverable oil and gas resources of priority petroleum basins worldwide, the U.S. Geological Survey estimated the recoverable oil resources of the Orinoco Oil Belt Assessment Unit. This estimate relied mainly on published geologic and engineering data for reservoirs (net oil-saturated sandstone thickness and extent), petrophysical properties (porosity, water saturation, and formation volume factors), recovery factors determined by pilot projects, and estimates of volumes of oil-in-place. The U.S. Geological Survey estimated a mean volume of 513 billion barrels of technically recoverable heavy oil in the Orinoco Oil Belt Assessment Unit of the East Venezuela Basin Province; the range is 380 to 652 billion barrels. The Orinoco Oil Belt Assessment Unit thus contains one of the largest recoverable oil accumulations in the world.

  8. Measurement of molecular diffusion coefficients of carbon dioxide and methane in heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y.; Tharanivasan, A.K.; Yang, C. [Regina Univ., SK (Canada)

    2004-07-01

    Vapour extraction (VAPEX) is a solvent-based thermal recovery process which is considered to be a viable process for recovering heavy oil. In order to develop a solvent-based enhanced oil recovery (EOR) operation, it is necessary to know the rate and extent of oil mobilization by the solvent. The molecular diffusion coefficient of solvent gas in heavy oil must be known. In this study, the pressure decay method was used to measure the molecular diffusivity of a gas solvent in heavy oil by monitoring the decaying pressure. The pressure decay method is a non-intrusive method in which physical contact is made between the gas solvent and the heavy oil. The pressure versus time data are measured until the heavy oil reaches complete saturation. The diffusion coefficient can be determined from the measured data and a mathematical model. In this study, the molecular diffusion coefficients of carbon dioxide-heavy oil and methane-heavy oil systems were measured and compared. The experiments were performed in closed high-pressure cells at constant reservoir temperature. An analytical solution was also obtained to predict the pressure in the gas phase and for the boundary conditions at the solvent-heavy oil interface for each solvent. Solvent diffusivity was determined by finding the best match of the numerically predicted and experimentally measured pressures.

  9. Heavy crude and tar sands - the long-term oil reserve

    Energy Technology Data Exchange (ETDEWEB)

    Barnea, J

    1984-10-01

    It appears that heavy crude and tar sands occur in many sedimentary areas, and estimates of known world-wide quantities exceed those known for conventional light crude resources. Although there are not precise figures available, production could be as high as three million barrels per day, with Venezuela, the US, and Canada the largest producers. There are different scales to measure the costs of production because of differences in the quality of various types of heavy crude and tar sands. Economic development of these resources should banish fears of oil scarcity in the foreseeable future. A center for information exchange through international meetings and publications is under development.

  10. Should you trust your heavy oil viscosity measurement?

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.; Miller, K.; Almond, R. [Petrovera Resources Ltd., Edmonton, AB (Canada)

    2003-07-01

    For the last 60 years, the heavy oil and bitumen reservoirs from western Canada have been exploited with varying degrees of success. There are many factors that may effect heavy oil and bitumen production rates. Primary production rates, which vary greatly from field to field, were found to improve with the addition of steam. Viscosity is the single most valued criteria in predicting cold production response from a new field. It is also the criteria used to determine whether thermal process are needed to reduce oil viscosity, or whether horizontal or vertical wells should be used. This study examined why production forecasts based on oil viscosity alone have been poor. It is based on an extensive data collection project in the Elk Point area reservoir which has lower than expected and erratic cold production rates. Viscosity values from the same wells were found to vary by a factor of four or more. One of the objectives of this study was to encourage commercial labs to develop an industry-wide standard method of heavy oil sample cleaning and viscosity measurement. It is generally understood that viscosity increases with an increase in the concentration of asphaltenes, but there is little information to quantify the relationship. Some studies suggest that viscosity increases logarithmically with increasing asphaltenes. It was concluded that the prediction of the viscosity of heavy oils and bitumens is very empirical, but there are ways to improve data comparisons and evaluation by applying available information from other scientific fields. 23 refs., 5 tabs., 6 figs.

  11. Upgrading of heavy crude oil with supported and unsupported transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Nares, H.R.; Schacht-Hernandez, P.; Cabrera-Reyes, M.C.; Ramirez-Garnica, M.; Cazarez-Candia, O. [Instituto Mexicano del Petroleo, Atepehuacan (Mexico)

    2006-07-01

    Heavy crude oil presents many problems such as difficulty in transportation, low processing capacity in refineries, and low mobility through the reservoir due to high viscosity which affects the index of productivity of the wells. Because of these challenges, it is necessary to enhance heavy crude oil, both aboveground and underground. The effects of several metallic oxides used to upgrade heavy crude oil properties were examined in order to increase the mobility of reservoir oil by reducing viscosity and improving the quality of the oil. This can be accomplished by reducing the asphaltene and sulfur contents and increasing the American Petroleum Institute (API) gravity using transition metal supported in alumina and unsupported from transition metals derived from either acetylacetonate or alkylhexanoate in liquid phase homogeneously mixed with heavy crude oil as well as metal transition supported in alumina. KU-H heavy crude oil from the Golf of Mexico was studied. The results were obtained by Simulated Distillation and True Boiling Point (TBP). It was concluded that the use of crude oil thermal hydrocracking allowed the API gravity to increase and considerably reduce the viscosity. As a result, the productivity index in wells was increased. However there is a high formation of coke that could damage the conductivity of the rock and then reduce the potential of oil recovery. 27 refs., 3 tabs., 5 figs.

  12. Sunlight Induced Rapid Oil Absorption and Passive Room-Temperature Release: An Effective Solution toward Heavy Oil Spill Cleanup

    KAUST Repository

    Wu, Mengchun

    2018-05-18

    Rapid cleanup and easy recovery of spilled heavy oils is always a great challenge due to their high viscosity (>103 mPa s). One of the efficient methods to absorb highly viscous oils is to reduce their viscosity by increasing their temperature. In this work, the authors integrate the sunlight‐induced light‐to‐heat conversion effect of polypyrrole (PPy) and thermoresponsive property of poly(N‐isopropylacrylamide) (PNIPAm) into the melamine sponge, which successfully delivers a fast heavy oil absorption under sunlight and passive oil release underwater at room temperature. Thanks to the rationally designed functionalities, the PNIPAm/PPy functionalized sponges possess oleophilicity and hydrophobicity under sunlight. Due to the photothermal effect of PPy, the sponges locally heat up contacting heavy oil under sunlight and reduce its viscosity to a point where the oil voluntarily flow into the pores of the sponge. The material in this work is able to rapidly absorb the heavy oil with room temperature viscosity as high as ≈1.60 × 105 mPa s. The absorbed oil can be passively forced out the sponge underwater at room temperature due to the hydrophilicity of PNIPAm. The sunlight responsive and multifunctional sponge represents a meaningful attempt in coming up with a sustainable solution toward heavy oil spill.

  13. Sunlight Induced Rapid Oil Absorption and Passive Room-Temperature Release: An Effective Solution toward Heavy Oil Spill Cleanup

    KAUST Repository

    Wu, Mengchun; Shi, Yusuf; Chang, Jian; Li, Renyuan; Ong, Chi Siang; Wang, Peng

    2018-01-01

    Rapid cleanup and easy recovery of spilled heavy oils is always a great challenge due to their high viscosity (>103 mPa s). One of the efficient methods to absorb highly viscous oils is to reduce their viscosity by increasing their temperature. In this work, the authors integrate the sunlight‐induced light‐to‐heat conversion effect of polypyrrole (PPy) and thermoresponsive property of poly(N‐isopropylacrylamide) (PNIPAm) into the melamine sponge, which successfully delivers a fast heavy oil absorption under sunlight and passive oil release underwater at room temperature. Thanks to the rationally designed functionalities, the PNIPAm/PPy functionalized sponges possess oleophilicity and hydrophobicity under sunlight. Due to the photothermal effect of PPy, the sponges locally heat up contacting heavy oil under sunlight and reduce its viscosity to a point where the oil voluntarily flow into the pores of the sponge. The material in this work is able to rapidly absorb the heavy oil with room temperature viscosity as high as ≈1.60 × 105 mPa s. The absorbed oil can be passively forced out the sponge underwater at room temperature due to the hydrophilicity of PNIPAm. The sunlight responsive and multifunctional sponge represents a meaningful attempt in coming up with a sustainable solution toward heavy oil spill.

  14. Well and Inflow Performance Relationship for Heavy Oil Reservoir under Heating Treatment

    KAUST Repository

    Hakiki, Farizal

    2017-10-17

    Well and Inflow Performance Relationship, termed TPR and IPR, respectively have been the unfailing methods to predict well performance. It is further to determine the schemes on optimising production. The main intention of the study is to explore TPR and IPR under heating treatment for heavy oil well. Klamono is a mature field which mostly has depleted wells, it produces heavy oil within 18.5 °API (>0.95 g/cc oil density), and therefore, artificial lifting method is necessary. Sucker Road Pump (SRP) and Electrical Submersible Pump (ESP) are the most deployed artificial lifting method in this reservoir. To boost the heavy oil production, the application of Electric Downhole Heater (EDH) in Well KLO-X1 is being studied. Whole Klamono\\'s production is more than 100,000 blpd within 97-99% water cut. By installing EDH, oil viscosity is decreased hence oil mobility ratio will play a role to decrease water cut. EDH is installed together with the tubing joint to simplify its application in the wellbore. The study shows that EDH application can elevate fluid (mixed oil and brine) temperature. Oil viscosity confirms a reduction from 68 to 46 cP. The gross well production is up to 12.2 bopd due optimising its outflow performance and reducing 97.5 to 96.9% water cut. The field data gives an incremental of 4.9 bopd. The computational results only show an attainment of net oil production up to 8.3 bopd (2 bopd incremental). The EDH works to lessen both density and viscosity as we hypothesised for the mechanism of thermally induced oil production improvement. The evaluation study on its economics aspect exhibits good result that is 1.4 USD/bbl additional profit margin according to field data despite the challenging annual rig rent cost. Following the field data, the expected net income through analytical model revealed that this project is financially promising.

  15. Well and Inflow Performance Relationship for Heavy Oil Reservoir under Heating Treatment

    KAUST Repository

    Hakiki, Farizal; Aditya, A.; Ulitha, D. T.; Shidqi, M.; Adi, W. S.; Wibowo, K. H.; Barus, M.

    2017-01-01

    Well and Inflow Performance Relationship, termed TPR and IPR, respectively have been the unfailing methods to predict well performance. It is further to determine the schemes on optimising production. The main intention of the study is to explore TPR and IPR under heating treatment for heavy oil well. Klamono is a mature field which mostly has depleted wells, it produces heavy oil within 18.5 °API (>0.95 g/cc oil density), and therefore, artificial lifting method is necessary. Sucker Road Pump (SRP) and Electrical Submersible Pump (ESP) are the most deployed artificial lifting method in this reservoir. To boost the heavy oil production, the application of Electric Downhole Heater (EDH) in Well KLO-X1 is being studied. Whole Klamono's production is more than 100,000 blpd within 97-99% water cut. By installing EDH, oil viscosity is decreased hence oil mobility ratio will play a role to decrease water cut. EDH is installed together with the tubing joint to simplify its application in the wellbore. The study shows that EDH application can elevate fluid (mixed oil and brine) temperature. Oil viscosity confirms a reduction from 68 to 46 cP. The gross well production is up to 12.2 bopd due optimising its outflow performance and reducing 97.5 to 96.9% water cut. The field data gives an incremental of 4.9 bopd. The computational results only show an attainment of net oil production up to 8.3 bopd (2 bopd incremental). The EDH works to lessen both density and viscosity as we hypothesised for the mechanism of thermally induced oil production improvement. The evaluation study on its economics aspect exhibits good result that is 1.4 USD/bbl additional profit margin according to field data despite the challenging annual rig rent cost. Following the field data, the expected net income through analytical model revealed that this project is financially promising.

  16. Organic geochemistry of heavy/extra heavy oils from sidewall cores, Lower Lagunillas Member, Tia Juana Field, Maracaibo Basin, Venenzuela

    Energy Technology Data Exchange (ETDEWEB)

    Tocco, R.; Alberdi, M. [PDVSA-Inteveo S.A., Caracas (Venezuela)

    2002-10-01

    The study of 22 oils from sidewall cores taken at different depths in the Lower Lagunillas Member, well LSJ-AB, Tia Juana Field, Maracaibo Lake is presented, with the purpose of predicting the intervals that present the best crude oil quality. Differences were detected in the biodegradation levels of the studied samples, which are correlated with the depth at which the sidewall core was taken. The API gravity was considered for the oils from each sidewall core and it was found that toward the top of the sequence, the oils have an API gravity of 10.6-11.2{sup o}C, while toward the base part of the sequence, the well produces extra heavy oils with an API gravity that varies between 8.2 and 8.7{sup o}. 12 refs., 5 figs., 1 tab.

  17. Down-hole catalytic upgrading of heavy crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, J.G.; Kessler, R.V.; Sawicki, R.A.; Belgrave, J.D.M.; Laureshen, C.J.; Mehta, S.A.; Moore, R.G.; Ursenbach, M.G. [University of Calgary, Calgary, AB (Canada). Dept. of Chemical and Petroleum Engineering

    1996-07-01

    Several processing options have been developed to accomplish near-well bore in-situ upgrading of heavy crude oils. These processes are designed to pass oil over a fixed bed of catalyst prior to entering the production well, the catalyst being placed by conventional gravel pack methods. The presence of brine and the need to provide heat and reactant gases in a down-hole environment provide challenges not present in conventional processing. These issues were addressed and the processes demonstrated by use of a modified combustion tube apparatus. Middle-Eastern heavy crude oil and the corresponding brine were used at the appropriate reservoir conditions. In-situ combustion was used to generate reactive gases and to drive fluids over a heated sand or catalysts bed, simulating the catalyst contacting portion of the proposed processes. The heavy crude oil was found to be amenable to in-situ combustion at anticipated reservoir conditions, with a relatively low air requirement. Forcing the oil to flow over a heated zone prior to production results in some upgrading of the oil, as compared to the original oil, due to thermal effects. Passing the oil over a hydroprocessing catalyst located in the heated zone results in a product that is significantly upgraded as compared to either the original oil or thermally processed oil. Catalytic upgrading is due to hydrogenation and the results in about a 50% sulfur removal and an 8{degree} API gravity increase. Additionally, the heated catalyst was found to be efficient at converting CO to additional H{sub 2}. While all of the technologies needed for a successful field trial of in-situ catalytic upgrading exist, a demonstration has yet to be undertaken. 27 refs., 5 figs., 5 tabs.

  18. Hamaca Heavy Oil Project : lessons learned and an evolving development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Gipson, L.J.; Owen, R.; Robertson, C.R. [Petrolera Ameriven/Phillips Petroleum, Caracas, (Venezuela)

    2002-07-01

    The Hamaca extra-heavy crude oil project is one of four integrated extra-heavy crude oil development projects underway in the Faja stratigraphic trap in the Orinoco heavy oil belt of eastern Venezuela. The Faja contains about 1.2 trillion barrels of heavy and extra heavy crude oil. It is divided into the Machete, Zuata, Hamaca and Cerro Negro regions that have been developed by Petroleos de Venezuela SA (PDVSA). The Hamaca region is further subdivided into 25 blocks. The Hamaca integrated project will involve the drilling of more than 1000 horizontal wells over a 35 year period. The project will also involve the installation of more than 200 miles of crude and naptha pipelines, plus an upgrading refinery to convert the 8 API extra heavy crude into a 26 API final product. This presentation describes the performance of the different well types and highlights Petrolera Ameriven's criteria and strategy for future development. Openhole log data superimposed on 2D and 3D seismic displays are presented to show how they can be used for geosteering. 2 refs., 10 figs.

  19. The PTRC : a world leader in enhanced heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kristoff, B.; Knudsen, R.; Asghari, K. [Petroleum Technology Research Centre, Regina, SK (Canada); Pappas, E.S. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    The Petroleum Technology Research Centre (PTRC) fosters knowledge and progressive technologies to enhance the recovery of petroleum. This paper discussed the PTRC's leadership in enhanced heavy oil recovery, with particular reference to core research program such as heavy oil (post) cold flow; enhanced waterflooding; miscible/immiscible solvent injection; and near-wellbore conformance control. Other projects that were presented included a joint implementation of vapour extraction project (JIVE); and the IEA greenhouse gas (GHG) Weyburn-Midale carbon dioxide monitoring and storage project. The JIVE project will develop, demonstrate and evaluate solvent vapour extraction processes for enhanced oil recovery in heavy oil reservoirs. The GHG Weyburn-Midale project, launched in 2000, studies carbon dioxide injection and storage in partially depleted oil reservoirs. It was concluded that the PTRC continues to develop technologies to meet the world's energy requirements while mitigating both immediate and long-term environmental impacts. 4 figs.

  20. A fundamental research for upgrading heavy oil using syngas as hydrogen source

    Energy Technology Data Exchange (ETDEWEB)

    Yan, D.; Yuan, M.; Sun, X.; Zhao, S. [China Univ. of Petroleum, Beijing (China). State Key Laboratory of Heavy Oil Processing

    2006-07-01

    The stock of heavy oil and residue from petroleum fractions has become more important as a component in supplying demands for fuel and petrochemical feeds. Finding economical means of upgrading heavy oils is extremely important in order to ensure future fuel supply. A number of new technologies for upgrading heavy oils have been evaluated, including residual fluid catalytic cracking (RFCC), hydrogenation, thermal conversion, and solvent deasphalting. However, the commercial application of such technologies is mainly constrained by the metal and residual carbon concentrations that are present in all heavy oils. Conventional technologies used to upgrade vacuum residue (VR) result in heavy coke formation, with a consequential reduction in the life of expensive, high-performance catalysts. The hydro upgrading process can significantly remove the concentration of heteroatom such as sulfur, nitrogen, and metals in the liquid products. This paper investigated upgrading of heavy oil using syngas as an alternative hydrogen source with a dispersed catalyst. The paper discussed the experiment with reference to the feedstock and catalyst precursors; finely dispersed catalysts preparation; experimental apparatus; experimental design and procedure; and analysis. The results were presented in terms of effects of catalyst dispersion; effect of hydro-upgrading heavy oil using syngas as alternative source; and effects of different catalysts on residue hydrocracking. Last, the paper discussed the properties of the hydrocracked oil treated with syngas. The study confirmed the effectiveness of the slurry bed hydrocracking catalyst using syngas as a hydrogen source. 23 refs., 8 tabs., 16 figs.

  1. Well integrity in heavy oil wells : challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Taoutaou, S.; Osman, T.M.; Mjthab, M. [Schlumberger (Syrian Arab Republic); Succar, N. [Oudeh Petroleum, Damascus (Syrian Arab Republic)

    2010-07-01

    The Oudeh Petroleum Company (OPC) has used cyclic steam (the Huff and Puff technique) since 2006 to produce heavy oil from its OPC field that has an estimated 79.49 to 95.39 million cubic meters of oil contained in the Jurassic and Triassic reservoirs of the Butmah and Kurachine formations in Syria. Accumulations of oil and gas are present in the main Oudeh structure at depths between 1300 and 2250 meters. The Huff and Puff technique involves 3 phases. In the first phase which lasts about 1 month, steam is injected at 348 degrees C and 17.MPa to melt the wax condensate in the formation in order to decrease heavy oil viscosity. Phase 2 involves 3 soaking days. In phase 3, which lasts 2 to 3 months, the production rate is doubled compared to wells without steam. The cycle is then resumed once the pressure drops. The temperature cycling can compromise the well integrity through loss of hydraulic isolation in the cement sheath and thereby reduce hydrocarbon recovery. This paper described how the OPC has managed to achieved complete well integrity using an advanced cement system in more than 200 wells exposed to steam injection temperatures up to 348 degrees C and the associated high induced thermal stresses. The methodology for risk analysis of the cement sheath failure under steam stimulation was described along with the selection criteria for the advanced cement system to withstand temperature cycling. Two case histories involving a 50 well database were presented. 5 refs., 2 tabs., 13 figs.

  2. Dual catalyst system for the hydrocracking of heavy oils and residues

    Energy Technology Data Exchange (ETDEWEB)

    Bellussi, G. [ENI S.p.A., San Donato Milanese (Italy)

    2011-07-01

    One of the major challenges for our and for the future generations is the development of a sustainable energy supply system based mainly on renewable sources with no environmental impact. This task is necessary to limit the negative effects of green-house gas on the hearth and to allows the forecasted population growth. However, it is not yet clear the time span needed to reach the objective. The total world energy consumption in 2008 amounted to 8428 Mtoe. In a reference scenario, this amount is expected to grow to 16790 Mtoe in 2030 and the contribution expected by sources, according to the International Energy Agency, will be: oil 29.8 %, coal 29.1 %, natural gas 21,2 %, nuclear 5.7 %, hydroelectric 2.4 %, others (Renewable and waste, geothermal, solar, wind, tide,..) [1]. This picture indicates that for several decades, we must still rely on fossil fuels, avoid running out of this precious energy reserves of our planet and reducing the environmental damage arising from their use. For these reason there is a growing need for the efficient upgrading of the heavy oil streams for a better utilization of every barrel of oil produced and for bringing to production also the huge reserves of unconventional fossil sources, such as the heavy oils and the tar sands. Since several years many companies have R and D project aimed to the conversion of heavy residues through a hydrocracking slurry technology, which, with respect to other competing technologies, such as those based on fixed or ebullated bed, can convert all the feedstock to distillates, avoiding the production of fuel oil or coke. In this lecture the advancement in this area will be presented and discussed, highlighting the potentiality offered by the improvement of the catalyst system. (orig.)

  3. Chemically evolving systems for oil recovery enhancement in heavy oil deposits

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory studies and field tests of new physicochemical technologies for enhanced oil recovery of heavy oil fields under natural development conditions and with thermal-steam stimulation using oil-displacing "smart" systems. The systems are based on surfactants and buffer systems. Their rheological and acid-base properties can be regulated by their chemical evolution directly in the formation. Field tests of the technologies carried out on high-viscosity oil deposit in the Usinskoye oilfield have shown that the EOR technologies are environmentally friendly and technologically effective.

  4. The density behaviour of heavy oils in water

    International Nuclear Information System (INIS)

    Fingas, M.; Hollebone, B.; Fieldhouse, B.

    2006-01-01

    The recent concern regarding the difficulty of cleaning up Low API gravity oils (LAPIO) spilled in water was discussed. Sinking and overwashing are 2 phenomena related to the behaviour of these heavy oils in water. Sinking refers to the complete submergence of the oil to the bottom of a waterbody, while over-washing refers to the overflowing of a layer of water over dense oil at sea when the oil is still close to the surface. The latter is important because even a micron-layer of water could render the oil undetectable, particularly at acute viewing angles, such as from a ship. This paper reviewed the properties of heavy oil, the prediction of density changes and the sinking/over-washing of heavy oil. In particular, it discussed a spill which occurred in August 2005 when 11 tank cars from train derailment spilled 800,000 litres of Bunker fuel mixed with high PAH-containing pole-treating oil into Lake Wabamun, Alberta. The behaviour of the oil included submergence, neutral buoyancy, resurfacing and formation of several types of aggregates of oil. This study summarized the behaviours and processes that transformed the particles of oil into small tar balls, larger logs, sheets, and large lumps into a slick. Sediment uptake or loss was found to be the major process that caused the changes in density. The behaviour of the oils was compared with respect to density and uptake of various types of sediment. The paper also reviewed the literature on dense oil behaviour. Weathering experiments performed on dense oils to determine if extensive weathering could render oils heavier than water showed that rarely is weathering the only factor in the bulk sinking of oil. Once an oil is submerged, little weathering occurs, either by dissolution or volatilization. The uptake of particulate matter is the most important process in increasing density. This study reviewed over-washing experiments to develop a mathematical solution of the conditions required for oil to be covered by a

  5. Research on oil recovery mechanisms in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

    2000-03-16

    The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

  6. More oil sand cooperation between Canada and Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    Venezuela has pioneered the production of heavy oil, according to Dr. A. Guzman-Reyes, director general of hydrocarbons for the Venezuelan government. The first heavy oil production began in Venezuela 60 yr ago and the oil industry has steadily improved methods of producing and handling heavy oil. The country's producing fields are capable of yielding almost one million barrels of heavy oil daily, although actual production, largely because of market limitations, is about 650,000 bpd. Canada's daily heavy oil production, including the 60,000 bbl of synthetic crude produced daily by the Great Canadian Oil Sands plant, is about 200,000 bbl. Dr. Guzman-Reyes stated that Venezuela intends to rapidly develop heavy oil production and upgrade facilities to maintain its export markets. The national oil company, Petroleos de Venezuela, plans to invest 4 times the amount spent on oil development over the last 60 yr during the next 10 yr, a total of $3 billion by 1980.

  7. New heavy crude oil flow improver increases delivery : application scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, J.; Johnston, R.; Lauzon, P. [ConocoPhillips Specialty Products Inc., Houston, TX (United States)

    2009-07-01

    Flow improvers or drag reducing agents have been used for over 25 years as a method to increase fluid flow in hydrocarbon pipelines. The technology is effective in refined projects, light and medium crude oils. This paper presented a new development in flow improver technology that allows treatment of heavy crude oil slates. It discussed case studies of flow improver treatment of heavy oils in various pipeline system as well as factors that affect commercial success. tabs., figs.

  8. Canadian oilsands, heavy oil poised for surge in development

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Operators in Canada's oilsands and heavy oil regions are on the brink of a period of growth that could last well into the next century. Several factors are combining in a scenario a National Task Force report on oilsands says could dramatically increase investment and production in the next 25 years. By then, massive oilsands and heavy oil reserves in northern Alberta could account for as much as 50%--perhaps more--of Canada's oil production. Technological improvements in recovery and processing have slashed production costs and put nonconventional oil on a more competitive footing with declining reserves of conventional crude in western Canada. At the same time, persistent lobbying by industry and a well researched national study have persuaded federal and provincial governments to introduce a new royalty and fiscal regime designed to bolster oilsands investment. New policies give clear incentives to investors to put money into oilsands and heavy oil projects. Policies also will provide a generic tax treatment for all new projects, long a major objective of oilsands promoters. Previously, royalty and tax agreements were negotiated for project case by case. This paper reviews the resource base and the new operational developments resulting from these policies

  9. FY 2000 report on the research cooperation project - Research cooperation in developmental support for oil producing countries. Development of the new field of usage of Orinoco oil for fuel of gas turbine combined power generation; 2000 nendo san'yukoku kaihatsu shien kenkyu kyoryoku jigyo seika hokokusho. Gasu tabin fukugo hatsuden nenryo muke Orinoko oil no shin yoto kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    For the purpose of spreading the usage of Orinoco crude oil which is suffering from sluggishness in the export and heightening the economical efficiency in Venezuela, research cooperation was made for a project for reduction of the power cost and environmental loads in Japan by producing the advanced gas turbine use fuel oil from Orinoco oil and exporting it to Japan. In this project, conducted were the technical verification that the gas turbine use fuel oil (GTF) can be produced from Orinoco oil and the economical verification based on the result thereof. As a result of the technical verification, it was confirmed that from the Orinoco crude oil which is heavy, high in sulfur and high in heavy metal concentration, a refined oil satisfying the following properties of the advanced gas turbine fuel oil could be trial-produced using the distilling unit, SDA unit, desulfurizer and de-metaling unit: vanadium concentration: 0.5 wtppm or below; sodium + potassium concentration: 1.0 wtppm or below; viscosity: 20 cSt or below at 135 degrees C. Further, from the economical verification, the good result was obtained that the price was lower than the LNG price and the domestic price of A heavy oil/C heavy oil. (NEDO)

  10. Uptake of heavy metals by Brachiaria Decumbens and its mutant as a remediation agent for soil contaminated with oil sludge

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abd Wahid; Latiffah Noordin; Abdul Razak Ruslan; Hazlina Abdullah; Khairuddin Abdul Rahim

    2006-01-01

    The Malaysian petroleum industry produces thousands of tonnes of oil sludge per year. Oil sludge is the residue accumulated during processing of petroleum at petroleum processing plants. Besides soil, mud and sand, oil sludge is often rich in radioactive substances, heavy metals and other toxic materials from hydrocarbon group which could contaminate and environment. In the present study the pasture grass Brachiaria decumbens and its mutant B. decumbens Kluang Comel were evaluated on their effectiveness as remediation agents for contaminated soils. The contaminating agent tested was the oil sludge with its hydrocarbons vaporised, obtained from the Waste Management Centre, MINT. Amongst the indicators for an effective remediation agent is the ability to accumulate heavy metals in their tissues without affecting their growth. This trial was conducted at MINT glasshouse, whereby the test plants were planted in pots in soil added with vaporised oil sludge. Analysis of heavy metals was through Inductive Coupled Plasma Mass Spectrometry (ICPMS) and Neutron Activation Analysis (NAA). This paper discusses the accumulation of heavy metals by B. decumbens and its mutant Kluang Comel and their growth performance, hence assessing their suitability as remediation agent in soil contaminated with oil sludge. (Author)

  11. Extra heavy oil and refinery residues upgrading through Eni Slurry Technology : first EST commercial unit

    Energy Technology Data Exchange (ETDEWEB)

    Rispoli, G.; Sanfilippo, D.; Amoroso, A [Eni S.p.A., Rome (Italy)

    2009-07-01

    The production of heavy crude oils is projected to continue to grow in the upstream oil industry given that large reserves of unconventional extra heavy crude and bitumen exist in several geographic areas including Canada and Venezuela. As reserves of conventional crude oil continue to decline, these unconventional feedstocks are becoming an opportunity to pursue, but they require effective technologies for upgrading and meeting the growing demand for light and middle distillate fuels. This paper described the proprietary technology that offers a solution to upstream and downstream oil producers for bottom-of-the-barrel upgrading. En i Slurry Technology (EST) is constructing an industrial plant in its Sannazzaro refinery in Italy. The plant is designed to convert 23,000 BPSD of vacuum residue into high quality diesel and other valuable refinery streams such as liquefied petroleum gas, naphtha and jet fuel. EST is an H-addition process characterized by the use of a special homogeneous isothermal intrinsically safe reactor, and of a nano-dispersed non-ageing catalyst. EST converts more than 98 per cent of any type of residues to about 110 per cent volume of light products and distillates or extra heavy oils to high quality bottomless SCO. In typical performance, HDS is greater than 85 per cent, HDM greater than 99 per cent and HDCCR greater than 97 per cent. EST also achieves the target of zero fuel oil - zero coke. 12 refs., 4 tabs., 5 figs.

  12. New lube oil for stationary heavy fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    An extensively field-tested diesel engine lubricating oil for medium speed, heavy fuel stationary engine applications has been introduced by Caltex Petroleum, in Dallas, Texas. The new oil is similar to a product developed and marketed for marine medium speed heavy fuel propulsion and auxillary engine applications by one of its two parent companies, Chevron. Detailed are results of two field evaluations in Caterpillar 3600 series engines installed at Kimberly Clark (KCPI) and Sime Darby (SDPI), both in the Philippines. Both were one year, 7000-plus hour field evaluations of a new, 40 BN trunk piston engine oil (TPEO), identified as Caltex Delo 3400, SAE 40 engine lube oil. The oil uses the new Phenalate additive technology developed by Chevron Chemical Company`s Oronite Additives Division. This technology is designed to improve engine cleanliness in regard to soft black sludge and piston deposits. The focus of the field evaluations was the performance of the lubricating oil. During controlled tests at Sime Darby, the most noticeable improvement over another technology was in the control of sludge deposits. This improvement was seen in all areas where black sludge forms, such as the rocker cover, crankcase cover and valve assemblies. 4 figs.

  13. A New Model for Describing the Rheological Behavior of Heavy and Extra Heavy Crude Oils in the Presence of Nanoparticles

    Directory of Open Access Journals (Sweden)

    Esteban A. Taborda

    2017-12-01

    Full Text Available The present work proposes for the first time a mathematical model for describing the rheological behavior of heavy and extra-heavy crude oils in the presence of nanoparticles. This model results from the combination of two existing mathematical models. The first one applies to the rheology of pseudoplastic substances, i.e., the Herschel-Bulkley model. The second one was previously developed by our research group to model the rheology of suspensions, namely the modified Pal and Rhodes model. The proposed model is applied to heavy and extra heavy crude oils in the presence of nanoparticles, considering the effects of nanoparticles concentration and surface chemical nature, temperature, and crude oil type. All the experimental data evaluated exhibited compelling goodness of fitting, and the physical parameters in the model follow correlate well with variations in viscosity. The new model is dependent of share rate and opens new possibilities for phenomenologically understanding viscosity reduction in heavy crude by adding solid nanoparticles and favoring the scale-up in enhanced oil recovery (EOR and/or improved oil recovery (IOR process.

  14. Numerical Simulation Study on Steam-Assisted Gravity Drainage Performance in a Heavy Oil Reservoir with a Bottom Water Zone

    Directory of Open Access Journals (Sweden)

    Jun Ni

    2017-12-01

    Full Text Available In the Pikes Peak oil field near Lloydminster, Canada, a significant amount of heavy oil reserves is located in reservoirs with a bottom water zone. The properties of the bottom water zone and the operation parameters significantly affect oil production performance via the steam-assisted gravity drainage (SAGD process. Thus, in order to develop this type of heavy oil resource, a full understanding of the effects of these properties is necessary. In this study, the numerical simulation approach was applied to study the effects of properties in the bottom water zone in the SAGD process, such as the initial gas oil ratio, the thickness of the reservoir, and oil saturation of the bottom water zone. In addition, some operation parameters were studied including the injection pressure, the SAGD well pair location, and five different well patterns: (1 two corner wells, (2 triple wells, (3 downhole water sink well, (4 vertical injectors with a horizontal producer, and (5 fishbone well. The numerical simulation results suggest that the properties of the bottom water zone affect production performance extremely. First, both positive and negative effects were observed when solution gas exists in the heavy oil. Second, a logarithmical relationship was investigated between the bottom water production ratio and the thickness of the bottom water zone. Third, a non-linear relation was obtained between the oil recovery factor and oil saturation in the bottom water zone, and a peak oil recovery was achieved at the oil saturation rate of 30% in the bottom water zone. Furthermore, the operation parameters affected the heavy oil production performance. Comparison of the well patterns showed that the two corner wells and the triple wells patterns obtained the highest oil recovery factors of 74.71% and 77.19%, respectively, which are almost twice the oil recovery factors gained in the conventional SAGD process (47.84%. This indicates that the optimized SAGD process

  15. The case for a large heavy oil stream

    International Nuclear Information System (INIS)

    Reimer, P.

    2005-01-01

    EnCana Corporation markets significant proprietary and third party crude oil production in North America. This presentation presented details of EnCana's projected resources as well as estimated proved reserves in Canadian oil sands. Details of the Western Canadian heavy oil market were presented. Issues concerning Western Canadian Select (WCS) were also presented, including details of distillation and asphalt characteristics. Details of the WCS synthetic bitumen synergy were examined, as well as quality management issues. It was suggested that further optimization of WCS facilities include reduced operating complexity; less tank proliferation; delivery quality consistency; and reliability. WCS refiner advantages were also evaluated. Shipping and ramping details were discussed, along with growth potential. It was noted that WCS satisfies all the criteria for a benchmark crude. It was concluded that the case for a large Canadian heavy oil stream includes reduced operating complexity; optimized logistics; delivery quality consistency; improved stream liquidity; and enhanced price discovery. tabs., figs

  16. Carburetor for heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Gautreau, L

    1905-03-06

    This invention relates to a carburetor for heavy oils in which the combustion liquid circulates successively in two annular spaces at the top and bottom of the vaporizer heated by the gas from the outlet and returning from there, after having been conveniently heated, to the constant level by an appropriate tube; the constant level can be surrounded by an annular chamber in which circulates a part of the gas from the outlet.

  17. Research on weathering and biomarkers in heavy fuel oil

    International Nuclear Information System (INIS)

    Ma, Q.; Li, Z.; Yu, Z.

    2008-01-01

    The fate of oil spilled in the ocean depends on several physicochemical and biological factors such as evaporation, dissolution, microbial degradation and photo-oxidation. These weathering processes decrease the low molecules in spilled oils which reduces the harmful effects of spilled oil to the ocean and biota near the spill. In addition to changing the composition of the oil, some weathering processes are key to identifying the spilled oil. As such, the relationship between the weathering processes and the changes in oil composition must be well understood. This paper used gas chromatography and mass spectrometry (GC/MS) to analyze changes of chemical components in heavy fuel oil by weathering in static seawater. The major alkanes of heavy fuel oil include C8 to C33, while the major aromatics include benzene, naphthalene, phenanthrene and dibenzothiophene. After 24 weeks of weathering in seawater, the alkanes from n-C8 to n-C15 evaporated in order of increasing carbon number. The susceptibility of n-alkanes was correlated with carbon numbers. The aromatics evaporated in order of increasing carbon and ring number as weathering time increased. 8 refs., 3 tabs., 5 figs

  18. SAGD pilot project, wells MFB-772 (producer) / MFB-773 (injector), U1,3 MFB-53 reservoir, Bare Field. Orinoco oil belt. Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Mago, R.; Franco, L.; Armas, F.; Vasquez, R.; Rodriguez, J.; Gil, E. [PDVSA EandP (Venezuela)

    2011-07-01

    In heavy oil and extra heavy oil fields, steam assisted gravity drainage is a thermal recovery method used to reduce oil viscosity and thus increase oil recovery. For SAGD to be successfully applied in deep reservoirs, drilling and completion of the producer and injector wells are critical. Petroleos de Venezuela SA (PDVSA) is currently assessing the feasibility of SAGD in the Orinoco oil belt in Venezuela and this paper aims at presenting the methodology used to ensure optimal drilling and completion of the project. This method was divided in several stages: planning, drilling and completion of the producer, injector and then of the observer wells and cold information capture. It was found that the use of magnetic guidance tools, injection pipe pre-insulated and pressure and temperature sensors helps optimize the drilling and completion process. A methodology was presented to standardize operational procedures in the drilling and completion of SAGD projects in the Orinoco oil belt.

  19. Proceedings of the 5. NCUT upgrading and refining conference 2009 : bitumen, synthetic crude oil and heavy oil

    International Nuclear Information System (INIS)

    2009-01-01

    This conference examined various upgrading technologies related to bitumen production. It provided a forum to review new developments to exploit oil sands bitumen and extra heavy crudes in terms of production, upgrading and environmental issues facing the industry. This 2009 conference focused on the many existing and emerging technical solutions that will help consolidate the position of the vast reserves in Western Canada as a sustainable source of crudes for North America and other selected markets. Some of the technical challenges that have an effect on upgrading include poor quality bitumen and heavy oils; bitumen and diluent blending; pipeline issues; desalting; fouling and corrosion; high costs; dependence on natural gas for energy; poor middle distillates; and greenhouse gas emissions. The sessions of the conference were entitled: heavy oil and bitumen upgrading technologies; secondary upgrading and refining technologies; bitumen transportation; and bitumen and heavy oil processability. The conference featured a total of 50 presentations and posters, of which 43 have been catalogued separately for inclusion in this database. tabs., figs

  20. Intrastate conflict in oil producing states: A threat to global oil supply?

    International Nuclear Information System (INIS)

    Toft, Peter

    2011-01-01

    In this paper I investigate how often and how much outbreaks of intrastate conflict in oil producing states translates into oil supply shortfalls. The Libyan conflict that broke out in February 2011 highlighted the fear that intrastate conflict in oil producing states may imply shortfalls and ensuing volatile global oil prices. I argue, however, that it is far from certain that shortfalls following conflict outbreak will occur, since both sides in a conflict face incentives simultaneously to protect and maintain oil installations and to strike and destroy these. Based on a quantitative analysis of 39 intrastate wars in oil producing countries (1965-2007) I conclude that outbreak of conflict does not translate into production decline with any certainty. In fact, likelihoods are less than 50% for reductions to occur. In many cases growing production actually followed conflict outbreak. I conclude by investigating four characteristics of intrastate conflict that may explain when oil production is at risk during conflict: (1) proximity of oil producing fields to key battle zones, (2) duration of conflict, (3) separatism and the location of oil in separatist territory, and (4) the relative size of oil production. While the first three factors did not prove important, oil producer size could be significant. But further research is needed to establish this with greater certainty. - Highlights: → Oil shortfall during intrastate conflict is not a given. → Statistical analysis of 39 intrastate conflicts in oil producing countries since 1965. → Examination of four characteristics of intrastate conflict in oil producing countries. → Marginal significance related to large producers and production shortfall.

  1. Intrastate conflict in oil producing states: A threat to global oil supply?

    Energy Technology Data Exchange (ETDEWEB)

    Toft, Peter, E-mail: peter.toft@ec.europa.eu [Institute for Energy, Joint Research Centre of the European Commission, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2011-11-15

    In this paper I investigate how often and how much outbreaks of intrastate conflict in oil producing states translates into oil supply shortfalls. The Libyan conflict that broke out in February 2011 highlighted the fear that intrastate conflict in oil producing states may imply shortfalls and ensuing volatile global oil prices. I argue, however, that it is far from certain that shortfalls following conflict outbreak will occur, since both sides in a conflict face incentives simultaneously to protect and maintain oil installations and to strike and destroy these. Based on a quantitative analysis of 39 intrastate wars in oil producing countries (1965-2007) I conclude that outbreak of conflict does not translate into production decline with any certainty. In fact, likelihoods are less than 50% for reductions to occur. In many cases growing production actually followed conflict outbreak. I conclude by investigating four characteristics of intrastate conflict that may explain when oil production is at risk during conflict: (1) proximity of oil producing fields to key battle zones, (2) duration of conflict, (3) separatism and the location of oil in separatist territory, and (4) the relative size of oil production. While the first three factors did not prove important, oil producer size could be significant. But further research is needed to establish this with greater certainty. - Highlights: > Oil shortfall during intrastate conflict is not a given. > Statistical analysis of 39 intrastate conflicts in oil producing countries since 1965. > Examination of four characteristics of intrastate conflict in oil producing countries. > Marginal significance related to large producers and production shortfall.

  2. Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field.

    Science.gov (United States)

    Al-Sayegh, Abdullah; Al-Wahaibi, Yahya; Al-Bahry, Saif; Elshafie, Abdulkadir; Al-Bemani, Ali; Joshi, Sanket

    2015-09-16

    Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.

  3. Visualization of viscous coupling effects in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Arango, J.D. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Kantzas, A. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Some heavy oil reservoirs in Venezuela and Canada have shown higher than expected production rates attributed to the effects of foamy oil or enhanced solution gas drive. However, foamy oil 2-phase flow does not fully explain oil rate enhancement in heavy oil reservoirs. In this study, flow visualization experiments were conducted in a 2-D etched network micromodel in order to determine the effect of the viscosity ratio on oil mobility at the pore scale. The micromodel's pattern was characterized by macroscopic heterogeneities with a random network of larger pore bodies interconnected with a random network of smaller pore throats. Displacement tests were conducted with green-dyed distilled water as a wetting phase. N-octane, bromododecane and mineral oil were used as non-wetting phases. An unsteady-state method was used to obtain displacement data, and the Alternate method was used to calculate relative permeabilities. Results of the study showed that relative permeabilities depended on the viscosity ratio of the fluids flowing through the porous medium. Channel and annular flows co-existed, and water lubrication was stronger at higher water saturations. The results of the study explained the abnormally high production rates in heavier oil fields. 19 refs., 3 tabs., 14 figs.

  4. Expediting the chemistry of hematite nanocatalyst for catalytic aquathermolysis of heavy crude oil

    Science.gov (United States)

    Khalil, Munawar

    .e. thiophene at considerably mild condition. Based on the analyses, it is suggested that the catalytic mechanism involves a cyclic phase transformation of some hematite surfaces into magnetite as thiophene was oxidatively decomposed to produce maleic acid, SO2 and CO2. However, in the presence of water as the source of active oxygen, these magnetite surfaces could be reconstructed back into hematite surfaces. In addition, it is also found that the catalytic activity of hematite can be improved by changing its surface property from hydrophilic into slightly more hydrophobic. However, further improvement on hydrophobicity reduces the activity due to the blockage of the catalytic site. Finally, when both bare and surface-modified hematite nanocatalysts were used in aquathermolysis reaction of heavy crude oil sample, the viscosity of heavy oil sample was significantly decreased by 61.52% and 74.33%, respectively. In addition, the quality of heavy oil can also be upgraded as the amount of saturated and aromatic fractions were significantly increased while asphaltene and resin fractions were reduced.

  5. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge.

    Science.gov (United States)

    Yuan, Xingzhong; Leng, Lijian; Huang, Huajun; Chen, Xiaohong; Wang, Hou; Xiao, Zhihua; Zhai, Yunbo; Chen, Hongmei; Zeng, Guangming

    2015-02-01

    Liquefaction bio-oil (LBO) produced with ethanol (or acetone) as the solvent and pyrolysis bio-oil (PBO) produced at 550°C (or 850°C) from sewage sludge (SS) were produced, and were characterized and evaluated in terms of their heavy metal (HM) composition. The total concentration, speciation and leaching characteristic of HMs (Cu, Cr, Pb, Zn, Cd, and Ni) in both LBO and PBO were investigated. The total concentration and exchangeable fraction of Zn and Ni in bio-oils were at surprisingly high levels. Quantitative risk assessment of HM in bio-oils was performed by the method of risk assessment code (RAC), potential ecological risk index (PERI) and geo-accumulation index (GAI). Ni in bio-oil produced by pyrolysis at 850°C (PBO850) and Zn in bio-oil by liquefaction at 360°C with ethanol as solvent (LBO-360E) were evaluated to possess very high risk to the environment according to RAC. Additionally, Cd in PBO850 and LBO-360E were evaluated by PERI to have very high risk and high risk, respectively, while Cd in all bio-oils was assessed moderately contaminated according to GAI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Detection of heavy oil on the seabed by application of a 400 kHz multibeam echo sounder

    International Nuclear Information System (INIS)

    Wendelboe, G.; Fonseca, L.; Eriksen, M.; Mutschler, M.; Hvidbak, F.

    2009-01-01

    Marine spills of heavy oil that sink to the sea floor can have significant impacts on marine ecosystems. This paper described a program implemented by the United States Coast Guard to improve operational techniques for the detection, monitoring, and recovery of sunken oil. The program has developed an algorithm based on data from a multibeam echo sounder. The algorithm used calibrated backscatter strengths (BS) to produce a mosaic of the seabed. Values below a pre-specified threshold were sorted into groups using morphological filtering techniques. The angular response curves from each group were then analyzed and compared to a reference BS curve for heavy oil. Response curves below the upper bound curve were defined as oil. The algorithm had a 90 per cent accuracy rate at a recent demonstration using oil 6, Tesoro, Sundex, and asphalt samples. It was concluded that processing times per square mile are approximately 12 hours. Further studies will be conducted to reduce computation times by replacing raw beam-formed data with data that originated solely from the region near the seabed. 15 refs., 15 tabs., 18 figs

  7. Letting Off Steam and Getting Into Hot Water - Harnessing the Geothermal Energy Potential of Heavy Oil Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Teodoriu, Catalin; Falcone, Gioia; Espinel, Arnaldo

    2007-07-01

    The oil industry is turning its attention to the more complex development of heavy oil fields in order to meet the ever increasing demands of the manufacturing sector. The current thermal recovery techniques of heavy oil developments provide an opportunity to benefit from the geothermal energy created during the heavy oil production process. There is scope to improve the current recovery factors of heavy oil reservoirs, and there is a need to investigate the associated geothermal energy potential that has been historically neglected. This paper presents a new concept of harnessing the geothermal energy potential of heavy oil reservoirs with the co-production of incremental reserves. (auth)

  8. Extraction of heavy oil by supercritical carbon dioxide

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Spirov, Pavel; Søgaard, Erik Gydesen

    2010-01-01

    The present study deals with the extraction of heavy oil by supercritical carbon dioxide at the pressure values changing from 16 to 56 MPa at the fixed value of temperature: 60oC. The amount of the recovered liquid phase of oil was calculated as a percentage of the extracted amount to the initial...... 40 gm of oil. The noticeable breackover point in the graph of the oil recovery versus pressure was observed at 27 MPa, which was in concordance with the conclusions from chromatographic analysis of the extracted oil samples. But the recovery rate of 14 % at this pressure value was not high enough...

  9. Worldwide cheap and heavy oil productions: A long-term energy model

    International Nuclear Information System (INIS)

    Guseo, Renato

    2011-01-01

    Crude oil, natural gas liquids, heavy oils, deepwater oils, and polar oils are non-renewable energy resources with increasing extraction costs. Two major definitions emerge: regular or 'cheap' oil and non-conventional or 'heavy' oil. Peaking time in conventional oil production has been a recent focus of debate. For two decades, non-conventional oils have been mixed with regular crude oil. Peaking time estimation and the rate at which production may be expected to decline, following the peak, are more difficult to determine. We propose a two-wave model for world oil production pattern and forecasting, based on the diffusion of innovation theories: a sequential multi-Bass model. Historical well-known shocks are confirmed, and new peaking times for crude oil and mixed oil are determined with corresponding depletion rates. In the final section, possible ties between the dynamics of oil extraction and refining capacities are discussed as a predictive symptom of an imminent mixed oil peak in 2016. - Highlights: → Production of conventional and non-conventional oils in aggregate time series. → Decomposition modelling and forecasting with a multi-regime model. → Diffusion of innovation theories and appropriateness of applying Bass concepts to the extraction of oil resources. → Partially overlapping oil extraction processes. → Refining capacities and dynamics of oil extraction.

