WorldWideScience

Sample records for heavy nuclei collisions

  1. Hadronic spectra from collisions of heavy nuclei

    International Nuclear Information System (INIS)

    Jacobs, P.

    1997-03-01

    Hadronic spectra from collisions of heavy ions at ultrarelativistic energies are discussed, concentrating on recent measurements at the SPS of central Pb+Pb collisions at 158 GeV/nucleon, which are compared to collisions of lighter ions and at lower beam energies. Baryon stopping is seen to be larger for heavier systems and lower energies. Total yields of pions and kaons scale with the number of participants in central collisions at the SPS; in particular, the K/π ratio is constant between central S+S and Pb+Pb at the SPS. Transverse mass spectra indicate significantly larger radial flow for the heavier systems. At midrapidity, an enhancement of - >/ + > and - >/ + > at low P T are best explained by final state Coulomb interaction with the residual charge of the fireball

  2. Collisions between heavy nuclei near the barrier

    International Nuclear Information System (INIS)

    Henning, W.

    1988-05-01

    Detailed information has recently become available on the reaction behavior in very heavy nuclear systems close to the Coulomb barrier. Starting from an experimental study of the distribution of the reaction strength above and below the barrier, the dominant reaction channels of quasi-elastic and strongly-damped processes are examined. With decreasing incident energy, the sub-barrier collisions are increasingly dominated by quasi-elastic processes. From the division of internal excitation energy, new information is obtained on the nature of the dissipative processes. (orig.)

  3. Observation of the Antimatter Nuclei in Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Yoo, I.-K.

    2013-01-01

    Recently antimatter hyper-triton nuclei ( 3 Λ¯ H ¯) and antimatter helium nuclei ( 4 2 He ¯ ) are discovered with the Solenoidal Tracker At RHIC detector in relativistic heavy ion collisions at Relativistic Heavy Ion Collider (RHIC) (STAR Collaboration in Science 328(5974):58-62, 2010; STAR Collaboration in Nature 473:353-356, 2011). In this presentation, discoveries of antimatter particle are historically scanned and the recent observations at RHIC are reported in details as well as potential possibilities of discovery of antimatter nuclei at ALICE. (author)

  4. Heavy ion collisions and quark distribution in nuclei

    International Nuclear Information System (INIS)

    Liu Lian-sou; Pan Ji-cai; Peng Hung-an

    1986-01-01

    Heavy-ion collisions are studied by means of two-component Fokker--Planck equations on the assumption that there exist multiquark states in nuclei. Inclusive cross sections for the production of protons are calculated in heavy-ion collisions of C+C, Ne+NaF, and Ar+KCl at 800 MeV/A; Ne+Na at 400 MeV/A, 800 MeV/A, and 2100 MeV/A. Satisfactory agreement with the experimental data near 90 degrees c.m. is obtained. The production of deuterons in the collision of C+C at 800 MeV/A is also discussed

  5. Deep inelastic collisions between very heavy nuclei

    International Nuclear Information System (INIS)

    Sann, H.; Olmi, A.; Civelekoglu, Y.

    1977-01-01

    A systematic survey of deep inelastic reactions was performed for colliding nuclei of masses between 80 and 240 amu. The application of large surface detectors and, particularly, of a position sensitive ionization chamber, has proved to be very effective and appropriate for this type of investigation. The Wilczynski diagrams describing the relative motion between the colliding objects shows a gradual trend as a function of growing masses of target and projectile where the trajectories lead the particles not toward negative scattering angles but increasingly into the direction around and above the grazing angle. This behavior is attributed to a delicate balance between Coulomb and nuclear forces. The energy dumping as a function of the mass transfer strength matches a general law between total kinetic energy loss and the variance of the proton number distribution. For the partly damped component this relation seems to hold independently from the choice of ingoing channel and bombarding energy. The dissipation of the kinetic energy does not depend only on the relative velocity of the impinging nuclei, and the simple friction model is not appropriate to describe these processes. The γ-multiplicity measurement displays a rapid increase as a function of scattering angle and total kinetic energy loss, which give new insights to the process and indicate the necessity of microscopic quantum mechanical calculations of the interaction. In the U-U collision large mass transfers are present which possibly populate with relatively large cross sections the transuranic elements. In the Pb-Pb reaction the mass transfer is more restricted. The decay probability by fission of the primary masses increases strongly for growing masses and excitation energies

  6. Transport theory of deep-inelastic collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Ayik, S.; Noerenberg, W.; Schuermann, B.

    1975-01-01

    In collisions between heavy nuclei, the major part of the total cross-section is due to deep-inelastic processes. These processes have been studied within a quantum-statistical approach leading to transport equations of the Fokker-Planck type (generalized diffusion equation). Transport coefficients have been studied within a model. (orig./WL) [de

  7. Search for nuclei in heavy ion collisions at ultrarelativistic energies

    CERN Multimedia

    2002-01-01

    We would like to know if nuclei are still present after a collision of two heavy ions at ultrarelativistic energies. If one can detect some of them at large angle $(>10^{\\circ}-15^{\\circ})$ they very likely come from a multifragmentation of the excited target spectators. Such a multifragmentation in several nuclei has been in proton induced reactions at Fermilab and it was interpreted as a gas-liquid phase transition in nuclei matter near the critical point. With heavy ions the energy deposited in the target spectators will be much higher than in the case of protons and a different mechanism should be involved if nuclei are still observed. \\\\ \\\\ We propose to detect nuclei using 1-2 silicon telescopes and a 1-2mg/cm$^{2}$ Au target bombarded by an $^{16}$O or $^{32}$S beam at 226 GeV/u. The set-up will be installed in a small cube located just before the NA38 experiment and should not perturb it.\\\\ \\\\ Data from $^{16}$O incident on Au have been taken last year. The experiment is presently taking data with $^{...

  8. Introduction to the study of collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Bayman, B.F.

    1980-01-01

    Current investigations concerning the collisions of nuclei governed by small de Broglie wavelengths are reviewed. The wave packets localize nuclei in regions small compared to their diameters. Cross sections are examined for potential scattering, elastic scattering, quasi-molecular states, peripheral particle-transfer reactions, fusion, and deep inelastic collisions. Theories of fusion and deep inelastic collisions are summarized. This paper is in the nature of a review-tutorial. 45 references, 51 figures, 2 tables

  9. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  10. Hot nuclei with high spin states in collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Galin, J.

    1991-01-01

    In the first part of this contribution we have shown that pretty hot nuclei could be obtained in peripheral collisions of Kr+Au. The collisions considered in the chosen example give rise to a nucleus of Z=28 with a kinetic energy of 1600 MeV (i.e. a velocity close to 27 MeV/u to be compared with the 32 MeV/u of the beam). The excitation energy deposited in the non-detected target like-nucleus, deduced from the neutron multiplicity measurements, amounts to 700 MeV (T= 6 MeV). In the second part of the contribution one used the well known properties of fission, and particularly its sensitivity to spin, to show in a qualitative way that pretty high spin values are into play. A more quantitative analysis together with additional measurements are still needed in order to infer precise figures of spin. It can be noted that for the 29 MeV/u Pb+Au reaction 1 max amounts to 1700 ℎ. If we assume that the sticking or rolling conditions can be fulfilled for initial angular momenta of about 2/3 1 max , then a projectile-like (and its target partner) could acquire an intrinsic spin of about 160 ℎ. The behavior of a Pb-like nucleus brought in such an exotic state (T=6 MeV and J=160ℎ)) is certainly worth to be studied in detail. It is also worth recalling that, when obtained in peripheral collisions, the hot nuclei thus formed do not suffer much initial compression at variance with what happens in more central collisions. There is thus an interesting field to be explored of hot, high spin but uncompressed nuclei

  11. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Kai-Jia Sun

    2017-11-01

    Full Text Available Based on the coalescence model for light nuclei production, we show that the yield ratio Op-d-t=NH3Np/Nd2 of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn=〈(δn2〉/〈n〉2 at kinetic freeze-out. From recent experimental data in central Pb+Pb collisions at sNN=6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS, we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at sNN=8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ∼144 MeV and baryon chemical potential of ∼385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.

  12. The study of initial conditions in collisions of light, intermediate and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Loctionov A.A.

    2017-01-01

    Full Text Available The system size dependence for multiparticle processes has been recognized in both cosmic ray (“Stratosphere” collaboration and at accelerator (“EMU” collaboration experiments. The strong enhancement in multiplicity fluctuations for the most central light-light – (C, O, Ne + (C/N/O – collisions has been revealed at JINR-AGS-SPS energies. The sharp difference of light nuclear interactions are interpreted as the sign of intrinsic alpha-clustering in light nuclei.

  13. Hot nuclei and search for multifragmentation in medium-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Doubre, H.

    1988-01-01

    Some recent determinations of the excitation energies and temperatures of composite systems formed in intermediate-energy heavy-ion collisions are described and the issue of a limiting temperature is discussed. Several examples of experimental investigations of an eventual occurrence of a multifragmentation process are also described

  14. Collisions with nuclei

    International Nuclear Information System (INIS)

    Gulamov, K.G.

    1987-01-01

    It is well known that interactions of high energy particles with nuclei, owing to possible intranuclear rescatterings, may provide information about the space-time behaviour of the production process. Therefore the main goals of these investigations are related with the attempts to study the space-time process of hadronization of coloured quarks and gluons produced at the initial stage of an interaction to white final state particles and to clarify the influence of composite quark-gluon structure of both the projectile and target on features of the production mechanisms. Since in both the initial and final states of these reactions the authors have strongly interacting multiparticle systems, it is of importance to study the collective properties of these systems. The questions to the point are: what is the degree of collectivization of particles newly produced in collisions with nuclei and what is the influence of the collective nature of a nucleus itself on the production mechanisms, in particular, what are the manifestations of possible multinucleon (multiquark) configurations in nuclei? It is obvious that the reductability of, say, hadron-nucleus (hA) interaction to hadron-nucleon (hN) collisions is directly related to the above problems. Due to time limitations the author discusses here only a few aspects of low p/sub t/ hA interactions which in his opinion are of importance for better understanding of general regularities of collisions with nuclei and for further investigations of the above problems

  15. Study of the energetic proton production in relativistic heavy ions Ne + nuclei collisions, using Diogene detector. Hadronic matter temperature

    International Nuclear Information System (INIS)

    Rahmani, A.

    1988-12-01

    The study of the proton's production differential cross sections, in the collision of relativistic heavy ions, allows to obtain the nuclear-matter temperature and gives information about the nucleons large burst pulses in the nucleus. The chosen thermodynamic model is a generalized approach of the R. Hagedorn model, applied to heavy ions collisions: the nuclear matter is divided in volume elements δV assumed to be in thermal and chemical equilibrium and emitting particles and fragments isotropically, inside their own system. The applied nuclear-matter velocity distribution depended only on the impact parameter and on the relationship between the chemical potential and the temperature. The predictions of this thermodynamic model were compared to the Saturne experimental results, using Diogene detector. The obtained temperature values are similar to those given by D. Hahn and H. Stoker. The proton production cross sections were measured for backward emitting angles. A relationship between the cross sections and the burst pulse distribution in the nuclei was settled [fr

  16. Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei

    International Nuclear Information System (INIS)

    Li Baoan; Das, Champak B.; Das Gupta, Subal; Gale, Charles

    2004-01-01

    Using an isospin- and momentum-dependent transport model we study effects of the momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. It is found that symmetry potentials with and without the momentum-dependence but corresponding to the same density-dependent symmetry energy E sym (ρ) lead to significantly different predictions on several E sym (ρ)-sensitive experimental observables especially for energetic nucleons. The momentum- and density-dependence of the symmetry potential have to be determined simultaneously in order to extract the E sym (ρ) accurately. The isospin asymmetry of midrapidity nucleons at high transverse momenta is particularly sensitive to the momentum-dependence of the symmetry potential. It is thus very useful for investigating accurately the equation of state of dense neutron-rich matter

  17. Ultrarelativistic heavy-ion collisions. Proceedings of the International Workshop XXX on Gross Properties of Nuclei and Nuclear Excitations

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2002-01-01

    The following topics were dealt with: Experimental results on ultrarelativistic heavy ion collisions, QCD thermodynamics, equilibration in relativistic heavy ion collisions, lattice QCD, space- time evolution and Hanbury-Brown-Twiss correlations, vector meson production, high-p T and small-x physics. (HSI)

  18. High energy collisions of nuclei: experiments

    International Nuclear Information System (INIS)

    Heckman, H.H.

    1977-09-01

    Heavy-ion nuclear reactions with projectile energies up to 2.1 GeV/A are reviewed. The concept of ''rapidity'' is elucidated, and the reactions discussed are divided into sections dealing with target fragmentation, projectile fragmentation, and the intermediate region, with emphasis on the production of light nuclei in high-energy heavy-ion collisions. Target fragmentation experiments using nuclear emulsion and AgCl visual track detectors are also summarized. 18 figures

  19. Measurements of neutron yields and radioactive isotope transmutation in collisions of relativistic ions with heavy nuclei

    International Nuclear Information System (INIS)

    Brandt, R.

    1999-01-01

    The paper is based on the report presented at the 85th Session of the JINR Scientific Council. Some aspects of experimental studies of the problem of reprocessing radioactive wastes by means of transmutation in the fields of neutrons generated by relativistic particle beams are discussed. Research results on measurement of neutron yields in heavy targets irradiated with protons at energies up to 3.7 GeV as well as transmutation cross sections of some fission products (I-129) and actinides (Np-237) using radiochemical methods, activation detectors, solid state nuclear track detectors and other methods are presented. Experiments have been performed at the accelerator complex of the Laboratory of High Energies, JINR. Analogous results obtained by other research groups are also discussed

  20. Collisions between complex atomic nuclei

    International Nuclear Information System (INIS)

    Vaagen, J. S.

    1977-08-01

    The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)

  1. Study of Doubly Charged Delta Baryons in Collisions of Copper Nuclei at the Relativistic Heavy Ion Collider

    Science.gov (United States)

    2017-05-22

    connecting the three quarks. Composite particles composed of partons are known as “hadrons” and must have a neutral color charge. There are six... neutral charge of neutrons. The up quark has positive charge equivalent to two-thirds the charge of an electron, and the down quark has negative...known as “heavy ions.” An ion is an atom or molecule with net electric charge, bare nuclei have a large positive charge due to the absence of

  2. Study of Nuclear Collisions of 86 MeV/a.m.u. $^{12}$C with Heavy Targets by Collection of the Heavy Recoil Nuclei

    CERN Multimedia

    2002-01-01

    The aim of this experiment is twofold:\\\\ \\\\ Firstly to test the possibilities of collection of the heavy recoil nuclei with the device presented schematically on the figure. The recoil nuclei escaping from the irradiated target are first thermalised in a gas (N^2). One then takes advantage of their remaining charge to collect them with an electric field on the surface of a solid state detector. Tests already performed with other beams give absolute efficiency around 5\\%. The best conditions of collections with very energetic |1|2C have first to be tested. Secondly to get some insight into nuclear reaction mechanisms induced by 86~MeV/a.m.u. |1|2C using the possibilities of this recoil chamber. Two kinds of mechanisms should occur in these interactions. If the incident energy is damped (deep inelastic reaction, fusion), the heavy nucleus will be highly excited and the residual nuclei will lie along the @G^n/@G^p~=~1~line. For heavy nuclei this line is located at about 25~mass units from the stability line. If ...

  3. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  4. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  5. Heavy ion collisions

    International Nuclear Information System (INIS)

    Siemens, P.J.

    1979-12-01

    The status of research into collisions of nuclei at high energy is reviewed. Reactions and products are classified, and spectator matter is discussed. Then the thermalization of participant matter is considered at some length. Finally, disintegration of the hot matter is addressed. A = 20 and 40 projectiles of 250 to 1050 MeV/A are employed to illustrate the major points. 44 references, 10 figures

  6. Jets in heavy ion collisions

    International Nuclear Information System (INIS)

    Nattrass, Christine

    2017-01-01

    High energy collisions of heavy nuclei permit the study of nuclear matter at temperatures and energy densities so high that the fundamental theory for strong interactions, QCD, predicts a phase transition to a plasma of quarks and gluons. This matter, called a Quark Gluon Plasma (QGP), has been studied experimentally for the last decade and has been observed to be a strongly interacting liquid with a low viscosity. High energy partons created early in the collision interact with the QGP and provide unique probes of its properties. Hard partons fragment into collimated sprays of particles called jets and have been studied through measurements of single particles, correlations between particles, and measurements of fully reconstructed jets. These measurements demonstrate partonic energy loss in the QGP and constrain the QGP’s properties. Measurements of the jet structure give insight into the mechanism of this energy loss. The information we have learned from studies of jets and challenges for the field will be reviewed. (paper)

  7. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  8. Heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.

    1994-01-01

    Heavy ion collisions at very high energies provide an opportunity to recreate in the laboratory the conditions which existed very early in the universe, just after the big bang. We prepare matter at very high energy density and search for evidence that the quarks and gluons are deconfined. I describe the kinds of observables that are experimentally accessible to characterize the system and to search for evidence of new physics. A wealth of information is now available from CERN and BNL heavy ion experiments. I discuss recent results on two particle correlations, strangeness production, and dilepton and direct photon distributions

  9. Nuclei at HERA and heavy ion physics

    International Nuclear Information System (INIS)

    Gavin, S.; Strikman, M.

    1995-01-01

    Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk

  10. Collisions on relativistic nuclei: shock waves

    International Nuclear Information System (INIS)

    Gudima, K.K.; Toneev, V.D.

    1976-01-01

    Experiments are analysed which indicate the possible generation of shock waves in collisions of two nuclei. Another interpretation of these data is proposed and the concerned new experiments are discussed

  11. Nucleon transfer between heavy nuclei

    International Nuclear Information System (INIS)

    Von Oertzen, W.

    1984-02-01

    Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation

  12. Fragmentation in central collisions of heavy systems

    International Nuclear Information System (INIS)

    Claesson, G.; Doss, K.G.R.; Ferguson, R.

    1987-01-01

    One of the goals of heavy ion reaction studies is to understand the fragmentation of hot nuclei. The LBL/GSI Plastic Ball detector system has been used to achieve a very high solid angle for detection of light and medium-heavy fragments emitted in 200 Mev/A Au + Au and Au + Fe reactions. The simultaneous measurement of almost all of the nucleons and nuclei resulting from each collision allows an estimation of the total charged particle multiplicity and hence the impact parameter. By choosing subsets of the data corresponding to a peripheral or central collision, the assumptions inherent in various models of nuclear fragmentation can be tested. 3 refs., 3 figs

  13. Source dimensions in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Herrmann, M.; Bertsch, G.F.

    1994-01-01

    Recent experiments on pion correlations, interpreted as interferometric measurements of the collision zone, are compared with models that distinguish a prehadronic phase and a hadronic phase. The models include prehadronic longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and rescattering of the produced hadrons. The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a heavy target require the existence of a prehadronic phase which converts to the hadronic phase at densities around 0.8 GeV/fm 3 . The transverse radii cannot be reproduced without introducing more complex dynamics into the transverse expansion

  14. Pauli correlations in heavy-ion collisions at high energies

    International Nuclear Information System (INIS)

    Franco, V.; Nutt, W.T.

    1977-01-01

    The effects of short-range correlations on the Glauber expansion for nucleus-nucleus collisions are calculated using the Fermi gas model for nuclei. When the Pauli principle is neglected for collisions between heavy nuclei, calculation of the optical phase-shift function leads to non-unitary results and cross sections cannot be obtained. When Pauli correlations are included important cancellations in the optical phase-shift function are found which make possible the calculation of total and differential cross sections for heavy nuclei. (Auth.)

  15. Hadron chemistry in heavy ion collisions

    International Nuclear Information System (INIS)

    Montvay, I.; Zimanyi, J.

    1978-06-01

    In the models for energetic heavy ion reactions it is assumed that during the reaction a hot and dense nuclear matter, a fireball is formed from all or a part of nucleons of the target and projectile nuclei. The process is similar to the chemical processes leading to dynamical equilibrium. The relaxation times necessary to establish ''chemical'' equilibrium among different hadrons in hot, dense hadronic matter is deducted in a statistical model. Consequences for heavy ion collisions are discussed. The possibility of Bose-Einstein pion condensation around the break-up time of the nuclear fireball is pointed out. (D.P.)

  16. Dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Feldmeier, H.T.

    1985-01-01

    This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs

  17. Heavy quarkonium production and propagation in nuclei

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1997-01-01

    In the search for the quark-gluon plasma, it has been suggested that the production of charmonium will be suppressed in a quark-gluon plasma because of the screening of the interaction between c and anti c. To extract information on the suppression due to the quark-gluon plasma, it is necessary to study the suppression of J/ψ production by sources different from the quark-gluon plasma. It is therefore useful to examine the mechanism of heavy quarkonium production and its propagation in nuclei. The authors describe a precursor in heavy quarkonium production in terms of a coherent admixture of states of different color, spin, and angular momentum quantum numbers, and obtain the production amplitudes for different quarkonium bound states by projecting out this precursor state onto these bound states. The precursor is absorbed in its passage through a nucleus in a pA reaction, and the total cross section between this precursor with a nucleon can be calculated with the two-gluon model of the Pomeron. Such a description of coherent precursors and their subsequent interactions with nucleons can explain many salient features of J/ψ and ψ' production in pA collisions

  18. Electro-magnetic properties of heavy nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    1989-01-01

    Two topics of electro-magnetic properties of heavy nuclei are discussed. The first topic is the M1 excitation from well-deformed heavy nuclei, and the other is the sudden increase of the isotope shift as a function of N in going away from the closed shell. These problems are considered in terms of the particle-number projected (Nilsson-) BCS calculation. (author)

  19. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  20. Application of hydrodynamics to heavy ion collisions

    International Nuclear Information System (INIS)

    Felsberger, Lukas

    2014-01-01

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  1. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  2. Reaction Dynamics and Nuclear Structure Studies of n-Rich Nuclei Around 48Ca via Deep Inelastic Collisions with Heavy-Ions

    International Nuclear Information System (INIS)

    Leoni, S.

    2011-01-01

    The population and γ decay of neutron rich nuclei around 48 Ca has been measured at Legnaro National Laboratory with the PRISMA-CLARA setup, using deep-inelastic collisions on 64 Ni, at 5.9 MeV/A. The reaction properties of the main products are investigated, focusing on total cross-sections and energy integrated angular distributions. Gamma spectroscopy studies are also performed for the most intense transfer channels, making use of angular distributions and polarization measurements to firmly establish spin and parity of the excited states. In the case of 49 Ca candidates for particle-core couplings are investigated and interpreted on basis of lifetime measurements and comparison with model predictions. (author)

  3. Octupole shapes in heavy nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1994-01-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets

  4. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2017-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  5. Relativisitic heavy ion collisions

    International Nuclear Information System (INIS)

    Tannenbaum, M.J.

    1987-01-01

    Some of the objectives and observables of Relativistic Heavy Ion Physics are presented. The first experimental results from oxygen interactions at CERN, 200 GeV/c per nucleon, and BNL, 14.5 GeV/c per nucleon are shown. The data indicate more energy emission than was originally predicted. 25 refs., 19 figs

  6. Interactions of 10.6 GeV/n gold nuclei with light and heavy target nuclei in nuclear emulsion

    International Nuclear Information System (INIS)

    Cherry, M.L.; Denes-Jones, P.

    1994-03-01

    We have investigated the particle production and fragmentation of nuclei participating in the interactions of 10.6 GeV/n gold nuclei in nuclear emulsions. A new criteria has been developed to distinguish between the interactions of these gold nuclei with the light (H, C, N, O) and heavy (Ag, Br) target nuclei in the emulsion. This has allowed separate analyzes of the multiplicity and pseudo-rapidity distributions of the singly charged particles emitted in Au-(H, C, N, O) and Au-(Ag, Br) interactions, as well as of the models of breakup of the projectile and target nuclei. The pseudo-rapidity distributions show strong forward asymmetries, particularly for the interactions with the light nuclei. Heavy target nuclei produce a more severe breakup of the projectile gold nucleus than do the lighter targets. A negative correlation between the number of fragments emitted from the target nuclei and the degree of centrality of the collisions has been observed, which can be attributed to the total destruction of the relatively light target nuclei by these very heavy projectile nuclei. (author). 14 refs, 11 figs, 1 tab

  7. Decay of heavy and superheavy nuclei

    Indian Academy of Sciences (India)

    April 2014 physics pp. 705–715. Decay of heavy and superheavy nuclei ... study on the feasibility of observing α decay chains from the isotopes of the ... studies on 284−286115 and 288−292117 will be a guide to future experiments. .... ratio of the α decay from the ground state of the parent nucleus to the level i of the.

  8. The mechanism of total disintegration of heavy nuclei by fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    The mechanism of the total disintegration of atomic nuclei by fast hadrons and nuclei is considered. The passage of energetic hadrons through layers of intranuclear matter, accompanied by emission of fast nucleons with kinetic energies from about 20 up to about 500 MeV from definite local small regions in the nuclei around projectile courses in them, allows one to explain simply the occurrence of the total destruction of nuclei involved in the collisions. Light nuclei may be totally disintegrated by fast hadrons and nuclei; heavier nuclei may be totally disintegrated only in central collisions of nuclei with similar mass numbers

  9. Central collisions of heavy ions

    International Nuclear Information System (INIS)

    Fung, Sun-yiu.

    1991-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R ampersand D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals

  10. QCD in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Iancu, Edmond [IPhT, Saclay (France)

    2014-07-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  11. QCD in heavy ion collisions

    International Nuclear Information System (INIS)

    Iancu, Edmond

    2014-01-01

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry

  12. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Universidade Federal do Rio de Janeiro; Baur, G.

    1987-10-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. There is nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma. On the other hand, very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. There has been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct breakt-up of the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due the large cross sections, specially in the case of electron-positron pair creation. Although to explain the many processes originated in this way one can develop very elaborate and complicated calculations, the results can be understood in very simple terms because of our almost complete comprehension of the electromagntic interaction. For those processes where the electromagntic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong interaction in the nuclei or hadrons. (orig.)

  13. Radiation from heavy ion collisions

    International Nuclear Information System (INIS)

    Kast, J.R.; Lee, Y.K.

    1975-01-01

    A study of x rays produced in heavy ion collisions has led to a search for molecular orbital x rays, concentrating on 35 Cl ions on Al, NaCl, and C targets. Preliminary analysis of the angular dependence of continuum x rays has tentatively identified quasi-molecular K x rays. Other work completed and in progress is discussed. (3 figures) (U.S.)

  14. Heavy ion collisions and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Floerchinger, Stefan

    2016-12-15

    There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.

  15. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W. Udo [Univ. of Rochester, NY (United States). Dept. of Chemistry. Dept. of Physics

    2016-07-28

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the “boiling” and “vaporization” of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, “head-on” collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (“neck”) between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  16. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    International Nuclear Information System (INIS)

    Schroeder, W. Udo

    2016-01-01

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the ''boiling'' and ''vaporization'' of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, ''head-on'' collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (''neck'') between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  17. Positron creation in heavy ion collisions: The influence of the magnetic field

    International Nuclear Information System (INIS)

    Soff, G.; Reinhardt, J.

    1988-03-01

    We calculate the creation of positrons in heavy-ion collisions including the influence of the magnetic dipole field produced by the moving nuclei. Contrary to a recent claim we find no narrow structures in the positron energy spectrum. (orig.)

  18. From heavy nuclei to super-heavy nuclei; Des noyaux lourds aux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Theisen, Ch

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  19. Calculated nuclide production yields in relativistic collisions of fissile nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J.; Schmidt, K.H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Grewe, A.; Jong, M. de [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Zhdanov, S. [AN Kazakhskoj SSR, Alma-Ata (USSR). Inst. Yadernoj Fiziki

    1997-11-01

    A model calculation is presented which predicts the complex nuclide distribution resulting from peripheral relativistic heavy-ion collisions involving fissile nuclei. The model is based on a modern version of the abrasion-ablation model which describes the formation of excited prefragments due to the nuclear collisions and their consecutive decay. The competition between the evaporation of different light particles and fission is computed with an evaporation code which takes dissipative effects and the emission of intermediate-mass fragments into account. The nuclide distribution resulting from fission processes is treated by a semiempirical description which includes the excitation-energy dependent influence of nuclear shell effects and pairing correlations. The calculations of collisions between {sup 238}U and different reaction partners reveal that a huge number of isotopes of all elements up to uranium is produced. The complex nuclide distribution shows the characteristics of fragmentation, mass-asymmetric low-energy fission and mass-symmetric high-energy fission. The yields of the different components for different reaction partners are studied. Consequences for technical applications are discussed. (orig.)

  20. Heavy nuclei, from RHIC to the cosmos

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2003-01-01

    Ultra-relativistic heavy ion collisions produce a high-temperature, thermalized system that may mimic the conditions present shortly after the big bang. This writeup will given an overview of early results from the Relativistic Heavy Ion Collider (RHIC), and discuss what we have learned about hot, strongly interacting nuclear systems. The thermal and chemical composition of the system will be discussed, along with observables that are sensitive to the early evolution of the system. I will also discuss the implications of the RHIC results for cosmic ray air showers

  1. Towards relativistic heavy ion collisions 'by small steps towards the stars'

    International Nuclear Information System (INIS)

    Scott, D.K.

    1980-01-01

    Current attempts to search for the exotic processes occurring in relativistic heavy ion collisions are reviewed under the headings; peripheral collisions (peripheral collisions as a function of energy, new features at intermediate energies, ground state correlations, microscopic aspects), central collisions (low energy perspective, time scales in heavy ion collisions, spatial, temporal localization and the onset of the nuclear fireball, models of particle emission in central relativistic collisions, the heart of the matter, multiplicity selection, the emission of composite particles), a search for the exotic (the limits of temperature and pressure, temporal and spatial limits, the limits of nuclear matter and nuclei,). 229 references. (U.K.)

  2. Searching for Jets in Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Salur, Sevil

    2008-01-01

    Jet quenching measurements using leading particles and their correlations suffer from known biases, which can be removed via direct reconstruction of jets in central heavy ion collisions. In this talk, we discuss several modern jet reconstruction algorithms and background subtraction techniques that are appropriate to heavy ion collisions

  3. Scattering of mass-3 projectiles from heavy nuclei

    International Nuclear Information System (INIS)

    Mukhopadyay, S.; Srivastava, D.K.; Ganguly, N.K.

    1976-01-01

    The interaction between heavy ions is a subject of great interest. It is well known that α-particle scattering shows most of the features which are observed in heavy ion scattering. In as much as mass-3 system is intermediate between heavy and light particles it will be interesting to investigate the scattering of mass-3 projectiles to see if it is possible to extend it to study the heavy ion scattering. Indeed; it has been seen that the 'molecular type' potentials, with a soft repulsive core and a shallow attractive well used for heavy ion collisions can be used to fit the elastic scattering data of mass-3 projectiles also. In the first part of this paper, a description is given of how this potential is generated with a special emphasis on saturation and second order effect through a density dependent interaction between nucleon and mass-3 projectiles. In the second part it is shown that the asymmetry dependence observed in the potential describing the scattering of mass-3 particles from heavier nuclei actually originates from the isospin interaction, when triton and helion are treated as two members of an isospin doublet. (Auth.)

  4. Transfer of momentum, mass and charge in heavy ion collisions

    International Nuclear Information System (INIS)

    Beck, F.; Feldmeier, H.; Dworzecka, M.

    1979-01-01

    A model for the first two phases of heavy ion collisions based on the transport of single nucleons through the window between the two scattering nuclei is described in some detail. It is pointed out that the model can account simultaneously for a large portion of the energy transfer from relative to intrinsic motion and for the observed variances in mass and charge numbers for reaction times up to the order of 10 -21 s. (P.L.)

  5. Collisions of deformed nuclei and superheavy-element production

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Moeller, P.; Univ. of Aizu, Fukushima; P. Moller Scientific Computing and Graphics, Inc., Los Alamos, NM; Los Alamos National Lab., NM; Nix, J.R.; Sagawa, Hiroyuki, Sagawa

    1995-01-01

    A detailed understanding of complete fusion cross sections in heavy-ion collisions requires a consideration of the effects of the deformation of the projectile and target. The aim here is to show that deformation and orientation of the colliding nuclei have a very significant effect on the fusion-barrier height and on the compactness of the touching configuration. To facilitate discussions of fusion configurations of deformed nuclei, the authors develop a classification scheme and introduce a notation convention for these configurations. They discuss particular deformations and orientations that lead to compact touching configurations and to fusion-barrier heights that correspond to fairly low excitation energies of the compound systems. Such configurations should be the most favorable for producing superheavy elements. They analyze a few projectile-target combinations whose deformations allow favorable entrance-channel configurations and whose proton and neutron numbers lead to compound systems in a part of the superheavy region where a half-lives are calculated to be observable, that is, longer than 1 micros

  6. Decay of the vacuum in heavy ion collisions

    International Nuclear Information System (INIS)

    Mueller, B.

    1984-10-01

    The neutral electron-positron vacuum state becomes unstable in very strong electric fields of nuclei with Z>173 and decays into a charged vacuum by spontaneous positron emission. Such giant nuclear systems can be formed in collisions of very heavy ions (U+U, U+Cm, etc.) for a period of 10 -20 s or more. Recent experimental results revealing line structures in the positron spectra observed in these collisions are discussed and their implications for quantum electrodynamics and nuclear physics are pointed out. (orig.)

  7. Event-By-Event Initial Conditions for Heavy Ion Collisions

    Science.gov (United States)

    Rose, S.; Fries, R. J.

    2017-04-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events.

  8. Event-By-Event Initial Conditions for Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Rose, S; Fries, R J

    2017-01-01

    The early time dynamics of heavy ion collisions can be described by classical fields in an approximation of Quantum ChromoDynamics (QCD) called Color Glass Condensate (CGC). Monte-Carlo sampling of the color charge for the incoming nuclei are used to calculate their classical gluon fields. Following the recent work by Chen et al. we calculate the energy momentum tensor of those fields at early times in the collision event-by-event. This can then be used for subsequent hydrodynamic evolution of the single events. (paper)

  9. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  10. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  11. Localization effects in heavy ion collisions

    International Nuclear Information System (INIS)

    Donangelo, R.J.

    1984-01-01

    Radial and angular localization in heavy ion reactions on deformed nuclei is discussed. A theoretical method appropriate to study these localization effects is briefly described and then applied to the determination of deformed heavy ion potentials from inclastic scattering data. It is argued that one-and two-nucleon transfer reactions on deformed nuclei can provide a probe of nuclear structure in high angular momentum states and be at least qualitatively analyzed in the light of these localization concepts. (Author) [pt

  12. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei

    International Nuclear Information System (INIS)

    Khalfallah, F.

    2007-08-01

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No 256 et Rf 256 for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa 223 . The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  13. Electromagnetic excitation of 136Xe in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.D.

    1991-11-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR at the Society for Heavy Ion Research in Darmstadt a detector system for relativistic neutrons was developed, constructed, and applied in first experiments. An essential research aim is the study of collective states after electromagnetic excitation in relativistic heavy ion collisions. In peripheral collisions high-energy virtual photons are exchanged. This leads to the excitation of giant resonances, especially of the giant dipole and quadrupole resonance. An essential decay channel of giant resonances in heavy nuclei is the emission of neutrons, followed by the emission of γ radiation below the particle threshold. These decay channels were studied with the detector system developed by the LAND collaboration. A first experiment on the electromagnetic excitation was performed with a 136 Xe beam at an energy of 700 MeV/u and Pb respectively C targets. (orig./HSI) [de

  14. Transport phenomena in dissipative heavy-ion collisions: the one-body dissipation approach

    International Nuclear Information System (INIS)

    Feldmeier, H.

    1987-01-01

    The paper reviews dissipative collisions between two atomic nuclei, with the help of the classical description of Brownian movement and the Langevin equation. The 'one-body dissipation model' for dissipative heavy-ion collisions is discussed, and its predictions are compared with measured data. Special attention is paid to the non-equilibrium relation between friction and diffusion. (U.K.)

  15. Heavy accelerated nuclei in biomedical research

    International Nuclear Information System (INIS)

    Tobias, C.A.

    1987-01-01

    Accelerated atomic nuclei in physics accelerators have been used in basic biological research and in applied medical diagnostic and therapeutic studies for the past 50 years. The passage of single heavy particles through the cell nucleus is capable of producing multiple DNA double-strand scission and chromatin breaks. According to the Repair-Misrepair model, the high biological effectiveness of high-LET particles is due to misrepair and misrejoining of the breaks. The Bragg depth ionization effect allows heavy particles to deposit considerably more energy deep in tissue than at the surface, and this property has been used for great improvements in the radiation therapy of localized tumors. Recent advances in producing radioactive beams will allow verification of therapeutic administration of such beams. The radioactive beams also open a new field of Nuclear Medicine. There is increasing interest in building special biomedical light and heavy-ion accelerators. These will be used not only for therapy but also for diagnosis, for the study of radiation hazards in space flight, and for basic molecular and cellular understanding of the mechanisms of radiation effect

  16. Charmonium production in proton-proton collisions and in collisions of lead nuclei at CERN and comparison with Brookhaven data

    International Nuclear Information System (INIS)

    Topilskaya, N. S.