  10. Real time, real fast : drilling horizontal wells in a heavy oil environment

    Energy Technology Data Exchange (ETDEWEB)

    Balke, S.C.; Rosauer, M.S. [Petrolera Ameriven/Phillips Petroleum, Caracas, (Venezuela)

    2002-07-01

    Eastern Venezuela's Orinoco Tar Belt or the Faja Petrolifera del Orinoco is one of the largest heavy oil fields in the world, containing more than 1.2 trillion barrels of heavy and extra heavy oil with API gravity of 10 to 6. The field is 320 miles long by 40 miles wide and is divided into the Machete, Zuata, Hamaca and Cerro Negro. It has been under production since the 1970s by Venezuela's national oil company, Petroleos de Venezuela SA. The region is only marginally cost effective because of the high costs associated with development. It is expected that the Hamaca Project, which is centrally located in the Orinoco Tar Belt can be effectively and economically developed by applying the latest technology and innovative techniques. Petrolera Ameriven has committed to develop the 250 square mile Hamaca area. The objective is to produce 165,000 acres at rate of 190,000 BOPD for the life of the project. The challenge is that when the oil is cooled and degasified it looks more like a tar or asphalt for paving roads. In addition, the major reservoirs within the field were deposited in low stand and transgressive system tracks consisting of meandering fluvial to fluvial-tidal deltaic deposits. Methods such as logging while drilling (LWD), satellite links and continuous updating and real-time visualization were applied to assess and mitigate risks. These methods made it possible to accurately place the shoe of the build sections for control of well directions. The methods also made it possible to identify sand/shale interfaces, determine the redirection of the drill bit, locate non-pay zones and help plan well paths to optimize production. The technologies developed were also effective in minimizing development costs, thereby improving the financial viability of the project. 1 ref., 16 figs.

  11. Hydrogenation upgrading of heavy oil residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S.; Mazneva, O.A.; Galkina, N.I. [Fossil Fuel Inst., Moscow (Russian Federation). Hydrogenation and Gasification Dept.; Suvorov, U.P.; Khadjiev, S.N. [Inst. Oil and Chemical Synthesis, Moscow (Russian Federation). Hydrogenation of Heavy Residues Dept.

    1997-12-31

    At present time in the world there is no simple and effective technology at low pressure (<15-20 MPa) which could give the opportunity to use oil residues for distillate fractions production. In Russia a process for hydrogenation (up 6 MPa hydrogen pressure) of high boiling point (b.p. >520 C) oil products, including high S, V and Ni contents ones, into distillates, feedstock for catalytic cracking (b.p. 360-520 C) and metal concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with heavy oil residues, dispersed and then subjected to additional supercavitation in a special apparatus. (orig.)

  12. Improving Oil Recovery (IOR) with Polymer Flooding in a Heavy-Oil River-Channel Sandstone Reservoir

    OpenAIRE

    Lu, Hongjiang

    2009-01-01

    Most of the old oil fields in China have reached high water cut stage, in order to meet the booming energy demanding, oil production rate must be kept in the near future with corresponding IOR (Improving Oil Recovery) methods. Z106 oilfield lies in Shengli Oilfields Area at the Yellow River delta. It was put into development in 1988. Since the oil belongs to heavy oil, the oil-water mobility ratio is so unfavourable that water cut increases very quickly. Especially for reservoir Ng21, the san...

  13. Assessment and bioremediation of heavy metals from crude oil ...

    African Journals Online (AJOL)

    The assessment of the levels of heavy metals present in crude oil contaminated soil and the application of the earthworm - Hyperiodrilus africanus with interest on the bioremediation of metals from the contaminated soil was investigated within a 90-days period under laboratory conditions. Selected heavy metals such as ...

  14. Light and Heavy Tactical Wheeled Vehicle Fuel Consumption Evaluations Using Fuel Efficient Gear Oils (FEGO)

    Science.gov (United States)

    2016-05-01

    UNCLASSIFIED LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL... HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FUEL EFFICIENT GEAR OILS (FEGO) FINAL REPORT TFLRF No. 477 by Adam C...August 2014 – March 2016 4. TITLE AND SUBTITLE LIGHT AND HEAVY TACTICAL WHEELED VEHICLE FUEL CONSUMPTION EVALUATIONS USING FEUL EFFICIENT GEAR OILS

  15. Heavy Metals in Seafood and Farm Produce from Uyo, Nigeria; Levels and health implications

    Directory of Open Access Journals (Sweden)

    Orish E. Orisakwe

    2015-05-01

    Full Text Available Objectives: This study aimed to obtain representative data on the levels of heavy metals in seafood and farm produce consumed by the general population in Uyo, Akwa Ibom State, Nigeria, a region known for the exploration and exploitation of crude oil. Methods: In May 2012, 25 food items, including common types of seafood, cereals, root crops and vegetables, were purchased in Uyo or collected from farmland in the region. Dried samples were ground, digested and centrifuged. Levels of heavy metals (lead, cadmium, nickel, cobalt and chromium were analysed using an atomic absorption spectrophotometer. Average daily intake and target hazard quotients (THQ were estimated. Results: Eight food items (millet, maize, periwinkle, crayfish, stock fish, sabina fish, bonga fish and pumpkin leaf had THQ values over 1.0 for cadmium, indicating a potential health risk in their consumption. All other heavy metals had THQ values below 1.0, indicating insignificant health risks. The total THQ for the heavy metals ranged from 0.389 to 2.986. There were 14 items with total THQ values greater than 1.0, indicating potential health risks in their consumption. Conclusion: The regular consumption of certain types of farm produce and seafood available in Uyo, Akwa Ibom State, Nigeria, is likely adding to the body burden of heavy metals among those living in this region.

  16. SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES

    Energy Technology Data Exchange (ETDEWEB)

    David O. Ogbe; Tao Zhu

    2004-01-01

    A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

  17. Transformation of heavy gas oils derived from oil sands to petrochemical feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Du Plessis, D.; Laureshen, C. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2006-07-01

    Alberta's petrochemical industry is primarily based on ethane. However, ethane could potentially impede future growth of Alberta's petrochemical industry because of increasing cost and diminishing supplies. Alternately, the rapidly growing oil sands production could provide abundant new feedstocks. Different integration schemes and technologies were evaluated in this study. Research on converting bitumen-derived heavy gas oil into petrochemical feedstock has resulted in the development of two novel technologies and process integration schemes, notably the NOVA heavy oil laboratory catalyst (NHC) process and the aromatic ring cleavage (ARORINCLE) process. This paper described progress to date on these two projects. The paper presented the experimental results for each scheme. For the ARORINCLE process, results were discussed in terms of the effect of process parameters on the hydrogenation step; effect of process parameters on the ring cleavage step; and integrating the upgrading and petrochemical complex. Early laboratory stage results of these two technologies were found to be encouraging. The authors recommended that work should progress to larger scale demonstration of the NHC and ARORINCLE technologies., 13 refs., 2 tabs., 5 figs.

  18. Canadian heavy crude oil and bitumen: Some new and old ideas

    International Nuclear Information System (INIS)

    Scott, G.R.

    1992-01-01

    Canadian conventional heavy oil and bitumen production has been steadily increasing over the last five years. This rise is forecast to continue under modest future crude oil pricing assumptions. During 1990 and 1991, the heavy oil market suffered from wide pricing differentials relative to light crude due to market reductions in Montreal and a feedstock shift at Uno-Ven's Chicago refinery, as well as an increase in the percentage of heavy in the world crude oil supply because of the Iraqi war. These have been offset by price-related bitumen production cuts and minor refinery capacity growth at other locations. The industry is poised for positive change with modest but stable prices and reduced light-heavy differentials caused, in part, by anticipated market expansion due to the June start-up of the Conco coker (50,000 bbl/d) in Montana and the anticipated late fall start up of the Bi-Provincial Upgrader in Saskatchewan (50,000 bbl/d blend). For the future, refinery upgrading and new grass roots refinery additions are suggested for western Canada. Associated transportation savings and condensate blending stock costs are two areas of advantage. Taken together with environmental problems in other densely populated market areas, it makes sense to build new heavy processing capacity near Edmonton but only after all current capacity is debottlenecked and inexpensive additions to current facilities are completed. New capacity will only be built when the heavy/light price differential on feed stock provides economic justification. 11 refs., 2 tabs

  19. Workshop Papers: Directions and Marketing of Synthetic Crude Oil and Heavy Oil

    International Nuclear Information System (INIS)

    1997-01-01

    This workshop was organized by the National Centre for Upgrading Technology in an effort to bring together experts from the various sectors of the petroleum industry to outline their views of the directions that the synthetic crude oil market will pursue over the next decade and into the 21. century. The motivation for the Workshop came from the many announcements during 1996 and 1997 by several Canadian oil companies about plans to initiate or expand their heavy oil and synthetic crude production. During the same period, at least one US refiner also announced plans to revamp an existing refinery to allow it to process Canadian heavy oil and synthetic crude. The workshop was organized to review these plans and to discuss such questions as (1) Would the selected technologies be the familiar carbon rejection or hydrogen addition methods, or would there be radical advanced technologies? (2) Would the products be fully or partially upgraded? (3) How would they be processed in the refinery? (4) Would there be a market? This collection of papers or viewgraphs comprise all the formal presentations given at the workshop. The final section also contains the edited notes recorded during the question and answer periods. refs., tabs., figs

  20. Comparative analysis of fiscal terms for Alberta oil sands and international heavy and conventional oils

    International Nuclear Information System (INIS)

    Van Meurs, P.

    2007-01-01

    There are considerable differences between international heavy oil and Alberta oil sands projects, notably the high viscosity of the bitumen in the oil sands reservoirs. The oil sands bitumen do not flow to wells without heating the bitumen, thereby adding to the already high cost of Alberta oil sand operations. This report provided an economic comparison of Alberta oil sands and international heavy oil projects. It also included a brief scoping review to compare with conventional oil regimes. Full exploration costs including the costs of dry holes were allocated to conventional oil operations in order to obtain a proper comparison. This investigation included the costs of dry holes. The report was a follow up to an earlier study released on April 12, 2007 on the preliminary fiscal evaluation of Alberta oil sand terms. The report provided an economic framework and described project selection. It then provided a discussion of production, costs and price data. Four adjusted projects were presented and compared with Alberta. The Venezuelan royalty formula was also discussed. Last, the report provided a detailed fiscal analysis. Comparisons were offered with Cold Lake and Athabasca Mine. A review of some other fiscal systems applicable to conventional oil were also outlined. It was concluded that Alberta oil sands developments are very competitive. It would be possible to modestly increase government revenues, without affecting the international competitive position of Alberta with respect to conventional oil. There is also some possibility to increase the base royalty on the Alberta oil sands without losing competitiveness. tabs., figs

  1. Experimental optimization of catalytic process in-situ for heavy oil and bitumen upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.; Fishwick, R.P.; Leeke, G.A.; Wood, J. [Birmingham Univ., Birmingham (United Kingdom); Rigby, S.P.; Greaves, M. [Bath Univ., Bath (United Kingdom)

    2010-07-01

    Peak crude oil production is expected to occur in the second decade of this century, followed by a phase of permanent decline in conventional crude oil production. However, very large resources of heavy oil and bitumen exist throughout the world, most notably in Canada and Venezuela. The high viscosity and density of these non-conventional crude oils require more energy intensive operations for production and upgrading, and also for transportation. As such, they are more costly to extract. This paper described some of the technological innovations that are being considered to extract heavier oil supplies with reduced environmental impact. The toe-to-heel air injection (THAI) process and its catalytic added-on (CAPRI) process combine in-situ combustion with catalytic upgrading using an annular catalyst packed around a horizontal producer well. Results of an experimental study concerning optimization of catalyst type and operating conditions showed that CAPRI can effect further upgrading of partially upgraded THAI oil, with upgrading levels of viscosity and API gravity dependent upon temperature and flow rate. 20 refs., 8 tabs., 10 figs.

  2. Acute aquatic toxicity of heavy fuel oils. Summary of relevant test data

    Energy Technology Data Exchange (ETDEWEB)

    Comber, M.I.H.; Den Haan, K.; Djemel, N.; Eadsforth, C.V.; King, D.; Parkerton, T.; Paumen, M.L.; Dmytrasz, B.

    2011-12-15

    This report describes the experimental procedures and results obtained in acute ecotoxicity tests on several heavy fuel oil (HFO) samples. Water accommodated fractions (WAFs) of these samples were tested for toxicity to the rainbow trout (Oncorhynchus mykiss), the crustacean zooplankter (Daphnia magna) and green algae (Selenastrum capricornutum). These results assist in determining the environmental hazard from heavy fuel oil.

  3. Acute aquatic toxicity of heavy fuel oils. Summary of relevant test data

    International Nuclear Information System (INIS)

    Comber, M.I.H.; Den Haan, K.; Djemel, N.; Eadsforth, C.V.; King, D.; Parkerton, T.; Paumen, M.L.; Dmytrasz, B.

    2011-12-01

    This report describes the experimental procedures and results obtained in acute ecotoxicity tests on several heavy fuel oil (HFO) samples. Water accommodated fractions (WAFs) of these samples were tested for toxicity to the rainbow trout (Oncorhynchus mykiss), the crustacean zooplankter (Daphnia magna) and green algae (Selenastrum capricornutum). These results assist in determining the environmental hazard from heavy fuel oil.

  4. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  5. Discovering the role of the apolipoprotein gene and the genes in the putative pullulan biosynthesis pathway on the synthesis of pullulan, heavy oil and melanin in Aureobasidium pullulans.

    Science.gov (United States)

    Guo, Jian; Huang, Siyao; Chen, Yefu; Guo, Xuewu; Xiao, Dongguang

    2017-12-18

    Pullulan produced by Aureobasidium pullulans presents various applications in food manufacturing and pharmaceutical industry. However, the pullulan biosynthesis mechanism remains unclear. This work proposed a pathway suggesting that heavy oil and melanin may correlate with pullulan production. The effects of overexpression or deletion of genes encoding apolipoprotein, UDPG-pyrophosphorylase, glucosyltransferase, and α-phosphoglucose mutase on the production of pullulan, heavy oil, and melanin were examined. Pullulan production increased by 16.93 and 8.52% with the overexpression of UDPG-pyrophosphorylase and apolipoprotein genes, respectively. Nevertheless, the overexpression or deletion of other genes exerted little effect on pullulan biosynthesis. Heavy oil production increased by 146.30, 64.81, and 33.33% with the overexpression of UDPG-pyrophosphorylase, α-phosphoglucose mutase, and apolipoprotein genes, respectively. Furthermore, the syntheses of pullulan, heavy oil, and melanin can compete with one another. This work may provide new guidance to improve the production of pullulan, heavy oil, and melanin through genetic approach.

  6. Heavy oil processing impacts refinery and effluent treatment operations

    Energy Technology Data Exchange (ETDEWEB)

    Thornthwaite, P. [Nalco Champion, Northwich, Cheshire (United Kingdom)

    2013-11-01

    Heavy oils are becoming more common in Europe. The processing of heavier (opportunity or challenge) crudes, although financially attractive, introduce additional challenges to the refiner. These challenges are similar whether they come from imported crudes or in the future possibly from shale oils (tight oils). Without a strategy for understanding and mitigating the processing issues associated with these crudes, the profit potential may be eroded by decreased equipment reliability and run length. This paper focuses on the impacts at the desalter and how to manage them effectively while reducing the risks to downstream processes. Desalters have to deal with an increased viscosity, density (lower API gravity), higher solids loading, potential conductivity issues, and asphaltene stability concerns. All these factors can lead to operational problems impacting downstream of the desalter, both on the process and the water side. The other area of focus is the effluent from the desalter which can significantly impact waste water operations. This can take the form of increased oil under-carry, solids and other contaminants originating from the crudes. Nalco Champion has experience in working with these challenging crudes, not only, Azeri, Urals and African crudes, but also the Canadian oil sands, US Shale oil, heavy South American crudes and crudes containing metal naphthenates. Best practices will be shared and an outlook on the effects of Shale oil will be given. (orig.)

  7. Development of heavy oil fields onshore and offshore: resemblances and challenges; Desenvolvimento de campos de oleos pesados em terra e em mar: semelhancas e desafios

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Celso Cesar Moreira; Moczydlower, Priscila [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    The so called offshore heavy oils (API gravity lower than 19) and extra heavy oils (API lower than 10) are receiving increasing importance due to the light oil production decline and also to exploration difficulties. In countries like Canada, Venezuela, China and the US (California) there are immense onshore heavy oil resources sometimes classified as non conventional. Differently in Brazil, onshore heavy oil volumes are modest being important those located in offshore fields (although non comparable to the Canadian and Venezuelan ones). The issue raised in this paper is: the field location, whether onshore or offshore, is always the main constraint in the development process? Well, the question has both a 'yes' and 'no' as an answer. There are important differences but some similarities in the technologies that can be applied. In this text the authors intend to explore this point while at the same time depicting some of the main related aspects under research for proper exploitation of heavy and extra heavy oil assets. The most relevant difference between onshore and offshore heavy oil fields is the application of thermal methods for improved recovery: while worldwide spread and commercially applied to onshore fields, steam injection is not yet viable for offshore operations. The only option for improving recovery in offshore fields is water injection, which has the drawback of producing large volumes of water during the field life. Another aspect is the cost of the production wells: much cheaper onshore they allow well spacing in the order of 100 m or even 50 m whereas in offshore well spacing are in the 1000 m range. From the flow assurance point of view, inland installations can take use of solvents for heavy oil dilution, such as diesel or naphtha. Offshore this option is complicated by the long distances from the wellheads to the producing facilities in the platform, in the case of wet completions. There are also differences regarding the

  8. Heavy oil reservoirs recoverable by thermal technology. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  9. Clean coal and heavy oil technologies for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.M. [GE Industrial & Power Systems, Schenectady, NY (United States)

    1994-12-31

    Global power generation markets have shown a steady penetration of GT/CC technology into oil and gas fired applications as the technology has matured. The lower cost, improved reliability and efficiency advantages of combined cycles can now be used to improve the cost of electricity and environmental acceptance of poor quality fuels such as coal, heavy oil, petroleum coke and waste products. Four different technologies have been proposed, including slagging combustors, Pressurized Fluidized Bed Combustion (PFBC), Externally Fired Combined Cycle (EFCC) and Integrated Gasification Combined Cycle (IGCC). Details of the technology for the three experimental technologies can be found in the appendix. IGCC is now a commercial technology. In the global marketplace, this shift is being demonstrated using various gasification technologies to produce a clean fuel for the combined cycle. Early plants in the 1980s demonstrated the technical/environmental features and suitability for power generation plants. Economics, however, were disappointing until the model F GT technologies were first used commercially in 1990. The economic break-through of matching F technology gas turbines with gasification was not apparent until 1993 when a number of projects were ordered for commercial operation in the mid-1990s. GE has started 10 new projects for operation before the year 2000. These applications utilize seven different gasification technologies to meet specific application needs. Early plants are utilizing low-cost fuels, such as heavy oil or petroleum coke, to provide economics in first-of-a-kind plants. Some special funding incentives have broadened the applications to include power-only coal plants. Next generation gas turbines projected for commercial applications after the year 2000 will contribute to another step change in technology. It is expected that the initial commercialization process will provide the basis for clear technology choices on future plants.

  10. Mapping reactor operating regimes for heavy gas oil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Munteanu, Mugurel Catalin; Chen, Jinwen [CanmetENERGY, Natural Resources Canada (Canada)

    2011-07-01

    Hydrotreating (HDT) is used in oil refineries at temperatures of 350-400 degree C and pressure of 50-100 bars in a fixed bed to improve the quality of distillate fraction. HDT operates as a gas-liquid-solid process, trickle bed. Efforts have been made to model it but volatilization of liquid oil is often ignored. The aim of this paper is to predict vapor-liquid equilibrium (VLE) for a typical heavy distillate feed in pilot plant hydrotreaters. The study was conducted under various operating conditions and a flash calculation program calibrated in-house was used to predict VLE. VLE values were found and results showed that higher pressure, lower gas/oil ratio and temperature should be used to maintain the desired operating regimes when hydrotreating heavy distillate feed. This study determined the operating conditions for maintaining the desired operating regimes and these findings could be useful for operators.

  11. Clerget 100 hp heavy-oil engine

    Science.gov (United States)

    Leglise, Pierre

    1931-01-01

    A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.

  12. Investigation and development of heavy oil upgrading catalysts. 3

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.K.; Lee, I.C.; Yoon, W.L.; Lee, H.T.; Chung, H.; Hwang, Y.J.; Park, S.H. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    This study aimed at the domestic development of HDS catalysts which are most fundamental and wide-used in the petroleum refinery. In this year, some experimental works were conducted for developing the effective utilization technology of the novel dispersed-catalysts in the hydro-desulfurization of heavy oils, and improving the reaction performance of alumina-supported Mo-based hydro-treating catalysts conventionally used in most of refineries. First, it was experimentally proved that the dispersed catalysts of Co-Mo could be employed for the hydro-desulfurization of a heavy atmospheric residual oil excluding the catalyst deactivation. The utilization of a carbon-expanded reactor in combination with this dispersed catalyst system exhibited an enhanced reaction performance and provided an efficient way for the separation and recovery of the dispersed catalytic component from oils. Second, the tungsten-incorporated WCoMo/{gamma}-Al{sub 2}O{sub 3} catalyst revealed the improved catalytic performance in the various hydro-treating reactions and in the initial deactivation rates for the high pressure hydro-treatment of a heavy oil as compared with the commercial CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst. This new experimental finding for the promoting role of the monomeric WO{sub 3} species in CoMo/{gamma}-Al{sub 2}O{sub 3} catalyst may be generally applicable to the Mo-based alumina-sulfide phase, higher catalytic activity, and more extended service life. (author). 101 refs., 33 figs., 18 tabs.

  13. Analysis of the first CHOPS pilot for heavy oil production in Kuwait

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, Tirtharenu; Al-Sammak, Ibrahim [Kuwait Oil Company (Kuwait)

    2011-07-01

    Cold heavy oil production with sand (CHOPS) is a technique for extracting difficult heavy crude oil by simply pumping it out of the sands, often using progressive cavity pumps. This technique was tested in a pilot heavy oil production project at one of the fields in Kuwait. The pilot performance of three wells is presented in this paper as is an analysis of the pilot results, which provide important clues for understanding the reservoir description issues as well as sand production characteristics. This process found an intimate relationship between rock mechanics and the fluid viscosity and flow potential of the formation. The wells seemed to develop an enlarged well bore around them, giving a high negative skin factor. Moreover, the lower viscosity of the oil and absence of any strong directional geomechanical trend could be possible reasons for the absence of wormhole development, which has often been observed in other CHOPS operations. The initial burst of sand production needs to be addressed by optimizing the perforation policy.

  14. Use of an oiled gravel column dosing system to characterize exposure and toxicity of fish to sunken heavy oil on spawning substrates

    International Nuclear Information System (INIS)

    Martin, J.; Hodson, P.

    2010-01-01

    In August 2005, a freight train derailment near the shore of Lake Wabamun near Edmonton, Alberta resulted in the release of nearly 150,000 litres of Bunker C oil on the lakeshore. The purpose of this study was to define the toxic load of oil in sediments to better describe the exposure and toxicity of fish to sunken heavy oil on spawning substrates. Heavy Bunker C fuel contains a complex mixture of polycyclic aromatic hydrocarbons (PAH), particularly the 3-4 ringed alkylated forms that cause sublethal toxic responses in early life stages of rainbow trout (Oncorhynchus mykiss). Oil patches still persist in near-shore sediments where fish spawn. This study evaluated how the behaviour of heavy oil in water interacts with exposure and toxicity to trout embryo. Flow-through oiled gravel columns were used to determine whether the toxic constituents of heavy oil are transferred to water quickly enough to cause toxicity. Embryonic trout exposed to the outflow of these columns showed signs of sublethal toxicity and dose-dependent mortality. In addition, column output of hydrocarbons and CYP1A induction in fish were flow-dependent. The desorption kinetics of the gravel column dosing was characterized in order to evaluate the toxicity of oil on these substrates and relate it back to toxicity of oil in sediments. The time to steady-state desorption of oil constituents in water was first determined, and then the rate at which different classes of oil constituents partition into water were identified.

  15. Injection of multi-azimuth permeable planes in weakly cemented formations for enhanced heavy-oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, G. [Society of Petroleum Engineers, Richardson, TX (United States)]|[GeoSierra LLC, Norcross, GA (United States); Cavender, T.; Schultz, R.L. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Halliburton Energy Services, Calgary, AB (Canada)

    2008-10-15

    Weakly cemented formations have minimal strength without fracture toughness. As such, the well stimulation process must be different from the fracturing process that occurs in hard rocks. This paper presented field injection experiments of multi-azimuth, injected, vertical planar geometries in several weakly cemented formations. The application of the method to shallow petroleum soft rock reservoirs was described, with particular reference to the thermal and solvent recovery of heavy oil. This study showed that in weakly cemented formations, a well-initiation device can control the azimuth of injected vertical planes, thereby controlling the rate of injection and the viscosity of the injected fluid. The concept of using the multi-azimuth, vertical permeable planes has strong potential in soft-rock formations for enhanced production in both shallow gas and shallow heavy-oil reservoirs. The method can be applied in a single well injector-producer for the continuous injection of steam and the continuous extraction of oil, similar to steam assisted gravity drainage (SAGD) and may be more efficient than a confined horizontal well pair typically used in SAGD. However, the authors noted that the effectiveness of the multi-azimuth process has yet to be proven for oil sand formations. 13 refs., 1 tab., 13 figs.

  16. The potential applications in heavy oil EOR with the nanoparticle and surfactant stabilized solvent-based emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    The main challenges in developing the heavy oil reservoirs in the Alaska North Slope (ANS) include technical challenges regarding thermal recovery; sand control and disposal; high asphaltene content; and low in-situ permeability. A chemical enhanced oil recovery method may be possible for these reservoirs. Solvent based emulsion flooding provides mobility control; oil viscosity reduction; and in-situ emulsification of heavy oil. This study evaluated the potential application of nano-particle-stabilized solvent based emulsion injection to enhance heavy oil recovery in the ANS. The optimized micro-emulsion composition was determined using laboratory tests such as phase behaviour scanning, rheology studies and interfacial tension measurements. The optimized nano-emulsions were used in core flooding experiments to verify the recovery efficiency. The study revealed that the potential use of this kind of emulsion flooding is a promising enhanced oil recovery process for some heavy oil reservoirs in Alaska, Canada and Venezuela. 4 refs., 2 tabs., 10 figs.

  17. Decomposition analysis of CO2 emission intensity between oil-producing and non-oil-producing sub-Saharan African countries

    International Nuclear Information System (INIS)

    Ebohon, Obas John; Ikeme, Anthony Jekwu

    2006-01-01

    The need to decompose CO 2 emission intensity is predicated upon the need for effective climate change mitigation and adaptation policies. Such analysis enables key variables that instigate CO 2 emission intensity to be identified while at the same time providing opportunities to verify the mitigation and adaptation capacities of countries. However, most CO 2 decomposition analysis has been conducted for the developed economies and little attention has been paid to sub-Saharan Africa. The need for such an analysis for SSA is overwhelming for several reasons. Firstly, the region is amongst the most vulnerable to climate change. Secondly, there are disparities in the amount and composition of energy consumption and the levels of economic growth and development in the region. Thus, a decomposition analysis of CO 2 emission intensity for SSA affords the opportunity to identify key influencing variables and to see how they compare among countries in the region. Also, attempts have been made to distinguish between oil and non-oil-producing SSA countries. To this effect a comparative static analysis of CO 2 emission intensity for oil-producing and non oil-producing SSA countries for the periods 1971-1998 has been undertaken, using the refined Laspeyres decomposition model. Our analysis confirms the findings for other regions that CO 2 emission intensity is attributable to energy consumption intensity, CO 2 emission coefficient of energy types and economic structure. Particularly, CO 2 emission coefficient of energy use was found to exercise the most influence on CO 2 emission intensity for both oil and non-oil-producing sub-Saharan African countries in the first sub-interval period of our investigation from 1971-1981. In the second subinterval of 1981-1991, energy intensity and structural effect were the two major influencing factors on emission intensity for the two groups of countries. However, energy intensity effect had the most pronounced impact on CO 2 emission

  18. Enhanced heavy oil recovery on depleted long core system by CH{sub 4} and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shi, R.; Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    As demand for energy continues to increase and production of conventional oil declines, additional development of heavy oil and bitumen recovery processes and technologies is required in order to meet future energy demands. However, if productions are to be achieved economically, heavy oil viscosity must be reduced. Two methods are normally used to reduce heavy oil viscosity, notably thermal processes such as steam assisted gravity drainage and solvent processes. This paper described a laboratory study of potential post-cold production strategies for heavy oil reservoirs. Methane and carbon dioxide were injected in two depleted long cores. The purpose of the study was to improve understanding of the heavy oil solution gas drive mechanism and to assess methane and carbon dioxide recharging as a potential recovery method for heavy oil reservoirs. It also sought to establish a baseline for comparison against one another. The paper described the methodology and provided a summary of previous production history. It was concluded that the saturation and production time difference between the glass beads core and the sandpack core indicate the permeability difference between the two cores. 12 refs., 2 tabs., 14 figs.

  19. Hydroprocessing full-range of heavy oils and bitumen using ultradispersed catalysts at low severity

    Science.gov (United States)

    Peluso, Enzo

    The progressive exhaustion of light crude oils is forcing the petroleum industry to explore new alternatives for the exploitation of unconventional oils. New approaches are searching for technologies able to produce, transport and refine these feedstocks at lower costs, in which symbiotic processes between the enhanced oil recovery (EOR) and the conventional upgrading technologies are under investigation. The process explored in this thesis is an interesting alternative for in-situ upgrading of these crude oils in the presence of ultradispersed (UD) catalysts, which are included as a disperse phase able to circulate along with the processed feed. The objectives of this work are: (a) study the performance of UD catalysts in the presence of a full range (non fractioned) heavy oil and bitumen and (b) evaluate the recyclability of the UD catalysts. Four different heavy crude oils were evaluated in the presence with UD catalysts at a total pressure of 2.8 MPa, residence time of 8 hours and reaction temperatures from 360 up to 400ºC. Thermal and catalytic hydro-processing were compared in terms of conversion and product stability. A comparison between the different crude oils was additionally derived in terms of SARA, initial micro-carbon content and virgin oil stability among other properties. Advantages of catalytic hydro-processing over thermal hydro-processing were evidenced, with UD catalysts playing an essential hydrogenating role while retarding coke formation; microcarbon and asphaltenes reduction in the presence of UD catalysts was observed. To evaluate the feasibility of recycling the UD catalysts, a micro-slurry recycled unit was developed as part of this research. These main results showed: (a) a successful design of this unit, (b) that temperature, LHSV and fractional recycling ratio have more impact on VGO conversion, while pressure has almost no effect, and (c) an UD catalysts agglomeration process was detected, however this process is slow and reversible.

  20. Producers and oil markets

    International Nuclear Information System (INIS)

    Greaves, W.

    1993-01-01

    This article attempts an assessment of the potential use of futures by the Middle East oil producers. It focuses on Saudi Arabia since the sheer size of Saudi Arabian sales poses problems, but the basic issues discussed are similar for the other Middle East producers. (Author)

  1. Visualized study of thermochemistry assisted steam flooding to improve oil recovery in heavy oil reservoir with glass micromodels

    NARCIS (Netherlands)

    Lyu, X.; Liu, Huiqing; Pang, Zhanxi; Sun, Zhixue

    2018-01-01

    Steam channeling, one serious problem in the process of steam flooding in heavy oil reservoir, decreases the sweep efficiency of steam to cause a lower oil recovery. Viscosity reducer and nitrogen foam, two effective methods to improve oil recovery with different mechanism, present a satisfactory

  2. Simultaneous removal of oil and grease, and heavy metals from artificial bilge water using electro-coagulation/flotation.

    Science.gov (United States)

    Rincón, Guillermo J; La Motta, Enrique J

    2014-11-01

    US and international regulations pertaining to the control of bilge water discharges from ships have concentrated their attention to the levels of oil and grease rather than to the heavy metal concentrations. The consensus is that any discharge of bilge water (and oily water emulsion within 12 nautical miles from the nearest land cannot exceed 15 parts per million (ppm). Since there is no specific regulation for metal pollutants under the bilge water section, reference standards regulating heavy metal concentrations are taken from the ambient water quality criteria to protect aquatic life. The research herein presented discusses electro-coagulation (EC) as a method to treat bilge water, with a focus on oily emulsions and heavy metals (copper, nickel and zinc) removal efficiency. Experiments were run using a continuous flow reactor, manufactured by Ecolotron, Inc., and a synthetic emulsion as artificial bilge water. The synthetic emulsion contained 5000 mg/L of oil and grease, 5 mg/L of copper, 1.5 mg/L of nickel, and 2.5 mg/l of zinc. The experimental results demonstrate that EC is very efficient in removing oil and grease. For oil and grease removal, the best treatment and cost efficiency was obtained when using a combination of carbon steel and aluminum electrodes, at a detention time less than one minute, a flow rate of 1 L/min and 0.6 A/cm(2) of current density. The final effluent oil and grease concentration, before filtration, was always less than 10 mg/L. For heavy metal removal, the combination of aluminum and carbon steel electrodes, flow rate of 1 L/min, effluent recycling, and 7.5 amps produced 99% zinc removal efficiency. Copper and nickel are harder to remove, and a removal efficiency of 70% was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Process

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.; Akkutlu, Yucel; Amilik, Pouya; Kechagia, Persefoni; Lu, Chuan; Shariati, Maryam; Tsimpanogiannis, Ioannis; Zhan, Lang

    2000-01-19

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil, with the objective to improve recovery efficiencies. For this purpose, the interaction of flow, transport and reaction at various scales (from the pore-network to the field scales) were studied. Particular mechanisms investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam process, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the recovery efficiency of various heavy oil processes.

  4. Removing heavy fuel oil from the submerged wreck of the Jacob Luckenbach

    Energy Technology Data Exchange (ETDEWEB)

    Moffatt, C [PCCI Inc./GPC, Williamsburg, VA (United States); Beaver, T [Global Diving and Salvage Inc., Seattle, WA (United States); Snyder, B [PCCI Inc., Alexandria, VA (United States)

    2003-07-01

    The Jacob Luckenbach cargo carrier sank in July 1953 just west of the Golden Gate Bridge in San Francisco, California after being struck by another vessel. It was carrying a cargo of military vehicles and railroad parts and was topped with heavy No.6 residual oil in deep and double bottom tanks. In 2002, the sunken ship was named as the source of mystery oil spills along the California coast. In response, the United States Coast Guard contracted Titan Maritime LLC and PCCI Inc. to conduct a vessel assessment and removal available oil. Diving services were provided by Seattle-based Global Diving and Salvage. The recovery operation proved difficult due to cold-water saturation diving at depths to 55 metres, strong currents, bad weather and poor subsea visibility. Pumping the heavy residual oil from the tanks also proved to be difficult because some tanks contained oil that was much more viscous than normal No.6 fuel oil, and the tanks had to be heated to more than 78 degrees C to allow for better fluid flow. Some of the abnormal differences in fuel oil rheologies were described along with the tools used to find and recover the oil and to minimize leaks in the wreck. The project, although more difficult than expected, was successful in removing all accessible oil and mitigating the potential for a catastrophic oil release. More than 460 metric tons of heavy fuel oil and emulsified water-in-oil product was removed from the wreck. One of the most important lessons learned was that cohesiveness and a united front are very much needed when a diverse group of salvage personnel are brought together. 1 tab., 5 figs.

  5. Applying CFD in the Analysis of Heavy-Oil Transportation in Curved Pipes Using Core-Flow Technique

    Directory of Open Access Journals (Sweden)

    S Conceição

    2017-06-01

    Full Text Available Multiphase flow of oil, gas and water occurs in the petroleum industry from the reservoir to the processing units. The occurrence of heavy oils in the world is increasing significantly and points to the need for greater investment in the reservoirs exploitation and, consequently, to the development of new technologies for the production and transport of this oil. Therefore, it is interesting improve techniques to ensure an increase in energy efficiency in the transport of this oil. The core-flow technique is one of the most advantageous methods of lifting and transporting of oil. The core-flow technique does not alter the oil viscosity, but change the flow pattern and thus, reducing friction during heavy oil transportation. This flow pattern is characterized by a fine water pellicle that is formed close to the inner wall of the pipe, aging as lubricant of the oil flowing in the core of the pipe. In this sense, the objective of this paper is to study the isothermal flow of heavy oil in curved pipelines, employing the core-flow technique. A three-dimensional, transient and isothermal mathematical model that considers the mixture and k-e  turbulence models to address the gas-water-heavy oil three-phase flow in the pipe was applied for analysis. Simulations with different flow patterns of the involved phases (oil-gas-water have been done, in order to optimize the transport of heavy oils. Results of pressure and volumetric fraction distribution of the involved phases are presented and analyzed. It was verified that the oil core lubricated by a fine water layer flowing in the pipe considerably decreases pressure drop.

  6. Uncovering the exposure mechanisms of sunken heavy oil that makes it chronically toxic to early life stages of fish

    International Nuclear Information System (INIS)

    Martin, J.; Young, G.; Lemire, B.; Hodson, P.

    2010-01-01

    A train derailment in 2005 caused the release of 150,000 litres of No. 6 heavy fuel oil into a lake in Alberta. The oil is a residue of the crude oil refinement process and contains 3-4 ringed alkylated forms of polycyclic aromatic hydrocarbons (PAH) that are known to cause sub-lethal toxic responses during the early life stages of rainbow trout. Because the oil does not disperse well, oil patches still persist in near-shore sediments of the lake where fish spawn. This study assessed how the behaviour of heavy oil in water interacts with exposure and toxicity to the early life stages of fish. Daily renewal tests with heavy fuel oil coated on glass plate demonstrated higher levels of toxicity to trout embryos than oil that was mechanically or chemically dispersed. A flow-through oil gravel column was used to assess whether the toxic constituents of the heavy oil are transferred quickly enough to cause toxicity. The aim of the study was to develop exposure and toxicity test methods that accurately reflect the behaviour of heavy oil after a spill.

  7. Stabilization of heavy oil-water emulsions using a bio/chemical emulsifier mixture

    Energy Technology Data Exchange (ETDEWEB)

    Farahbakhsh, A.; Taghizadeh, M.; Movagharnejad, K. [Chemical Engineering Department, Babol University of Technology, Babol (Iran, Islamic Republic of); Yakhchali, B. [National Institute of Genetic Engineering and Biotechnology, Tehran (Iran, Islamic Republic of)

    2011-11-15

    In this study, the viscosity reduction of heavy oil has been investigated through the formation of oil-water emulsion using a bio/chemical emulsifier mixture. Four bioemulsifiers from indigenous Rhodococcus ergthropolis and Bacillus licheniformis strains were used to stabilize a highly-viscous oil-in-water emulsion. The Taguchi method with an L{sub 9} orthogonal array design was used to investigate the effect of various control factors on the formation of the oil/water emulsions. An emulsion with lowest viscosity was formed using ACO4 strain. The substantial stability of the oil-in-water emulsion allows the heavy oil to be transported practically over long distances or remain stationary for a considerable period of time prior to utilization. As the result of Taguchi analysis, the temperature and concentration of the emulsifier had a significant influence on viscosity reduction of the emulsion. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The feasibility of the gas micro-turbines application in the heavy oil produced from onshore mature fields; A viabilidade do uso de micro-turbinas a gas em campos maduros onshore de oleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Arlindo Antonio de; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia

    2004-07-01

    This article presents a synthesis of the fast advances in micro co-generation technology and their possible applications in fields of petroleum. The subject is focus of a research of the authors and the preliminary results indicate a potential of contributing for the optimization of mature fields of heavy oil. In general, this technology involves smaller environmental impact and produces better efficiency in those uses that require heat and electricity. An application interesting it is the use of gas micro-turbines, operating in co-generation in a (heavy) oil fields onshore, where it is possible increment of the production to the if it uses the steam injection as method of secondary recovery. The idea of using the heat to improve the productivity of the wells and to increase the recovery factor is almost as old as the industry of the petroleum. The technique consists of heating up the oil to reduce his/her viscosity and to facilitate the drainage. Nowadays, the use of the steam injection is usual in fields of heavy oils (degree API <20), high viscosity (> 500 cp), reservoirs no deep (<1300 m) and net pay in the interval from 5 to 50 m. The innovation, here, is the use of a group of micro-turbines moved to gas (no rare, burned in the flare) to generate the steam 'in loco' (near to the well) and electricity for own consumption or even commercialization. This article presents a case study of the economical potential the use of four gas micro-turbines, operating in micro cogeneration, in a field of 6,6 km{sup 2} in the Brazilian Northeast. (author)

  9. Heavy oils processing materials requirements crude processing

    Energy Technology Data Exchange (ETDEWEB)

    Sloley, Andrew W. [CH2M Hill, Englewood, CO (United States)

    2012-07-01

    Over time, recommended best practices for crude unit materials selection have evolved to accommodate new operating requirements, feed qualities, and product qualities. The shift to heavier oil processing is one of the major changes in crude feed quality occurring over the last 20 years. The three major types of crude unit corrosion include sulfidation attack, naphthenic acid attack, and corrosion resulting from hydrolyzable chlorides. Heavy oils processing makes all three areas worse. Heavy oils have higher sulfur content; higher naphthenic acid content; and are more difficult to desalt, leading to higher chloride corrosion rates. Materials selection involves two major criteria, meeting required safety standards, and optimizing economics of the overall plant. Proper materials selection is only one component of a plant integrity approach. Materials selection cannot eliminate all corrosion. Proper materials selection requires appropriate support from other elements of an integrity protection program. The elements of integrity preservation include: materials selection (type and corrosion allowance); management limits on operating conditions allowed; feed quality control; chemical additives for corrosion reduction; and preventive maintenance and inspection (PMI). The following discussion must be taken in the context of the application of required supporting work in all the other areas. Within that context, specific materials recommendations are made to minimize corrosion due to the most common causes in the crude unit. (author)

  10. Heavy metal accumulation by carrageenan and agar producing algae

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, K.S. [Moscow State Univ. (Russian Federation). Faculty of Biology; Bird, K.T. [North Carolina Univ., Wilmington, NC (United States). Center for Marine Science Research

    1994-09-01

    The accumulation of six heavy metals Cu, Cd, Ni, Zn, Mn and Pb was measured in living and lzophilized algal thalli. The agar producing algae were Gracilaria tikvahiae and Gelidium pusillum. The carrageenan producing macroalgae were Agardhiella subulata and the gametophyte and tetrasporophyte phases of Chondrus crispus. These produce primarily iota, kappa and lambda carrageenans, respectively. At heavy metal concentrations of 0.5 mg L{sup -1}, living thalli of Gracilaria tikvahiae generally showed the greatest amount of accumulation of the 6 heavy metals tested. The accumulation of Pb was greater in the living thalli of all four species than in the lyophilized thalli. Except for Agardhiella subulata, lyophilized thalli showed greater accumulation of Ni, Cu and Zn. There was no difference in heavy metal accumulation between living and lyophilized thalli in the accumulation of Cd. Manganese showed no accumulation at the tested concentration. There did not appear to be a relationship between algal hydrocolloid characteristics and the amounts of heavy metals accumulated. (orig.)

  11. Feasibility and comparative studies of thermochemical liquefaction of Camellia oleifera cake in different supercritical organic solvents for producing bio-oil

    International Nuclear Information System (INIS)

    Chen, Hongmei; Zhai, Yunbo; Xu, Bibo; Xiang, Bobin; Zhu, Lu; Li, Ping; Liu, Xiaoting; Li, Caiting; Zeng, Guangming

    2015-01-01

    Highlights: • Thermochemical liquefaction of COC was a prominent process for producing bio-oil. • Type of solvent affected the yield and composition of bio-oil considerably. • Liquefaction of COC in SCEL at 300 °C was preferred for producing bio-oil. - Abstract: Thermochemical liquefaction of Camellia oleifera cake (COC) for producing bio-oil was conducted in supercritical methanol (SCML), ethanol (SCEL) and acetone (SCAL), respectively. GC–MS, elemental analysis and ICP-OES were used to characterize properties of bio-oil. Results showed that thermochemical liquefaction of COC was a prominent process for generating bio-oil. Increase of temperature was beneficial to the increase of bio-oil yield, and yield of bio-oil followed the sequence of SCAL > SCEL > SCML. In spite of the highest bio-oil yield, the lowest calorific value and highest contents of Zn, Pb, Cd, Ni, Fe, Mn, and Cr were found in bio-oil from SCAL. Though SCML has very similar bio-oil composition and calorific value with SCEL, higher bio-oil yield and lower contents of heavy metals could be obtained with SCEL, especially in bio-oil from SCEL at 300 °C. Moreover, the origin of ethanol could make the bio-oil product totally renewable. Therefore, liquefaction of COC in SCEL at 300 °C could have great potential in generating bio-oil

  12. Modelling the oil producers: Capturing oil industry knowledge in a behavioural simulation model

    International Nuclear Information System (INIS)

    Morecroft, J.D.W.; Van der Heijden, K.A.J.M.

    1992-01-01

    A group of senior managers and planners from a major oil company met to discuss the changing structure of the oil industry with the purpose of improving group understanding of oil market behaviour for use in global scenarios. This broad ranging discussion led to a system dynamics simulation model of the oil producers. The model produced new insights into the power and stability of OPEC (the major oil producers' organization), the dynamic of oil prices, and the investment opportunities of non-OPEC producers. The paper traces the model development process, starting from group discussions and leading to working simulation models. Particular attention is paid to the methods used to capture team knowledge and to ensure that the computer models reflected opinions and ideas from the meetings. The paper describes how flip-chart diagrams were used to collect ideas about the logic of the principal producers' production decisions. A sub-group of the project team developed and tested an algebraic model. The paper shows partial model simulations used to build confidence and a sense of ownership in the algebraic formulations. Further simulations show how the full model can stimulate thinking about producers' behaviour and oil prices. The paper concludes with comments on the model building process. 11 figs., 37 refs

  13. 1170-MW(t) HTGR-PS/C plant application study report: heavy oil recovery application

    International Nuclear Information System (INIS)

    Rao, R.; McMain, A.T. Jr.

    1981-05-01

    This report describes the application of a high-temperature gas-cooled reactor (HTGR) which operates in a process steam/cogeneration (PS/C) mode in supplying steam for enhanced recovery of heavy oil and in exporting electricity. The technical and economic merits of an 1170-MW(t) HTGR-PS/C are compared with those of coal-fired plants and (product) oil-fired boilers for this application. The utility requirements for enhanced oil recovery were calculated by establishing a typical pattern of injection wells and production wells for an oil field similar to that of Kern County, California. The safety and licensing issues of the nuclear plant were reviewed, and a comparative assessment of the alternative energy sources was performed. Technically and economically, the HTGR-PS/C plant has attractive merits. The major offsetting factors would be a large-scale development of a heavy oil field by a potential user for the deployment of a 1170-MW(t) HTGR-PS/C; plant and the likelihood of available prime heavy oil fields for the mid-1990 operation

  14. Soil Remediation Demonstration Project: Biodegradation of Heavy Fuel Oils

    National Research Council Canada - National Science Library

    Reynolds, Charles

    1997-01-01

    .... Low-cost treatments applicable to small-scale spills are needed. The object of this CPAR project was to examine using cost-effective, on-site bioremediation techniques for heavy-oil-contaminated soil in cold regions...

  15. Evaluation of heavy-oil and tar sands in Bourbon, Crawford, and Cherokee Counties, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ebanks, W.J. Jr.; James, G.W.; Livingston, N.D.

    1977-12-01

    The current national energy-resource situation has provided the incentive to investigate more fully deposits of heavy-oil bearing sandstone in southeastern Kansas, as part of a larger, three-state study. The results of this study indicate that the size of the heavy-oil resource in the three Kansas counties studied is smaller than earlier estimates suggested. A resource of 200 to 225 million barrels of oil in-place is estimated to be present in areas of ''known oil occurrence,'' as established by this study. The amount of this in-place resource which may be considered to be reserves, that is, recoverable under existing technology and economics, is zero. The estimates of resource-size are severely downgraded from earlier estimates mainly because of the discontinuous nature of the potential reservoir sandstone bodies and because of the thinness and shaliness of some of these sandstones. The earlier impression of these heavy-oil reservoirs, at least in Kansas, as being widespread, heavily oil saturated, ''blanket'' sandstones unfortunately is not correct. There are areas, shown on maps, which may warrant further investigation because of locally good oil-saturation, i.e., more than 400 barrels per acre foot, in trends of sandstone thicker than 20 feet. It is concluded that there will be no widespread exploitation of subsurface heavy-oil sandstones within the areas of Bourbon, Crawford, and Cherokee Counties, Kansas. Smaller areas indicated here may warrant further drilling and investigation, but the potential size of the heavy-oil resource is severely downgraded from earlier estimates.

  16. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes; SEMIANNUAL

    International Nuclear Information System (INIS)

    Yorstos, Yanis C.