    2013-01-01

    A review of experimental data on charmoniumproduction that were obtained in fixed-target experiments at the SPS synchrotron and in proton-proton collisions and in collisions of lead nuclei in beams of the Large Hadron Collider (LHC) at CERN (Switzerland) is presented. A comparison with data obtained at the Brookhaven National Laboratory (USA) from experiments at the Relativistic Heavy Ion Collider (RHIC) is performed. Measurement of the suppression of J/ψ-meson production as a possible signal of the production of quark-gluon plasmawas proposed back in 1986 by T. Matsui and H. Satz. An anomalous suppression of J/ψ-meson production was discovered by the NA50 Collaboration at SPS (CERN) in central collisions of lead nuclei at the c.m. collision energy of 158 GeV per nucleon. Data obtained at the c.m. energy of 200 GeV per nucleon in the PHENIX experiment at RHIC indicate that, depending on multiplicity, the suppression of J/ψ-meson production at this energy approximately corresponds to the suppression of J/ψ-meson production in collisions of lead nuclei at the SPS accelerator. Theoretical models that take into account the regeneration of J/ψ mesons describe better RHIC experimental data. The measurement of charmonium production in proton-proton collisions and in collisions of lead nuclei in LHC beams revealed the importance of taking into account the regeneration process. At the LHC energies, it is also necessary to take into account the contribution of B-meson decays. Future measurements of charmonium production at the LHC to a higher statistical precision and over an extended energy region would be of importance for obtaining deeper insight into the mechanism of charmonium production and for studying the properties of matter at high energy density and temperature

  17. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  18. FONLL calculations for heavy quark production in nuclear collisions

    CERN Document Server

    Niel, Elisabeth Maria

    2017-01-01

    The ALICE detector at the LHC has been designed to study the collisions of heavy nuclei at energies much higher then the previous dedicated experiments at the Relativistic Heavy-Ion Collider (RHIC) of the Brookhaven National Laboratory. Colliding heavy nuclei allows to reproduce the hot and dense plasma of quarks and gluons (QGP) existing right after the Big Bang and hence study the very first instants of universe’s existence. In heavy ions collisions, heavy flavours, such as beauty and charm quark, are fundamental probes for the quark gluon plasma properties. That is because they experience the entire evolution of the system since they are produced at the very beginning. They are indeed a very powerful tool to test field theories such as Quantum Chromodynamics (QCD). Theoretical models predict that a fast parton(quark or gluon) looses energy while traversing a medium composed of colour charges. This phenomenon is called "jet quenching", it can be used to describe the QGP. It was first observed at RHIC by m...

  19. Jets in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs

  20. Centrality of collisions and total disintegration of nuclei

    International Nuclear Information System (INIS)

    Sulejmanov, M.K.; Abdinov, O.B.; Anoshin, A.I.; Bogdanowicz, J.; Kuznetsov, A.A.

    1998-01-01

    The interrelation of the processes of total disintegration of nuclei with the process, characterized by the 'centrality' of collisions and a minimum flow of energy of secondary particles emitted at a zero angle in pC, dC, 4 HeC and 12 CC interactions, is investigated at 4.2 A · GeV/c. The events with total disintegration of nuclei are characterized by a high degree 'centrality' of collisions and similar to the events having a minimum flow of energy of particles emitted at a zero angle

  1. Baryon distribution in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Wong, C.

    1984-01-01

    In order to determine whether a pure quark-gluon plasma with no net baryon density can be formed in the central rapidity region in relativistic heavy-ion collisions, we estimate the baryon distribution by using a Glauber-type multiple-collision model in which the nucleons of one nucleus degrade in energy as they make collisions with nucleons in the other nucleus. As a test of this model, we study first nucleon-nucleus collisions at 100 GeV/c and compare the theoretical results with the experimental data of Barton et al. The results are then generalized to study the baryon distribution in nucleus-nucleus collisions. It is found that in the head-on collision of two heavy nuclei (A> or approx. =100), the baryon rapidity distributions have broad peaks and extend well into the central rapidity region. The energy density of the baryon in the central rapidity region is about 5--6 % of the total energy density at a center-of-mass energy of 30 GeV per nucleon and decreases to about 2--3 % at a center-of-mass energy of 100 GeV per nucleon. The stopping power for a baryon in nuclear matter is extracted

  2. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  3. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  4. Formation of heavy quarks in ultrarelativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schneider, S.M.; Greiner, W.; Soff, G.

    1992-02-01

    We investigate the production of heavy quarks in continuum and bound states in nuclear collisions. Creation for free banti b and tanti t quark pairs and for bottomonium and toponium in the ground state are computed at RHIC, LHC and SSC energies. Central and peripheral heavy-ion collisions are discussed. For top quark creation we assumed a mass range of 90 GeV ≤ m t ≤ 250 GeV. The creation rate for top quarks on peripheral collisions is estimated to be by a factor 40 to 130 smaller compared with corresponding central collisions. For m t = 130 GeV we calculated a creation rate of about 4760 top quark pairs per day at the LHC (3.5 TeV/u) for Pb-Pb collisions. (orig.)

  5. Non-statistical fluctuations in collisions of relativistic nuclei

    International Nuclear Information System (INIS)

    Vrlakova, J.

    2004-01-01

    Results of the search for nonstatistical multiplicity fluctuations of produced relativistic particles are presented. Such fluctuations may be used to signal the formation of a quark gluon plasma in the early stage of heavy ion interactions at high energies. Three methods of scaled factorial moments - horizontal, vertical and mixed ones have been used for this purpose. The scaled factorial moments F q of the order of q have been studied as a function of the pseudorapidity bin size, parametrized in the form of ln q > = α q + φ q ln M, where M is the number of bins. Experimental data were obtained by the same standard emulsion method using different primary nuclei ( 1 6O, 2 2Ne, 2 8Si, 3 2 S, 197 Au and 208 P6) at momenta of 4.1 - 200 A GeV/c. Only the relativistic particles produced in central and semi-central collisions entered the analysis. The results of analysis show an evidence for the presence of intermittent behaviour in all experimental data samples. The values of the slopes (φ q obtained by all three methods of analysis are similar for 28 Si induced interactions. The values of the slopes obtained from the modified cascade evaporation and Forefeet models are fairly smaller than those for experimental data. The dependence of parameters α q and φ q on the particle density per unit pseudorapidity ρ has been studied for 16 O and 208 Pb induced interactions. While the aq dependence can be characterized as rather increasing, q decreases with ρ. Both parameters α q and φ q increase with the order of factorial moments q. The dependences of intermittency parameter λ q and q have been studied for 16 O and 208 Pb induced interactions, but no clear minimum has been found. The values of the slopes φ q for different primary nuclei masses of A = 16 - 32 are similar at Dubna energies and they decrease with the increasing primary nuclei masses for studied range of A = 16 - 197 at BNL energies. (author)

  6. Complete destruction of heavy nuclei by hadrons and nuclei

    International Nuclear Information System (INIS)

    Tolstov, K.D.

    1980-01-01

    The total disintegration is considered of Ag and Pb nuclei and 4 He, 12 C nuclei With a momentum of 4.5 GeV/c per nucleon. It is shown that nucleons are mainly emitted, and there is no residual nUcleus the mass of which is comparable to that of the primary nucleus. The probability of total nucleus disintegration is considered as a function of projectile energy and the mass. The multiplicity, energy and emission angle of particles are considerred as well. It is shown that the density of nuclear matter in the overlap zone of colliding nuclei exceeds the usual one by a factor of approximately 4. A comparison is made with interaction models. A conclusion is drawn of the collective interaction mechanism (perhaps, of the shock wave type) of particle ejection from the target nucleus at the first stage of interaction and of explosive decay of the residual nucleus at the next one

  7. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in 32 S + 118,124 Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction 197 Au+ 208 Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction 209 Bi+ 136 Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral 209 Bi+ 136 Xe Collisions at E lab /A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray μ - with a Muon Telescope

  8. Heavy flavour production at CMS in heavy ion collisions

    CERN Document Server

    Nguyen, Matthew

    2015-01-01

    We review recent results relating to beauty production in heavy-ion collisions, in both the closed and open heavy flavor sectors, from the CMS experiment at the LHC. The sequential suppression of the ° states in PbPb collisions is thought to be evidence of the dissociation of quarkonia bound states in deconfined matter. Data from pPb collisions demonstrate that while cold nuclear effects appear to be subdominant in minimum bias collisions, there exists a non-trivial dependence on collision multiplicity that remains to be understood. The suppression of high p T particles in heavy-ion collisions, relative to the expectation from pp collisions, is typically interpreted in terms of energy loss of hard scattered parton in the dense nuclear medium. The flavor dependence of the energy loss may be accessed via measurements of b hadrons and b-tagged jets. Measurement of B mesons, via non-prompt J = y , at relatively low p T indicate a smaller suppression factor than D meson or inclusive charged hadrons. Data on b jet...

  9. Heavy flavor production in nuclear collisions

    CERN Document Server

    Armesto-Pérez, Nestor; Capella, A; Pajares, C; Salgado, C A

    2001-01-01

    Heavy flavor production off nuclei is studied in the small x/sub F/ region of the produced heavy system. Corrections to the usually employed perturbative QCD factorization formula are considered in the framework of the Glauber-Gribov model. Transition from low to high energies is taken into account by using finite energy cutting rules. The low energy limit of the obtained results coincides with the probabilistic formula usually employed for quarkonium absorption. At finite energies both rescattering of the heavy flavor and corrections to nucleon parton densities inside nuclei appear, the latter also affecting lepton pair production. It turns out that at asymptotic energies both open heavy flavor and quarkonium are equally absorbed. The numerical differences between the results obtained with the probabilistic formula and the exact one are <20% up to LHC energies, and ~1/2% at SPS energies. (18 refs).

  10. Decay of giant resonance E2 isoscalar in heavy nuclei

    International Nuclear Information System (INIS)

    Herdade, S.B.

    1980-01-01

    In this work, it is made a study of the giant resonance E2 isoscalar, in heavy nuclei. Fission probabilities for this resonance were determined by various authors, in different experiments, for 238 U. (A.C.A.S.) [pt

  11. Central collisions in intermediate energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1979-01-01

    The critical collisions in intermediate energy heavy-ion reactions are examined from both a microscopic and macroscopic viewpoint. In the microscopic description the proper tool is the extended TDHF approximation involving both the mean field and the particle collisions. To understand the underlying physics, the effect of the mean field and the effect of particle collisions are studied separately. It is found that th sudden increase in the density of the overlapping region can cause the volcano effect, leading to the complete disintegration of one of the nuclei. The self-consistent mean field also gives rise to the bunching instability when the two Fermi spheres of the colliding nucleons separate. The collision between nucleons, on the other hand, leads to irreversible dissipation, thermalization, and the possibility of a hydrodynamical description of the dynamics. Next is studied the dynamics of central collisions using the hydrodynamical description for many combinations of targets and projectiles at different energies. The formation of shock waves, sidesplash, and the complete disintegration of the whole nucleus are examined. Nuclear viscosity is found to affect the angular distribution of the reaction products and also the maximum compression ratio achieved during the collision. 28 references

  12. Radial and tangential friction in heavy ion strongly damped collisions

    International Nuclear Information System (INIS)

    Jain, A.K.; Sarma, N.

    1979-01-01

    Deeply inelastic heavy ion collisions have been successfully described in terms of a nucleon exchange mechanism between two nucleon clouds. This model has also predicted the large angular momentum that is induced in the colliding nuclei. However computations were simplified in the earlier work by assuming that the friction was perturbation on the elastic scattering trajectory. Results of a more rigorous calculation are reported and the effect of modification of the trajectory on the energy transfer, the angular momentum induced and on the ratio of the radial to the tangential friction coefficients is reported. (auth.)

  13. Relativistic hydrodynamic theory of heavy-ion collisions

    International Nuclear Information System (INIS)

    Amsden, A.A.; Bertsch, G.F.; Harlow, F.H.; Nix, J.R.

    1975-01-01

    By use of finite-difference methods the classical relativistic equations of motion for the head-on collision of two heavy nuclei are solved. For 16 O projectiles incident onto various targets at laboratory bombarding energies per nucleon less than or equal to2.1 GeV, curved shock waves develop. The target and projectile are deformed and compressed into crescents of revolution. This is followed by rarefaction waves and an overall expansion of the matter into a moderately wide distribution of angles

  14. Jet production in heavy ion collisions

    CERN Document Server

    Calucci, G

    2000-01-01

    We discuss the production of jets in heavy ion collisions at LHC. The process allows one to determine to a good accuracy the value of the impact parameter of the nuclear collision in each single inelastic event. The knowledge of the geometry is a powerful tool for a detailed analysis of the process, making it possible to test the various different elements which, in accordance with present theoretical ideas, take part to the production mechanism. (8 refs).

  15. Deformation relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Yu, L.; Gan, Z.G.; Zhang, Z.Y.; Zhang, H.F.; Li, J.Q.

    2014-01-01

    In deeply inelastic heavy-ion collisions, the quadrupole deformations of both fragments are taken as stochastic independent dynamical variables governed by the Fokker–Planck equation (FPE) under the corresponding driving potential. The mean values, variances and covariance of the fragments are analytically expressed by solving the FPE in head on collisions. The characteristics and mechanism of the deformation are discussed. It is found that both the internal structures and interactions of the colliding partners are critical for the deformation relaxation in deeply inelastic collisions.

  16. Heavy ion collisions with the ATLAS detector

    International Nuclear Information System (INIS)

    Nevski, Pavel

    2004-01-01

    The ATLAS detector is designed to study high-p T physics in proton-proton collisions at the LHC design luminosity. The detector capabilities for heavy-ion physics are now being evaluated. This paper reports on a preliminary assessment of the baseline ATLAS detector potential for heavy-ion physics. The ATLAS sensitivity to some of the expected signatures from the quark-gluon plasma (e.g. jet quenching, Υ suppression) is discussed. (orig.)

  17. Cluster radioactivity of Z=125 super heavy nuclei

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Seenappa, L.

    2015-01-01

    For atomic numbers larger than 121 cluster decay and spontaneous fission may compete with α decay. Hence there is a need to make reliable calculations for the cluster decay half-lives of superheavy nuclei to predict the possible isotopes super heavy nuclei. So, in the present work, we have studied the decay of clusters such as 8 Be, 10 Be, 12 C, 14 C, 16 C, 18 O, 20 O, 22 Ne, 24 Ne, 25 Ne, 26 Ne, 28 Mg, 30 Mg, 32 Si, 34 Si, 36 Si, 40 S, 48 Ca, 50 Ca and 52 Ti from the super heavy nuclei Z=125

  18. Resonances in collisions between S-D shell nuclei

    International Nuclear Information System (INIS)

    Betts, R.R.

    1984-01-01

    Experimental evidence relating to the existence of resonances in collisions between s-d shell nuclei will be reviewed. The determination of the spins and spectroscopic properties of some of these resonances will be discussed. The behaviour of both the resonance and background cross-sections will be compared with model expectations. Some future directions in this area of study will be indicated and the relationship of this work to other results briefly discussed. (author)

  19. Unstable states produced in collisions among complex nuclei

    International Nuclear Information System (INIS)

    Sepulveda J, D.

    1978-01-01

    A theory about resonant elastic dispersion is formulated and the wave function of unstable states associated with the resonances observed in the differential and total sections is studied. The object of this theory is to extend to the elastic collisions among complex nuclei interesting case, the methods and formalism of the dispersion of particles without structure by an external potential, following an idea originally formulated by H. Feshbach. (author)

  20. Exotic phenomena in collisions of heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Schramm, S.; Reus, T. de; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.; Mueller, U.

    1985-08-01

    To exemplify current theoretical investigations we discuss three different topics. After a presentation of the underlying theoretical framework for ionization processes we will sketch the possibility to employ delta-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 -10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that we investigate the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework. Finally we very briefly consider some phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms. (orig./HSI)

  1. Jet Tomography in Heavy Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim

    2003-01-01

    We review recent calculations of the probability that a hard parton radiates an additional energy fraction due to scattering in spatially extended matter, and we discuss their application to the suppression of leading hadron spectra in heavy ion collisions at collider energies.

  2. Sigma meson in heavy ion collision

    International Nuclear Information System (INIS)

    Cristian, Ivan; Fuchs, Christian

    2004-01-01

    We want to present a short theoretical prediction of the behaviour of the sigma meson in heavy ion collisions. It is considered that the sigma meson is a pion-pion correlation, resulting from the decay of the N*(1440) resonance. There will be presented some QMD simulations. (authors)

  3. Ultrarelativistic heavy ion collisions Theoretical overview

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul

    2006-01-01

    This is a short review of some theoretical aspects of the physics of ultra-relativistic heavy ion collisions. I review the main properties of the QCD phase diagram and recent developments in the physics of high gluon densities in the hadronic wavefunctions at high energy. Then I comment salient results obtained at RHIC

  4. Study of heavy ion collisions with TAPS

    NARCIS (Netherlands)

    Löhner, H.

    The photon spectrometer TAPS is a versatile instrument to measure nuclear bremsstrahlung and neutral mesons via their gamma decay. The formation and evolution of compressed nuclear matter is studied in heavy ion collisions at relativistic energies by analyzing the yield and spectral distribution of

  5. Dynamical aspects of particle emission in binary dissipative collisions -effects on hot-nuclei formation

    International Nuclear Information System (INIS)

    Eudes, Ph.; Basrak, Z.; Sebille, F.

    1997-01-01

    Characteristics of charged-particle emission in heavy-ion reactions have been studied in the framework of the semiclassical Landau-Vlasov approach for the 40 Ar + 27 Al collisions at 65 MeV/u. The reaction mechanism is dominated by binary dissipative collisions. After an abundant prompt emission coming from the overlapping region between the target and the projectile, two excited nuclei, the quasi-target and the quasi-projectile, emerge from the collision. To shed some light on the role played by dynamical effects, light-charged particle observables, which are currently used as an experimental signature a of hot equilibrated nucleus, have been carefully investigated. (K.A.)

  6. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  7. Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions

    Science.gov (United States)

    Upsal, Isaac; STAR Collaboration

    2017-11-01

    Collisions between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central collisions are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) has measured collisions between gold nuclei at center of mass energies √{sNN} = 7.7- 200 GeV. We report the first observation of globally polarized Λ and Λ bar hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the collision.

  8. Heavy quark photoproduction in ultraperipheral heavy ion collisions

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Nystrand, Joakim; Vogt, Ramona

    2002-01-01

    Heavy quarks are copiously produced in ultraperipheral heavy ion collisions. In the strong electromagnetic fields, cc-bar and bb-bar are produced by photonuclear and two-photon interactions. Hadroproduction can also occur in grazing interactions. We calculate the total cross sections and the quark transverse momentum and rapidity distributions, as well as the QQ-bar invariant mass spectra from the three production channels. We consider AA and pA collisions at the Relativistic Heavy Ion Collider and the Large Hadron Collider. We discuss techniques for separating the three processes and describe how the AA to pA production ratios might be measured accurately enough to study nuclear shadowing

  9. Proton multiplicity distributions in high-energy hadron-nuclei collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1979-01-01

    The fast proton emission process is analyzed in high-energy hadron-nuclei collisions. The formula describing the proton multiplicity distributions is derived. It describes well enough the proton multiplicity distribution of pion-nuclei and proton-nuclei collisions at 200 and 400 GeV

  10. Coupled channel calculations for electron-positron pair production in collisions of heavy ions

    CERN Document Server

    Gail, M; Scheid, W

    2003-01-01

    Coupled channel calculations are performed for electron-positron pair production in relativistic collisions of heavy ions. For this purpose the wavefunction is expanded into different types of basis sets consisting of atomic wavefunctions centred around the projectile ion only and around both of the colliding nuclei. The results are compared with experimental data from Belkacem et al (1997 Phys. Rev. A 56 2807).

  11. Lepton-pair production by bremsstrahlung in central relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Lippert, T.; Becker, U.; Gruen, N.; Scheid, W.; Soff, G.

    1988-03-01

    We study the production of lepton-pairs by classical bremsstrahlung in central relativistic heavy-ion collisions. For the stopping of the nuclei we assume a simple model of point charges and a deceleration time. Pair creation probabilities are calculated in first order perturbation theory. (orig.)

  12. Angular distributions of elastic and quasi elastic heavy-ion collisions. Pattern analysis

    International Nuclear Information System (INIS)

    Da Silveira, R.

    1980-06-01

    The emergence, as well as the evolution, of the most typical patterns observed in the angular distributions of elastic scattering and surface transfer between heavy-nuclei, is discussed. Starting from the semi-classical approximation, Thom's classification theorem is evoked to further illuminate the connection between these patterns and the collision parameters

  13. Particle production in heavy ion collisions

    International Nuclear Information System (INIS)

    Braun-Munzinger, P.; Redlich, K.; Wroclaw Univ.; Stachel, J.

    2003-04-01

    The status of thermal model descriptions of particle production in heavy ion collisions is presented. We discuss the formulation of statistical models with different implementation of the conservation laws and indicate their applicability in heavy ion and elementary particle collisions. We analyze experimental data on hadronic abundances obtained in ultra-relativistic heavy ion collisions, in a very broad energy range starting from RHIC/BNL (√(s) = 200 A GeV), SPS/CERN (√(s) ≅ 20 A GeV) up to AGS/BNL (√(s) ≅ 5 A GeV) and SIS/GSI (√(s) ≅ 2 A GeV) to test equilibration of the fireball created in the collision. We argue that the statistical approach provides a very satisfactory description of experimental data covering this wide energy range. Any deviations of the model predictions from the data are indicated. We discuss the unified description of particle chemical freeze-out and the excitation functions of different particle species. At SPS and RHIC energy the relation of freeze-out parameters with the QCD phase boundary is analyzed. Furthermore, the application of the extended statistical model to quantitative understanding of open and hidden charm hadron yields is considered. (orig.)

  14. Nonrelativistic theory of heavy-ion collisions

    International Nuclear Information System (INIS)

    Bertsch, G.

    1984-01-01

    A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures

  15. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Science.gov (United States)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  16. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    Science.gov (United States)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  17. A note on total muon capture rates in heavy nuclei

    International Nuclear Information System (INIS)

    Parthasarathy, R.

    1978-03-01

    The results of calculations of the total capture rates in heavy nuclei, into account the nucleon velocity-dependent terms in the Fujii-Primakoff Hamiltonian and the effective mass of nucleons inside the nucleus, are presented along with the recent experimental data. The results are in general agreement with experiment. However, they indicate a possible deviation from SU(4) symmetry and, in some nuclei, support the Salam-Strathdee idea of the vanishing of the Cabibbo angle at large magnetic fields.

  18. Superheavy nuclei and quasi-atoms produced in collisions of transuranium ions

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Oganessian, Y.; Itkis, M.; Greiner, W.

    2005-01-01

    For near-barrier collisions of heavy nuclei it is very important to perform a combined (unified) analysis of all strongly coupled channels: deep-inelastic scattering, quasi-fission, fusion and regular fission. This ambitious goal has now become possible within our new approach. The standard (most important) degrees of freedom are used and a unified potential energy surface is derived determining evolution of the nuclear system in all the channels. This potential has also appropriate values of the Coulomb barriers in the entrance channel and proper values of the fission barriers in the exit one. A unified set of dynamic Langevin type equations is proposed for the simultaneous description of DI and fusion-fission processes including nucleon transfer at all reaction stages. For the first time, the whole evolution of the heavy nuclear system can be traced starting from the approaching stage and ending in DI, QF, and/or fusion-fission channels. The calculated mass, charge, energy and angular distributions of the reaction products agree well with available experimental data. Satisfactory agreement of the first calculations with experiments gives us hope not only to obtain rather accurate predictions for the probabilities of superheavy element formation in near-barrier fusion reactions but also to clarify much better than before the mechanisms of quasi-fission and fusion-fission processes. Also the determination of such fundamental characteristics of nuclear dynamics as the nuclear viscosity and the nucleon transfer rate is now possible. Low energy collisions of very heavy nuclei ( 238 U+ 238 U, 232 Th+ 250 Cf and 238 U + 248 Cm) have been studied within the proposed dynamical model. The multidimensional potential energy surfaces of such systems are rather complicated due to the shell effects and dynamic deformations, even if there is no distinct potential pocket. We found that at low near barrier collision energies these very heavy nuclei, after touching their surfaces

  19. Nonlinear effect of pion production in collisions of atomic nuclei

    International Nuclear Information System (INIS)

    Grin', Yu.T.

    1982-01-01

    The phenomenon of pion production in relativistic nucleon-nucleus and nucleus-nucleus interactions is investigated. The present experimental data are analyzed. It is shown that average multiplicity of pions in the (p, C), (C, C) collision reactions with the momentum p=4.2 GeV/cA and (p, Ar), (Ar, KCl) with the momentum p=2.3 GeV/cA non-linearly depends on the nucleon number. The calculated values of average multiplicity of negative pions per one nucleon of nucleus-pro ectile, probability of pion production and number of nucleon interactions for the investigated reactions are presented as a table. A comparative analysis of average multiplicities of pions per nucleon-participant in the nucleon-nucleus and nucleus-nucleus reactions at the p=2.3 GeV/cA momentum for argon and at the p=4.2 GeV/cA for carbon reveals that decrease of multiplicity by 30-35% is observed in nucleus-nucleus collision. Non-linearity is associated with decrease of effective interaction of each incident nucleon in the collision of nuclei as compared with the number of nucleon interactions in the ''elementary'' nucleon-nucleus reaction. Knock-out of nucleons from the colliding nuclei is the most probable reason for the decrease of the number of interactions

  20. Large amounts of antiproton production by heavy ion collision

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10 41 m/cm 2 , a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values

  1. Large amounts of antiproton production by heavy ion collision

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10/sup 41/ m/cm/sup 2/, a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values.

  2. Jets in heavy ion collisions with CMS

    CERN Document Server

    Salur, Sevil

    2016-01-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  3. On deuteron break-up at interaction with heavy nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Nemets, O.F.; Struzhko, B.G.

    1975-01-01

    The aim of the paper is the study of the nuclear boundary diffusivity during disintegration of a deutron on heavy nuclei for various combinations of neutron and proton emission angles. The formulae has obtained for the cross section and the amplitude of nuclear interaction. The calculation of angular correlations between emission directions of deutron disintegration products and energy spectra of released protons depending on the nuclear boundary diffusivity is made. It is shown that the differential cross sections of deutron fission disintegration decrease with increasing nuclear boundary diffusivity. This effect may serve a qualitative explanation for observed differences in the deutron disintegration cross sections on heavy nuclei

  4. HBT measurements in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Zajc, W.A.

    1990-01-01

    The correlations in relative momentum between identical bosons are determined, in part, by the geometrical properties of the boson source. This fact was first exploited in hadron physics by Goldhaber, Goldhaber, Lee and Pais (GGLP) in 1960. In the intervening three decades, this approach has been applied to lepton-lepton, lepton-hadron, hadron-hadron, and heavy-ion collisions. A word about nomenclature: The correlations in relative momentum between identical mesons arise from Bose statistics. Even previous to GGLP, this fact was applied by Hanbury-Brown and Twiss to measure stellar radii via two-photon interferometry. Thus an alternative name for the GGLP effect is the HBT effect. An informal introduction to Hanbury-Brown-Twiss measurements in heavy ion collisions is presented. The systematic effects in interpreting such data are emphasized, rather than the implications of any single experiment

  5. Strangeness production in heavy ion collisions

    International Nuclear Information System (INIS)

    Redlich, K.

    2001-05-01

    Strangeness production in heavy ion collisions is discussed in a broad energy range from SIS to RHIC. In the whole energy range particle yields are showing high level of chemical equilibration which can be described by the unified freezeout conditions of fixed energy/particle ≅ 1GeV. The statistical model within the canonical formulation of strangeness conservation provides a framework to describe the observed enhancement of (multi)strange particles from p+A to A+A collisions measured at the SPS energy and predicts that this enhancement should be larger for decreasing collision energy. However, only at the SPS and RHIC chemical freezeout temperature is consistent within error with the critical value required for deconfinement and simultaneously strangeness is uncorrelated and distributed in the whole volume of the fireball. (orig.)

  6. Pion correlations in heavy ion collision

    International Nuclear Information System (INIS)

    Venema, L.

    1991-01-01

    Charged π-correlations are a well established experimental technique to obtain information about π-source sizes. This is, however, not the case for π 0 's, as they decay into photons, resulting in measurements of 4 photon correlations. Here is described what these correlations are, what the problems are to detect and interpret them. These correlations are an additional way to get more information out of the heavy ion collisions. (orig.)

  7. Probing jet decoherence in heavy ion collisions

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2017-11-01

    We suggest to use the SofDrop jet grooming technique to investigate the sensitivity of jet substructure to color decoherence in heavy ion collisions. We propose in particular to analyze the two-prong probability angular distribution as a probe of the transition between the coherent and incoherent energy loss regimes. We predict an increasing suppression of two-prong substructures with angle as the medium resolves more jet substructure.

  8. Overview on heavy flavour measurements in lead-lead collisions at the CERN-LHC

    CERN Document Server

    Mischke, Andre

    2013-01-01

    High energy collisions of heavy atomic nuclei allow to create and carefully study a high-density, colour-deconfined state of strongly-interacting matter. According to calculations from lattice Quantum-Chromodynamics, under the conditions of high energy density and temperature reached in such collisions, the phase transition to a quark-gluon plasma (QGP) is expected to occur, where the colour confinement of quarks and gluons into hadrons should vanish and chiral symmetry should be restored. Heavy-flavour particles, containing charm and beauty, are unique probes of the conditions of the medium formed in nucleus-nucleus collisions at high energy. In this report recent measurements on open and hidden heavy-flavour production in lead-lead collisions at CERN's Large Hadron Collider are presented and discussed.

  9. Close collisions between light nuclei: Orbiting and fusion

    International Nuclear Information System (INIS)

    Shapira, D.; Shivakumar, B.; Harmon, B.A.; Ayik, S.

    1987-01-01

    Our data have demonstrated that in close collisions the two nuclei first form a rotating dinuclear complex (DNC) which can break up into two complex fragments (Orbiting) or evolve into a compound nucleus. The binary fragment yield was found to be significant in contradiction with earlier views which held that whenever nucleus-nucleus capture occurs fusion is a certainty. The time duration of the dinuclear stage and the nature of its evolution into a compound nucleus were studied and a model which describes these processes will be presented. 25 refs., 14 figs

  10. Inelastic collisions of neon 22 nuclei with photoemulsion at 4.1 A GeV/c

    International Nuclear Information System (INIS)

    Tolstov, K.D.

    1987-01-01

    Inelastic collisions of neon-22 nuclei accelerated at the JINR synchrophasotron with BR-2 photoemulsion nuclei are investigated. Colliding nuclei fragmentation including their total disintegration, pion production, correlation ratios are studied. There are particular cases of 22 Ne-emulsion collisions, i.e. manifestation of collective effects in inelastic collisions of relativistic nuclei

  11. Photofissility of heavy nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Arruda Neto, J.D.T.; Likhachev, V.P.; Goncalves, M.

    2002-10-01

    We use the recently developed MCMC/MCEF (Multi Collisional Monte Carlo plus Monte Carlo for Evaporation-Fission calculations) model to calculate the photo fissility and the photofission cross section at intermediate energies for the 243 Am and for 209 Bi, and compare them to results obtained for other actinides and to available experimental data. As expected, the results for 243 Am are close to those for 237 Np. The fissility for pre actinide nuclei is nearly one order of magnitude lower than that for the actinides. Both fissility and photofission cross section for 209 Bi are in good agreement with the experimental data. (author)

  12. Direct photons in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baeuchle, Bjoern

    2010-12-13

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E{sub lab}=35 AGeV and 158 AGeV, (s{sub NN}){sup 1/2}=62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  13. Direct photons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Baeuchle, Bjoern

    2010-01-01

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E lab =35 AGeV and 158 AGeV, (s NN ) 1/2 =62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  14. French contribution to the super-heavy nuclei discovery

    International Nuclear Information System (INIS)

    Nifenecker, H.; Asghar, M.

    1999-01-01

    The research on super-heavy nuclei is a science in full operation for which the Berkeley physicist give proof of perseverance. The author wonders about the french absence in this domain. He recalls the strategical decisions concerning the research programs of the period and gives outline of the future with the interest of the ECR (Electronic Cyclotron Resonance) sources. (A.L.B.)

  15. Recent studies of heavy nuclei far from stability at JYFL

    Energy Technology Data Exchange (ETDEWEB)

    Julin, R.; Enqvist, T.; Helariutta, K. [Univ. of Jyvaeskylae (Finland)] [and others

    1996-12-31

    The new K=130 Cyclotron + ECR facility of the Physics Department of the University of Jyvaskyla (JYFL) provides stable beams from protons up to krypton ions for nuclear structure studies. Two instruments designed especially for in-beam spectroscopic studies of heavy nuclei at JYFL are introduced in this contribution. Some results from recent measurements with them are reported.

  16. Interpretation of the mechanism of spontaneous fission of heavy nuclei in the framework of dinuclear system conception

    International Nuclear Information System (INIS)

    Volkov, V.V.; Cherepanov, E.A.; Kalandarov, Sh.A.

    2016-01-01

    A new approach to the interpretation of the process of spontaneous fission of heavy nuclei is suggested. It is based on nuclear physics data which are obtained in heavy ion collisions. The process of spontaneous fission consists of three sequential stages: clusterization of the valent nucleons of a heavy nucleus into a light nucleus-cluster, which leads to the formation of a dinuclear system; evolution of the dinuclear system which proceeds by nucleon transfer from the heavy to light nucleus; and decay of the dinuclear system from the equilibrium configuration into two fragments. [ru

  17. Heavy Flavor Production in Heavy Ion Collisions at CMS

    CERN Document Server

    Sun, Jian

    2016-01-01

    Studies of Heavy flavor production are of great interest in heavy ion collisions. In the produced medium, the binding potential between a quark and antiquark in quarkonium is screened by surrounding light quarks and antiquarks. Thus, the various quarkonium states are expected to be melt at different temperatures depending on their binding energies, which allows us to characterize the QCD phase transition. In addition, open heavy flavor production are relevant for flavor-dependence of the in-medium parton energy loss. In QCD, gluons are expected to lose more energy compared to quarks when passing through the QGP due to the larger color charge. Compared to light quarks, heavy quarks are expected to lose less radiative energy because gluon radiation is suppressed at angles smaller than the ratio of the quark mass to its energy. This dead cone effect (and its disappearance at high transverse momentum) can be studied using open heavy flavor mesons and heavy flavor tagged jets. With CMS detector, quarkonia, open he...

  18. One- and two-body dissipation in peripheral heavy ion collisions

    International Nuclear Information System (INIS)

    Bartel, J.; Feldmeier, H.

    1980-01-01

    For peripheral collisions of heavy ions we solve the man-body Schroedinger equation in second order time-dependent perturbation theory. The two nuclei interact via a two-body interaction of finite range. With controllable approximations we get to a sensible comparison between 1p-1h excitations caused by the coherent Hartree part and direct 2p-2h excitations both created by the same two-body interaction. The results of the calculation show that for peripheral collisions almost all excitation energy originates from one-body dissipation. Furthermore we encounter large virtual excitations during the collision indicating a non Markovian process. (orig.)

  19. The resonance neutron fission on heavy nuclei

    International Nuclear Information System (INIS)

    Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.

    2001-01-01

    A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru

  20. Fermionic molecular dynamics for ground states and collisions of nuclei

    International Nuclear Information System (INIS)

    Feldmeier, H.; Bieler, K.; Schnack, J.

    1994-08-01

    The antisymmetric many-body trial state which describes a system of interacting fermions is parametrized in terms of localized wave packets. The equations of motion are derived from the time-dependent quantum variational principle. The resulting Fermionic Molecular Dynamics (FMD) equations include a wide range of semi-quantal to classical physics extending from deformed Hartree-Fock theory to Newtonian molecular dynamics. Conservation laws are discussed in connection with the choice of the trial state. The model is applied to heavy-ion collisions with which its basic features are illustrated. The results show a great variety of phenomena including deeply inelastic collisions, fusion, incomplete fusion, fragmentation, neck emission, promptly emitted nucleons and evaporation. (orig.)

  1. Identifying Multiquark Hadrons from Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Jido, Daisuke; Ohnishi, Akira; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-01-01

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  2. Viscous photons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  3. Neutral heavy lepton production in e+-e- collisions

    International Nuclear Information System (INIS)

    Ragiadakos, C.

    1977-01-01

    The cross-sections of the weak production of different kinds of neutral heavy leptons in e + -e - collisions are calculated and their signatures are studied. A possible electromagnetic production of neutral heavy leptons is also considered

  4. GALS – setup for production and study of heavy neutron rich nuclei

    Directory of Open Access Journals (Sweden)

    Zemlyanoy Sergey

    2015-01-01

    Full Text Available The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below 208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion–fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  5. GALS – setup for production and study of heavy neutron rich nuclei

    CERN Document Server

    Zemlyanoy, Sergey; Kozulin, Eduard; Kudryavtsev, Yury; Fedosseev, Valentin; Bark, Robert; Janas, Zenon; Othman, Hosam

    2015-01-01

    The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below ^208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of ^136Xe with ^208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  6. Source spectral index of heavy cosmic ray nuclei

    International Nuclear Information System (INIS)

    Engelmann, J.J.; Ferrando, P.; Koch-Miramond, L.; Masse, P.; Soutoul, A.; Webber, W.R.

    1985-08-01

    From the energy spectra of the heavy nuclei observed by the French-Danish experiment on HEAO-3, we have derived the source spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the framework of an energy dependent leaky box model (Engelmann et al. 1985). In the present paper we want to derive more accurate spectral indices by using better values of the escape length based on the latest cross section measurements (Webber 1984, Soutoul et al. this conference). Our aim is also to extend the analysis to lower energies down to 0.4 GeV/n (kinetic energy observed near earth), using data obtained by other groups. The only nuclei for which we have a good data base in a broad range of energies are O and Fe, so the present study is restricted to these two elements

  7. Heavy quarkonium production: Nontrivial transition from pA to AA collisions

    International Nuclear Information System (INIS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan; Pirner, H. J.