    2002-01-01

    The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes

  17. Tweens demulsification effects on heavy crude oil/water emulsion

    Directory of Open Access Journals (Sweden)

    Nastaran Hayati Roodbari

    2016-09-01

    Full Text Available The demulsification role of Tweens (nonionic polymers was determined in the separation of water from heavy crude oil emulsion. According to the previous researches, these nonionic polymers, having hydrophilic and lipophilic groups, are appropriate for making oil in water emulsion. In this research their effects in certain concentrations on demulsifying of water in crude oil emulsion were proved. High molecular weight, alkenes’ chains and groups of ketone and ester in these polymers can improve their performance for the demulsification of water in crude oil emulsion. Their efficiencies are improved with electronegative groups such as oxygen. They leave no corrosion effect because they are neutral and do not leave counter ions.

  18. Process for gasification of heavy hydrocarbons or salvaged oil. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Koch, C

    1978-09-14

    The invention refers to the separation of solids which are carried over during evaporation of salvaged oil (oil recovered from used oil or fat). They are removed by exposing the oil vapour to an acceleration of 500 g to 20,000g in a hot gas cyclone. Subsequently the cleaned gas is converted to fission gas in a fission gas generator using an air-water gas mixture and is taken to the combustion equipment. By this process salvaged oil and heavy hydrocarbons can be used for burning in Diesel engines without previous refining.

  19. Achievement report for fiscal 1997 on research under New Sunshine Program. Research on heavy oil hydrogenation and heavy oil/coal coprocessing; 1997 nendo jushitsuyu no suisoka shori narabi ni jushitsuyu/sekitan no coprocessing ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The achievements of the Hokkaido National Industrial Research Institute relating to the titled research are reported. In the study relating to the structural properties of heavy oils, the structures of products of Green River shale oil carbonization is analyzed, heterofunctional groups contained in the oil are subjected to FT-IR (Fourier transform infrared) spectroscopic analysis, and their forms of existence are investigated. In the study relating to the hydrogenation process of heavy oils, findings obtained from experiments are reported, which involve the processing of shale oil by hydrogenation and changes brought about in its chemical structure, hydrogenation of oil sand bitumen, kinetics of hydrocracking of bitumen at a high conversion rate, and a lumping model for bitumen hydrocracking reaction. In the study relating to the coprocessing of heavy oil/coal, coprocessing is experimented for coal and shale oil, coal and oil sand bitumen, and other combinations, and the results are reported. Also, a review is made of the transfer of hydrogen in coprocessing. (NEDO)

  20. The diversity of endophytic methylotrophic bacteria in an oil-contaminated and an oil-free mangrove ecosystem and their tolerance to heavy metals.

    Science.gov (United States)

    Dourado, Manuella Nobrega; Ferreira, Anderson; Araújo, Welington Luiz; Azevedo, João Lúcio; Lacava, Paulo Teixeira

    2012-01-01

    Methylobacterium strains were isolated from mangrove samples collected in Bertioga, SP, Brazil, from locations either contaminated or uncontaminated by oil spills. The tolerances of the strains to different heavy metals were assessed by exposing them to different concentrations of cadmium, lead, and arsenic (0.1 mM, 0.5 mM, 1 mM, 2 mM, 4 mM, and 8 mM). Additionally, the genetic diversity of Methylobacterium spp. was determined by sequence analysis of the 16S rRNA genes. The isolates from the contaminated locations were grouped, suggesting that oil can select for microorganisms that tolerate oil components and can change the methylotrophic bacterial community. Cadmium is the most toxic heavy metal assessed in this work, followed by arsenic and lead, and two isolates of Methylobacterium were found to be tolerant to all three metals. These isolates have the potential to bioremediate mangrove environments contaminated by oil spills by immobilizing the heavy metals present in the oil.

  1. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  2. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J; Mannila, P; Laukkanen, J [Oulu Univ. (Finland)

    1997-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  3. Increasing Heavy Oil in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies. Annual Report, March 30, 1995--March 31, 1996

    International Nuclear Information System (INIS)

    Allison, Edith

    1996-12-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs

  4. Dynamic pore network simulator for modelling buoyancy-driven migration during depressurisation of heavy-oil systems

    Energy Technology Data Exchange (ETDEWEB)

    Ezeuko, C.C.; McDougall, S.R. [Heriot-Watt Univ., Edinburgh (United Kingdom); Bondino, I. [Total E and P UK Ltd., London (United Kingdom); Hamon, G. [Total S.A., Paris (France)

    2008-10-15

    In an attempt to investigate the impact of gravitational forces on gas evolution during solution gas drive, a number of vertically-oriented heavy oil depletion experiments have been conducted. Some of the results of these studies suggest the occurrence of gas migration during these tests. However, a major limitation of these experiments is the difficulty in visualizing the process in reservoir rock samples. Experimental observations using transparent glass models have been useful in this context and provide a sound physical basis for modelling gravitational gas migration in gas-oil systems. This paper presented a new pore network simulator that was capable of modelling the time-dependent migration of growing gas structures. Multiple pore filling events were dynamically modelled with interface tracking allowing the full range of migratory behaviours to be reproduced, including braided migration and discontinuous dispersed flow. Simulation results were compared with experiments and were found to be in excellent agreement. The paper presented the model and discussed the implication of evolution regime on recovery from heavy oil systems undergoing depressurization. The simulation results demonstrated the complex interaction of a number of network and fluid parameters. It was concluded that the concomitant effect on the competition between capillarity and buoyancy produced different gas evolution patterns during pressure depletion. 28 refs., 2 tabs., 19 figs.

  5. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  6. Heavy-oil recovery in naturally fractured reservoirs with varying wettability by steam solvent co-injection

    Energy Technology Data Exchange (ETDEWEB)

    Al Bahlani, A. [Alberta Univ., Edmonton, AB (Canada); Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    Steam injection may not be an efficient oil recovery process in certain circumstances, such as in deep reservoirs, where steam injection may be ineffective because of hot-water flooding due to excessive heat loss. Steam injection may also be ineffective in oil-wet fractured carbonates, where steam channels through fracture zones without effectively sweeping the matrix oil. Steam flooding is one of the many solutions for heavy oil recovery in unconsolidated sandstones that is in commercial production. However, heavy-oil fractured carbonates are more challenging, where the recovery is generally limited only to matrix oil drainage gravity due to unfavorable wettability or thermal expansion if heat is introduced during the process. This paper proposed a new approach to improve steam/hot-water injection and efficiency for heavy-oil fractured carbonate reservoirs. The paper provided background information on oil recovery from fractured carbonates and provided a statement of the problem. Three phases were described, including steam/hot-waterflooding phase (spontaneous imbibition); miscible flooding phase (diffusion); and steam/hot-waterflooding phase (spontaneous imbibition or solvent retention). The paper also discussed core preparation and saturation procedures. It was concluded that efficient oil recovery is possible using alternate injection of steam/hot water and solvent. 43 refs., 1 tab., 13 figs.

  7. In-situ burning of heavy oils and Orimulsion : mid-scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Brown, C.E.; Gamble, L.

    2004-01-01

    In-situ burning is considered to be a viable means to clean oil spills on water. In-situ burning, when performed under the right conditions, can reduce the volume of spilled oil and eliminate the need to collect, store, transport and dispose of the recovered oil. This paper presented the results of bench-scale in-situ burning tests in which Bunker C, Orimulsion and weathered bitumen were burned outdoors during the winter in burn pans of approximately 1 square metre. Each test was conducted on salt water which caused the separation of the bitumen from the water in the Orimulsion. Small amounts of diesel fuel was used to ignite the heavy oils. Quantitative removal of the fuels was achieved in all cases, but re-ignition was required for the Orimulsion. Maximum efficiency was in the order of 70 per cent. The residue was mostly asphaltenes and resins which cooled to a solid, glass like material that could be readily removed. The study showed that the type of oil burned influences the behaviour of the burns. Bunker C burned quite well and Orimulsion burned efficiently, but re-ignition was necessary. It was concluded that there is potential for burning heavy oils of several types in-situ. 6 refs., 7 tabs., 18 figs

  8. Sleeving-back of horizontal wells to control downstream oil saturation and improve oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, M.; Saghr, A. M. [Bath Univ (United Kingdom)

    1998-12-31

    Air injection has become popular as an enhanced recovery technology, applicable over a wide variety of reservoir conditions including heavy, medium and light oils. One problem observed in light oil reservoirs is the tendency to desaturate the oil layer downstream of the moving front. This is particularly common in the case of thermal recovery processes. In this experiment designed to study ways to restrict the de-saturation of the oil layer, a modified horizontal producer well, incorporating a `sleeve-back` principal was used. The objective was to replicate the `toe-to-heel` displacement process occurring during heavy oil recovery, wherein downstream oil is essentially immobile due to its high viscosity. The `sleeve-back` of the well was achieved using a co-aligned, two-well assembly, so that the upstream section of the horizontal producer well was active, and continuously adjusted during propagation of the combustion front. The use of this continuous `sleeve-back` operation to control the level of de-saturation in the downstream section of a sand pack was successful as confirmed by the very high oil recovery achieved, equivalent to 93.5 per cent of oil in place. The level of CO{sub 2} production was also very high. The `sleeve-back` of the horizontal producer well made the light oil in-situ combustion more efficient compared to what would be expected in a fully-open well. The `sleeve-back` of the well also produced thermal contours in the sand pack that closely resembled those observed with heavy, highly viscous oil. By sealing-off the otherwise open well in the downstream part of the reservoir, the de-saturation of the oil layer was prevented. 9 refs., 4 tabs., 9 figs.

  9. The Diversity of Endophytic Methylotrophic Bacteria in an Oil-Contaminated and an Oil-Free Mangrove Ecosystem and Their Tolerance to Heavy Metals

    Science.gov (United States)

    Dourado, Manuella Nobrega; Ferreira, Anderson; Araújo, Welington Luiz; Azevedo, João Lúcio; Lacava, Paulo Teixeira

    2012-01-01

    Methylobacterium strains were isolated from mangrove samples collected in Bertioga, SP, Brazil, from locations either contaminated or uncontaminated by oil spills. The tolerances of the strains to different heavy metals were assessed by exposing them to different concentrations of cadmium, lead, and arsenic (0.1 mM, 0.5 mM, 1 mM, 2 mM, 4 mM, and 8 mM). Additionally, the genetic diversity of Methylobacterium spp. was determined by sequence analysis of the 16S rRNA genes. The isolates from the contaminated locations were grouped, suggesting that oil can select for microorganisms that tolerate oil components and can change the methylotrophic bacterial community. Cadmium is the most toxic heavy metal assessed in this work, followed by arsenic and lead, and two isolates of Methylobacterium were found to be tolerant to all three metals. These isolates have the potential to bioremediate mangrove environments contaminated by oil spills by immobilizing the heavy metals present in the oil. PMID:22482056

  10. Simultaneous cleanup of soil polluted with crude oil and heavy metals

    International Nuclear Information System (INIS)

    Groudeva, V.; Doycheva, A.; Groudev, S.

    2005-01-01

    Some soils in a site located in the Northwestern part of Bulgaria were heavily polluted with crude oil and some heavy metals (copper, zinc, cadmium, lead). The oil was light, with a specific gravity of about 0.8 g/cm 3 , rich in paraffins and with a very low content of asphaltene-resinous substances. The heavy metals were present mainly as the relevant sulphide minerals but products from the oxidation of sulphides were also present. The oil and the above-mentioned heavy metals were present mainly in the upper soil layers (mainly in the horizon A). Preliminary laboratory experiments in reactors and lysimeters revealed that it was possible to remove most of the contaminants in the soil by using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes in the levels of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. It was also found that the inoculation of the soil with active oil-degrading and metal-solubilizing microorganisms caused a considerable positive effect on the soil clean up. A pilot-scale operation for a simultaneous biological removal of the oil and heavy metals from the soil was carried out using the heap technique. Some data about this pilot-scale operation are presented in this paper. At the end of the treatment, the contents of pollutants in the soil were decreased below the permissible levels for soil of such type. At the same time, the chemical composition, structure and main physical and water properties of the soil were altered to a small extent, regardless of the fact that its pH was decreased to about 3.5. The addition of lime to the treated soil increased this pH to about 5.5 and in this way prevented the further acidification of the soil and the generation of acid drainage after rainfall. It must be noted that the removal of contaminants from the control heap was negligible, even after a period of about three years

  11. Nonthermal plasma reactors for the production of light hydrocarbon olefins from heavy oil

    Directory of Open Access Journals (Sweden)

    G. Prieto

    2003-03-01

    Full Text Available During the last decade, nonthermal plasma technology was applied in many different fields, focusing attention on the destruction of harmful compounds in the air. This paper deals with nonthermal plasma reactors for the conversion of heavy oil into light hydrocarbon olefins, to be employed as gasoline components or to be added in small amounts for the catalytic reduction of nitrogen oxide compounds in the treatment of exhaust gas at power plants. For the process, the plate-plate nonthermal plasma reactor driven by AC high voltage was selected. The reactor was modeled as a function of parameter characteristics, using the methodology provided by the statistical experimental design. The parameters studied were gap distance between electrodes, carrier gas flow and applied power. Results indicate that the reactions occurring in the process of heavy oil conversion have an important selective behavior. The products obtained were C1-C4 hydrocarbons with ethylene as the main compound. Operating the parameters of the reactor within the established operative window of the system and close to the optimum conditions, efficiencies as high as 70 (mul/joule were obtained. These values validate the process as an in-situ method to produce light olefins for the treatment of nitrogen oxides in the exhaust gas from diesel engines.

  12. Process development, design and operation of off-line purification system for oil-contaminated impure heavy water

    International Nuclear Information System (INIS)

    Bose, H.; Rakesh Kumar; Gandhi, H.C.; Unny, V.K.P.; Ghosh, S.K.; Mishra, Vivek; Shukla, D.K.; Duraisamy, S.; Agarwal, S.K.

    2004-01-01

    A large volume of degraded, tritiated heavy water contaminated with mineral oil and ionic impurities have accumulated at Dhruva in the past years of reactor operation as a result of routine operation and maintenance activities. The need was felt for a simple and efficient process that could be set up and operated locally at site using readily available materials, to purify the accumulated impure heavy waters at Dhruva so as to make them acceptable at the up gradation facilities. After a detailed laboratory study, a three stage clean-up process was developed which could purify a highly turbid oil-water emulsion to yield clear, oil-free and de-mineralized heavy water at reasonable rates of volume through-put. Based on the laboratory data, a suitably scaled up purification unit has been designed and commissioned which in the past few months has processed a sizeable volume of oil-contaminated heavy water waste from Dhruva, with most satisfactory results

  13. Do Oil-Producing Countries Have Normal Oil Overconsumption? An Investigation of Economic Growth and Energy Subsidies

    Directory of Open Access Journals (Sweden)

    Seyed Reza Mirnezami

    2015-07-01

    Full Text Available The data shows that oil-producing countries have low oil retail prices and low economic growth compared with other countries. Considering that oil-producing countries experience high oil consumption and low economic growth, it is possible to argue that economic growth is not an appropriate justification for oil consumption and that the main cause for high oil consumption is the low retail price. In addition, it should be noted that the global environmental movement against increasing greenhouse gas emissions—for example, the Kyoto 1998 agreement—seems to have had no effect on oil consumption in oil-producing countries.

  14. Changes in the biological activity of heavy metal- and oil-polluted soils in urban recreation territories

    Science.gov (United States)

    Trifonova, T. A.; Zabelina, O. N.

    2017-04-01

    Urban recreation areas of different sizes were investigated in the city of Vladimir. The degree of their contamination with heavy metals and oil products was revealed. The content of heavy metals exceeded their maximum permissible concentrations by more than 2.5 times. The total content of heavy metals decreased in the sequence: Zn > Pb > Co > Mn > Cr > Ni. The mass fraction of oil products in the studied soils varied within the range of 0.016-0.28 mg/g. The reaction of soils in public gardens and a boulevard was neutral or close to neutral; in some soil samples, it was weakly alkaline. The top layer of all the soils significantly differed from the lower one by the higher alkalinity promoting the deposition of heavy metals there. As the content of Ni, Co, and Mn increased and exceeded the background concentrations, but did not reach the three-fold value of the maximum permissible concentrations, the activity of catalase was intensified. The stimulating effect of nickel on the catalase activity was mostly pronounced at the neutral soil reaction. The urease activity increased when heavy metals and oil products were present together in the concentrations above the background ones, but not higher than the three-fold maximal permissible concentrations for heavy metals and 0.3 mg/g for the content of oil products. The nitrifying activity was inhibited by oil hydrocarbons that were recorded in the soils in different amounts.

  15. Simulation studies of steam-propane injection for the Hamaca heavy oil field

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, G.J.; Mamora, D.D. [Texas A and M Univ., Austin, TX (United States)

    2003-07-01

    Laboratory experiments have been conducted at Texas A and M University to examine the use of steam additives such as propane, methane and nitrogen to improve the production of heavy oils and increase steam recovery efficiency. In particular, the use of steam-propane injection for heavy Hamaca crude oil with API gravity of 9.3 and viscosity of 25,000 cp at 50 degrees C was examined. Experimental runs involved the injection of steam or propane into injection cells at a constant rate, temperature and cell outlet pressure. The experimental results suggest that the use of steam-propane injection may translate to reduction of fuel costs for field injections. Initially, propane-steam injection resulted in a two-month oil production acceleration compared to pure steam injection. A significant gain in discounted revenue and savings in steam injection costs could be realized. The study also showed the oil product rate peak with steam-propane injection was much higher than that with pure steam injection. The oil production acceleration increases with increasing propane content. Oil recovery at the end of a five-year forecast period increases by 6.7 per cent of original oil in place (OOIP) compared to 2.3 per cent OOIP with pure steam injection. 12 refs., 6 tabs., 28 figs.

  16. National extra heavy crude oil upgrade; Melhoramento de petroleos extra pesados nacionais no ambiente de producao

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Lilian Camen; Zilio, Evaldo L.; Guimarae, Regina C.; Tosta, Luiz C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Barros, Ricardo S. de [Fundacao Universitaria Jose Bonifacio (FUJB), Rio de Janeiro, RJ (Brazil); Leite, Luiz Fernando T. [PETROBRAS S.A., Vitoria, ES (Brazil). Unidade de Negocios-ES

    2008-07-01

    Brazilian petroleums are becoming increasingly heavy, reaching values of up to 7 deg API, which classifies them as extra heavy. They are also very viscous, sometimes presenting values as 10184 mm{sup 2}/s to 50 deg C. These two factors affect production operations like lifting, flow assurance and primary processing, with implications on transporting and refining. Trading these kinds of oils is also difficult; once there are not many refineries in the world able to process them. Due to these facts and also to the lower yield on premium products, the international market value is lower than the reference oil, for example, oil 'Brent'. Studies indicate that in some heavy oils fields the process of well lifting and also the flow in pipelines is almost impracticable in a first analysis, mainly offshore field, impacting both technically and economically the development of the production of a new field. Therefore it becomes necessary implement efforts to develop alternatives to increase oil's API density and at the same time reduce the viscosity of extra heavy oil inside the well, i.e. through a process of upgrading assuring its flow and consequently their production, primary processing and refining, increasing, the value of marketing. (author)

  17. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  18. Experimental study of heavy oil-water flow structure effects on relative permeabilities in a fracture filled with heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Shad, S.; Gates, I.D.; Maini, B.B. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    An experimental apparatus was used to investigate the flow of water in the presence of heavy oil within a smooth-walled fracture. Different flow patterns were investigated under a variety of flow conditions. Results of the experiments were used to determine the accuracy of VC, Corey, and Shad and Gates models designed to represent the behaviour of oil wet systems. The relative permeability concept was used to describe the behaviour of multiple phases flowing through porous media. A smooth-walled plexiglass Hele-Shaw cell was used to visualize oil and water flow. Changes in flow rates led to different flow regimes. The experiment demonstrated that water flowed co-currently in the form of droplets or slugs. Decreases in the oil flow rate enlarged the size of the water droplets as well as the velocity, until eventually the droplets coalesced and became water slugs. Droplet appearance or disappearance directly impacted the oil and water saturation levels. Changes in fluid saturation altered the pressure gradient. Darcy's law for the 2 liquid phases were used to calculate relative permeability curves. The study showed that at low water saturation, oil relative permeability reached as high as 2.5, while water relative permeability was lower than unity. In the presence of a continuous water channel, water drops formed in oil, and the velocity of the drops was lower than their velocity under a discontinuous water flow regime. It was concluded that the Shad and Gates model overestimated oil relative permeability and underestimated water relative permeability. 38 refs., 2 tabs., 9 figs.

  19. Molecular design of high performance zwitterionic liquids for enhanced heavy-oil recovery processes.

    Science.gov (United States)

    Martínez-Magadán, J M; Cartas-Rosado, A R; Oviedo-Roa, R; Cisneros-Dévora, R; Pons-Jiménez, M; Hernández-Altamirano, R; Zamudio-Rivera, L S

    2018-03-01

    Branched gemini zwitterionic liquids, which contain two zwitterionic moieties of linked quaternary-ammonium and carboxylate groups, are proposed as chemicals to be applied in the Enhanced Oil Recovery (EOR) from fractured carbonate reservoirs. The zwitterionic moieties are bridged between them through an alkyl chain containing 12 ether groups, and each zwitterionic moiety has attached a long alkyl tail including a CC double bond. A theoretical molecular mechanism over which EOR could rest, consisting on both the disaggregation of heavy oil and the reservoir-rock wettability alteration, was suggested. Results show that chemicals can both reduce the viscosity and remove heavy-oil molecules from the rock surface. Copyright © 2018. Published by Elsevier Inc.

  20. Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

    2001-09-07

    The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

  1. Comparative assessment of structural-mechanical properties of heavy oils of timano-pechorskaya province

    Directory of Open Access Journals (Sweden)

    Н. К. Кондрашева

    2017-06-01

    Full Text Available The physicochemical properties of heavy oils of Yaregskoe and Usinskoe deposits and the residues of atmospheric distillation of petroleum (fuel oil recovered from them are presented. The group composition of oil and the residues of its atmospheric distillation (fuel oil is determined. When using X-ray fluorescence energy dispersive spectrometer, the content of metals in the products is determined. A conclusion is drawn about the distribution of metals in the initial oil and fuel oil. On the basis of rheological characteristics, the type of liquids is determined in accordance with Newton's law, as well as the presence of an anomaly in the viscosity of the studied media at different temperatures. The energy values of the thixotropy of heavy oils of Usinskoe and Yaregskoe deposits, as well as the activation energy of the viscous flow of all media studied, are obtained. The phase transition of atmospheric residues at 60 °C is discovered. Dependences of the enthalpy and entropy of the viscous flow of the studied hydrocarbon media are obtained with an increase in temperature from 10 to 140 °C. The dependences of the oil molecules and atmospheric residues jumping frequency on viscosity are obtained for the first time.

  2. A business process for enhanced heavy oil recovery research and development

    International Nuclear Information System (INIS)

    Carlson, P.; Campbell, M.; Kantzas, A.

    1995-01-01

    Husky Oil's enhanced oil recovery (EOR) research management processes for reducing process development time and increasing investment efficiency were described. The considerations that went into the development of the plan a decade ago were reviewed and new ideas incorporated into the revised plan were presented. Four case studies were presented to illustrate the need for process to reservoir matching. A need for strategic research planning was emphasized. Proposed technologies for enhancement of heavy oil reservoir productivity were presented in tabular form. 1 tab., 7 figs

  3. Influence of heavy crude oil refining about the mains characteristics of jet fuel; Influencia do refino de petroleos pesados sobre as principais caracteristicas do combustivel de aviacao

    Energy Technology Data Exchange (ETDEWEB)

    Om, Neyda [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Cavado, Alberto; Reyes, Yordanka [Centro de Pesquisas do Petroleo, Cidade de Havana (Cuba); Salazar, Rodolfo [Centro de Eletromagnetismo Aplicado, Cidade de Havana (Cuba); Dominguez, Zulema [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2004-07-01

    The aviation technology in the world, is to use gas turbines engines feted for fuel type Jet A1. The main exigency of quality for this products is concentrated in extreme security and secure answer during the functioning. The conductivity and thermal stability to oxidation are the principals characteristics to assure these quality exigencies. The use of additives is the methods most used for establish the quality for international specification. The incorporation of heavy crude oils in mixtures to produce fuels has caused a diminution of the quality of the derivatives produced. High viscosity, density and high sulfur content in the heavy crude oils affect some of properties of the jet fuel, influencing in its composition, increasing the mercaptanes and total sulfur content, getting a jet fuel unstable, with low conductivity and highly corrosive. So, for obtain the quality required internationally is necessary use additives. This paper study how the heavy crude oils affect the conductivity and the thermal stability of the jets fuels type Jet A1. Also analyze of the use of dissipater electrostatic and antioxidants additives, to improve these properties in the jet fuel. (author)

  4. Design investigation of the HTR for the opening of very heavy oil deposits

    International Nuclear Information System (INIS)

    Gao, Z.

    1985-02-01

    In the north-east of China there are rich deposits of very heavy oil, which are to be found in a depth of 1500-1700 m. For opening an interaction of 370-390 0 Celsius steam is necessary. The HTR is well suited to produce the steam. A nuclear heat source of 1000 MWsub(th) makes possible the production of 1.5 million tons oil per year. This is a 30-40 per cent higher production of oil compared to the oil-fired steam production. Two concepts of smaller pebble bed reactors are suited as heat sources: the HTR-MEDUL-334 with a thermal power of the 334 MW and fuelled in the multiple run-through scheme and the HTR-OTTO-200 with 200 MW and once-through fuelling. Three or five reactors can be combined in the modular way to provide the power of 1000 MW. For both reactors the design, the neutron-physical and thermohydraulic behaviour are followed in the computer simulation. A central zone of the pebble bed reactor is fuelled with elements of strongly reduced fissile content. Due to the reduced power density the maximum fuel temperature appearing in extreme accidents is limited and accordingly the release of the fission products is avoided. (orig.) [de

  5. Pore network modelling of heavy oil depressurization : a parametric study of factors affecting critical gas saturation and three-phase relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Bondino, I.; McDougall, S.D. [Heriot-Watt Univ., Edinburgh, Scotland (United Kingdom); Hamon, G. [TotalFina Elf Exploration and Production (France)

    2002-07-01

    A review of how the bubble nucleation process affects the efficiency of heavy oil recovery was presented along with a discussion regarding a pore-scale simulator technique to depressurize heavy oil systems. A light oil depressurization simulation is also presented in which a straightforward instantaneous nucleation (IN) model and a more intricate progressive nucleation (PN) model have been used. Simulation results are compared to those derived from the heavy oil systems. The nucleation of bubbles, their growth by solute diffusion and expansion, plus the final stages of coalescence migration and production are the main steps in the depressurization process which were accounted for in a 3-phase simulator. The model can also determine the impact of bubble density and gas-oil diffusion coefficient on critical gas saturation and 3-phase relative permeability. The difference in results for light and heavy oils was also highlighted. In the first scenario, the evolution of gas was characterized by embryonic bubbles that are quickly and randomly nucleated once bubble-point pressure is reached. A stochastic algorithm was developed for PN from experimental observations. IN and PN observations were not necessarily contradictory. It was determined that the high interfacial tension of heavy oils leads to a more compact, capillary-dominated pattern of gas evolution compared to light oils, resulting in improved recoveries for heavy oil systems. 23 refs., 6 tabs., 23 figs.

  6. Heavy gas oils as feedstock for petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D. [Nova Chemicals Ltd., Calgary, AB (Canada); Du Plessis, D. [Alberta Energy Research Inst., Edmonton, AB (Canada)]|[Alberta Economic Development and Trade, Edmonton, AB (Canada)

    2004-07-01

    This presentation reviewed the possibilities for converting heavy aromatic compounds and gas oils obtained from Alberta bitumen into competitively priced feedstock for high value refined products and petrochemicals. Upgrading bitumen beyond synthetic crude oil to refined products and petrochemicals would add value to bitumen in Alberta by expanding the petrochemical industry by providing a secure market for co-products derived from the integration of bitumen upgrading and refining. This presentation also reviewed conventional feedstocks and processes; by-products from bitumen upgrading and refining; production of light olefins by the fluid catalytic cracking (FCC) and hydrocracking process; deep catalytic cracking, catalytic pyrolysis and PetroFCC processes; technical and economic evaluations; and opportunities and challenges. Conventional feeds for steam cracking were listed along with comparative yields on feedstock. The use of synthetic gas liquids from oil sands plants was also reviewed. Current FCC type processes for paraffinic feedstocks are not suitable for Alberta's bitumen, which require better technologies based on hydrotreating and new ring opening catalysts. tabs., figs.

  7. Improved heavy oil recovery by low rate waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Mai, A. [Laricina Energy Ltd., Calgary, AB (Canada); Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Waterflooding techniques are frequently used to recover oil in low viscosity or marginal heavy oil reservoirs. This paper described a low-rate waterflooding oil recovery mechanism. The mechanism was determined by examining the effect of sand permeability on the impact of viscous force contributions. Changes in permeability and injection rates parameters were studied in order to evaluate the significance of imbibition, and a method of quantifying the effect of capillary forces was presented. The mechanism was demonstrated in an experimental study that used sand packs of varying permeabilities wet-packed into cores with overburden pressures. A fixed injection rate was used to investigate waterflooding in the different permeability systems with 2 different oils. Overall recovery rates were examined as a function of injection velocity. An analysis of normalized oil production rates demonstrated that viscous forces are more important during the early phases of waterflooding. The study showed that breakthrough oil recovery values increased with higher permeability values. However, when injection rates were reduced to low frontal velocity values, the correlation between sand permeability and breakthrough oil recovery resulted in low permeability rates. Lower permeability porous media resulted in more restrictive flow conditions. However, the capillary force components increased as a result of the smaller pore sizes, which in turn led to enhanced water imbibition and higher oil recovery values after water breakthrough. It was concluded that waterflooding rates can be modified later in the recovery process in order to improve final oil recovery values. 21 refs., 3 tabs., 11 figs.

  8. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  9. Do Oil-Producing Countries Have Normal Oil Overconsumption? An Investigation of Economic Growth and Energy Subsidies

    OpenAIRE

    Seyed Reza Mirnezami

    2015-01-01

    The data shows that oil-producing countries have low oil retail prices and low economic growth compared with other countries. Considering that oil-producing countries experience high oil consumption and low economic growth, it is possible to argue that economic growth is not an appropriate justification for oil consumption and that the main cause for high oil consumption is the low retail price. In addition, it should be noted that the global environmental movement against increasing greenhou...

  10. Origin of an unusual heavy oil from the Baiyinchagan depression, Erlian basin, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Haiping Huang [China University of Geosciences, Beijing (China); University of Newcastle, Newcastle upon Tyne (United Kingdom). School of Civil Engineering and Geosciences; Guangxi Jin [China University of Geosciences, Beijing (China); Exploration and Development Institute, Puyang (China); Changsong Lin; Yabin Zheng [China University of Geosciences, Beijing (China)

    2003-01-01

    A detailed organic geochemical analysis of six oil samples from the Baiyinchagan depression in the Erlian basin, Northern China, was carried out in order to evaluate their origin. The oils are reservoired at a very shallow depth (223-560 m subsurface) and their chemical and physical properties vary greatly, ranging from normal to extremely heavy oil. The preservation of non-biodegraded oil in such a shallow reservoir is possibly related with palaeo-pasteurization of the reservoir before uplift. Maturity difference is not the primary control on the chemical and physical properties of the oils and there is considerable geochemical evidence to suggest the additional influence of in-reservoir/post-accumulation processes such as biodegradation, water-washing and (possibly) evaporation. Whereas some oils appear to be less affected, others are moderately biodegraded up to level 4 on the [Peters and Moldowan, 1993] scale, with sterane distributions largely unaffected and 25-norhopanes undetected. Contrary to classical biodegradation, the unusual heavy oil shows little evidence of biodegradation from aliphatic components. Water-washing is suggested to be the primary process leading to its formation since the severe alteration of soluble aromatic hydrocarbons is observed. In addition, since the oils have been uplifted significantly after accumulation, evaporation and/or leakage to modify oil compositions cannot be ruled out. (author)

  11. Proceedings of the Canadian Heavy Oil Association's annual business conference : out of the chute

    International Nuclear Information System (INIS)

    2004-01-01

    This conference provided a forum for advanced technology experts in the upstream petroleum industry and heavy oil industry to exchange information about emerging technologies for resource recovery, refining, markets, trade and logistics. It was divided into 4 sessions entitled: (1) natural gas and upgrading alternatives, (2) project management issues, (3) project updates, and (4) business and markets. The presentations outlined the use of fuel substitutions and the implications for upgrading, controlling the capital costs of oil sand projects and construction issues facing heavy oil. Trends and factors affecting the petroleum industry in Canada were discussed with particular reference to the Asian interest in Alberta's oil sands and the need for a transportation corridor to bring products to southern markets. The conference featured 12 presentations, of which 6 were indexed separately for inclusion in this database. refs., tabs., figs

  12. Research and development in heavy and extra heavy oil upgrading in PDVSA-Intevep: aqua conversion

    International Nuclear Information System (INIS)

    Pereira, Pedro; Machin, Ivan; Salerno, Gladys; Cotte, Edgar; Higuerey, Ingrid; Andriollo, Antida; Cordova, Jose; Zacarias, Luis; Marzin, Roger; Rivas, Guaicaipuro

    1999-01-01

    After twenty five years of Intevep's creation, is now a good time to revise, from a technical and conceptual perspective, some of the ideas developed in one of the activities that this institution has more persistently sustained. The referred activity targets at the generation of new processes for the upgrading of the bitumen or extra heavy crude oils that Venezuela possesses. This revision concludes in an eclectic synthesis method for the selection and harmonization of the various different advances made through the research performed on processes such as HDH, coking, visbreaking, partial or selective steam reforming and others. Thus, from conceptually different research perspectives a new PDVSA's process already known as as aqua conversion has been assembled. The deepening in the use of this methodology may lead to other new and better upgrading technologies or to improve the existing for the same. All this keeping in mind that whatever these technologies are proprietary or from third parties is of low relevance in front of the mayor objective of commercializing the wide extra heavy oil reservoirs of this country

  13. Effect of Co Mo/HSO3-functionalized MCM-41 over heavy oil

    International Nuclear Information System (INIS)

    Schacht, P.; Ramirez G, M.; Ramirez, S.; Aguilar P, J.; Norena F, L.; Abu, I.

    2010-01-01

    The potential of Co-Mo metals supported on functionalized MCM-41 as catalyst to hydrodesulfurization of heavy oil has been explored in this work. The MCM-41 functionalized sample was synthesized according to method previously reported into the support by simultaneous impregnation. The catalyst was characterized by specific surface area and X-ray diffraction. The pore channel of MCM-41 was confirmed by transmission electronic microscopy and infra red spectroscopy. Catalytic activity tests were carried out using heavy oil from Gulf of Mexico. The API gravity was increased from 12.5 to 20.2, the kinematics viscosity was decreased from 18,700 to 110 c St at 298 K, the contents of asphaltene and sulfur were also reduced. (Author)

  14. Heavy metal extraction from produced water in the petroleum industry utilizing vegetal oil derivatives as the extractant; Extracao de metais pesados a partir de aguas produzidas na industria do petroleo utilizando derivados de oleo vegetal como extratante

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Dulcineia de Castro [Centro Federal de Educacao Tecnologica de Goias (CEFET/GO), Goiania (Brazil). Coordenacao de Mineracao], e-mail: dcs@cefetgo.br, e-mail: dcs@eq.ufrn.br; Paulo, Joao Bosco de Araujo [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Centro de Tecnologia. Dept. de Engenharia Quimica], e-mail: jbosco@eq.ufrn.br; Lima, Raquel Franco de Souza [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Centro de Ciencias Exatas e da Terra. Dept. de Geologia], e-mail: raquel@geologia.ufrn.br; Brandao, Paulo Roberto Gomes [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia], e-mail: pbrandao@demin.ufmg.br; Fernandes Junior, Wilaci Eutropio [PETROBRAS, RN/CE (Brazil). Unidade de Negocio de Exploracao e Producao do Rio Grande do Norte e Ceara. Gerencia de Desenvolvimento da Producao], e-mail: wilaci@petrobras.com.br

    2007-12-15

    It is well known today that, although being a renewable resource, potable water could also be finite. In the environmental context, very often due to operational costs, the development of new water recycling techniques become significant when faced with the simple adaptation of effluent treatment before final disposal. Produced water comes from exploration operations and/or the production of oil and gas and is generally treated. Following the treatment, part of the produced water is recycled in secondary re-injection operations or steam generation. The remainder, which is the biggest amount, is expelled into the sea through underwater outlets. Millions of liters of water are expelled per day, containing heavy metals such as lead (Pb), cadmium (Cd) and nickel (Ni) in low concentrations. Some of this volume could be recycled for use in the irrigation of oleaginous cultures after this water has been given a suitable post-treatment. This treatment being specified in agreement with Class 3, of CONAMA Resolution No 357 (Brazil, 2005), which establishes the contents as <0,033 mg/L for Pb, <0,01 mg/L for Cd and <0,025 mg/L for Ni. Liquid-liquid extraction is a well known technology for the recovery of metals in aqueous mediums. This work studies the extraction of Pb, Cd, and Ni from a synthetic solution, using QAV solvent (aviation kerosene); and vegetal oil derivatives as the extractant. It is well known that vegetal oil derivatives have a strong complexation power on metals. A bench test basic investigation was made with the objective of studying the selectivity of coconut oil derivatives in the extraction of metals from synthetic solutions. The determination of the heavy metal concentrations in a complex matrix was made by using the atomic absorption spectrometry technique (AAS). The results of the preliminary experiments were promising. (author)

  15. AN ALTERNATIVE APPROACH TO THE USE OF HEAVY OIL RESIDUE

    Directory of Open Access Journals (Sweden)

    Eugene Dashut

    2013-01-01

    Full Text Available We consider an alternative approach to the existing oil refining, in which instead of a single priority that emerged in the traditional approach, we consider two: get the light component and a heavy residue used for the production of new construction materials.

  16. The H-Oil Process : Preferred configurations for application to western Canadian feedstocks

    International Nuclear Information System (INIS)

    Colyar, J.J.; Peer, E.D.

    1997-01-01

    The technical and economic evaluation of a method used to convert and upgrade petroleum residua and heavy oils into lighter products was described. The feasibility of applying the process to typical western Canadian oil sand feedstocks was evaluated. The H-Oil process, developed by HRI Inc., is an ebullated-bed catalytic hydrocracking process that accounts for more than 50 per cent of the worldwide vacuum residue hydroprocessing market. It has a unique flexibility to handle many different types of heavy crudes while producing clean transportation fuels. The unconverted vacuum residue from the process can be used for fuel oil production, blended into asphalt, or routed to a resid catalytic cracker or coker. The residue can also be directly combusted or gasified to produce hydrogen. Four different technologies that have been used commercially in Canada to upgrade western Canadian heavy oil residue have been reviewed and evaluated from a technical and economic viewpoint. The following improvements in the H-oil process have resulted in greater economy and product quality: (1) development of a new generation of high activity catalysts, (2) development of an improved recycle cup, and (3) new outlets for unconverted residue. It was suggested that the H-Oil process produces more revenue than the delayed coker process. As coke becomes harder to dispose of, the H-Oil process will become more attractive for producing synthetic crude from heavy oil. 6 refs., 9 tabs., 9 figs

  17. Feasibility study of the in-situ combustion in shallow, thin, and multi-layered heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, L. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[Daqing Petroleum Inst., Beijing (China); Yu, D. [Daqing Petroleum Inst., Beijing (China); Gong, Y. [China National Petroleum Corp., Beijing (China). Liaohe Oilfield; Wang, P.; Zhang, L. [China National Petroleum Corp., Beijing (China). Huabei Oilfield; Liu, C. [China National Petroleum Corp., Beijing (China). JiLin Oilfield

    2008-10-15

    In situ combustion is a process where oxygen is injected into oil reservoirs in order to oxidize the heavier components of crude oil. The oil is driven towards the production wells by the combustion gases and steam generated by the combustion processes. This paper investigated dry and wet forward in situ combustion processes designed for an oil reservoir with thin sand layers. Laboratory and numerical simulations were conducted to demonstrate the feasibility of the processes in a shallow, thin, heterogenous heavy oil reservoir in China. Combustion tube experiments were conducted in order to determine fuel consumption rates. A numerical geological model was constructed to represent the reservoir conditions. Gas, water, oil and solid phases were modelled. Four processes were considered: cracking; pyrolysis of heavy fractions; the combustion of light and heavy fractions; and the combustion of coke. Oil recovery rates were calculated for a period of 10 years. Reactor experiments were conducted to investigate igniting temperatures and air injection rates using an apparatus comprised of an electric heater, oil sand pack tube and a computerized control system. Experiments were performed at different temperature and injection rates. The experiments demonstrated that ignition times and air volumes decreased when air temperature was increased. Results of the study showed that a 20 per cent increase in oil recovery using the in situ combustion processes. It was concluded that adequate air injection rates are needed to ensure effective combustion front movement. 4 refs., 6 tabs., 4 figs.

  18. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    Energy Technology Data Exchange (ETDEWEB)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  19. Canadian Occidental joins Hunt as Yemen oil producer

    International Nuclear Information System (INIS)

    Gurney, J.

    1994-01-01

    On 23 September 1993, the Canadian Occidental Petroleum Company initiated the export of 120,000 b/d (barrels a day) of low sulphur, medium gravity crude oil from its Masila Block concession in Yemen. The oil is transported from Masila via a pipeline built by CanOxy and its partners to a new terminal at Ash Shihr, near Mukalla, in the Gulf of Aden. CanOxy is the third operator oil company to produce oil commercially in Yemen. The first, the Hunt Oil Company, began production in December 1987 and its output now totals about 187,000 b/d. The second, Nimir Petroleum, a Saudi venture which took over the facilities developed in the 1980s by two Soviet companies, is currently producing about 10,000 b/d and expects to increase its output to 25,000 b/d during this year. (Author)

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  1. Immersion piston for producing crude oil and liquids from boreholes

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, I; Hornyos, J

    1967-02-09

    When using a free piston to pump an oil well, oil and gas accumulates above and below the piston; upon venting the gas pressure above the piston, the gas pressure below it drives the piston and the oil above it to the surface. In the past, such pistons were too heavy and did not run tight in the tubing, causing loss of efficiency and high gas consumption. According to this invention, the piston is made of aluminum or plastic; it consists of at least 2 parts flexibly connected by wire rope or plastic strings, and is equipped with a labyrinth gasket and a paraffin scraper. (3 claims)

  2. Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies

    Directory of Open Access Journals (Sweden)

    Xiankang Xin

    2017-10-01

    Full Text Available In this paper, physical experiments and numerical simulations were applied to systematically investigate the non-Newtonian flow characteristics of heavy oil in porous media. Rheological experiments were carried out to determine the rheology of heavy oil. Threshold pressure gradient (TPG measurement experiments performed by a new micro-flow method and flow experiments were conducted to study the effect of viscosity, permeability and mobility on the flow characteristics of heavy oil. An in-house developed novel simulator considering the non-Newtonian flow was designed based on the experimental investigations. The results from the physical experiments indicated that heavy oil was a Bingham fluid with non-Newtonian flow characteristics, and its viscosity-temperature relationship conformed to the Arrhenius equation. Its viscosity decreased with an increase in temperature and a decrease in asphaltene content. The TPG measurement experiments was impacted by the flow rate, and its critical flow rate was 0.003 mL/min. The TPG decreased as the viscosity decreased or the permeability increased and had a power-law relationship with mobility. In addition, the critical viscosity had a range of 42–54 mPa∙s, above which the TPG existed for a given permeability. The validation of the designed simulator was positive and acceptable when compared to the simulation results run in ECLIPSE V2013.1 and Computer Modelling Group (CMG V2012 software as well as when compared to the results obtained during physical experiments. The difference between 0.0005 and 0.0750 MPa/m in the TPG showed a decrease of 11.55% in the oil recovery based on the simulation results, which demonstrated the largely adverse impact the TPG had on heavy oil production.

  3. Influence of feedstock type on heavy coker gas oil quality; A influencia do tipo de carga na qualidade do gasoleo pesado de coque

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Claudine T.A.S.; Barros, Francisco C.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Over the past few years, the great challenge to the Oil Industry has been the processing of increasingly heavier feedstock seeking to meet the growing demand for medium distillates and, at the same time, the reduction of the production of fuel oils. In this scenario, the Delayed Coking Unit (DCU) appears to be an attractive technology for the processing of heavy and ultra heavy crudes. The addition of Asphaltene Residue produced by the Solvent Deasphalting Unit (SDA) to the Vacuum Residue, traditional feedstock of these units, has been a new tendency in the composition of the feedstock, with the intention of converting the residual fractions into value added liquid oil products. Results obtained in pilot plants show that asphaltene residue alters the yield and the quality of the products of the DCU, especially those of Heavy Coker Gas Oil (HKGO) that is incorporated in the feedstock of the Fluid Catalytic Cracking Unit (FCCU). The alteration in the quality of the HKGO negatively impacts on the conservation of the FCCU. The insertion of DCU in refineries that possess SDA in their refining systems has shown itself to be fundamental for the reduction of the production of fuel oils. However, to define the quantity and quality of asphaltene residue to be incorporated in the feedstock of the UCR, the best operating conditions and the necessary project adaptations to this unit are fundamental and they should be analyzed with the objective of maximizing the profitability of the refineries. (author)

  4. Residency of rhenium and osmium in a heavy crude oil

    Science.gov (United States)

    DiMarzio, Jenna M.; Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.

    2018-01-01

    Rhenium-osmium (Re-Os) isotope geochemistry is an emerging tool for the study of oil formation and migration processes, and a new technology for petroleum exploration. Little is known, however, about the residency of Re and Os within asphaltene and maltene sub-fractions of crude oil. This information is crucial for understanding the 187Re-187Os radiometric clock held in petroleum systems and for interpreting geochronology for key processes such as oil formation, migration, and biodegradation. In this study, a heavy crude oil was separated into soluble (maltene, MALT) and insoluble (asphaltene, ASPH) fractions using n-heptane as the asphaltene-precipitating agent. The asphaltenes were separated sequentially into sub-fractions using two different solvent pairs (heptane-dichloromethane and acetone-toluene), and the bulk maltenes were separated into saturate, aromatic, and resin (SAR) fractions using open column chromatography. Each asphaltene and maltene sub-fraction was analyzed for Re and Os. The asphaltene sub-fractions and the bulk ASPH, MALT, and crude oil were analyzed for a suite of trace metals by ICP-MS. Our results show that Re and Os concentrations co-vary between the asphaltene sub-fractions, and that both elements are found mostly in the more polar and aromatic sub-fractions. Significant Re and Os are also present in the aromatic and resin fractions of the maltenes. However, each asphaltene and maltene sub-fraction has a distinct isotopic composition, and sub-fractions are not isochronous. This suggests that asphaltene sub-fractionation separates Re-Os complexes to the point where the isotopic integrity of the geochronometer is compromised. The mobility of individual Re and Os isotopes and the decoupling possibilities between radiogenic 187Os produced from 187Re remain elusive, but their recognition in this study is a critical first step. Re and Os correlate strongly with Mo and Cd in the asphaltene sub-fractions, suggesting that these metals occupy

  5. Slow, target associated particles produced in ultrarelativistic heavy-ion interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Anson, Z V; Arora, R; Avetyan, F A; Badyal, S K; Basova, E; Bhalla, K B; Bhasin, A; Bhatia, V S; Bogdanov, V G; Bubnov, V I; Burnett, T H; Cai, X; Chasnikov, I Y; Chernova, L P; Chernyavsky, M M; Dressel, B; Eligbaeva, G Z; Eremenko, L E; Friedlander, E M; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V; Heckman, H H; Huang, H; Jakobsson, B; Judek, B; Kachroo, S; Kadyrov, F G; Kalyachkina, G S; Kanygina, E K; Karabova, M; Kaul, G L; Kaur, M; Kharlamov, S P; Koss, Y; Krasnov,; Kumar,; Lal, P; Larionova,; Lepetan,; Lindstrom,; Liu,; Lokanathan, S; Lord, J; Lukicheva, N S; Luo, S B; Mangotra, L K; Marutyan,; Maslennikova, N V; Mittra, I S; Mookerjee, S; Mueller, C; Nasrulaeva, H; Nasyrov, S H; Navotny, V S; Orlova, G I; Otterlund, I; Palsania, H S; Peresadko, N G; Petrov, N V; Plyushchev, V A; Qian, W Y; Raniwala,; EMU01 Collaboration

    1991-06-20

    The slow, target associated particles produced in ultrarelativistic heavy-ion interactions are a quantitative probe of the cascading processes in the spectator parts of the target nucleus. These processes are directly influenced by the proper timescale for the formation of hadronic matter. In this letter we show experimental data on singly and multiply charged particles, with velocities smaller than 0.7c, produced in ultrarelativistic heavy-ion interactions in nuclear emulsion. (orig.).

  6. Investigating the effect of steam, CO{sub 2}, and surfactant on the recovery of heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.; He, S. [China Univ. of Petroleum, Beijing (China). MOE Key Laboratory of Petroleum Engineering; Qu, L. [Shengli Oil Field Co. (China)]|[SINOPEC, Shengli (China)

    2008-10-15

    This paper presented the results of a laboratory study and numerical simulation in which the mechanisms of steam injection with carbon dioxide (CO{sub 2}) and surfactant were investigated. The incremental recoveries of 4 different scenarios were compared and analyzed in terms of phase behaviour. The study also investigated the effect of CO{sub 2} dissolution in oil and water; variation of properties of CO{sub 2}-oil phase equilibrium and CO{sub 2}-water phase equilibrium; variation of viscosity; and, oil volume and interfacial tension (IFT) during the recovery process. The expansion of a steam and CO{sub 2} front was also examined. A field application case of a horizontal well in a heavy oil reservoir in Shengli Oilfield in China was used to determine the actual dynamic performance of the horizontal well and to optimize the injection parameters of the CO{sub 2} and surfactant. The study revealed that oil recovery with the simultaneous injection of steam, CO{sub 2} and surfactant was higher than that of steam injection, steam with CO{sub 2} and steam with surfactant. The improved flow performance in super heavy oil reservoirs could be attributed to CO{sub 2} dissolution in oil which can swell the oil and reduce oil viscosity significantly. The proportion of CO{sub 2} in the free gas phase, oil phase and water phase varies with changes in reservoir pressure and temperature. CO{sub 2} decreases the temperature of the steam slightly, while the surfactant decreases the interfacial tension and helps to improve oil recovery. The study showed that the amount of injected CO{sub 2} and steam has a large effect on heavy oil recovery. Although oil production was found to increase with an increase in injected amounts, the ratio of oil to injected fluids must be considered to achieve optimum recovery. High steam quality and temperature can also improve super heavy oil recovery. The oil recovery was less influenced by the effect of the surfactant than by the effect of CO{sub 2

  7. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    OpenAIRE

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil) were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis ...

  8. Heavy metal removal from produced water using retorted shale; Remocao de metais pesados em aguas produzidas utilizando xisto retortado

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Patricia M.; Melo, Marcos A.F.; Melo, Dulce M.A.; Silva Junior, Carlos N.; Assuncao, Ary L.C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Anjos, Marcelino J. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2004-07-01

    The Production of oil and gas is usually accompanied by the production of large volume of water that can have significant environmental effects if not properly treated. In this work, the use of retort shale was investigated as adsorbent agent to remove heavy metals in produced water. Batch adsorption studies in synthetic solution were performed for several metal ions. The efficiency removal was controlled by solution pH, adsorbent dosage, and initial ion concentration and agitation times. Two simple kinetic models were used, pseudo-first- and second-order, were tested to investigate the adsorption mechanisms. The equilibrium data fitted well with Langmuir and Freundlich models. The produced water samples were treated by retorted shale under optimum adsorption conditions. Synchrotron radiation total reflection X-ray fluorescence was used to analyze the elements present in produced water samples from oil field in Rio Grande do Norte, Brazil. The removal was found to be approximately 20-50% for Co, Ni, Sr and above 80% for Cr, Ba, Hg and Pb. (author)

  9. Competitive, microbially-mediated reduction of nitrate with sulfide and aromatic oil components in a low-temperature, western Canadian oil reservoir.

    Science.gov (United States)

    Lambo, Adewale J; Noke, Kim; Larter, Steve R; Voordouw, Gerrit

    2008-12-01

    Fields from which oil is produced by injection of sulfate-bearing water often exhibit an increase in sulfide concentration with time (souring). Nitrate added to the injection water lowers the sulfide concentration by the action of sulfide-oxidizing, nitrate-reducing bacteria (SO-NRB). However, the injected nitrate can also be reduced with oil organics by heterotrophic NRB (hNRB). Aqueous volatile fatty acids (VFAs; a mixture of acetate, propionate, and butyrate) are considered important electron donors in this regard. Injection and produced waters from a western Canadian oil field with a low in situ reservoir temperature (30 degrees C) had only 0.1-0.2 mM VFAs. Amendment of these waters with nitrate gave therefore only partial reduction. More nitrate was reduced when 2% (v/v) oil was added, with light oil giving more reduction than heavy oil. GC-MS analysis of in vitro degraded oils and electron balance considerations indicated that toluene served as the primary electron donor for nitrate reduction. The differences in the extent of nitrate reduction were thus related to the toluene content of the light and heavy oil (30 and 5 mM, respectively). Reduction of nitrate with sulfide by SO-NRB always preceded that with oil organics by hNRB, even though microbially catalyzed kinetics with either electron donor were similar. Inhibition of hNRB by sulfide is responsible for this phenomenon. Injected nitrate will thus initially be reduced with sulfide through the action of SO-NRB. However, once sulfide has been eliminated from the near-injection wellbore region, oil organics will be targeted by the action of hNRB. Hence, despite the kinetic advantage of SO-NRB, the nitrate dose required to eliminate sulfide from a reservoir depends on the concentration of hNRB-degradable oil organics, with toluene being the most important in the field under study. Because the toluene concentration is lower in heavy oilthan in light oil, nitrate injection into a heavy-oil-producing field of

  10. The effect of ZnO nanoparticles on improved oil recovery in spontaneous imbibition mechanism of heavy oil production

    Science.gov (United States)

    Tajmiri, M.; Ehsani, M. R.; Mousavi, S. M.; Roayaei, E.; Emadi, A.

    2015-07-01

    Spontaneous imbibition (SI) gets a controversial subject in oil- wet carbonate reservoirs. The new concept of nanoparticles applications in an EOR area have been recently raised by researches about oil viscosity reduction and generate emulsion without surfactant. But a lot of questions have been remained about which nanoparticles can alter wettability from oil- wet to water- wet to improve oil recovery. This study introduces the new idea of adding ZnO nanoparticles (0.2%wt concentration) by experimental work on oil recovery. The main goals of this research were to prove that ZnO nanoparticles have the ability to reduce viscosity and also alter wettability. The ultimate objective was to determine the potential of these nanoparticles to imbibe into and displace oil. Through the use of Amott- cell, laboratory tests were conducted in two experiments on four cylindrical core samples (three sandstones and one carbonate) were taken from real Iranian heavy oil reservoir. In the first experiment, core samples were saturated by crude oil and in the second experiment, nanoparticles were flooding into core samples and then saturated by crude oil for about two weeks and after that they were immersed in distilled water and the amount of recovery was monitored during 30 days for both tests. We expected that ZnO nanoparticles decreased the surface tension which reduced the capillary forces through SI and wettability alteration took place towards a more water-wet system and caused the oil relative permeability to increase which dominated the gravitational forces to pull out the oil. Our results proved this expectation from ZnO nanoparticles clearly because carbonate core was oil- wet and the capillary pressure was high and negative to push water into the core so the original oil in place (OOIP) was zero whereas by adding ZnO nanoparticles OOIP was increased to 8.89%. SI yielded recovery values from 17.3, 2 and 15 without nanoparticles to 20.68, 17.57 and 36.2 % OOIP with

  11. Wage Inequality and Violent Protests in Oil/Gas Producing Countries

    Science.gov (United States)

    Nuraliyev, Nurlan

    This work examines contrasting claims made by academic scholars on the relationship between income inequality and political discontent. Does income inequality directly cause social unrest or is this relationship conditional on the level of democratic development? Using the data from 55 oil/gas producing countries between 2010-2013, the author finds: 1) income disparity between an average income per capita of local population and an average income of foreign labor employed in the oil/gas industry results in higher number of violent protests in more democratic oil/gas producing societies; 2) wage disparity between local and foreign labor in the oil/gas industry is associated with higher number of protests in this industry in more democratic oil/gas producing states.

  12. Potential to reduce emissions of sulphur dioxide through reducing sulphur levels in heavy and light fuel oils - a discussion paper

    International Nuclear Information System (INIS)

    Tushingham, M.; Bellamy, J.

    2001-01-01

    Background information on the sulphur levels in light fuel oil (used in residential heating) and heavy fuel oil (used as industrial fuel oil) is provided. In addition to the description of sulphur levels in light and heavy fuel oils, the report also provides a summary of regulatory limits in Canada and elsewhere, and a description of the emission benefits of decreasing sulphur in fuels. 4 refs., 10 tabs., 12 figs

  13. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens; Hoteit, Ibrahim

    2014-01-01

    process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase

  14. Steam injection and enhanced bioremediation of heavy fuel oil contamination

    International Nuclear Information System (INIS)

    Dablow, J.; Hicks, R.; Cacciatore, D.

    1995-01-01

    Steam injection has been shown to be successful in remediating sites impacted by heavy fuel oils. Field demonstrations at both pilot and full scale have removed No. 2 diesel fuel and Navy Special Fuel Oil (No. 5 fuel oil) from impacted soils. Removal mechanisms include enhanced volatilization of vapor- and adsorbed-phase contaminants and enhanced mobility due to decreased viscosity and associated residual saturation of separate- and adsorbed-phase contaminants. Laboratory studies have shown that indigenous biologic populations are significantly reduced, but are not eliminated by steam injection operations. Populations were readily reestablished by augmentation with nutrients. This suggests that biodegradation enhanced by warm, moist, oxygenated environments can be expected to further reduce concentrations of contaminants following cessation of steam injection operations

  15. Search for heavy neutrinos produced in e+e- annihilation

    International Nuclear Information System (INIS)

    Feldman, G.J.

    1985-05-01

    We report a search for long-lived heavy neutrinos produced by the neutral weak current in e + e - annihilation at 29 GeV at PEP. Data from the Mark II detector are examined for evidence of events with one or more separated vertices in the radial range of 2 mm to 10 cm. No events were found that were consistent with the hypothesis of heavy neutrino production, eliminating the possibility of heavy neutrinos with decay lengths of 1 to 20 cm in mass range 1 to 13 GeV/c 2 . 11 refs

  16. Chemical Flooding in Heavy-Oil Reservoirs: From Technical Investigation to Optimization Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Si Le Van

    2016-09-01

    Full Text Available Heavy-oil resources represent a large percentage of global oil and gas reserves, however, owing to the high viscosity, enhanced oil recovery (EOR techniques are critical issues for extracting this type of crude oil from the reservoir. According to the survey data in Oil & Gas Journal, thermal methods are the most widely utilized in EOR projects in heavy oil fields in the US and Canada, and there are not many successful chemical flooding projects for heavy oil reported elsewhere in the world. However, thermal methods such as steam injection might be restricted in cases of thin formations, overlying permafrost, or reservoir depths over 4500 ft, for which chemical flooding becomes a better option for recovering crude oil. Moreover, owing to the considerable fluctuations in the oil price, chemical injection plans should be employed consistently in terms of either technical or economic viewpoints. The numerical studies in this work aim to clarify the predominant chemical injection schemes among the various combinations of chemical agents involving alkali (A, surfactant (S and polymer (P for specific heavy-oil reservoir conditions. The feasibilities of all potential injection sequences are evaluated in the pre-evaluation stage in order to select the most efficient injection scheme according to the variation in the oil price which is based on practical market values. Finally, optimization procedures in the post-evaluation stage are carried out for the most economic injection plan by an effective mathematic tool with the purpose of gaining highest Net Present Value (NPV of the project. In technical terms, the numerical studies confirm the predominant performances of sequences in which alkali-surfactant-polymer (ASP solution is injected after the first preflushing water whereby the recovery factor can be higher than 47%. In particular, the oil production performances are improved by injecting a buffering viscous fluid right after the first chemical slug

  17. Unconventional uses for unconventional oil

    International Nuclear Information System (INIS)

    Ehlig-Economides, C.A.; Barrufet, M.; Longbottom, J.R.; Velu, B.P.

    2005-01-01

    The transportation sector in the United States is 95 per cent dependent on oil, which is the only primary fuel that is being imported to the country in great quantities. It has been proposed that energy independence may come by supplying electric power with renewable energy sources. It was also suggested that the best solution for future transportation may be to develop electrified guideways that would provide energy to automatically convey personal cars and driverless freight through the roadways. Advantages include zero vehicle emissions, greater safety and decreased road congestion. This paper examined the option of using heavy oil for power generation instead of the current expensive refining practices designed to produce liquid transportation fuels from heavy oil. It compared coal gasification with heavy oil for power generation. The cost to consumers and environmental impacts were considered. The comparison of conventional versus electrified transportation options was based on on a well-to-mine-to-wheels cycle. It was shown that electrified transportation is attractive from a cost, environmental and energy security perspective. If the United States were to import Canadian heavy oil only for transportation, the consumer cost will increase by approximately 25 per cent based on 2003 data. If the United States were to transform transportation from conventional to electrified transportation, the cost of using Canadian heavy oil will be less, even including carbon dioxide capture. It was concluded that all primary fuel sources would seek new equilibrium prices that may affect comparisons between heavy oil and coal. 14 refs., 4 tabs., 10 figs

  18. Unconventional uses for unconventional oil

    Energy Technology Data Exchange (ETDEWEB)

    Ehlig-Economides, C.A.; Barrufet, M.; Longbottom, J.R.; Velu, B.P. [Texas A and M Univ., Austin, TX (United States)

    2005-11-01

    The transportation sector in the United States is 95 per cent dependent on oil, which is the only primary fuel that is being imported to the country in great quantities. It has been proposed that energy independence may come by supplying electric power with renewable energy sources. It was also suggested that the best solution for future transportation may be to develop electrified guideways that would provide energy to automatically convey personal cars and driverless freight through the roadways. Advantages include zero vehicle emissions, greater safety and decreased road congestion. This paper examined the option of using heavy oil for power generation instead of the current expensive refining practices designed to produce liquid transportation fuels from heavy oil. It compared coal gasification with heavy oil for power generation. The cost to consumers and environmental impacts were considered. The comparison of conventional versus electrified transportation options was based on on a well-to-mine-to-wheels cycle. It was shown that electrified transportation is attractive from a cost, environmental and energy security perspective. If the United States were to import Canadian heavy oil only for transportation, the consumer cost will increase by approximately 25 per cent based on 2003 data. If the United States were to transform transportation from conventional to electrified transportation, the cost of using Canadian heavy oil will be less, even including carbon dioxide capture. It was concluded that all primary fuel sources would seek new equilibrium prices that may affect comparisons between heavy oil and coal. 14 refs., 4 tabs., 10 figs.

  19. Heavy Hyperfragments produced by 800 MeV/c k in Nuclear Emulsions

    International Nuclear Information System (INIS)

    Marcial, P.

    1967-01-01

    A statistical and phenomenological survey of nearly 1200 heavy hyperfragments produced by interaction of 800 MeV/c K with the heavy nuclei of llford K 5 emulsion is presented. The emulsion was exposed A statistical and phenomenological survey of nearly 1200 heavy hyperfragments produced by interaction of 800 MeV/c K tilde with the heavy nuclei of llford K5 emulsion is presented. The emulsion was exposed in Berkeley. The variation of long list of parameters dealing with both the production and desintegration of the hyperfragments, with the size of the primary interaction is given. (Author)

  20. Seabird feathers as monitors of the levels and persistence of heavy metal pollution after the Prestige oil spill

    International Nuclear Information System (INIS)

    Moreno, Rocio; Jover, Lluis; Diez, Carmen; Sanpera, Carola

    2011-01-01

    We measured heavy metal concentrations in yellow-legged gulls (n = 196) and European shags (n = 189) in order to assess the temporal pattern of contaminant exposure following the Prestige oil spill in November 2002. We analysed Pb, Cu, Zn, Cr, Ni and V levels in chick feathers sampled at four colonies during seven post-spill years (2003-2009), and compared results with pre-spill levels obtained from feathers of juvenile shag corpses (grown in spring/summer 2002). Following the Prestige wreck, Cu (4.3-10 μg g -1 ) and Pb concentrations (1.0-1.4 μg g -1 ) were, respectively, between two and five times higher than pre-spill levels (1.5-3.6 and 0.1-0.4 μg g -1 ), but returned to previous background concentrations after three years. Our study highlights the suitability of chick feathers of seabirds for assessing the impact of oil spills on heavy metal contamination, and provides the best evidence to date on the persistence of oil pollution after the Prestige incident. - Highlights: → Seabirds as sentinel species of levels and persistence of heavy metal pollution after oil spills. → Pb, Cu, Zn, Cr, Ni, V in chick feathers of Phalacrocorax aristotelis and Larus michahellis. → Chronic oil pollution in the marine food web for at least three years after the Prestige oil spill. - Monitoring heavy metal in seabird feathers indicated chronic oil pollution in the marine food web for at least three years after the Prestige oil spill.

  1. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge; Barrufet, Maria

    2002-11-20

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  2. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.

    Science.gov (United States)

    Bacosa, Hernando P; Suto, Koichi; Inoue, Chihiro

    2013-01-01

    Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.

  3. Effect of Co Mo/HSO{sub 3}-functionalized MCM-41 over heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, P.; Ramirez G, M.; Ramirez, S. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico); Aguilar P, J.; Norena F, L. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, 02200 Mexico D. F. (Mexico); Abu, I., E-mail: pschacha@imp.m [University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)

    2010-07-01

    The potential of Co-Mo metals supported on functionalized MCM-41 as catalyst to hydrodesulfurization of heavy oil has been explored in this work. The MCM-41 functionalized sample was synthesized according to method previously reported into the support by simultaneous impregnation. The catalyst was characterized by specific surface area and X-ray diffraction. The pore channel of MCM-41 was confirmed by transmission electronic microscopy and infra red spectroscopy. Catalytic activity tests were carried out using heavy oil from Gulf of Mexico. The API gravity was increased from 12.5 to 20.2, the kinematics viscosity was decreased from 18,700 to 110 c St at 298 K, the contents of asphaltene and sulfur were also reduced. (Author)

  4. ECOLOGY SAFETY TECHNOLOGIES OF UNCONVENTIONAL OIL RESERVES RECOVERY FOR SUSTAINABLE OIL AND GAS INDUSTRY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Viacheslav Zyrin

    2016-09-01

    Full Text Available The problem of effective technology for heavy oil recovery nowadays has a great importance, because of worsening geological conditions of the developed deposits, decreasing recovery factor, increasing the part of heavy oil. For the future sustainable development of oil producing industry the involved technologies must require energy effectiveness and ecological safety. The paper proves the enhanced oil recovery methods necessity for heavy oil deposits, highlighted thermal technologies as the most effective. But traditional thermal treatment technologies is a source of air pollutant emission, such as CO, NO etc. The calculation of emissions for traditional steam generator is provided. Besides, the paper shows the effectiveness of electrical enhanced oil recovery methods. The advantages of associated gas as a fuel for cogeneration plants is shown. The main approaches to implementation of carbon dioxide sequestration technologies in the oil and gas industry of Russia are defined. Conceptual view of СО2-EOR technologies potential within the context of sustainable development of oil and gas industry are presented. On the basis of the conducted research a number of scientific research and practical areas of the CCS technology development are revealed.

  5. The effect of low molecular weight multifunctional additives on heavy oil viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, T.B.P.; Yarranton, H.W.; Larter, S.R. [Calgary Univ., AB (Canada)

    2010-07-01

    Crude oils contain many small multifunctional low molecular weight components that act as linking molecules between larger functionalized species. The linkage molecules have a significant impact on the flow properties of hydrocarbon systems. This study investigated the use of a low molecular weight multiheteroatom species (LMWMH) as a molecular Velcro linking high molecular weight components together. LMWMH species were added to Albertan bitumens and heavy oil, and their impact on viscosity was investigated. Results of the experimental studies were then compared with the effects of hydrocarbon solvents on similar samples. The LMWMH species included bifunctional species and analogous alkyl and aryl monoamines that acted as blocking molecules to hinder the association of larger petroleum species. Density and viscosity measurements were conducted. A correlation method was used to predict the viscosity of the solvent-diluted heavy oil and bitumen samples. The study showed that of the tested additives, only aniline demonstrated an additional viscosity-reducing effect. The aniline inhibited asphaltene association and is a promising candidate for enhanced in-situ bitumen viscosity reduction. 23 refs., 4 tabs.

  6. Focusing on heavy oil, technology and people. Annual report 1995

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Financial information from CS Resources and a review of operations in 1995 was made available for the benefit of shareholders. CS Resources has been involved in the resource development of the Western Canada Sedimentary Basin for some time. Since becoming public in 1989, CS Resources have experienced continued profitable growth through such programs as thermal and enhanced recovery of heavy oils, and through the exploration of natural gas and light crude oil. This report presented an operations review, consolidated financial statements, a seven year historical summary, production statistics, and a seven year share price and other common share information. tabs., figs

  7. Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review.

    Science.gov (United States)

    Shibulal, Biji; Al-Bahry, Saif N; Al-Wahaibi, Yahya M; Elshafie, Abdulkader E; Al-Bemani, Ali S; Joshi, Sanket J

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  8. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    Directory of Open Access Journals (Sweden)

    Biji Shibulal

    2014-01-01

    Full Text Available Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  9. Biosurfactant Producing Microbes from Oil Contaminated Soil - Isolation, Screening and Characterization

    OpenAIRE

    , A Pandey; , D Nandi; , N Prasad; , S Arora

    2016-01-01

    Th1s paper bas1cally deals W1th 1solat10n, productıon and characterızatıon of biosurfactant producing microbes from oil contaminated soil sample. In this paper, we are comparing and discussing different methods to screen & characterize microbes from soil which can degrade oil due to their biosurfactant producing activity which helps in reduction of surface tension of oil. Oils used to check the biosurfactant activity of microbes, were engine oil and vegetable oil. Further isolation of...

  10. Hydrodenitrogenation and hydrodesulphurization of heavy gas oil using NiMo/Al{sub 2}O{sub 3} catalyst containing phosphorous : experimental and kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Dalai, A.K. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemical Engineering; Adjaye, J. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2005-10-01

    Oil sand bitumens and their derived products contain high levels of nitrogen and sulfur compounds which cause the formation of SOx and NOx in the atmosphere. These compounds also deactivate the catalysts used in fluid catalytic cracking and hydrocracking. This study focused on finding a better catalyst to efficiently remove sulphur and nitrogen from oil sand-derived heavy gas oils. The NiMo/Al{sub 2}O{sub 3} catalyst with phosphorous (P) was used in a trickle-bed reactor under a range of temperature and pressure conditions to study the reactivity of vacuum, atmospheric and hydrocracked heavy gas oils produced from Athabasca bitumen. The concentration of phosphorous was maintained at 2.7 wt per cent, while the hydrogen flow rate and catalyst weight were maintained constant at 50 mL/min and 4 g respectively. An ANOVA analysis of experimental data was performed to optimize the process conditions for hydrodenitrogenation (HDN) and hydrodesulphurization (HDS) reactions. Kinetic studies for HDN and HDS reactions were studied within the temperature range of 340 to 400 degrees C using the power law model and the Langmuir-Hinshelhood model. It was shown that HDN and HDS of heavy gas oil follows first order kinetics. The activation energies for HDN and HDS reactions from the power law and Langmuir-Hinshelhood models were 94 and 96 kJ/mol and 113 and 137 kJ/mol, respectively. It was concluded that nitrogen and hydrogen sulfide adsorption have a significant influence on HDN and HDS reactions. 32 refs., 8 tabs., 7 figs.

  11. The impact of multiphase behaviour on coke deposition in heavy oil hydroprocessing catalysts

    Science.gov (United States)

    Zhang, Xiaohui

    Coke deposition in heavy oil catalytic hydroprocessing remains a serious problem. The influence of multiphase behaviour on coke deposition is an important but unresolved question. A model heavy oil system (Athabasca vacuum bottoms (ABVB) + decane) and a commercial heavy oil hydrotreating catalyst (NiMo/gamma-Al 2O3) were employed to study the impact of multiphase behaviour on coke deposition. The model heavy oil mixture exhibits low-density liquid + vapour (L1V), high-density liquid + vapour (L2V), as well as low-density liquid + high-density liquid + vapour (L1L2V) phase behaviour at a typical hydroprocessing temperature (380°C). The L2 phase only arises for the ABVB composition range from 10 to 50 wt %. The phase behaviour undergoes transitions from V to L2V, to L1L2V, to L1V with increasing ABVB compositions at the pressure examined. The addition of hydrogen into the model heavy oil mixtures at a fixed mass ratio (0.0057:1) does not change the phase behaviour significantly, but shifts the phase regions and boundaries vertically from low pressure to high pressure. In the absence of hydrogen, the carbon content, surface area and pore volume losses for catalyst exposed to the L1 phase are greater than for the corresponding L2 phase despite a higher coke precursor concentration in L2 than in L1. By contrast, in the presence of hydrogen, the carbon content, surface area and pore volume losses for the catalyst exposed to the L2 phase are greater than for the corresponding L1 phase. The higher hydrogen concentration in L1 appears to reverse the observed results. In the presence of hydrogen, L2 was most closely associated with coke deposition, L1 less associated with coke deposition, and V least associated with coke deposition. Coke deposition is maximized in the phase regions where the L2 phase arises. This key result is inconsistent with expectation and coke deposition models where the extent of coke deposition, at otherwise fixed reaction conditions, is asserted to

  12. Will Venezuelan extra-heavy oil be a significant source of petroleum in the next decades?

    International Nuclear Information System (INIS)

    Sena, Marcelo Fonseca Monteiro de; Rosa, Luiz Pinguelli; Szklo, Alexandre

    2013-01-01

    Unconventional oil resources are needed to complement petroleum supply in the next decades. However, given the restrictions that pertain to the production of these resources, this article evaluates the availability of Venezuelan unconventional oil for helping meet the future worldwide petroleum demand. Venezuela has the world's second-largest oil reserves, but the majority of it is unconventional extra-heavy oil from the Orinoco Oil Belt. The perspective of Venezuelan production, the ways in which PDVSA, the state oil company, will raise funds for planned investments and the future oil price predictions are used to assess Venezuela's ability to serve as a source of unconventional oil in the coming years. Findings indicate that Venezuelan crude oil will be increasingly able to provide part of the marginal petroleum supply at a level predicted in global scenarios but short of that predicted by the country's government. Operational difficulties and the effort to raise financial resources for the oil production in the Belt require urgency in overcoming difficulties. As conventional production in Venezuela will stabilise in the coming years and the country is dependent on oil production, Venezuela will rely on extra-heavy oil extraction to ensure increased oil production and the stabilisation of internal accounts. - Highlights: • We analyse the future unconventional oil production capacity of Venezuela. • The study is based on operational capacity, investments capacity and future prices. • The study indicates a production shorter than that predicted by the Venezuelan government. • Venezuela can provide part of the marginal petroleum supply in the coming years

  13. Preliminary evaluation of fuel oil produced from pyrolysis of waste ...

    African Journals Online (AJOL)

    It could be refined further to produce domestic kerosene and gasoline. The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water ...

  14. Genome Annotation and Transcriptomics of Oil-Producing Algae

    Science.gov (United States)

    2015-03-16

    AFRL-OSR-VA-TR-2015-0103 GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE Sabeeha Merchant UNIVERSITY OF CALIFORNIA LOS ANGELES Final...2010 To 12-31-2014 4. TITLE AND SUBTITLE GENOME ANNOTATION AND TRANSCRIPTOMICS OF OIL-PRODUCING ALGAE 5a. CONTRACT NUMBER FA9550-10-1-0095 5b...NOTES 14. ABSTRACT Most algae accumulate triacylglycerols (TAGs) when they are starved for essential nutrients like N, S, P (or Si in the case of some

  15. Hydrogenation active sites of unsupported molybdenum sulfide catalysts for hydroprocessing heavy oils

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Y.; Araki, Y.; Honna, K. [Tsukuba-branch, Advanced Catalyst Research Laboratory, Petroleum Energy Center, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan); Miki, Y.; Sato, K.; Shimada, H. [National Institute of Materials and Chemical Research, 1-1 Higashi, Tsukuba, 305-8565 Ibaraki (Japan)

    2001-02-20

    The purpose of the present study was to elucidate the nature of the hydrogenation active sites on unsupported molybdenum sulfide catalysts, aimed at the improvement of the catalysts for the slurry processes. The number of hydrogenation active sites was found to relate to the 'inflection' on the basal plane of the catalyst particles. The comparison of the catalytic activity to that of an oil-soluble catalyst in the hydroprocessing of heavy oils suggests that the performance of the oil-soluble catalyst was near the maximum, unless another component such as Ni or Co was incorporated.

  16. New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion

    KAUST Repository

    Han, Yunqing; Elbaz, Ayman M.; Roberts, William L.; Im, Hong G.

    2016-01-01

    A new procedure to develop accurate lumped kinetic models for complex fuels is proposed, and applied to the experimental data of the heavy fuel oil measured by thermogravimetry. The new procedure is based on the pseudocomponents representing

  17. Exploring oil market dynamics: a system dynamics model and microworld of the oil producers

    Energy Technology Data Exchange (ETDEWEB)

    Morecroft, J.D.W. [London Business School (United Kingdom); Marsh, B. [St Andrews Management Institute, Fife (United Kingdom)

    1997-11-01

    This chapter focuses on the development of a simulation model of global oil markets by Royal Dutch/Shell Planners in order to explore the implications of different scenarios. The model development process, mapping the decision making logic of the oil producers, the swing producer making enough to defend the intended price, the independents, quota setting, the opportunists, and market oil price and demand are examined. Use of the model to generate scenarios development of the model as a gaming simulator for training, design of the user interface, and the value of the model are considered in detail. (UK)

  18. Exploration and production. Know-how. Extra-heavy oils and bitumen. Reserves for the future

    International Nuclear Information System (INIS)

    2004-01-01

    How can ever-expanding needs be met without jeopardizing reserve life? The answers can be summed up in a single word: the innovation. In this framework the Group Total developed their research and development activities, which are endowed with a annual budget of more than 100 million dollars. Tools from seismic imaging to thermodynamic modeling of fluids and flows in any type of reservoir can be used in combination in order to steadily reduce uncertainties and control risks. These tools will help make technologically and economically feasible to produce new resources such extra-heavy crudes, very acid gases, deeply-buried reservoirs or oil and gas reserves situated in ultra deep waters. (A.L.B.)

  19. Study of crude and plasma-treated heavy oil by low- and high-field 1H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Honorato, Hercilio D. A.; Silva, Renzo C.; Junior, Valdemar Lacerda; Castro, Eustaquio V. R. de; Freitas, Jair C. C. [Research and Methodology Development Laboratory for Crude Oil Analysis - LabPetro, Department of Chemistry, Federal University of Espirito Santo (Brazil)], email: jairccfreitas@yahoo.com.br; Piumbini, Cleiton K.; Cunha, Alfredo G.; Emmerich, Francisco G. [Department of Physics, Federal University of Espirito Santo (Brazil); Souza, Andre A. de; Bonagamba, Tito J. [Institute of Physics of Sao Carlos, University of Sao Paulo (Brazil)

    2010-07-01

    This document is intended to describe the combination of H low-field NMR and thermogravimetry (TG), rheological measurement and H high-field NMR to assess the physical and chemical changes that can occur in a heavy crude oil from treatment in a plasma reactor. This research was done using a heavy crude oil, API gravity of 10.1, which was treated in a double dielectric barrier (DDB) plasma reactor using different plasma gases: natural gas (NG), C02 or H2. The low-field HNMR experiments were conducted in a Maran Ultra spectrometer, from Oxford Instruments, at 27.5? C. After rheological analysis, a reduction in the viscosity of the plasma-treated oils in comparison to that of the crude oil was observed. Finally, it was confirmed that the use of H low-field NMR relaxometry and H high-field NMR spectroscopy allowed a separate analysis of the effects of the plasma treatment on the water and oil fractions to be made.

  20. Damage to and recovery of coastlines polluted with C-heavy oil spilled from the Nakhodka.

    Science.gov (United States)

    Hayakawa, Kazuichi; Nomura, Maki; Nakagawa, Takuya; Oguri, Seiji; Kawanishi, Takuya; Toriba, Akira; Kizu, Ryoichi; Sakaguchi, Toshifumi; Tamiya, Eiichi

    2006-03-01

    The damage to and recovery of the Japanese coastline from Suzu, Ishikawa Prefecture to Mikuni, Fukui Prefecture was investigated visually over three years after a C-heavy oil spill from the Russian tanker "Nakhodka" in the Japan Sea on January 2, 1997. The beached C-heavy oil tended to remain for a long time on coasts of bedrock and boulder/cobble/pebble but it was removed rapidly from coasts of gravel/sand and man-made structures such as concrete tetrapods. On the coasts of the latter type, wave energy appeared to be the main force removing the oil. One year after the spill, C-heavy oil tended to remain strongly on the sheltered coasts of bedrock and boulder/cobble/pebble. Even on coasts of this type, the contamination was remarkably absent by 2 years after the spill. The concentration levels of polycyclic aromatic hydrocarbons (PAHs) in oil lumps, sand and seawater were monitored during 3 years following the spill. The concentrations of PAHs having 2 or 3 rings decreased more quickly than did those of PAHs having 4 or more rings, suggesting that volatilization was the main cause of the decrease. On the other hand, the concentrations of PAHs having 4 to 6 rings did not start to decrease until 7 months after the spill. The main cause of the decrease seemed to be photolysis. The concentration of BaP in seawater off the polluted coasts was high 1 month after the spill and then decreased. Three years after the spill, the level fell to the sub ng/L level, which was as low as the level in seawater along unpolluted clean coasts in Japan. The concentration of BaP in greenling was higher than the normal level only during the first two months after the spill. These results suggest that the coastlines in Ishikawa and Fukui Prefectures that were polluted with C-heavy oil recovered in 3 years.

  1. 1000 tones of heavy water produced at ROMAG PROD, Drobeta-Turnu Severin

    International Nuclear Information System (INIS)

    2001-01-01

    On May 25, 2001 the heavy water plant ROMAG PROD at Drobeta-Turnu Severin recorded the production of the 1000-th tone of nuclear purity heavy water. The heavy water plant ROMAG PROD makes use of a technology based on the results of isotopic deuterium separation research carried out at the Research and Design Institutes of Cluj, Craiova, Pitesti and Ploiesti during 1957-1970 and the separation technology tested at Ramnicu-Valcea pilot plant (at present the Cryogenics and Isotope Separation Institute). The first investments at ROMAG PROD were made in 1979 and on July 17, 1988 was produced the first amount of heavy water at the required parameters for CANDU type nuclear reactors. The period between 1990-1992 was dedicated to the project completion, upgrading the technological facilities and retrofitting the environmental protection and monitoring systems. Production was resumed in 1992. The first 500 t of heavy water required for the Cernavoda NPP first reactor operation were produced by summer 1997. The additional amount of 500 t of heavy water was produced between 1997-2001. ROMAG PROD obtained the ISO 9001/2001 certificate for the quality management system, the ISO 14001/1997 certificate for the environmental management system and the new environmental permit

  2. Dispersed catalysts for transforming extra heavy crude oil into transportable upgraded crude: phase identification

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, S.; Canizales, E.; Machin, I. [Gerencia Depttal de Investigacion Estrategica en Refinacion PDVSA Intevep (Venezuela); Segovia, X.; Rivas, A.; Lopez, E.; Pena, J.P.; Rojas, J.D.; Sardella, R. [Gerencia Depttal de Infraestructura y Mejoramiento en Faja Petrolifera PDVSA Intevep (Venezuela)

    2011-07-01

    A new technology to convert extra heavy crude oil into transportable upgraded crude has been developed. A water/oil emulsion composed of steam and catalyst precursors is introduced in the feed which then generates unsupported dispersed catalyst in situ under thermal decomposition. The aim of this paper is to characterize the particles. The study was conducted in a laboratory and on a pilot scale on three different vacuum residues using high resolution transmission electron microscopy and a transmission electron microscope. Results showed that the particles were formed by oxides and inorganic sulphur based in transition metals and their sizes ranged between 5 and 120 nm; in addition, good dispersion was observed. This study demonstrated that the process involved in the generation of dispersed catalyst is extremely complex and showed that further work with heavy crude oils and its residua is required to understand the mechanisms involved.

  3. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Zia [Battelle Memorial Inst., Columbus, OH (United States); Chadwell, Brad [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Hindin, Barry [Battelle Memorial Inst., Columbus, OH (United States); Ralston, Kevin [Battelle Memorial Inst., Columbus, OH (United States)

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  4. Funding the heavy oil sector's innovation : maximizing Canada's R and D tax credit

    International Nuclear Information System (INIS)

    Hill, G.S.; Bernard, M.; Cheung, S.

    2008-01-01

    Canada offers one of the most generous, broadly applicable business tax incentives for eligible research and development projects in the world. The scientific research and experimental development (SR and ED) program is administered by the Canada Revenue Agency and is the single largest federal program, providing over 3 billion dollars in tax assistance to Canadian businesses in 2006. The development of in-situ oil sands recovery technologies such as steam assisted gravity drainage and other techniques have been research-intensive undertakings that have historically benefited from the SR and ED program, many of which are now commercial available technologies. The SR and ED program definition, eligible activities, eligible expenditures, and benefits were described in this paper. These benefits include the ability to deduct qualifying expenditures currently or to defer them indefinitely, as well as investment tax credits that reduce taxes payable on a dollar for dollar basis. Research and development in the heavy oil and oil sands industries was also discussed with reference to platforms for research and development; areas of potential SR and ED. It was concluded that the SR and ED program is a vital source of financing to many Canadian corporations, and could offer significant assistance to companies in the heavy oil and oil sands sector by returning 20-35 per cent of the expenditures back at the federal level as a tax credit. 5 refs

  5. Potential use of produced oil sample analysis to monitor SAGD performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Nexen Petroleum International, Calgary, AB (Canada); Wollen, C. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[OPTI-Nexen Inc., Calgary, AB (Canada); Yang, P.; Fustic, M. [Nexen Petroleum International, Calgary, AB (Canada)

    2008-10-15

    Oil viscosity and compositional gradients can affect the performance of steam injection recovery processes. In this study, reservoir simulations were conducted to investigate the effects of viscosity variation with depth on steam assisted gravity drainage (SAGD) processes and produced oil characteristics. The 2-D reservoir model consisted of a reservoir with a 40 m clean sand matrix, overtopped with interbedded shales and sand. The oil phase was comprised of 2 pseudo-components representing top and bottom bitumens. Viscosities and concentrations of the pseudo-components were calculated using linear mixing rules. Four different viscosity distribution scenarios were examined. Conceptual 3-D models were then constructed to examine the characteristics of produced oil samples in scenarios with shale barriers extending down the well directions and blocking parts of the reservoir. Results from the simulations showed that produced oil characteristics are related to the in situ profiles of reservoir flow barriers. Produced oil characteristics can be used in conjunction with oil rates, surface heave and other data to predict steam chamber development and detect the presence of baffles and barriers. The relationship between the SAGD steam chamber and variations in produced fluid characteristics were accurately characterized by the simulations. It was concluded that the approach can be used to monitor SAGD steam chamber growth. 10 refs., 1 tab., 19 figs.

  6. Parental exposure to heavy fuel oil induces developmental toxicity in offspring of the sea urchin Strongylocentrotus intermedius.

    Science.gov (United States)

    Duan, Meina; Xiong, Deqi; Yang, Mengye; Xiong, Yijun; Ding, Guanghui

    2018-05-03

    The present study investigated the toxic effects of parental (maternal/paternal) exposure to heavy fuel oil (HFO) on the adult reproductive state, gamete quality and development of the offspring of the sea urchin Strongylocentrotus intermedius. Adult sea urchins were exposed to effluents from HFO-oiled gravel columns for 7 days to simulate an oil-contaminated gravel shore, and then gametes of adult sea urchins were used to produce embryos to determine developmental toxicity. For adult sea urchins, no significant difference in the somatic size and weight was found between the various oil loadings tested, while the gonad weight and gonad index were significantly decreased at higher oil loadings. The spawning ability of adults and fecundity of females significantly decreased. For gametes, no effect was observed on the egg size and fertilization success in any of the groups. However, a significant increase in the percentage of anomalies in the offspring was observed and then quantified by an integrative toxicity index (ITI) at 24 and 48 h post fertilization. The offspring from exposed parents showed higher ITI values with more malformed embryos. The results confirmed that parental exposure to HFO can cause adverse effects on the offspring and consequently affect the recruitment and population maintenance of sea urchins. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Experimental and Theoretical Determination of Heavy Oil Viscosity Under Reservoir Conditions; ANNUAL

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Barrufet, Maria

    2002-01-01

    The main objective of this research was to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes

  8. Feasibility study for the installation of a nuclear reactor in thermal stimulation processes in heavy oil extraction from Orinoco oil belt

    International Nuclear Information System (INIS)

    Munoz, A.; Sanchez, R.

    1982-01-01

    Due to strategic need in the exploitation of heavy and extraheavy oil wells of Orinoco oil belt, technical and economical studies have been carried out to determine an optimal method for oil production and exploitation. So far, studies indicate thermal stimulation is the most adequate technique. Experience shows that stimulation cost is high when traditional methods (boilers) are used. The profit is due to the high price of oil in international market. Due to actual oil price trends, evaluation of nontraditional methods to generate steam in thermal stimulation processes (steam injection) is in order. A nuclear reactor as steam generator was evaluated. It was found economical feasibility and saving in fuel cost between 31.08% and 72.63% depending on oil prices

  9. New insights into oxidation behaviours of crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Mehta, S.A.; Moore, R.G. [Calgary Univ., AB (Canada)

    2006-07-01

    Innovative technologies will be needed to develop many of the world's oil reservoirs in an economically sustainable manner. In recent years, air injection for light oil reservoirs has gained recognition as an Improved Oil Recovery (IOR) process. In this process, the oxygen from the injected air reacts with a small fraction of the reservoir oil at high temperature to produce a mixture of carbon dioxide and nitrogen. The produced gas generated by the reaction mobilizes the oil downstream, thereby sweeping oil towards the production wells. High pressure air injection used in light oil reservoirs differs from the process used in heavy oil reservoirs, despite the fact that various oxidation reaction schemes exist. The key challenge facing the air injection process is the complexity of the oxidation reaction for crude oil and the lack of understanding of the oxidation behavior of light oils. This study identified a range of oxidation behaviors between light oil and heavy oil. The relationship between crude oil composition and its oxidation behaviors was also examined with reference to 3 different oils and their SARA (saturates, aromatics, resins and asphaltenes) fractions. This study was carried out at various pressures and temperatures using thermogravimetry and pressurized differential scanning calorimetry (PDSC) as the thermal analysis techniques.

  10. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report summarizes the results of research carried out in 1986 within the framework of the program 'High Energy Density in Matter Produced by Heavy Ion Beams' which is funded by the Federal Ministry for Research and Technology. Its initial motivation and its ultimate goal is the question whether inertial confinement can be achieved by intense beams of heavy ions. (orig./HSI)

  11. World resources of oil products

    International Nuclear Information System (INIS)

    Bonnaterre, Raymond

    2014-01-01

    In a first part, the author outlines that the issue of density of an oil product raises the question of the validity of a counting approach based on volumes. As oil industries produce always less heavy products and always more light products, this means that always less oil is needed to produce a gallon or a litre of fuel out of a refinery. The author comments the evolution of crude oil extraction. In a second part, he outlines that hydrocarbon productions become always more complex with respect to their origin. Thus, during gas extraction, humid gases are recovered which contain an important part of hydrocarbons similar to light oil. These aspects and the development of shale gas exploitation will make the USA the first oil producer in the world whereas they still have to import heavy oil to feed their refineries. He discusses the level of reserves and production costs with respect to the product type or its extraction location. He discusses the evolution of the estimates of world ultimately recoverable resources (synthesis processes excluded). He comments the level of condensate extraction ratio of the main shale gas fields in the USA and outlines the cost of natural gas imports for France. He outlines the importance of GTL (gas to liquid) processes, the increasing importance of bio-fuels (notably isobutanol biosynthesis and terpene biosynthesis). In the third part, the author states that the barrel price should keep on increasing and, in the fourth part, proposes a list of issues which will impact the future of the oil market

  12. New oil and gas incentives in Saskatchewan

    International Nuclear Information System (INIS)

    Patel, B.

    2003-01-01

    Saskatchewan is Canada's second largest producer of crude oil and the third largest producer of natural gas with nearly 400 oil and gas companies operating in the province. The oil ranges from heavy sour to light sweet crude oil. Nearly half of the production is heavy oil, 30 per cent is medium oil and 20 per cent is light oil. In 2002, the Province announced changes to the oil and gas Royalty and Tax Regime in an effort to encourage new oil and gas exploration and development activities in Saskatchewan and to help the industry compete with other jurisdictions around the world. This paper examined the pre-October 2002 Saskatchewan Crown Royalty and freehold production tax structure and compared them to the new structure. The paper also briefly outlined the corporation capital tax, resource surcharge, and flow-through share tax credit initiatives announced in 2001 and 2002. With reductions in the Crown Royalty, freehold production tax and corporation capital taxes, the Province expects that more than 9000 oil and gas wells will be drilled in the next decade, representing new investment of about $4.3 billion and 40,000 new jobs. The flow-through share credit may not attract significant investment because it only benefits those who pay taxes in Saskatchewan. 40 refs

  13. Enhanced heavy oil recovery for carbonate reservoirs integrating cross-well seismic–a synthetic Wafra case study

    KAUST Repository

    Katterbauer, Klemens

    2015-07-14

    Heavy oil recovery has been a major focus in the oil and gas industry to counter the rapid depletion of conventional reservoirs. Various techniques for enhancing the recovery of heavy oil were developed and pilot-tested, with steam drive techniques proven in most circumstances to be successful and economically viable. The Wafra field in Saudi Arabia is at the forefront of utilizing steam recovery for carbonate heavy oil reservoirs in the Middle East. With growing injection volumes, tracking the steam evolution within the reservoir and characterizing the formation, especially in terms of its porosity and permeability heterogeneity, are key objectives for sound economic decisions and enhanced production forecasts. We have developed an integrated reservoir history matching framework using ensemble based techniques incorporating seismic data for enhancing reservoir characterization and improving history matches. Examining the performance on a synthetic field study of the Wafra field, we could demonstrate the improved characterization of the reservoir formation, determining more accurately the position of the steam chambers and obtaining more reliable forecasts of the reservoir’s recovery potential. History matching results are fairly robust even for noise levels up to 30%. The results demonstrate the potential of the integration of full-waveform seismic data for steam drive reservoir characterization and increased recovery efficiency.

  14. Heavy oil recovery: the challenger to minimize environmental damages; Recolhimento de oleo pesado: o desafio para reducao de impactos ambientais

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Frederico de Azevedo; Wegner, Isaac Rafael [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The maritime accidents that result in oil spill are high on the public environmental concerns, because of these; the oil industry has a high priority to prevent and control them. Heavy oils, the most difficult kind of oil to be recovered, could impact the maritime environmental with a different approach, it could impact the water column and the sea bottom, so much different them the float oil. One these environmental impacts could be done by. This challenger have been overcome by the development of procedures that manner the heavy oil behavior on waterways, gulf and sea could be understood. Once this process could be understood to become easy monitoring the oil track and mitigate the oil impact on the water environment. This paper describe how the PETROBRAS Environmental Response Team has been establish a mean do conduce this task. (author)

  15. Petrophysical studies in heavy oil sands with early water production - Hamaca area, Orinoco Oil Belt

    Energy Technology Data Exchange (ETDEWEB)

    Salisch, H.A.

    1982-07-01

    This study describes the main lines of petrophysical research in the Hamaca-Pao region of the Orinoco Oil Belt. The techniques and parameters most appropriate for petrophysical studies in the area of interest are discussed. Field tests have confirmed the conclusions of this study on early water production and low oil recovery. Steam injection was shown to be a means for increasing oil mobility to such a degree that significant amounts of additional oil can be produced.

  16. Design of three-phase gravity separators for heavy oils; Projeto de separadores trifasicos para oleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rosivania P.; Bannwart, Antonio C. [Universidade Estadual de Campinas, SP (Brazil); Carvalho, Carlos H.M. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The primary processing of crude oil consists in the separation of oil, gas, water (and solids suspensions, if present), the conditioning of the hydrocarbons for transportation to the refinery, and the water treatment for re-use. With the discovery of significant fields of heavy oil in Brazil, whose densities are close to the density of water and viscosities are about hundreds to thousand times higher than the viscosity of water, the production and primary processing of this fluid with usual technology is not attractive and often unfeasible. It is well known that the demand from the majority of the refineries is that the quantity of water dispersion in the oil (BSW) is below 1%, so this work investigates the behavior of the water dispersion in heavy oil, causing an increase in viscosity and density. Therefore, this work intends to define strategies to efficiently separate these liquids, emphasizing the physical aspects of separation. Mathematica software was used for the equation modeling, which governs the horizontal separation vases dimensioning, allowing the observation of the influence of many variables on the separator dimensions. (author)

  17. NORM emissions from heavy oil and natural gas fired power plants in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Haddad, Kh.

    2012-01-01

    Naturally occurring radioactive materials (NORM) have been determined in fly and bottom ash collected from four major Syrian power plants fired by heavy oil and natural gas. 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. 210 Pb activity concentrations have reached 3393 ± 10 Bq kg −1 and 4023 ± 7 Bq kg −1 in fly ash and bottom ash, respectively; lower values of 210 Po were observed due to its high volatility. In addition, 210 Po and 210 Pb annual emissions in bottom ash from mixed (heavy oil and natural gas) fired power plants varied between 2.7 × 10 9 –7.95 × 10 9 Bq and 3.5 × 10 9 –10 10 Bq, respectively; higher emissions of 210 Po and 210 Pb from gas power plants being observed. However, the present study showed that 210 Po and 210 Pb emissions from thermal power plants fired by natural gas are much higher than the coal power plants operated in the World. - Highlights: ► NORM have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas. ► 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. ► 210 Po and 210 Pb annual emissions from these power plants were estimated.