    2011-01-01

    Two novel QCD effects, double-color filtering and mutual boosting of the saturation scales in colliding nuclei, affect the transparency of the nuclei for quark dipoles in comparison with proton-nucleus collisions. The former effect increases the survival probability of the dipoles, since color filtering in one nucleus makes the other one more transparent. The second effect acts in the opposite direction and is stronger; it makes the colliding nuclei more opaque than in the case of pA collisions. As a result of parton saturation in nuclei the effective scale is shifted upward, which leads to an increase of the gluon density at small x. This in turn leads to a stronger transverse momentum broadening in AA compared with pA collisions, i.e., to an additional growth of the saturation momentum. Such a mutual boosting leads to a system of reciprocity equations, which result in a saturation scale, a few times higher in AA than in pA collisions at the energies of the large hadron collider (LHC). Since the dipole cross section is proportional to the saturation momentum squared, the nuclei become much more opaque for dipoles in AA than in pA collisions. For the same reason gluon shadowing turns out to be boosted to a larger magnitude compared with the product of the gluon shadowing factors in each of the colliding nuclei. All these effects make it more difficult to establish a baseline for anomalous J/Ψ suppression in heavy ion collisions at high energies.

  8. Problem of α-clustering levels in heavy nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, V.G.; Kadmenskij, S.G.; Kurgalin, S.D.; Furman, V.I.

    1982-01-01

    From the optical model analysis of elastic scattering and absorption cross sections of α-particles including the (n,α) reaction induced by resonance neutrons it may be concluded that the conception of black nucleus is valid for α-particles. It was shown that the magnitudes of α-particle surface spectroscopic factors did not exceed 10sup(-2) for all the known α-transitions both in spherical and deformed heavy nuclei accounting for the ambiguities of the optical model potential. The possibilities of extracting the α-particles form factors of low-lying nuclear states from α-transfer reaction data are considered. From all the data considered it is concluded that there is no evidence for the revealing of α-clustering levels in heavy nuclei. (author)

  9. Atomic nuclei decay modes by spontaneous emission of heavy ions

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Ivascu, M.; Sandulescu, A.

    1984-01-01

    The great majority of the known nuclei, including the so-called stable nuclides, are in fact metastable with respect to several modes of spontaneous superasymmetric splitting. If the lifetime against these processes is larger than 10 30 s, the phenomenon is not detectable with available experimental techniques, hence one can admit stability from the practical point of view. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relatively to the alpha decay for these natural radioactivities. From a huge amount of systematical calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained for parent nuclei - heavy clusters leading to a magic ( 208 Pb) or almost daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-life n the 10 10 -10 30 s range. The shell structure and pairing effects are clearly manifested in these new decay modes

  10. Classically dynamical behaviour of single particle in heavy nuclei

    International Nuclear Information System (INIS)

    Gu Jianzhong; Zhuo Yizhong; Wu Xizhen

    1998-01-01

    A detailed analysis of the classically dynamical behaviour of a nucleon in heavy nuclei in terms of the TCSM (two-center shell model) is presented. Poincare section is a convenient and reliable criterion to judge the regularity (or chaoticity) of a classical system. The numerical calculations in this work are carried out for a nucleon in 238 U. The Poincare section map and the Poincare surface of section for different conditions are presented

  11. Uncertainties and understanding of experimental and theoretical results regarding reactions forming heavy and superheavy nuclei

    Science.gov (United States)

    Giardina, G.; Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; Fazio, G.

    2018-02-01

    Experimental and theoretical results of the PCN fusion probability of reactants in the entrance channel and the Wsur survival probability against fission at deexcitation of the compound nucleus formed in heavy-ion collisions are discussed. The theoretical results for a set of nuclear reactions leading to formation of compound nuclei (CNs) with the charge number Z = 102- 122 reveal a strong sensitivity of PCN to the characteristics of colliding nuclei in the entrance channel, dynamics of the reaction mechanism, and excitation energy of the system. We discuss the validity of assumptions and procedures for analysis of experimental data, and also the limits of validity of theoretical results obtained by the use of phenomenological models. The comparison of results obtained in many investigated reactions reveals serious limits of validity of the data analysis and calculation procedures.

  12. A classical statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.; Teichert, J.

    1980-01-01

    The use of the computer code TRAJEC which represents the numerical realization of a classical statistical model for heavy ion collisions is described. The code calculates the results of a classical friction model as well as various multi-differential cross sections for heavy ion collisions. INPUT and OUTPUT information of the code are described. Two examples of data sets are given [ru

  13. Quarkonia at finite temperature in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Datta, Saumen

    2015-01-01

    The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a brief discussion of the experimental results and outlook. (author)

  14. Quarkonia at finite temperature in relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... The behaviour of quarkonia in relativistic heavy-ion collisions is reviewed. After a detailed discussion of the current theoretical understanding of quarkonia in a static equilibriated plasma, we discuss quarkonia yield from the fireball created in ultrarelativistic heavy-ion collision experiments. We end with a ...

  15. Studies of relativistic heavy ion collisions at the AGS (Experiment 814)

    International Nuclear Information System (INIS)

    Cleland, W.E.

    1992-01-01

    During the past year, the Pittsburgh group has continued to work with the E814 collaboration in carrying out AGS Experiment 814. We present here a brief history of the experiment, followed by a detailed report of the analysis work being pursued at the University of Pittsburgh. As originally proposed, Experiment 814 is a study of both extreme peripheral collisions and the transition from peripheral to central collisions in relativistic heavy ion-nucleus interactions. We are studying relativistic heavy ion interactions with nuclei in two types of collisions: (a) extreme peripheral collisions of large impact parameter, and (b) central collisions with high transverse energy in the final state. The experiment emphasizes the measurement of overall event characteristics, in particular energy flow measurements and a precise measurement of the particle charge, momentum, and energy in the forward direction. This permits measurements of cross sections and rapidity densities as a function of the transverse energy for leading baryons emitted into regions of larger rapidity. Combining the energy flow measurements as a function of rapidity with the spectra of leading baryons provides information on the impact parameter dependence of the nuclear stopping of the projectile in relativistic heavy ion collisions. In 1988, the scope of Experiment 814 was enlarged to include a search for strange matter in central collisions, the first results of which have been published, and analysis on a longer run taken in 1990 is still under way

  16. Studies of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Madansky, L.

    1989-01-01

    This report presents the progress in our program of Relativistic Heavy Ion studies. The first phase of experiments on lepton pairs is almost complete and the results from the initial part of this program are presented in copies of three publications. It appears that the origin of lepton pairs is the annihilation of pions. The evidence for this seems to be the shape of the dilepton mass spectrum, the cross-section as a function of energy which seems to scale with pion production, and the general kinematic behavior of the lepton pairs themselves. We present progress on the development of Ring Imaging Cerenkov counters for dilepton observations in general, and a short report on a high resolution method counter proposal that could be adapted to RHIC counters in general. Publication of results on hyperon polarization with incident polarized proton beams is also presented. These results use the phenomenological approach that could be useful in understanding hyperon production in heavy ion collisions. In this connection, a proposal for studying high density nuclear matter with incident antiprotons is presented. Progress on the TPC detectors developed by the BNL group for heavy ion research is reported, along with recent analysis of polarization with incident silicon beams. Finally, the most recent results on subthreshold antiproton production is presented. These latter results are several orders of magnitude more than expected and they point to some kind of coherent hadronic phenomena even at extremely low energies

  17. {gamma}-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Korotkikh, V.L.; Chikin, K.A. [Scobeltsyn Institute of Nuclear Physics, Moscow State University (Russian Federation)

    2002-06-01

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant {gamma}-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions. (orig.)

  18. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    Science.gov (United States)

    Korotkikh, V. L.; Chikin, K. A.

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions.

  19. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    International Nuclear Information System (INIS)

    Korotkikh, V.L.; Chikin, K.A.

    2002-01-01

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions. (orig.)

  20. High baryon density from relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Y.; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States); Schlagel, T.J. [Brookhaven National Lab., Upton, NY (United States)]|[State Univ. of New York, Stony Brook, NY (United States)

    1993-10-01

    A quantitative model, based on hadronic physics, is developed and applied to heavy ion collisions at BNL-AGS energies. This model is in excellent agreement with observed particle spectra in heavy ion collisions using Si beams, where baryon densities of three and four times the normal nuclear matter density ({rho}{sub 0}) are reached. For Au on Au collisions, the authors predict the formation of matter at very high densities (up to 10 {rho}{sub 0}).

  1. Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shanshan [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Qin, Guang-You [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, 430079 (China); Bass, Steffen A. [Department of Physics, Duke University, Durham, NC 27708 (United States)

    2016-12-15

    We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.

  2. Orbiting in collisions between light heavy ions (A/sub T/ + A/sub P/ < 50)

    International Nuclear Information System (INIS)

    Shapira, D.; Erb, K.A.; Ford, J.L.C. Jr.

    1983-01-01

    Evidence is presented for the formation of a long-lived rotating dinuclear complex in the early stages of the collision between light heavy nuclei. A study of the variation of the total kinetic energy of the outgoing fragments with bombarding energy allows a determination of the average dinuclear separation prior to scission. At higher bombarding energies the study reveals that the system of the two colliding nuclei has reached a critical value of angular momentum beyond which it can not be trapped into an orbiting configuration

  3. Central collisions of heavy ion physics

    International Nuclear Information System (INIS)

    Fung, S.Y.

    1985-09-01

    The research program concentrates on correlation studies in central collisions. The investigation includes: multi-pion production, total event structure, application of the Vlasov-Uehling-Uhlenbeck model (VUU) to the data and energy dependence of thermalization and nuclear stopping power. The initial analysis on the Uranium-Uranium exposure at 960 MeV/nucleon is completed. In place of the conventional sphericity analysis, global transverse momentum as a function of rapidity and azimuthal angle is a more appropriate parameter for these data in the total event analysis. This transverse momentum analysis is extended to other projectile/target systems with initial results for Ar on KCl, BaI 2 , Pb, and U on U. In the area of pion production, results for Kr on RbBr at the Darmstadt Heavy Ion Study are reported. Early findings that the source size is related to the emitted pion momentum is confirmed. 17 refs

  4. Pion production in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Norbury, J.W.

    1983-01-01

    A Lorentz-invariant differential cross section for pion production in peripheral, relativistic, heavy ion collisions is calculated for the collisions of an 16 O projectile onto a 12 C target. The pions are produced via excitations of a Δ(3,3) resonant state in the projectile with simultaneous excitation of an M1 giant resonance in the target. A second order amplitude describing resonance formation and decay is derived within the context of second order, time-dependent perturbation theory and a corresponding transition rate is evaluated. This is then applied to the problem of pion production and a differential cross section is calculated using a simple product-of-states model. The whole theory is then re-formulated within a second quantized particle-hole model which describes the basic process of M1 giant resonance formation as well as the formation and decay of the intermediate Δ(3,3) resonance. Subsequently, a new Lorentz-invariant differential cross section is calculated from the particle-hole amplitude. The theoretical cross section is compared with some experimental data and the agreement is found to be satisfactory given the nature of the data and the assumptions of the theory

  5. Photon strength in spherical and deformed heavy nuclei

    International Nuclear Information System (INIS)

    Grosse, E.; Junghans, A.; Birgersson, E.; Massarczyk, R.; Schramm, G.; Becvar, F.

    2010-01-01

    Information on the photon strength in heavy nuclei with mass A>150 will be given and compared to respective data. The photon strength function is a very important ingredient for statistical model calculations - especially when these are used to describe neutron capture. Several schemes for a transmutation of radioactive waste favor nuclear reactions with fast neutrons and these also influence the performance of various reactor types proposed to deliver nuclear energy together with only small quantities of such waste. Reactions with fast neutrons are far less studied as compared to those induced by thermal neutrons. As they are not easily accessible experimentally, reference is often made to calculations using the statistical model. Photon emission probabilities are needed as input to such calculations aiming for predictions on fission to capture ratios. From the favorable comparison of our parameterization to the experimental data for photon induced as well radiative capture processes in nuclei with various shapes and level densities we conclude what follows. First, the giant dipole resonance has very much the same properties in all heavy nuclei when their deformation is properly accounted for and its spreading width varies only smoothly with the resonance energies E k and not with the photon energy E γ . The radiative neutron capture results presented confirm strength data found in the literature. We also learn that our parameterization is at least a good approximation for photon energies below 4 MeV that dominate this process

  6. Gamma-ray spectroscopy of the neutron-rich Ni region through heavy-ion deep-inelastic collisions

    International Nuclear Information System (INIS)

    Ishii, T.; Asai, M.; Matsuda, M.; Ichikawa, S.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.

    2002-01-01

    Nuclei in the neutron-rich Ni region have been studied by γ-ray spectroscopy. Gamma-rays emitted from isomers, with T 1/2 >1 ns, produced in heavy-ion deep-inelastic collisions were measured with an isomer-scope. The nuclear structure of the doubly magic 68 Ni and its neighbor 69,71 Cu is discussed on the basis of the shell model. Future experiments for more neutron-rich Ni nuclei are also viewed. (orig.)

  7. Gamma-ray spectroscopy of the neutron-rich Ni region through heavy-ion deep-inelastic collisions

    Science.gov (United States)

    Ishii, T.; Asai, M.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.; Matsuda, M.; Ichikawa, S.

    Nuclei in the neutron-rich Ni region have been studied by γ-ray spectroscopy. Gamma-rays emitted from isomers, with T1/2 > 1 ns, produced in heavy-ion deep-inelastic collisions were measured with an isomer-scope. The nuclear structure of the doubly magic 68Ni and its neighbor 69,71Cu is discussed on the basis of the shell model. Future experiments for more neutron-rich Ni nuclei are also viewed.

  8. Coherent vector-meson photoproduction with nuclear breakup in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Baltz, Anthony J.; Klein, Spencer R.; Nystrand, Joakim

    2002-01-01

    Relativistic heavy ions are copious sources of virtual photons. The large photon flux gives rise to a substantial photonuclear interaction probability at impact parameters where no hadronic interactions can occur. Multiple photonuclear interactions in a single collision are possible. In this Letter, we use mutual Coulomb excitation of both nuclei as a tag for moderate-impact-parameter collisions. We calculate the cross section for coherent vector-meson production accompanied by mutual excitation and show that the median impact parameter is much smaller than for untagged production. The vector-meson rapidity and transverse-momentum distribution are very different from untagged exclusive vector-meson production

  9. Overview of quarkonium production in heavy-ion collisions at LHC

    CERN Document Server

    AUTHOR|(CDS)2071615

    2015-01-01

    Quarkonium has been regarded as one of the golden probes to identify the phase transition from confined hadronic matter to the deconfined quark-gluon plasma (QGP) in heavy-ion collisions. Recent data on the yields and momentum distributions of $J/\\psi$ and $\\Upsilon$ families in pp, pPb, and PbPb collisions at the Large Hadron Collider (LHC) are reviewed. The possible implications related to the propagation of quarkonia in the deconfined hot, dense matter and the modified parton distribution function (PDF) in cold nuclei are also discussed.

  10. Investigations about the effects of magnetic fields on QGP in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Inghirami, Gabriele; Bleicher, Marcus [FIAS, Frankfurt am Main (Germany); Goethe Universitaet, Frankfurt am Main (Germany); Del Zanna, Luca [Universita degli Studi di Firenze, Firenze (Italy); Osservatorio Astrofisico di Arcetri - INAF, Firenze (Italy); INFN, Sezione di Firenze (Italy); Haddadi, Mohsen [Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita degli Studi di Firenze, Firenze (Italy); INFN, Sezione di Firenze (Italy); Beraudo, Andrea [INFN, Sezione di Torino (Italy); Rolando, Valentina [Universita degli Studi di Ferrara, Ferrara (Italy); INFN, Sezione di Ferrara (Italy)

    2016-07-01

    Numerical hydrodynamic simulations of heavy ion collisions are constantly refined through the addition of effects that may significantly improve the matching with experimental data, like viscosity or fluctuating initial conditions, but, so far, electromagnetic interactions have been almost completely neglected. However, recent lattice QCD computations and classical electrodynamics estimates both suggest that the magnetic fields produced immediately after the collisions between nuclei may live long enough and with a strength sufficient to produce measurable effects. We would like to present the results of some preliminary investigations about the influence on the properties of the medium due the presence of a strong magnetic field.

  11. Heavy ions as probes of nuclei far from stability

    International Nuclear Information System (INIS)

    Moltz, D.M.; Nitschke, J.M.; Wilmarth, P.A.; Toth, K.S.

    1989-01-01

    Nuclei located far from stability provide us with an opportunity for studying nuclear matter existing under unusual conditions. In these regions of instability, radioactive decay becomes the predominant technique by which one can obtain structure information. We have been involved in the investigation of nuclear properties of nuclei close to the proton drip line. In our explorations we have utilized heavy-ion fusion, followed by particle evaporation, to produce the extremely neutron-deficient nuclei of interest. In our studies, single-particle states near the 82-neutron shell, populated in the β decay of short-lived nuclides, have been examined and their excitation energies determined. Numerous new isotopes, isomers, and β-delayed-proton and α-particle emitters have been discovered. This contribution will discuss our particle-decay investigations. These decay modes provide us with a convenient means of discovering new isotopes whose identification opens the way for further, more extensive explorations. Also, particle-decay energies in many instances can be used to determine mass differences between parent and daughter ground states. Such measurements are therefore used to test mass formulae and to obtain estimates of masses for proton rich nuclei. 19 refs., 13 figs

  12. A simple geometrical approach to particle production in collisions with nuclei

    International Nuclear Information System (INIS)

    Dias de Deus, J.

    1975-11-01

    It is argued that hadron collisions with nuclei are similar to hadron-hadron collisions, having similar properties for the impact parameter distributions and the leading particle spectra. The relevant existing high energy data, including the universality of multiplicity distributions and the possibility of geometrical scaling in reactions with nuclei, are easily understood in the framework of geometrical models by extending to p-nucleus collisions what was learnt about impact parameter and leading particles in p-p collisions. The question of forward-backward correlations and photo and electroproduction are briefly discussed. (author)

  13. Neutron skin studies of medium and heavy nuclei

    Directory of Open Access Journals (Sweden)

    Thiel M.

    2014-06-01

    Full Text Available The recent PREX experiment at JLab has demonstrated the sensitivity of parity violating electron scattering to the neutron density, meanwhile outlining its major experimental challenges. On the other side, intermediate energy photons are an ideal probe for studying the properties of strongly interacting matter from the nuclear scale down to the sub-nuclear components of the nucleus. Among others coherent pion photoproduction can provide information on the existence and nature of neutron skins in nuclei. The simultaneous combination of different techniques allows a systematic determination across the periodic table thus benchmarking modern calculation. Recently a systematic investigation of the latter method has been exploited at MAMI (Mainz. At MESA the same setup as in the measurement of the weak mixing angle can be used to determine the parity-violating asymmetry for polarized electrons scattered on heavy nuclei with a 1% resolution. Status and prospects of the projects are presented.

  14. Heavy quarks and nuclei, or the charm & beauty of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Kharzeev, D.

    1997-09-22

    This report contains viewgraphs on the following: why heavy quarks? Heavy quarkonium in QCD vacuum and in matter; Phenomenology of quarkonium production; Induced decay of QCD vacuum in heavy ion collisions? Implications for quarkonium production; and Outlook.

  15. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  16. Manifestation of the structure of heavy nuclei in their alpha decays

    Energy Technology Data Exchange (ETDEWEB)

    Adamian, G. G., E-mail: adamian@theor.jinr.ru; Antonenko, N. V.; Bezbakh, A. N.; Malov, L. A. [Joint Institute for Nuclear Research (Russian Federation)

    2016-11-15

    Low-lying one- and two-quasiparticle states of heavy nuclei are predicted. Alpha-decay chains, including those that proceed through isomeric states, are examined on the basis of the predicted properties of superheavy nuclei.

  17. Formation and disintegration of high-density nuclear matter in heavy-ion collisions

    International Nuclear Information System (INIS)

    Kitazoe, Yasuhiro; Matsuoka, Kazuo; Sano, Mitsuo

    1976-01-01

    The formation of high-density nuclear matter which may be expected to be attained in high-energy heavy-ion collisions and the subsequent disintegration of dense matter are investigated by means of the hydrodynamics. Head-on collisions of identical nuclei are considered in the nonrelativistic approximation. The compressed density cannot exceed 4 times of the normal one so long as the freedom of only nucleons is considered, and can become higher than 4 times when other freedoms such as the productions of mesons and also nucleon isobars are additionally taken into account. The angular distributions for ejected particles predominate both forwards and backwards at low collision energies, corresponding to the formation of nuclear density less than 2 times of the normal density and become isotropic at the point of 2 times of the normal one. As the collision energy increases further, lateral ejection is intensified gradually. (auth.)

  18. Evolution of the nuclide distribution and heat partition along the dissipation path in heavy ion collisions

    International Nuclear Information System (INIS)

    Planeta, R.

    1990-04-01

    We discuss several problems of nuclear physics with heavy ions. Special attention is paid to close collisions, where impact parameters are considerably smaller than the corresponding grazing values. Such collisions can lead to a formation of a compound nucleus (fusion) or to two body exit channels with a sizable loss of kinetic energy and large transfer of mass and charge between interacting nuclei (damped collisions). A short survey of experimental works done with my participation and devoted to fusion reactions is presented. This is followed by presentation of new experimental results in the field of damped collisions. The data demonstrate that the N/Z equilibration and temperature equilibration are not rapid processes. A distinct correlation between the net nucleon transfer and the heating of the acceptor nucleus is observed. Experimental data are compared with the transport model. Disagreement between model and experiment is discussed. 113 refs. (author)

  19. Medium dependence of vector meson properties in heavy ion collisions

    International Nuclear Information System (INIS)

    Faessler, Amand; Fuchs, Christian

    2007-01-01

    Heavy ion collisions produce dense and hot nuclear matter. Dileptons give information about this hot and dense phase. The dileptons are produced by vector mesons. Theoretical calculation of dilepton production in the DLS (Berkeley), the HADES (GSI) experiments and the CERES, HELIOS and NA60 data from CERN give information about possible modifications of the vector meson properties in hot and dense nuclear matter. Here the description in relativistic quantum molecular dynamics of heavy ion collisions and dilepton production are presented and compared with data. (authors) Key words: heavy ion collisions; dense and hot nuclear matter; dileptons; medium dependence

  20. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.; Huizenga, J.R.

    1991-08-01

    The development of the ''cold-fusion'' episode is reviewed. Ongoing studies of compound-nucleus formation and decay via the neutron multiplicity distribution confirm the validity of conventional statistical theory. The excitation energy partition in near-barrier damped 58 Ni + 208 Pb collisions is found to be largely independent of the direction of net mass transfer, supporting a diffusion-like nucleon-exchange mechanism. Exclusive experiments on the heavy reaction systems 197 Au + 208 Pb and 209 Bi + 136 Xe in the Fermi-energy domain have revealed important new insights into the reaction mechanism, which is found to be dominated by damped, binary processes. The effectiveness of the neutron multiplicity as an impact-parameter filter is demonstrated. It is shown that very-heavy-ion reactions lead to transient nuclear systems with temperatures in excess of τ = 6 MeV and transfer of large, aligned spins to reaction fragments. The first measurements of neutrons in coincidence with kinematically identified reaction fragments provide evidence for the binary, sequential character of dissipative collisions in the Fermi-energy domain. Also for the first time, a full event characterization was achieved for nuclear reactions in terms of neutrons and charged particles. Technical information on this experiment is provided. First results yield strong evidence for dominantly binary primary reaction dynamics of even highly dissipative 209 Bi + (28MeV/u) 136 Xe collisions, associated with several intermediate-mass fragments

  1. Decay of Hot Nuclei at Low Spins Produced by Antiproton-Annihilation in Heavy Nuclei

    CERN Multimedia

    2002-01-01

    % PS208 \\\\ \\\\ The objective of the experiment is to study (i) the thermal excitation energy distribution of antiproton-induced reactions in heavy nuclei and (ii) the decay properties of hot nuclei at low spins via evaporation, multifragmentation and fission as a function of excitation energy. The experimental set-up consists of 4-$\\pi$ detectors: the Berlin Neutron Ball~(BNB) which is a spherical shell of gadolinium-loaded scintillator liquid with an inner and outer diameter of 40 and 160~cm, respectively. This detector counts the number of evaporated neutrons in each reaction. Inside BNB there is a 4-$\\pi$ silicon ball~(BSIB) with a diameter of 20~cm consisting of 162 detectors which measure energy and multiplicity of all emitted charged nuclear particles. The particles are identified via time of flight, energy and pulse shape correlations.

  2. Hard and soft physics of relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Tywoniuk, Konrad

    2008-01-01

    Already over thirty years ago [ 174] it was suggested that it would be interesting to explore new phenomena 'by distributing high energy or high nucleon density over a relatively large volume:' It was soon realized that colliding heavy ions at high energies would provide such conditions. The conditions at RHIC and LHC correspond to the early universe 1 μ after the Big Bang. But does the mini Big Bang created in the laboratory really resemble the cosmological 'bigger brother'? Are the timescales long enough for the particles to 'dissolve' into their smaller constituents? What are the intermediate stages, before the 'dissolving' and also after, when particles are formed? At which energy (or energy density) does this 'melting' happen? More fundamentally, what is the difference between proton-proton and nucleus-nucleus collisions at very high energies? At the LHC one expects that the plasma phase will live much longer than at RHIC. What will be the signatures of this super-QGP? One should be able to answer all of this questions, but, unfortunately, at the present moment we are not. It is therefore very important to understand what the relevant degrees of freedom are in theses extreme situations. Investigation of deep inelastic scattering at very high energies and, in particular, low-x shadowing effects on nuclei can give important information on properties of dense quark-gluon systems. By comparing data at different energies on both proton-nucleus and nucleus-nucleus collisions and interpret them in a comprehensive framework, we hope to learn more about the dynamics leading to the features we see in the data. The thesis consists of two parts. In the first part we will give a short introduction to topics relevant to high-energy collisions while the second part contains the papers written during the thesis work. In Chapter 2 we give a brief account of the main experimental results from heavy-ion experiments. The choice of topics and interpretation of the results is

  3. Modeling and Analysis of Ultrarelativistic Heavy Ion Collisions

    Science.gov (United States)

    McCormack, William; Pratt, Scott

    2014-09-01

    High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition

  4. Heavy-ion interactions of deformed nuclei. Progress report and final report, January 1, 1985-December 31, 1985

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1985-09-01

    This Progress Report describes the main topics that were investigated during the reporting period: (1) a new microscopic approach (many-body theory with two-center shell model basis) to the calculation of heavy-ion interaction potentials, primarily for heavy systems; (2) dynamic alignment of deformed nuclei during heavy-ion collisions; (3) the role of shell effects, static deformation and dynamic alignment in heavy-ion fusion reactions; (4) giant nuclear quasimolecules and the positron problem. The proposed research has direct relevance to experimental programs supported by DOE, e.g. the Holifield Heavy-Ion Research Facility (HHIRF) at Oak Ridge, the ATLAS accelerator at Argonne National Laboratory, the Double MP Tandem at Brookhaven and some of the smaller University-based accelerators. A discussion of a review article on Coulomb fission is presented. 36 refs., 7 figs

  5. Simultaneous measurements of helium and heavy nuclei fluxes in cosmic rays over Fort Churchill

    International Nuclear Information System (INIS)

    Bhatia, V.S.; Paruthi, S.; Kainth, G.S.

    1977-01-01

    We have made simultaneous measurements of fluxes of He an heavy nuclei (Z< or =10) in primary cosmic rays at three levels of solar activity. These nuclei have been studied in three nuclear emulsion stacks exposed over Fort Churchill, Canada, in 1963, 1964, and 1967. We had earlier reported our results on the heavy nuclei at the Hobart conference (Bhatia et al., 1971). Experimental results based on 1514 He nuclei tracks that were measured in these three stacks are presented in this paper. The experimentally obtained He and heavy nuclei differential energy spectra have been compared with the theoretically calculated near-earth spectra

  6. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  7. Classically dynamical behaviour of a nucleon in heavy nuclei

    International Nuclear Information System (INIS)

    Gu Jianzhong; Zhao Enguang; Zong Hongshi; Zhuo Yizhong; Wu Xizhen

    1998-01-01

    Within the framework of the two-center shell model the classically dynamical behaviour of a nucleon in heavy nuclei is investigated systematically with the change of nuclear shape parameters for the first time. It is found that as long as the nucleonic energy 0is appreciably higher than the height of the potential barrier there is a good quantum-classical correspondence of nucleonic regular (chaotic) motion. Thus, Bohigas, Giannoni and Schmit conjecture is confirmed once again. We find that the difference between the potential barrier for prolate nuclei and that for oblate ones is reponsible for the energy-dependence difference between the nucleonic chaotic dynamics for prolate nuclei and that for oblate ones. In addition, it is suggested that nuclear dissipation is shape-dependent, and strong nuclear dissipation can be expected for medium or large separations in the presence of a considerable neck deformation built on a pronounced octupole-like deformation, which provides us a dynamical understanding of nuclear shape dependence of nuclear dissipation. (orig.)

  8. Some remarks on the statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Koch, V.

    2003-01-01

    This contribution is an attempt to assess what can be learned from the remarkable success of this statistical model in describing ratios of particle abundances in ultra-relativistic heavy ion collisions

  9. Enhancement of strangeness in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Grassi, F.; Heiselberg, H.

    1990-01-01

    The theoretical and experimental conditions to obtain strange particle production in heavy ion collisions at high energies are discussed, by analysis of results obtained from Super Proton Synchrotron - CERN and Alternating Gradient Synchrotron in United States. (M.C.K.)

  10. Ultra-peripheral collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Klein, S.; STAR Collaboration

    2001-01-01

    We report the first observation of exclusive ρ production in ultra-peripheral collisions at RHIC. The ρ are produced electromagnetically at large impact parameters where no hadronic interactions occur. The produced ρ have a small perpendicular momentum, consistent with production that is coherent on both the photon emitting and scattering nuclei. We observe both exclusive ρ production, and ρ production accompanied by electromagnetic dissociation of both nuclei. We discuss models of vector meson production and the correlation with nuclear breakup. We also observe e + e - pair production in these ultra-peripheral collisions

  11. Universal behavior of charged particle production in heavy ion collisions

    Science.gov (United States)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  12. About dynamic model of limiting fragmentation of heavy nuclei

    International Nuclear Information System (INIS)

    Kuchin, I.A.

    2001-01-01

    Full text: As is known, during last years defined progress in understanding of static aspect of a dynamic structure organization of massive nuclei was reached. The offered model of a 'crystalline' structure of the nucleus generalizes drop, shell and cluster models in a natural way. Now increased interest induces the phenomenon of limiting fragmentation of heavy nuclei. There is a hope, that clearing up the general regularities of a soft disintegration of the massive nuclei on nucleons, component it, in a broad range of high energies can give a valuable information about dynamics of origin of nuclear structures and nature of their qualitative difference from a quark system structure, i.e. from nucleons. The key for understanding the indicated phenomenon can be it's study in connection with other aspects of disintegration of the nuclei - Coulomb and diffraction dissociation, fission etc. The sequential analysis of all these a processes from a single point of view is possible only within the framework of results and methods of the dynamic system theory. The purpose of the present research is clearing up a possibility to understand the nature of limiting fragmentation as a consequence of development of dynamic instability in a system of the nuclei as a result of ions interaction at high energy. In the analysis we based on data of the phenomenological analysis of heavy ion interactions at ultra-relativistic energies obtained by many authors for a number of years. As a result we came to a conclusion about general stochastic nature of an investigated phenomenon. In it development the fragmentation passes three different stages. On the first there is a process of preparation of chaos at a quantum level in an outcome of a Coulomb dissociation of the approaching nuclei and isotopic recharge of their nucleons, carrying a random character. A dominant here - viscous dissociation of nuclei under an operation of Coulomb forces. (A two body initial state). Then the multiparticle

  13. Quarkonium production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Arnaldi, R.

    2014-01-01

    The production of quarkonium states (cc-bar or bb-bar bound states) plays a crucial role among the probes to investigate the formation of the plasma of quarks and gluons (QGP) in heavy-ion collisions. A review of the charmonium and bottomonium production, mainly focussing on the latest results from the LHC experiments, is presented. The comparison of several quarkonium states and the different but complementary, kinematic regions now accessible by the LHC experiments, allows us to get further insight on how the hot created medium is affecting the various resonances. Results have shown that, at LHC energies, there are 2 competing processes, the suppression in the deconfined medium and the (re)combination of q and q-bar states, which have a different role depending on the quarkonium states and on the kinematic region under study. At the same time, other probes, as higher excited states (Ψ(2S), Υ(3S)...), or observables as the J/Ψ flow, are still affected by the lack of statistics which prevents us from drawing firm conclusions on their behaviour

  14. Experimental study of synthesis of heavy nuclei at JAERI

    International Nuclear Information System (INIS)

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Satou, K.

    2001-01-01

    Evaporation residue (ER) cross sections for 82 Se+ nat Ce and 76 Ge+ 150 Nd were measured in the vicinity of the Coulomb barrier, and the fusion probability was obtained with the aid of calculated survival probability. The former system represents fusion of two spherical nuclei, the latter fusion involving the pro-lately deformed target 150 Nd. The collision of 76 Ge with the side of 150 Nd is more compact in configuration at touching. The system 82 Se+ nat Ce showed fusion hindrance in form of extra-extra-push energy of 27 ± 5 MeV, whereas the system 76 Ge+ 150 Nd does not show fusion hindrance at and above the Coulomb barrier energy, suggesting that the reaction starting from the compact touching point results in a higher fusion probability. (author)

  15. Mechanisms for pion production in heavy ion collisions

    International Nuclear Information System (INIS)

    Pfeiffer, M.

    1991-01-01

    In the following contribution some aspects concerning pion production in heavy ion collisions will be discussed. After a general introduction the properties of pions and the Δ-resonance will be briefly mentioned. In the following section some points refering to the pion production in a relativistic heavy ion collision will be discussed. In addition, the basic ideas of the applied models will be shown. In the last part results from existing experiments and possible interpretations will be presented. (orig.)

  16. Discovery of hydrodynamic behavior in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Hamagaki, Hideki

    2010-01-01

    The objective of high energy heavy ion collision experiments is creating high temperature and high density states to investigate hadron matter properties in such extreme conditions. Since the start of heavy ion collision experiments with BEVALAC, knowledge of the space-time evolution of collision has become indispensable for understanding the hadronic matter properties. This problem is reviewed here from the hydrodynamics view point. Although its importance has been generally recognized since the time of BEVALAC, the hydrodynamic description has not been successful because the hydrodynamic model assuming non-viscous or small fluid had not been considered to be enough to properly describe the space-time evolution of hadron-hadron collisions until the RHIC experiments. Items of the following titles are picked up and reviewed here: Development of heavy ion accelerations; Space-time evolution of hadron collision process and hydrodynamic model; Chemical freezing and kinematical freezing, including transverse momentum spectra at proton-proton collisions and particle spectra in heavy ion collisions; Elliptical azimuthal angle anisotropy; Discovery of hydrodynamic flow at BEVALAC; Problems of incident beam dependence of v2; Elliptic azimuthal angle anisotropy at RHIC; What is it that carries the elliptic anisotropy? Discussion of attainment of thermodynamical equilibrium state at RHIC; and finally investigations of fluid properties other than azimuthal anisotropy, such as, Fluid properties probed by heavy quarks and Observing QCD fluid responses. (S. Funahashi)

  17. EM-induced processes in heavy ion collisions with the ATLAS detector at the LHC

    CERN Document Server

    Steinberg, Peter; The ATLAS collaboration

    2018-01-01

    Electromagnetic processes provide new tools for studying the partonic structure of nuclei, and possibly for directly probing the quark gluon plasma. Ultra-peripheral heavy ion collisions occur when the nuclei have large impact parameter and interact through photon-induced reactions. These include processes in which an energetic photon emitted by one nucleus resolves the partonic structure of the other and stimulates jet production. Much like deep inelastic scattering, such processes provide a clean probe of the nuclear parton distributions. Jet photo-production represents the most direct opportunity to study nuclear parton distributions until a future electron-ion collider is constructed. This talk presents measurements of ultra-peripheral jet photo-production in Pb+Pb collisions with the ATLAS detector at the LHC. It also presents another application of EM-induced processes, where dimuons produced by gamma-gamma processes are observed to show a centrality-dependent broadening in their opening angle, which ca...

  18. Heavy quark pair production in polarized photon-photon collisions

    International Nuclear Information System (INIS)

    Jikia, G.; Tkabladze, A.

    2000-04-01

    We present the cross sections of the heavy quark-antiquark pair production in polarized photon photon collision for the general case of photon polarizations. The numerical results for top-antitop production cross sections together with production asymmetries are obtained for linearly polarized photon-photon collisions, including QCD radiative corrections. (orig.)

  19. Single particle inclusive spectra resulting from the collision of relativistic protons, deuterons, alpha particles, and carbon ions with nuclei

    International Nuclear Information System (INIS)

    Papp, J.

    1975-05-01

    The yields of positive and negative particles resulting from the collision of 1.05 GeV/nucleon and 2.1 GeV/nucleon protons, deuterons, alpha particles, and 1.05 GeV/nucleon carbon nuclei with various targets have been measured. Single particle inclusive cross sections for production of π + , π - , p, d, 3 H, 3 He, and 4 He at 2.5 0 (lab) were obtained. How the results bear on the concepts of limiting fragmentation and scaling, the structure of the alpha particle and deuteron, and the possibility of ''coherent'' production of pions by heavy ions are discussed. (U.S.)

  20. Jet-Underlying Event Separation Method for Heavy Ion Collisions at the Relativistic Heavy Ion Collider

    OpenAIRE

    Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.

    2012-01-01

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a me...

  1. Low mass dilepton production in heavy ion collisions

    International Nuclear Information System (INIS)

    Pisutova, N.; Pisut, J.