  18. Hydrotreatment of heavy oil from coal liquefaction on Sulfide Ni - W Catalysts

    International Nuclear Information System (INIS)

    Zhi-ping Lei; Li-juan Gao; Heng-fu Shui; Shi-biao, Ren; Zhi-cai Wang; Kang-shi Gang

    2011-01-01

    Heavy oil (distillation temperature: 320-340 deg C) derived from the direct coal liquefaction process using Shengli coal were hydrotreated using sulfided Ni-Mo/Al 2 O 3 , Ni-W/Al 2 O 3 , and Ni-W/SiO 2 catalysts respectively. The sulfided catalysts were characterized by BET, XRD, H 2 -TPR and NH 3 -TPD respectively. The evaluations of the hydrodenitrogenation (HDN) and hydrodearomatization (HDA) properties of heavy oil on the three catalysts were carried out at 400 deg C and 5.0 MPa initial H2 pressure. The W-based catalysts displayed better performances than Mo-based catalysts for the HDN and HDA reactions. Al 2 O 3 supported catalysts were found to have higher catalytic activities than on SiO 2 supported ones. The activities of sulfided catalysts were associated mainly with the nature of active sites, acidity, metal sulfide crystallite size and the amount of the reducible sulfur species of metal sulfide. (author)

  19. Oil producers facing a common challenge

    International Nuclear Information System (INIS)

    Galal, E.E.

    1992-01-01

    Among the numerous challenges facing our modern world, perhaps the most urgent and dominant are energy related. From the perspective of developing countries they are, in order of priorities, development, energy security and environment. Oil covers above 38% of the global commercial energy needs and gas about 20%. In some commanding sectors of the economy, like transport, oil is for now virtually the irreplaceable source of energy. In addition, oil and gas are two valuable primary materials of the chemical industry. It also happens that oil consumption is one of the sources of environmental pollution through the emission of CO 2 . Utilisation of the world's finite fossil energy resources (88% of total commercial energy) in the service of development reflects all the negative attributes of the mismanagement of the global economy, exemplified by waste, inefficiency, unfair terms of trade, market instability and short-sighted policies. These serious inequities have been further compounded by the growing menace of environmental and climatic degradation. In dealing with the interactions between these three complex systems, i.e., energy, environment and development, it is important for oil producers to delineate their priorities clearly, if they are to disentangle credible common goals for an international convention. (author)

  20. Metal Oxide Nanoparticles Supported on Macro-Mesoporous Aluminosilicates for Catalytic Steam Gasification of Heavy Oil Fractions for On-Site Upgrading

    Directory of Open Access Journals (Sweden)

    Daniel López

    2017-10-01

    Full Text Available Catalytic steam gasification of extra-heavy oil (EHO fractions was studied using functionalized aluminosilicates, with NiO, MoO3, and/or CoO nanoparticles with the aim of evaluating the synergistic effect between active phase and the support in heavy oil on-site upgrading. Catalysts were characterized by chemical composition through X-ray Fluorescence, surface area, and pore size distribution through N2 adsorption/desorption, catalyst acidity by temperature programmed desorption (TPD, and metal dispersion by pulse H2 chemisorption. Batch adsorption experiments and catalytic steam gasification of adsorbed heavy fractions was carried out by thermogravimetric analysis and were performed with heavy oil model solutions of asphaltenes and resins (R–A in toluene. Effective activation energy estimation was used to determine the catalytic effect of the catalyst in steam gasification of Colombian EHO. Additionally, R–A decomposition under inert atmosphere was conducted for the evaluation of oil components reactions with active phases and steam atmosphere. The presence of a bimetallic active phase Inc.reases the decomposition of the heavy compounds at low temperature by an increase in the aliphatic chains decomposition and the dissociation of heteroatoms bonds. Also, coke formation after steam gasification process is reduced by the application of the bimetallic catalyst yielding a conversion greater than 93%.

  1. Heavy Metal In Food Ingredients In Oil Refi nery Industrial Area, Dumai

    Directory of Open Access Journals (Sweden)

    Dian Sundari

    2016-06-01

    Full Text Available Background: Industrial waste generally contains a lot of heavy metals such as Plumbum (Pb, Arsenic (As, Cadmium(Cd and Mercury (Hg, which can contaminate the surrounding environment and cause health problems. Bioaccumulation ofheavy metals from the environment can occur in foodstuffs. The study aims to determine levels of heavy metals Pb, Cd, Asand Hg in foodstuffs in the oil refi nery industry. Methods: The analytical method used Atomic Absorption Spectrophotometer(AAS. Samples were taken from two locations, namely: the exposed area and non exposed area. The sample consisted ofcassava, papaya leaves, fern leaves, cassava leaves, guava, papaya and catfi sh. Results: The analysis showed levels ofmetals As in all samples at exposed locations is below the maximum limit of SNI, the location is not exposed only in catfi shlevels of As (2.042 mg/kg exceeds the SNI. Cd levels of both locations are not detected. Pb levels in catfi sh in exposedlocations (1,109 mg/kg exceeds the SNI. Hg levels in leaves of papaya, cassava leaves, fern leaves, cassava and fruitpapaya exceed SNI. Conclusion: There has been a heavy metal contamination in foodstuffs. Recommendation: Thelocal people are advised to be careful when consuming food stuffs from oil refi nery industrial area.

  2. Associating Polymer Networks Based on Cyclodextrin Inclusion Compounds for Heavy Oil Recovery

    Directory of Open Access Journals (Sweden)

    Xi Li

    2018-01-01

    Full Text Available This work evaluates an approach to improve the enhanced heavy oil recovery performance of hydrophobic associating polymer. A polymeric system based on water-soluble hydrophobic associating polymer (WSHAP and cyclodextrin (CD polymer was proposed in this work. Addition of CD polymer to WSHAP forms interpolymer bridges by inclusion of CD groups with hydrophobic tails, and thereby the network structure is strengthened. The proposed system offers good viscoelasticity, pronounced shear thinning, and interesting viscosity-temperature relations. Sand pack tests indicated that the proposed system can build high resistance factor during the propagation in porous media, and its moderate adsorption phenomenon was represented by the thickness of the adsorbed layer. The relationship between effective viscosity and oil recovery increment indicated that the proposed system can significantly reduce the residual oil saturation due to the “piston-like” propagation. The overall oil recovery was raised by 5.7 and 24.5% of the original oil in place compared with WSHAP and partially hydrolyzed polyacrylamide (HPAM, respectively.

  3. Technology transfer to US oil producers: A policy tool to sustain or increase oil production

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, W. T.

    1990-03-01

    The Department of Energy provided the Interstate Oil Compact Commission with a grant to identify and evaluate existing technology transfer channels to operators, to devise and test improvements or new technology transfer channels and to make recommendations as to how the Department of Energy's oil and gas technology transfer methods could be improved. The IOCC conducted this effort in a series of four tasks: a structural analysis to characterize the oil producing industry according to operator production size class, geographic location, awareness and use of reservoir management technologies, and strategies for adding reserves and replacing produced reserves; targeted interviews conducted with some 300 oil and gas industry participants to identify current technology transfer channels and their relative usefulness for various classes of industry participants; a design and testing phase, in which the IOCC critiqued the current technology transfer structure, based on results of the structural analysis and targeted interviews, and identified several strategies for improvement; and an evaluation of existing state outreach programs to determine whether they might provide a model for development of additional outreach programs in other producing states.

  4. Alternatives for optimization of the heavy oil production in onshore marginal fields in Brazil; Alternativas para otimizacao de producao de oleos pesados em campos marginais terrestres no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Arlindo Antonio de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia

    2004-07-01

    The intention of this article is to present possible alternatives for optimization of the production of heavy oils in marginal onshore fields in Brazil. The use of gas micro-turbines, the application of SAGD (Steam Assisted Gravity Drainage), the use of the drilling technique for river crossing and to a proposal for a new system of the rig less workovers are approached. The focus is the search of the increment of the production, the increase of the factor of final recovery, the global reduction of the costs and the minimization of the environmental impacts. The volumes of heavy oils in Campos Basin and in national onshore areas they are significant and, therefore, techniques and procedures that optimize its production are strategic. In the Brazilian Northeast there are a series of small fields of low productivity, in general of heavy oils, some in production there are more than twenty years that need of a reduction of the cost for barrel to continue producing. A realistic and responsible posture with the use of probabilistics concepts, techniques of engineering of the reliability, adoption of 'tolerable' levels of risk (associate to the return), attendance on line of the sceneries, premises and criteria, (proposal of the methodology GERISK), are relevant factors that can propitiate not only the reduction of the cost for produced barrel as well as to take the an increase of the factor of final recovery of the field. (author)

  5. Alternatives for optimization of the heavy oil production in onshore marginal fields in Brazil; Alternativas para otimizacao de producao de oleos pesados em campos marginais terrestres no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Arlindo Antonio de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-graduacao em Energia

    2004-07-01

    The intention of this article is to present possible alternatives for optimization of the production of heavy oils in marginal onshore fields in Brazil. The use of gas micro-turbines, the application of SAGD (Steam Assisted Gravity Drainage), the use of the drilling technique for river crossing and to a proposal for a new system of the rig less workovers are approached. The focus is the search of the increment of the production, the increase of the factor of final recovery, the global reduction of the costs and the minimization of the environmental impacts. The volumes of heavy oils in Campos Basin and in national onshore areas they are significant and, therefore, techniques and procedures that optimize its production are strategic. In the Brazilian Northeast there are a series of small fields of low productivity, in general of heavy oils, some in production there are more than twenty years that need of a reduction of the cost for barrel to continue producing. A realistic and responsible posture with the use of probabilistics concepts, techniques of engineering of the reliability, adoption of 'tolerable' levels of risk (associate to the return), attendance on line of the sceneries, premises and criteria, (proposal of the methodology GERISK), are relevant factors that can propitiate not only the reduction of the cost for produced barrel as well as to take the an increase of the factor of final recovery of the field. (author)

  6. Accurate numerical simulation of reaction-diffusion processes for heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Govind, P.A.; Srinivasan, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas Univ., Austin, TX (United States)

    2008-10-15

    This study evaluated a reaction-diffusion simulation tool designed to analyze the displacement of carbon dioxide (CO{sub 2}) in a simultaneous injection of carbon dioxide and elemental sodium in a heavy oil reservoir. Sodium was used due to the exothermic reaction of sodium with in situ that occurs when heat is used to reduce oil viscosity. The process also results in the formation of sodium hydroxide that reduces interfacial tension at the bitumen interface. A commercial simulation tool was used to model the sodium transport mechanism to the reaction interface through diffusion as well as the reaction zone's subsequent displacement. The aim of the study was to verify if the in situ reaction was able to generate sufficient heat to reduce oil viscosity and improve the displacement of the heavy oil. The study also assessed the accuracy of the reaction front simulation tool, in which an alternate method was used to model the propagation front as a moving heat source. The sensitivity of the simulation results were then evaluated in relation to the diffusion coefficient in order to understand the scaling characteristics of the reaction-diffusion zone. A pore-scale simulation was then up-scaled to grid blocks. Results of the study showed that when sodium suspended in liquid CO{sub 2} is injected into reservoirs, it diffuses through the carrier phase and interacts with water. A random walk diffusion algorithm with reactive dissipation was implemented to more accurately characterize reaction and diffusion processes. It was concluded that the algorithm modelled physical dispersion while neglecting the effect of numerical dispersion. 10 refs., 3 tabs., 24 figs.

  7. The future of Alberta's oil and gas: Long-term strategies necessary to sustain markets

    International Nuclear Information System (INIS)

    Anon

    2002-01-01

    The Canadian Association of Petroleum Producers predicts that based on current combustion and depending on world oil prices, Canadian oil sands can supply North American demand for 40 years and Canadian natural gas can meet North American requirements for 20 years. Natural gas production in the U.S. is greater in total energy output than oil production of the world's largest oil producer, Saudi Arabia. At the same time the U.S. gas industry is confronting a unique and profound combination of events, namely it is facing the first true shortage of deliverable reserves in its history. This may be harsh news for the consumer, however, for Alberta's oil and gas industry, the new world energy order has the potential to be a huge blessing. With relatively large, unexploited oil and gas reserves and a next door neighbour with the world's most voracious appetite for fossil fuels, it is inevitable that much of this shortage is going to be satisfied by oil and gas from Canadian sources. Nevertheless, there are some barriers to be overcome. The greatest barriers to an assured U. S. market for Canadian oil and gas is competition from Venezuelan heavy crude and synthetic crude and light sour crude from the Gulf of Mexico. To assure a ready market for Canadian heavy crude in the U. S. Midwest, Canadian producers need to be pro-active in working with U. S. refiners to develop new conversion capacity, or develop upgrading in Canada. Mexico and Venezuela have been successfully participating in major U. S. expansions in coker projects to allow projects to run heavy crude. This will eventually result in an additional 600,000 barrels per day of heavy crude available on the U. S. market, putting further pressure on Canadian markets. The challenge is for Albertan producers to undertake similar strategies with U. S. Midwest refiners for heavy and synthetic crude. Long-term supply arrangements appear to be the only way to induce American Midwest refiners to make more investment to process

  8. Check Amount of heavy metals in muscle and fish oil Rutilus frisii kutum, Clupeonella cultriventris and Liza saliens

    Directory of Open Access Journals (Sweden)

    S. Salehi Borban

    2017-02-01

    Full Text Available Heavy metal pollution in marine environments and the potential for bioaccumulation of contaminants have been considered as a serious threat for a long time. These contaminants accumulate in fish body and then transferred through the food chain to humans. The aim of this study was to determine the heavy metals cadmium, lead, arsenic, mercury and copper and iron metals in muscle and fish oil (Rutilus frisii kutum ،Clupeonella cultriventris ،Liza saliens. Three samples of Rutilus frisii kutum ،Clupeonella cultriventris and Liza saliens were caught in Mahmoud Abad area. One part of the muscle was dried by freeze drying method and another part was used to extract the oil. Then, using the atomic absorption spectrometric and Mercury Analyzer heavy metals concentrations were determined in muscle and fish oil. The results of muscle showed the highest accumulation of mercury (0.347±0.018, cadmium (0.08±0.001, copper (1.2156±0.059 and iron (2.643±0.231 in Rutilus frisii kutum and the highest level of lead (0.3593±0.015 and arsenic (0.0892±0.001 in Liza saliens. Moreover, in the fish oils samples, lead and mercury had the highest concentrations. The heavy metals in the samples were lower than or close to international standards. Therefore, their use does not pose a health problem for the consumers.

  9. Partitioning of naturally occurring radioactive material (NORM) and heavy metal in terminal crude oil sludge when undergoing thermal treatment

    International Nuclear Information System (INIS)

    Mohd Fuad, H.A.; Muhd Noor Muhd Yunus; Shamsuddin, A.H.; Sopian, K.

    2000-01-01

    In Malaysia currently more than one hundred oil rigs in operation extracting the crude oil, offshore the state of Terengganu, Sabah and Sarawak. Crude oil sludge are generated during the extraction of crude oil from the underground oil reservoir to the oil rigs, the separation process at the oil rigs and its storage at the crude oil terminal. These sludge are considered as Scheduled Waste (contains heavy metals) by Department of Environmental (DOE) and Low Level Radioactive Waste (contain NORM) by the Atomic Energy Licensing Board (AELB), thus cannot be disposed freely without proper control. The current method of disposal, such as land farming is not recommended and will have long term impact to the environment, whereas storage practices in plastic drums does not warrant an ultimate solution. Due to its organic nature, there is a move to treat this sludge by using thermal treatment technology but prior to this, a study has to be carried out to determine the partitioning of the various elements present in the sludge. Gamma spectroscopy and Neutron Activation Analysis (NAA) were used to analyze the concentrations of radionuclides whereas NAA as well as ICP-MS techniques were applied for heavy metal analysis in the sludge samples. The samples were then heated at temperature ranging from 100 degree C - 800 degree C for a period of 30 - 150 minutes. The ash produced at that temperature and duration were then analyzed again for the various elemental concentrations using the above mentioned techniques. The percent volatilization was then derived mathematically. From this study, it was found that the percentage of volatilization varies from 2-70%, which is a function of the elements of concerned, temperature and time. Uranium seems to volatilized much more than the rest of radionuclides. Higher temperature (>500 degree C) and longer exposure time (>60 minutes) promoted metal and radionuclide volatilization significantly. Typical to incinerator operating environment i

  10. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    Science.gov (United States)

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.

  11. Sub-Sahara's second largest oil producer

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, C

    1991-05-01

    With the prospects for peace in Angola following the settlement of the civil war, the oil producing potential for the country is briefly reviewed. Topics covered include the problems of economic growth and development because of the civil war and communist ideology, US foreign policy, production sharing, military expenditure and economic planning. (UK).

  12. Operational Aspects of Fiscal Policy in Oil-Producing Countries

    OpenAIRE

    Steven A Barnett; Rolando Ossowski

    2002-01-01

    Oil-producing countries face challenges arising from the fact that oil revenue is exhaustible, volatile, and uncertain, and largely originates from abroad. Reflecting these challenges, the paper proposes some important general principles for the formulation and assessment of fiscal policy in these countries. The main findings can be summarized in some key guidelines: the non-oil balance should feature prominently in the formulation of fiscal policy; it should generally be adjusted gradually; ...

  13. Isolation of Biosurfactant Producing Bacteria from Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    A Tabatabaee, M Mazaheri Assadi, AA Noohi,VA Sajadian

    2005-01-01

    Full Text Available Biosurfactants or surface-active compounds are produced by microoaganisms. These molecules reduce surface tension both aqueous solutions and hydrocarbon mixtures. In this study, isolation and identification of biosurfactant producing bacteria were assessed. The potential application of these bacteria in petroleum industry was investigated. Samples (crude oil were collected from oil wells and 45 strains were isolated. To confirm the ability of isolates in biosurfactant production, haemolysis test, emulsification test and measurement of surface tension were conducted. We also evaluated the effect of different pH, salinity concentrations, and temperatures on biosurfactant production. Among importance features of the isolated strains, one of the strains (NO.4: Bacillus.sp showed high salt tolerance and their successful production of biosurfactant in a vast pH and temperature domain and reduced surface tension to value below 40 mN/m. This strain is potential candidate for microbial enhanced oil recovery. The strain4 biosurfactant component was mainly glycolipid in nature.

  14. Response to heavy, non-floating oil spilled in a Great Lakes river environment: a multiple-lines-of-evidence approach for submerged oil assessment and recovery

    Science.gov (United States)

    Dollhopf, Ralph H.; Fitzpatrick, Faith A.; Kimble, Jeffrey W.; Capone, Daniel M.; Graan, Thomas P.; Zelt, Ronald B.; Johnson, Rex

    2014-01-01

    The Enbridge Line 6B pipeline release of diluted bitumen into the Kalamazoo River downstream of Marshall, MI in July 2010 is one of the largest freshwater oil spills in North American history. The unprecedented scale of impact and massive quantity of oil released required the development and implementation of new approaches for detection and recovery. At the onset of cleanup, conventional recovery techniques were employed for the initially floating oil and were successful. However, volatilization of the lighter diluent, along with mixing of the oil with sediment during flooded, turbulent river conditions caused the oil to sink and collect in natural deposition areas in the river. For more than three years after the spill, recovery of submerged oil has remained the predominant operational focus of the response. The recovery complexities for submerged oil mixed with sediment in depositional areas and long-term oil sheening along approximately 38 miles of the Kalamazoo River led to the development of a multiple-lines-of-evidence approach comprising six major components: geomorphic mapping, field assessments of submerged oil (poling), systematic tracking and mapping of oil sheen, hydrodynamic and sediment transport modeling, forensic oil chemistry, and net environmental benefit analysis. The Federal On-Scene Coordinator (FOSC) considered this information in determining the appropriate course of action for each impacted segment of the river. New sources of heavy crude oils like diluted bitumen and increasing transportation of those oils require changes in the way emergency personnel respond to oil spills in the Great Lakes and other freshwater ecosystems. Strategies to recover heavy oils must consider that the oils may suspend or sink in the water column, mix with fine-grained sediment, and accumulate in depositional areas. Early understanding of the potential fate and behavior of diluted bitumen spills when combined with timely, strong conventional recovery methods can

  15. Produced water: Market and global trends - oil production - water production - choice of technology

    International Nuclear Information System (INIS)

    Robertson, Steve

    2006-01-01

    The presentation discusses various aspects of the world oil production, the energy demand, the future oil supply, the oil prices and the production growth. Some problems with produced water are also discussed as well as aspects of the market for produced water technology (tk)

  16. ECOLOGICAL REGIONALIZATION METHODS OF OIL PRODUCING AREAS

    Directory of Open Access Journals (Sweden)

    Inna Ivanovna Pivovarova

    2017-01-01

    Full Text Available The paper analyses territory zoning methods with varying degrees of anthropogenic pollution risk. The summarized results of spatial analysis of oil pollution of surface water in the most developed oil-producing region of Russia. An example of GIS-zoning according to the degree of environmental hazard is presented. All possible algorithms of cluster analysis are considered for isolation of homogeneous data structures. The conclusion is made on the benefits of using combined methods of analysis for assessing the homogeneity of specific environmental characteristics in selected territories.

  17. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    Science.gov (United States)

    Troutt, William D; DiDonato, Matthew D

    2017-11-01

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  18. Combined production of hydrogen and power from heavy oil gasification: Pinch analysis, thermodynamic and economic evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Domenichini, R.; Gallio, M. [Foster Wheeler Italiana Spa, via Caboto 1, 20094 Corsico (Milano) (Italy); Lazzaretto, A. [University of Padova, Department of Mechanical Engineering, via Venezia 1, 35131 Padova (Italy)

    2010-05-15

    Integrated Gasification Combined Cycle (IGCC) represents a commercially proven technology available for the combined production of hydrogen and electricity power from coal and heavy residue oils. When associated with CO{sub 2} capture and sequestration facilities, the IGCC plant gives an answer to the search for a clean and environmentally compatible use of high sulphur and heavy metal contents fuels, the possibility of installing large size plants for competitive electric power and hydrogen production, and a low cost of CO{sub 2} avoidance. The paper describes two new and realistic configurations of IGCC plant fed by refinery heavy residues and including a CO{sub 2} capture section, which are proposed on the basis of the experience gained in the construction of similar plants. They are based on oxygen blown entrained bed gasification and sized to produce a large amount of hydrogen and to feed one or two gas turbines of the combined cycle unit. The main thermodynamic and technological characteristics of the total plants are evaluated focusing on the heat integration between syngas cooling and combined cycle sections. Moreover, the overall performance characteristics and investment cost are estimated to supply a reliable estimate for the cost of electricity, given a value for the hydrogen selling price. (author)

  19. Combined production of hydrogen and power from heavy oil gasification: Pinch analysis, thermodynamic and economic evaluations

    International Nuclear Information System (INIS)

    Domenichini, R.; Gallio, M.; Lazzaretto, A.

    2010-01-01

    Integrated Gasification Combined Cycle (IGCC) represents a commercially proven technology available for the combined production of hydrogen and electricity power from coal and heavy residue oils. When associated with CO 2 capture and sequestration facilities, the IGCC plant gives an answer to the search for a clean and environmentally compatible use of high sulphur and heavy metal contents fuels, the possibility of installing large size plants for competitive electric power and hydrogen production, and a low cost of CO 2 avoidance. The paper describes two new and realistic configurations of IGCC plant fed by refinery heavy residues and including a CO 2 capture section, which are proposed on the basis of the experience gained in the construction of similar plants. They are based on oxygen blown entrained bed gasification and sized to produce a large amount of hydrogen and to feed one or two gas turbines of the combined cycle unit. The main thermodynamic and technological characteristics of the total plants are evaluated focusing on the heat integration between syngas cooling and combined cycle sections. Moreover, the overall performance characteristics and investment cost are estimated to supply a reliable estimate for the cost of electricity, given a value for the hydrogen selling price.

  20. Assessment of the quality of bran and bran oil produced from some Egyptian rice varieties.

    Science.gov (United States)

    Salem, Eglal G; El Hissewy, Ahmed; Agamy, Neveen F; Abd El Barry, Doaa

    2014-04-01

    Rice (Oryza sativa L.) is one of the leading food crops of the world, the staple food of over half the world's population. The bran, which is an important byproduct obtained during rice milling, constitutes about 1/10 of the weight of the rice grain. Rice bran is the outer brown layer including the rice germ that is removed during the milling process of brown grain. This milling byproduct is reported to be high in natural vitamins and minerals, particularly vitamin E. The present study was conducted to determine the chemical composition of bran and bran oil of 13 different rice varieties commonly produced in Egypt, to study the utilization of rice bran in bread production, and to assess the quality and acceptance of the rice bran edible oil produced. Rice bran was produced from 13 Egyptian varieties of recently harvested rice as well as from paddy rice stored for 1 year. The extracted bran was immediately stabilized then subjected to chemical analysis (such as moisture content, protein, fat, carbohydrates, fiber, and ash) as well as trace and heavy metals determination (P, K, Na, Ca, Fe, Zn, Cu, and Mg). Bread was produced by adding Giza172 rice bran at three different concentrations to wheat flour then subjected to chemical analysis, caloric content, and organoleptic examination. Bran oil was extracted from the different varieties of rice bran (recently harvested and stored) then subjected to chemical and organoleptic examinations as well as vitamin E and oryzanol determination. The percentage of rice bran of newly harvested Egyptian rice was 11.68% and was 10.97% in stored rice. The analysis showed mean values of 5.91 and 5.53% for moisture, 14.60 and 14.40% for crude protein, 14.83 and 15.20% for fat, 44.77 and 45.40% for carbohydrates, 6.55 and 7.06% for crude fiber, and 8.87 and 8.50% for ash for newly harvested and stored rice bran, respectively. Bread containing 15% rice bran showed the highest score percentages for organoleptic quality compared with the

  1. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char.

    Science.gov (United States)

    Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming

    2016-01-01

    Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development of a purification system at Dhruva to treat oil contaminated and chemically impure heavy water

    International Nuclear Information System (INIS)

    Suttraway, S.K.; Mishra, V.; Bitla, S.V.; Ghosh, S.K.

    2006-01-01

    Dhruva, a 100 MW (thermal) Research reactor uses Heavy Water as moderator, reflector and coolant. Normally during plant operation, the Heavy water from the system gets removed during operational and maintenance activities and this collected heavy water gets degraded and contaminated in the process. The degraded heavy water meeting the chemical specification requirement of the up gradation plant is sent for up gradation. Part of the Heavy water collected is contaminated with various organic and inorganic impurities and therefore cannot be sent for IP up gradation as it does not meet the chemical specification of the up gradation plant. This contaminated Heavy water was being stored in SS drums. Over the years of Reactor operation reasonable amount of contaminated Heavy water got collected in the plant. This Heavy water collected from leakages, during routine maintenance, operational activities and fuelling operation had tritium activity and variety of contamination including oil, chlorides, turbidity due to which the specific conductivity was very high. It was decided to purify this Heavy water in house to bring it up to up gradation plant chemical specification requirement. There were number of challenges in formulating a scheme to purify this Heavy water. The scheme needed to be simple and compact in design which could be set up in the plant itself. It should not pose radiological hazards due to radioactive Heavy water during its purification and handling. The contaminated Heavy water collected in drums had varying chemistry and IP. The purification plant should be able to do batch processing so that the different IP and chemical quality of Heavy water stored in different drums are not mixed during purification. It should be capable of removing the oil, chlorides, turbidity and decrease the conductivity to acceptable limits of the Up gradation plant. A purification plant was developed and commissioned after detail laboratory studies and trials. This paper explains

  3. Hydrotreatment of heavy oil from coal liquefaction on Sulfide Ni - W Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhi-ping Lei; Li-juan Gao; Heng-fu Shui; Shi-biao, Ren; Zhi-cai Wang; Kang-shi Gang, E-mail: shhf@ahut.edu.c [Anhui University of Technology, Maanshan (China). School of Chemistry and Chemical Engineering. Anhui Key Lab. of Coal Clean Conversion and Utilization

    2011-07-01

    Heavy oil (distillation temperature: 320-340 deg C) derived from the direct coal liquefaction process using Shengli coal were hydrotreated using sulfided Ni-Mo/Al{sub 2}O{sub 3}, Ni-W/Al{sub 2}O{sub 3}, and Ni-W/SiO{sub 2} catalysts respectively. The sulfided catalysts were characterized by BET, XRD, H{sub 2}-TPR and NH{sub 3}-TPD respectively. The evaluations of the hydrodenitrogenation (HDN) and hydrodearomatization (HDA) properties of heavy oil on the three catalysts were carried out at 400 deg C and 5.0 MPa initial H2 pressure. The W-based catalysts displayed better performances than Mo-based catalysts for the HDN and HDA reactions. Al{sub 2}O{sub 3} supported catalysts were found to have higher catalytic activities than on SiO{sub 2} supported ones. The activities of sulfided catalysts were associated mainly with the nature of active sites, acidity, metal sulfide crystallite size and the amount of the reducible sulfur species of metal sulfide. (author)

  4. Turbidity and oil removal from oilfield produced water, middle oil company by electrocoagulation technique

    Directory of Open Access Journals (Sweden)

    Mohammed Thamer

    2018-01-01

    Full Text Available Huge quantity of produced water is salty water trapped in the oil wells rock and brought up along with oil or gas during production. It usually contains hydrocarbons as oil and suspended solids or turbidity. Therefore the aim of this study is to treat produced water before being discharge to surface water or re injected in oil wells. In this paper experimental results were investigated on treating produced water (which is obtained from Middle Oil Company-Iraq, through electrocoagulation (EC. The performance of EC was investigated for reduction of turbidity and oil content up to allowable limit. Effect of different parameters were studied; (pH, current density, distance between two electrodes, and electrolysis time. The experimental runs carried out by an electrocoagulation unit was assembled and installed in the lab and the reactor was made of a material Perspex, with a capacity of approximately 2.5 liters and dimensions were 20 cm in length, 14 cm in width and 16 cm height. The electrodes employed were made of commercial materials. The anode was a perforated aluminum rectangular plate with a thickness of 1.72 mm, a height of 60 mm and length of 140 mm and the cathode was a mesh iron. The current was used in the unit with different densities to test the turbidity removing efficiency (0.0025, 0.00633, 0.01266 and 0.0253 A/cm2.The experiment showed that the best turbidity removing was (10, 9.7, 9.2, 18 NTU respectively. The distance between the electrodes of the unit was 3cm. The present turbidity removing was 92.33%. A slight improvement of turbidity removing was shown when the distance between the electrodes was changed from 0.5 to 3 cm with fixation of current density. The best turbidity removing was 93.5% , (7.79 NTU when the distance between the electrodes were 1 cm. The experimental results found that concentration of oil had decreased to (10.7, 11.2, 11.7, 12.3 mg/l when different current densities (0.00253, 0.00633, 0.01266, 0.0253 A/cm2

  5. Characteristics of gas-liquid dynamics in operation of oil fields producing non-Newtonian crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadzhanzade, A Kh; Khasaev, A M; Gurbanov, R S; Akhmedov, Z M

    1968-08-01

    Experimental studies have shown that crude oils from Azerbaidzhan, Uzbekistan, Tataria, Kazakhstan and other areas have anomalous properties under reservoir conditions. Such crude oils are non-Newtonian and (1) obey Darcys Law at low velocities; (2) obey an exponential law at higher velocities; and (3) obey a modified Darcys Law at most velocities. A discussion is given of (1) flow of non-Newtonian crude oils together with gas or water; (2) flow of non-Newtonian crude oils in well tubing; (3) behavior of wells producing non-Newtonian crude oils; and (4) pumping of non-Newtonian oils in wells. Experiments have shown that a visco-plastic liquid does not fill pump inlets completely; as the diameter of the pump inlet decreases so also does the degree of liquid filling. A statistical analysis of production data from 160 fields with Newtonian oil and 129 fields with non- Newtonian oil has shown that much higher production is obtained from fields with Newtonian crude oils.

  6. Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, D.K.; Ramzel, E.B.; Strycker, A.R. [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute; Guariguata, G.; Salmen, F.G. [Bonner and Moore Management Science, Houston, TX (United States)

    1994-12-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

  7. Isolation and Identification of Crude Oil Degrading and Biosurfactant Producing Bacteria from the Oil-Contaminated Soils of Gachsaran

    Directory of Open Access Journals (Sweden)

    Seyyedeh Zahra Hashemi

    2016-03-01

    Full Text Available Background and Objectives: Petroleum hydrocarbons are harmful to the environment, human health, and all other living creatures. Oil and its byproducts in contact with water block sunshine to phytoplanktons and thus break the food chain and damage the marine food source. This study aims to isolate the crude oil degrading and biosurfactant producing bacteria from the oil contaminated soils of Gachsaran, Iran. Materials and Methods: Isolation was performed in peptone-water medium with yeast extract. Oil displacement area, emulsification index and bacterial phylogeny using 16S rRNA analysis were studied. Results and Conclusion: Three isolates were able to degrade the crude oil. In the first day, there were two phases in the medium; after a few days, these three bacteria degraded the crude oil until there was only one phase left in the medium. One strain was selected as a superior strain by homogenizing until the medium became clear and transparent. This method confirmed that the strain produces biosurfactant. According to the morphological and biochemical tests, the strain isolated from the oil contaminated soils is a member of Bacillus subtilis, so to study the bacterial phylogeny and taxonomy of the strain, an analysis of 16S rRNA was carried out, and the phylogenic tree confirmed them. The results verified that oil contaminated soils are good source for isolation of the biosurfactant producing bacteria.

  8. Yemen - the next big player? [as an oil producer

    International Nuclear Information System (INIS)

    Roberts, J.

    1993-01-01

    1993 should be the year in which United Yemen finally starts to fulfil its potential as a significant oil producer. In recession for three years, the country desperately needs the revenues and has spared no effort in its attempt to provide the right financial climate within which international oil companies can operate. But the last three years, in terms of revenues from actual oil production, have been disastrous, with production from the much-touted Shabwa fields persistently deferred and with the overall climate for the oil industry clouded by a border dispute with Saudi Arabia that prompted at least one western major, BP, to suspend operations for a while. (author)

  9. Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Santanu Khataniar

    2008-12-31

    The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited

  10. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis

    International Nuclear Information System (INIS)

    Abnisa, Faisal; Arami-Niya, Arash; Wan Daud, W.M.A.; Sahu, J.N.; Noor, I.M.

    2013-01-01

    Highlights: • About 14.72% of the total landmass in Malaysia was used for oil palm plantations. • Oil palm tree residues were pyrolyzed to produce bio-oil and bio-char. • The process was performed at a temperature of 500 °C and reaction time of 60 min. • Characterization of the products was performed. - Abstract: Oil palm tree residues are a rich biomass resource in Malaysia, and it is therefore very important that they be utilized for more beneficial purposes, particularly in the context of the development of biofuels. This paper described the possibility of utilizing oil palm tree residues as biofuels by producing bio-oil and bio-char via pyrolysis. The process was performed in a fixed-bed reactor at a temperature of 500 °C, a nitrogen flow rate of 2 L/min and a reaction time of 60 min. The physical and chemical properties of the products, which are important for biofuel testing, were then characterized. The results showed that the yields of the bio-oil and bio-char obtained from different residues varied within the ranges of 16.58–43.50 wt% and 28.63–36.75 wt%, respectively. The variations in the yields resulted from differences in the relative amounts of cellulose, hemicellulose, lignin, volatiles, fixed carbon, and ash in the samples. The energy density of the bio-char was found to be higher than that of the bio-oil. The highest energy density of the bio-char was obtained from a palm leaf sample (23.32 MJ/kg), while that of the bio-oil was obtained from a frond sample (15.41 MJ/kg)

  11. Hollow rods for the oil producing industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalimova, L M; Elyasheva, M A

    1970-01-01

    Hollow sucker rods have several advantages over conventional ones. The hollow rods actuate the well pump and at the same time conduct produced fluids to surface. When paraffin deposition occurs, it can be minimized by injecting steam, hot oil or hot water into the hollow rod. Other chemicals, such as demulsifiers, scale inhibitors, corrosion inhibitors, etc., can also be placed in the well through the hollow rods. This reduces cost of preventive treatments, reduces number of workovers, increases oil production, and reduces cost of oil. Because the internal area of the rod is small, the passing liquids have a high velocity and thereby carry sand and dirt out of the well. This reduces pump wear between the piston and the plunger. Specifications of hollow rods, their operating characteristics, and results obtained with such rods under various circumstances are described.

  12. Identification of 3-phase flow patterns of heavy oil from pressure drop and flow rate data

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, F.; Bannwart, A.C.; Mendes, J.R.P. [Campinas State Univ., Sao Paulo (Brazil); Serapiao, A.B.S. [Sao Paulo State Univ., Sao Paulo (Brazil)

    2008-07-01

    Pipe flow of oil-gas-water mixtures poses a complex thermo-fluid dynamical problem. This paper examined the relationship between phase flow rates, flow pattern identification, and pressure drop in 3-phase water-assisted heavy oil in the presence of a gaseous phase. An artificial intelligence program called a support vector machine (SVM) was used to determine relevant parameters for flow pattern classification. Data from a 3-phase flow of heavy oil with gas and water in a vertical pipe was used in the study. The data were used to train the machine, which then predicted the flow pattern of the remaining data. Tests with different parameters and training data were then performed. The study showed that the proposed SVM flow pattern identification process accurately predicted flow patterns. It was concluded that the SVM took a relatively short amount of time to train. Future research is needed to apply the tool to larger flow datasets. 5 refs., 1 tab., 2 figs.

  13. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    International Nuclear Information System (INIS)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim; Haddadin, Jamal

    2009-01-01

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K 2 HPO 4 to KH 2 PO 4 ratio, temperature, pH, and agitation speeds were 2:1, 37 deg. C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre- treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale

  14. Heavy oil, water and air three-phase flow patterns in horizontal pipes; Padroes de escoamento trifasico de oleo pesado, agua e ar em tubulacoes horizontais

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, Francisco Exaltacao; Bannwart, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil)

    2004-07-01

    A significant extent of the Brazilian oil reserves consists of heavy oil, and its importance and economic value have been increasing in the last years. However, these oils, besides their elevated densities (API degree lower than 20), have viscosities higher than 100 mPa.s, which make it more difficult their transportation in pipelines. A solution for this problem is the injection of water in the pipe, which causes a reduction of the friction factor and, consequently, of the energy expend for a given oil flow rate. The two-phase flow of heavy oil and water has been the object of a number of recent studies, and concepts such as the core-flow technology can be useful for heavy oil transportation. But in production operations, gas is also present, initially dissolved in the oil phase then leaving the solution to form a free gas phase if the pressure drops below the bubble point pressure, the study of three-phase flow of heavy oil, water and gas is in order. The present paper presents the experimental work developed to evaluate the effect that this third phase causes on the heavy oil-water two-phase flow pattern. Initially two-phase flow of heavy and gas-water was studied to establish the flow rate ranges that cover the main patterns already known. The superficial velocities used varied from 0,04 to 0,5 m/s for water, 0,01 to 22 m/s for gas and 0,02 to 1,2 m/s for oil. After that, three-phase flow patterns were visually determined through a 2,84 cm i.d. plexiglas tube using a high-speed camera. Nine three-phase flow patterns were identified which are presented visually and described. These flow-patterns are also presented in flow maps where the effect of the gas phase can be observed. Water was the continuous phase for all flow patterns observed, ensuring a low pressure drop along the pipe. (author)

  15. Thermal stability of butter oils produced from sheep’s non-pasteurized and pasteurized milk

    Directory of Open Access Journals (Sweden)

    FLAVIA POP

    Full Text Available The physical and chemical characteristics and thermal stability of butter oil produced from non-pasteurized and pasteurized sheep’s milk were studied. Thermal stability of samples was estimated by using the accelerated shelf-life testing method. Samples were stored at 50, 60 and 70oC in the dark and the reaction was monitored by measuring peroxide, thiobarbituric acid and free fatty acid values. The peroxide and thiobarbituric acid values increased as the temperature increased. The increase of acid values of the two samples was not significant. A slight increase in free fatty acid value showed that hydrolytic reactions were not responsible for the deterioration of butter oil samples in thermal stability studies. When compared, butter oil produced from pasteurized sheep’s milk has higher thermal stability than butter oil produced from non-pasteurized sheep’s milk. Although butter oil produced from non-pasteurized milk was not exposed to any heat treatment, the shelf-life of this product was lower than the shelf-life of butter oil produced from pasteurized sheep’s milk. Therefore, heat treatment for pasteurization did not affect the thermal stability of butter oil.

  16. Produced water management - clean and safe oil and gas production

    International Nuclear Information System (INIS)

    2006-01-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  17. Produced water management - clean and safe oil and gas production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The conference contains 22 presentations on topics within pollution sources and abatement, discharge reductions, water analysis and monitoring, water production, treatment and injection, enhanced recovery, condensate water, produced water markets, separation technologies for oil/gas/condensate and water, oil removal from solids, environmental risks of oil and gas production and environmental impacts on ecosystems and fisheries. Some oil field case histories are presented. The main focus is on the northern areas such as the North Sea, the north Atlantic Ocean and the Barents Sea, and technological aspects (tk)

  18. Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, Matthew [Colorado School of Mines, Golden, CO (United States); Herring, Andy [Colorado School of Mines, Golden, CO (United States); Prasad, Manika [Colorado School of Mines, Golden, CO (United States); Dorgan, John [Colorado School of Mines, Golden, CO (United States); Batzle, Mike [Colorado School of Mines, Golden, CO (United States)

    2012-10-30

    The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation's vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

  19. Technology management for heavy oil

    International Nuclear Information System (INIS)

    Kerr, R.

    1994-01-01

    The framework for investment in research and development (R ampersand D) at a medium-sized Canadian petroleum company is described. The importance of R ampersand D is illustrated by a graph showing the strong positive correlation between R ampersand D intensity and sales for companies in the mainstream oil and gas sector in the USA. Strong R ampersand D efforts also help to maintain market share and enhance corporate ability to transfer technology into its operations. Three ways of structuring, developing, and transferring technology are outlined: using in-house R ampersand D facilities, which is too costly for medium-sized firms; having a central group responsible for funding third-party R ampersand D, transferring technology into the company, and being aware of technology activities within and outside the company; and complete decentralizing of R ampersand D, in which operations decides how, when, and what to spend on R ampersand D. For the medium-sized company, the second option is considered the best choice. Essential R ampersand D administration practices for such a company are reviewed, including corporate support, an updated technology strategy, central funding with a separate budget from operations, a portfolio of R ampersand D projects and ideas, collaboration with other organizations, and effective communication of R ampersand D activity and results to the company. At the company studied, Wascana Energy, R ampersand D is being focused on three priority areas: production technology, enhanced recovery, and heavy oil upgrading. It is estimated that the monetary benefits of R ampersand D in these three areas could be as much as $100 million. The evaluation of R ampersand D performance is then discussed and critical factors for R ampersand D success are listed. 3 figs., 1 tab

  20. High energy density in matter produced by heavy ion beams

    International Nuclear Information System (INIS)

    1989-07-01

    This Annual Report summarizes research activities carried out in 1988 in the framework of the government-funded program 'High Energy Density in Matter produced by Heavy Ion Beams'. It addresses fundamental problems of the generation of heavy ion beams and the investigation of hot dense plasmas produced by these beams. Its initial motivation and its long-term goal is the feasibility of inertial confinement fusion by intense heavy ion beams. Two outstanding events deserve to be mentioned explicity, the Heavy Ion Inertial Fusion Conference held in Darmstadt and organized by GSI end of June and the first heavy ion beam injected into the new SIS facility in November. The former event attracted more than hundred scientists for three days to the 4th Conference in this field. This symposium showed the impressive progress since the last conference in Washington two years ago. In particular the first beams in MBE-4 at LBL and results of beam plasma interaction experiments at GSI open new directions for future investigations. The ideas for non-Lionvillean injection into storage rings presented by Carlo Rubbia will bring the discussion of driver scenarios into a new stage. The latter event is a milestone for both machine and target experiments. It characterizes the beginning of the commissioning phase for the new SIS/ESR facility which will be ready for experiments at the end of this year. The commissioning of SIS is on schedule and first experiments can start at the beginning of 1990. A status report of the accelerator project is included. Theoretical activities were continued as in previous years, many of them providing guide lines for future experiments, in particular for the radiation transport aspects and for beam-plasma interaction. (orig.)

  1. Deposition of heavy oil fractions: development of a computational tool to predict oil mixtures compatibility; Deposicao de fracoes pesadas do petroleo: desenvolvimento de uma ferramenta computacional para a previsao da compatibilidade de misturas de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Prucole, Elisia S.; Henriques, Fernanda P.; Silva, Leandro M.; Touma, Silvia L. [PETROBRAS S.A., Rio de de Janeiro, RJ (Brazil)

    2008-07-01

    The remarkable increase in production and processing of national heavy oils is a scenario in which the deposition problem of heavy oil fractions is important, leading to huge losses, not only in economical terms but also in regard to environmental aspects, and can occur in practically all areas of the oil industry. Thus, the knowledge about technology concerning this subject is essential. In terms of heavy fractions, the asphaltenes are the heaviest components of oil and have propensity to aggregate, flocculate, precipitate and be adsorbed on surfaces. The difficulties for modeling the behavior of asphaltenes phases occur because of the high uncertainties which take in the current knowledge about the asphaltenes, their structures, flocculation and precipitation mechanisms and the phenomenon reversibility. The main goal of this work is to propose a predictive methodology for oils compatibility. A fuzzy classifier was implemented in order to predict the compatibility of oil mixtures, assessing whether the mixture condition is stable or not. The results were satisfactory, indicating a good predictive power of the proposed computational tool. (author)

  2. Experimental Analysis of Soil and Mandarin Orange Plants Treated with Heavy Metals Found in Oilfield-Produced Wastewater

    Directory of Open Access Journals (Sweden)

    Ailin Zhang

    2018-05-01

    Full Text Available Despite a declining trend, California remains a significant oil-producing state. For every barrel of crude oil, an average of 15 barrels of oilfield produced water (OPW is generated, some of which is used to boost freshwater sources for crop irrigation in the agriculturally important Central Valley. OPW is known to contain salts, metals, hydrocarbons, alkylphenols, naturally radioactive materials, biocides, and other compounds from drilling and production processes. Less is known about the potential uptake and accumulation of these compounds in crops and soil irrigated with OPW. In this study, 23 potted mandarin orange plants were irrigated two to three times weekly (depending on season with water containing three different concentrations of the known OPW heavy metals barium, chromium, lead, and silver. Seven sets of samples of soil and leaves and 11 fruits were collected and processed using microwave-assisted digestion (EPA Method 3051A. Processed samples were analyzed using inductively coupled plasma-optical emission spectroscopy (ICP-OES. Analysis of variance (ANOVA and covariance (ANCOVA coupled with Tukey’s honest significant difference test were used to examine the effects of metal concentrations in the irrigation water and number of watering days, respectively, on the metal concentrations in the soil, leaf, and fruit samples. Accumulation of barium in soil and leaves was strongly positively associated with sample and number of watering days, increasing nearly 2000-fold. Lead also showed an upward trend, increasing up to 560-fold over the baseline level. Total chromium showed an increase in the soil that tapered off, but less consistent results in the leaves and fruit. The silver results were more volatile, but also indicated at least some level of accumulation in the tested media. The smallest absolute accumulation was observed for chromium. Concentrations in the fruit were highest in the peel, followed by pith and juice. Accumulation

  3. Report on evaluation of research and development of production of olefins from heavy oil as the stock material; 'Jushitsuyu wo genryo to suru olefin no seizoho' no kenkyu kaihatsu ni kansuru hyoka hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-08-01

    This project is aimed at stable supply of the stocks for the petrochemical industry to cope with the keenly felt depletion of oil resources in the long run and price hikes, and promotion of effective utilization of high-sulfur heavy oil fractions difficult to desulfurize, thereby promoting prevention of pollution. The techniques have been developed to economically produce high-value products, e.g., olefins and aromatic hydrocarbons, by thermally cracking abundant stocks, e.g., vacuum residue. A 120 t/d fluidized bed pilot plant with coke as the heat medium was constructed to develop various techniques, e.g., those for controlling coking, decoking, quenching cracking products, and controlling coke particles as the heat medium, to realize stable, continuous operation for extended periods of at least 1,000 hours. The techniques have been also developed for effective utilization of heavy oils as by-products containing sulfur at high concentrations. Economic viability of the process is considered to be on a level with that associated with naphtha cracking at present, when an intermediate base vacuum residue is used as the stock material. It will be sufficiently competitive with naphtha cracking with all types of heavy oils as the stock materials, including intermediate base vacuum residue, in an intermediate term. (NEDO)

  4. Rotary kiln and batch pyrolysis of waste tire to produce gasoline and diesel like fuels

    International Nuclear Information System (INIS)

    Ayanoğlu, Abdulkadir; Yumrutaş, Recep

    2016-01-01

    Highlights: • Waste Tire Oil (WTO) is produced from waste tire at rotary kiln reactor. • Physical and chemical properties of WTO and fuel samples are analyzed. • Gasoline like fuel (GLF) and diesel like fuel (DLF) are produced from the WTO-10 wt% CaO mixture at fixed bed reactor. • Physical and chemical properties of the GLF and DLF are compared with the standard fuels. - Abstract: In this study, waste tire is pyrolyzed in a rotary kiln reactor to obtain more gas, light liquid, heavy liquid, wax products, and less carbon black at their maximum yields as, 20%, 12%, 25%, 8% and 35% of the total weight (4 tones), respectively. Then, the heavy and light oils are reacted with additives such as natural zeolite (NZ) and lime (CaO) at different mass ratio as 2, 6, and 10 wt%, respectively, in the batch reactor to produce liquids similar to standard petroleum fuels. The heavy and light oils mixture samples are distillated to observe their optimum graphics which are similar to gasoline and diesel like fuel. Consequently, the best results are obtained from the CaO sample with 10 wt% in comparison to the ones from the gasoline and diesel fuels. The 10 wt% CaO light liquid mixture resembles to gasoline named as gasoline like fuel (GLF) and the 10 wt% CaO heavy liquid mixture is similar to diesel called as diesel like fuel (DLF). The chemical and physical features of the waste tire, light oil, heavy oil, GLF, and DLF are analyzed by TG (thermogravimetric)/dTG (derivative thermogravimetric), proximate, ultimate, higher heating value (HHV), fourier transform-infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET), sulfur, density, viscosity, gas chromatography–mass spectroscopy (GC–MS), flash point, moisture, and distillation tests. The test results are turned out to be very close to the standard petroleum fuel.

  5. Integrated 3D geology modeling constrained by facies and horizontal well data for Block M of the Orinoco heavy oil belt

    Energy Technology Data Exchange (ETDEWEB)

    Longxin, M.; Baojun, X.; Shancheng, Z.; Guoqing, H. [CNPC America Ltd., Caracas (Venezuela)

    2008-10-15

    Horizontal well drilling with cold production were used to develop most of heavy oil fields in Venezuela's Orinoco heavy oil belt. This study interpreted the horizontal well logs of Block M of the Orinoco heavy oil belt in an effort to improve production from this highly porous and permeable reservoir. The reservoir is comprised primarily of non-consolidated sandstones. A porosity calculation formula for the horizontal well without porosity logs was established based on the study of horizontal well logging data of block M in the Orinoco heavy oil belt. A high quality 3-D simulation tool was used to separate the block into several different sections. A set of methods were presented in order to identify if the well track was approaching an adjacent formation, to estimate the distance between the well track and the adjacent formation, and to correct the deep resistivity of the horizontal section affected by the adjacent formation. A set of interpretation techniques were established, based on the combination of well logging data, seismic data and the oilfield development performance data. It was concluded that the development of the precise 3D geological model helped to establish a solid foundation for guiding the well position design and the drilling of the horizontal well. It also contributed to the reservoir numerical simulation and the effective development of the oil field. 6 refs., 2 tabs., 14 figs.

  6. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim [Faculty of Graduate Studies, Jordan University, Queen Rania Street, Amman, 11942 (Jordan); Haddadin, Jamal [Faculty of Agriculture, Mutah University, P.O. Box 59, Mutah 61710 (Jordan)

    2009-04-15

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K{sub 2}HPO{sub 4} to KH{sub 2}PO{sub 4} ratio, temperature, pH, and agitation speeds were 2:1, 37 C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre-treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale. (author)

  7. Identification of molecular species of polyol oils produced from soybean oil by Pseudomonas aeruginosa e03-12 nrrl b-59991

    Science.gov (United States)

    The objective of this study is to develop a bioprocess for the production of polyol oils directly from soybean oil. We reported earlier methods for microbial screening and production of polyol oils from soybean oil (Hou and Lin, 2013). The polyol oil produced by Acinetobacter haemolyticus A01-35 (NR...

  8. Viscoplastic sculpting in stable triple layer heavy oil transport flow

    Science.gov (United States)

    Sarmadi, Parisa; Hormozi, Sarah; A. Frigaard, Ian

    2017-11-01

    In we introduced a novel methodology for efficient transport of heavy oil via a triple layer core-annular flow. Pumping pressures are significantly reduced by concentrating high shear rates to a lubricating layer, while ideas from Visco-Plastic Lubrication are used to eliminate interfacial instabilities. We purposefully position a shaped unyielded skin of a viscoplastic fluid between the transported oil and the lubricating fluid layer to balance the density difference between the fluids. Here we address the sculpting of the shaped skin within a concentric inflow manifold. We use the quasi-steady model to provide inputs to an axisymmetric triple layer computation, showing the development of the streamwise skin profile and establishment of the flow. For this, we use a finite element discretization with the augmented-Lagrangian method to represent the yield surface behaviour accurately and a PLIC method to track the interface motion.

  9. Potential application of oxygen containing gases to enhance gravity drainage in heavy oil bearing reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry; Bauer, K. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry; Lakatos-Szabo, J. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry

    1997-06-01

    In the frame of laboratory studies the effect of air/natural CO{sub 2} mixtures on chemical composition of crude oil and gas phase, the rheological and interfacial properties, the flow mechanism and the safety measures were analyzed. The tests were performed at reservoir conditions (200 bar and 109 C) using natural rock, oil and gas samples. The oxygen content of the gas phase and the gas/oil ratio varied within wide limits. Both crude and asphaltene-free oil were used to determine the consequences of the low temperature oxidation. On the basis of the experimental results it was found that the oxygen content of the cap gas had been completely consumed by the chemical reactions (oxidation, condensation and water formation) before the asphaltene content set in equilibrium. Nearly 9% excess asphaltene formation was observed in both the crude and the asphaltene-free oils. The substantial increase in asphaltene content and the presence of colloidal water results in a measurable change in rheological and interfacial properties. Despite these factors the flow and displacement mechanism is only slightly influenced if the reservoir is of fractured character. On the other hand the in-situ oxidation of this heavy crude oil improves the efficiency of bitumen production and the quality of product used mostly for road construction. As a final statement, it was concluded that replacing the CO{sub 2} with oxygen containing inert gas, the chemical reactions can be in-situ regulated without jeopardizing the recovery efficiency. Application of the artificial gas cap concept opens new perspectives in EOR technology of karstic and fractured reservoirs containing medium and heavy crude oils in those cases where CO{sub 2} or CH gas is not available. (orig./MSK)

  10. Feasibility to apply the steam assisted gravity drainage (SAGD) technique in the country's heavy crude-oil fields

    International Nuclear Information System (INIS)

    Rodriguez, Edwin; Orjuela, Jaime

    2004-01-01

    The steam assisted gravity drainage (SAGD) processes are one of the most efficient and profitable technologies for the production of heavy crude oils and oil sands. These processes involve the drilling of a couple of parallel horizontal wells, separated by a vertical distance and located near the oil field base. The upper well is used to continuously inject steam into the zone of interest, while the lower well collects all resulting fluids (oil, condensate and formation water) and takes them to the surface (Butler, 1994). This technology has been successfully implemented in countries such as Canada, Venezuela and United States, reaching recovery factors in excess of 50%. This article provides an overview of the technique's operation mechanism and the process most relevant characteristics, as well as the various categories this technology is divided into, including all its advantages and limitations. Furthermore, the article sets the oil field's minimal conditions under which the SAGD process is efficient, which conditions, as integrated to a series of mathematical models, allow to make forecasts on production, thermal efficiency (ODR) and oil to be recovered, as long as it is feasible (from a technical point of view) to apply this technique to a defined oil field. The information and concepts compiled during this research prompted the development of software, which may be used as an information, analysis and interpretation tool to predict and quantify this technology's performance. Based on the article, preliminary studies were started for the country's heavy crude-oil fields, identifying which provide the minimum conditions for the successful development of a pilot project

  11. Comparison of Moringa Oleifera seeds oil characterization produced chemically and mechanically

    Science.gov (United States)

    Eman, N. A.; Muhamad, K. N. S.

    2016-06-01

    It is established that virtually every part of the Moringa oleifera tree (leaves, stem, bark, root, flowers, seeds, and seeds oil) are beneficial in some way with great benefits to human being. The tree is rich in proteins, vitamins, minerals. All Moringa oleifera food products have a very high nutritional value. They are eaten directly as food, as supplements, and as seasonings as well as fodder for animals. The purpose of this research is to investigate the effect of seeds particle size on oil extraction using chemical method (solvent extraction). Also, to compare Moringa oleifera seeds oil properties which are produced chemically (solvent extraction) and mechanically (mechanical press). The Moringa oleifera seeds were grinded, sieved, and the oil was extracted using soxhlet extraction technique with n-Hexane using three different size of sample (2mm, 1mm, and 500μm). The average oil yield was 36.1%, 40.80%, and 41.5% for 2mm, 1mm, and 500μm particle size, respectively. The properties of Moringa oleifera seeds oil were: density of 873 kg/m3, and 880 kg/m3, kinematic viscosity of 42.2mm2/s and 9.12mm2/s for the mechanical and chemical method, respectively. pH, cloud point and pour point were same for oil produced with both methods which is 6, 18°C and 12°C, respectively. For the fatty acids, the oleic acid is present with high percentage of 75.39%, and 73.60% from chemical and mechanical method, respectively. Other fatty acids are present as well in both samples which are (Gadoleic acid, Behenic acid, Palmitic acid) which are with lower percentage of 2.54%, 5.83%, and 5.73%, respectively in chemical method oil, while they present as 2.40%, 6.73%, and 6.04%, respectively in mechanical method oil. In conclusion, the results showed that both methods can produce oil with high quality. Moringa oleifera seeds oil appear to be an acceptable good source for oil rich in oleic acid which is equal to olive oil quality, that can be consumed in Malaysia where the olive oil

  12. Controllable synthesis in a continuous mode of unsupported molybdenum catalysts with micro/nano size for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Hill, J.M.; Pereira Almao, P.R. [Calgary Univ., AB (Canada)

    2004-07-01

    Heavy oils contain significant amounts of impurities compared to conventional oils, thereby posing a challenge for hydroprocessing operations at refineries. Hydrodesulfurization is one of the important reactions involved in hydroprocessing. Transition metal sulfides have excellent properties in terms of sulphur removal. Molybdenum based catalysts have been used extensively in the petroleum industry for hydrotreating heavy oil fractions. Supported molybdenum based catalysts suffer strong deactivation in the traditional hydrotreating process due to the deposition of carbonaceous components on the surface of the catalyst when they are used in conventional fixed bed reactors. Unsupported catalysts have higher catalytic activity with better metal dispersion. Laboratory experiments were conducted in which micro/nano size unsupported molybdenum catalysts were synthesized from a water/oil emulsion. The catalysts were prepared in a continuous mode for online application to hydroprocessing or in situ upgrading. Dispersed molybdenum catalysts are more suitable for processing heavier feeds because they are less prone to deactivation. Also, their submicron size ensure high activities due to a large specific surface area. They are also sufficiently small to be readily dispersed in the residual oil. 4 refs., 1 tab., 2 figs.

  13. Speculation and the 2008 oil bubble: The DCOT Report analysis

    International Nuclear Information System (INIS)

    Tokic, Damir

    2012-01-01

    This article analyzes the CFTC's Disaggregated Commitments of Traders (DCOT) Report to get more insights into the behavior of different traders during the 2008 oil bubble. The analysis shows that: (1) the Money Manager category perfectly played the oil bubble, got in early and started selling shortly before the bubble peak; (2) the Producer/Merchant/Processor/User category and the Nonreportable category were covering their short positions into the peak of the bubble; (3) the Swap/Dealer category benefited while the price of oil was rising, but incurred heavy losses as the price of oil collapsed; (4) we find no indications of speculation by any group of traders via the positive feedback trading or rational destabilization; and (5) we do, however, criticize the commercial hedgers for failing to arbitrage the soaring oil prices in 2008. - Highlights: ► We analyze the DCOT Report to study the behavior of traders during the 2008 oil bubble. ► the Money Manger category perfectly played the oil bubble. ► the Producer/Merchant/Processor/User and the Nonreportables engaged in short covering. ► the Swap/Dealer incurred heavy losses as the price of oil collapsed. ► We find no indications of speculation by any category.

  14. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  15. Argentation chromatography coupled to ultrahigh-resolution mass spectrometry for the separation of a heavy crude oil.

    Science.gov (United States)

    Molnárné Guricza, Lilla; Schrader, Wolfgang

    2017-02-10

    Simplification of highly complex mixtures such as crude oil by using chromatographic methods makes it possible to get more detailed information about the composition of the analyte. Separation by argentation chromatography can be achieved based on the interaction of different strength between the silver ions (Ag + ) immobilized through a spacer on the silica gel surface and the π-bonds of the analytes. Heavy crude oils contain compounds with a high number of heteroatoms (N, O, S) and a high degree of unsaturation thus making them the perfect analyte for argentation chromatography. The direct coupling of argentation chromatography and ultrahigh-resolution mass spectrometry allows to continuously tracking the separation of the many different compounds by retention time and allows sensitive detection on a molecular level. Direct injection of a heavy crude oil into a ultrahigh-resolution mass spectrometer showed components with DBE of up to 25, whereas analytes with DBE of up to 35 could be detected only after separation with argentation chromatography. The reduced complexity achieved by the separation helps increasing the information depth. Copyright © 2016. Published by Elsevier B.V.

  16. Life cycle water demand coefficients for crude oil production from five North American locations.

    Science.gov (United States)

    Ali, Babkir; Kumar, Amit

    2017-10-15

    The production of liquid fuels from crude oil requires water. There has been limited focus on the assessment of life cycle water demand footprints for crude oil production and refining. The overall aim of this paper is address this gap. The objective of this research is to develop water demand coefficients over the life cycle of fuels produced from crude oil pathways. Five crude oil fields were selected in the three North American countries to reflect the impact of different spatial locations and technologies on water demand. These include the Alaska North Slope, California's Kern County heavy oil, and Mars in the U.S.; Maya in Mexico; and Bow River heavy oil in Alberta, Canada. A boundary for an assessment of the life cycle water footprint was set to cover the unit operations related to exploration, drilling, extraction, and refining. The recovery technology used to extract crude oil is one of the key determining factors for water demand. The amount of produced water that is re-injected to recover the oil is essential in determining the amount of fresh water that will be required. During the complete life cycle of one barrel of conventional crude oil, 1.71-8.25 barrels of fresh water are consumed and 2.4-9.51 barrels of fresh water are withdrawn. The lowest coefficients are for Bow River heavy oil and the highest coefficients are for Maya crude oil. Of all the unit operations, exploration and drilling require the least fresh water (less than 0.015 barrel of water per barrel of oil produced). A sensitivity analysis was conducted and uncertainty in the estimates was determined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  18. Oil price risk management in the 1990s - issues for producers and lenders

    International Nuclear Information System (INIS)

    Lambert, S.

    1994-01-01

    Oil prices have exhibited considerable volatility over the past five or ten years and the management of oil price risk has become an important factor in underpinning the viability of many oil producing operations from both a lender's and investor's perspective. Various oil based hedging products are now available to protect against such volatility, ranging from products which fix forward prices to option based arrangements which set a floor price but retain some (or all) of the potential upside. These products have particular relevance for petroleum companies with limited financial resources or who are looking to limit recourse to particular assets/cash flows. There are a number of techniques which can be successfully combined to mitigate oil price volatility and the most relevant of these to a producer are discussed. The recent development of the Tapis swap and option markets, which have provided flexibility to Australasian producers, is also discussed. Oil based financial products can also be used as a method of funding (e.g. for a development or acquisition) as an alternative to traditional cash based borrowing structures, thus creating a natural hedge against oil price movements. It is estimated that the use of such structures, coupled with a well structured revenue hedging program, can enhance a project's attractiveness from a lender's perspective (particularly with respect to protection against down side movements in oil price) and/or provide greater certainty of returns to producers. A case study of a recent commodity risk management based financing is presented. 1 fig., 6 tabs

  19. Catching the Brass Ring: Oil Market Diversification Potential for Canada

    Directory of Open Access Journals (Sweden)

    Michal C. Moore

    2011-12-01

    Full Text Available This paper examines the nature and structure of the Canadian oil export market in the context of world prices for heavy crude oil and the potential price differential available to Canadian producers gaining access to new overseas markets. Success in this arena will allow Canada to reap incredible economic benefits. For example, the near term benefits for increased access to Gulf Coast markets after mid-continent bottlenecks are removed, are significant, representing nearly 10$ US per barrel for Canadian producers. On the Pacific Coast, the world market is represented by growing capacity for heavy crude products in emerging Asian markets including Japan, Korea and China and existing heavy crude facilities in California and the west coast. Here, in the reference scenario for California and Asia the benefits are assumed to begin in 2020. The differential value range in California in 2020 is estimated at $7.20US per barrel and escalates to $8.77US by 2030. In Asia, the benefit range is estimated to grow from $11.15US per barrel in 2020 to $13.60US in 2030. Those higher prices for Canadian heavy oil would translate into significant increases in profits, jobs and government revenues. With better access and new pipeline capacity, oil producers will see more efficient access to international markets which can add up to $131 billion to Canada’s GDP between 2016 and 2030 in the reference scenario. This amounts to over $27 billion in federal, provincial and municipal tax receipts, along with an estimated 649,000 person-years of employment. Alberta will be the principal but not sole beneficiary from increased access to world market pricing. Most provinces and territories will realize fiscal and economic gains from the distribution and sale of products reflecting reduced costs and increased access to refineries for heavy oil. The key to this change is the elimination of current bottlenecks in transport and the expansion of a network of pipelines that can

  20. INTERFACIAL ENERGY DURING THE EMULSIFICATION OF WATER-IN-HEAVY CRUDE OIL EMULSIONS

    Directory of Open Access Journals (Sweden)

    V. Karcher

    2015-03-01

    Full Text Available Abstract The aim of this study was to investigate the interfacial energy involved in the production of water-in-oil (W/O emulsions composed of water and a Brazilian heavy crude oil. For such purpose an experimental set-up was developed to measure the different energy terms involved in the emulsification process. W/O emulsions containing different water volume fractions (0.1, 0.25 and 0.4 were prepared in a batch calorimeter by using a high-shear rotating homogenizer at two distinct rotation speeds (14000 and 22000 rpm. The results showed that the energy dissipated as heat represented around 80% of the energy transferred to the emulsion, while around 20% contributed to the internal energy. Only a very small fraction of the energy (0.02 - 0.06% was stored in the water-oil interface. The results demonstrated that the high energy dissipation contributes to the kinetic stability of the W/O emulsions.

  1. Methodologies, solutions, and lessons learned from heavy oil well testing with an ESP, offshore UK in the Bentley field, block 9/3b

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Barny; Lucas-Clements, Charles; Kew, Steve [Xcite Energy Resources (United Kingdom); Shumakov, Yakov; Camilleri, Lawrence; Akuanyionwu, Obinna; Tonoglu, Ahmet [Schlumberger (United Kingdom)

    2011-07-01

    Over the past decade, there has been an increase in hydrocarbon demand that led to the production of heavy oil fields in the United Kingdom continental shelf (UKCS). Most of the activity has been confined to exploration and appraisal drilling, the reason being the high uncertainty of the reservoir and fluid properties. Due to the operational complexity inherent to heavy oil, the use of conventional appraisal-well testing technology is limited. A novel technique developed to determine the most appropriate technology for testing wells with heavy oil using an electrical submersible pump (ESP) is presented in this paper. This technique was applied in the Bentley field. Some of the technical challenges include, maintaining fluid mobility using a surface-testing equipment, obtaining accurate flow measurements, a short weather window, and oil and gas separation for metering. Combining technologies such as dual-energy gamma ray venturi multiphase flowmeter, realtime monitoring, and ESP completion made it possible to execute the well test.

  2. A tiered analytical protocol for the characterization of heavy oil residues at petroleum-contaminated hazardous waste sites

    International Nuclear Information System (INIS)

    Pollard, S.J.T.; Kenefick, S.L.; Hrudey, S.E.; Fuhr, B.J.; Holloway, L.R.; Rawluk, M.

    1994-01-01

    The analysis of hydrocarbon-contaminated soils from abandoned refinery sites in Alberta, Canada is used to illustrate a tiered analytical approach to the characterization of complex hydrocarbon wastes. Soil extracts isolated from heavy oil- and creosote-contaminated sites were characterized by thin layer chromatography with flame ionization detection (TLC-FID), ultraviolet fluorescence, simulated distillation (GC-SIMDIS) and chemical ionization GC-MS analysis. The combined screening and detailed analytical methods provided information essential to remedial technology selection including the extent of contamination, the class composition of soil extracts, the distillation profile of component classes and the distribution of individual class components within various waste fractions. Residual contamination was characteristic of heavy, degraded oils, consistent with documented site operations and length of hydrocarbon exposure at the soil surface

  3. Market opportunities and challenges for oil sands

    International Nuclear Information System (INIS)

    Wise, T.H.

    2004-01-01

    The use of Alberta bitumen as a clean fuel depends on upgrading, transportation, and refining processes. Forecasts show that oil sands production, which includes synthetic crude oil (SCO), will surpass declining conventional production from the Western Canada Sedimentary Basin. The challenges facing the oils sands processing industry include: crude oil prices which affect the producer's market; market expansion options; diluent availability/cost; supply cost competitiveness; and, regional processing. The common market issues include light/heavy crude prices, oil sands crude qualities, prices of oil sands crudes, pipeline infrastructure, and competitive supplies. The issues facing the refiners are: refining margins, security of crude supply, refined product quality, and competitive product supply. It was noted that Alberta must retain or increase its share of the Midwest market. The market expansion options were reviewed for both downstream (refining) and upstream (upgrading) operations. New pipeline capacity is needed to reach more distant markets such as Southern Midwest, Washington, and California. The market is nearly saturated for Canada's heavy oil supply. More upgrading will be required as bitumen production increases. Market growth is still possible for Canada's SCO but according to forecasts, the market could also become saturated. To increase demand and allow supplies to grow, SCO prices may fall below light crude prices. It was noted that a balance must be achieved in order for producers to increase production and for refiner/upgraders to expand their conversion capacity. 13 figs

  4. The extraction of bitumen from western oil sands

    International Nuclear Information System (INIS)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report

  5. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    Science.gov (United States)

    Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R

    2018-03-07

    Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.

  6. Oil-based paint poisoning

    Science.gov (United States)

    Paint - oil-based - poisoning ... Hydrocarbons are the primary poisonous ingredient in oil paints. Some oil paints have heavy metals such as lead, mercury, cobalt, and barium added as pigment. These heavy metals can cause additional ...

  7. Formation time of hadrons and density of matter produced in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Pisut, J.; Zavada, P.

    1994-06-01

    Densities of interacting hadronic matter produced in Oxygen-Lead and Sulphur-Lead collisions at 200 GeV/nucleon are estimated as a function of the formation time of hadrons. Uncertainties in our knowledge of the critical temperature T c and of the formation time of hadrons τ 0 permit at present three scenarios: an optimistic one (QGP has already been produced in collisions of Oxygen and Sulphur with heavy ions and will be copiously in Lead collisions), a pessimistic one (QGP cannot be produced at 200 GeV/nucleon) and an intermediate one (QGP has not been produced in Oxygen and Sulphur Interactions with heavy ions and will be at best produced only marginally in Pb-collisions). The last option is found to be the most probable. (author)

  8. A technique for evaluating the oil/heavy-oil viscosity changes under ultrasound in a simulated porous medium.

    Science.gov (United States)

    Hamidi, Hossein; Mohammadian, Erfan; Junin, Radzuan; Rafati, Roozbeh; Manan, Mohammad; Azdarpour, Amin; Junid, Mundzir

    2014-02-01

    Theoretically, Ultrasound method is an economical and environmentally friendly or "green" technology, which has been of interest for more than six decades for the purpose of enhancement of oil/heavy-oil production. However, in spite of many studies, questions about the effective mechanisms causing increase in oil recovery still existed. In addition, the majority of the mechanisms mentioned in the previous studies are theoretical or speculative. One of the changes that could be recognized in the fluid properties is viscosity reduction due to radiation of ultrasound waves. In this study, a technique was developed to investigate directly the effect of ultrasonic waves (different frequencies of 25, 40, 68 kHz and powers of 100, 250, 500 W) on viscosity changes of three types of oil (Paraffin oil, Synthetic oil, and Kerosene) and a Brine sample. The viscosity calculations in the smooth capillary tube were based on the mathematical models developed from the Poiseuille's equation. The experiments were carried out for uncontrolled and controlled temperature conditions. It was observed that the viscosity of all the liquids was decreased under ultrasound in all the experiments. This reduction was more significant for uncontrolled temperature condition cases. However, the reduction in viscosity under ultrasound was higher for lighter liquids compare to heavier ones. Pressure difference was diminished by decreasing in the fluid viscosity in all the cases which increases fluid flow ability, which in turn aids to higher oil recovery in enhanced oil recovery (EOR) operations. Higher ultrasound power showed higher liquid viscosity reduction in all the cases. Higher ultrasound frequency revealed higher and lower viscosity reduction for uncontrolled and controlled temperature condition experiments, respectively. In other words, the reduction in viscosity was inversely proportional to increasing the frequency in temperature controlled experiments. It was concluded that cavitation

  9. Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes

    Energy Technology Data Exchange (ETDEWEB)

    Yortsos, Yanis C.

    2002-10-08

    In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

  10. Proceedings of the 3. NCUT meeting on upgrading and refining of heavy oil, bitumen and synthetic crude oil and the 2. symposium on stability and compatibility during the production, transportation and refining of petroleum

    International Nuclear Information System (INIS)

    2003-01-01

    This conference highlights new developments in refining processes for heavy oil, bitumen, and synthetic crudes. The oil sands/heavy oil industry in Canada has grown significantly in the last decade and could triple by 2012 to reach 2.6 million barrels per day. Experts from the petroleum industry, government organizations and technology providers attended this conference which identified technology gaps and areas where improvements are needed. The presentations demonstrated that many new technologies associated with heavy oil bitumen upgrading and refining have posed compatibility and stability challenges for pipeliners, upgraders and refiners. One of the issues addressed at the conference was the effect of upgrading technologies on market price due to the expected increase in production. Another important issue is how production of bitumen can be increased without significantly increasing greenhouse gas emissions from the refineries and upgrading facilities. The sessions of the conference were entitled: new technology developments in bitumen upgrading; secondary upgrading developments and expanded product opportunities; environmental issues and expanded oil sands development; and, stability and compatibility during the production, transportation and refining of petroleum. Twenty six presentations were indexed separately for inclusion in this database. tabs., figs

  11. Soils washing for removal of heavy oil: Naval Air Engineering Center, Lakehurst, NJ

    International Nuclear Information System (INIS)

    Nash, J.H.; Traver, R.P.

    1991-01-01

    With the recognition that large tracts of land are currently unusable as a result of either accidental spills or past industrial practices (such as oil field development), the USEPA Office of Research and Development evaluated soil washing as an alternative remedial technology for heavy oil contaminated soil at a site located on the Naval Air Engineering Center (NAEC), Lakehurst, New Jersey. The researchers used a self-contained, 100-pound-per-hour soil washer. Electrical, pneumatic, and fluid-pumping capabilities were provided by the trailer-mounted system at a remote No. 6 type oil spill site at the Navy base. Chloroform extracts of the contaminated sandy soil recovered a 0.91 gram/milliliter, 950 centistoke viscosity, dark brown, non-PCB oil. By using a surfactant/solvent solution at ambient temperatures, contaminant levels on the soil were reduced from 3.8% (38,000 milligram/kilogram-RCRA hazardous waste designation) to as low as 0.035% (350 milligram/kilogram) oil concentration. Supplemental laboratory evaluations extending the pilot field evaluations showed at elevated temperatures (120F) that residual oil contamination was less than 0.01% (100 milligram/kilogram). This final oil concentration in the treated soil would be defined as clean under the New Jersey Environmental Cleanup and Responsibilities Act (ECRA). A continuous belt press filter was used to recover the oil in a 47% solids cake that could be used as a secondary fuel feed to a waste boiler. The wash water solution was treated and recycled permitting economical operations

  12. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  13. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei

    2014-01-01

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H 2 O 2 ) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS 4 )) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS 4 ). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS 4 )/H 2 O 2 was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS 4 )/H 2 O 2 system

  14. Growing markets to sustain oil sands development

    International Nuclear Information System (INIS)

    Wise, T.H.

    2003-01-01

    The utilization of Alberta bitumen for the clean fuels market depends on upgrading, transportation, and refining processes. Forecasts show that oil sands production, which includes synthetic crude oil (SCO), will surpass declining conventional production in Western Canada. Several issues pose a challenge to the oil sands processing industry. The producers' market is affected by crude oil prices, market expansion options, diluent availability/cost, supply cost competitiveness, and regional processing. The common market issues include light/heavy crude prices, oil sands crude qualities, prices of oil sands crudes, pipeline infrastructure, and competitive supplies. The issues facing the refiners are: refining margins, security of crude supply, refined product quality, and competitive product supply. A brief review of markets for Canadian crude oil, including synthetic crude, was provided. The share of the Midwest market by Alberta must be retained and increased. The market expansion options were reviewed for both downstream (refining) and upstream (upgrading) operations. To reach more distant markets such as Southern Midwest, Washington, and California, new pipeline capacity would be required. The market is nearly saturated for Canada's heavy oil supply. More upgrading will be required as bitumen production increases. Market growth is still possible for Canada's SCO but according to forecasts, the market could also become saturated. To increase demand and allow supplies to grow, SCO prices may fall below light crude prices. It was noted that a balance must be achieved in order for producers to increase production and for refiner/upgraders to expand their conversion capacity. tabs., figs

  15. Simulation study of the VAPEX process in fractured heavy oil system at reservoir conditions

    Energy Technology Data Exchange (ETDEWEB)

    Azin, Reza; Ghotbi, Cyrus [Department of Chemical and Petroleum Engineering, Sharif Univ. Tech., Tehran (Iran); Kharrat, Riyaz; Rostami, Behzad [Petroleum University of Technology Research Center, Tehran (Iran); Vossoughi, Shapour [4132C Learned Hall, Department of Chemical and Petroleum Engineering, Kansas University, Lawrence, KS (United States)

    2008-01-15

    The Vapor Extraction (VAPEX) process, a newly developed Enhanced Oil Recovery (EOR) process to recover heavy oil and bitumen, has been studied theoretically and experimentally and is found a promising EOR method for certain heavy oil reservoirs. In this work, a simulation study of the VAPEX process was made on a fractured model, which consists of a matrix surrounded by horizontal and vertical fractures. The results show a very interesting difference in the pattern of solvent flow in fractured model compared with the conventional model. Also, in the fractured system, due to differences in matrix and fracture permeabilities, the solvent first spreads through the fractures and then starts diffusing into matrix from all parts of the matrix. Thus, the solvent surrounds the oil bank, and an oil rather than the solvent chamber forms and shrinks as the process proceeds. In addition, the recovery factor is higher at lower solvent injection rates for a constant pore volume of the solvent injected into the model. Also, the diffusion process becomes important and higher recoveries are obtained at low injection rates, provided sufficient time is given to the process. The effect of inter-connectivity of the surrounding fractures was studied by making the side vertical fractures shorter than the side length of the model. It was observed that inter-connectivity of the fractures affects the pattern of solvent distribution. Even for the case of side fractures being far apart from the bottom fracture, the solvent distribution in the matrix was significantly different than that in the model without fractures. Combination of diffusion phenomenon and gravity segregation was observed to be controlling factors in all VAPEX processes simulated in fractured systems. The early breakthrough of the solvent for the case of matrix surrounded by the fracture partially inhibited diffusion of the solvent into the oil and consequently the VAPEX process became the least effective. It is concluded

  16. Applying CFD in the analysis of heavy oil - water two-phase flow in joints by using core annular flow technique

    Directory of Open Access Journals (Sweden)

    T Andrade

    2016-09-01

    Full Text Available In the oil industry the multiphase flow occur throughout the production chain, from reservoir rock until separation units through the production column, risers and pipelines. During the whole process the fluid flows through the horizontal pipes, curves, connections and T joints. Today, technological and economic challenges facing the oil industry is related to heavy oil transportation due to its unfavourable characteristics such as high viscosity and high density that provokes high pressure drop along the flow. The coreflow technique consists in the injection of small amounts of water into the pipe to form a ring of water between the oil and the wall of the pipe which provides the reduction of friction pressure drop along the flow. This paper aim to model and simulate the transient two-phase flow (water-heavy oil in a horizontal pipe and T joint by numerical simulation using the software ANSYS CFX® Release 12.0. Results of pressure and volumetric fraction distribution inside the horizontal pipe and T joint are presented and analysed.

  17. Mobile unit for treatment of oil emulsions (taladrines); Unidad movil de tratamiento de taladrinas

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, S.

    1995-06-01

    The environmental problems of water in oil emulsions (taladrines), produced because of an uncontrolled pouring in the sewage system, is the problem caused for the sewage sludge water treatment plants because they have oils, emulgents and heavy metals. (Author)

  18. Oxidative stability during storage of structured lipids produced from fish oil and caprylic acid

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Xu, Xuebing; Timm Heinrich, Maike

    2004-01-01

    Structured lipids produced by enzymatic or chemical methods for different applications have been receiving considerable attention. The oxidative stability of a randomized structured lipid (RFO), produced by chemical interesterification from fish oil (FO) and tricaprylin, and a specific structured...... lipid (SFO), produced by enzymatic interesterification from the same oil and caprylic acid, was compared with the stability of FO. Oils were stored at 2degreesC for 11 wk followed by storage at 20degreesC for 6 wk. In addition, the antioxidative effect of adding the metal chelators EDTA or citric acid...

  19. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons.

    Science.gov (United States)

    Martinkosky, Luke; Barkley, Jaimie; Sabadell, Gabriel; Gough, Heidi; Davidson, Seana

    2017-02-15

    Crude oil contamination widely impacts soil as a result of release during oil and gas exploration and production activities. The success of bioremediation methods to meet remediation goals often depends on the composition of the crude oil, the soil, and microbial community. Earthworms may enhance bioremediation by mixing and aerating the soil, and exposing soil microorganisms to conditions in the earthworm gut that lead to increased activity. In this study, the common composting earthworm Eisenia fetida was tested for utility to improve remediation of oil-impacted soil. E. fetida survival in soil contaminated with two distinct crude oils was tested in an artificial (lab-mixed) sandy loam soil, and survival compared to that in the clean soil. Crude oil with a high fraction of light-weight hydrocarbons was more toxic to earthworms than the crude oil with a high proportion of heavy polyaromatic and aliphatic hydrocarbons. The heavier crude oil was added to soil to create a 30,000mg/kg crude oil impacted soil, and degradation in the presence of added earthworms and feed, feed alone, or no additions was monitored over time and compared. Earthworm feed was spread on top to test effectiveness of no mixing. TPH degradation rate for the earthworm treatments was ~90mg/day slowing by 200days to ~20mg/day, producing two phases of degradation. With feed alone, the rate was ~40mg/day, with signs of slowing after 500days. Both treatments reached the same end point concentrations, and exhibited faster degradation of aliphatic hydrocarbons C21, decreased. During these experiments, soils were moderately toxic during the first three months, then earthworms survived well, were active and reproduced with petroleum hydrocarbons present. This study demonstrated that earthworms accelerate bioremediation of crude oil in soils, including the degradation of the heaviest polyaromatic fractions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    Energy Technology Data Exchange (ETDEWEB)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  1. Field development planning for an offshore extra heavy oil in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Garcia, G.; Anguiano-Rojas, J. [PEMEX Exploration and Production, Mexico City (Mexico)

    2009-07-01

    This paper presented a phased development strategy for an offshore extra-heavy oil development located in the Gulf of Mexico. The Ayatsil-1 oil field is located in an upper Cretaceous brecciated formation. One of the primary concerns of the project is the infrastructure that is needed to handle low reservoir temperatures and high viscosity, low gravity API oil. A delineation well was drilled in order to confirm the areal extension of the reservoir. The field contains an estimated 3.1 billion barrels of oil-in-place. The project will involve the installation of fixed platforms and production platforms. Electric submersible pumps (ESPs) and multiphase pumps will be used to transport the oil from between 17 to 25 wells. Analyses were conducted to determine transport mechanisms as well as gathering networks in both stationary and transitory regimes. The viscosity of live and dead oil in the reservoirs must be accurately measured in relation to temperature in order to define the artificial systems that will be used to reduce viscosity. Results from several studies will be used to determine the feasibility of various chemical, thermal, and diluent applications. 6 refs., 3 figs.

  2. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example.

    Science.gov (United States)

    Liu, Wu-Jun; Tian, Ke; Jiang, Hong; Zhang, Xue-Song; Ding, Hong-Sheng; Yu, Han-Qing

    2012-07-17

    Heavy-metal-polluted biomass derived from phytoremediation or biosorption is widespread and difficult to be disposed of. In this work, simultaneous conversion of the waste woody biomass into bio-oil and recovery of Cu in a fast pyrolysis reactor were investigated. The results show that Cu can effectively catalyze the thermo-decomposition of biomass. Both the yield and high heating value (HHV) of the Cu-polluted fir sawdust biomass (Cu-FSD) derived bio-oil are significantly improved compared with those of the fir sawdust (FSD) derived bio-oil. The results of UV-vis and (1)H NMR spectra of bio-oil indicate pyrolytic lignin is further decomposed into small-molecular aromatic compounds by the catalysis of Cu, which is in agreement with the GC-MS results that the fractions of C7-C10 compounds in the bio-oil significantly increase. Inductively coupled plasma-atomic emission spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy analyses of the migration and transformation of Cu in the fast pyrolysis process show that more than 91% of the total Cu in the Cu-FSD is enriched in the char in the form of zerovalent Cu with a face-centered cubic crystalline phase. This study gives insight into catalytic fast pyrolysis of heavy metals, and demonstrates the technical feasibility of an eco-friendly process for disposal of heavy-metal-polluted biomass.

  3. Chromatographic and spectroscopic analysis of heavy crude oil mixtures with emphasis in nuclear magnetic resonance spectroscopy: A review

    International Nuclear Information System (INIS)

    Silva, Sandra L.; Silva, Artur M.S.; Ribeiro, Jorge C.; Martins, Fernando G.; Da Silva, Francisco A.; Silva, Carlos M.

    2011-01-01

    Graphical abstract: The chromatographic and spectroscopic techniques used to characterize heavy crude oils, although more focused in the nuclear magnetic resonance spectroscopy as the technique of choice, due to its capability to provide great information on the chemical nature of individual types of proton and carbon atoms in different and complex mixtures of crude oils are described. This review is based on 65 references and describes in a critical and interpretative ways the advantages of the NMR spectroscopy as a main technique to be used in crude oil refining industries that want to characterize crude oil fractions and the obtained refined products. Highlights: ► Chromatogrfaphic and spectroscopic techniques used to characterize heavy crude oils have been reviewed. ► This review describes in a critical and interpretative ways the advantages of the NMR spectroscopy as a main technique to be used in crude oil refining industries. ► The progress in the interpretation of the NMR spectra and of different multivariate data analyses and their potential in the identification and characterization of hydrocarbons and their physical and chemical properties have also been reviewed. - Abstract: The state of the art in the characterization of heavy crude oil mixtures is presented. This characterization can be done by different techniques, such as gas chromatography (GC), high performance liquid chromatography (HPLC), thin layer chromatography (TLC), infrared spectroscopy (IR), Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Nuclear magnetic resonance spectroscopy is the technique of choice due to its capability to provide information on the chemical nature of individual types of hydrogen and carbon atoms in different and complex mixtures of crude oils. The progress made in the interpretation of the NMR spectra with the development of new NMR techniques and different multivariate data analyses could give relevant

  4. Biopretreatment of palm oil mill effluent by thermotolerant polymer-producing fungi

    Directory of Open Access Journals (Sweden)

    Masao Ukita

    2001-11-01

    Full Text Available Palm oil industry is one of the three major agro-industries in Southern Thailand and generates large quantities of effluent with high organic matter (BOD and COD values of 58,000 and 110,000 mg/l, respectively, total solids and suspended solids (70,000 and 40,000 mg/l, respectively, oil & grease (25,600 mg/l, and has a low pH (4.5. Conventional anaerobic ponding system is normally employed in palm oil mills to treat the effluent. To increase its efficiency, biopretreatment to remove the organic matter and oil & grease by thermotolerant polymer-producing fungi was investigated. The palm oil mill effluent (POME was treated by the two thermotolerant polymer-producing fungi, Rhizopus sp. ST4 and Rhizopus sp. ST29, at 45ºC under aseptic and septic conditions. Rhizopus sp. ST4 gave the same oil & grease removal (84.2% under both conditions but COD removal under septic condition (62.2% was 8.8% higher than that under aseptic condition (53.4%. On the contrary, Rhizopus sp. ST 29 under aseptic condition showed 11% and 25.4% higher oil & grease removal (91.4% and COD removal (66.0% than those under septic condition. Comparison between the two isolates under aseptic condition revealed that Rhizopus sp. ST29 exhibited higher oil & grease removal (91.4% as well as COD removal (66.0% than those of Rhizopus sp. ST4 (84.2% and 53.4%, respectively. Under septic condition, Rhizopus sp. ST4 gave higher oil & grease removal (84.2% and COD removal (62.2% than did Rhizopus sp. ST 29 (80.5 and 40.6%, respectively.

  5. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    Science.gov (United States)

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Can Producing Oil Store Carbon? Greenhouse Gas Footprint of CO2EOR, Offshore North Sea.

    Science.gov (United States)

    Stewart, R Jamie; Haszeldine, R Stuart

    2015-05-05

    Carbon dioxide enhanced oil recovery (CO2EOR) is a proven and available technology used to produce incremental oil from depleted fields while permanently storing large tonnages of injected CO2. Although this technology has been used successfully onshore in North America and Europe, there are currently no CO2EOR projects in the United Kingdom. Here, we examine whether offshore CO2EOR can store more CO2 than onshore projects traditionally have and whether CO2 storage can offset additional emissions produced through offshore operations and incremental oil production. Using a high-level Life Cycle system approach, we find that the largest contribution to offshore emissions is from flaring or venting of reproduced CH4 and CO2. These can already be greatly reduced by regulation. If CO2 injection is continued after oil production has been optimized, then offshore CO2EOR has the potential to be carbon negative--even when emissions from refining, transport, and combustion of produced crude oil are included. The carbon intensity of oil produced can be just 0.056-0.062 tCO2e/bbl if flaring/venting is reduced by regulation. This compares against conventional Saudi oil 0.040 tCO2e/bbl or mined shale oil >0.300 tCO2e/bbl.

  7. A search for quarks produced in heavy-ion interactions

    CERN Multimedia

    2002-01-01

    We propose to search for free fractional charges produced in 225~GeV/A heavy-ion collisions at the SPS. A tank of mercury placed in the NA38 beam stop will serve both as a production target and as an absorber to stop reaction products. Mercury from the tank will subsequently be distilled.\\\\ \\\\ This process will decrease the amount of mercury that has to be processed by a factor of about $10^{5}$. The concentrate will be searched for quarks using the proven SFSU automated Millikan apparatus.\\\\ \\\\ This experiment will be sensitive to about one quark produced per $2 \\times 10^{8}$ beam particles.

  8. Bioremediation: is it the solution to reclamation of heavy oil contaminated soils in the Canadian climate?

    International Nuclear Information System (INIS)

    Goodman, R.; Nicholson, P.; Varga, M.; Boadi, D.; Yang, A.

    1997-01-01

    The issue of bioremediation of heavy oil contaminated soils in cold climates was discussed. No model of the bioremediation system for cold climates exists. Environmental groups use three environmental concepts as the basis to evaluate petroleum activities: (1) cradle to grave responsibility, (2) the precautionary principle, and (3) sustainable development. The reclamation of an abandoned petroleum production facility must meet stringent standards. Most sites are contaminated with weathered hydrocarbons, brine and other chemicals that have been used at the location. Bioremediation, either in-situ or ex-situ, is one of the lowest cost remediation techniques available and has been used extensively by the downstream petroleum industry in warm climates. However, there are many unresolved issues with the use of bioremediation in cold climates, for heavy or weathered crude oil products and in areas of clay or other low permeability. Some of these unresolved issues are highlighted

  9. Pigments in Extra-Virgin Olive Oils Produced in Tuscany (Italy) in Different Years

    Science.gov (United States)

    Lazzerini, Cristina; Domenici, Valentina

    2017-01-01

    Pigments are responsible for the color of olive oils, and are an important ingredient that is directly related to the quality of this food. However, the concentration of pigments can vary significantly depending on the climate conditions, harvesting time, and olive cultivars. In this work, we quantified the main pigments in several extra-virgin olive oils produced from a blend of three cultivars (Moraiolo, Frantoio, and Leccino) typical of Tuscany (Italy) harvested in three different years: 2012, 2013, and 2014. Pigments—namely, β-carotene, lutein, pheophytin A, and pheophytin B—were quantified by a method based on the mathematical analysis of the near ultraviolet-visible absorption spectra of the oils. Data were analyzed by a multivariate statistical approach. The results show that the pigments’ content of extra-virgin olive oils produced in 2014 can be well distinguished with respect to previous years. This can be explained by the anomalous climate conditions, which strongly affected Italy and, in particular, Tuscany, where the olives were harvested. This study represents an interesting example of how pigment content can be significant in characterizing olive oils. Moreover, this is the first report of pigment quantification in extra-virgin olive oils produced in Tuscany. PMID:28353651

  10. Numerical investigation towards a HiTAC condition in a 9MW heavy fuel-oil boiler

    NARCIS (Netherlands)

    Zhu, Shanglong; Venneker, Bart; Roekaerts, Dirk; Pozarlik, Artur; van der Meer, Theo

    2013-01-01

    In this study, several conditions in a 9 MW heavy fuel-oil boiler were numerically studied in order to get a better understanding of the application of HiTAC in such a boiler. Simulations were done with an Euler- Lagrange approach. The Eddy Dissipation model was used for combustion. Simulation

  11. Hydrotreating of heavy gas oil derived from Athabasca bitumen using NiMo/Al2O3 catalyst containing boron and phosphorus : effects of process conditions on the product selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Ferdous, D.; Dalai, A.K. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Chemistry and Chemical Engineering; Adjaye, J. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2004-07-01

    In response to concerns regarding the depletion of conventional oil reserves, there has been much interest in modifying the hydrotreating process for upgrading tar sands and shale oils for producing transportation fuels. Oil sand bitumens and their derived products have a high level of nitrogen which deactivates the catalysts used in fluid catalytic cracking and hydrocracking. A better catalyst is needed to efficiently remove nitrogen from oil sand-derived gas oils. In this study, a trickle-bed reactor containing NiMo/Al{sub 2}O{sub 3} catalysts with boron and phosphorous was used to remove the sulfur and nitrogen from heavy gas oils derived from Athabasca bitumen. The operating conditions of the reactor in terms of temperature and pressure were described. Sulfur and nitrogen conversion was found to increase substantially with the boron catalysts. Gasoline selectivity also increased with an increase in temperature. However, a change in operating conditions did not significantly affect the net content of the gas oil fraction. This study also compared the results of using either the boron or phosphorous catalyst.

  12. Nitrate-Mediated Microbially Enhanced Oil Recovery (N-MEOR) from model upflow bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Voordouw, Gerrit

    2017-02-15

    Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N 2 -CO 2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. SWINE MANURE SOLIDS SEPARATION AND THERMOCHEMICAL CONVERSION TO HEAVY OIL

    Directory of Open Access Journals (Sweden)

    Shuangning Xiu

    2009-05-01

    Full Text Available Separation of solids from liquid swine manure and subsequent thermo-chemical conversion (TCC of the solids fraction into oil is one way of reducing the waste strength and odor emission. Such processing also provides a potential means of producing renewable energy from animal wastes. Gravity settling and mechanical separation techniques, by means of a centrifuge and belt press, were used to remove the solids from liquid swine manure. The solid fractions from the above separation processes were used as the feedstock for the TCC process for oil production. Experiments were conducted in a batch reactor with a steady temperature 305 oC, and the corresponding pressure was 10.34 Mpa. Gravity settling was demonstrated to be capable of increasing the total solids content of manure from 1% to 9%. Both of the mechanical separation systems were able to produce solids with dry matter around 18% for manure, with 1% to 2% initial total solids. A significant amount of volatile solid (75.7% was also obtained from the liquid fraction using the belt press process. The oil yields of shallow pit manure solids and deep pit manure solids with belt press separation were 28.72% and 29.8% of the total volatile solids, respectively. There was no visible oil product obtained from the deep pit manure solids with centrifuge separation. It is believed that it is the volatile solid content and the other components in the manure chemical composition which mainly deter-mine the oil production.

  14. Study Of The Physicochemical Analysis Of Biodiesel Produced From Waste Vegetable Oil.

    Directory of Open Access Journals (Sweden)

    C. O. Okpanachi

    2017-07-01

    Full Text Available The study of the physicochemical analysis of biodiesel produced from waste vegetable oil in Sedi Minna Nigeria was carried out in order to ascertain the quality of the biodiesel produced as regards physical and chemical parameters which include visual appearance colour cloud point flash point and cetane index diesel index kinematic velocity calorific value. Biodiesel is a renewable resource that can replace petroleum diesel which comes from fossil fuels that are limited and will be exhausted in the near future. Biodiesel can be made from the transesterification of vegetable oils animal fat greases and oil crops such as soybean and it is biodegradable. The biodiesel produced was subjected to physicochemical analysis and results of cetane index was established to be 52 the flash point using pensky martens close cup was determine to be 1600C diesel index using IP21 0.3411 kinematic viscosity at 400C to be 4.12 and calorific value of 10867calg. The investigated physicochemical parameters show that the biodiesel produced is suitable for use in diesel engines without modifications and is cheaper to produce compared to petroleum diesel.