    1988-01-01

    The total transverse energy dependence of low mass dilepton (and single low p T photon) production was demonstrated to be a signature of the onset of the evidence of plasma formation in heavy ion collisions. Cross-sections are presented for low mass dilepton production in proton-nucleus and heavy ion collisions which represent lower bounds for the ''collectivization'' and the thermalization of matter produced in the collision. Higher cross-section are a signature of the onset of the formation of thermalized matter. (author). 4 figs., 11 refs

  2. Proceedings of the Budapest workshop on relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Csoergoe, T.; Hegyi, S.; Levai, P.

    1993-04-01

    This volume is the Proceedings of the Budapest workshop on relativistic heavy ion collisions held in Budapest, 10-13 Aug, 1992. The topics include experimental heavy ion physics, Bose-Einstein correlations, intermittency, relativistic transport theory, Quark-Gluon Plasma rehadronization, astronuclear physics and cosmology. All contributions were indexed and abstracted. (author)

  3. Comparison of string models for heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.

    1990-01-01

    An important method to explore new domains in physics is to compare new results with extrapolations from known areas. For heavy ion collision this can be done with string models, which extrapolate from light to heavy systems and which also may be used to extrapolate to higher energies. That does not mean that these string models are only background models, one may easily implement new ideas on top of the known aspects, providing much more reliable models than those formed from scratch. All the models to be considered in this paper have in common that they consist of three independent building blocks: (a) geometry, (b) string formation and (c) string fragmentation. The geometry aspect is treated quite similar in all models: nucleons are distributed inside each nucleus according to some standard parameterization of nuclear densities. The nuclei move through each other on a straight line trajectory, with all the nucleon positions being fixed. Whenever a projectile and a target nucleon come close, they interact. Such an interaction results in string formation. In the last step these strings decay into observable hadrons according to some string fragmentation procedure. The three building blocks are independent, so one can combine different methods in an arbitrary manner. Therefore rather than treating the models one after the other, the author discusses the procedures for string formation and string fragmentation as used by the models. He considers string models in a very general sense, so he includes models where the authors never use the word string, but which may be most naturally interpreted as string models and show strong similarities with real string models. Although very important he does not discuss - for time and space reasons - recent developments concerning secondary scattering

  4. Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei

    International Nuclear Information System (INIS)

    Chen Liewen; Ko Che Ming; Xu Jun; Li Baoan

    2010-01-01

    Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Δr np of Sn isotopes give an important constraint on the symmetry energy E sym (ρ 0 ) and its density slope L at saturation density ρ 0 . Combining these constraints with those from recent analyses of isospin diffusion and the double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on L approximately independent of E sym (ρ 0 ). The implication of these new constraints on the Δr np of 208 Pb as well as the core-crust transition density and pressure in neutron stars is discussed.

  5. Heavy ion collisions in AdS5

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2011-01-01

    We study heavy ion collisions at strong 't Hooft coupling using AdS/CFT correspondence. Heavy ion collisions correspond to gravitational shock wave collisions in AdS 5 . We construct the metric in the forward light cone after the collision perturbatively through expansion of Einstein equations in graviton exchanges. We obtain an analytic expression for the metric including all-order graviton exchanges with one shock wave, while keeping the exchanges with another shock wave at the lowest order. We read off the corresponding energy-momentum tensor of the produced medium. Unfortunately this energy-momentum tensor does not correspond to ideal hydrodynamics, indicating that higher order graviton exchanges are needed to construct the full solution of the problem. We also show that shock waves must completely stop almost immediately after the collision in AdS 5 , which, on the field theory side, corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. Finally, we perform trapped surface analysis of the shock wave collisions demonstrating that a bulk black hole, corresponding to ideal hydrodynamics on the boundary, has to be created in such collisions, thus constructing a proof of thermalization in heavy ion collisions at strong coupling.

  6. Heavy Flavor Physics in Heavy-Ion Collisions with STAR Heavy Flavor Tracker

    International Nuclear Information System (INIS)

    Yifei Zhang

    2010-01-01

    Heavy quarks are a unique tool to probe the strongly interacting matter created in relativistic heavy-ion collisions at RHIC energies. Due to their large mass, energetic heavy quarks are predicted to lose less energy than light quarks by gluon radiation when they traverse a Quark-Gluon Plasma. In contrast, recent measurements of non-photonic electrons from heavy quark decays at high transverse momentum (p T ) show a jet quenching level similar to that of the light hadrons. Heavy quark are produced mainly at early stage in heavy-ion collisions, thus they are proposed to probe the QCD medium and to be sensitive to bulk medium properties. Ultimately, their flow behavior may help establish whether light quarks thermalize. But due to the absence of the measurement of B-mesons and precise measurement of D-mesons, it is difficult to separate bottom and charm contributions experimentally in current non-photonic electron measurements for both spectra and elliptic flow v 2 . Therefore, topological reconstruction of D-mesons and identification of electrons from charm and bottom decays are crucial to understand the heavy flavor production and their in medium properties. The Heavy Flavor Tracker (HFT) is a micro-vertex detector utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precise measurement of charmed and bottom hadrons. We present a study on the open charm nuclear modification factor, elliptic flow v 2 and λ c measurement as well as the measurement of bottom mesons via a semi-leptonic decay. (author)

  7. How to deal with relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Hagedorn, R.

    1981-01-01

    A qualitative review is given of the theoretical problems and possibilities arising when one tries to understand what happens in relativistic heavy ion collisions. The striking similarity between these and pp collisions suggests the use of techniques similar to those used five to twelve years ago in pp collisions to disentangle collective motions from thermodynamics. A very heuristic and qualitative sketch of statistical bootstrap thermodynamics concludes an idealized picture in which a relativistic heavy ion collision appears as a superposition of moving 'fireballs' with equilibrium thermodynamics in the rest frames of these fireballs. The interesting problems arise where this theoretician's picture deviates from reality: non-equilibrium, more complicated motion (shock waves, turbulence, spin) and the collision history. Only if these problems have been solved or shown to be irrelevant can we safely identify signatures of unusual states of hadronic matter as, for example, a quark-gluon plasma or density isomers. (orig.)

  8. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  9. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    International Nuclear Information System (INIS)

    Zhou, Kai; Dai, Wei; Xu, Nu; Zhuang, Pengfei

    2016-01-01

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  10. Mass and angular distributions of the reaction products in heavy ion collisions

    Science.gov (United States)

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.

    2018-05-01

    The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.

  11. Nuclear data evaluation for medium and heavy nuclei

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1988-01-01

    Present status of nuclear data evaluation works for medium and heavy nuclei is described in this paper. These data are being prepared for JENDL-3 (Japanese Evaluated Nuclear Data Library-Version 3). At present, about a half of the data files, which are expected to be stored in the final library, has been brought into a temporary library called JENDL-3T. The remaining works and additional revisions are still needed to be made in order to finalize the data library as JENDL-3. Special emphases have been put on the high energy neutron data for which the previous JENDL-2 had some inadequacies, and gamma-ray production cross sections have been newly evaluated. Systematic and consistent evaluations have been intended for the new evaluations. (author)

  12. Remarks on the fission barriers of super-heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany); Heinz, S.; Mann, R.; Maurer, J.; Muenzenberg, G.; Barth, W.; Dahl, L.; Kindler, B.; Kojouharov, I.; Lang, R.; Lommel, B.; Runke, J.; Scheidenberger, C.; Tinschert, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Antalic, S. [Comenius University, Department of Nuclear Physics and Biophysics, Bratislava (Slovakia); Eberhardt, K.; Thoerle-Pospiech, P.; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Grzywacz, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Tennessee, Knoxville, TN (United States); Hamilton, J.H. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Henderson, R.A.; Kenneally, J.M.; Moody, K.J.; Shaughnessy, D.A.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Miernik, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); University of Warsaw, Warsaw (Poland); Miller, D. [University of Tennessee, Knoxville, TN (United States); Morita, K. [RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama (Japan); Nishio, K. [Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Popeko, A.G.; Yeremin, A.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Roberto, J.B.; Rykaczewski, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Uusitalo, J. [University of Jyvaeskylae, Department of Physics, Jyvaeskylae (Finland)

    2016-04-15

    Shell-correction energies of super-heavy nuclei are approximated by using Q{sub α} values of measured decay chains. Five decay chains were analyzed, which start at the isotopes {sup 285}Fl, {sup 294}118, {sup 291}Lv, {sup 292}Lv and {sup 293}Lv. The data are compared with predictions of macroscopic-microscopic models. Fission barriers are estimated that can be used to eliminate uncertainties in partial fission half-lives and in calculations of evaporation-residue cross-sections. In that calculations, fission probability of the compound nucleus is a major factor contributing to the total cross-section. The data also provide constraints on the cross-sections of capture and quasi-fission in the entrance channel of the fusion reaction. Arguments are presented that fusion reactions for synthesis of isotopes of elements 118 and 120 may have higher cross-sections than assumed so far. (orig.)

  13. Chemical potentials of π- and π+ in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gorenstejn, M.I.; Shin Nan Yang.

    1991-01-01

    We consider a chemical nonequilibrium model to describe the pion production in Ar+KCl and La+La collisions at initial energies E lab /A=(0.5-1.8) GeV/nucl. The excess of low energy π - is interpreted as the manifestation of positive chemical potential of π - at the thermal freeze out. We find that in collisions between nuclei with large atomic numbers the chemical potential of π + is smaller than that of π - . This leads to the prediction of a much less excess of low-energy π + , than as measured in the π - case, in heavy-ion collisions at bombarding energies in the region of 1 GeV/nucl. 17 refs.; 2 figs. (author)

  14. Fission barriers of two odd-neutron heavy nuclei

    International Nuclear Information System (INIS)

    Koh, Meng-Hock; Bonneau, L.; Nhan Hao, T. V.; Duc, Dao Duy; Quentin, P.

    2015-01-01

    The fission barriers of two odd-neutron heavy odd nuclei,namely the 235 U and 239 Pu isotopes have been calculated within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. A full account of the genuine time-reversal symmetry breaking due to the presence of an unpaired nucleon has been incorporated at the mean field level. The SIII and SkM* parametrizations of the Skyrme interaction have been retained as well as for a part a newer parametrization, SLy5*. The seniority force parameters have been fitted to reproduce experimental odd-even mass differences in the actinide region. To assess the relevance of our calculated fission barrier distribution (as a function of the quantum numbers), we have studied the quality of our results with respect to the spectroscopy of band heads (for configurations deemed to be a pure single particle character) in the ground and fission isomeric states. Fission barriers of the considered odd nuclei have been compared with what is obtained for their even-even neighbouring isotopes (namely 234 U and 236 U, 238 Pu and 240 Pu respectively) to determine the so-called specialization energies. Various corrections and associated uncertainties have been discussed in order to compare our results with available data

  15. Status and prospect of super-heavy nuclei research at IMP

    International Nuclear Information System (INIS)

    Xu Hushan; Sun Zhiyu; Zhan Wenlong; Zhou Xiaohong; Huang Wenxue; Zhang Hongbin; Gan Zaiguo; Li Junqing; Ma Xinwen; Qin Zhi; Xiao Guoqing; Guo Zhongyan; Li Zhihui; Zhang Yuhu; Jin Genming; Huang Tianheng; Hu Zhengguo; Zhang Xueheng; Zheng Chuan; Chinese Academy of Sciences, Beijing

    2006-01-01

    The history and the international status of the super-heavy nuclei synthesis are briefly described. The related research work carried out at the Institute of Modern Physics (IMP) has been reviewed. The prospect of the super-heavy nuclei research at IMP has been introduced. (authors)

  16. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Rio de Janeiro Univ.

    1987-05-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. Very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. (orig.)

  17. Towards a non empirical description of heavy nuclei

    International Nuclear Information System (INIS)

    Duguet, Thomas

    2012-01-01

    Since the defence of my Ph.D. thesis in September 2002, I have essentially devoted nine years of research activity to advancing the formal understanding and enhancing the predictive power of SR and MR EDF approaches to structure and reaction properties of medium-to-heavy mass nuclei. In the most recent years, I have engaged myself into developing innovative ab-initio many-body methods applicable to medium-mass open-shell nuclei. On the long term, my two main objectives are (i) to advancing many-body methods and the understanding of many-fermion systems in general and (ii) to reducing decisively the phenomenological character of methods applicable to systems made out of a few tens to a few hundreds of fermions by addressing the points raised in the above introduction. The present document does not aim at summarizing those ten years of research activity. Rather, I made the choice to report in some details on three selected topics that are somewhat representative of my overall contribution to the field. The first part (Sec. II) describes an in-depth re-analysis of the concept of single-nucleon shell structure in the context of many-fermion systems. The second part (Sec. III) summarizes recent advances towards a more rigorous formulation of the MR-EDF method and discusses the corresponding remaining difficulties as well as ways under current development to overcome them. The third part (Sec. IV) discusses the on-going quest towards a microscopic description of superfluidity in nuclei and reports on the first-ever ab-initio calculations of open-shell medium-mass nuclei based on Self-consistent Gorkov Green's function theory. Although representative, the three above topics only cover a fraction of my research activity since my Ph.D. thesis defence. Consequently several other studies I have been involved with are briefly summarized in apps. A-E. For completeness, my publication list is also provided as an appendix. Last but not least, it is essential to stress that many

  18. Kinematic separation and mass analysis of heavy recoiling nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Eremin, A.V.; Belozerov, A.V.

    2002-01-01

    Within the past twelve years, the recoil separator VASSILISSA has been used for investigation of evaporation residues produced in heavy-ion induced complete-fusion reactions. In the course of the experimental work in the region of the elements with 92 ≤ Z ≤ 94, fourteen new isotopes have been identified by the parent-daughter correlations. The study of the decay properties and formation cross sections of the isotopes of elements 110, 112, and 114 was performed with the use of the high intensity 48 Ca beams; 232 Th, 238 U and 242 Pu targets were used in the experiments. At the beam energies corresponding to the calculated cross-section maxima of the 3n evaporation channels, the isotopes 277 110, 283 112, and 287 114 were produced and identified. For further experiments aimed at the synthesis of the superheavy element isotopes (Z ≥ 110) with the intensive 48 Ca extracted beams, the improvements in the ion optical system of the separator and of the focal plane detector system have been made. As a result, for heavy recoiling nuclei with masses A ∼ 250, the mass resolution of about 2.5 % was achieved with a good energy and position resolutions of the focal plane detectors

  19. Studies on the dynamics of heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    David, C.; Hartnack, C; Aichelin, J.

    1997-01-01

    We use the Quantum Molecular Dynamics model for the investigation of the dynamics of heavy ion collisions at intermediate energies. A detailed comparison between different versions of the models demonstrate the influence of not exactly known parameters in the description of nuclei like interaction range or initial densities and thus describes the limits of predictive power. The dynamics of the reaction are discussed quite similarly in the different models. A radial expansion with a linear velocity profile is found at central collisions. A strong interaction of pions with nuclear matter is reported. This interaction is strongly influenced by the lifetime of baryonic resonances in nuclear matter. These lifetimes depend strongly on the mass distribution of the resonances. These mass distributions are influenced by the momentum distribution in the nuclei. Here the inclusion of the spectral function shows visible effects. These effects influence the energy dissipation in nuclei and thus enter e.g. into the analysis of p + A collisions for the GEDEON project. (author)

  20. The theory of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    1993-07-01

    This program began in January 1993. Its primary goals are studies of highly excited matter and its production in nuclear collisions at very high energies. After a general orientation on the project, abstracts describing the contents of completed papers and providing some details of current projects are given. Principal topics of interest are the following: the dynamics of nuclear collisions at very high energies (RHIC and LHC), the dynamics of nuclear collisions at AGS energies, high-temperature QCD and the physics of the quark-gluon plasma, and the production of strangelets and other rare objects

  1. Multifragmentation and dynamics in heavy ion collisions

    Indian Academy of Sciences (India)

    like structure is most likely to appear in those events. Since a ... one, an exclusive analysis has been based on the heaviest particle of each event. .... component behaves in a way independent of impact parameter, or violence of the collision,.

  2. Jet studies in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Slovak, Radim; The ATLAS collaboration

    2016-01-01

    In relativistic heavy ion collisions, a hot medium with a high density of unscreened color charges is produced. Jets are produced at the early stages of this collision and are known to become attenuated as they propagate through the hot matter. One manifestation of this energy loss is a lower yield of jets emerging from the medium than expected in the absence of medium effects. ATLAS has provided a quantification of this jet suppression by the jet Raa measurement in run 1 of LHC. A factor of two suppression was seen in central heavy ion collisions with respect to pp collisions. The Raa exhibited only a week, if any, rapidity dependence, and a slow rise with increasing jet momentum. This talk summarizes the run 1 results on the inclusive jet production and the new results on dijet measurements.

  3. Search for Fractionally Charged Nuclei in High-Energy Oxygen-Lead Collisions

    CERN Multimedia

    2002-01-01

    We propose to use stacks of CR-39 plastic track detectors to look for fractionally charged projectile fragments produced in collisions of high-energy oxygen, sulfur, and calcium nuclei with a lead target. The expected charge resolution is @s^z~=~0.06e for fragments with 17e/3~@$<$~Z~@$<$~23e/3. We request that two target + stack assemblies be exposed to 1~x~10|5 oxygen nuclei at maximum available energy.

  4. Thermal, chemical and spectral equilibration in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Almási, Gábor András, E-mail: g.almasi@gsi.de [Gesellschaft für Schwerionenforschung, GSI, D-64291 Darmstadt (Germany); Wolf, György, E-mail: wolf.gyorgy@wigner.mta.hu [Wigner RCP, Budapest (Hungary)

    2015-11-15

    We have considered the equilibration in relativistic heavy ion collisions at energies 1–7 A GeV using our transport model. We applied periodic boundary conditions to close the system in a box. We found that the thermal equilibration takes place in the first 20–40 fm/c whose time is comparable to the duration of a heavy ion collision. The chemical equilibration is a much slower process and the system does not equilibrate in a heavy ion collision. We have shown that in the testparticle simulation of the Boltzmann equation the mass spectra of broad resonances follow instantaneously their in-medium spectral functions as expected from the Markovian approximation to the Kadanoff–Baym equations employed via the (local) gradient expansion.

  5. Heavy ion collisions, the quark-gluon plasma and antinucleon annihilation

    International Nuclear Information System (INIS)

    Sarma, Nataraja

    1985-01-01

    Studies in high energy physics have indicated that nucleon and mesons are composed of quarks confined in bags by the strong colours mediated by gluons. It is reasonably expected that at suitably high baryon density and temperature of the nucleus, these bags of nucleon and mesons fuse into a big bag of quarks or gluons i.e. hadronic matter undergoes transition to a quark-gluon phase. Two techniques to achieve this transition in a laboratory are: (1) collision of two heavy nuclei, and (2) annihilation of antinucleons and antinuclei in nuclear matter. Theoretical studies as well as experimental studies associated with the transition to quark-gluon phase are reviewed. (author)

  6. Hard photons a probe of the heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Schutz, Y.

    1994-01-01

    Heavy-ion collisions have proven to be a unique tool to study the nucleus in extreme states, with values of energy, spin and isospin far away from those encountered in the nucleus in its ground state. Heavy-ion collisions provide also the only mean to form and study in the laboratory nuclear matter under conditions of density and temperature which could otherwise only be found in stellar objects like neutron stars and super-novae. the goal of such studies is to establish the equation of state of nuclear matter and the method consist in searching the collective behaviour in which heavy-ion collisions differ from a superposition of many nucleon-nucleon collisions. Among the various probes of collective effects, like flow, multifragmentation, or subthreshold particles, we have selected hard photons because they provide, together with dileptons, the only unperturbed probe of a phase of the collision well localized in space and time. The origin of hard photons, defined as the photons building up the spectrum beyond the energy of the giant dipole resonance (E γ > 30∼MeV), is attributed predominantly to the bremsstrahlung radiation emitted incoherently in individual neutron-proton collisions. Their energy reflects the combination of the beam momentum and the momenta induced by the Fermi motion of the nucleons within the collision zone. Therefore, at intermediate energies, hard photons probe the dynamical phase space distribution of participant nucleons and they convey information on the densities reached in heavy-ion collisions, the size and life time of the dense photon source and the compressibility of nuclear matter. The techniques we have developed include intensity interferometry and exclusive measurements scanning with high resolution the whole range of impact parameters. The interpretation of our data is guided by dynamical phase space calculations of the BUU type

  7. Microscopic descriptions of high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1977-01-01

    The essentials of the equation-of-motion (EOM) approach are given and some of its significant and interesting results are described. A framework for the theoretical description of high-energy heavy-ion (HE-HI) collisions is presented; specifically included are a critical assessment of various approaches--EOM calculations, Boltzmann equations/cascade calculations, and hydrodynamics--their relationships and their respective domains of applicability, if any, to HE-HI collisions. 11 figures, 3 tables

  8. High energy heavy ion collisions: Lessons from relativistic heavy ion ...

    Indian Academy of Sciences (India)

    select events which respond to the observables correlated to the centrality of the collisions. .... pared to 130 GeV and is independent of centrality. Similar ..... observations, therefore coming out of these exclusive observables at RHIC directs.

  9. Electrons with continuous energy distribution from energetic heavy ion collisions

    International Nuclear Information System (INIS)

    Berenyi, D.

    1984-01-01

    The properties and origin of continuous electron spectrum emitted in high energy heavy ion collisions are reviewed. The basic processes causing the characteristic regions of the continuous spectrum are described. The contribution of electrons ejected from the target and from the projectile are investigated in detail in the cases of light and heavy projectiles. The recently recognized mechanisms, electron-capture-to-continuum (ECC) and electron-loss-to-continuum (ELC), leading to a cusp in forward direction, and their theoretical interpretations are discussed. The importance of data from ion-atom collisions in the field of atomic physics and in applications are briefly summarized. (D.Gy)

  10. Universal pion freeze-out in heavy-ion collisions.

    Science.gov (United States)

    Adamová, D; Agakichiev, G; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanović, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Z; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B; Ludolphs, W; Maas, A; Marín, A; Milosević, J; Milov, A; Miśkowiec, D; Panebrattsev, Yu; Petchenova, O; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schmitz, W; Schukraft, J; Sedykh, S; Shimansky, S; Slívová, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, I; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2003-01-17

    Based on an evaluation of data on pion interferometry and on particle yields at midrapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda(f) reaches a value of about 1 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and beam energy from the Alternating Gradient Synchrotron to the Relativistic Heavy Ion Collider.

  11. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  12. K0/K+ ratio in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Russkikh, V.N.

    1996-11-01

    It is shown that ratio of production yields of K 0 and K + mesons in collisions of isotopically asymmetric nuclei at incident energies ∼ 1 GeV/nucleon is related directly enough to temperature of nuclear matter at the initial stage of the collision. Sensitivity of the K 0 /K + ratio to the temperature variation is analyzed. Ambiguities, associated with interpretation of this quantity as a probe of nuclear temperature, are discussed. It is argued that the K 0 /K + ratio is a fairly model-independent quantity, provided channels with Δ isobars dominate the kaon production. (orig.)

  13. Heavy ion collisions at energies near the Coulomb barrier 1990

    International Nuclear Information System (INIS)

    Nagarajan, M.A.

    1991-01-01

    During recent years, detailed experimental and theoretical investigations have been carried out on heavy ion collisions at energies close to the Coulomb barrier. These studies have provided direct evidence of strong couplings between the various reaction channels available at energies near the top of the Coulomb barrier. This field of research has remained the focus of interest and with improved experimental techniques, new detailed high resolution data have been obtained. The workshop on ''Heavy Ion Collisions at Energies Close to the Coulomb Barrier'' was organized with the aim of reviewing the current understanding of the collision dynamics and to discuss future directions in this area of research. The topics discussed at the workshop were broadly classified under the titles: quasielastic reactions; fusion of heavy ions; and shape and spin dependence in heavy ion collisions. The last of these topics was included to review new data obtained with polarized heavy ions and their theoretical interpretations. This volume contains the invited and contributed talks as well as a few short presentations during panel discussions. (author)

  14. Heavy quark correlations in hadronic collisions

    International Nuclear Information System (INIS)

    Mangano, M.L.; Ridolfi, G.

    1992-01-01

    The study of heavy quark production at hadron colliders will provide important tests and measurements within and possibly beyond the Standard Model. The results of a recent calculation of heavy quark hadronic production correlation properties at the full next-to-leading order (NLO) in perturbative QCD are presented. These properties are important for several applications. (R.P.) 8 refs.; 3 figs

  15. Memory effects in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Greiner, C.; Wagner, K.; Reinhard, P.

    1994-01-01

    We consider equilibration in relativistic nuclear dynamics starting from a nonequilibrium Green's-functions approach. The widely used Boltzmann-Uehling-Uhlenbeck equation is obtained only as the Markovian limit (i.e., negligible memory time). The actual memory time in energetic nuclear collisions turns out to be ∼2--3 fm/c, which interferes substantially with the time scale of the relaxation process. The memory kernels of the collision process will be presented. Because of their more involved structure, depending sensitively on the kinematical regime, both less and more stopping power is observed in the reaction compared to the Markovian description

  16. Studying heavy-ion collisions with FAUST-QTS

    Directory of Open Access Journals (Sweden)

    Cammarata P.

    2015-01-01

    Full Text Available Heavy-ion collisions at lower energies provide a rich environment for investigating reaction dynamics. Recent theory has suggested a sensitivity to the symmetry energy and the equation of state via deformations of the reaction system and ternary breaking of the deformed reaction partners into three heavy fragments. A new detection system has been commissioned at Texas A&M University in an attempt to investigate some of the observables sensitive to the nuclear equation of state.

  17. Kinetic energy dissipation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Fedotov, S.I.; Jolos, R.V.; Kartavenko, V.G.

    1979-01-01

    Kinetic energy dissipation mechanism is considered in deep inelastic heavy-ion collisions. It is shown that the significant part of the kinetic energy loss can be explained by the excitation of the nuclear matter multipole vibrations. The main contribution of the energy dissipation is given by the time dependent heavy-ion interaction potential renormalized due to the nuclear excitations, rather than by the velocity proportional frictional forces

  18. Study of excitation energy sharing in heavy ion collisions as a function of their inelasticity

    International Nuclear Information System (INIS)

    Lott, B.

    1986-01-01

    The excitation energy sharing between the fragments of a heavy ion collision has been studied for quasi-elastic and deep inelastic mechanisms. A 32 S beam of 232 MeV incident energy has been used to bombard several targets (S, 58 Ni, 93 Nb). The evaporated charged particle multiplicities have been measured by inclusive measurements of the projectile-like nuclei and exclusive measurements of the two final nuclei. Evaporation calculations using the Hauser-Feshbach formalism allows us to deduce from the multiplicity measurements the projectile-like excitation energy. These results are compatible with the assumption of an equal sharing of excitation energies for quasi-elastic reaction products, and with the assumption of a mass ratio sharing for fully relaxed reaction products. Limiting values for the relaxation time of this mode have been deduced and are in agreement with predictions from the model developed by Randrup [fr

  19. Exclusive description of multiple production on nuclei in the additive quark model. Multiplicity distributions in interactions with heavy nuclei

    International Nuclear Information System (INIS)

    Levchenko, B.B.; Nikolaev, N.N.

    1985-01-01

    In the framework of the additive quark model of multiple production on nuclei we calculate the multiplicity distributions of secondary particles and the correlations between secondary particles in πA and pA interactions with heavy nuclei. We show that intranuclear cascades are responsible for up to 50% of the nuclear increase of the multiplicity of fast particles. We analyze the sensitivity of the multiplicities and their correlations to the choice of the quark-hadronization function. We show that with good accuracy the yield of relativistic secondary particles from heavy and intermediate nuclei depends only on the number N/sub p/ of protons knocked out of the nucleus, and not on the mass number of the nucleus (N/sub p/ scaling)

  20. The energy overcompensating disintegrations of residual target nuclei damaged in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1995-01-01

    Massive target nuclei damaged in hadron-nucleus collisions at high energies are used to disintegrate into nuclear fragments. In many cases such breakup is egzoergic - some portion of nuclear energy is released; this portion should be overcompensating the energy used for the nuclear damage, in some cases. 30 refs

  1. On the angular distribution of spectator nucleons in high-energy collisions with deuterium nuclei

    International Nuclear Information System (INIS)

    Bartke, J.

    1975-01-01

    Angular distributions of spectator nucleons in collisions of high-energy particles with deuterium nuclei are discussed in the framework of the impulse model. Comparison with experimental data shows that predictions following from this simple theoretical model are verified by experiment. Some general remarks on the study of angular distributions of spectator nucleons are given. (author)

  2. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...

    Indian Academy of Sciences (India)

    model, to describe the microscopic evolution and decoupling of the hadronic ... progress on hydrodynamic modelling, investigation on the flow data and the ... and to describe and predict the soft particle physics in relativistic heavy-ion collisions [4]. It is based on the conservation laws of energy, momentum and net charge ...

  3. Evaluation of electon and nuclear bremsstrahlung in heavy ion collisions

    International Nuclear Information System (INIS)

    Gippner, P.

    1975-01-01

    The detection of quasimolecular X-ray continua provides the possibility of investigating the electron shells of quasimolecules transiently formed during adiabatic heavy ion-atomic collision. The contribution of the electron and nuclear bremsstrahlung to quasimolecular X-ray continua observed in bombarding various targets with 65 and 96 MeV Nb ions were estimated

  4. High energy structures in heavy ion collisions: a multiphonon description

    International Nuclear Information System (INIS)

    Chomaz, P.; Blumenfeld, Y.; Frascaria, N.

    1984-01-01

    Energy spectra of fragments from the 36 Ar + 208 Pb reaction at 11 MeV/n exhibit structures at high excitation energies. These structures are interpreted in terms of target multi-phonon excitations built from giant resonances. The importance of such processes for the kinetic energy dissipation in heavy ion collisions is emphasized

  5. Medium response to jets in heavy ion collisions

    Science.gov (United States)

    Tachibana, Yasuki

    2018-01-01

    A short overview on recent progress in studies of medium response to jet quenching in heavy ion collisions is presented. We show the typical features of medium response and give comment on their connection to jet observables by introducing the work done by the author and collaborators as an example.

  6. Event by event fluctuations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker

    2001-01-01

    The authors discuss the physics underlying event-by-event fluctuations in relativistic heavy ion collisions. We will argue that the fluctuations of the ratio of positively over negatively charged particles may serve as a unique signature for the Quark Gluon Plasma.

  7. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zimanyi, J.

    1981-01-01

    With the aim to clarify somewhat the question of equilibration in the following we investigate the approach to equilibrium of particle composition and momentum distribution of the particles within the firecloud formed in the central collision of energetic heavy ions. (orig.)

  8. Free-parameterless model of high energy particle collisions with atomic nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1982-01-01

    In result of studies, it has been discovered that: a) Intensive emission of fast nucleons of kinetic energy from 20 to 400 MeV proceeds independently of the pion production process; b) The particle production in hadron-nucleon collisions is mediated by intermediate objects produced first in a 2 → 2 type endoergic reaction and decaying after lifetime tausub(g) > or approximately 10 - 22 s into commonly known resonances and particles; c) Inside of massive enough atomic nuclei quasi-onedimensional cascades of the intermediate objects can develop; d) A definite simple connection exists between the characteristics of the secondaries appearing in hadron-nucleus collision events and corresponding hadron-nucleon collision events, the target-nucleus size and the nucleon density distribution in it. The yield of the hadron-nucleus collisions is described in a convincing manner in terms of the hadron-nucleon collision data by means of simple formulas

  9. Dissipation and thermal fluctuations in heavy-ion collisions

    International Nuclear Information System (INIS)

    Froebrich, P.

    1992-01-01

    The concept of friction has turned out to be a useful one not only in solid state physics but also in the description of heavy-ion collisions and fisson. In the following I concentrate on applications to low energy (E << 10 MeV/nucleon) heavy-ion collisions. I put emphasis on the phenomenological side in showing that by using frictional forces (and the associated fluctuating forces) in a semi-phenomenological model one is able to put some order into a large variety of experimental data. These concern above- and below-barrier fusion, spin distributions, deep-inelastic scattering and the emission of δ electrons in deep-ineleastic collisions. (orig.)

  10. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-08-01

    We review here the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterisation of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3 m e and life times in the range of 6x10 -14 s -10 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering. First we present some experimental methods for high efficiency positron spectroscopy in heavy ion collisions. Then we describe the discovery of positron creation induced by strong time changing Coulomb fields. (orig./HSI)

  11. Transverse Momentum Distribution of Vector Mesons Produced in Ultraperipheral Relativistic Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Hencken, Kai; Baur, Gerhard; Trautmann, Dirk

    2006-01-01

    We study the transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions (UPCs). In UPCs there is no strong interaction between the nuclei, and the vector mesons are produced in photon-nucleus collisions where the (quasireal) photon is emitted from the other nucleus. Exchanging the role of both ions leads to interference effects. A detailed study of the transverse momentum distribution, which is determined by the transverse momentum of the emitted photon, the production process on the target, and the interference effect, is done. We study the unrestricted cross section and the one with an additional electromagnetic excitation of one or both ions; in the latter case small impact parameters are emphasized

  12. Overview of electromagnetic probe production in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Paquet, Jean-François

    2017-01-01

    An introductory overview of electromagnetic probe production in ultra-relativistic heavy ion collisions is provided. Experimental evidence supporting the production of thermal photons and dileptons in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) are reviewed. Thermal electromagnetic probe production from hydrodynamical models of collisions is discussed. (paper)

  13. Studying extremely peripheral collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Fatyga, M.

    1990-01-01

    Relativistic heavy ion facilities have been proposed (and in some cases constructed) with an intent to search for a new state of matter, a quark gluon plasma. As with all tools in the experimental physics, one should always search for ways in which relativistic heavy ions can be used to study physical phenomena beyond this original goal. New possibilities for a study of higher order photonuclear excitations in extremely peripheral collisions of relativistic heavy ions are discussed in this contribution. Data on the electromagnetic and nuclear fragmentation of a 14.6Gev/nucleon 28 Si projectile are presented

  14. Production of pions and anomalous projectile fragments in heavy ion collisions

    International Nuclear Information System (INIS)

    Noren, B.

    1988-05-01

    Results are presented from investigations of the mean free path (mfp) of multiply charged fragments, produced by 1.8 A GeV argon nuclei. The mfp's have been studied experimentally, and no dependence of the mfp on the distance from the preceeding collision is observed. In a Monte Carlo simulation, the mfp estimators are investigated for different statistics, with or without an enhanced reaction probability. Intermediate energy heavy ion collisions have been studied using the carbon beam produced at the CERN SC-accelerator. Cross-sections for pion + and pion - have been measured over a wide range of angles and targets. Also, coincidence measurements with projectile-like fragments have been performed. The pion - /pion + ratio has been studied for C+Li, C+C, C+Pb, C+ 116 Sn and C+ 124 Sn. Inconsistencies in the target mass dependence of the pion yield disappear if a correction for reabsorption in the target nucleus is included. The projectile breakup is significantly stronger for pion producing collisions than for the average collision, thus indicating a much stronger abundance of central collisions. (With 32 refs.) (author)

  15. Violent heavy ion collisions around the Fermi energy

    International Nuclear Information System (INIS)

    Borderie, B.

    1985-01-01

    Experimental results on central collisions will be presented and it will be shown that a fusion process still occurs; deexcitation of the hot fused systems formed will be discussed. Then, from the qualitative evolution of central collision products from different reactions studied in the E/A range 20-84 MeV, the vanishing of fusion processes will be inferred; it will be discussed in terms of critical energy deposit and maximum excitation energy per nucleon that nuclei can carry. Finally results concerning the large production of light fragments (3 < approximately Z < approximately 12) experimentally observed in the Fermi energy domain will be presented and discussed in terms of a multifragmentation of the whole nuclear system or of part of it for intermediate impact parameter collisions (109 refs, 49 fig)

  16. Inelastic collisions of heavy ions and their reaction mechanisms; Collisions inelastiques d'ions lourds et mecanismes de reaction

    Energy Technology Data Exchange (ETDEWEB)

    Scarpaci, J.A

    2004-06-01

    This work is dedicated to the study of inelastic collisions of heavy ions. Most experiments took place in Ganil facility. The 2 first chapters introduce the notion of inelastic scattering of heavy ions. The third chapter deals with target excitation, giant monopolar or dipolar or quadrupolar resonances ant the multi-phonon concept and presents relevant experimental results from the Ca{sup 40} + Ca{sup 40} nuclear reaction at 50 MeV/A. The fourth chapter is dedicated to nuclear processes involved in inelastic collisions: pick-up break-up mechanisms, the angular distribution of emitted protons and the towing mode. These notions are applied to the reaction Zr{sup 90}(Ar{sup 40}, Ar{sup 40}'). The fifth chapter presents the solving of the time dependent Schroedinger equation (TDSE) applied to the wave function of a particle plunged in a variable potential. TDSE solving is applied to the break-up of Be{sup 11}. These calculations have been validated by comparing them with experimental results from the nuclear reaction Ti{sup 48}(Be{sup 11}, Be{sup 10} + n + {gamma}) that is described in the chapter 6. The last chapter presents the advantages of inelastic scattering considered as a tool to study exotic nuclei.

  17. Exotic phenomena in collisions of very heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Mueller, U.; Schramm, S.; de Reus, T.; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.

    1987-01-01

    Over the last decade their knowledge on atomic structure of superheavy quasimolecules in the range 110 ≤ Z/sub tot/ ≤ 188 has increased considerably. Heavy ion collisions, in which superheavy quasimolecules are formed for a short period of time, offer them a unique tool to investigate the electronic structure of ultra-high Z-systems, which are not otherwise accessible to experiment. Comparison of K-vacancy formation, δ-electron and positron emission with available experimental data suggests the validity of the quasimolecular picture, which will be taken as the theoretical framework of these calculations. To exemplify current theoretical investigations three different topics will be discussed. After a presentation of the underlying theoretical framework for ionization processes the possibility to employ δ-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions will be sketched. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 - 10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework is investigated. Finally phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms is briefly considered. 42 references, 5 figures

  18. Jets in heavy ion collisions with the ATLAS detector

    CERN Document Server

    Santos, Helena; The ATLAS collaboration

    2018-01-01

    Jets constitute a golden probe to study the quark gluon plasma produced in heavy ion collisions at the LHC. Being produced at the early stages of the collisions, they are expected to be modified as propagating through the hot and dense medium. A signature of the modification is the energy loss lowering the jet yields at a given transverse momentum. A factor of two suppression is observed in central Pb+Pb collisions with respect to pp collisions. Other signatures are the modification of the dijet momentum balance and the modification of fragmentation functions. This talk will present the currently available jet results from ATLAS in Run 2. The high statistical significance of this data sample collected by ATLAS in Run 2 allows precision measurements of these observables in a wide range of transverse momentum, centrality and rapidity intervals.

  19. Spin effects in intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Xu Jun; Li Baoan; Xia Yin; Shen Wenqing

    2014-01-01

    In this paper, we report and extend our recent work where the nucleon spin-orbit interaction and its spin degree of freedom were introduced explicitly for the first time in the isospin-dependent Boltzmann-Uehling-Uhlenbeck transport model for heavy-ion reactions. Despite of the significant cancellation of the time-even and time-odd spin-related mean-field potentials from the spin-orbit interaction,an appreciable local spin polarization is observed in heavy-ion collisions at intermediate energies because of the dominating role of the time-odd terms. It is also found that the spin up-down differential transverse flow in heavy-ion collisions is a useful probe of the strength, density dependence, and isospin dependence of the in-medium spin-orbit interaction, and its magnitude is still considerable even at smaller systems. (authors)

  20. Heavy ion collisions at relativistic energies

    International Nuclear Information System (INIS)

    Huefner, J.

    These lectures cover only a few aspects of the field. The emphasis is pedagogical. 1) Elastic and total inelastic cross sections: their geometric properties and the energy dependence. 2) Physics of the spectator nuclei: their momentum distribution and the relation to Fermi motion. The production cross sections for a particular nucleus are discussed in the frame work of the excitation-evaporation model. 3) Physics of the participant particles. The number of the participants and their degree of thermalization are discussed. As well as, how can one derive a classical theory, like intra-nuclear cascade, from a quantum theory. The properties of the composite particles and the pions are presented [fr

  1. Multinucleon interactions in collisions with nuclei at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.

    1988-11-01

    The parton picture of multiple hA and AA scattering at high energies is developed. It is shown that it leads to the standard Glauber amplitude provided the number of partons in a hadron is distributed according to Poisson's law. Within this picture collisions of more than a pair of nucleons are considered. For AA scattering a two-dimensional effective quantum field theory is constructed which allows to conveniently calculate contributions to the amplitude with a given number of loops. The AGK rules for AA scattering are established. Inclusive cross-sections for particle production in hA and AA collisions are studied both in the non-cumulative and cumulative kinematical regions. (author). 13 refs, 9 figs

  2. Heavy quark physics in ep collisions at LEP+LHC

    International Nuclear Information System (INIS)

    Ali, A.; Barreiro, F.; Troconiz, J.F. de; Schuler, G.A.; Bij, J.J. van der

    1990-12-01

    We study electroweak production of heavy quarks - charm, beauty, and top - in deep inelastic electron-proton collisions at the proposed LEP+LHC collider at CERN. The assumed energy for the collisions is E e =50 GeV, E p =8000 GeV, providing an ep center of mass energy, √s≅1.26 TeV. We invoke the boson-gluon fusion model to estimate theoretical cross sections and distributions for the heavy quarks. Higher order QCD corrections are only approximately taken into account, by assuming a (normalization) K-factor of 2 for the charm and beauty quark production rates and incorporating the parton shower cascades. With these assumptions and the parameterization of Eichten et al. for the structure functions (EHLQ, set 1), we find the following cross sections: σ(ep→c+X)≅O(3 μb), σ(ep→b+X)≅O(40 nb), and σ(ep→t+X)≅4 pb for m t =120 GeV, decreasing to 0.5 pb for m t =250 GeV. These cross sections would provide O(6x10 9 ) charmed hadrons, O(8x10 7 ) beauty hadrons, and O(10 3 ) top hadrons, for an integrated ep luminosity of 1000 pb -1 . The heavy quark rates in ep collisions are considerably smaller than the corresponding rates in pp collisions at LHC, with √s=16 TeV. This gives a clear advantage to pp collisions for top searches. However, for the charmed and beauty quarks only a tiny fraction of the cross sections in p+p→Q+X can be triggered in comparison to the corresponding cross sections in e+p→Q+X, resulting in comparable number of measured heavy quark events in the ep and pp mode. We sketch the energy-momentum profile of heavy quark events in ep collisions and illustrate the kind of analyses that experiments at the LEP+LHC collider would undertake to quantitatively study heavy quark physics. In particular, prospects of measuring the particle-antiparticle mixing parameter x s =ΔM/Γ for the B s 0 -anti B s 0 meson system are evaluated, and search strategies for the top quark in ep collisions are presented. (orig.)

  3. Doubly charmed baryon production in heavy ion collisions

    Science.gov (United States)

    Yao, Xiaojun; Müller, Berndt

    2018-04-01

    We give an estimate of Ξcc ++ production rate and transverse momentum spectra in relativistic heavy ion collisions. We use Boltzmann transport equations to describe the dynamical evolution of charm quarks and diquarks inside quark-gluon plasma. In-medium formation and dissociation rates of charm diquarks are calculated from potential nonrelativistic QCD for the diquark sector. We solve the transport equations by Monte Carlo simulations. For 2.76 TeV Pb-Pb collisions with 0-10% centrality, the number of Ξcc ++ produced in the transverse momentum range 0-5 GeV and rapidity from -1 to 1 is roughly 0.02 per collision. We repeat the calculation with a melting temperature 250 MeV above which no diquarks can be formed. The number of Ξcc ++ produced in the same kinematic region is about 0.0125 per collision. We discuss how to study diquarks at finite temperature on a lattice and construct the antitriplet free energy in a gauge invariant but path dependent way. We also comment on extensions of the calculation to other doubly heavy baryons and doubly heavy tetraquarks and the feasibility of experimental measurements.

  4. Spectroscopy of heavy nuclei: yrast states, side bands and backbending

    International Nuclear Information System (INIS)

    Sunyar, A.W.

    1979-01-01

    Some recent experimental results concerning the high spin structure of two rare earth nuclei are presented. These are 154 Er and 158 Dy. The level schemes including yrast sequences are discussed. The reactions 142 Nd( 16 O,4n) and 150 Nd( 13 C,5n) respectively, for the studied nuclei are noted. 14 references

  5. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Hard probes

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is currently experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. The more than a factor 10 increase of collision energy at LHC, relative to the previously achieved maximal energy at other collider facilities, results in an increase of production rates of hard probes. This review presents selected experimental results focusing on observables probing hard processes in heavy-ion collisions delivered during the first three years of the LHC operation. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large Hadron Collider, Heavy-ion collisions, High energy physics

  6. Isovector coupling channel and central properties of the charge density distribution in heavy spherical nuclei

    International Nuclear Information System (INIS)

    Haddad, S.

    2010-01-01

    The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)

  7. Vorticity and particle polarization in heavy ion collisions (experimental perspective

    Directory of Open Access Journals (Sweden)

    Voloshin Sergei A.

    2018-01-01

    Full Text Available The recent measurements of the global polarization and vector meson spin alignment along the system orbital momentum in heavy ion collisions are briefly reviewed. A possible connection between the global polarization and the chiral anomalous effects is discussed along with possible experimental checks. Future directions, in particular those aimed on the detailed mapping of the vorticity fields, are outlined. The Blast Wave model is used for an estimate of the anisotropic flow effect on the vorticity component along the beam direction. We also point to a possibility of a circular pattern in the vorticity field in asymmetric, e.g. Cu+Au, central collisions.

  8. Electron-positron pair creation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-01-01

    The authors review the status of experiments to study the electron positron pair creation in heavy ion atom collisions at bombarding energies close to the Coulomb barrier. The disentanglement and characterization of various sources of positrons observed in such collisions are described with a focus on the monoenergetic electron positron pairs observed. They seem to originate from the two-body decay of a family of neutral particles with masses of about 3m and lifetimes in the range of 6 x 10 - 14 s, produced by high Coulomb fields. First attempts were made to create these particles by resonant Bhabha scattering

  9. Correlations of neutral pions in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Peitzmann, T.; Beckmann, P.; Berger, F.; Glewing, G.; Dragon, L.; Glasow, R.; Kampert, K.H.; Loehner, H.; Purschke, M.; Santo, R.; Albrecht, R.; Bock, R.; Claesson, G.; Gutbrod, H.H.; Kolb, B.W.; Lund, I.; Schmidt, H.R.; Siemiarczuk, T.; Awes, T.C.; Baktash, C.; Ferguson, R.L.; Lee, I.Y.; Obenshain, F.E.; Plasil, F.; Soerensen, S.P.; Young, G.R.; Eklund, A.; Garpman, S.; Gustafsson, H.A.; Idh, J.; Kristiansson, P.; Oskarsson, A.; Otterlund, I.; Persson, S.; Stenlund, E.; Franz, A.; Poskanzer, A.M.; Ritter, H.G.

    1989-01-01

    Correlations of 4 photons representing neutral pions have been studied in ultrarelativistic heavy ion collisions. Data were taken in the WA80 experiment at the CERN-SPS with a 200 A GeV oxygen beam. The π 0 are detected via their decay photons with a high-granularity lead glass array. Special features of interferometry using neutral pions will be discussed. The extracted preliminary parameters for high p T pions emitted near midrapidity in O+Au collisions lead to rather small effective source sizes. (orig.)

  10. Universal pion freeze-out in heavy-ion collisions

    CERN Document Server

    Adamova, D; Appelshäuser, H; Belaga, V; Braun-Munzinger, P; Castillo, A; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Esumi, S I; Filimonov, K; Fomenko, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Lenkeit, B C; Ludolphs, W; Maas, A; Marin, A; Milosevic, J; Milov, A; Miskowiec, D; Panebratsev, Yu A; Petchenova, O Yu; Petracek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Rehak, P; Sako, H; Schükraft, Jürgen; Sedykh, S; Shimansky, S S; Slivova, J; Specht, H J; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Wessels, J P; Wienold, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V; Schmitz, W

    2003-01-01

    Based on an evaluation of recent systematic data on two-pion interferometry and on measured particle yields at mid-rapidity, we propose a universal condition for thermal freeze-out of pions in heavy-ion collisions. We show that freeze-out occurs when the mean free path of pions lambda_f reaches a value of approximately 2.5 fm, which is much smaller than the spatial extent of the system at freeze-out. This critical mean free path is independent of the centrality of the collision and its value is constant at all currently available beam energies from AGS to RHIC.

  11. Deconfinement transition and collisions of ultrarelativistic heavy ions

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1989-01-01

    The quark-gluon plasma is a new phase of nuclear matter which one hopes to produce in collisions of ultrarelativistic nuclei. In this thesis, we study some of the possible signatures which have been proposed to identify the plasma in these experiments. The first chapter of this thesis is devoted to the study of a hydrodynamical model describing these collisions: we solve numerically the equations of hydrodynamics; this allows us to compute the measured particle distributions, and to characterize the effect of a phase transition on the average transverse momentum of the emitted pions. The second chapter is a theoretical study of J/Ψ suppression, which has been suggested as a signal for quark-gluon plasma formation, and then observed by NA38 collaboration at CERN. We discuss the possible interpretations of this effect by comparing several models: the first model is based on the hypothesis of plasma formation while in the others, the suppression comes from inelastic scattering of the J/Ψ with the nuclei or with the particles produced in the collision [fr

  12. Fusion-fission in Ar-heavy nuclei collisions

    International Nuclear Information System (INIS)

    Zaric, Alexandre

    1984-01-01

    Fusion-fission products have been studied for three reactions: Ar + Au, Ar + Bi and Ar + U (5.25-7.5 MeV/u). By measuring symmetric fragmentation components (fission-like events), cross sections for fusion were deduced and compared with the prediction of static and dynamic models. With increasing projectile energy, the width of the mass distributions strongly increases for the two lighter systems. By contrast, for Ar + U it remains essentially constant at a very large value. These results clearly demonstrate that the large increase of the width of the mass distribution cannot be attributed simply to large values of the angular momentum. However, they can be explained by the occurrence of a different dissipative process, fast fission, which can be expected if there is no barrier to fission. For the reaction Ar + Au, the total kinetic-energy distributions were also studied in detail. In this case fast fission occurs only at high incident energy. The average total kinetic energy (TKE) was found to be constant with increasing energy. (author) [fr

  13. Formation and Decay of Hot Nuclei in Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Planeta, R.; Gawlikowicz, W.; Grotowski, K.

    2000-01-01

    The properties of the multifragmentation of ''hot sources'' produced in the 40 Ca+ 40 Ca reaction have been studied at a beam energy 35 MeV/nucleon. Two signatures of prompt multifragmentation, which make use of special features of particle emission from the ''freeze out volume'', together with an analysis of the reduced relative velocity between pairs of intermediate mass fragments, indicate the presence of a transition from sequential decay to prompt multifragmentation at an excitation energy of about 3 MeV/nucleon. (author)

  14. Measurement of charge and energy spectra of heavy nuclei aboard Cosmos-936 artificial Earth satellite

    International Nuclear Information System (INIS)

    Dashin, S.A.; Marennyy, A.M.; Gertsen, G.P.

    1982-07-01

    Charge and energy spectra of heavy charged particles were measured. Measurements were performed by a package of dielectric track detectors mounted behind the shield of 60-80 kg m to the minus second power thick. The charge of nuclei was determined from the complete track length. A group of 1915 tracks of nuclei with Z 6 in the energy range 100-450 MeV/nuclon were identified. The differential charge spectrum of nuclei with 6 Z 28 and the energy spectrum of nuclei of the iron group were built

  15. Empirical description of the element production cross sections in dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Wollersheim, H.J.

    1984-06-01

    Correlations between experimental observables yield analytical expressions for the energy dsigma/dE and element distributions dsigma/dZ, d 2 sigma/dZdE in dissipative collisions. These empirical formulas are applied to twelve heavy ion systems at bombarding energies well above the Coulomb barrier. The element production can be calculated for all kinetic energies of the reaction fragments from the quasi-elastic region down to a minimum total kinetic energy Vsub(c)sup(def) which is the result of the Coulomb repulsion of two deformed nuclei prior to scission. In cases where the dissipative collisions are the dominant part of the reaction process, the deformed Coulomb energy can also be deduced from the total reaction cross section. For these heavy ion systems the empirical formulas depend only on quantities of the ingoing channels. Especially, the normalization of the Gaussian shaped element distributions indicates that the reminiscence on the entrance channel is not completely lost in dissipative collisions. For the 209 Bi + 136 Xe reaction at a laboratory bombarding energy of 1130 MeV the energy and element distributions are calculated which show an excellent agreement with the experimental data. (orig.)

  16. Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions

    OpenAIRE

    Uphoff, Jan

    2014-01-01

    In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of...

  17. Pion source parameters in heavy ion collisions

    International Nuclear Information System (INIS)

    Crowe, K.M.; Bistirlich, J.A.; Bossingham, R.R.

    1984-12-01

    Following the early work of Goldhaber, Lee, and Pais, many experiments have used the momentum correlations between identical bosons to determine the space-time extent of the pion source for various reactions between elementary hadrons. This technique, known as intensity interferometry, has recently been applied to nuclear collisions at both intermediate and very high energies. Here we report on measurements of the radius and lifetime of the pion source in the reactions 1.8 A GeV 40 Ar + KCl → 2π/sup +-/ + X, 1.8 A GeV 20 Na + NaF → 2π - + X, and 1.71 A GeV 56 Fe + Fe → 2π - + X. 11 references

  18. Total charge fluctuation in heavy ion collision

    International Nuclear Information System (INIS)

    Mishra, D.K.; Netrakanti, P.K.; Mohanty, A.K.; Garg, P.

    2014-01-01

    Event-by-event fluctuations of positive, negative, total and net charge produced in relativistic nuclear collisions have been of interest to explore phase transition and/or a critical end point (CEP) which is believed to exist somewhere between the hadronic phase and the quark-gluon phase of the QCD phase diagram. The entropy is closely related to the particle multiplicity, and it is expected to be approximately conserved during the evolution of the matter created at the early stage. The entropy fluctuations are not directly observed but can be inferred from the experimentally measured quantities. The final state mean multiplicity is proportional to the entropy of the initial state ( ∼ S). The particle multiplicity can be measured on an event-by-event basis, whereas the entropy is defined by averaging the particle multiplicities in the ensemble of events. Thus, the dynamical entropy fluctuations can be measured experimentally by measuring the fluctuations in the mean multiplicity

  19. Collective flow studies in central collisions between nuclei at several hundreds of MeV per nucleon

    International Nuclear Information System (INIS)

    Demoulins, M.

    1990-02-01

    The main purpose for studying collisions between heavy nuclei, in the 200-2000 MeV per nucleon energy range, is to determine the equation of state and the properties of dense and hot nuclear matter. The insensitiveness of the inclusive data to the equation of state has led experimental physicists to build large solid angle detectors capable of detecting simultaneously the tens of particles emitted in each event. Such measurements allow to estimate the impact parameter, the reaction plane on an event-by-event basis, and to calculate various global variables involving all particles emitted in each event. In this thesis, we study global variables which characterize the nuclear matter collective flow in a direction which is different from the direction of incident motion, for argon-nucleus collisions at 400 and 600 MeV by nucleon and for neon-nucleus collisions at 400 and 800 MeV by nucleon. The measurements have been performed with the DIOGENE detector installed at SATURNE. For the argon-beam experiments, two parallel plate avalanche counters have been used to locate the interaction point of each incoming ion with the target, which improves the reconstruction of the particle tracks in the DIOGENE central chamber. Double differential cross-sections, in the reaction plane and in the plane orthogonal to the reaction plane, are fitted with two-dimensional Gaussian distributions. Through this procedure, we get rid of geometrical acceptance effects. Several quantities, related to the collective flow (flow angle, aspect ratios, flow parameter), are thus extracted and corrected for the fluctuations of the estimated reaction plane. For argon-nucleus collisions at 400 MeV by nucleon, our results are in agreement with results obtained by other groups with different methods. For argon-nucleus collisions, the discrepancy between our experimental results and predictions of intranuclear cascade calculations is increasing with the mass asymmetry of the colliding system [fr

  20. Collective flow studies in central collisions between nuclei at several hundreds of MeV per nucleon

    International Nuclear Information System (INIS)

    Demoulins, M.

    1989-01-01

    The main purpose for studying collisions between heavy nuclei, in the 200-2000 MeV per nucleon energy range, is to determine the equation of state and the properties of dense and hot nuclear matter. The insensitiveness of the inclusive data to the equation of state has led experimental physicists to build large solid angle detectors capable of detecting simultaneously the tens of particles emitted in each event. Such measurements allow to estimate the impact parameter, the reaction plane on an event-by-event basis, and to calculate various global variables involving all particles emitted in each event. In this thesis, we study global variables which characterize the nuclear matter collective flow in a direction which is different from the direction of incident motion, for argon-nucleus collisions at 400 and 600 MeV by nucleon and for neon-nucleus collisions at 400 and 800 MeV by nucleon. The measurements have been performed with the DIOGENE detector installed at SATURNE. For the argon-beam experiments, two parallel plate avalanche counters have been used to locate the interaction point of each incoming ion with the target, which improves the reconstruction of the particle tracks in the DIOGENE central chamber. Double differential cross sections, in the reaction plane and in the plane orthogonal to the reaction plane, are fitted with two-dimensional Gaussian distributions. Through this procedure, we get rid of geometrical acceptance effects. Several quantities, related to the collective flow (flow angle, aspect ratios, flow parameter), are thus extracted and corrected for the fluctuations of the estimated reaction plane. For the argon-nucleus collisions at 400 MeV by nucleon, our results are in agreement with results obtained by other groups with different methods. For argon-nucleus collisions, the discrepancy between our experimental results and predictions of intranuclear cascade calculations is increasing with the mass asymmetry of the colliding system [fr

  1. On a calculation of nucleon knock-out cross sections in a collision of relativistic nuclei

    International Nuclear Information System (INIS)

    Goryachev, B.I.; Lin'kova, N.V.

    1985-01-01

    It is shown that in the framework of the two-stage model one can obtain knock-out cross sections of the given number of nucleons from the nucleus-target at a certain number of nucleons knocked out from the nucleus-projectile. The first stage is considered as a fast process of nucleon collisions of interacting nuclei which is completed with knock out of one or several nucleons. The second stage-comparatively slow - is related to de-excitation of nuclei-fragments

  2. TDHF calculations for heavy-ion collisions

    International Nuclear Information System (INIS)

    Dhar, A.K.

    1981-01-01

    In considering the TDHF theory for heavy-ion reaction calculations it is shown that this parameter-free approach spans a wide range of nuclear phenomena ranging from elastic scattering to fusion, including dissipative and collective processes, in a unified manner. The subject is considered under the headings: (1) TDHF equations, conservation laws, effective hamiltonian and initial conditions. (2) Symmetries and filling approximation. (3) Qualitative features of TDHF dynamics. (4) Comparison with experiment (fusion results, deep-inelastic reaction studies, particle emission from TDHF calculations). (U.K.)

  3. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  4. Microscopic study of proton emission from heavy nuclei

    International Nuclear Information System (INIS)

    Sahu, B.B.; Patra, S.K.; Agarwalla, S.K.

    2011-01-01

    In recent years many theoretical calculations have been employed to explain the observed lifetimes of proton radioactivity and alpha decay processes in the region of proton rich nuclei. These data are very promising for the analysis of possible irregularities in the structure of these proton-rich nuclei. They are also of great interest in rapid proton capture processes. Some new results for proton radioactivity in this region of proton-rich nuclei have indicated that the proton emission mode is rather competitive with the alpha decay one. In the energy domain of radioactivity, proton can be considered as a point charge having highest probability of being present in the parent nucleus

  5. Heavy ion interactions of deformed nuclei. Progress report, May 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1984-11-01

    This progress report describes the main topics that were investigated during the reporting period: (a) a new microscopic approach to the calculation of heavy ion interaction potentials; (b) the dynamical orientation of deformed heavy nuclei near the distance of closest approach; and (c) the theory of Coulomb fission (project finished in Sept.)

  6. Exotic charmed baryon production in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Zimanyi, J.; Biro, T.S.; Levai, P.

    1993-01-01

    The authors investigate multi-heavy baryon formation in Au + Au collision using an extended version of the combinatoric break up model for rehadronization. A penalty factor, p, is introduced to characterize the coalescence probability of a light quark with a heavy one. At LHC energy large production rate is found for certain multi-heavy baryons and mesons such as Ω ccc , Ξ cc , J/Ψ and suppression for Λ c , D. They speculate also on the possible existence of a heavy bottom-charm six-quark baryon. A semiclassical and a gaussian estimate reveal that the octet-octet bbb-cc configuration can be energetically favored with respect to the singlet-singlet one

  7. Production and desexcitation of hot nuclei in 40Ar + 238U collisions at 27 MeV/u

    International Nuclear Information System (INIS)

    Jacquet, D.

    1987-01-01

    The selection of hot nuclei can be achieved through the folding angle of the coincident fission fragments. At this bombarding energy a distinct fusion component shows up in the folding angle correlation function corresponding to the most central collisions. The mass of the fission fragments decreases with increasing linear momentum transfer; the energy dissipated into the target nucleus is proportional to the momentum transfer. The mass distribution full width at half maximum increases with dissipated energy and this can be understood as the result of thermal fluctuations. The light charged particles detected in coincidence with the fission fragments exhibit, at least backwards, the characteristic behaviour of evaporative particles from a thermally equilibrated source. The fused nucleus is revealed as the dominant emitter. The observed energy spectra can be reproduced in a Monte Carlo type simulation assuming that about 80% of the particles arise from the fused nuclei and only 20 % from the fully accelerated fission fragments. A detailed analysis of the shape of the spectra allows to precise the average characteristics of the emitter: it is quite deformed has a very broad spin distribution and a temperature from 4 to 5 MeV. All these characteristics are consistently deduced in semi-classical dynamical calculations based on the Landau-Vlasov equation. The pre-fission particle emission probabilities are shown to be much larger than would predict a purely statistical model for such heavy and hot nuclei. Such a behaviour can only be understood if the dynamics of the collision is taken into account [fr

  8. A pocketful of tin isomers from heavy-ion collisions

    International Nuclear Information System (INIS)

    Daly, P.J.; Broda, R.; Fornal, B.; Mayer, R.H.; Nisius, D.; Bearden, I.; Benet, P.; Grabowski, Z.W.; Lauritsen, T.; Carpenter, M.; Janssens, R.V.F.; Khoo, T.L.; Liang, Y.; Lunardi, S.; Blomqvist, J.

    1992-01-01

    Reaction products of 122,124 Sn + 76 Ge( 8O Se) collisions 10--15% above the barrier have been studied by γ-ray spectroscopy, and new yrast isomers in 119--124 Sn isotopes have been identified and characterized. B(E2) values determined for (νh 11/2 ) n 10 + → 8 + transitions in even-A Sn nuclei pinpoint half-filling of the νh 11/2 subshell close to N = 73. In odd-A Sn isotopes, 19/2 + isomers with 1--10 μs half-lives occur systematically, and higher-lying (νh ll/2 ) n v=3 27/2 - isomers in 119 Sn and 121 Sn have also been identified. These deep inelastic excitation processes were found to populate a large number of neutron-rich nuclei strongly enough for yrast spectroscopy studies

  9. Fusion barriers in heavy ion collisions

    International Nuclear Information System (INIS)

    Zhu Long; Su Jun; Xie Wenjie; Guo Chenchen; Zhang Donghong; Zhang Fengshou

    2014-01-01

    Study of fusion barrier is very important for people to better understand fusion reactions. In this paper the Improved Isospin-dependent Quantum Molecular Dynamics (ImIQMD) model is introduced firstly. Then the shell correction effects, energy dependence, isospin effects and orientation effects of fusion barrier are studied. The fusion barriers for the fusion reactions "4"0Ca + "4"0Ca, "4"8Ca + "2"0"8Pb, "4"8Ca + "2"0"4Pb and "1"6O + "1"5"4Sm are extracted. The negative shell correction energies lower potential barriers of a certain reaction. A complex phenomenon of energy dependence is observed. It is also found that incident energy dependence of the barrier radius and barrier height shows opposite behaviors. The Coulomb potential shows weak energy dependence when distance of two colliding nuclei is lower than the touching distance. The isospin effects of the potential barrier are investigated. The orientation effects of the potential barrier are also discussed for the system "1"6O + "1"5"4Sm. (authors)

  10. Performance of centrality determination in heavy-ion collisions with CBM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Klochkov, Viktor; Selyuzhenkov, Ilya [GSI, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The goal of the CBM experiment at FAIR is to investigate the properties of compressed baryonic matter. The measurement of physics observables in heavy-ion collisions requires information about event geometry. A magnitude of the impact parameter, which is among the most important parameters to describe collision geometry, cannot be measured directly in experiment. One can estimate it by measuring produced particle's multiplicities or energy of the spectator fragments. Typically, the collisions are divided into centrality classes which corresponds to the ranges of impact parameter with e.g. centrality class 0-5% corresponds to most central events, and 95-100% to the most peripheral collisions. Sensitivity to the range of impact parameters with the Silicon Tracking System (STS) and Projectile Spectator Detector (PSD) to select centrality classes in the CBM experiment will be presented. The STS is measuring the multiplicity of the particles produced in the nuclei overlap zone and different areas of the PSD are sensitive to both spectator fragments and produced particles. Supported by the GSI Helmholtzzentrum fuer Schwerionenforschung.

  11. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  12. The Shape and Flow of Heavy Ion Collisions (490th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Schenke, Bjoern [BNL Physics Department

    2014-12-18

    The sun can’t do it, but colossal machines like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven Lab and Large Hadron Collider (LHC) in Europe sure can. Quarks and gluons make up protons and neutrons found in the nucleus of every atom in the universe. At heavy ion colliders like RHIC and the LHC, scientists can create matter more than 100,000 times hotter than the center of the sun—so hot that protons and neutrons melt into a plasma of quarks and gluons. The particle collisions and emerging quark-gluon plasma hold keys to understanding how these fundamental particles interact with each other, which helps explain how everything is held together—from atomic nuclei to human beings to the biggest stars—how all matter has mass, and what the universe looked like microseconds after the Big Bang. Dr. Schenke discusses theory that details the shape and structure of heavy ion collisions. He will also explain how this theory and data from experiments at RHIC and the LHC are being used to determine properties of the quark-gluon plasma.

  13. Muon transfer rates in collisions of hydrogen isotope mesic atoms on 'bare' nuclei. Multichannel adiabatic approach

    International Nuclear Information System (INIS)

    Korobov, V.I.; Melezhik, V.S.; Ponomarev, L.I.

    1992-01-01

    A numerical scheme for solving the problem of slow collisions in the three-body adiabatic approach is applied for calculation of muon transfer rates in collisions of hydrogen isotope atoms on bare nuclei. It is demonstrated that the multichannel adiabatic approach allows one to reach high accuracy results (∼3%) estimating the cross sections of charge transfer processes which are the best ones up to date. The method is appliable in a wide range of energies (0.001-50 eV) which is of interest for analysis of muon catalysed fusion experiments. 20 refs.; 3 figs.; 5 tabs

  14. Mass and charge distribution in heavy-ion collisions

    International Nuclear Information System (INIS)

    Beck, F.; Dworzecka, M.; Feldmeier, H.

    1978-01-01

    A statistical model based on the independent particle picture is used to calculate mass and charge distributions in deep inelastic heavy-ion collisions. Different assumptions on volume and charge equilibrations are compared with measured variances of charge distributions. One combination of assumptions is clearly favoured by experiment, and gives a reasonable description of the variance versus energy loss curves up to energy losses of about 200 MeV in the heavy systems Kr+Ho and Xe+Bi, and up to about 60 MeV for the light system Ar+Ca [af

  15. Delta-electron emission in fast heavy ion atom collisions

    International Nuclear Information System (INIS)

    Schmidt-Boecking, H.; Ramm, U.; Berg, H.; Kelbch, C.; Feng Jiazhen; Hagmann, S.; Kraft, G.; Ullrich, J.

    1991-01-01

    The δ-electron emission processes occuring in fast heavy ion atom collisons are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed. (orig.)

  16. Heavy quark production in ep collisions at HERA

    International Nuclear Information System (INIS)

    Derrick, M.

    1987-01-01

    There are substantial production rates of heavy quarks from ep collisions at HERA. The center of mass energy of about 300 GeV is well above any b-quark threshold effects, and for b/bar b/ production, the cross section is estimated to be 3.3 nb per event, leading to rates approaching 10 6 b mesons per year. The rates for c/bar c/ production are about two orders of magnitude greater. Two major detectors are under construction and a program of heavy quark physics will start in 1990. 3 refs., 4 figs

  17. Particle Interferometry for Relativistic Heavy-Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim; Wiedemann, Urs Achim; Heinz, Ulrich

    1999-01-01

    In this report we give a detailed account on Hanbury Brown/Twiss (HBT) particle interferometric methods for relativistic heavy-ion collisions. These exploit identical two-particle correlations to gain access to the space-time geometry and dynamics of the final freeze-out stage. The connection between the measured correlations in momentum space and the phase-space structure of the particle emitter is established, both with and without final state interactions. Suitable Gaussian parametrizations for the two-particle correlation function are derived and the physical interpretation of their parameters is explained. After reviewing various model studies, we show how a combined analysis of single- and two-particle spectra allows to reconstruct the final state of relativistic heavy-ion collisions.

  18. Energy density, stopping and flow in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Sorge, H.; von Keitz, A.; Mattiello, R.; Stoecker, H.; Greiner, W.

    1990-01-01

    The Lorentz invariant molecular dynamics approach (RQMD) is employed to investigate the space-time evolution of heavy ion collisions at energies (E kin = 10AGeV hor-ellipsis 200AGeV). The calculations for various nucleus nucleus reactions show a high degree of stopping power. The importance of secondary rescattering at these beam energies is demonstrated. The computed nucleon rapidity distributions are compared to available experimental data. It is demonstrated that nonlinear, collective effects like full stopping of target and projectile and matter flow could be expected for heavy projectiles only. For nuclear collisions in the Booster era at BNL and for the lead beam at CERN SPS the authors predict a stimulating future: then a nearly equilibrated, long lived (8 fm/c) macroscopic volume of very high energy density (> 1 GeV/fm 3 ) and baryon density (> 5 times ground state density) is produced

  19. Electromagnetic pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1988-01-01

    We survey the production of electron, muon and tauon pairs in collisions between nuclei at ultra-relativistic energies. Such studies enhance our understanding of the role of the vacuum in field theory, and provide essential input for several experimental programs. A variety of models for the nuclear and nucleon form factors have been considered, revealing some degree of sensitivity to assumptions about sub-nuclear structure. We predict that the cross sections, even at high invariant masses and transverse momenta, are large on hadronic scales, and should act as useful probes of nuclear and nucleon form factors. 21 refs., 5 figs

  20. Production of spectator hypermatter in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Botvina, A. S.; Gudima, K. K.; Steinheimer, J.; Bleicher, M.; Mishustin, I. N.

    2011-01-01

    Possible formation of large hyperfragments in relativistic heavy-ion collisions is studied within two transport models, the Dubna cascade model and UrQMD model. Our goal is to explore a new mechanism for the formation of strange nuclear systems via capture of hyperons by relatively cold spectator matter produced in semiperipheral collisions. We investigate basic characteristics of the produced hyperspectators and estimate the production probabilities of multistrange systems. Advantages of the proposed mechanisms over an alternative coalescence process are analyzed. We also discuss how such hyperfragments can be detected by taking into account the background of free hyperons. This investigation is important for the development of new experimental methods for producing hypernuclei in peripheral relativistic nucleus-nucleus collisions, which are now underway at GSI and are planned for the future FAIR and NICA facilities.

  1. Mean field instabilities in dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Colonna, M.; Guarnera, A.; Istituto Nazionale di Fisica Nucleare, Bologna; Catania Univ.; Di Torro, M.; Catania Univ.

    1995-01-01

    We discuss new reaction mechanisms that may occur in semi-peripheral heavy ion collisions at intermediate energies. In particular we focus on the dynamics of the overlapping zone, showing the development of neck instabilities, coupled with the possibility of an increasing amount amount of dynamical fluctuations. In a very selected beam energy range between 40 and 70 MeV/u we observe an important interplay between stochastic nucleon exchange and the random nature of nucleon-nucleon collisions. Expected consequences are intermediate mass fragment emissions from the neck region and large variances in the projectile-like and target-like observables. The crucial importance of a time matching between the growth of mean field instabilities and the separation of the interacting system is stressed. Some hints towards the observation of relatively large instability effects in deep inelastic collisions at lower energy are finally suggested. (authors). 29 refs., 5 figs., 2 tabs

  2. Multifragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Jacak, B.V.; Britt, H.C.; Claesson, G.

    1986-01-01

    There has been considerable recent interest in the production of intermediate mass fragments (A > 4) in intermediate and high energy nucleus-nucleus collisions. The mechanism for production of these fragments is not well understood and has been described by models employing a variety of assumptions. Some examples are: disassembly of a system in thermal equilibrium into nucleons and nuclear fragments, liquid-vapor phase transitions in nuclear matter, final state coalescence of nucleons and dynamical correlations between nucleons at breakup. Previous studies of fragment production, with one exception, have been single particle inclusive measurements; the observed fragment mass (or charge) distributions can be described by all of the models above. To gain insight into the fragment production mechanism, the authors used the GSI/LBL Plastic Ball detector system to get full azimuthal coverage for intermediate mass fragments in the forward hemisphere in the center of mass system while measuring all the light particles in each event. The authors studied the systems 200 MeV/nucleon Au + Au and Au + Fe

  3. Search for short-lived particles produced on nuclei with a heavy liquid mini bubble chamber

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to search for short-lived particles produced in hadronic interactions on nuclei with our high resolution heavy liquid mini bubble chamber BIBC, aiming to establish the cross-section for associated production in hadron-nucleus collisions, its $A$-dependence and an approximate value of the lifetime. The chamber will be operated at a bubble density of 290 bubbles/cm and with an apparent bubble size of 30 $\\mu$m in real space. In test runs at CERN we measured detection efficiencies which, together with simulations of $D\\bar{D}$ production and decay, lead to a sensitivity of 0.25 events/($\\mu$b/N) per day if the lifetime is of the order of $5\\times10^{-13}$s. A null result after 10 days running time would set an upper limit on the production cross section to $3 \\mu$b. \\\\ \\\\ In order to measure the momenta of charged decay products of short-lived particles, the bubble chamber will be placed 1.80 m upstream of the streamer chamber of the NA5 experiment (MPI). The geometrical acceptance ...

  4. Transport theory of dissipative heavy-ion collisions

    International Nuclear Information System (INIS)

    Norenberg, W.

    1979-01-01

    The lectures present the formulation of a transport theory, the derivation of a practicable transport equation (Fokker-Planck equation) and the evaluation of transport coefficients for dissipative (or deeply inelastic) heavy-ion collisions. The applicability of the theoretical concept is tested with remarkable success in the analyses of various experimental information (mass transfer, angular-momentum dissipation and energy loss). Some critical remarks on the present situation of transport theories are added. Future developments are outlined. (author)

  5. A model for high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Myers, W.D.

    1978-01-01

    A model is developed for high-energy heavy-ion collisions that treats the variation across the overlap region of the target and projectile in the amount of energy and momentum that is deposited. The expression for calculating any observable takes the form of a sum over a series of terms, each one of which consists of a geometric, a kinematic, and a statistical factor. The geometrical factors for a number of target projectile systems are tabulated. (Auth.)