  15. Features of hydrotreating catalytic cracking feed and heavy slow coking gas oils

    Energy Technology Data Exchange (ETDEWEB)

    Yefremov, N.I.; Kushnarev, D.F.; Frolov, P.A.; Chagovets, A.N.; Kalabin, G.A.

    1993-12-31

    A possible means of more extensive processing of crude oil is the use, in catalytic cracking, of heavy coking gas oils (HCGOs), a feature of which is a higher content of polycyclic aromatic compounds and resins by comparison with straight-run vacuum distillates. The presence of these compounds in catalytic cracking feed causes a reduction in the product yield and increased coke formation. Therefore, one of the problems of hydrotreating feedstock of this kind is the hydrogenation of polycyclic arenes. Processes of extensive desulphurization and denitration occur in parallel, since the sulphur and nitrogen compounds of HCGO are chiefly condensed benzoderivatives of thiophene, pyridine and carbazole, and largely concentrated in heavy aromatic and resinous fractions. The composition of the saturated part of the cracking feed plays a large role in achieving the optimum yields of gaseous and gasoline fractions. Thus an increase in the proportion of cyclanes in the feed raises the gasoline yield. In this way, an investigation of the hydrocarbon conversions during the hydrotreatment of cracking feed is of great importance. The present paper sets out the results for studying the change in the group-structural characteristics of the hydrogenation products of a mixture containing 30% HCGOs according to data of {sup 1}H and {sup 13}C NMR spectroscopy. 7 refs., 7 figs., 1 tab.

  16. Environmental contaminants in oil field produced waters discharged into wetlands

    International Nuclear Information System (INIS)

    Ramirez, P. Jr.

    1994-01-01

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  17. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  18. Produced water treatment for beneficial use : emulsified oil removal

    NARCIS (Netherlands)

    Waisi, Basma

    2016-01-01

    The development of novel carbon material, high accessible surface area, interconnected porosity, and stable nanofiber nonwoven media for emulsified oil droplets separation from oily wastewater, in particular for oilfields produced water treatment, is discussed in this thesis. Firstly, the quantity

  19. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.

    Science.gov (United States)

    Rajkumar, Mani; Ae, Noriharu; Prasad, Majeti Narasimha Vara; Freitas, Helena

    2010-03-01

    Phytoremediation holds promise for in situ treatment of heavy metal contaminated soils. Recently, the benefits of combining siderophore-producing bacteria (SPB) with plants for metal removal from contaminated soils have been demonstrated. Metal-resistant SPB play an important role in the successful survival and growth of plants in contaminated soils by alleviating the metal toxicity and supplying the plant with nutrients, particularly iron. Furthermore, bacterial siderophores are able to bind metals other than iron and thus enhance their bioavailability in the rhizosphere of plants. Overall, an increase in plant growth and metal uptake will further enhance the effectiveness of phytoremediation processes. Here, we highlight the diversity and ecology of metal resistant SPB and discuss their potential role in phytoremediation of heavy metals.

  20. Lifting the US crude oil export ban: A numerical partial equilibrium analysis

    International Nuclear Information System (INIS)

    Langer, Lissy; Huppmann, Daniel; Holz, Franziska

    2016-01-01

    The upheaval in global crude oil markets and the boom in shale oil production in North America brought scrutiny on the US export ban for crude oil from 1975. The ban was eventually lifted in early 2016. This paper examines the shifts of global trade flows and strategic refinery investments in a spatial, game-theoretic partial equilibrium model. We consider detailed oil supply chain infrastructure with multiple crude oil types, distinct oil products, as well as specific refinery configurations and modes of transport. Prices, quantities produced and consumed, as well as infrastructure and refining capacity investments are endogenous to the model. We compare two scenarios: an insulated US crude oil market, and a counter-factual with lifted export restrictions. We find a significant expansion of US sweet crude exports with the lift of the export ban. In the US refinery sector, more (imported) heavy sour crude is transformed. Countries importing US sweet crude gain from higher product output, while avoiding costly refinery investments. Producers of heavy sour crude (e.g. the Middle East) are incentivised to climb up the value chain to defend their market share and maintain their dominant position. - Highlights: • We study the impacts of lifting the US crude ban on global oil flows and investments. • We find massive expansion of US sweet crude oil exports. • We analyze the resulting welfare effects for US producers, refiners and consumers. • We indicate the changes on global trade patterns. • We conclude that lifting the ban is the right policy for the US and the global economy.

  1. SIMULATION AND OPTIMIZATION OF THE HYDRAULIC FRACTURING OPERATION IN A HEAVY OIL RESERVOIR IN SOUTHERN IRAN

    Directory of Open Access Journals (Sweden)

    REZA MASOOMI

    2017-01-01

    Full Text Available Extraction of oil from some Iranian reservoirs due to high viscosity of their oil or reducing the formation permeability due to asphaltene precipitation or other problems is not satisfactory. Hydraulic fracturing method increases production in the viscous oil reservoirs that the production rate is low. So this is very important for some Iranian reservoirs that contain these characteristics. In this study, hydraulic fracturing method has been compositionally simulated in a heavy oil reservoir in southern Iran. In this study, the parameters of the fracture half length, the propagation direction of the cracks and the depth of fracturing have been considered in this oil reservoir. The aim of this study is to find the best scenario which has the highest recovery factor in this oil reservoir. For this purpose the parameters of the length, propagation direction and depth of fracturing have been optimized in this reservoir. Through this study the cumulative oil production has been evaluated with the compositional simulation for the next 10 years in this reservoir. Also at the end of this paper, increasing the final production of this oil reservoir caused by optimized hydraulic fracturing has been evaluated.

  2. The influence of diffusion and dispersion on heavy oil recovery by VAPEX

    Energy Technology Data Exchange (ETDEWEB)

    Alkindi, A. [Imperial College, London (United Kingdom); Muggeridge, A. [Society of Petroleum Engineers, London (United Kingdom)]|[Imperial College, London (United Kingdom); Al-Wahaibi, Y. [Society of Petroleum Engineers, Dubai (United Arab Emirates)]|[Sultan Qaboos Univ., Muscat (Oman)

    2008-10-15

    Heavy oil recovery using vapour extraction (VAPEX) is a promising improved oil recovery technique. However, field application of this process has been limited due to concerns that favourable laboratory recoveries may not scale up to the field level. Previous laboratory studies of VAPEX in porous media have obtained much higher production rates than predicted either by analytic models derived from Hele-Shaw experiments or numerical simulation. The difference between experimental and simulation models has been explained by assuming greater mixing between vapour and oil than would be expected from molecular diffusion. Convective dispersion is a plausible justification for this increase. This paper investigated the role of convective dispersion on oil recovery by VAPEX using a combination of well characterized laboratory experiments and numerical simulation. So that all mechanisms contributing to increased-mixing apart from convective dispersion were eliminated, a first contact miscible fluid system was used. Longitudinal and transverse dispersion coefficients were experimentally measured as a function of flow-rate and viscosity ratio. VAPEX drainage experiments were then conducted over a range of injection rates. The paper also discussed the comparison of laboratory measurements of oil drainage rates with those predicted by the Butler-Mokrys analytical model and numerical simulation using either molecular diffusion or convective dispersion. Last, the paper discussed the use of the numerical model in investigating the impact of rate, well separation, and reservoir geometry on recovery. 21 refs., 4 tabs., 12 figs.

  3. Effect of mycorrhizal inoculation on the growth and phytoextraction of heavy metals by maize grown in oil contaminated soil

    International Nuclear Information System (INIS)

    Achakzai, A.K.K.; Liasu, M.O.; Popoola, O.J.

    2011-01-01

    Pot experiments were conducted to investigate the effect of AM (Glomus mosseae ) fungi inoculation (M) on the growth of maize and phyto extraction of selected heavy metals from a soil contaminated with crude oil (C). Four soil treatments, each with three replicates i.e., C/sup +/M/sup +/, M/sup +/, C/sup +/ and control (without oil and inoculum) were conducted. Half of the pots with the soil treatments were planted with singly sown (SS) and the other half with densely sown i.e., four maize seedlings (DS). Various plant growth attributes were measured at weekly intervals Cu/sup 2+/, Ni/sup 2+/, Pb/sup 2+/ and Cd/sup 2+/ in the soil, root and shoot of maize plants were determined separately. Inoculation by AM promoted the vegetative growth attributes in both treatments viz., C/sup +/M/sup +/ and M/+. AM inoculation also promoted the hyper extraction of heavy metals from C/sup +/M/sup +/ soils, but inhibited by soils treated with M/sup +/. High planting density i.e., DS also promoted phyto extraction of heavy metals from uncontaminated (M/sup +/) soils, but had minimal effect on phyto extraction from oil contaminated soils (C/sup +/). Planting density complemented the promotive effect of AM inoculation on phyto extraction of heavy metals from C/sup +/ soils. The hyper extraction of selected metals from soil is more favored by planting density in C/sup +/ soils, whereas AM inoculation tends to exclude heavy metals from potted plants. However, in case of C/sup +/M/sup +/ soils, AM inoculation promotes the hyper extraction of metals more than planting density. While the combination of the two phenomena act synergistically to promote metal hyper extraction from C/sup +/M/sup +/ as well as M/sup +/ soils. (author)

  4. SCREENING AND EXTRACTION OF BIOSURFACTANT PRODUCING BACTERIA FROM OIL CONTAMINATED SOILS.

    OpenAIRE

    B. F. Paul Beulah.

    2018-01-01

    Biosurfactants produced by bacteria are surface active compounds involved in the degradation of hydrocarbons. They are heterogeneous group of surface active molecules produced by microorganisms, which adhere to the cell surface or are excreted extra cellularly in the growth medium. The biosurfactants producing microbes are helpful in bioremediation of heavy metals, pesticides and hydrocarbon contaminated sites. They are also used as bio control agent to protect plant against various diseases,...

  5. Determining the water cut and water salinity in an oil-water flowstream by measuring the sulfur content of the produced oil

    International Nuclear Information System (INIS)

    Smith, H.D.; Arnold, D.M.

    1980-01-01

    A technique for detecting water cut and water salinity in an oil/water flowstream in petroleum refining and producing operations is described. The fluid is bombarded with fast neutrons which are slowed down and then captured producing gamma spectra characteristic of the fluid material. Analysis of the spectra indicates the relative presence of the elements sulfur, hydrogen and chlorine and from the sulfur measurement, the oil cut (fractional oil content) of the fluid is determined, enabling the water cut to be found. From the water cut, water salinity can also be determined. (U.K.)

  6. Modeling of cobalt-based catalyst use during CSS for low-temperature heavy oil upgrading

    Science.gov (United States)

    Kadyrov, R.; Sitnov, S.; Gareev, B.; Batalin, G.

    2018-05-01

    One of the methods, which is actively used on deposits of heavy oils of the Upper Kungurian (Ufimian) sandstones of the Republic of Tatarstan, is cyclic steam simulation (CSS). This method consists of 3 stages: injection, soaking, and production. Steam is injected into a well at a temperature of 300 to 340° C for a period of weeks to months. Then, the well is allowed to sit for days to weeks to allow heat to soak into the formation. Finally, the hot oil is pumped out of the well for a period of weeks or months. Once the production rate falls off, the well is put through another cycle. The injection of the catalyst solution before the injection of steam opens the possibility for upgrading the heavy oil in the process of aquathermolysis directly in the reservoir. In this paper, the possibility of using a catalyst precursor based on cobalt for upgrading the hydrocarbons of this field in the process of their extraction is represented. SARA analysis on oil saturated sandstones shows an increase in the proportion of saturated hydrocarbons by 11.1% due to the hydrogenation of aromatic hydrocarbons and their derivatives, the content of resins and asphaltenes are remained practically unchanged. A new method for estimating the adsorption of a catalyst based on taking into account the change in the concentration of the base metal before and after simulation of catalyst injection in the thermobaric conditions of the reservoir is proposed. During the study of catalyst adsorption in the rock, when simulating the CSS process, it is found that almost 28% of the cobalt, which is the main element of the catalyst precursor, is retained in the rock.

  7. CFD (Computational Fluid Dynamics) simulators and thermal cracking of heavy oil and ultraheavy residues using microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jardini, Andre L.; Bineli, Aulus R.R.; Viadana, Adriana M.; Maciel, Maria Regina Wolf; Maciel Filho, Rubens [State University of Campinas (UNICAMP), SP (Brazil). School of Chemical Engineering; Medina, Lilian C.; Gomes, Alexandre de O. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES); Barros, Ricardo S. [University Foundation Jose Bonifacio (FUJB), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    In this paper, the design of microreactor with microfluidics channels has been carried out in Computer Aided Design Software (CAD) and constructed in rapid prototyping system to be used in chemical reaction processing of the heavy oil fractions. The flow pattern properties of microreactor (fluid dynamics, mixing behavior) have been considered through CFD (computational fluid dynamics) simulations. CFD calculations are also used to study the design and specification of new microreactor developments. The potential advantages of using a microreactor include better control of reaction conditions, improved safety and portability. A more detailed crude assay of the raw national oil, whose importance was evidenced by PETROBRAS/CENPES allows establishing the optimum strategies and processing conditions, aiming at a maximum utilization of the heavy oil fractions, towards valuable products. These residues are able to be processed in microreactor, in which conventional process like as hydrotreating, catalytic and thermal cracking may be carried out in a much more intensified fashion. The whole process development involves a prior thermal study to define the possible operating conditions for a particular task, the microreactor design through computational fluid dynamics and construction using rapid prototyping. This gives high flexibility for process development, shorter time, and costumer/task oriented process/product development. (author)

  8. Study of bio-oil and bio-char production from algae by slow pyrolysis

    International Nuclear Information System (INIS)

    Chaiwong, K.; Kiatsiriroat, T.; Vorayos, N.; Thararax, C.

    2013-01-01

    This study examined bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. A thermogravimetric analyser (TGA) was used to investigate the pyrolytic characteristics and essential components of algae. It was found that the temperature for the maximum degradation, 322 °C, is lower than that of other biomass. With our fixed-bed reactor, 125 g of dried Spirulina Sp. algae was fed under a nitrogen atmosphere until the temperature reached a set temperature between 450 and 600 °C. It was found that the suitable temperature to obtain bio-char and bio-oil were at approximately 500 and 550 °C respectively. The bio-oil components were identified by a gas chromatography/mass spectrometry (GC–MS). The saturated functional carbon of the bio-oil was in a range of heavy naphtha, kerosene and diesel oil. The energy consumption ratio (ECR) of bio-oil and bio-char was calculated, and the net energy output was positive. The ECR had an average value of 0.49. -- Highlights: •Bio-oil and bio-char fuel produced from Spirulina Sp. by slow pyrolysis. •Suitable temperature to obtained bio-oil and bio-char were at about 550 and 500 °C. •Saturated functional carbon of bio-oil was heavy naphtha, kerosene, diesel oil. •ECR had an average value of 0.49

  9. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

    2004-04-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered.

  10. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    International Nuclear Information System (INIS)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S.

    2004-01-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered

  11. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mendil, Durali; Uluoezlue, Ozguer Dogan; Tuezen, Mustafa; Soylak, Mustafa

    2009-01-01

    The element contents (Fe, Mn, Zn, Cu, Pb, Co, Cd, Na, K, Ca and Mg) in edible oils (olive oil, hazelnut oil, sunflower oil, margarine, butter and corn oil) from Turkey were determined using atomic absorption spectrometry after microwave digestion. The concentrations of trace element in the samples were found to be 291.0-52.0, 1.64-0.04, 3.08-1.03, 0.71-0.05, 0.03-0.01, 1.30-0.50, 84.0-0.90, 50.1-1.30, 174.2-20.8 and 20.8-0.60 μg/g for iron, manganese, zinc, copper, lead, cobalt, sodium, potassium, calcium, and magnesium, respectively. Cadmium was found to be 4.57-0.09 μg/kg. The high heavy metal and minerals accumulation levels in the samples were found in olive oil for Cu, Pb, Co, margarine for Fe, K, corn oil for Zn, Mn, butter for Na, Mg, sunflower oil for Ca and hazelnut oil for Cd, respectively.

  12. Effects of temperature and wave conditions on chemical dispersion efficacy of heavy fuel oil in an experimental flow-through wave tank.

    Science.gov (United States)

    Li, Zhengkai; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2010-09-01

    The effectiveness of chemical dispersants (Corexit 9500 and SPC 1000) on heavy fuel oil (IFO180 as test oil) has been evaluated under different wave conditions in a flow-through wave tank. The dispersant effectiveness was determined by measuring oil concentrations and droplet size distributions. An analysis of covariance (ANCOVA) model indicated that wave type and temperature significantly (p or = 400 microm). Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Development of the German mineral oil market in 1995. Pt. 2

    International Nuclear Information System (INIS)

    Mohnfeld, J.; Heinze, W.

    1996-01-01

    Following a brief glance at the boundary conditions for the German market (world oil market, inland energy consumption), the development of inland sales is described. One after one, the mineral oil products Otto engine fuel, diesel fuel, light fuel oil and heavy fuel oil are considered. Further sections deal with crude oil supply, the supply of mineral oil produce, refinery production, the development in the sales sector, the profit situation of the mineral oil industry, the development of prices (according to products) and expenditure in foreign exchange for mineral oil. The article contains numerous tables and graphs; comparisons with the years previously illustrate development trends. (UA) [de

  14. Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration

    International Nuclear Information System (INIS)

    Chen, A.S.C.; Flynn, J.T.; Cook, R.G.; Casaday, A.L.

    1991-01-01

    In this paper results of studies of two onshore and two offshore pilot plants that use ceramic crossflow microfiltration (CCFM) to separate oil, grease, and suspended solids from produced water are discussed. The method is capable of producing permeate quality with < =5 mg/L (detection limit) of dispersed oil and grease and <1 mg/L of suspended solids

  15. Measurement of volatiles, semi-volatiles and heavy metals in an oil burn test

    International Nuclear Information System (INIS)

    Li, K.; Caron, T.; Landriault, M.; Pare, J.R.J.; Fingas, M.

    1992-01-01

    Tests involving meso-scale burning of Louisiana crude oil were conducted, and during each burn, extensive samples were taken from the oil, residue, and the smoke plume. The detailed analytical work employed to obtain and analyze the burn samples is outlined and discussed. The analytical parameters included volatiles and semi-volatiles of environmental interests as well as heavy metals typically contained in the starting crude oil. Because the smoke plume did not always impinge on the samplers, the ground samplers did not collect sufficient samples for a definitive analysis. Crude/residue analyses showed the burn resulted in a significant reduction of polycyclic aromatic hydrocarbons (PAH) in the original oil. Most of the reduction was thought to be simply evaporation or destruction from combustion. The residue did not have the degree of enrichment of the higher molecular weight PAHs as was the case in bench-scale burn experiments. Volatile organic compound and dioxin/furan measurements likewise did not show high levels of contamination from the burn itself. Most of the elevated levels of contaminants could probably be due to evaporation of the oil itself. Insufficient sampling was conducted to investigate the background levels from the weathering process. A novel means of sampling using a small remote controlled helicopter was attempted and sufficiently interesting results were obtained to indicate the potential of this passive sampling device for future work. 5 refs., 4 figs

  16. An approach for characterization and lumping of plus fractions of heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, I.; Hamouda, A.A. [Stavanger Univ., Stavanger (Norway)

    2008-10-15

    The constituents of hydrocarbons can be classified as either well-defined components or undefined petroleum fractions. This paper presented a newly developed method for characterizing plus fractions of heavy oil, which is particularly important for fluids with high molecular weight and high density. Characterization of plus fractions typically consists of 3 parts, notably splitting the fraction into a certain number of components groups called single carbon number (SCN); estimating the physico-chemical properties of the SCN; and lumping the generated SCN. SCN groups contain hundreds of isomers/components with the same number of carbon atoms. A unique molecular weight cannot be assigned for each SCN group because of the uncertainty of the isomers/components present. Therefore, this work focused on finding a new approach to characterize the undetermined fraction by first splitting the carbon number fraction into a representative number of SCN and then calculating their mole fraction and molecular weight. The method was based on the relationships between three parameter gamma distribution (TPG), experimental mole fraction, molecular weight and SCN data obtained from literature and industry. The method was applied to 5 different heavy oil sample fluids which all showed a left skewed distribution of the mole fraction as a function of carbon number. The predicted molecular weight was found to be close to the generalized molecular weight associated with carbon number, but it differed from one sample to another. 19 refs., 11 tabs., 15 figs.

  17. Ferric Sulfate and Proline Enhance Heavy-Metal Tolerance of Halophilic/Halotolerant Soil Microorganisms and Their Bioremediation Potential for Spilled-Oil Under Multiple Stresses

    Science.gov (United States)

    Al-Mailem, Dina M.; Eliyas, Mohamed; Radwan, Samir S.

    2018-01-01

    The aim of this study was to explore the heavy-metal resistance and hydrocarbonoclastic potential of microorganisms in a hypersaline soil. For this, hydrocarbonoclastic microorganisms were counted on a mineral medium with oil vapor as a sole carbon source in the presence of increasing concentrations of ZnSO4, HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4. The colony-forming units counted decreased in number from about 150 g-1 on the heavy-metal-free medium to zero units on media with 40–100 mg l-1 of HgCl2, CdSO4, PbNO3, or Na2HAsO4. On media with CuSO4 or ZnSO4 on the other hand, numbers increased first reaching maxima on media with 50 mg l-1 CuSO4 and 90 mg l-1 ZnSO4. Higher concentrations reduced the numbers, which however, still remained considerable. Pure microbial isolates in cultures tolerated 200–1600 mg l-1 of HgCl2, CdSO4, PbNO3, CuSO4, and Na2HAsO4 in the absence of crude oil. In the presence of oil vapor, the isolates tolerated much lower concentrations of the heavy metals, only 10–80 mg l-1. The addition of 10 Fe2(SO4)3 and 200 mg l-1 proline (by up to two- to threefold) enhanced the tolerance of several isolates to heavy metals, and consequently their potential for oil biodegradation in their presence. The results are useful in designing bioremediation technologies for oil spilled in hypersaline areas. PMID:29563904

  18. An overview of US refinery configurations and operations (within western Canada supply orbit) : Who currently uses bitumen and SCO? Just how much heavy oil/bitumen is it possible to accept?

    International Nuclear Information System (INIS)

    Flint, L.

    1997-01-01

    A list of US refiners, names and locations that take relatively major heavy crude oil and synthetic crude oil (SCO) volumes from Western Canada was provided. It was suggested that in the near future, production of Canadian heavy crude will not be constrained by supply limits but rather by refinery process capabilities. An overview of refining capacity and heavy oil processing capacity by PADD in kbpsd was presented. The Northern Tier US States (PADD II, PADD IV and Washington/Oregon in PADD V) constitute a total of 4.4 million bpcd refining capacity at 95 per cent utilization. Of this, about 3.4 million bpcd is in PADD II. Montana in PADD IV is the only area dependent solely on Canadian heavy crude supplies. Main competition for Canadian heavy crude comes from Alaska, Mexico, and Venezuela. 1 tab., 2 figs

  19. Ready or Not: Namibia As a Potentially Successful Oil Producer

    Directory of Open Access Journals (Sweden)

    Andrzej Polus

    2015-01-01

    Full Text Available The primary objective of this paper is to assess whether Namibia is ready to become an oil producer. The geological estimates suggest that the country may possess the equivalent of as many as 11 billion barrels of crude oil. If the numbers are correct, Namibia would be sitting on the second-largest oil reserves in sub-Saharan Africa, and exploitation could start as soon as 2017. This clearly raises the question of whether Namibia is next in line to become a victim of the notorious “resource curse.” On the basis of critical discourse analysis and findings from field research, the authors have selected six dimensions of the resource curse and contextualised them within the spheres of Namibian politics and economy. While Namibia still faces a number of important challenges, our findings offer little evidence that the oil will have particularly disruptive effects.

  20. Properties and quality verification of biodiesel produced from tobacco seed oil

    Energy Technology Data Exchange (ETDEWEB)

    Usta, N., E-mail: n_usta@pau.edu.t [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Aydogan, B. [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Con, A.H. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey); Uguzdogan, E. [Pamukkale University, Chemical Engineering Department, 20070 Denizli (Turkey); Ozkal, S.G. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey)

    2011-05-15

    Research highlights: {yields} High quality biodiesel fuel can be produced from tobacco seed oil. {yields} Pyrogallol was found to be effective antioxidant improving the oxidation stability. {yields} The iodine number was reduced with a biodiesel including more saturated fatty acids. {yields} Octadecene-1-maleic anhydride copolymer was an effective cold flow improver. {yields} The appropriate amounts of the additives do not affect the properties negatively. -- Abstract: Tobacco seed oil has been evaluated as a feedstock for biodiesel production. In this study, all properties of the biodiesel that was produced from tobacco seed oil were examined and some solutions were derived to bring all properties of the biodiesel within European Biodiesel Standard EN14214 to verify biodiesel quality. Among the properties, only oxidation stability and iodine number of the biodiesel, which mainly depend on fatty acid composition of the oil, were not within the limits of the standard. Six different antioxidants that are tert-butylhydroquinone, butylated hydroxytoluene, propyl gallate, pyrogallol, {alpha}-tocopherol and butylated hydroxyanisole were used to improve the oxidation stability. Among them, pyrogallol was found to be the most effective antioxidant. The iodine number was improved with blending the biodiesel produced from tobacco seed oil with a biodiesel that contains more saturated fatty acids. However, the blending caused increasing the cold filter plugging point. Therefore, four different cold flow improvers, which are ethylene-vinyl acetate copolymer, octadecene-1-maleic anhydride copolymer and two commercial cold flow improvers, were used to decrease cold filter plugging point of the biodiesel and the blends. Among the improvers, the best improver is said to be octadecene-1-maleic anhydride copolymer. In addition, effects of temperature on the density and the viscosity of the biodiesel were investigated.

  1. New Procedure to Develop Lumped Kinetic Models for Heavy Fuel Oil Combustion

    KAUST Repository

    Han, Yunqing

    2016-09-20

    A new procedure to develop accurate lumped kinetic models for complex fuels is proposed, and applied to the experimental data of the heavy fuel oil measured by thermogravimetry. The new procedure is based on the pseudocomponents representing different reaction stages, which are determined by a systematic optimization process to ensure that the separation of different reaction stages with highest accuracy. The procedure is implemented and the model prediction was compared against that from a conventional method, yielding a significantly improved agreement with the experimental data. © 2016 American Chemical Society.

  2. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  3. Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2016-11-01

    Full Text Available Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS. The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9 and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  4. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C 26 H 48 O 9 , C 28 H 52 O 9 , and C 32 H 58 O 13 . The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO 3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  5. Air Permitting Implications of a Biorefinery Producing Raw Bio-Oil in Comparison with Producing Gasoline and Diesel Blendstocks

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-01

    A biorefinery, considered a chemical process plant under the Clean Air Act permitting program, could be classified as a major or minor source based on the size of the facility and magnitude of regulated pollutants emitted. Our previous analysis indicates that a biorefinery using fast pyrolysis conversion process to produce finished gasoline and diesel blendstocks with a capacity of processing 2,000 dry metric tons of biomass per day would likely be classified as a major source because several regulated pollutants (such as particulate matter, sulfur dioxide, nitrogen oxide) are estimated to exceed the 100 tons per year (tpy) major source threshold, applicable to chemical process plants. Being subject to a major source classification could pose additional challenges associated with obtaining an air permit in a timely manner before the biorefinery can start its construction. Recent developments propose an alternative approach to utilize bio-oil produced via the fast pyrolysis conversion process by shipping it to an existing petroleum refinery, where the raw bio-oil can be blended with petroleum-based feedstocks (e.g., vacuum gas oil) to produce gasoline and diesel blendstocks with renewable content. Without having to hydro-treat raw bio-oil, a biorefinery is likely to reduce its potential-to-emit to below the 100 tpy major source threshold, and therefore expedite its permitting process. We compare the PTE estimates for the two biorefinery designs with and without hydrotreating of bio-oils and examine the air permitting implications on potential air permit classification and discuss the best available control technology requirements for the major source biorefinery utilizing hydrotreating operation. Our analysis is expected to provide useful information to new biofuel project developers to identify opportunities to overcome challenges associated with air permitting.

  6. 77 FR 8254 - Notice of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS...

    Science.gov (United States)

    2012-02-14

    ... Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced From Palm Oil Under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  7. 77 FR 19663 - Notice of Data Availability Concerning Renewable Fuels Produced from Palm Oil Under the RFS...

    Science.gov (United States)

    2012-04-02

    ... Concerning Renewable Fuels Produced from Palm Oil Under the RFS Program; Extension of Comment Period AGENCY... of Data Availability Concerning Renewable Fuels Produced from Palm Oil under the RFS Program'' (the notice is herein referred to as the ``palm oil NODA''). EPA published a NODA, which included a request...

  8. Producing bio-pellets from sunflower oil cake for use as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yuichi; Kato, Hitoshi; Kanai, Genta; Togashi, Tatsushi [National Agricultural Research Center (Japan)], E-mail: kobay@affrc.go.jp

    2008-07-01

    Pellet fuels were produced from ground sunflower oil cake using a pelletizer. The length, hardness, and powder characteristics of dried pellets depend on the initial water content of the oil cake. The appropriate values of water contents were 19.9 - 21.0% w.b. Oil cake pellets were found to contain 6.07% ash and 20.99 MJ/kg caloric value, which are within the standard range of wood pellets. Combustion experiments using a commercial pellet stove demonstrate that oil cake pellets burn as well as wood pellets. Oil cake pellets are useful as a fuel alternative to wood pellets. (author)

  9. Rhamnolipid produced by Pseudomonas aeruginosa USM-AR2 facilitates crude oil distillation.

    Science.gov (United States)

    Asshifa Md Noh, Nur; Al-Ashraf Abdullah, Amirul; Nasir Mohamad Ibrahim, Mohamad; Ramli Mohd Yahya, Ahmad

    2012-01-01

    A biosurfactant-producing and hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa USM-AR2, was used to assist conventional distillation. Batch cultivation in a bioreactor gave a biomass of 9.4 g L(-1) and rhamnolipid concentration of 2.4 g L(-1) achieved after 72 h. Biosurfactant activity (rhamnolipid) was detected by the orcinol assay, emulsification index and drop collapse test. Pretreatment of crude oil TK-1 and AG-2 with a culture of P. aeruginosa USM-AR2 that contains rhamnolipid was proven to facilitate the distillation process by reducing the duration without reducing the quality of petroleum distillate. It showed a potential in reducing the duration of the distillation process, with at least 2- to 3-fold decreases in distillation time. This is supported by GC-MS analysis of the distillate where there was no difference between compounds detected in distillate obtained from treated or untreated crude oil. Calorimetric tests showed the calorie value of the distillate remained the same with or without treatment. These two factors confirmed that the quality of the distillate was not compromised and the incubation process by the microbial culture did not over-degrade the oil. The rhamnolipid produced by this culture was the main factor that enhanced the distillation performance, which is related to the emulsification of hydrocarbon chains in the crude oil. This biotreatment may play an important role to improve the existing conventional refinery and distillation process. Reducing the distillation times by pretreating the crude oil with a natural biosynthetic product translates to energy and cost savings in producing petroleum products.

  10. Methods of refining natural oils, and methods of producing fuel compositions

    Science.gov (United States)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  11. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Stigkær, Jens Peter; Løhndorf, Bo

    2013-01-01

    This paper discusses the application of plant-wide control philosophy to enhance the performance and capacity of the Produced Water Treatment (PWT) in offshore oil & gas production processes. Different from most existing facility- or material-based PWT innovation methods, the objective of this work...

  12. Alberta Oil Sands Equity annual report, 1992-93. Partnership and progress in Alberta's oil sands development

    International Nuclear Information System (INIS)

    1993-01-01

    Alberta Oil Sands Equity (AOSE) manages the Alberta government's equity investments in oil sands and heavy oil projects. AOSE is a 16.74% participant in the Syncrude Project, a 10% participant in the OSLO (Other Six Leases Operation) Commercial Project and the OSLO New Ventures project, and a 24.17% participant in the Lloydminster Bi-Provincial Upgrader. Syncrude produces ca 12% of Canadian crude oil requirements, and AOSE's share yielded $44 million profit for 1992/93, slightly higher than the the $43.3 million the previous year. The OSLO Commercial Project is a proposed commercial oil sands plant with a mine site and extraction plant to be located north of Fort McMurray, and an upgrading facility to be situated north of Edmonton. Work on this project was suspended in early 1992. The OSLO New Ventures project will handle the exploration and development of the remaining five oil sands leases plus the southern portion of Lease 31. As of March 31, 1993, the project owners were considering a commercial demonstration project utilizing dredging and cold-water extraction processes. Two of the owners are unable to provide funding and discussions are under way to resolve the matter and move the program forward. The Lloydminster Bi-Provincial Upgrader opened Noveber 20, 1992, and production has reached 41,000 bbl/d, or 89% of design capacity. The upgrader will increase the value of heavy crude oil and thereby increase its demand. 5 figs., 3 tabs

  13. Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks With Applications in Time-Lapse Monitoring of a Heavy Oil Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang

    2017-11-01

    Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.

  14. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  15. Isolation, screening, and characterization of surface-active agent-producing, oil-degrading marine bacteria of Mumbai Harbor.

    Science.gov (United States)

    Mohanram, Rajamani; Jagtap, Chandrakant; Kumar, Pradeep

    2016-04-15

    Diverse marine bacterial species predominantly found in oil-polluted seawater produce diverse surface-active agents. Surface-active agents produced by bacteria are classified into two groups based on their molecular weights, namely biosurfactants and bioemulsifiers. In this study, surface-active agent-producing, oil-degrading marine bacteria were isolated using a modified Bushnell-Haas medium with high-speed diesel as a carbon source from three oil-polluted sites of Mumbai Harbor. Surface-active agent-producing bacterial strains were screened using nine widely used methods. The nineteen bacterial strains showed positive results for more than four surface-active agent screening methods; further, these strains were characterized using biochemical and nucleic acid sequencing methods. Based on the results, the organisms belonged to the genera Acinetobacter, Alcanivorax, Bacillus, Comamonas, Chryseomicrobium, Halomonas, Marinobacter, Nesterenkonia, Pseudomonas, and Serratia. The present study confirmed the prevalence of surface-active agent-producing bacteria in the oil-polluted waters of Mumbai Harbor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Isolation and Characterization of Biosurfactant Producing Bacteria for the Application in Enhanced Oil Recovery

    Science.gov (United States)

    Prasad, Niraj; Dasgupta, Sumita; Chakraborty, Mousumi; Gupta, Smita

    2017-07-01

    In the present study, a biosurfactant producing bacterial strain was isolated, screened and identified. Further, various fermentation conditions (such as pH (5-10), incubation period (24-96h) and incubation temperature (20-60 °C) were optimized for maximum production of biosurfactant. The produced biosurfactant was characterized by measuring emulsification index, foaming characteristics, rhamnolipid detection, interfacial tension between water and oil and stability against pH and temperature for its potential application in oil recovery process. The additional oil recovery for two different sand, sand1 and sand2, was found to be 49% and 38%, respectively.

  17. Glaciotectonics in the Cold Lake area and implications for steam-assisted heavy-oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Andriashek, L.D.; Fenton, M.M. [Alberta Geological Survey, Calgary, AB (Canada); Freitas de, T.; Mann, G. [Imperial Oil of Canada, Calgary, AB (Canada)

    1999-11-01

    A study was conducted to show how the depositional history of the Alberta`s Cold Lake region can have an impact on the use of steam assisted heavy-oil recovery in the oil sands region. The bitumens are found mainly within the 50 m thick estuarine and fluvial sandstone of the Cretaceous Clearwater Formation of the Mannville Group, at a depth of approximately 450 m. The stratigraphic sequences within the Mannville Group were presented. It has been determined that glaciotectonics have played a major role in the depositional history of the area. It was also determined that a good understanding of the hydrostratigraphic complexity makes it possible to better manage local ground water resources and to effectively plan further groundwater withdrawal sites.

  18. Determination of asphaltenes in heavy oils using an on-column method

    Energy Technology Data Exchange (ETDEWEB)

    Rogel, E.; Ovalles, C.; Moir, M. [Chevron Energy Technology Co., Richmond, CA (United States); Schabron, J.F. [Western Research Inst., Laramie, WY (United States)

    2009-07-01

    An improved analytical method for determining the asphaltene content in crude oil and petroleum samples was presented. The method used an on-column precipitation technique coupled with an evaporative light scattering detector (ELSD). The column has an inert packing material where the asphaltene was precipitated and re-dissolved using a solvent. Heavy crude oils with asphaltene contents ranging from 5 to 25 per cent w/w were tested. A blend of 90:10 dichloromethane and methanol was used to decrease the influence of hydrocarbon adsorption mechanisms from the polymeric liquid chromatographic phases. A series of laboratory experiments were conducted to compare results obtained using the method with results obtained using traditional gravimetric methods. Regression analysis was used to determine the calibration constants. The study showed that the method can be used as replacement for conventional gravimetric methods when faster results are needed or when sample sizes are small. It was concluded that the method was able to accurately quantify asphaltene contents as low as 120 ppm. 8 refs., 1 tab., 3 figs.

  19. Low oxygen biomass-derived pyrolysis oils and methods for producing the same

    Science.gov (United States)

    Marinangeli, Richard; Brandvold, Timothy A; Kocal, Joseph A

    2013-08-27

    Low oxygen biomass-derived pyrolysis oils and methods for producing them from carbonaceous biomass feedstock are provided. The carbonaceous biomass feedstock is pyrolyzed in the presence of a catalyst comprising base metal-based catalysts, noble metal-based catalysts, treated zeolitic catalysts, or combinations thereof to produce pyrolysis gases. During pyrolysis, the catalyst catalyzes a deoxygenation reaction whereby at least a portion of the oxygenated hydrocarbons in the pyrolysis gases are converted into hydrocarbons. The oxygen is removed as carbon oxides and water. A condensable portion (the vapors) of the pyrolysis gases is condensed to low oxygen biomass-derived pyrolysis oil.

  20. Gasification of coal as efficient means of environment protection and hydrogenation of heavy oils residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S. [Fossil Fuel Institute, Moscow (Russian Federation)

    1995-12-31

    The Russia`s more then 50% of coals produced in its European part contain over 2,5% of sulphur, and the coals containing less than 1.5% of sulphurs comprise ca.20%. Thus, utilisation of the sulphide coals is inevitable, and there a problem arises concerning the technology of their sensible use and considering the requirements on the environment protection. Russia`s specialists have developed a design and construction for a steam-gas installation with a closed cycle gasification of the solid fuel. The gasification process will proceed in the fluidized bed under forced pressure of the steam-air blast. Characteristic features of this process are the following: a higher efficiency (the capacity of one gas generator is 3-3,5 times larger than that attained in the present gas generators of the Lurgy`s type): 2-2,5 times decreased fuel losses as compared to the Winkler`s generators; retention of the sensible heat, resulting in an increased total energy efficiency. The main task for petroleum refining industry at the present stage is the increase of depth of oil processing with the aim to intensify motor fuel production. One of the ways to solve the problem is to involve heavy oil residues into the processing. But the high metal and asphaltenes contents in the latter make the application of traditional methods and processes more difficult. Up to now there is no simple and effective technology which could give the opportunity to use oil residues for distillate fractions production. In Fossil fuel institute a process for hydrogenation of high boiling oil products, including with high sulphur, vanadium and nickel contents ones, into distillates and metals concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with tar, dispersed and then subjected to additional supercavitation in a special apparatus.

  1. Oil-Sludge Extended Asphalt Mastic Filled with Heavy Oil Fly Ash and Cement Waste for Waterproofing

    Directory of Open Access Journals (Sweden)

    H.I. Al-Abdul Wahhab

    2014-12-01

    Full Text Available Recycling as an economic disposal process for many hazardous waste materials has become a popular means of conserving our planet’s scarce and diminishing natural resources. This paper is a study of the influence of oil sludge (OS on the physical behavior and performance of asphalt filled with heavy oil fly ash (HOFA, cement kiln dust (CKD and limestone dust (LMD. Conventional asphalt consistency tests in addition to a new bond strength (BS test were conducted on the modified asphalt mastics. The results were statistically analyzed and assessed in accordance with American Society for Testing and Materials (ASTM D 332 and ASTM D 449 specifications. Too much OS resulted in strength deterioration of the asphalt mastic, which can be compensated for by filling the mastic with HOFA. OS interacts constructively with the fillers to improve their effectiveness in raising the softening point (SP and viscosity of the asphalt, and also in reducing its penetration and ductility. Even though sludge mastics hold promise as suitable composites for damp proofing and waterproofing, the resulting low flash point (FP and SP of some of these mastics make their suitability for roofing applications questionable.

  2. Transesterification of mustard (Brassica nigra) seed oil with ethanol: Purification of the crude ethyl ester with activated carbon produced from de-oiled cake

    International Nuclear Information System (INIS)

    Fadhil, Abdelrahman B.; Abdulahad, Waseem S.

    2014-01-01

    Highlights: • Biodiesel ethyl ester has been developed from mustard seed oil. • Variables affect the transesterification were investigated. • Dry washing using the activated carbon produced from the extraction remaining was applied to purify the ethyl esters. • Properties of the produced fuels were measured. • Blending of the produced ethyl ester with petro diesel was also investigated. - Abstract: The present study reports the production of mustard seed oil ethyl esters (MSOEE) through alkali-catalyzed transesterification with ethanol using potassium hydroxide as a catalyst. The influence of the process parameters such as catalyst concentration, ethanol to oil molar ratio, reaction temperature, reaction duration and the catalyst type was investigated so as to find out the optimal conditions for the transesterification process. As a result, optimum conditions for production of MSOEE were found to be: 0.90% KOH wt/wt of oil, 8:1 ethanol to oil molar ratio, a reaction temperature of 60 °C, and a reaction time of 60 min. Dry washing method with (2.50% wt.) of the activated carbon that was produced from the de-oiled cake was used to purify the crude ethyl ester from the residual catalyst and glycerol. The transesterification process provided a yield of 94% w/w of ethyl esters with an ester content of 98.22% wt. under the optimum conditions. Properties of the produced ethyl esters satisfied the specifications prescribed by the ASTM standards. Blending MSOEE with petro diesel was also investigated. The results showed that the ethyl esters had a slight influence on the properties of petro diesel

  3. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Science.gov (United States)

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  4. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  5. Alberta Oil Sands Equity annual report, 1991-92. Partnership and progress in Alberta's oil sands development

    International Nuclear Information System (INIS)

    1992-01-01

    Alberta Oil Sands Equity (AOSE) manages the Alberta government's equity investments in oil sands and heavy oil projects. AOSE is a 16.74% participant in the Syncrude Project, a 10% participant in the OSLO (Other Six Leases Operation) Commercial Project and the OSLO New Ventures project, and a 24.17% participant in the Lloydminster Bi-Provincial Upgrader. Syncrude produces over 11% of Canadian crude oil requirements, and AOSE's share yielded $43.3 million profit for 1991/92, down significantly from the $82.1 million the previous year due to lower oil prices. The OSLO Commercial Project is a proposed commercial oil sands plant with a mine site and extraction plant to be located north of Fort McMurray, and an upgrading facility to be situated north of Edmonton. Work on this project was suspended in early 1992. The OSLO New Ventures project will handle the exploration and development of the remaining five oil sands leases plus the southern portion of Lease 31. As of March 31, 1992, the project owners were considering a commercial demonstration project utilizing dredging and cold-water extraction processes. Two of the owners are unable to provide funding and discussions are under way to resolve the matter and move the program forward. The Lloydminster Bi-Provincial Upgrader was nearly 90% complete in March 1992 and full startup is expected in November 1992; engineering work was completed in March 1991. The upgrader will increase the value of heavy crude oil and thereby increase its demand. 4 figs., 4 tabs

  6. An efficient thermotolerant and halophilic biosurfactant-producing bacterium isolated from Dagang oil field for MEOR application

    Science.gov (United States)

    Wu, Langping; Richnow, Hans; Yao, Jun; Jain, Anil

    2014-05-01

    Dagang Oil field (Petro China Company Limited) is one of the most productive oil fields in China. In this study, 34 biosurfactant-producing strains were isolated and cultured from petroleum reservoir of Dagang oil field, using haemolytic assay and the qualitative oil-displacement test. On the basis of 16S rDNA analysis, the isolates were closely related to the species in genus Pseudomonas, Staphylococcus and Bacillus. One of the isolates identified as Bacillus subtilis BS2 were selected for further study. This bacterium was able to produce a type of biosurfactant with excessive foam-forming properties at 37ºC as well as at higher temperature of 55ºC. The biosurfactant produced by the strain BS2 could reduce the surface tension of the culture broth from 70.87 mN/m to 28.97 mN/m after 8 days of incubation at 37ºC and to 36.15 mN/m after 20 days of incubation at 55ºC, respectively. The biosurfactant showed stability at high temperature (up to 120ºC), a wide range of pH (2 to 12) and salt concentrations (up to 12%) offering potential for biotechnology. Fourier transform infrared (FT-IR) spectrum of extracted biosurfactant tentatively characterized the produced biosurfactant as glycolipid derivative. Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) reveals that the biosurfactant was anionic in nature. 15 days of biodegradation of crude oil suggested a preferential usage of n-alkane upon microbial metabolism of BS2 as a carbon substrate and consequently also for the synthesis of biosurfactants. Core flood studies for oil release indicated 9.6% of additional oil recovery over water flooding at 37ºC and 7.2% of additional oil recovery at 55 ºC. Strain BS2 was characterized as an efficient biosurfactant-producing, thermotolerant and halophillic bacterium and has the potential for application for microbial enhanced oil recovery (MEOR) through water flooding in China's oil fields even in situ as adapted to reservoir chemistry and

  7. Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy oil spill of the Prestige

    International Nuclear Information System (INIS)

    Fernandez-Alvarez, P.; Vila, J.; Garrido, J.M.; Grifoll, M.; Feijoo, G.; Lema, J.M.

    2007-01-01

    The efficiency of different bioremediation products (nutrients, microorganisms and biodiesel) was tested using tiles located in both the supra-littoral and intertidal zones of a beach that was affected by the heavy oil spill of the Prestige. Neither nutrients nor microorganisms meant an improvement with respect to the natural processes. The addition of biodiesel improved the appearance of the treated tiles and apparently accelerated the degradation of the aliphatic and aromatic fractions of the residual fuel oil. Nevertheless, PAHs degradation was similar and very high in all the treatments (80-85% after 60 days). On the other hand, the evolution with time of the amount of vanadium was similar to that of 17α(H),21β(H)-hopane, so it was concluded that vanadium could also be used to estimate the extent of oil degradation in the field. These results also suggested that the residual fuel oil mineralization was very low throughout 1 year in all the treatments. Moreover, the increase of the oxygen content of the residual oil from around 1% till 4-8% indicated that the partial oxidation of hydrocarbons took place, and that the hydrocarbon oxidation products accumulated in the polar fractions. In general, the results pointed out that bioremediation techniques were not suitable for the recovery of shores affected by heavy oil spills

  8. Relations between interfacial properties and heavy crude oil emulsions stability; Relations entre les proprietes interfaciales et la stabilite des emulsions de brut lourd

    Energy Technology Data Exchange (ETDEWEB)

    Hoebler-Poteau, S.

    2006-02-15

    Oil in water emulsions are currently being investigated to facilitate the transport of viscous heavy oils. The behavior of these emulsions is largely controlled by oil / water interfaces. The surface-active components of crude oil such as asphaltenes and naphthenic acids compete among themselves at these interfaces and also with possibly added synthetic surfactant emulsifier.Here, we present a study of dynamic interfacial tension and rheology of interfaces between water and a model oil (toluene) in which asphaltenes and other surface active molecules from crude oil are dissolved. We show that different parameters such as aging of the interface, asphaltenes concentration, the pH and salinity of the aqueous phase have a strong influence on interfacial properties of asphaltenes at the oil/water interface. Several micro-pipette experiments, in which micrometric drops have been manipulated, are described as well as small angle neutron scattering measurements. The influence of lower molecular weight surface-active species, such as the natural naphthenic acids contained in maltenes (crude oil without asphaltenes) has been investigated, and an interaction between asphaltenes and maltenes which facilitates molecular arrangement at the interface was detected. The microscopic properties of the different interfaces and the stability of the corresponding emulsions are determined to be correlated.The results obtained on model emulsions and model oil/water interfaces were found to be helpful in order to explain and predict the behavior of heavy crude oil emulsions. (author)

  9. Near-Infrared Spectroscopy Analysis of Heavy Fuel Oils Using a New Diffusing Support.

    Science.gov (United States)

    Dupuy, Nathalie; Brahem, Zeineb; Amat, Sandrine; Kister, Jacky

    2015-10-01

    The characterization of heavy fuel oils (HFOs), used as fuel for boats, requires the analysis of various properties that are essential for engine optimization and pollution control. For some time, near-infrared (NIR) spectroscopy combined with chemometric treatment of the spectra was used for on-line analysis. This preliminary study included 61 heavy fuels from Europe, America, and Asia with different specifications according to their geographical origin; their refining process; and their physicochemical properties, including density, flash point, viscosity, and sulfur content. We have developed a new method for sampling heavy fuels on a fiberglass cell support. This support offers the advantages of speed, easy implementation, repeatable results, and freedom from problems associated with tank cleaning. Two sample presentations, an integrating sphere and an optical fiber, were used to collect the NIR spectra. A theoretical study of the choice of the value of resolution, scan number, and spectral region was conducted. The best conditions were chosen as a function of the quality of quantitative analysis results on viscosity, sulfur content, flash point, and density. The two collecting methods were compared on the same criteria.