  6. Transverse flow of kaons in heavy-ion collisions

    CERN Document Server

    Zheng Yu Ming; Fuchs, C; Faessler, A; Xiao Wu; Hua Da Ping; Yan Yu Peng

    2002-01-01

    The transverse flow of positively charged kaons from heavy-ion collisions at intermediate energy is investigated within the framework of the quantum molecular dynamics model. The calculated results show that the experimental data are only consistent with those including the kaon mean-field potential from the chiral Lagrangian. This indicates that the transverse flow pattern of kaons is a useful probe of the kaon potential in a nuclear medium

  7. The multistring model VENUS for ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.

    1988-02-01

    The event generator VENUS is based on a multistring model for heavy ion collisions at ultrarelativistic energies. The model is a straightforward extension of a successful model for soft proton-proton scattering, the latter one being consistent with e/sup /plus//e/sup /minus// annihilation and deep inelastic lepton scattering. Comparisons of VENUS results with pA and recent AA data alow some statements about intranuclear cascading. 18 refs., 7 figs

  8. Realistic modelling of jets in heavy-ion collisions

    International Nuclear Information System (INIS)

    Young, Clint; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2013-01-01

    The reconstruction of jets in heavy-ion collisions provides insight into the dynamics of hard partons in media. Unlike the spectrum of single hadrons, the spectrum of jets is highly sensitive to q -hat ⊥ , as well as being sensitive to partonic energy loss and radiative processes. We use martini, an event generator, to study how finite-temperature processes at leading order affect dijets

  9. Monte-Carlo simulation of heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    We present Monte-Carlo simulations for heavy-ion collisions combining PYTHIA and the McGill-AMY formalism to describe the evolution of hard partons in a soft background, modelled using hydrodynamic simulations. MARTINI generates full event configurations in the high p T region that take into account thermal QCD and QED effects as well as effects of the evolving medium. This way it is possible to perform detailed quantitative comparisons with experimental observables.

  10. Comparison of models of high energy heavy ion collision

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1977-01-01

    Some of the main theoretical developments on heavy ion collisions at energies (0.1 to 2.0) GeV/nuc are reviewed. The fireball, firestreak, hydrodynamic (1-fluid, 2-fluids), ''row on row'', hard sphere and intranuclear cascades, and classical equations of motion models are discussed in detail. Results are compared to each other and to measured Ne + U → p + X reactions

  11. Colour rope model for extreme relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Biro, T.S.; Nielsen, H.B.; Knoll, J.

    1984-04-01

    Our goal is to investigate the possible cumulative effects of the colour fields of the observable meson multiplicity distribution in the central rapidity region in extreme relativistic heavy ion collisions. In the first Chapter we overview the space-time picture of the string formation in a central heavy ion collision. We take into account trivial geometrical factors in a straight line geometry. In the second Chapter we consider the colour chargation process of heavy ions as a random walk. We calculate the expectation value and the relative standard deviation of the total effective charge square. In the third Chapter we consider the stochastic decay of a K-fold string-rope to mesons by the Schwinger-mechanism. We calculate the expected lifetime of a K-fold string and the time for the first quark antiquark pair creation. In the fourth Chapter we deal with the meson production of a K-fold rope relative to that of a single string and hence we look for a scaling between A + A and p + p collisions. (orig./HSI)

  12. QMD simulation of multifragment production in heavy ion collisions at E/A=600 MeV

    International Nuclear Information System (INIS)

    Begemann-Blaich, M.; Mueller, W.F.J.; Aichelin, J.; Hubele, J.; Imme, G.; Leray, S.; Lindenstruth, V.; Liu, Z.; Lynen, U.; Meijer, R.J.; Milkau, U.; Moroni, A.; Ogilvie, C.A.; Pochodzalla, J.; Raciti, G.; Schuettauf, A.; Stuttge, L.; Tucholski, A.

    1993-04-01

    With the ALADIN forward spectrometer the fragmentation of gold nuclei at 600 MeV per nucleon after interaction with carbon, aluminum, copper and lead targets has been investigated. The results are compared to quantum-molecular-dynamics calculations using soft and hard equations of state as well as soft equation of state with momentum dependent forces. Whereas the QMD has been successfully applied to heavy ion collisions at lower energies, it is not possible to reproduce the fragment distributions and the light particle multiplicities observed in this experiment at relativistic energies. To study the reasons for the discrepancy between the experimental data and the simulations, we investigated the time evolution of the nuclear system after a collision and the disintegration pattern of excited nuclei in the QMD approach. (orig.). 9 figs

  13. Open heavy flavor and quarkonia measurements in heavy-ion collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Bielcik Jaroslav

    2014-04-01

    Full Text Available The properties of the hot and dense nuclear matter produced at RHIC in heavy-ion collisions can be investigated in multiple ways by heavy flavor production. The STAR and PHENIX experiments have excellent capability to study both open heavy flavor and quarkonia. Heavy quarks are produced in early stage of the collisions and the mechanisms of their interaction with nuclear matter are not yet well understood. The open heavy flavor hadrons can be studied using electrons from their semileptonic decays or via direct reconstruction through their hadronic decay channels. The heavy quarkonia production is expected to be sequentially suppressed depending on the temperature of the produced nuclear matter. However, cold nuclear matter effects play an important role and have to be well understood. In this paper we report recent results from the RHIC heavyion program on non-photonic electrons, direct reconstruction of charm mesons, J/ψ as well as ϒ in p+p, d+Au and Au+Au collisions at √sNN = 200 GeV.

  14. Heavy quarks thermalization in heavy-ion ultrarelativistic collisions: elastic or radiative?

    International Nuclear Information System (INIS)

    Gossiaux, Pol Bernard; Guiho, Vincent; Aichelin, Joerg

    2006-01-01

    We present a dynamical model of heavy quark evolution in the quark-gluon plasma (QGP) based on the Fokker-Planck equation. We then apply this model to the case of ultrarelativistic nucleus-nucleus collisions performed at RHIC in order to investigate which experimental observables might help to discriminate the fundamental process leading to thermalization

  15. On peculiarities of the cascade γ decay of heavy nuclei

    International Nuclear Information System (INIS)

    Boneva, S.T.; Khitrov, V.A.; Popov, Yu.P.; Sukhovoj, A.M.; Vasil'eva, E.V.; Yazvitskij, Yu.S.

    1987-01-01

    Comparison of measured and calculated by statistical theory sums of two-quanta cascade intensities in compound-nuclei 163 ≤ A ≤ 183 points to the dependence of cascade intensity on the structure of initial and intermediate levels. The dependence of two-quanta cascade intensity sum on reduced neutron widths of compound states of even-even nuclei-targets of rare earth regions is detected. In 175 Yb and 179 Hf nuclei a considerable increase in the intensity of two-quanta cascades at the energy of their intermediate level in the range of the calculated position of one-quasiparticle states of the Saxon-Woods deformed potential is observed

  16. Chemical equilibration in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Brown, Gerald E.; Lee, Chang-Hwan; Rho, Mannque

    2005-01-01

    In the hadronic sector of relativistic heavy ion physics, the ρ<-2π reaction is the strongest one, strong enough to equilibrate the ρ with the pions throughout the region from chemical freezeout to thermal freezeout when free-particle interactions (with no medium-dependent effects) are employed. Above the chiral restoration temperature, only ρ's and π's are present, in that the chirally restored A1 is equivalent to the ρ and the mesons have an SU(4) symmetry, with no dependence on isospin and negligible dependence on spin. In the same sense the σ and π are 'equivalent' scalars. Thus the chirally restored ρ<-2π exhaust the interspecies transitions. We evaluate this reaction at Tc and find it to be much larger than below Tc, certainly strong enough to equilibrate the chirally restored mesons just above Tc. When emitted just below Tc the mesons remain in the Tc+ε freezeout distribution, at least in the chiral limit because of the Harada-Yamawaki 'vector manifestation' that requires that mesonic coupling constants go to zero (in the chiral limit) as T goes to Tc from below. Our estimates in the chiral limit give deviations in some particle ratios from the standard scenario (of equilibrium in the hadronic sector just below Tc) of about double those indicated experimentally. This may be due to the neglect of explicit chiral symmetry breaking in our estimates. We also show that the instanton molecules present above Tc are the giant multipole vibrations found by Asakawa, Hatsuda and Nakahara and of Wetzorke et al. in lattice gauge calculations. Thus, the matter formed by RHIC can equivalently be called: chirally restored mesons, instanton molecules, or giant collective vibrations. It is a strongly interacting liquid

  17. Ultrarelativistic heavy ion collisions: the first billion seconds

    Energy Technology Data Exchange (ETDEWEB)

    Baym, Gordon

    2016-12-15

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter – the quark-gluon plasma primarily – and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  18. Approach to equilibrium in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Epelbaum, Thomas

    2014-01-01

    This thesis deals with the theory of the early stages of a heavy ion collision. Just after such a collision, the matter produced - called the Quark-Gluon-Plasma (QGP) - has been shown to be far out of thermal equilibrium. One would like to know whether the QGP thermalizes, and what is the typical time scale for this. Proving that the QGP thermalizes would also justify from first principles the hydrodynamical treatment of the subsequent evolution of a heavy ion collision. After having recalled some essential theoretical concepts, the manuscript addresses these questions in two different theories. In a first part, we study a scalar field theory. Starting from an out of equilibrium initial condition, one studies the approach to equilibrium in a fixed volume or in a one-dimensional expanding system. In both cases, clear signs of thermalization are obtained: an equation of state is formed, the pressure tensor becomes isotropic and the occupation number approaches a classical thermal distribution. These results are obtained thanks to the classical statistical approximation (CSA), that includes contributions beyond the Leading Order perturbative calculation. In a second part, the Color Glass Condensate - a quantum chromodynamics (QCD) effective theory well suited to describe the early life of the QGP - is used to treat more realistically the approach to thermalization in heavy ion collisions. After having derived some analytical prerequisites for the application of the CSA, the numerical simulations performed with the Yang-Mills equations show evidences of an early onset of hydrodynamical behavior of the QGP: the system becomes isotropic on short time scales, while the shear viscosity over entropy ratio is very small, which is characteristic of a quasi perfect fluid. (author) [fr

  19. Towards relativistic heavy ion collisions by small steps towards the stars. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.K.

    1979-03-01

    A review lecture is given on current attempts to search for the exotic processes occurring in relativistic heavy ion collisions. From peripheral collisions the discussion proceeds to central collisions and lastly the search for the exotic, in which the tools developed for the study of peripheral and central collisions are used. 200 references. (JFP)

  20. Towards relativistic heavy ion collisions by small steps towards the stars

    International Nuclear Information System (INIS)

    Scott, D.K.

    1979-03-01

    A review lecture is given on current attempts to search for the exotic processes occurring in relativistic heavy ion collisions. From peripheral collisions the discussion proceeds to central collisions and lastly the search for the exotic, in which the tools developed for the study of peripheral and central collisions are used. 200 references

  1. Breakdown of NpNn scheme in very heavy nuclei

    International Nuclear Information System (INIS)

    Varshney, A.K.; Singh, M.; Kumar, Rajesh; Gupta, K.K.; Gupta, D.K.

    2016-01-01

    The proton neutron interaction has been considered the key ingredient in the development of configuration mixing, collectivity and ultimately deformation in atomic nuclei for over five decades. Phenomenologically, the correlation of the integrated valance p - n interaction with the onset of collectivity and deformation has been described in terms of NpNn scheme

  2. Dynamic deformation theory of spherical and deformed light and heavy nuclei with A = 12-240

    International Nuclear Information System (INIS)

    Kumar, Krishna.

    1979-01-01

    Deformation dependent wave functions are calculated for different types of even-even nuclei (spherical, transitional, deformed; light, medium, heavy) without any fitting parameters. These wave functions are employed for the energies, B(E2)'s, quadrupole and magnetic moments of selected nuclei with A = 12-240 (with special emphasis on 56 Fe, 154 Gd), and for neutron cross sections of 148 Sm, 152 Sm

  3. Nuclear quantum many-body dynamics: from collective vibrations to heavy-ion collisions

    International Nuclear Information System (INIS)

    Simenel, Cedric

    2012-01-01

    This report gives a summary of my research on nuclear dynamics during the past ten years. The choice of this field has been motivated by the desire to understand the physics of complex systems obeying quantum mechanics. In particular, the interplay between collective motion and single-particle degrees of freedom is a source of complex and fascinating behaviours. For instance, giant resonances are characterised by a collective vibration of many nucleons, but their decay may occur by the emission of a single nucleon. Another example could be taken from the collision of nuclei where the transfer of few nucleons may have a strong impact on the formation of a compound system is non trivial. To describe these complex systems, one needs to solve the quantum many-body problem. The description of the dynamics of composite systems can be very challenging, especially when two such systems interact. An important goal of nuclear physics is to find a unified way to describe the dynamics of nuclear systems. Ultimately, the same theoretical model should be able to describe vibrations, rotations, fission, all the possible outcomes of heavy-ion collisions (elastic and inelastic scattering, particle transfer, fusion, and multifragmentation), and even the dynamics of neutron star crust. This desire for a global approach to nuclear dynamics has strongly influenced my research activities. In particular, all the numerical applications presented in this report have been obtained from few numerical codes solving equations derived from the same variational principle. Beside the quest for a unified model of nuclear dynamics, possible applications of heavy-ion collisions such as the formation of new nuclei is also a strong motivation for the experimental and theoretical studies of reaction mechanisms. This report is not a review article, but should be considered as a reading guide of the main papers my collaborators and myself have published. It also gives the opportunity to detail some

  4. Determination of the excitation energy and angular momentum of the quasi-projectiles produced in the heavy ion collisions Xe + Sn

    International Nuclear Information System (INIS)

    Genouin-Duhamel, Emmanuel

    1999-01-01

    This work is a contribution to the study of properties of hot nuclei formed in heavy ion collisions at intermediate energies. The experiment has been performed with the INDRA multidetector. It is shown that most of the reaction cross section is associated with binary dissipative collisions, accompanied by the production of particles from a region between the two reaction partners. This study is focussed on excitation energy and angular momentum of projectile-like fragment (PLF) in 129 Xe + nat Sn reactions from 25 to 50 MeV per nucleon. Several methods are used to characterize hot nuclei (velocity, charge, mass and excitation energy). All these methods are compared between them and indicate that high energies are deposited in the nuclei during collision (it may exceed the nucleus binding energy). The angular momentum transferred into intrinsic spin to PLF in the peripheral collisions has been deduced from angular distributions and kinetic energies of the emitted light charged particles (atomic number smaller ar equal to 2). Both methods agree qualitatively. The spin values decrease with the violence of the collision. These values correspond to values averaged over the whole deexcitation chain of nuclei. The predictions of transport models reproduce qualitatively the most peripheral collisions and suggest that high spins are transferred to PLF (from 30 to 50 ℎ). Larger angular momentum values are observed at the lowest incident energy. The time hierarchy in the evaporation process and the role of mid-rapidity emission are also discussed. (author)

  5. Elliptic flow and energy loss of heavy quarks in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Greiner, Carsten; Xu, Zhe

    2011-01-01

    The space-time propagation of heavy quarks in ultrarelativistic heavy ion collisions is studied within the partonic transport model Boltzmann approach of multiparton scatterings (BAMPS). In this model heavy quarks interact with the partonic medium via binary scatterings. The cross sections for these interactions are calculated with leading-order perturbative QCD, but feature a more precise Debye screening derived within the hard thermal loop approximation and obey the running of the coupling. Within this framework the elliptic flow and the nuclear modification factor of heavy quarks are computed for the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) energies and compared to available experimental data. It is found that binary scatterings alone cannot reproduce the data and therefore radiative corrections have to be taken into account.

  6. Evidence for chiral symmetry restoration in heavy-ion collisions

    Science.gov (United States)

    Moreau, P.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Bratkovskaya, E. L.

    2017-11-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sNN} = 3- 20GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for particle production. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sNN} = 3- 20GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. Our results provide a microscopic explanation for the horn structure in the excitation function of the K+ /π+ ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sNN} ≈ 7GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance/disappearance of the horn structure is investigated as a function of the system size. We additionally present an analysis of strangeness production in the (T ,μB)-plane (as extracted from the PHSD for central Au+Au collisions) and discuss the perspectives to identify a possible critical point in the phase diagram.

  7. Particle-production mechanism in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bush, B.W.; Nix, J.R.

    1994-01-01

    We discuss the production of particles in relativistic heavy-ion collisions through the mechanism of massive bremsstrahlung, in which massive mesons are emitted during rapid nucleon acceleration. This mechanism is described within the framework of classical hadrodynamics for extended nucleons, corresponding to nucleons of finite size interacting with massive meson fields. This new theory provides a natural covariant microscopic approach to relativistic heavy-ion collisions that includes automatically spacetime nonlocality and retardation, nonequilibrium phenomena, interactions among all nucleons, and particle production. Inclusion of the finite nucleon size cures the difficulties with preacceleration and runaway solutions that have plagued the classical theory of self-interacting point particles. For the soft reactions that dominate nucleon-nucleon collisions, a significant fraction of the incident center-of-mass energy is radiated through massive bremsstrahlung. In the present version of the theory, this radiated energy is in the form of neutral scalar (σ) and neutral vector (ω) mesons, which subsequently decay primarily into pions with some photons also. Additional meson fields that are known to be important from nucleon-nucleon scattering experiments should be incorporated in the future, in which case the radiated energy would also contain isovector pseudoscalar (π + , π - , π 0 ), isovector scalar (δ + , δ - , δ 0 ), isovector vector (ρ + , ρ - , ρ 0 ), and neutral pseudoscalar (η) mesons

  8. Shannon information entropy in heavy-ion collisions

    Science.gov (United States)

    Ma, Chun-Wang; Ma, Yu-Gang

    2018-03-01

    The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.

  9. MARTINI: An event generator for relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Gale, Charles; Jeon, Sangyong

    2009-01-01

    We introduce the modular algorithm for relativistic treatment of heavy ion interactions (MARTINI), a comprehensive event generator for the hard and penetrating probes in high-energy nucleus-nucleus collisions. Its main components are a time-evolution model for the soft background, PYTHIA 8.1, and the McGill-Arnold, Moore, and Yaffe (AMY) parton-evolution scheme, including radiative as well as elastic processes. This allows us to generate full event configurations in the high p T region that take into account thermal quantum chromodynamic (QCD) and quantum electrodynamic (QED) effects as well as effects of the evolving medium. We present results for the neutral pion nuclear modification factor in Au+Au collisions at the BNL Relativistic Heavy Ion Collider as a function of p T for different centralities and also as a function of the angle with respect to the reaction plane for noncentral collisions. Furthermore, we study the production of high-transverse-momentum photons, incorporating a complete set of photon-production channels.

  10. The Search for QCD Sphalerons and the Chiral Magnetic Effect in Heavy-Ion Collisions with ALICE

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In non-central heavy-ion collisions unprecedented strong magnetic fields, of the order of 10^14 T, are expected to be produced by the incoming protons contained in the nuclei. These fields can be used to detect possible non-conservation of chirality in the QCD sector, a signature of sphaleron transitions. In particular, the interplay of chiral imbalance and magnetic fields results in the separation of positive and negative charges along the direction of the field, a phenomenon called “Chiral Magnetic Effect” (CME). In this seminar, the challenges and the opportunities in the search for the CME and the detection of magnetic fields in heavy-ion collisions will be discussed, with an emphasis on recent ALICE results.

  11. Short range correlations in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    Franco, V.; Nutt, W.T.

    1978-01-01

    We present a technique for including the effects of nucleon-nucleon correlations in the optical phase shift (chi) expansion of the nucleus-nucleus scattering amplitude and present the results for chi to second order. The total and inelastic cross sections are consistently higher than those obtained ignoring correlations, and are in better agreement with the data. Furthermore, the inclusion of correlations leads to second order phase shift functions which do not violate unitarity, in constrast to the case when correlations are ignored in very heavy nuclei (A 1 , A 2 > or approx. = 200). In elastic scattering differential cross sections, the effects of correlations can be quite large

  12. Bimodality in heavy ions collisions: systematic and comparisons

    International Nuclear Information System (INIS)

    Mercier, D.

    2008-11-01

    During the last few years, bi-modality in heavy ions collisions has been observed for different systems, on large energy scale (from 35 MeV/u up to 1 GeV/u). In this thesis, the bimodal behaviour of the largest fragment distribution (Zmax) is studied for different INDRA data sets. For peripheral collisions (Au+Au from 60 to 150 MeV/u, Xe+Sn 80-100 MeV/u), the influence of sorting and selections on bi-modality is tested. Then, two different approaches based on models are considered. In the first one (ELIE), bi-modality would reflect mainly the collision geometry and the Fermi motion of the nucleon. In the second one (SMM), bi-modality would reflect a phase transition of nuclear matter. The data are in favour of the second model. Zmax can then be considered as an order parameter of the transition. A re-weighting procedure producing a flat excitation energy distribution is used to achieve comparisons between various bombarding energies and theoretical predictions based on a canonical approach. A latent heat of the transition is extracted. For central collisions (Ni+Ni from 32 to 74 MeV/u and Xe+Sn from 25 to 50 MeV/u) single source events are isolated by a Discriminant Factor Analysis. Bi-modality is then looked for, in cumulating the different incident energies and in applying the re-weighting procedure of the corresponding excitation energy as done for peripheral collisions. The bi-modality behaviour is less manifest for central collisions than for peripheral ones. The possible reasons of this difference are discussed. (author)

  13. Charge-exchange resonances and restoration of Wigner’s supersymmetry in heavy and superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lutostansky, Yu. S., E-mail: lutostansky@yandex.ru; Tikhonov, V. N. [National Research Center Kurchatov Institute (Russian Federation)

    2016-11-15

    Various facets of the question of whether Wigner’s supersymmetry [SU(4) symmetry] may be restored in heavy and superheavy nuclei are analyzed on the basis of a comparison of the results of calculations with experimental data. The energy difference between the giant Gamow–Teller resonance and the analog resonance (the difference of E{sub G} and E{sub A}) according to calculations based on the theory of finite Fermi systems is presented for the case of 33 nuclei for which experimental data are available. The calculated difference ΔE{sub G–A} of E{sub G} and E{sub A} tends to zero in heavier nuclei, showing evidence of the restoration of Wigner’s SU(4) symmetry. Also, the isotopic dependence of the Coulomb energy difference between neighboring isobaric nuclei is analyzed within the SU(4) approach for more than 400 nuclei in the mass-number range of A = 5–244. The restoration of Wigner’s SU(4) symmetry in heavy nuclei is confirmed. It is shown that the restoration of SU(4) symmetry is compatible with the possible existence of the stability island in the region of superheavy nuclei.

  14. Heavy-ion peripheral collisions in the Fermi energy domain: fragmentation processes or dissipative collisions

    International Nuclear Information System (INIS)

    Borderie, B.; Rivet, M.F.; Tassan-Got, L.

    1990-01-01

    For several years a new field in nuclear physics has been opened by the opportunity to accelerate heavy ions through an energy domain including the Fermi energy of nucleons. This new domain has to be seen as a link between dissipative processes observed at low energies, dominated by mean field considerations, and high energy collisions for which nucleon-nucleon collisions play an important role. This paper reviews our present knowledge on peripheral collisions. A reminder of contiguous energy domains is done as well as their extension in the new field. Specific calculations are also presented. Finally a wide comparison between experiments and calculations is performed. A fast dissipative stage proves to be responsible for the dominant mechanisms involved, at least when the incident energy is lower than 50 MeV/nucleon

  15. Pion production and fragmentation of nuclei in high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Oskarsson, A.

    1983-01-01

    In collisions between nuclei at high energies one can study the behaviour of nuclear matter under extreme conditions, regarding nuclear density and temperature. The Bevalac and the CERN SC beams have been used and nuclear emulsion and scintillation telescopes have measured the reaction products. Collisions at 50A-200A MeV and at 2A GeV have been investigated. Proton spectra from 12 C induced reactions at 85A MeV have been recorded for different targets. Energetic protons at large angles can be assumed to be emitted from a source moving with half the beam velocity and a temperature between 13 and 17 MeV, depending on the target. In collisions between nuclei, pions can be produced below 290A MeV due to the internal Fermi motion of the nucleons. Subthreshold pion production has been studied for 12 C induced reactions at 85A and 75A Mev. The cross-sections are consistent with a quasi-free nucleon-nucleon scattering picture, involving Fermi motion, Pauli blocking and pion reabsorption. 16 C induced reactions in emulsion have been studied at 75A, 175A and 2000A MeV. It is shown that the excitation of the parts of the nuclei which are not overlapping (the spectators) increases with the beam energy. The 16 O projectile frequently breaks up into multiple He fragments. These events are associated with large impact parameters. Central collisions with Ag, Br target at 50A-110A MeV have been analysed separately. It is shown that the momentum transfer to the target nucleus is limited to a value considerably lower than the full momentum transfer in a fusion reactions. Events are observed where there are numerous fragments with 3< Z<8. These multifragmentation events cannot be understood in a thermal approach. (author)

  16. Heavy Ion Collisions at the LHC - Last Call for Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d' Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise

  17. Nucleosynthesis of neutron-rich heavy nuclei during explosive helium burning in massive stars

    International Nuclear Information System (INIS)

    Blake, J.B.; Woosley, S.E.; Weaver, T.A.; Schramm, D.N.

    1981-01-01

    The production of heavy nuclei during explosive helium burning has been calculated using a hydrodynamical model of a 15 M/sub sun/ (Type II) supernovae and a n-process nuclear reaction network. The resulting neutron-rich heavy nuclei are not produced in the relative abundances of solar-system r-process material, especially in the vicinity of Pt, nor are any actinides produced. These deficiencies reflect an inadequate supply of neutrons. However, some neutron-rich isotopes, normally associated with the r-process, are produced which may be significant for the production of isotopic anomalies in meteorites

  18. Jet Quenching in Relativistic Heavy Ion Collisions at the LHC

    CERN Document Server

    Angerami, Aaron

    Jet production in relativistic heavy ion collisions is studied using Pb+Pb collisions at a center of mass energy of 2.76 TeV per nucleon. The measurements reported here utilize data collected with the ATLAS detector at the LHC from the 2010 Pb ion run corresponding to a total integrated luminosity of 7 μb−1. The results are obtained using fully reconstructed jets using the anti-kt algorithm with a per-event background subtraction procedure. A centrality-dependent modification of the dijet asymmetry distribution is observed, which indicates a higher rate of asymmetric dijet pairs in central collisions relative to peripheral and pp collisions. Simultaneously the dijet angular correlations show almost no centrality dependence. These results provide the first direct observation of jet quenching. Measurements of the single inclusive jet spectrum, measured with jet radius parameters R = 0.2,0.3,0.4 and 0.5, are also presented. The spectra are unfolded to correct for the finite energy resolution introduced by bot...

  19. $J/\\psi$ Absorption in Heavy Ion Collisions

    CERN Document Server

    Maiani, Luciano; Polosa, Antonio; Riquer, V

    2004-01-01

    We present a new calculation of the pi-J/psi dissociation cross sections within the Constituent Quark-Meson Model recently introduced. To discuss the absorption of J/psi in heavy-ion collisions, we assume the J/psi to be produced inside a thermalized pion gas, as discussed by Bjorken, and introduce the corrections due to absorption by nuclear matter as well. We fit the absorption length of the J/psi to the data obtained at the CERN SPS by the NA50 Collaboration for Pb-Pb collisions. Collisions of lower centrality allow us to determine the temperature and the energy density of the pion gas. For both these quantities we find values close to those indicated by lattice gauge calculations for the transition to a quark-gluon plasma. A simple extrapolation to more central collisions, which takes into account the increase of the energy deposited due to the increased nucleon flux, fails to reproduce the break in J/psi absorption indicated by NA50, thus lending support to the idea that an unconfined quark-gluon phase m...

  20. Production of strange clusters in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dover, C.B.; Baltz, A.J.; Pang, Yang; Schlagel, T.J.; Kahana, S.H.

    1993-02-01

    We address a number of issues related to the production of strangeness in high energy heavy ion collisions, including the possibility that stable states of multi-strange hyperonic or quark matter might exist, and the prospects that such objects may be created and detected in the laboratory. We make use of events generated by the cascade code ARC to estimate the rapidity distribution dN/dy of strange clusters produced in Si+Au and Au+Au collisions at AGS energies. These calculations are performed in a simple coalescence model, which yields a consistent description of the strange cluster (d, 3 HE, 3 H, 4 He) production at these energies. If a doubly strange, weakly bound ΛΛ dibaryon exists, we find that it is produced rather copiously in Au+Au collisions, with dN/dy ∼0.1 at raid-rapidity. If one adds another non-strange or strange baryon to a cluster, the production rate decreases by roughly one or two orders of magnitude, respectively. For instance, we predict that the hypernucleus ΛΛ 6 He should have dN/dy ∼5 x 10 -6 for Au+Au central collisions. It should be possible to measure the successive Λ → pπ- weak decays of this object. We comment on the possibility that conventional multi-strange hypernuclei may serve as ''doorway states'' for the production of stable configurations of strange quark matter, if such states exist

  1. Open Heavy Flavor Production in Relativistic Heavy Ion Collisions at LHC

    CERN Document Server

    Tian, Yun

    ATLAS measurements of the production of muons from heavy flavor decays in √sNN = 2.76 TeV Pb+Pb collisions and √s = 2.76 TeV pp collisions at the LHC are presented. Integrated luminosities of 0.14 nb−1 and 570 nb−1 are used for the Pb+Pb and pp measure- ments, respectively. The measurements are performed over the transverse momentum range 4 < pT < 14 GeV and for five Pb+Pb centrality intervals. Backgrounds arising from in-flight pion and kaon decays, hadronic showers, and mis-reconstructed muons are statistically re- moved using a template fitting procedure. The heavy flavor muon differential cross-sections and per-event yields are measured in pp and Pb+Pb collisions, respectively. The nuclear modification factor, RAA, obtained from these is observed to be independent of pT, within uncertainties, and to be less than unity, which indicates suppressed production of heavy flavor muons in Pb+Pb collisions. For the 0–10% most central Pb+Pb events, the measured RAA is ∼ 0.35. The azimuthal modulat...

  2. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  3. Quantum electrodynamic effects for light and heavy nuclei

    International Nuclear Information System (INIS)

    Anon.

    1973-01-01

    The autoionization of positrons and the problem of vacuum polarization are discussed within the framework of quantum field theory. Various possible heavy ion experiments to check on the nonlinearity of electrodynamics are described. (8 figures) (U.S.)

  4. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    CERN Document Server

    Casalderrey-Solana, Jorge; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2011-01-01

    Over the last decade, both experimental and theoretical advances have brought the need for strong coupling techniques in the analysis of deconfined QCD matter and heavy ion collisions to the forefront. As a consequence, a fruitful interplay has developed between analyses of strongly-coupled non-abelian plasmas via the gauge/string duality (also referred to as the AdS/CFT correspondence) and the phenomenology of heavy ion collisions. We review some of the main insights gained from this interplay to date. To establish a common language, we start with an introduction to heavy ion phenomenology and finite-temperature QCD, and a corresponding introduction to important concepts and techniques in the gauge/string duality. These introductory sections are written for nonspecialists, with the goal of bringing readers ranging from beginning graduate students to experienced practitioners of either QCD or gauge/string duality to the point that they understand enough about both fields that they can then appreciate their in...

  5. Modelling the many-body dynamics of heavy ion collisions. Present status and future perspective

    International Nuclear Information System (INIS)

    Hartnack, Ch.; Puri, R.K.; Aichelin, J.; Konopka, J.; Bass, S.A.; Stoecker, H.; Greiner, W.

    1996-01-01

    Basic problems of the semiclassical microscopic modelling of strongly interacting systems are discussed within the framework of Quantum Molecular Dynamics (QMD). It is shown that the same predictions can be obtained with several - numerically completely different and independently written -programs as far as the same model parameters are employed and the same basic approximations are made. Some of the physical results, however, depend also on rather technical parameters like the preparation of the initial configuration in phase space. This crucial problem is connected with the description of the ground state of single nuclei, which differs among the various approaches. An outlook to an improved molecular dynamics scheme for heavy ion collisions is given. (author)

  6. Modelling the many-body dynamics of heavy ion collisions. Present status and future perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hartnack, Ch.; Puri, R.K.; Aichelin, J. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Konopka, J.; Bass, S.A.; Stoecker, H.; Greiner, W. [Johann Wolfgang Goethe Univ., Frankfurt am Main (Germany). Inst. fuer Theoretische Physik

    1996-12-31

    Basic problems of the semiclassical microscopic modelling of strongly interacting systems are discussed within the framework of Quantum Molecular Dynamics (QMD). It is shown that the same predictions can be obtained with several - numerically completely different and independently written -programs as far as the same model parameters are employed and the same basic approximations are made. Some of the physical results, however, depend also on rather technical parameters like the preparation of the initial configuration in phase space. This crucial problem is connected with the description of the ground state of single nuclei, which differs among the various approaches. An outlook to an improved molecular dynamics scheme for heavy ion collisions is given. (author). 86 refs.

  7. Cluster aspects of alpha decay of heavy spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Furman, V.I.; Kholan, S.; Khlebostroev, V.G.

    1975-01-01

    On the basis of the non-R-Matrix approach to the α-decay theory the surface α-cluster model of α-decay is introduced. In the frame of this model evidence is obtained about an important contribution of the peripherical region of parent nuclei for the absolute α-decay widths. A classification of the α-transitions following the values of experimental probabilities for the existence of α-particles at the nuclear surface is performed

  8. Hadronic degrees of freedom in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Otsuka, Naohiko

    2001-01-01

    Relativistic heavy-ion collisions at AGS energies are studied by using an new developed hadronic cascade model, HANDEL which includes a few hadronic degrees of freedom. The spectra of hadron-hadron, hadron-nucleus and nucleus-nucleus reactions at AGS energies are well reproduced by HANDEL. It is confirmed that the infinite matter described by HANDEL has particle fractions which are expected from grand canonical ensemble. When we compare the thermal evolution of Au+Au collision from HANDEL with the result from JAM which has larger hadronic degree of freedoms, we find both models give similar evolution of temperature, against naive expectation. We argue that this results can be interpretated if the particles in formation time works as the additional effective hadronic degrees of freedom. (author)

  9. Electron-positron-paircreation in heavy ion collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1987-09-01

    Recent experiments to study e + -e - paircreation in heavy ion atom collisions at energies close to the Coulomb barrier are reviewed. For high combined charges of the collision system Z u = Z 1 +Z 2 one finds pairs produced by the strong time changing Coulomb field with cross sections rising proportional to Z u 16 . The characteristics of the e + production line Z u and scattering angle dependence as well as their spectral distribution is well understood theoretically. Superimposed on the e + continua, e + lines were discovered with energies independent on Z u but with cross sections which rise with Z u 22 . The line energies are grouped around 250 and 340 keV for all systems with 164 u + -e - pairs. This is indicated by e + -e - coincidence experiments which show evidence for energy and angle correlated e + -e - emission expected for a particle decay. (orig.)

  10. Complete strangeness measurements in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Tomasik, Boris [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Czech Technical University in Prague, FNSPE, Prague 1 (Czech Republic); Kolomeitsev, Evgeni E. [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia)

    2016-08-15

    We discuss strangeness production in heavy-ion collisions within and around the energy range of the planned NICA facility. We describe a minimal statistical model, in which the total strangeness yield is fixed by the observed or calculated K{sup +} multiplicity. We show how the exact strangeness conservation can be taken into account on event-by-event basis in such a model. We argue that from strange particle yields one can reveal information about the collision dynamics and about possible modifications of particle properties in medium. This can be best achieved if the complete strangeness measurement is performed, i.e. kaons, antikaons, hyperons and multistrange hyperons are registered in the same experimental setup. In particular, production of hadrons containing two and more strange quarks, like Ξ and Ω baryons could be of interest. (orig.)

  11. Dynamical and statistical aspects of intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Knoll, J.

    1987-01-01

    The lectures presented deal with three different topics relevant for the discussion of nuclear collisions at medium to high energies. The first lecture concerns a subject of general interest, the description of statistical systems and their dynamics by the concept of missing information. If presents an excellent scope to formulate statistical theories in such a way that they carefully keep track of the known (relevant) information while maximizing the ignorance about the irrelevant, unknown information. The last two lectures deal with quite actual questions of intermediate energy heavy-ion collisions. These are the multi-fragmentation dynamics of highly excited nuclear systems, and the so called subthreshold particle production. All three subjects are self-contained, and can be read without the knowledge about the other ones. (orig.)

  12. Theory of collective dynamics: flow, fluctuations and correlations in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, Gabriel S. [Physics Department, Brookhaven National Lab, Building 510A, Upton, NY, 11973 (United States); Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8 (Canada)

    2016-12-15

    I review recent developments in the hydrodynamic modeling of ultra-relativistic heavy ion collisions and the extraction of the properties of bulk QCD matter from heavy ion collision measurements. I briefly summarize the current framework used for the theoretical modeling of heavy ion collisions and report the recent progress on the extraction of the temperature dependence of the shear and bulk viscosity coefficients, the development of statistical tools for data-to-model comparison, and anisotropic hydrodynamics. All these recent developments in our field pave the way for more quantitative determination of the transport properties of bulk QCD matter from the experimental heavy ion collision program.

  13. New insights from 3D simulations of heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Denicol, Gabriel [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Monnai, Akihiko [RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ryu, Sangwook [Department of Physics, McGill University, 3600 rue University, Montreal, Quebec H3A 2T8 (Canada); Schenke, Björn [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-12-15

    Viscous relativistic hydrodynamics in 3+1 dimensions is applied to describe heavy ion collisions at RHIC and LHC. We present calculations of observables that are sensitive to the longitudinal structure of the created system. In particular we present pseudo-rapidity correlations and demonstrate their dependence on both the initial state and short range correlations introduced via a microscopic transport description. We further demonstrate the effect of a varying temperature dependence of the shear viscosity to entropy density ratio on rapidity dependent flow harmonics.