  10. Model compounds for heavy crude oil components and tetrameric acids: Characterization and interfacial behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Nordgaard, Erland Loeken

    2009-07-01

    The tendency during the past decades in the quality of oil reserves shows that conventional crude oil is gradually being depleted and the demand being replaced by heavy crude oils. These oils contain more of a class high-molecular weight components termed asphaltenes. This class is mainly responsible for stable water-in-crude oil emulsions. Both heavy and lighter crude oils in addition contain substantial amounts of naphthenic acids creating naphthenate deposits in topside facilities. The asphaltene class is defined by solubility and consists of several thousand different structures which may behave differently in oil-water systems. The nature of possible sub fractions of the asphaltene has been received more attention lately, but still the properties and composition of such is not completely understood. In this work, the problem has been addressed by synthesizing model compounds for the asphaltenes, on the basis that an acidic function incorporated could be crucial. Such acidic, poly aromatic surfactants turned out to be highly inter facially active as studied by the pendant drop technique. Langmuir monolayer compressions combined with fluorescence of deposited films indicated that the interfacial activity was a result of an efficient packing of the aromatic cores in the molecules, giving stabilizing interactions at the o/w interface. Droplet size distributions of emulsions studied by PFG NMR and adsorption onto hydrophilic silica particles demonstrated the high affinity to o/w interfaces and that the efficient packing gave higher emulsion stability. Comparing to a model compound lacking the acidic group, it was obvious that sub fractions of asphaltenes that contain an acidic, or maybe similar hydrogen bonding functions, could be responsible for stable w/o emulsions. Indigenous tetrameric acids are the main constituent of calcium naphthenate deposits. Several synthetic model tetra acids have been prepared and their properties have been compared to the indigenous

  11. Analysis of oxidised heavy paraffininc products by high temperature comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Potgieter, H; Bekker, R; Beigley, J; Rohwer, E

    2017-08-04

    Heavy petroleum fractions are produced during crude and synthetic crude oil refining processes and they need to be upgraded to useable products to increase their market value. Usually these fractions are upgraded to fuel products by hydrocracking, hydroisomerization and hydrogenation processes. These fractions are also upgraded to other high value commercial products like lubricant oils and waxes by distillation, hydrogenation, and oxidation and/or blending. Oxidation of hydrogenated heavy paraffinic fractions produces high value products that contain a variety of oxygenates and the characterization of these heavy oxygenates is very important for the control of oxidation processes. Traditionally titrimetric procedures are used to monitor oxygenate formation, however, these titrimetric procedures are tedious and lack selectivity toward specific oxygenate classes in complex matrices. Comprehensive two-dimensional gas chromatography (GC×GC) is a way of increasing peak capacity for the comprehensive analysis of complex samples. Other groups have used HT-GC×GC to extend the carbon number range attainable by GC×GC and have optimised HT-GC×GC parameters for the separation of aromatics, nitrogen-containing compounds as well as sulphur-containing compounds in heavy petroleum fractions. HT-GC×GC column combinations for the separation of oxygenates in oxidised heavy paraffinic fractions are optimised in this study. The advantages of the HT-GC×GC method in the monitoring of the oxidation reactions of heavy paraffinic fraction samples are illustrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Characterization of effluents from coal and oil heating. 3. Oil heated installations

    Energy Technology Data Exchange (ETDEWEB)

    Vassbotn, T.; Hagen, R.I.; Tellugen, S.; Wiig, P.O.

    1983-03-01

    Measurements and analyses of effluents were carried out to determine the amount of gas, and SO/sub 2/ concentration. Content of polycyclic aromatic hydrocarbons (PAH) in dust and in the exhaust gases. Particle size distribution and heavy metal concentration (i.e., nickel and vanadium), were determined in three dust fractions in the oil and correlated with operational data. Two burners were studied, one heated by heavy oil and the other by light oil. The amounts of dust and SO/sub 2/ in the exhaust gases were small. The dust was divided in a ''light'' and a ''dark'' type. The darker type consisted of larger particles. The medium size particles had the highest heavy metal concentration. Nickel and vanadium seem to be located in a certain type of dust. These tendencies were clearer for the heavy oil boiler. The amount of PAH in the dust is smaller than for coal heated boilers. 1 drawing, 13 tables.

  13. Shampooing the reservoir : organic surfactant could increase Suffield oil recovery by 10 per cent

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2009-10-15

    EnCana is testing a new tertiary recovery technology in the Suffield area of southeastern Alberta which is known primarily for shallow natural gas. EnCana Corporation has approximately 1 billion barrels of original heavy oil in place in the Suffield area. Oil densities range from about 10 to 18 degrees API gravity. Viscosities range from 100 to 10,000 centipoise. Drilling began about 30 years ago. The primary productive formation is consolidated Mannville Glauconite sandstone which produces very little sand with the oil. About 15 per cent of the oil in place has been produced by primary production and waterfloods. In 2007, EnCana began testing an alkaline surfactant polymer flood operation in the Suffield heavy oil field that consists of 2 injector wells and 5 producers. Tests will continue until 2011. The surfactant acts as a detergent and reduces the interfacial tension between water and oil, thus mobilizing residual oil and increasing the displacement efficiency. In addition to the physical sweeping of a straight polymer flood, a surfactant polymer also washes oil from the rock. EnCana buys an alkaline chemical that is less expensive than surfactant. The alkaline injectant reacts with the organic acids in the oil to create a natural surfactant. EnCana was granted experimental scheme status by the Alberta Energy Resources Conservation Board. Instead of using fresh water, the pilot mixes its chemicals with saline water from a deep formation. EnCana will consider the pilot a commercial success if it recovers at least 10 per cent of the original oil in place. Thus far, the pilot is meeting that threshold. 1 fig.

  14. A new flooding scheme by horizontal well in thin heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.; Zhang, H.; Wang, M. [China Univ. of Petroleum, Beijing (China). MOE Key Laboratory of Petroleum Engineering ; Wang, Z. [Shengli Oil Field Co. (China). Dept. of Science and Technology]|[SINOPEC, Shengli (China)

    2008-10-15

    This paper presented a new flooding scheme for single horizontal wells that could improve recovery from thin marginal heavy oil reservoirs or from offshore reservoirs. The scheme involved the use of a multiple tubing string completion in a single wellbore. Special packers were installed within the long completion horizontal interval to establish an injection zone and a production zone. The new flooding scheme also involved simultaneous injection and production. Numerical simulation of the reservoir was used to determine the thickness of the formation and the lower limitation for different viscosities and the optimum time to start steam flooding after steam soaking by economic oil/steam ratio. The peak recovery efficiency of steam flooding was shown to occur when the length of separation section ratio is 0.15 to 0.2. It was concluded that high thermal efficiency in horizontal wells with long completion intervals can be maintained by alternating between steam soaking and steam flooding. Suitable alternation time to steam flooding is a seventh cycle for horizontal wells. Water cut and pressure difference will increase the steam injection rate, and thereby improve the oil production rate. The suitable injection rate for steam flooding is 2.4 t/d.ha.h because of its slow pressure change. 11 refs., 7 figs.

  15. Mobil Oil Canada annual progress report to the Voluntary Challenge and Registry Program 1998

    International Nuclear Information System (INIS)

    1998-10-01

    Mobil Oil Canada has prepared estimates of its emissions of major greenhouse gases for the years 1994, 1995, 1996 and 1997. While the Voluntary Challenge and Registry (VCR) encouraged an inventory of emissions for 1990 to the present, data are not present for earlier than 1994. An inventory summary is included that outlines the quantity of emissions due to the following sources for each facility: combustion of fuel gas for heaters, boilers and compressors, flaring and venting of natural gas, and consumption of coal generated electricity. For all Mobil operated facilities in 1997, GHG emissions existed in the following fractions: 43% due to fuel gas use, 42% due to gas flaring and venting, and 15% from electricity consumption. In 1996, emissions were more evenly distributed amongst the three major sources. A discussion is included of emissions produced and energy used by each process type with data shown in tables. This includes: heavy oil facilities, light oil facilities, sulfur recovery facilities, a sour gas facility, a sweet gas facility, and a thermal heavy oil facility. Various projects were undertaken at each Mobil operated facility to increase energy efficiency and reduce emissions. A summary of the fuel gas, electricity and emission savings for each facility is described, as well as the main actions responsible for each emission saving. These cover: light oil facilities, sulfur recovery facilities, a thermal heavy oil facility, a conventional heavy oil facility, a sweet gas facility, and a sour gas facility. 5 tabs., 9 figs

  16. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m -1 , with the critical micelle concentration (CMC) of 56 mg L -1 . FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed.

  17. Characterization of Biosurfactant Produced during Degradation of Hydrocarbons Using Crude Oil As Sole Source of Carbon

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh

    2017-01-01

    Production and spillage of petroleum hydrocarbons which is the most versatile energy resource causes disastrous environmental pollution. Elevated oil degrading performance from microorganisms is demanded for successful microbial remediation of those toxic pollutants. The employment of biosurfactant-producing and hydrocarbon-utilizing microbes enhances the effectiveness of bioremediation as biosurfactant plays a key role by making hydrocarbons bio-available for degradation. The present study aimed the isolation of a potent biosurfactant producing indigenous bacteria which can be employed for crude oil remediation, along with the characterization of the biosurfactant produced during crude oil biodegradation. A potent bacterial strain Pseudomonas aeruginosa PG1 (identified by 16s rDNA sequencing) was isolated from hydrocarbon contaminated soil that could efficiently produce biosurfactant by utilizing crude oil components as the carbon source, thereby leading to the enhanced degradation of the petroleum hydrocarbons. Strain PG1 could degrade 81.8% of total petroleum hydrocarbons (TPH) after 5 weeks of culture when grown in mineral salt media (MSM) supplemented with 2% (v/v) crude oil as the sole carbon source. GCMS analysis of the treated crude oil samples revealed that P. aeruginosa PG1 could potentially degrade various hydrocarbon contents including various PAHs present in the crude oil. Biosurfactant produced by strain PG1 in the course of crude oil degradation, promotes the reduction of surface tension (ST) of the culture medium from 51.8 to 29.6 mN m−1, with the critical micelle concentration (CMC) of 56 mg L−1. FTIR, LC-MS, and SEM-EDS studies revealed that the biosurfactant is a rhamnolipid comprising of both mono and di rhamnolipid congeners. The biosurfactant did not exhibit any cytotoxic effect to mouse L292 fibroblastic cell line, however, strong antibiotic activity against some pathogenic bacteria and fungus was observed. PMID:28275373

  18. Method for controlling boiling point distribution of coal liquefaction oil product

    Science.gov (United States)

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  19. Effects of silica-based nanostructures with raspberry-like morphology and surfactant on the interfacial behavior of light, medium, and heavy crude oils at oil-aqueous interfaces

    Science.gov (United States)

    Bai, Lingyun; Li, Chunyan; Korte, Caroline; Huibers, Britta M. J.; Pales, Ashley R.; Liang, Wei-zhen; Ladner, David; Daigle, Hugh; Darnault, Christophe J. G.

    2017-11-01

    Any efficient exploitation of new petroleum reservoirs necessitates developing methods to mobilize the crude oils from such reservoirs. Here silicon dioxide nanoparticles (SiO2 NPs) were used to improve the efficiency of the chemical-enhanced oil recovery process that uses surfactant flooding. Specifically, SiO2 NPs (i.e., 0, 0.001, 0.005, 0.01, 0.05, and 0.1 wt%) and Tween®20, a nonionic surfactant, at 0, 0.5, and 2 critical micelle concentration (CMC) were varied to determine their effect on the stability of nanofluids and the interfacial tension (IFT) at the oil-aqueous interface for 5 wt% brine-surfactant-SiO2 nanofluid-oil systems for West Texas Intermediate light crude oil, Prudhoe Bay medium crude oil, and Lloydminster heavy crude oil. Our study demonstrates that SiO2 NPs may either decrease, increase the IFT of the brine-surfactant-oil systems, or exhibit no effects at all. For the brine-surfactant-oil systems, the constituents of the oil and aqueous substances affected the IFT behavior, with the nanoparticles causing a contrast in IFT trends according to the type of crude oil. For the light oil system (0.5 and 2 CMC Tween®20), the IFT increased as a function of SiO2 NP concentration, while a threshold concentration of SiO2 NPs was observed for the medium (0.5 and 2 CMC Tween®20) and heavy (2 CMC Tween®20) oil systems in terms of IFT trends. Concentrations below the SiO2 NP threshold concentration resulted in a decrease in IFT, and concentrations above this threshold resulted in an increase in IFT. The IFT decreased until the NP concentration reached a threshold concentration where synergetic effects between nonionic surfactants and SiO2 NPs are the opposite and result in antagonistic effects. Adsorption of both SiO2 NPs and surfactants at an interface caused a synergistic effect and an increased reduction in IFT. The effectiveness of the brine-surfactant-SiO2 nanofluids in decreasing the IFT between the oil-aqueous phase for the three tested crude oils

  20. Biaccumulation and tolerance of heavy metals on the tropical earthworm, Allobophora sp. after exposed to contaminated soil from oil mine waste

    Science.gov (United States)

    Suhendrayatna; Darusman; Raihannah; Nurmala, D.

    2018-04-01

    In this study, the impact of contaminated soil from oil mine waste on survival, behavior, tolerance, and bioaccumulation of heavy metals by the tropical earthworm, Allobophora sp. has been quantified. Earthworm was isolated from heavy metals-contaminated soil, cultured in laboratory condition, and exposed to contaminated soil from oil mine waste for a couple of months. The behavior and response of earthworms to contaminated soil was monitored for 28 days and evaluated by the response criteria was expressed in scale index (SI) referred to Langdon method. Resistance test of the earthworm (LC50) to heavy metals also conducted with variation soil concentrations of 100%, 50%, 25%, 12.5%, and 6.25%, and 0% (Control). Results showed that contaminated soil extremely affected to the earthworm live, especially length and their body weight. The Lethal Concentration 50% (LC50) of earthworm against contaminated soil was 19.05% (w/w). When exposed to contaminated soil, earthworm accumulated chromium, barium, and manganese at the concentration of 88; 92.2; and 280 mg/kg-DW, respectively. Based on these results, earthworm Allobophora sp. has potential to reduce heavy metals from contaminated soil in the field of bioremediation process.

  1. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin.

    Science.gov (United States)

    Khan, Naima A; Engle, Mark; Dungan, Barry; Holguin, F Omar; Xu, Pei; Carroll, Kenneth C

    2016-04-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin

    Science.gov (United States)

    Khan, Naima A.; Engle, Mark A.; Dungan, Barry; Holguin, F. Omar; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Growth in unconventional oil and gas has spurred concerns on environmental impact and interest in beneficial uses of produced water (PW), especially in arid regions such as the Permian Basin, the largest U.S. tight-oil producer. To evaluate environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of PW. Although hydraulic fracturing has caused a significant increase in shale-oil production, there are no high-resolution organic composition data for the shale-oil PW from the Permian Basin or other shale-oil plays (Eagle Ford, Bakken, etc.). PW was collected from shale-oil wells in the Midland sub-basin of the Permian Basin. Molecular characterization was conducted using high-resolution solid phase micro extraction gas chromatography time-of-flight mass spectrometry. Approximately 1400 compounds were identified, and 327 compounds had a >70% library match. PW contained alkane, cyclohexane, cyclopentane, BTEX (benzene, toluene, ethylbenzene, and xylene), alkyl benzenes, propyl-benzene, and naphthalene. PW also contained heteroatomic compounds containing nitrogen, oxygen, and sulfur. 3D van Krevelen and double bond equivalence versus carbon number analyses were used to evaluate molecular variability. Source composition, as well as solubility, controlled the distribution of volatile compounds found in shale-oil PW. The salinity also increased with depth, ranging from 105 to 162 g/L total dissolved solids. These data fill a gap for shale-oil PW composition, the associated petroleomics plots provide a fingerprinting framework, and the results for the Permian shale-oil PW suggest that partial treatment of suspended solids and organics would support some beneficial uses such as onsite reuse and bio-energy production.

  3. Predicting the nutritional health status of locally produced palm oil ...

    African Journals Online (AJOL)

    Three physical properties of locally produced palm oil – viscosity, thermal conductivity and density for varying temperatures were determined. The values obtained were compared with corresponding internationally stipulated standard values using statistics of mean and graphs. The purpose of the comparison was to predict ...

  4. Oil sands to the rescue: oil sand microbial communities can degrade recalcitrant alkyl phenyl alkanoic acids

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, Corinne [University of Essex (Canada)], email: cwhitby@essex.ac.uk

    2011-07-01

    Almost half of all global oil reserves are found as biodegraded heavy oils found in vast tar sand deposits located in North and South America and these account for 47% of Canadian oil production. Oil sand extraction generates large amounts of toxic waste water, known as oil sand process waters (OSPW), that are stored in large tailing ponds that contain toxic compounds like naphthenic acids (NAs). The presence of NAs creates problems like toxicity, corrosion, and the formation of calcium napthenate deposits which block pipelines and other infrastructure and need to be removed. This paper presents oil sand microbial communities that can degrade these NAs. The approach is to apply new aliphatic and aromatic NAs as substrates to supplement and identify NA degrading microbes and also to identify the metabolites produced and explain NA degradation pathways and the functional genes involved. The chemistry and the processes involved are explained. From the results, it is suggested that pure cultures of P. putida KT2440 be used against NAs.

  5. Nano-catalysts for upgrading bio-oil: Catalytic decarboxylation and hydrodeoxygenation

    Science.gov (United States)

    Uemura, Yoshimitsu; Tran, Nga T. T.; Naqvi, Salman Raza; Nishiyama, Norikazu

    2017-09-01

    Bio-oil is a mixture of oxygenated chemicals produced by fast pyrolysis of lignocellulose, and has attracted much attention recently because the raw material is renewable. Primarily, bio-oil can be used as a replacement of heavy oil. But it is not highly recommended due to bio-oil's inferior properties: high acidity and short shelf life. Upgrading of bio-oil is therefore one of the important technologies nowadays, and is categorized into the two: (A) decrarboxylation/decarbonylation by solid acid catalysts and (B) hydrodeoxygenation (HDO) by metallic catalysts. In our research group, decarboxylation of bio-oil by zeolites and HDO of guaiacol (a model compound of bio-oil) have been investigated. In this paper, recent developments of these upgrading reactions in our research group will be introduced.

  6. HEAVY-OIL PRODUCTION USING EMULSION FLOODING

    African Journals Online (AJOL)

    user

    ... American Petroleum Institute, EOR = Enhanced Oil Recovery, GOR = Gas Oil Ratio ... concentration, 166.003 is the constant (molar mass of ... (molar mass of CaCO3),1M is the constant value. ... volume of prepared oil-in-water emulsion, that.

  7. Oil shale derived pollutant control materials and methods and apparatuses for producing and utilizing the same

    Science.gov (United States)

    Boardman, Richard D.; Carrington, Robert A.

    2010-05-04

    Pollution control substances may be formed from the combustion of oil shale, which may produce a kerogen-based pyrolysis gas and shale sorbent, each of which may be used to reduce, absorb, or adsorb pollutants in pollution producing combustion processes, pyrolysis processes, or other reaction processes. Pyrolysis gases produced during the combustion or gasification of oil shale may also be used as a combustion gas or may be processed or otherwise refined to produce synthetic gases and fuels.

  8. Oil refining expansion criteria for Brazil

    International Nuclear Information System (INIS)

    Tavares, M.E.E.; Szklo, A.S.; Machado, G.V.; Schaeffer, R.; Mariano, J.B.; Sala, J.F.

    2006-01-01

    This paper assesses different strategies for the expansion of Brazil's oil refining segment, using criteria that range from energy security (reducing imports and vulnerability for key products) through to maximizing the profitability of this sector (boosting the output of higher value oil products) and adding value to Brazil's oil production (reducing exports of heavy acid oil). The development prospects are analyzed for conventional fuel production technology routes, sketching out three possible refining schemes for Brazilian oil and a GTL plant for producing gasoil from natural gas. Market scenario simulations indicate that investments will be required in Brazil's oil refining segment over and above those allocated to planned modifications in its current facilities, reducing the nation's vulnerability in terms of gasoil and petrochemical naphtha imports. Although not economically attractive, oil refining is a key activity that is crucial to oil company strategies. The decision to invest in this segment depends on local infrastructure conditions, environmental constraints and fuel specifications, in addition to oil company strategies, steady growth in demand and the definition of a government policy that eases institutional risks. (author)

  9. Oil refining expansion criteria for Brazil

    International Nuclear Information System (INIS)

    Tavares, Marina Elisabete Espinho; Szklo, Alexandre Salem; Machado, Giovani Vitoria; Schaeffer, Roberto; Mariano, Jacqueline Barboza; Sala, Janaina Francisco

    2006-01-01

    This paper assesses different strategies for the expansion of Brazil's oil refining segment, using criteria that range from energy security (reducing imports and vulnerability for key products) through to maximizing the profitability of this sector (boosting the output of higher value oil products) and adding value to Brazil's oil production (reducing exports of heavy acid oil). The development prospects are analyzed for conventional fuel production technology routes, sketching out three possible refining schemes for Brazilian oil and a GTL plant for producing gasoil from natural gas. Market scenario simulations indicate that investments will be required in Brazil's oil refining segment over and above those allocated to planned modifications in its current facilities, reducing the nation's vulnerability in terms of gasoil and petrochemical naphtha imports. Although not economically attractive, oil refining is a key activity that is crucial to oil company strategies. The decision to invest in this segment depends on local infrastructure conditions, environmental constraints and fuel specifications, in addition to oil company strategies, steady growth in demand and the definition of a government policy that eases institutional risks

  10. Enhancing heavy oil recovery using foam injection in applications to cyclic steam stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Edmonton, AB (Canada); Yuan, J.Y. [Canadian Natural Resources Ltd., Calgary, AB (Canada)

    2008-07-01

    Cyclic steam stimulation (CSS) is a widely used heavy oil production technology. However, steam-based processes that are not stabilized can develop conformance as the steam can over-ride and channel past oil-bearing zones. This presentation discussed a refined CSS steam foaming process designed to improve recovery in marginal cycles. Laboratory studies were initially conducted to examine surfactant properties and flow behaviour in porous media. The results of numerical simulations were then applied to the steam-foaming portion of the CSS process. Results of the study showed that during the foam co-injection with steam stage, the steam injection rate did not alter. Improvement to the CSS process varied, indicating that earlier foam forming surfactant co-injection was preferable when steam-foam performance was constant in all cycles. It was concluded that the steam foaming process may improve bitumen production without requiring additional steam. 13 refs., 5 figs.

  11. New statistical function for the angular distribution of evaporation residues produced by heavy ions

    International Nuclear Information System (INIS)

    Rigol, J.

    1994-01-01

    A new statistical function has been found for modelling the angular distribution of evaporation residues produced by heavy ions. Experimental results are compared with the calculated ones. 11 refs.; 4 figs. (author)

  12. An overview of empty fruit bunch from oil palm as feedstock for bio-oil production

    International Nuclear Information System (INIS)

    Chang, Siu Hua

    2014-01-01

    Empty fruit bunch (EFB) from oil palm is one of the potential biomass to produce biofuels like bio-oil due to its abundant supply and favorable physicochemical characteristics. Confirming the assertion, this paper presents an overview of EFB as a feedstock for bio-oil production. The fundamental characteristics of EFB in terms of proximate analysis, ultimate analysis and chemical composition, as well as the recent advances in EFB conversion processes for bio-oil production like pyrolysis and solvolysis are outlined and discussed. A comparison of properties in terms of proximate analysis, ultimate analysis and fuel properties between the bio-oil from EFB and petroleum fuel oil is included. The major challenges and future prospects towards the utilization of EFB as a useful resource for bio-oil production are also addressed. - Highlights: • Palm EFB has high heating value and low greenhouse gas emissions during combustion. • Conversion of EFB to bio-oil is mainly by fast pyrolysis without and with catalyst. • Bio-oil from EFB is lower in heating value, heavier and more acidic than fuel oil. • The viscosity of bio-oil from EFB is between those of light and heavy fuel oils. • The flash and pour points of bio-oil from EFB are close to those of light fuel oil

  13. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria

    Directory of Open Access Journals (Sweden)

    Santhakumar Muthukamalam

    Full Text Available ABSTRACT Role of microbes in bioremediation of oil spills has become inevitable owing to their eco friendly nature. This study focused on the isolation and characterization of bacterial strains with superior oil degrading potential from crude-oil contaminated soil. Three such bacterial strains were selected and subsequently identified by 16S rRNA gene sequence analysis as Corynebacterium aurimucosum, Acinetobacter baumannii and Microbacterium hydrocarbonoxydans respectively. The specific activity of catechol 1,2 dioxygenase (C12O and catechol 2,3 dioxygenase (C23O was determined in these three strains wherein the activity of C12O was more than that of C23O. Among the three strains, Microbacterium hydrocarbonoxydans exhibited superior crude oil degrading ability as evidenced by its superior growth rate in crude oil enriched medium and enhanced activity of dioxygenases. Also degradation of total petroleum hydrocarbon (TPH in crude oil was higher with Microbacterium hydrocarbonoxydans. The three strains also produced biosurfactants of glycolipid nature as indicated d by biochemical, FTIR and GCMS analysis. These findings emphasize that such bacterial strains with superior oil degrading capacity may find their potential application in bioremediation of oil spills and conservation of marine and soil ecosystem.

  14. Means of supply of extremely low-sulphur oil to the power plants of Stenungsund and Karlshamn

    International Nuclear Information System (INIS)

    1986-10-01

    The power plants in question are estimated to produce 10 TWh electric power per year and use about 2.4 Mtons of heavy fuel oil. This will imply a considerable increase of emission of acidifying sulphur oxides. The report discusses the cost of supplying low-sulphur fuel oils. The cost is compared with the cost of the installation of desulphurization of flue gas, oils or gasification

  15. Liquid-film stripper for high-intensity heavy-ion beams

    International Nuclear Information System (INIS)

    Leemann, B.T.; Merrill, P.; Syversrud, H.K.; Wada, R.; Yourd, R.B.

    1981-03-01

    Electron strippers are widely used in heavy ion accelerators such as tandem Van de Graaff generators and heavy ion linacs. The SuperHILAC at Lawrence Berkeley Laboratory, employs a fluorocarbon oil vapor stripper at 113 keV/A for its high intensity injector ABEL, while after acceleration to 1.199 MeV/A a 35 μg/cm 2 carbon foil stripper is used. At present, the lifetime of these foils is about 1 hour for an 40 Ar beam of approx. 1 μA average particle current. With higher intensity high mass (100 less than or equal to A less than or equal to 238) beams available from ABEL injector the lifetime is expected to drop drastically and might be as low as one minute. A different approach to solve the stripper foil lifetime problem uses a thin free standing oil film spun from the edge of a sharp-edged rotating disc touching the surface of an oil reservoir. Areas of about 10 cm 2 with areal densities down to 20 μg/cm 2 have been reported. The work described here is based on the same concept, and produces a constantly regenerated, stable, free standing oil film of appropriate thickness for use at the SuperHILAC

  16. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in

  17. Steam injection for heavy oil recovery: Modeling of wellbore heat efficiency and analysis of steam injection performance

    International Nuclear Information System (INIS)

    Gu, Hao; Cheng, Linsong; Huang, Shijun; Li, Bokai; Shen, Fei; Fang, Wenchao; Hu, Changhao

    2015-01-01

    Highlights: • A comprehensive mathematical model was established to estimate wellbore heat efficiency of steam injection wells. • A simplified approach of predicting steam pressure in wellbores was proposed. • High wellhead injection rate and wellhead steam quality can improve wellbore heat efficiency. • High wellbore heat efficiency does not necessarily mean good performance of heavy oil recovery. • Using excellent insulation materials is a good way to save water and fuels. - Abstract: The aims of this work are to present a comprehensive mathematical model for estimating wellbore heat efficiency and to analyze performance of steam injection for heavy oil recovery. In this paper, we firstly introduce steam injection process briefly. Secondly, a simplified approach of predicting steam pressure in wellbores is presented and a complete expression for steam quality is derived. More importantly, both direct and indirect methods are adopted to determine the wellbore heat efficiency. Then, the mathematical model is solved using an iterative technique. After the model is validated with measured field data, we study the effects of wellhead injection rate and wellhead steam quality on steam injection performance reflected in wellbores. Next, taking cyclic steam stimulation as an example, we analyze steam injection performance reflected in reservoirs with numerical reservoir simulation method. Finally, the significant role of improving wellbore heat efficiency in saving water and fuels is discussed in detail. The results indicate that we can improve the wellbore heat efficiency by enhancing wellhead injection rate or steam quality. However, high wellbore heat efficiency does not necessarily mean satisfactory steam injection performance reflected in reservoirs or good performance of heavy oil recovery. Moreover, the paper shows that using excellent insulation materials is a good way to save water and fuels due to enhancement of wellbore heat efficiency

  18. Microbiological techniques for paraffin reduction in producing oil wells: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oppenheimer, C. H.; Hiebert, F. K.

    1989-04-01

    Alpha Environmental has completed an eighteen month field oriented, cooperative research program with the US Department of Energy to demonstrate a new economically viable process using petroleum degrading microorganisms, a biocatalyst, formation water and inorganic nutrients to recover residual oil from reservoirs. Alpha's mixed community of microorganisms decomposes crude oil to produce detergents, CO/sub 2/, and new cells, thus mechanically and chemically releasing oil from reservoir pores. The naturally-occurring bacteria utilized in this project were previously selected by screening and isolating microorganisms from soils contaminated with crude oil and petroleum products. The activity and level of salt tolerance (to 20% salinity) of the bacteria is enhanced by a biocatalyst, previously developed by Alpha Environmental. Field evidence suggests that the biocatalyst provides catalytic oxygen to the microorganisms in the reservoir, which augments low levels of in-situ molecular oxygen. 25 refs., 10 figs., 6 tabs.

  19. A tale of two countries : blessed with huge heavy oil resources, Canada and Venezuela pursue different paths

    International Nuclear Information System (INIS)

    Ball, C.

    2005-01-01

    Both Canada and Venezuela are rich in heavy oil resources. This article presented an overview of current development activities in both countries. International interest in the oil sands region has been highlighted by the French oil company Total's acquisition of Deer Creek Energy Ltd in Alberta for $1.35 billion. The acquisition supports the company's strategy of expanding heavy oil operations in the Athabasca region. With 47 per cent participation in the Sincor project, Total is already a major player in Venezuela. Although the Sincor project is one of the world's largest developments, future investment is in jeopardy due to an unpredictable government and shifts in policy by the state-run oil company Petroleos de Venezuela S.A. (PDVSA). The country's energy minister has recently announced that all existing agreements will be terminated as of December 31, 2005. The government has allowed 6 months for companies to enter into new agreements with new terms. Under revised rules, foreign companies will be required to pay income tax at a rate of 50 per cent. The rate will be applied retroactively to profits made over the last 5 years. Under the new law, agreements could be established under the terms of mixed companies, where Venezuela will have majority equity in the company that exploits the oil. In addition, the government has accused companies of not paying the required income tax levels on contracts, and some companies have been fined as much as $100 million. It was suggested that current difficulties are the result of an incoherent energy policy and an unstable regime. The international oil and gas community is watching developments, and it was anticipated that parties previously considering Venezuela as an investment opportunity will now reconsider. By contrast, Alberta has been praised by oil companies for its stable regulatory regime and its reasonable royalty structure. Thanks to a purge of 18,000 employees from PDVSA by Venezuelan president, Alberta is now

  20. Application of Biosurfactants Produced by Pseudomonas putida using Crude Palm Oil (CPO) as Substrate for Crude Oil Recovery using Batch Method

    Science.gov (United States)

    Suryanti, V.; Handayani, D. S.; Masykur, A.; Septyaningsih, I.

    2018-03-01

    The application of biosurfactants which have been produced by Pseudomonas putida in nutrient broth medium supplemented with NaCl and crude palm oil (CPO) for oil recovery has been evaluated. The crude and purified biosurfactants have been examined for oil recovery from a laboratory oil-contaminated sand in agitated flask (batch method). Two synthetic surfactants and water as control was also performed for oil recovery as comparisons. Using batch method, the results showed that removing ability of crude oil from the oil-contaminated sand by purified and crude biosurfactants were 79.40±3.10 and 46.84±2.23 %, respectively. On other hand, the recoveries obtained with the SDS, Triton X-100 and water were 94.33±0.47, 74.84±7.39 and 34.42±1.21%respectively.

  1. Experimental study of solvent-based emulsion injection to enhance heavy oil recovery in Alaska North Slope area

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F.; Mamora, D. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    This study examined the feasibility of using a chemical enhanced oil recovery method to overcome some of the technical challenges associated with thermal recovery in the Alaska North Slope (ANS). This paper described the second stage research of an experimental study on nano-particle and surfactant-stabilized solvent-based emulsions for the ANS area. Four successful core flood experiments were performed using heavy ANS oil. The runs included water flooding followed by emulsion flooding; and pure emulsion injection core flooding. The injection rate and core flooding temperature remained constant and only 1 PV micro-emulsion was injected after breakthrough under water flooding or emulsion flooding. Oil recovery increased by 26.4 percent from 56.2 percent original oil in place (OOIP) with waterflooding to 82.6 percent OOIP with injection of emulsion following water flooding. Oil recovery was slightly higher with pure emulsion flooding, at 85.8 percent OOIP. The study showed that low permeability generally resulted in a higher shear rate, which is favourable for in-situ emulsification and higher displacement efficiency. 11 refs., 4 tabs., 20 figs.

  2. Determination of naturally occurring radionuclides in scales produced in oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masri, M S; Ali, A F; Kitue, M; Kawash, A [Atomic Energy Commission, Dept. of Radiation Protection and Nuclear Safety, Damascus (Syrian Arab Republic)

    1997-04-01

    Scales produced by Oil production operations contain relatively high concentrations of natural radionuclides especially radium isotopes (Ra-226, Ra-228, Ra-224) and their daughters. These scales deposit in oil surface equipment such as separator tanks, tubular, and storage tanks. In this work, naturally occurring radionuclides and radiation exposure levels in some Syrian oil lines have been determined. Radiation measurements have shown high radiation exposure in some production sites and reached about 23 {mu}Sv/hr (production wellhead) which is higher than the normal background (0.09 - 012 {mu}Sv/hr). The highest value of the exposure around storage tanks was about o.5 {mu}Sv/hr. Moreover, the highest concentration of radionuclides in scales were found to be 47000 Bq/Kg and 55000 Bq/Kg for Ra-226 and Ra-228 respectively while in sludge samples, the Ra-226 concentration was about 24.2 Bq/Kg, a relatively very low activity. In addition, results have shown that soil contamination can occur by disposal of produced water to the surrounding environment. Furthermore, the present paper shows some of protection procedures, which should be followed by workers for radiation protection. (author). 10 refs., 4 tabs.

  3. Have we run out of oil yet? Oil peaking analysis from an optimist's perspective

    International Nuclear Information System (INIS)

    Greene, David L.; Hopson, Janet L.; Li Jia

    2006-01-01

    This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of 'running out' of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources

  4. Achievement report for fiscal 2000 on international research cooperation project. Research on technologies to decompose heavy hydrocarbon resources; 2000 nendo jushitsu tanka suiso shigen no bunkai gijutsu ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Researches have been made on structuring a hydrocracking process for vacuum distillation residue of Marlim crude oil produced in Brazil (Marlim-VR) being one of the heavy hydrocarbon resources. This paper summarizes the achievements in fiscal 2000. In discussing the hydrocracking conditions, discussions were given on the effects of different iron-based catalysts, reaction pressures, reaction temperatures, effects of solvent addition, and the catalyst made of natural limonite produced in Brazil. As a result, the bottom yield was reduced successfully to 5.5% VR, and conversely oil yield was enhanced up to 84.8% VR by using the limonite produced in Brazil as a catalyst, and by performing bottom recycles under the conditions of 450 degrees C and 10 MPa. In discussing the up-grading of hydrocracking produced oil, a result of 99% by weight or higher was obtained in both of denitration and desulfurization rates. In the fuel evaluation test, a product exceeding 45 being the JIS standard for light oil was derived, which was found a clean product having lower sulfur concentration than the existing heavy oil. (NEDO)

  5. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor

    Directory of Open Access Journals (Sweden)

    Renato O. Arazo

    2017-01-01

    Full Text Available The optimization of bio-oil produced from sewage sludge using fast pyrolysis in a fluidized bed reactor was investigated. Effects of temperature, sludge particle size and vapor residence time on bio-oil properties, such as yield, high heating value (HHV and moisture content were evaluated through experimental and statistical analyses. Characterization of the pyrolysis products (bio-oil and biogas was also done. Optimum conditions produced a bio-oil product with an HHV that is nearly twice as much as lignocellulosic-derived bio-oil, and with properties comparable to heavy fuel oil. Contrary to generally acidic bio-oil, the sludge-derived bio-oil has almost neutral pH which could minimize the pipeline and engine corrosions. The Fourier Transform Infrared and gas-chromatography and mass spectrometry analyses of bio-oil showed a dominant presence of gasoline-like compounds. These results demonstrate that fast pyrolysis of sewage sludge from domestic wastewater treatment plant is a favorable technology to produce biofuels for various applications.

  6. Gasoline from biomass through refinery-friendly carbohydrate-based bio-oil produced by ketalization.

    Science.gov (United States)

    Batalha, Nuno; da Silva, Alessandra V; de Souza, Matheus O; da Costa, Bruna M C; Gomes, Elisa S; Silva, Thiago C; Barros, Thalita G; Gonçalves, Maria L A; Caramão, Elina B; dos Santos, Luciana R M; Almeida, Marlon B B; de Souza, Rodrigo O M A; Lam, Yiu L; Carvalho, Nakédia M F; Miranda, Leandro S M; Pereira, Marcelo M

    2014-06-01

    The introduction of biomass-derived compounds as an alternative feed into the refinery structure that already exists can potentially converge energy uses with ecological sustainability. Herein, we present an approach to produce a bio-oil based on carbohydrate-derived isopropylidene ketals obtained by reaction with acetone under acidic conditions directly from second-generation biomass. The obtained bio-oil showed a greater chemical inertness and miscibility with gasoil than typical bio-oil from fast pyrolysis. Catalytic upgrading of the bio-oil over zeolites (USY and Beta) yielded gasoline with a high octane number. Moreover, the co-processing of gasoil and bio-oil improved the gasoline yield and quality compared to pure gasoil and also reduced the amount of oxygenated compounds and coke compared with pure bio-oil, which demonstrates a synergistic effect. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    Science.gov (United States)

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama.

  8. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  9. Heavy oil and bitumen : thinking caps on : researchers look at new and greener ways to get at the heavy oil prize

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, L.

    2008-01-15

    New steam stimulation processes developed by the Alberta Ingenuity Centre for In Situ Energy were discussed. The J-well and gravity-assisted steam stimulation (JAGD) process uses a steam injection well located within the top few metres of a reservoir and a production well comprised of an inclined J-shaped well. JAGD is a transitional cold production-to-thermal-production technology. High pressure steam is used to heat and loosen the bitumen so that it flows to the producer well below. The configuration was designed to cut through mud and shale layers and is suitable for poor quality reservoirs. Simulations conducted in Athabasca reservoirs have demonstrated that JAGD uses approximately 75 per cent of the steam typically used in steam assisted gravity drainage (SAGD) processes. The iSAGD process was designed to reposition parallel wells in order to increase oil mobility. Researchers at the centre are also investigating a catalytic air-stream process called CASPAR which aims to upgrade oil from 10 degrees API to 16 degrees API within the reservoir. The process involves a mixture of heat, catalyst hydrogen, steam, air and water in the reservoir. The process leaves heavier ends of oil underground as well as fractions of greenhouse gases (GHGs). Research is also being conducted on expanding-solvent SAGD (ES-SAGD) a process that adds butane to steam in order to reduce water use. 3 figs.

  10. Combined effect of ultrasound and essential oils to reduce Listeria monocytogenes on fresh produce.

    Science.gov (United States)

    Özcan, Gülçin; Demirel Zorba, Nükhet Nilüfer

    2016-06-01

    Salads prepared from contaminated fresh produce have a high risk of causing food-borne illnesses. Essential oils obtained from plants have antimicrobial activity and may provide a natural approach to reduce the pathogens on fresh produce. Additionally, ultrasound treatments have been shown to reduce the microbial counts on different foods. The objective of this study was to investigate the antimicrobial activities of cinnamon and lemon essential oils in vitro and in food applications. Mixtures of lettuce, parsley and dill were inoculated with Listeria monocytogenes and then dip-treated for 5 min in one of the following treatments: sterile tap water, chlorinated water, 1% lemon essential oil, 2% cinnamon essential oil or 2% cinnamon essential oil + ultrasound. The samples were stored at 4 ℃ and collected at d 0, 1, 3, 5, 7 and 9 post inoculation. The 1% lemon (4 log) and 2% cinnamon (2 log) essential oil washes provided partial inhibition against L. monocytogenes by d 1. The combined application of 2% cinnamon oil and ultrasound resulted in only 0.85 log inhibition by d 1; however, the number of L. monocytogenes increased during storage and became nearly equal to the control at d 9. Therefore, different combinations of essential oils with other antimicrobials or novel technologies are required. © The Author(s) 2015.

  11. ESR investigation of L-α-alanine and sucrose radicals produced by heavy-ion irradiation

    International Nuclear Information System (INIS)

    Nakagawa, K.; Sato, Y.

    2005-01-01

    We investigated sucrose and L-α-alanine radicals produced by heavy (particle) ion irradiation with various LETs (linear energy transfer). The impact of the heavy ions on the samples produced stable free radicals, which were analyzed by ESR (electron spin resonance). Identical spectra were measured after one year. The obtained spectral patterns were the same as those for helium (He), carbon (C), and neon (Ne) ions irradiation. The absorbed dose dependences for the irradiated sucrose and alanine samples were examined. The ESR response has a linear relation with the absorbed dose. The ESR response at 60 Gy was slightly lower than a linear line for sucrose; however, the response showed good linearity for the alanine. In addition, the total spin concentration obtained by heavy-ion irradiation correlated logarithmically with the LET. Qualitative ESR analyse showed that the production of sucrose and alanine radicals depended on both different particle irradiation and the LET under the same dose. Thus, the present ESR results imply that sucrose together with L-α-alanine can be used to monitor LET as well as the number of ionizing particle for the production of stable free radicals. (author)

  12. Energy consumption in desalinating produced water from shale oil and gas extraction

    OpenAIRE

    Tow, Emily W.; Chung, Hyung Won; Lienhard, John H.; Thiel, Gregory Parker; Banchik, Leonardo David

    2014-01-01

    On-site treatment and reuse is an increasingly preferred option for produced water management in unconventional oil and gas extraction. This paper analyzes and compares the energetics of several desalination technologies at the high salinities and diverse compositions commonly encountered in produced water from shale formations to guide technology selection and to inform further system development. Produced water properties are modeled using Pitzer's equations, and emphasis is placed on how t...

  13. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

  14. Evaluation of phytoremediation of petroleum hydrocarbon and heavy metals with using Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Mehri Askary Mehrabadi

    2014-08-01

    Full Text Available Crude oil pollution is an inevitable worldwide phenomenon in oil producing and consuming areas that stems from human error, accidental discharge and other sources. The aim of this study was to evaluate the phytoremediation potential of vinca in petroleum-polluted soil. The experiment was laid out as a completely randomized design in 3 replications with different concentrations of crude oil (0, 0.5, 1, 2, 3 and 4 % V/W in pot planting stage. At the end of the 70-day period, soil samples were analyzed for total hydrocarbons removal. Contents of pb, zn and Ni were measured by atomic absorption from the soils and the leaves. Statistical analysis of data were performed on the basis of duncan’s test and by using of SPSS16 software. In concentrations higher than 3 % no growth was observed. The growth parameters such as stem length, stem fresh and dry matter decreased progressively from 0.5-3 % crude oil in soil. The results showed heavy metal accumulation in plant leaves and reduction of them in the soil. Heavy metals containing zinc, lead and nickel in plant increased in different concentration of crude oil. Total hydrocarbons and heavy metals containing zinc, lead and nickel reduced were in planted contaminated soil. This study showed that Periwinkle was able to grow and survive in low concentrations of oil and reduced pollutants in the soil. Based upon these results, Catharanthus roseus can be used as phytoremediator of petroleum-contaminated soil in low concentrations.

  15. Challenges of executing heavy oil projects in today's market

    International Nuclear Information System (INIS)

    Brunka, G.

    2001-01-01

    Alberta's industrial project scene from 1981 to 2000 was presented in this power point presentation with particular focus on proposed bitumen recovery projects and heavy oil project challenges. A graph depicting GTG world orders by region (Americas, Asia and Europe) showed that U.S. market continues to drive global growth. Major industrial projects in Alberta were highlighted and employment requirements by sector were outlined. In addition, mitigation measures that are needed to successfully deal with the unique challenges of today's market were described. It was noted that in recent years lower capital expenditure by the industry in general has resulted in corporate downsizing or mergers which in turn have resulted in lower technical and operational knowledge. Some of the current challenges facing the industry are new demands for water treatment expertise and an aging workforce. It was concluded that effective mitigation will require a disciplined approach within a flexible framework.1 tab., 7 figs

  16. Flavor profiles of monovarietal virgin olive oils produced in the Oriental region of Morocco

    Directory of Open Access Journals (Sweden)

    Mansouri Farid

    2017-09-01

    Full Text Available The purpose of this study is the evaluation of flavor profiles of monovarietal virgin olive oils (VOO produced in the Oriental region of Morocco via the characterization of volatile compounds, using SPME-GC/MS technique, and the determination of total phenolic content (colorimetric method. The study concerns oils of three European olive cultivars (Arbosana, Arbequina and Koroneiki which were recently introduced in Morocco under irrigated high-density plantation system. GC/MS aroma profiles of analyzed VOOs showed the presence of 35 volatile compounds. The major compounds in such oils are C6 compounds produced from linoleic and linolenic acids via lipoxygenase pathway such as trans-2-hexenal, cis-2-hexenal, cis-3-hexen-1-ol, trans-3-hexen-1-ol, trans-3-hexen-1-ol acetate, hexanal and 1-hexanol in different proportions depending on the cultivar (p < 0.05. In addition, statistical analyses indicate that the analyzed VOOs have different aroma profiles. Arbequina oil has a high proportion of compounds with sensory notes “green” and “sweet” giving it a fruity sensation compared to Arbosana and Koroneiki. In parallel, Arbosana and Koroneiki oils are rich in phenolic compounds and provide relatively bitter and pungent tastes to these oils.

  17. Maximization of Egyptian Gas Oil Production Through the Optimal Use of the Operating Parameters

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Gas oil is the major fossil fuel consumed around the world. Global gas oil consumption is rising at a steadily fast pace because of its higher combustion efficiency (versus gasoline). The annual increase rate of gas oil consumption in Egypt is 7 % whereas, the world increase rates range from 1.5 % to 2 % . The main sources for producing gas oil in Egypt refiners is the direct production from the atmospheric distillation process units or it may be produced as a side product from vacuum distillation units . Gas oil is produced through hydrocracking process of vacuum distillation side streams and heavy cocked gas oil. Gas oil production yield can be increased through the existing operation process units. Modifications of the current atmospheric and vacuum tower operations will increase gas oil yield rates to 20 % more than the existing production rates. The modification of the operating conditions and adoption of the optimum catalyst of the existing hydrocracking and mild hydro cracking process units improve gas oil production yield. Operating delayed cocker at high temperatures, low pressure and low cycle ratio also support achieving the maximization of gas oil yield

  18. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  19. Combustion of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a Diesel engine

    International Nuclear Information System (INIS)

    Usta, N.; Oeztuerk, E.; Can, Oe.; Conkur, E.S.; Nas, S.; Con, A.H.; Can, A.C.; Topcu, M.

    2005-01-01

    Biodiesel is considered as an alternative fuel to Diesel fuel No. 2, which can be generally produced from different kinds of vegetable oils. Since the prices of edible vegetable oils are higher than that of Diesel fuel No. 2, waste vegetable oils and non-edible crude vegetable oils are preferred as potential low priced biodiesel sources. In addition, it is possible to use soapstock, a by-product of edible oil production, for cheap biodiesel production. In this study, a methyl ester biodiesel was produced from a hazelnut soapstock/waste sunflower oil mixture using methanol, sulphuric acid and sodium hydroxide in a two stage process. The effects of the methyl ester addition to Diesel No. 2 on the performance and emissions of a four cycle, four cylinder, turbocharged indirect injection (IDI) Diesel engine were examined at both full and partial loads. Experimental results showed that the hazelnut soapstock/waste sunflower oil methyl ester can be partially substituted for the Diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification and preheating of the blends

  20. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    Carolina eBerdugo-Clavijo

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.