  14. Entropy of the system formed in heavy ion collision

    International Nuclear Information System (INIS)

    Gudima, K.K.; Schulz, H.; Toneev, V.D.

    1985-01-01

    In frames of a cascade model the entropy evolution in a system producted in heavy ion collisions is investigated. Entropy calculation is based on smoothing of the distribution function over the momentum space by the temperature field introduction. The resulting entropy per one nucleon is shown to be rather sensitive to phase space subdivision into cells at the stage of free scattering of reaction products. Compared to recent experimental results for specific entropy values inferred from the composite particle yield of 4π measurements, it is found that cascade calculations do not favour some particular entropy model treatments and suggest smaller entropy values than following from consideration within equilibrium statistics

  15. Entropy production in the relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Holme, A.K.; Csernai, L.P.; Levai, P.; Papp, G.

    1989-09-01

    A short overview is given on the most important possibilities of entropy production in the relativistic heavy ion collisions, which is connected to the shock phenomena. The E802 experiment is considered as an example, where one can determine the specific entropy content from measured strange particle ratios. The received large entropy value (S/N B ∼ 14) can be explained by assuming quark-gluon plasma formation. The possibility of overcooling of quark-gluon plasma and its deflagration are also investigated. (author) 22 refs.; 4 figs

  16. Relativistic continuum physics for the description of heavy ion collisions

    International Nuclear Information System (INIS)

    Lukacs, Bela

    1986-01-01

    The application of relativistic continuum physics to the description of the nuclear fireball evolution from the start of expansion to the breaking is discussed. The basic formalism and basic assumptions of relativistic hydrodynamics and thermodynamics are analyzed in detail. The four basic assumptions are not valid in the case of nuclear fireball produced in heavy ion collisions, but thermodynamics can be extended in different ways to incorporate anisotropy, fluctuations, gradients and the lack of the local equilibrium. The extended continuum formalism is applicable to the description of the nuclear fireball dynamics, including the nuclear - quark matter phase transition. (D.Gy.)

  17. Angular correlations and fragmentation in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Kristiansson, Anders.

    1990-05-01

    Intermediate energy heavy-ion collisions have been studied from 35 A MeV up to 94 A MeV at various accelerators. Angular correlations between light particles and detection of projectile- and target-fragments have been used to investigate the reaction mechanisms in this transition region between low- and high energy. An excess of correlations is observed in the particle-particle elastic scattering plane. This excess increases with particle mass and can be understood in terms of momentum conservation. The fragmentation measurements gives an indication that both energy and momentum transfer to the spectator volumes does occur. (author)

  18. Scaling of anisotropy flows in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Ma, Y.G.; Yan, T.Z.; Cai, X.Z.; Chen, J.G.; Fang, D.Q.; Guo, W.; Liu, G.H.; Ma, C.W.; Ma, E.J.; Shen, W.Q.; Shi, Y.; Su, Q.M.; Tian, W.D.; Wang, H.W.; Wang, K.

    2007-01-01

    Anisotropic flows (v 1 , v 2 and v 4 ) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v 1 ) and elliptic flow (v 2 ) are demonstrated for light nuclear clusters. Moreover, the ratios of v 4 /v 2 2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments

  19. Artificial neural network modelling in heavy ion collisions

    International Nuclear Information System (INIS)

    El-dahshan, E.; Radi, A.; El-Bakry, M.Y.; El Mashad, M.

    2008-01-01

    The neural network (NN) model and parton two fireball model (PTFM) have been used to study the pseudo-rapidity distribution of the shower particles for C 12, O 16, Si 28 and S 32 on nuclear emulsion. The trained NN shows a better fitting with experimental data than the PTFM calculations. The NN is then used to predict the distributions that are not present in the training set and matched them effectively. The NN simulation results prove a strong presence modeling in heavy ion collisions

  20. Expectations and realities in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1988-06-01

    Interpretations of some recent results from experiments done at the CERN-SPS on relativistic heavy-ion collisions are discussed. A cautionary note is given for the observed J//Psi/ suppression due to the hadronic interaction of J//Psi/ in the final state. The multiplicity dependence of average transverse momentum has many complications, and is unsuitable as an indicator of phase transition. Multiplicity fluctuation may be a better diagnostic tool. No indication of any collective behavior has been seen in the recent experiments. 30 refs., 3 figs

  1. Isotropization and hydrodynamization in weakly coupled heavy-ion collisions

    CERN Document Server

    Kurkela, Aleksi

    2015-01-01

    We numerically solve 2+1D effective kinetic theory of weak coupling QCD under longitudinal expansion relevant for early stages of heavy-ion collisions. We find agreement with viscous hydrodynamics and classical Yang-Mills simulations in the regimes where they are applicable. By choosing initial conditions that are motivated by color-glass-condensate framework we find that for Q=2GeV and $\\alpha_s$=0.3 the system is approximately described by viscous hydrodynamics well before $\\tau \\lesssim 1.0$ fm/c.

  2. ρ - ω Mixing Effects in Relativistic Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Broniowski, W.; Florkowski, W.

    1999-01-01

    Full text: We have shown that even moderate excess of neutrons over protons in nuclear matter, such as in 208 Pb, can lead to large ρ - ω mixing at densities of the order of twice the nuclear saturation density and higher. The typical mixing angle is of the order of 10 o . The mixing may result in noticeable shifts of the positions and widths of resonances. We also analyze temperature effects and find that temperatures up to 50 MeV have practically no effect on the mixing. The results have relevance for the explanation of dilepton production in relativistic heavy-ion collisions. (author)

  3. A flow paradigm in heavy-ion collisions

    Science.gov (United States)

    Yan, Li

    2018-04-01

    The success of hydrodynamics in high energy heavy-ion collisions leads to a flow paradigm, to understand the observed features of harmonic flow in terms of the medium collective expansion with respect to initial state geometrical properties. In this review, we present some essential ingredients in the flow paradigm, including the hydrodynamic modeling, the characterization of initial state geometry and the medium response relations. The extension of the flow paradigm to small colliding systems is also discussed. Supported by Natural Sciences and Engineering Research Council of Canada

  4. Phase transition dynamics in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Zabrodin, E.E.; Moscow State Univ.

    1993-01-01

    We investigate various problems related to the dynamics of a first-order phase transition from quarkgluon plasma to hadronic matter in ultra-relativistic heavy ion collisions. These include nucleation, growth and fusion of hadronic bubbles in either the Bjorken longitudinal hydrodynamic expansion model or the Cooper-Frye-Schonberg spherical hydrodynamic expansion model. With reasonable input parameters the conversion of one phase into the other is relatively close to the idealized adiabatic Maxwell construction, although one can choose parameters such that the conversion is strongly out of equilibrium. (orig.)

  5. Phase transition dynamics in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Kapusta, J.I.; Kluge, Gy.; Hungarian Academy of Sciences, Budapest; Zabrodin, E.E.; Moskovskij Gosudarstvennyj Univ., Moscow

    1992-12-01

    Various problems were investigated concerning the dynamics of a first-order phase transition from quark-gluon plasma to hadronic matter in ultra-relativistic heavy ion collisions. These include nucleation, growth and fusion of hadronic bubbles in either the Bjorken longitudinal hydrodynamic expansion model or the Cooper-Frye-Schonberg spherical hydrodynamic expansion model. With reasonable input parameters the conversion of one phase into the other is relatively close to the idealized adiabatic Maxwell construction, although one can choose parameters such that the conversion is strongly out of equilibrium. (author) 10 refs.; 7 figs

  6. Monte-Carlo simulation of heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-01-01

    Results from the Modular Algorithm for Relativistic Treatment of heavy IoN Interactions (MARTINI) are presented. This comprehensive event generator for the hard and penetrating probes in high energy nucleus-nucleus collisions employs a time evolution model for the soft background, PYTHIA 8.1 and the McGill-AMY parton evolution scheme including radiative as well as elastic processes. It generates full event configurations in the high p T region, allowing to perform the same processing as with experimental data, such as multi-particle correlation analyses and full jet reconstruction. (author)

  7. Hadronic degrees of freedom in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Ohnishi, Akira

    2001-01-01

    The observation of temperature and transverse expansion velocity between BNL-AGS and CERN-SPS suggests the change of property of hadronic matter. In order to study the origin of the fact, it is important to check whether or not pure hadronic scenarios are excluded. We have discussed the temperature and transverse expansion in relativistic heavy-ion collisions using pure hadronic cascade model, HANDEL. We conclude the hadronic matter in AGS energies are understandable in the frame of the hadronic cascade model if we care how much hadronic degrees of freedom are counted. (author)

  8. Supplemental material: afterburner for generating light (anti-)nuclei with QCD-inspired event generators in pp collisions

    CERN Document Server

    2017-01-01

    This note complements the paper titled: ``Production of deuterons, tritons, $^{3}$He nuclei and their anti-nuclei in pp collisions at $\\sqrt{s}$~=~0.9, 2.76 and 7~TeV'' with additional material related to Monte Carlo simulations necessary to compare the results with lower energy experiments. It describes a coalescence-based afterburner for QCD-inspired event generators, which allows the generation of light nuclei, hyper-nuclei and their charge conjugates in proton--proton (pp) collisions at LHC energies. The event generators with the afterburner are able to reproduce the differential cross sections of light (anti-)nuclei ($A<4)$ with the same degree of agreement as those of protons and anti-protons at the same momentum per nucleon. They also explain the transverse momentum dependence of the coalescence parameters as the result of hard scattering effects.

  9. Reverse engineering of heavy-ion collisions: Unraveling initial conditions from anisotropic flow data

    International Nuclear Information System (INIS)

    Retinskaya, Ekaterina

    2014-01-01

    Ultra-Relativistic heavy-ion physics is a promising field of high energy physics connecting two fields: nuclear physics and elementary particle physics. Experimental achievements of the last years have provided an opportunity to study the properties of a new state of matter created in heavy-ion collisions called quark-gluon plasma. The initial state of two colliding nuclei is affected by fluctuations coming from wave- functions of nucleons. These fluctuations lead to the momentum anisotropy of the hadronic matter which is observed by the detectors. The system created in the collision behaves like a fluid, so the initial state is connected to the final state via hydrodynamic evolution. In this thesis we model the evolution with relativistic viscous hydrodynamics. Our results, combined with experimental data, give non trivial constraints on the initial state, thus achieving 'reverse engineering' of the heavy-ion collisions. The observable which characterizes the momentum anisotropy is the anisotropic flow v n . We present the first measurements of the first harmonic of the anisotropic flow called directed flow v 1 in Pb-Pb collisions at the LHC. We then perform the first viscous hydrodynamic modeling of directed flow and show that it is less sensitive to viscosity than higher harmonics. Comparison of these experimental data with the modeling allows to extract the values of the dipole asymmetry of the initial state, which provides constraints on the models of initial states. A prediction for directed flow v 1 in Au-Au collisions is also made for RHIC. We then perform a similar modeling of the second and third harmonics of the anisotropic flow, called respectively elliptic v 2 and triangular v 3 flow. A combined analysis of the elliptic and triangular flow data compared with viscous hydrodynamic calculations allows us to put constraints on initial ellipticity and triangularity of the system. These constraints are then used as a filter for different models of

  10. Rescattering effects on intensity interferometry and initial conditions in relativistic heavy ion collisions

    Science.gov (United States)

    Li, Yang

    The properties of the quark-gluon plasma are being thoroughly studied by utilizing relativistic heavy ion collisions. After its invention in astronomy in the 1950s, intensity interferometry was found to be a robust method to probe the spatial and temporal information of the nuclear collisions also. Although rescattering effects are negligible in elementary particle collisions, it may be very important for heavy ion collisions at RHIC and in the future LHC. Rescattering after production will modify the measured correlation function and make it harder to extract the dynamical information from data. To better understand the data which are dimmed by this final state process, we derive a general formula for intensity interferometry which can calculate rescattering effects easily. The formula can be used both non-relativistically and relativistically. Numerically, we found that rescattering effects on kaon interferometry for RHIC experiments can modify the measured ratio of the outward radius to the sideward radius, which is a sensitive probe to the equation of state, by as large as 15%. It is a nontrivial contribution which should be included to understand the data more accurately. The second part of this thesis is on the initial conditions in relativistic heavy ion collisions. Although relativistic hydrodynamics is successful in explaining many aspects of the data, it is only valid after some finite time after nuclear contact. The results depend on the choice of initial conditions which, so far, have been very uncertain. I describe a formula based on the McLerran-Venugopalan model to compute the initial energy density. The soft gluon fields produced immediately after the overlap of the nuclei can be expanded as a power series of the proper time t. Solving Yang-Mills equations with color current conservation can give us the analytical formulas for the fields. The local color charges on the transverse plane are stochastic variables and have to be taken care of by random

  11. Fission mass yields of excited medium heavy nuclei

    International Nuclear Information System (INIS)

    Sandulescu, A.; Depta, K.; Herrmann, R.; Greiner, W.; Scheid, W.

    1985-01-01

    The mass distributions resulting from the fission of excited medium mass nuclei are discussed on the basis of the fragmentation theory. It is shown that very asymmetric fission events can be expected with rates which are only a few orders of magnitude smaller than the rates for symmetric fission. As an example a calculation of the fission mass distribution of the excited 172 Yb compound nucleus is presented. This mass distribution reveals observable structures over the entire range of the mass asymmetry due to valleys in the potential energy surface for fission fragments with closed proton and neutron shells

  12. Ratios of strange hadrons to pions in collisions of large and small nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Oeschler, H. [Ruprecht-Karls-Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Cleymans, J. [University of Cape Town, UCT-CERN Research Centre and Department of Physics, Rondebosch (South Africa); Hippolyte, B. [Universite de Strasbourg, CNRS-IN2P3, Institut Pluridisciplinaire Hubert Curien (IPHC), Strasbourg (France); Redlich, K. [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); ExtreMe Matter Institute EMMI, GSI, Darmstadt (Germany); Sharma, N. [Panjab University, Department of Physics, Chandigarh (India)

    2017-09-15

    The dependence of particle production on the size of the colliding nuclei is analyzed in terms of the thermal model using the canonical ensemble. The concept of strangeness correlation in clusters of sub-volume V{sub c} is used to account for the suppression of strangeness. A systematic analysis is presented of the predictions of the thermal model for particle production in collisions of small nuclei. The pattern of the maxima of strange-particles-to-pion ratios as a function of beam energy is quite special, as they do not occur at the same beam energy and are sensitive to the system size. In particular, the Λ/π{sup +} ratio shows a clear maximum even for small systems while the maximum in the K{sup +}/π{sup +} ratio is less pronounced in small systems. (orig.)

  13. Langevin dynamics of heavy flavors in relativistic heavy-ion collisions

    CERN Document Server

    Alberico, W M; De Pace, A; Molinari, A; Monteno, M; Nardi, M; Prino, F

    2011-01-01

    We study the stochastic dynamics of c and b quarks, produced in hard initial processes, in the hot medium created after the collision of two relativistic heavy ions. This is done through the numerical solution of the relativistic Langevin equation. The latter requires the knowledge of the friction and diffusion coefficients, whose microscopic evaluation is performed treating separately the contribution of soft and hard collisions. The evolution of the background medium is described by ideal/viscous hydrodynamics. Below the critical temperature the heavy quarks are converted into hadrons, whose semileptonic decays provide single-electron spectra to be compared with the current experimental data measured at RHIC. We focus on the nuclear modification factor R_AA and on the elliptic-flow coefficient v_2, getting, for sufficiently large p_T, a reasonable agreement.

  14. Collectivity in heavy nuclei in the shell model Monte Carlo approach

    International Nuclear Information System (INIS)

    Özen, C.; Alhassid, Y.; Nakada, H.

    2014-01-01

    The microscopic description of collectivity in heavy nuclei in the framework of the configuration-interaction shell model has been a major challenge. The size of the model space required for the description of heavy nuclei prohibits the use of conventional diagonalization methods. We have overcome this difficulty by using the shell model Monte Carlo (SMMC) method, which can treat model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We identify a thermal observable that can distinguish between vibrational and rotational collectivity and use it to describe the crossover from vibrational to rotational collectivity in families of even-even rare-earth isotopes. We calculate the state densities in these nuclei and find them to be in close agreement with experimental data. We also calculate the collective enhancement factors of the corresponding level densities and find that their decay with excitation energy is correlated with the pairing and shape phase transitions. (author)

  15. Different fission behavior induced by heavy ion central and peripheral collisions

    International Nuclear Information System (INIS)

    Wu Enjiu; Zheng Jiwen; Xiao Zhigang; Zhang Chun; Tan Jilian; Yin Shuzhi; Wang Sufang; Jin Genming; Yin Xu; Song Mingtao; Jin Weiyang; Peng Xingping; Li Zuyu; Wu Heyu; He Zhiyong; Jiang Dongxing; Qian Xing

    2000-01-01

    Correlated fission fragments from the 40 Ar + 209 Bi reaction and their further correlation with α particles have been studied for peripheral and central collisions simultaneously. The existence of different fission behavior of hot nuclei formed in central and peripheral collisions was found from the systematic analysis of the mass and energy distributions of fission fragments as a function of the initial temperature of hot fissioning nuclei

  16. Hot QCD equations of state and relativistic heavy ion collisions

    Science.gov (United States)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  17. Initial state with shear in peripheral heavy ion collisions

    Science.gov (United States)

    Magas, V. K.; Gordillo, J.; Strottman, D.; Xie, Y. L.; Csernai, L. P.

    2018-06-01

    In the present work we propose a new way of constructing the initial state for further hydrodynamic simulation of relativistic heavy ion collisions based on Bjorken-like solution applied streak by streak in the transverse plane. Previous fluid dynamical calculations in Cartesian coordinates with an initial state based on a streak by streak Yang-Mills field led for peripheral higher energy collisions to large angular momentum, initial shear flow and significant local vorticity. Recent experiments verified the existence of this vorticity via the resulting polarization of emitted Λ and Λ ¯ particles. At the same time parton cascade models indicated the existence of more compact initial state configurations, which we are going to simulate in our approach. The proposed model satisfies all the conservation laws, including conservation of a strong initial angular momentum, which is present in noncentral collisions. As a consequence of this large initial angular momentum we observe the rotation of the whole system as well as the fluid shear in the initial state, which leads to large flow vorticity. Another advantage of the proposed model is that the initial state can be given in both [t,x,y,z] and [τ ,x ,y ,η ] coordinates and thus can be tested by all 3+1D hydrodynamical codes which exist in the field.

  18. Revision of heavy nuclei data in JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Kyushu Univ., Advanced Energy Engineering Science, Kasuga, Fukuoka (Japan)

    2000-03-01

    In order to deal with problems concerning the data of heavy nuclides in JENDL-3.2, a working group was organized to update the evaluated nuclear data of Uranium, Plutonium, and Thorium isotopes. The current status of the working group is reviewed, and some results about resonance parameters, secondary neutron energy spectra, fission cross sections, and direct/semidirect capture process are shown. (author)

  19. Revision of heavy nuclei data in JENDL-3.2

    International Nuclear Information System (INIS)

    Kawano, Toshihiko

    2000-01-01

    In order to deal with problems concerning the data of heavy nuclides in JENDL-3.2, a working group was organized to update the evaluated nuclear data of Uranium, Plutonium, and Thorium isotopes. The current status of the working group is reviewed, and some results about resonance parameters, secondary neutron energy spectra, fission cross sections, and direct/semidirect capture process are shown. (author)

  20. Decay of the giant monopole resonance in heavy nuclei

    International Nuclear Information System (INIS)

    Brandenburg, S.

    1985-01-01

    In this thesis an experimental study of the properties of the giant monopole resonance (GMR) in nuclei is described. The main subject is the study of the neutron decay of the GMR in 208 Pb, and the fission decay of the GMR in 238 U. Furthermore the strength distribution and decay properties of the monopole strength in 24 Mg and 40 Ca were studied. The strength distribution of the isoscalar monopole (and also of the isoscalar dipole) strength as obtained from the angular distribution of the excited strength at small scattering angles are discussed. For the excitation of the GMR inelastic scattering at very small scattering angles, including 0 0 , of 120 MeV α-particles was employed. The experimental technique for performing this type of measurements at the KVI was developed in the course of this study and is the subject of a separate chapter. (Auth.)

  1. Fourier analysis of nonself-averaging quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions: quantum chaos in dissipative heavy-ion collisions?

    International Nuclear Information System (INIS)

    Kun, S.Yu.; Australian Nat. Univ., Canberra; Australian National Univ., Canberra, ACT

    1997-01-01

    We employ stochastic modelling of statistical reactions with memory to study quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. The Fourier analysis of excitation function oscillations is presented. It suggests that S-matrix spin and parity decoherence, damping of the coherent nuclear rotation and quantum chaos are sufficient conditions to explain the nonself-averaging of quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. (orig.)

  2. Open heavy flavor and other hard probes in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan

    2013-01-01

    In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of the running coupling is small and their interactions should be describable within perturbative QCD (pQCD). This work focuses on open heavy flavor, but also addresses the suppression of light parton jets, in particular to highlight differences due to the mass. For light partons, radiative processes are the dominant contribution to their energy loss. For heavy quarks, we show that also binary interactions with a running coupling and an improved Debye screening matched to hard-thermal-loop calculations play an important role. Furthermore, the impact of the mass in radiative interactions, prominently named the dead cone effect, and the interplay with the Landau-Pomeranchuk-Migdal (LPM) effect are studied in great detail. Since the transport model BAMPS has access to all medium properties and the space time information of heavy quarks, it is the ideal tool to study the dissociation and regeneration of J/ψ mesons, which is also investigated in this thesis.

  3. Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-03-01

    The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.

  4. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Shun; Yamada, Shoichi [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Sumiyoshi, Kohsuke [Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501 (Japan); Suzuki, Hideyuki, E-mail: furusawa@heap.phys.waseda.ac.jp [Faculty of Science and Technology, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510 (Japan)

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to {approx}1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  5. NEW EQUATIONS OF STATE BASED ON THE LIQUID DROP MODEL OF HEAVY NUCLEI AND QUANTUM APPROACH TO LIGHT NUCLEI FOR CORE-COLLAPSE SUPERNOVA SIMULATIONS

    International Nuclear Information System (INIS)

    Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki

    2013-01-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ∼1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes

  6. New Equations of State Based on the Liquid Drop Model of Heavy Nuclei and Quantum Approach to Light Nuclei for Core-collapse Supernova Simulations

    Science.gov (United States)

    Furusawa, Shun; Sumiyoshi, Kohsuke; Yamada, Shoichi; Suzuki, Hideyuki

    2013-08-01

    We construct new equations of state for baryons at subnuclear densities for the use in core-collapse simulations of massive stars. The abundance of various nuclei is obtained together with thermodynamic quantities. A model free energy is constructed, based on the relativistic mean field theory for nucleons and the mass formula for nuclei with the proton number up to ~1000. The formulation is an extension of the previous model, in which we adopted the liquid drop model to all nuclei under the nuclear statistical equilibrium. We reformulate the new liquid drop model so that the temperature dependences of bulk energies could be taken into account. Furthermore, we extend the region in the nuclear chart, in which shell effects are included, by using theoretical mass data in addition to experimental ones. We also adopt a quantum-theoretical mass evaluation of light nuclei, which incorporates the Pauli- and self-energy shifts that are not included in the ordinary liquid drop model. The pasta phases for heavy nuclei are taken into account in the same way as in the previous model. We find that the abundances of heavy nuclei are modified by the shell effects of nuclei and temperature dependence of bulk energies. These changes may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores. The abundances of light nuclei are also modified by the new mass evaluation, which may affect the heating and cooling rates of supernova cores and shocked envelopes.

  7. Observation of heavy cluster emission from radioactive 230U nuclei

    International Nuclear Information System (INIS)

    Pan Qiangyan; Yuan Shuanggui; Yang Weifan; Li Zongwei; Ma Taotao; Guo Junsheng; Liu Mingyi; Liu Hongye; Xu Shuwei; Gan Zaiguo; Kong Dengming; Qiao Jimin; Luo Zihua; Zhang Mutian; Wang Shuhong

    1999-01-01

    230 Pa was produced with the reaction 232 Th (p, 3n) 230 Pa in the irradiation powder targets of ThO 2 with 35 MeV proton beam. Sources of 230 Pa→ 230 U + β - were prepared by radiochemical method. Using solid-state track registration detectors, two events of 230 U decay with heavy cluster emission have been observed. The preliminary branching ratio to α-decay comes out to be B = λ Ne /λ α = (1.3 ± 0.8) x 10 -14

  8. Constituent quarks and charge particle production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mishra, Aditya Nath; Mazumder, Rakesh; Sahoo, Raghunath; Nandi, Basanta Kumar

    2012-01-01

    Relativistic heavy-ion collisions aims at producing a state of matter which is governed by partonic degree of freedom. The pseudorapidity density of particle multiplicity and transverse energy are the key observables which provide the properties of matter produced in heavy-ion collisions. Study of their dependence on centrality and collision energy is of paramount importance to understand the particle production mechanism. This may provide insight into the partonic phase that might be created in nuclear collisions. Here, in a constituent quarks framework, charged particle and transverse energy production in heavy-ion collisions are studied both as a function of centrality and collision energy, and hence the study gives a prediction for Pb + Pb collisions

  9. Experimental Highlights: Heavy Quark Physics in Heavy-Ion Collisions at RHIC

    Directory of Open Access Journals (Sweden)

    Nouicer Rachid

    2017-01-01

    Full Text Available The discovery at RHIC of large high-pT suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √sNN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1 PHENIX Collaboration installed silicon vertex tracker (VTX at midrapidity region and forward silicon vertex tracker (FVTX at the forward rapidity region, and (2 STAR Collaboration installed the heavy flavor tracker (HFT and the muon telescope detector (MTD both at the mid-rapidity region. The PHENIX experiments established measurements of ψ (1S and ψ (2S production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √sNN = 200 GeV. In p/3He + A collisions at forward rapidity, we observe no difference in the ψ (2S /ψ (1S ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ (2S is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ ψ measurements in the di-muon decay channel in Au + Au at √sNN = 200 GeV at mid-rapidity. We observe a clear J/ψ RAA suppression and qualitatively well described by transport models, including dissociation and regeneration simultaneously.

  10. Heavy flavours in ultra-relativistic heavy ions collisions; Les saveurs lourdes dans les collisions d'ions lourds ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Rosnet, Ph

    2008-01-15

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.

  11. A quantal toy model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Cassing, W.

    1987-01-01

    A one-dimensional toy model of moving finite boxes is analysed with respect to quantal phenomena associated with heavy-ion dynamics at low and intermediate energies. Special attention is payed to the relation between energy and momentum of the nucleons inside and outside the time-dependent mean field. A Wigner transformation of the one-body density matrix in space and time allows for a unique comparison with classical phase-space dynamics. It is found that high momentum components of the nuclear groundstate wave function approximately become on-shell during the heavy-ion reaction. This leads to the emission of energetic nucleons which do not appear classically. It is furthermore shown, that the low lying eigenstates of the dinuclear system for fixed time are only partly occupied throughout the reaction at intermediate energies. This opens up final phase space for nucleons after producing e.g. a pion or energetic photon. Through the present model does not allow for a reliable calculation of double differential nucleon spectra, pion or photon cross sections, it transparently shows the peculiar features of quantum dynamics in heavy-ion collisions. (orig.)

  12. An overview of experimental results from ultra-relativistic heavy-ion collisions at the CERN LHC: Bulk properties and dynamical evolution

    Directory of Open Access Journals (Sweden)

    Panagiota Foka

    2016-11-01

    Full Text Available The first collisions of lead nuclei, delivered by the CERN Large Hadron Collider (LHC at the end of 2010, at a centre-of-mass energy per nucleon pair sNN= 2.76 TeV, marked the beginning of a new era in ultra-relativistic heavy-ion physics. Following the Run 1 period, LHC also successfully delivered Pb–Pb collisions at the collision energy sNN= 5.02 TeV at the end of 2015. The study of the properties of the produced hot and dense strongly-interacting matter at these unprecedented energies is experimentally pursued by all four big LHC experiments, ALICE, ATLAS, CMS, and LHCb. This review presents selected experimental results from heavy-ion collisions delivered during the first three years of the LHC operation focusing on the bulk matter properties and the dynamical evolution of the created system. It also presents the first results from Run 2 heavy-ion data at the highest energy, as well as from the studies of the reference pp and p–Pb systems, which are an integral part of the heavy-ion programme. Keywords: Large hadron collider, Heavy-ion collisions, High energy physics

  13. Studies of the giant resonances in heavy nuclei

    International Nuclear Information System (INIS)

    Cataldi, M.I.C.

    1986-01-01

    Experimental measurements of the eletrodisintegration cross section in 181 Ta, 208 Pb and 209 Bi nuclei are made in the Linear Accelerator of the IFUSP-Brazil. The cross section is obtained by the direct counting of the emitted neutrons, in an electron excitation energy range between 8 to 22 MeV. The experimental data are analysed throught the virtual photon method, with the aim of obtaining the isoscalar and isovectorial electric quadrupole giant resonance (E2GR) intensities, as well as the magnetic dipole intensity. For each studied nucleus the results obtained for the E2GR, isoscalar and isovectorial, are compared with the photodisintegration cross section measured by the Saclay and Livermore laboratories. From this comparison, it is observed that the photodisintegration cross sections are compatibles with the existence of an isovector E2GR, located between 120 to 130 A -1/3 Mev and which exhaust around 100% of the Energy-Weighted Sum rules (EWSR). (L.C.) [pt

  14. Two-neutron transfer reactions with heavy-deformed nuclei

    International Nuclear Information System (INIS)

    Price, C.; Landowne, S.; Esbensen, H.

    1988-01-01

    In a recent communication we pointed out that one can combine the macroscopic model for two-particle transfer reactions on deformed nuclei with the sudden limit approximation for rotational excitation, and thereby obtain a practical method for calculating transfer reactions leading to high-spin states. As an example, we presented results for the reaction 162 Dy( 58 Ni, 60 Ni) 160 Dy populating the ground-state rotational band up to the spin I = 14 + state. We have also tested the validity of the sudden limit for the inelastic excitation of high spin states and we have noted how the macroscopic model may be modified to allow for more microscopic nuclear structure effects in an application to diabolic pair-transfer processes. This paper describes our subsequent work in which we investigated the systematic features of pair-transfer reactions within the macroscopic model by using heavier projectiles to generate higher spins and by decomposing the cross sections according to the multipolarity of the transfer interaction. Particular attention is paid to characteristic structures in the angular distributions for the lower spin states and how they depend on the angular momentum carried by the transferred particles. 11 refs., 3 figs

  15. Photon-photon and photon-hadron processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Baron, N.C.

    1993-11-01

    Photon-photon and photon-hadron interactions in relativistic heavy ion collisions are studied in the framework of the impact parameter dependent equivalent photon approximation. Improvements of this method, like formfactor inclusion and geometrical modifications are developed. In disruptive relativistic heavy ion collisions where the heavy ions overlapp during the collision, electromagnetic processes are an important background to other mechanisms. In peripheral (non-disruptive) relativistic heavy ion collisions where the ions pass each other without strong interactions, the electromagnetic processes can be studied in their pure form. The lepton pair production is an important diagnostic tool in relativistic heavy ion collisions. The coherent γγ lepton pair production is therefore extensively studied in disruptive but also in non-disruptive collisions. The effects of strong interactions on the coherent γγ lepton pair production in disruptive collisions are discussed in terms of a simple stopping model. Coherent γγ dielectron production contributes to the dilepton production in high energy hadron-hadron collisions. As an example, the coherent dielectron production in π - p collisions is studied in terms of the equivalent photon approximation. Peripheral ultrarelativistic heavy ion collisions open up new possibilities for γγ physics. Taking into account γA background reactions, typical γγ processes in the relevant invariant mass ranges are discussed. The extreme high energy part of the equivalent photon spectrum leads to hard photon-parton reactions. As a potential tool to investigate the gluon distribution function of nucleons, thee q anti q production via the γg fusion in ultrarelativistic heavy ion collisions is studied. It is the purpose of this work to investigate how photon-photon and photon-hadron reactions in relativistic heavy ion collisions may contribute to the understanding of QCD and the standard model. (orig.) [de

  16. Stability of nuclei in peripheral collisions in the JAERI quantum molecular dynamics model

    International Nuclear Information System (INIS)

    Mancusi, Davide; Niita, Koji; Maruyama, Tomoyuki; Sihver, Lembit

    2009-01-01

    The JAERI quantum molecular dynamics (JQMD) model has been successfully used for a long time now to describe many different aspects of nuclear reactions in a unified way. In some cases, however, the JQMD model cannot produce consistent results: First, it lacks a fully relativistically covariant approach to the problem of molecular dynamics; second, the quantum-mechanical ground state of nuclei cannot be faithfully reproduced in a semiclassical framework. Therefore, we introduce R-JQMD, an improved version of JQMD that also features a new ground-state initialization algorithm for nuclei. We compare the structure of the two codes and discuss whether R-JQMD can be adjusted to improve JQMD's agreement with measured heavy-ion fragmentation cross sections

  17. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    Science.gov (United States)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  18. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  19. New Development on Modelling Fluctuations and Fragmentation in Heavy-Ion Collisions

    Science.gov (United States)

    Lin, Hao; Danielewicz, Pawel

    2017-09-01

    During heavy-ion collisions (HIC), colliding nuclei form an excited composite system. Instabilities present in the system may deform the shape of the system exotically, leading to a break-up into fragments. Many experimental efforts have been devoted to the nuclear multifragmentation phenomenon, while traditional HIC models, lacking in proper treatment of fluctuations, fall short in explaining it. In view of this, we are developing a new model to implement realistic fluctuations into transport simulation. The new model is motivated by the Brownian motion description of colliding particles. The effects of two-body collisions are recast in one-body diffusion processes. Vastly different dynamical paths are sampled by solving Langevin equations in momentum space. It is the stochastic sampling of dynamical paths that leads to a wide spread of exit channels. In addition, the nucleon degree of freedom is used to enhance the fluctuations. The model has been tested in reactions such as 112Sn + 112Sn and 58Ni + 58Ni, where reasonable results are yielded. An exploratory comparison on the 112Sn + 112Sn reaction at 50 MeV/nucleon with two other models, the stochastic mean-field (SMF) and the antisymmetrized molecular dynamics (AMD) models, has also been conducted. Work supported by the NSF Grant No. PHY-1403906.

  20. Global Variables in Heavy Ion Collisions at the LHC using the ATLAS Detector

    CERN Document Server

    Steinberg, P

    2008-01-01

    While high $p_T$ phenomena are of primary interest at the LHC, due to the expected increased rates of hard processes, the subsequent modification of jets and heavy quark transport will depend on the energy and gluon density of the medium, as well as its dynamical behavior reflected in the global properties of the "underlying event". "Global" observables, which include the total and differential charged-particle yields ($dN/d\\eta$), transverse energy ($dE_T/d\\eta$) and charged particle spectra, are typically thought to be dominated by the non-perturbative soft processes observed in nucleon-nucleon interactions, with some contribution from hard processes. The interplay between the two reflects the nuclear collision geometry and beam energies, and leads to various proposed scaling laws that describe various aspects of the data. These have been studied at RHIC since the earliest Au+Au runs. With the upcoming thirty-fold increase in energy and similarly large nuclei, Pb+Pb collisions at the LHC offer a powerful le...

  1. Search for signatures of phase transition and critical point in heavy ion collisions

    International Nuclear Information System (INIS)

    Tokarev, M.V.; Kechechyan, A.; Alakhverdyants, A.; Zborovsky, I.

    2011-01-01

    The general concepts in the critical phenomena related with the notions of 'scaling' and 'universality' are considered. Behavior of various systems near a phase transition is displayed. Search for clear signatures of the phase transition of the nuclear matter and location of the critical point in heavy ion collisions (HIC) is discussed. The experimental data on inclusive spectra measured in HIC at RHIC and SPS over a wide range of energies s NN 1/2 = 9-200 GeV are analyzed in the framework of z-scaling. A microscopic scenario of the constituent interactions is presented. Dependence of the energy loss on the momentum of the produced hadron, energy and centrality of the collision is studied. Self-similarity of the constituent interactions described in terms of momentum fractions is used to characterize the nuclear medium by 'specific heat' and colliding nuclei by fractal dimensions. Preferable kinematical regions to search for signatures of the phase transition of the nuclear matter produced in HIC are discussed. Discontinuity of the 'specific heat' is assumed to be a signature of the phase transition and the critical point

  2. Heavy quark-antiquark pair production by double pomeron exchange in pp and AA collisions on the CMS

    International Nuclear Information System (INIS)

    Agababyan, N.M.; Ajrapetyan, M.G.; Galoyan, A.S.; Zarubin, P.I.; Malakhov, A.I.; Melkumov, G.L.; Chatrchyan, S.A.; Enkovskij, L.L.

    1998-01-01

    Events in hadronic and nuclear collisions, which contain a central dijet system together with the two quasi-elastically scattered beam particles are usually described by double pomeron scattering. We investigate these processes for central production of heavy quark-antiquark pairs on the LHC by using the CMS detector. The total and differential cross sections with the formation of cc bar and bb bar pairs for various interactions assumed to a realization on the LHC are evaluated. It is especially marked that this process can be used for investigations of various aspects of low-x physics, for instance, for a research of the gluon and quark distributions in the pomerons, the factorization hypothesis, coherent interaction of nuclei, nuclei shadowing and so on

  3. Experimental study on transportation safety of package in side collision of heavy duty truck

    International Nuclear Information System (INIS)

    Suga, M.; Sasaki, T.

    1989-01-01

    The accidents in road transportation of package may be collision, fall and fire. It is necessary to examine all cases very carefully because collision might be caused by other vehicle. Collisions are classified into head-on collision, rear-end collision, side collision. A lot of experiments and analyses are reported on head-on collision, so the behavior of vehicle and package may be predicted without difficulty. Rear-end collisions bring about less impact and may be applied corresponding to the head-on collisions. About side collisions, few experiments or analyses are reported, and most of them are about passenger cars not about trucks. So it becomes important to study the transportation safety of package carried on a heavy duty truck when hit on the side by another truck similar in size

  4. Inelastic collisions of neon-22 nuclei with nuclei in photoemulsion at 90 GeV/c momentum

    International Nuclear Information System (INIS)

    Vokalova, A.; Krasnov, S.A.; Tolstov, K.D.

    1985-01-01

    The experimental data obtained according to the analysis of 4303 inelastic interactions of the relativistic neon-22 nuclei with the nuclei in photoemulsion are presented. The multiplicities and angular distributions are shown as the functions of the disintegration degree of the colliding nuclei. It is shown that the same number of interacting nucleons of the projectile neon and carbon nuclei are connected with the different impact parameters with the target nucleus

  5. Analysis of Central Events in the Interactions of Relativistic Heavy Ions with Emulsion Nuclei at 118.4 GeV

    International Nuclear Information System (INIS)

    EL-Falaky, E.

    2007-01-01

    Data on the multiplicity of the secondary produced particles in the central events from the interactions of 32S with AgBr nuclei at 118.4 GeV. A different selection criteria of the central collision in heavy ion interactions was investigated. The multiplicity distributions of the different produced shower particles (mainly pions) in the central events for each criteria was studied. The multiplicity distributions of the target fragments emitted in the central events was fitted by a Gaussian distribution. The target analysis of the experimental data shows agreement with the limiting fragmentation hypothesis

  6. Momentum distributions in nuclei measured with relativistic heavy ions

    International Nuclear Information System (INIS)

    Hiller, B.; Huefner, J.; Heidelberg Univ.

    1982-01-01

    In a peripheral reaction between relativistic heavy ions, where one nucleon is knocked out of the projektile, the momentum distribution of the remaining fragment reflects the momentum distribution of the knocked out nucleon. This has been proven in a previous paper. Here we study how the final-state interaction between the knocked out nucleon and the observed fragment influences the result: The real part of the optical potential which describes the final-state interaction shifts the experimental momentum distribution by a value [ksub(||)] of a few tens of MeV/c and the imaginary part reduces the cross sections by a factor 2 roughly. We also derive the cross section for a proton as target. (orig.)

  7. Neutron removal in peripheral relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Aumann, T.

    1994-09-01

    We investigate the relativistic Coulomb fragmentation of 197 Au by heavy ions, leading to one-, two- and three-neutron removal. To resolve the ambiguity connected with the choice of a specific minimum impact parameter in a semiclassical calculation, a microscopic approach is developed based on nucleon-nucleon collisions ('soft-spheres' model). This approach is compared with experimental data for 197 Au at 1 GeV/nucleon and with a calculation using the 'sharp-cutoff' approximation. We find that the harmonic-oscillator model predicting a Poisson distribution of the excitation probabilities of multiphonon states gives a good agreement with one-neutron removal cross sections but is unable to reach an equally good agreement with three-neutron removal cross sections. (orig.)

  8. Jet Fragmentation Function Moments in Heavy Ion Collisions

    CERN Document Server

    Cacciari, Matteo; Salam, Gavin P; Soyez, Gregory

    2013-01-01

    The nature of a jet's fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area based techniques proposed in the past for jet p_t's. Furthermore, complications due to correlations between background-fluctuation contributions to the jet's p_t and to its particle content are easily corrected for.

  9. Jet fragmentation function moments in heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, Matteo [UPMC Univ. Paris 6 et CNRS UMR 7589, LPTHE, Paris (France); Universite Paris Diderot, Paris (France); Quiroga-Arias, Paloma [UPMC Univ. Paris 6 et CNRS UMR 7589, LPTHE, Paris (France); Salam, Gavin P. [UPMC Univ. Paris 6 et CNRS UMR 7589, LPTHE, Paris (France); CERN, Department of Physics, Theory Unit, Geneva 23 (Switzerland); Princeton University, Department of Physics, Princeton, NJ (United States); Soyez, Gregory [CNRS URA 2306, Institut de Physique Theorique, CEA Saclay, Gif-sur-Yvette (France)

    2013-03-15

    The nature of a jet's fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However, the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area-based techniques proposed in the past for jet p{sub t} 's. Furthermore, complications due to correlations between background-fluctuation contributions to the jet's p{sub t} and to its particle content are easily corrected for. (orig.)

  10. Jet fragmentation function moments in heavy ion collisions

    International Nuclear Information System (INIS)

    Cacciari, Matteo; Quiroga-Arias, Paloma; Salam, Gavin P.; Soyez, Gregory

    2013-01-01

    The nature of a jet's fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However, the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area-based techniques proposed in the past for jet p t 's. Furthermore, complications due to correlations between background-fluctuation contributions to the jet's p t and to its particle content are easily corrected for. (orig.)

  11. Net-proton evolution in heavy ion collisions

    International Nuclear Information System (INIS)

    Ahmad, S.; Farooq, M.; Chattopadhyay, S.

    2015-01-01

    The exploration of the Quantum Chromo Dynamics (QCD) phase diagram of strongly interacting matter is a major field of modern high-energy physics. Of particular interest is the transition from hadrons to partonic degrees of freedom which is expected to occur at high temperatures or high baryon densities. These phases play an important role in the early universe and in the core of neutron stars. Heavy ion collisions are used to create new form of matter at high energy/baryonic densities depending upon the incident beam energy. At FAIR energies (10-45 AGeV) matter at high baryonic density and moderate temperature is expected to be created. CBM (Compressed Baryonic Matter) experiment at FAIR will search for the critical point, the first order deconfinement phase transition from the hadronic matter to the partonic matter and the equation-of-state of dense baryonic matter

  12. A Simple Model of Wings in Heavy-Ion Collisions

    CERN Document Server

    Parikh, Aditya

    2015-01-01

    We create a simple model of heavy ion collisions independent of any generators as a way of investigating a possible source of the wings seen in data. As a first test, we reproduce a standard correlations plot to verify the integrity of the model. We then proceed to test whether an η dependent v2 could be a source of the wings and take projections along multiple Δφ intervals and compare with data. Other variations of the model are tested by having dN/dφ and v2 depend on η as well as including pions and protons into the model to make it more realistic. Comparisons with data seem to indicate that an η dependent v2 is not the main source of the wings.

  13. Directed flow of baryons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ivanov, Yu.B.; Nikonov, E.G.; Toneev, V.D.; Noerenberg, W.; Shanenko, A.A.

    2000-11-01

    The collective motion of nucleons from high-energy heavy-ion collisions is analyzed within a relativistic two-fluid model for different equations of state (EoS). As function of beam energy the theoretical slope parameter F y of the differential directed flow is in good agreement with experimental data, when calculated for the QCD-consistent EoS described by the statistical mixed-phase model. Within this model, which takes the deconfinement phase transition into account, the excitation function of the directed flow left angle P x right angle turns out to be a smooth function in the whole range from SIS till SPS energies. This function is close to that for pure hadronic EoS and exhibits no minimum predicted earlier for a two-phase bag-model EoS. Attention is also called to a possible formation of nucleon antiflow (F y or∼100 A.GeV. (orig.)

  14. Interferometry of hard photons in heavy-ion collisions

    International Nuclear Information System (INIS)

    Ostendorf, R.W.

    1993-10-01

    Heavy ion collisions offer the unique opportunity to study interference effects between independent hard photons (energies above 25 MeV). The theoretical basis of interference is presented in the framework of classical as well as quantum theory. Experiments use the photon spectrometer TAPS, a modular array of BaF 2 crystals covering 30% of the solid angle. The properties of the spectrometer and the data analysis techniques are described for the experiment 129 Xe + 197 Au at 44 MeV/u, the very first dedicated to the study of photon correlation function. Data are interpreted using GEANT3 simulations to analyse the effect of the method as well as the response function of the photon spectrometer. A second experiment, 86 Kr + 58 Ni at 60 MeV/u is described briefly, where for the first time the existence of an interference effect between hard photons is observed. 52 figs., 76 refs

  15. Photons from Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    Sarkar, S

    2000-01-01

    It is believed that a novel state of matter - Quark Gluon Plasma (QGP) will be transiently produced if normal hadronic matter is subjected to sufficiently high temperature and/or density. We have investigated the possibility of QGP formation in the ultra-relativistic collisions of heavy ions through the electromagnetic probes - photons and dileptons. The formulation of the real and virtual photon production rate from strongly interacting matter is studied in the framework of Thermal Field Theory. Since signals from the QGP will pick up large backgrounds from hadronic matter we have performed a detailed study of the changes in the hadronic properties induced by temperature within the ambit of the Quantum Hadrodynamic model, gauged linear and non-linear sigma models, hidden local symmetry approach and QCD sum rule approach. The possibility of observing the direct thermal photons and lepton pairs from quark gluon plasma has been contrasted with that from hot hadronic matter with and without medium effects for va...

  16. Modelling early stages of relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Ruggieri M.

    2016-01-01

    Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  17. X-ray emission in heavy ion collisions. Final report

    International Nuclear Information System (INIS)

    Watson, R.L.

    1984-01-01

    A detailed accounting of the yearly activities of the research program entitled X-ray Emission in Heavy Ion Collisions may be found in the annual progress reports submitted in accordance with the terms of the contract. The principal goals of the program to be summarized herein were (a) to delineate the mechanisms whereby highly ionized atoms in the condensed phase deexcite and return to charge neutrality, (b) to investigate the charge quenching processes acting to reduce the charge states of highly ionized projectiles, and (c) to attain a better understanding of the interactions occurring between highly charged ions and solid surfaces. These projects all relate to problems associated with the ultimate application of controlled thermonuclear reactions as a practical energy source

  18. Heavy ion collision evolution modeling with ECHO-QGP

    Science.gov (United States)

    Rolando, V.; Inghirami, G.; Beraudo, A.; Del Zanna, L.; Becattini, F.; Chandra, V.; De Pace, A.; Nardi, M.

    2014-11-01

    We present a numerical code modeling the evolution of the medium formed in relativistic heavy ion collisions, ECHO-QGP. The code solves relativistic hydrodynamics in (3 + 1)D, with dissipative terms included within the framework of Israel-Stewart theory; it can work both in Minkowskian and in Bjorken coordinates. Initial conditions are provided through an implementation of the Glauber model (both Optical and Monte Carlo), while freezeout and particle generation are based on the Cooper-Frye prescription. The code is validated against several test problems and shows remarkable stability and accuracy with the combination of a conservative (shock-capturing) approach and the high-order methods employed. In particular it beautifully agrees with the semi-analytic solution known as Gubser flow, both in the ideal and in the viscous Israel-Stewart case, up to very large times and without any ad hoc tuning of the algorithm.

  19. Heavy Ion Collisions at the dawn of the LHC era

    CERN Document Server

    Takahashi, J.

    2013-06-27

    This is a proceeding of the CERN Latin American School of High-Energy physics that took place in the beautiful city of Natal, northern Brazil, in March 2011. In this paper I present a review of the main topics associated with the study of Heavy Ion Collisions, intended for students starting or interested in the field. It is impossible to summarize in a few pages the large amount of information that is available today, after a decade of operations of the RHIC accelerator and the beginning of the LHC operations. Thus, I had to choose some of the results and theories in order to present the main ideas and goals. All results presented here are from publicly available references, but some of the discussions and opinions are my personal view, where I have made that clear in the text.

  20. Transport description of intermediate processes in heavy ion collisions

    International Nuclear Information System (INIS)

    Ayik, S.; Shivakumar, B.; Shapira, D.

    1986-01-01

    An extension of the diffusion model is proposed in order to describe the intermediate processes and the compound nucleus formation in heavy ion collisions. The model describes the intermediate processes and fusion in terms of the formation and the evolution of a long-lived dinuclear molecular complex (DMC) and its subsequent decay by fragmentation. The colliding ions can be trapped into the pocket of the entrance channel nucleus-nucleus potential and a DMC is formed. This DMC acts as a doorway state towards formation of a completely equilibrated compound nucleus (CN). It evolves through the exchange of nucleons to different dinuclear configurations. At each stage of its evolution, there is a finite probability for direct fragmentation into outgoing channels by thermal penetration over the barrier. The doorway states that do not fragment relax into a CN configuration and are identified as the fusion yield. 8 refs

  1. The influence of initial state fluctuations on heavy quark energy loss in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Cao, Shanshan; Bass, Steffen A; Huang, Yajing; Qin, Guang-You

    2015-01-01

    We study the effects of initial state fluctuations on the dynamical evolution of heavy quarks inside a quark–gluon plasma (QGP) created in relativistic heavy-ion collisions. The evolution of heavy quarks in QGP matter is described utilizing a modified Langevin equation that incorporates the contributions from both collisional and radiative energy loss. The spacetime evolution of the fireball medium is simulated with a (2 + 1)-dimensional viscous hydrodynamic model. We find that when the medium traversed by the heavy quark contains a fixed amount of energy, heavy quarks tend to lose more energy for greater fluctuations of the medium density. This may result in a larger suppression of heavy flavor observables in a fluctuating QGP matter than in a smooth one. The possibility of using hard probes to infer the information of initial states of heavy-ion collisions is discussed. (paper)

  2. Isospin effects in intermediate energy heavy ion collision

    International Nuclear Information System (INIS)

    Liu Jianye; Zuo Wei; Yang Yanfang; Zhao Qiang; Guo Wenjun

    2001-01-01

    Based on the achievements for the intermediate energy heavy ion collision in authors' recent work and the progresses in the world, the isospin effects and the dependence of the entrance channel conditions on them in the intermediate energy heavy ion collisions were introduced, analysed and commended. From the calculation results by using isospin dependence quantum molecular dynamics, it is clear to see that the nuclear stopping power strongly depends on the in-medium isospin dependence nucleon-nucleon cross section and weakly on the symmetry potential in the energy region from about Fermi energy to 150 MeV/u and the intermediate mass fragment multiplicity also sensitively depends on the in-medium isospin dependent nucleon-nucleon cross section and weakly on the symmetry potential in a selected energy region. But the preequilibrium emission neutron-proton ratio is quite contrary, it sensitively depends on the symmetry potential and weakly on the in-medium isospin dependent nucleon-nucleon cross section. In addition to the nuclear stopping sensitively depending on the beam energy, impact parameter and the mass of colliding system and weakly on the neutron-proton ratio of the colliding systems with about the same mass, the preequilibrium emission neutron-neutron ratio sensitively depends on the beam energy and the neutron-proton ratio of colliding system, but weakly on the impact parameter. From above results it is proposed that the nuclear stopping is a new probe to extract the information on the in-medium isospin dependence nucleon-nucleon cross section in energy region from about Fermi energy to 150 MeV/u and the preequilibrium emission neutron-proton ratio is a good probe for extracting the information about the symmetry potential from the lower energy to about 150 MeV/u

  3. Baryon-antibaryon dynamics in relativistic heavy-ion collisions

    Science.gov (United States)

    Seifert, E.; Cassing, W.

    2018-04-01

    The dynamics of baryon-antibaryon annihilation and reproduction (B B ¯↔3 M ) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model. At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon (B B ¯ ) pairs while for the LHC energy of √{sN N}=2.76 TeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizable difference between data and statistical calculations in Pb+Pb collisions at √{sN N}=2.76 TeV for proton and antiproton yields [ALICE Collaboration, B. Abelev et al., Phys. Rev. C 88, 044910 (2013), 10.1103/PhysRevC.88.044910], where a deviation of 2.7 σ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons and antiprotons). Furthermore, we find that the B B ¯↔3 M reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2-2.5 can be extracted from the PHSD calculations for central Au+Au collisions.

  4. [Search for strange quark matter and antimatter produced in high energy heavy ion collisions

    International Nuclear Information System (INIS)

    1992-01-01

    This document describes the development and progress of our group's research program in high energy heavy ion physics. We are a subset of the Yale experimental high energy physics effort (YAUG group) who became interested in the physics of high energy heavy ions in 1988. Our interest began with the possibility of performing significant searches for strange quark matter. As we learned more about the subject and as we gained experimental experience through our participation in AGS experiment 814, our interests have broadened. Our program has focused on the study of new particles, including (but not exclusively) strange quark matter, and the high sensitivity measurement of other composite nuclear systems such as antinuclei and various light nuclei. The importance of measurements of the known, but rare, nuclear systems lies in the study of production mechanisms. A good understanding of the physics and phenomenology of rare composite particle production in essential for the interpretation of limits to strange quark matter searches. We believe that such studies will also be useful in probing the mechanisms involved in the collision process itself. We have been involved in the running and data analysis for AGS E814. We have also worked on the R ampersand D for AGS E864, which is an approved experiment designed to reach sensitivities where there will be a good chance of discovering strangelets or of setting significant limits on the parameters of strange quark matter

  5. Semi-classical approaches to the phase space evolutions in intermediate energy heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Remaud, B; Sebille, F; Raffray, Y; Gregoire, C; Vinet, L

    1986-01-06

    The properties of semi-classical phase space evolution equations - as the Vlasov/Boltzmann equations - are discussed in the context of the heavy ion reaction theory at intermediate energies (from 10 to 100 MeV per nucleon). The generalized coherent state set is shown to form a (over) complete basis for the phase space; then every solution of the Vlasov/Boltzmann equations can be defined as a convolution product of the generalized coherent state basis by an appropriate weight function w. The uniform approximation for w is shown to provide an accurate semi-classical description of fermion systems in their ground state: the examples of fermions in a harmonic well and of cold nuclei are discussed. The solution of the Vlasov equation amounts to follow the time evolution of the coherent states which play the role of a moving basis. For the Boltzmann equation, the collision term is taken into account by explicit or implicit variations of the function w. Typical applications are discussed: nuclear response to the giant monopole resonance excitation, fast nucleon emission in heavy-ion reactions. (orig.).

  6. Gamma-ray spectroscopy of neutron-rich products of heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Ahmad, I. [and others

    1995-08-01

    Thick-target {gamma}{gamma} coincidence techniques are being used to explore the spectroscopy of otherwise hard-to-reach neutron-rich products of deep-inelastic heavy ion reactions. Extensive {gamma}{gamma} coincidence measurements were performed at ATLAS using pulsed beams of {sup 80}Se, {sup 136}Xe, and {sup 238}U on lead-backed {sup 122,124}Sn targets with energies 10-15% above the Coulomb barrier. Gamma-ray coincidence intensities were used to map out yield distributions with A and Z for even-even product nuclei around the target and around the projectile. The main features of the yield patterns are understandable in terms of N/Z equilibration. We had the most success in studying the decays of yrast isomers. Thus far, more than thirty new {mu}s isomers in the Z = 50 region were found and characterized. Making isotopic assignments for previously unknown {gamma}-ray cascades proves to be one of the biggest problems. Our assignments were based (a) on rare overlaps with radioactivity data, (b) on the relative yields with different beams, and (c) on observed cross-coincidences between {gamma} rays from light and heavy reaction partners. However, the primary products of deep inelastic collisions often are sufficiently excited for subsequent neutron evaporation, so {gamma}{gamma} cross-coincidence results require careful interpretation.

  7. Detection of heavy nuclei in the plastic track detector CR-39

    International Nuclear Information System (INIS)

    Fumuro, F.; Ihara, R.; Ohta, I.; Sato, Y.; Tezuka, I.; Tasaka, S.; Sugimoto, H.

    1982-01-01

    Relativistic cosmic ray nuclei were detected in an emulsion chamber composed of a pile of solid state track detectors (CR-39) and the emulsion plates. The 460 heavy nuclei were observed by scanning of emulsion and CR-39 plastic plates. The normalized track etch rate (Vsub(t)/Vsub(b))-1 for relativistic iron group was measured as 1.3+-0.05 and bulk etch rate Vsub(b) as 1.63+-0.08 μm/hour after 32 hours etch in 6.8 N NaOH at 70 0 C. The charge detection threshold was obtained to be Z=6 for β=1 with the dip angle larger than 75 degrees. The charge resolution was estimated to be Δ Z=0.7 for iron, and Δ Z=0.4 for magnesium and silicon nuclei

  8. Systematical calculations on the ground state properties of heavy and superheavy nuclei

    International Nuclear Information System (INIS)

    Ren, Z.Z.; Center of Theoretical Nuclear Physics, Lanzhou; Mao, Y.C.; Zhi, Q.J.; Xu, C.; Dong, T.K.

    2007-01-01

    The synthesis of superheavy elements is now a hot topic in nuclear physics. Alpha-decay and spontaneous fission are two main decay modes in heavy and superheavy regions. Theoretical studies on alpha radioactivity and spontaneous fission can provide useful information for experiments. We investigate the alpha-decay and spontaneous fission of heavy and superheavy nuclei with different models. This includes the alpha-decay energies, alpha decay half-lives, and half-lives of spontaneous fission. The theoretical alpha-decay half-lives are in good agreement with experimental ones. The calculated half-lives of spontaneous fission are in reasonable agreement with present data. The properties of unknown nuclei are predicted. (author)

  9. Search for magnetic dipole strength and giant spin-flip resonances in heavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Horen, D. J. [Oak Ridge National Lab., TN (USA); Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    A description is given of the use of high resolution (n, n) scattering and the (p, n) reaction as tools to investigate highly excited states with emphasis on information pertaining to magnetic dipole strength and giant spin-flip resonances in heavy nuclei. It is shown how the ability to uniquely determine the spins and parities of resonances observed in neutron scattering has been instrumental to an understanding of the distribution of M1 strength in sup(207,208)Pb. Some recent results of (p, n) studies with intermediate energy protons are discussed. Energy systematics of the giant Gamow-Teller (GT) resonance as well as a new ..delta..l = 1, ..delta..S = 1 resonance with J sup(..pi..) = (1,2)/sup -/ are presented. It is shown how the (p, n) reaction might be useful to locate M1 strength in heavy nuclei.

  10. Studies of heavy-ion reactions and transuranic nuclei. Progress report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, W.U.

    1993-08-01

    This report contain papers on the following topics: The Cold-Fusion Saga; Decay Patterns of Dysprosium Nuclei Produced in {sup 32}S + {sup 118,124}Sn Fusion Reactions; Unexpected Features of Reactions Between Very Heavy Ions at Intermediate Bombarding Energies; Correlations Between Neutrons and Charged Products from the Dissipative Reaction {sup 197}Au+{sup 208}Pb at E/A = 29 MeV; Dissipative Dynamics of Projectile-Like Fragment Production in the Reaction {sup 209}Bi+{sup 136}Xe at E/A = 28.2 MeV; Dynamical Production of Intermediate-Mass Fragments in Peripheral {sup 209}Bi+{sup 136}Xe Collisions at E{sub lab}/A = 28.2 MeV; The Rochester 960-Liter Neutron Multiplicity Meter; A Simple Pulse Processing Concept for a Low-Cost Pulse-Shape-Based Particle Identification; A One-Transistor Preamplifier for PMT Anode Signals; A Five-Channel Multistop TDC/Event Handler for the SuperBall Neutron Multiplicity Meter; Construction of the SuperBall -- a 16,000-Liter Neutron Detector for Calorimetric Studies of Intermediate-Energy Heavy-Ion Reactions; A Computer Code for Light Detection Efficiency Calculations for Photo-multipliers of a Neutron Detector; Evaluation of Gd-Loaded Liquid Scintillators for the SuperBall Neutron Calorimeter; and Measurement of the Interaction of Cosmic-Ray {mu}{sup {minus}} with a Muon Telescope.

  11. Static and dynamical properties of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.

    1990-01-01

    We briefly review our understanding of the formation of excited/hot nuclei in heavy-ion collisions at some tens of MeV/A. We recall the major theoretical frameworks used for describing as well the entrance channel of the reaction as the structure properties of hot nuclei. We finally focus on multifragmentation within insisting upon the theoretical challenge it does represent

  12. A phenomenological model of deep-inelastic collisions between complex nuclei

    International Nuclear Information System (INIS)

    Siwek-Wilczynska, K.; Wilczynski, J.

    1976-01-01

    A simple model of heavy-ion collisions is proposed. Classical equations of motion with inclusion of a phenomenological two-body friction force are integrated numerically along trajectories. The nucleus-nucleus interaction potential which is used in the calculations includes deformation degrees of freedom in the exit channel. Both entrance and exit-channel potentials are based on the boundary conditions following the liquid-drop model. The existing data on fusion cross sections, and also the energy-angle distributions of deep-inelastic reactions are very well reproduced by the model. (author)

  13. New semi-empirical formula for α-decay half-lives of the heavy and superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H.C. [Government College for Women, Department of Physics, Kolar, Karnataka (India); Sridhar, K.N. [Government First Grade College, Department of Physics, Kolar, Karnataka (India)

    2017-07-15

    We have succesfully formulated the semi-empirical formula for α-decay half-lives of heavy and superheavy nuclei for different isotopes of the wide atomic-number range 94 < Z < 136. We have considered 2627 isotopes of heavy and superheavy nuclei for the fitting. The value produced by the present formula is compared with that of experiments and other eleven models, i.e. ImSahu, Sahu, Royer10, VS2, UNIV2, SemFIS2, WKB. Sahu16, Densov, VSS and Royer formula. This formula is exclusively for heavy and superheavy nuclei. α-decay is one of the dominant decay mode of superheavy nucleus. By identifying the α-decay mode superheavy nuclei can be detected. This formula helps in predicting the α-decay chains of superheavy nuclei. (orig.)

  14. Contributions to the theory of alpha disintegration of heavy and superheavy nuclei

    International Nuclear Information System (INIS)

    Tarnoveanu, G.I.

    1977-01-01

    Alpha disintegration of heavy and super-heavy spherical nuclei is studied. When the new calculation technique for alpha intensities dependent on the shell-model has been applied, a technique which allows the use of a more complex structure of the alpha particle, the detailed calculation of the alpha half-times is performed for both radioactive alpha nuclei in the lead area and for the super-heavy nuclei, by using the R matrix theory of alpha disintegration independent of the channel radius. The relative values of overlap integrals calculated by means of the intrinsic function for the Gauss and Moshinsky type alpha particle are presented, as well as a comparison between them and the experiment values for 8.6, 9.00 and 9.6 fm channel radii in the case of Po, Ra, Rn and Th isotopes. Original contributions to the alpha disintegration theory are represented by the generalization of the Taylor series method expressing the transformations to the centre of mass, and the relative distance from two particles to four particles in the same harmonic oscillator potential, and by the development of the R matrix theory for alpha disintegration independent of the channel radius in the case of complex structured alpha particles. (author)

  15. Near-Barrier Fusion of Heavy Nuclei. Coupling of the Channels

    CERN Document Server

    Zagrebaev, V I

    2003-01-01

    The problem of quantum description of near-barrier fusion of heavy nuclei taking place under strong coupling of relative motion with rotation of deformed nuclei and with dynamic deformations of their surfaces is studied in the paper. A new effective method is proposed for numerical solution of a set of coupled Schrodinger equations with boundary conditions corresponding to a full absorption of the flux penetrated through the multi-dimensional Coulomb barrier. The method has no limitation on the number of coupled channels and allows one to calculate fusion cross-sections of very heavy nuclei used for synthesis of super-heavy elements. A combined analysis of the multi-dimensional potential energy surface relief and the multi-channel wave function in the vicinity of the Coulomb barrier gives a clear interpretation of near-barrier fusion dynamics. Comparison with experimental data and with semi-empirical model calculations is performed. The computing codes are allocated at the web-server http://nrv.jinr.ru/nrv/ w...

  16. Electromagnetic heavy-lepton pair production in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Senguel, M.Y. [Atakent Mahallesi, 3. Etap, Halkali-Kuecuekcekmece, Istanbul (Turkey); Gueclue, M.C.; Mercan, Oe.; Karakus, N.G. [istanbul Technical University, Faculty of Science and Letters, Istanbul (Turkey)

    2016-08-15

    We calculate the cross sections of electromagnetic productions of muon- and tauon-pair productions from the ultra-relativistic heavy ion collisions. Since the Compton wavelengths of muon and tauon are comparable to the radius of the colliding ions, nuclear form factors play important roles for calculating the cross sections. Recent measurement (Abrahamyan et al., Phys Rev Lett 108:112502, 2012) indicates that the neutrons are differently distributed from the protons; therefore this affects the cross section of the heavy-lepton pair production. In order to see the effects of the neutron distributions in the nucleus, we used analytical expression of the Fourier transforms of the Wood-Saxon distribution. Cross section calculations show that the Wood-Saxon distribution function is more sensitive to the parameter R compared to the parameter a. (orig.)

  17. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    Science.gov (United States)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  18. Formation of a dinuclear complex in collisions between light nuclei and entrance channel limitations to fusion

    International Nuclear Information System (INIS)

    Shapira, D.; Shivakumar, B.; Ayik, S.; Harmon, B.A.

    1986-01-01

    A model for fusion of light nuclei has been proposed recently wherein fusion progresses through nucleus-nucleus capture via a dinuclear stage which acts as a doorway to fusion. While this model accounts for the fusion cross sections, it makes no attempt at predicting observables associated with the non-fusion part of the captured flux. A study of products from the decay of the dinuclear complex into non-fusion channels can provide a stringent test for such a model. In this contribution a model which addresses both the binary decay and the fusion of a dinuclear complex formed in the collision is described and model predictions are compared with data. Accompanying contributions discuss the formalism which is used to describe the evolution of the dinuclear complex and present new data which provide information that helps justify the approximations made in applying this model

  19. Decay of giant resonance E2 isoscalar in heavy nuclei. Decaimento da ressonancia gigante E2 isoescalar em nucleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Herdade, S B [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1980-01-01

    In this work, it is made a study of the giant resonance E2 isoscalar, in heavy nuclei. Fission probabilities for this resonance were determined by various authors, in different experiments, for {sup 238}U. (A.C.A.S.).

  20. Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    Czech Academy of Sciences Publication Activity Database

    Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Čepila, J.; Contreras, J. G.; Eyyubova, G.; Ferencei, Jozef; Křelina, M.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Schulc, M.; Špaček, M.; Šumbera, Michal; Vajzer, Michal; Vaňát, Tomáš; Závada, Petr

    2016-01-01

    Roč. 93, č. 2 (2016), s. 024917 ISSN 0556-2813 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : heavy ion collisions * ALICE collaboration * deuteron production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) Impact factor: 3.820, year: 2016

  1. The effective Schroedinger equation of the optical model of composite nuclei elastic collisions

    International Nuclear Information System (INIS)

    Mondragon, A.; Hernandez, E.

    1980-01-01

    An effective hamiltonian for elastic collisions between composite nuclei is obtained from the Schroedinger equation of the complete many-body system and its fully antisymmetric wave functions by means of a projection operator technique. This effective hamiltonian, defined in such a way that it has to reproduce the scattering amplitude in full detail, including exchange effects, is explicitly Galilean invariant. The effective interaction operator is a function of the relative distance between the centers of mass of the colliding nuclei and the constants of the motion of the whole system. The interaction operator of the optical model is obtained next, requiring as usual, that it reproduces the average over the energy of the scattering amplitude and keeping the Galilean invariance. The resulting optical potential operator has some terms identical to those obtained in the Resonating Group Method, and others coming from the elimination of all non elastic channels and the delayed elastic scattering. This result makes the relation existing among the projection operator method to the Feshbach and the cluster model equations of motion for positive energies (RGM) explicit. The additional interaction terms due to the flux loss in the elastic channel are non-local, and non-hermitean operators expressed in terms of the transition amplitudes and the density of states of the compound nucleus in such a way that an approximate evaluation, in a systematic fashion, seems possible. Theangular momentum dependence of the optical potential operator is discussed in some detail. (author)

  2. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    International Nuclear Information System (INIS)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H ''Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment

  3. Inclusive particle production at forward angles from collisions of light relativistic nuclei: Negative pions

    International Nuclear Information System (INIS)

    Moeller, E.; Anderson, L.; Brueckner, W.; Nagamiya, S.; Nissen-Meyer, S.; Schroeder, L.; Shapiro, G.; Steiner, H.

    1983-01-01

    We have measured single particle inclusive spectra of negative pions produced at angles from 0 0 to 12 0 (lab) in collisions of 1.05 and 2.1 GeV/nucleon protons, deuterons, alpha particles, and carbon nuclei with targets of C, Cu, Pb, and H (from a CH 2 -C subtraction). Most of the pions are produced in the kinematical domains allowed in free nucleon-nucleon collisions, but for alpha and carbon projectiles we have also observed pions whose energies range up to nearly twice the kinetic energy of a nucleon in the projectile. Our results suggest that processes involving more than two colliding nucleons and/or high internal momentum components are involved in the production of these high energy pions. Comparison is made with several hypotheses of scaling including specific dynamical models, and some disagreement is observed. We present fits to the kinetic energy dependence of the data, and the target and projectile mass dependence. We also show transverse momentum distributions

  4. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Hannah

    2009-04-22

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v{sub 2} values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E{sub lab}=2-160 A GeV. The HBT correlation of the negatively charged pion source

  5. An integrated Boltzmann+hydrodynamics approach to heavy ion collisions

    International Nuclear Information System (INIS)

    Petersen, Hannah

    2009-01-01

    In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. Predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies. Studies of phase diagram trajectories using hydrodynamics are performed. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The full (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. Three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent v 2 values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from E lab =2-160 A GeV. The HBT correlation of the negatively charged pion source created in

  6. The production of Higgs bosons in high-energetic heavy-ion collisions

    International Nuclear Information System (INIS)

    Vidovic, M.

    1991-09-01

    The aim of this diploma thesis was to produce the Higgs boson in high-energetic, peripheral heavy-ion collisions by purely electromagnetic processes. In order to take only peripheral collisions into consideration and to avoid the strong hadronic background of central collisions the equivalent-photon method for the case of the Higgs boson was extended concerning an impact-parameter study. By this it was possible to exclude the contribution of central collisions by cut in the impact parameter at b=2R, in order to determine thus the production rate for purely peripheral collisions. (orig./HSI) [de

  7. Collective phenomena in relativistic heavy-ion collisions

    Science.gov (United States)

    Wang, Shan

    1998-12-01

    Collective motion in the final state of relativistic nucleus-nucleus collisions, produced by the release of compressional energy built-up during the stage of maximum density, is widely accepted as a good observable to test models and a useful tool to probe the nuclear equation of state. This dissertation presents an experimental study of nuclear collisions at the Bevalac accelerator at Lawrence Berkeley National Laboratory, with special emphasis on collective phenomena. The main detector used is a time projection chamber with more than two million pixels. Using high statistics measurements of all charged final- state fragments in Au + Au reactions at 0.25, 0.4, 0.6, 0.8, 1.0, and 1.15A GeV, we present a new method to unify the description of light fragment spectra and the three main categories of collective motion: sideward flow, squeeze-out, and transverse expansion. In this alternative representation, the speed of collective expansion is shown to be slowest in the plane of the reaction, and is modulated sinusoidally according to fragment azimuth relative to this plane. This simple yet complete characterization of squeeze-out leads to its interpretation as an in-plane retardation of collective expansion. We test momentum space power law behavior by studying the momentum-space densities of fragments up to 4He. We conclude that the simple momentum-space power law consistently describes light participant fragment production at p⊥/A/ge0.2 GeV/c over a remarkably wide range of transverse momentum, azimuth relative to the reaction plane, rapidity, multiplicity and beam energy in intermediate-energy heavy-ion collisions and in particular, the increase in sideward flow with fragment mass is well described by a momentum- space power law under these conditions. This behavior is consistent with composite fragment formation through a statistical coalescence mechanism in momentum space. Our conclusion supports the use of models without composite formation to interpret flow

  8. From e+e- to Heavy Ion Collisions - Proceedings of the XXX International Symposium on Multiparticle Dynamics

    Science.gov (United States)

    Csörgő, Tamás Hegyi, Sándor Kittel, Wolfram

    moments * QCD and multiplicity scaling * RELATIVISTIC HEAVY ION COLLISIONS - EXPERIMENT * Introduction to multiparticle dynamics at RHIC * First results from the STAR experiment at RHIC * Preliminary results from the PHENIX experiment at RHIC * Forward energy and multiplicity in Au-Au reactions at √ {s_{nn} } = 130{text{GeV}} * Results from the PHOBOS experiment on Au+Au collisions at RHIC * Strangeness production in Pb-Pb collisions at the CERN SPS: Results from the WA97 experiment * Direct photon production in 158A GeV 208Pb+208Pb collisions * Search for critical phenomena in Pb+Pb collisions * Recent NA49 results on Pb+Pb collisions at CERN SPS * J/ψ suppression in Pb+Pb collisions at CERN SPS * RELATIVISTIC HEAVY ION COLLISIONS - THEORY * Hyperon ratios at RHIC and the coalescence predictions at mid-rapidity * Dynamics of nuclear collisions and the dependence of the onset of anomalous J/ψ suppression on nucleon numbers of colliding nuclei * Multi-boson effects in Bose-Einstein interferometry * The source of the "third flow component" * Collective flow and multiparticle azimuthal correlations * Microscopic strangeness enhancement mechanisms at the SPS * Jet quenching at finite opacity and its application at RHIC energy * Particle rapidity density and collective phenomena in heavy ion collisions * Elliptic flow from an on-shell parton cascade * Dilepton production in ultrarelativistic heavy ion collisions * Coulomb and core/halo corrections to Bose-Einstein n-particle correlations * CP VIOLATION IN MULTIPARTICLE DYNAMICS * New results from NA48 experiment on neutral kaon rare decays * Measurement of direct CP violation by the NA48 experiment at CERN * Aspects of parity, CP, and time reversal violation in hot QCD * Decay of parity odd bubbles * Parity and time reversal studies at RHIC * Constraining CP-violating TGCS and measuring W-polarization at OPAL * Buckyballs of QCD: Gluon junction networks * List of participants

  9. Cern academic training programme 2011: Selected Topics in the Physics of Heavy Ion Collisions

    CERN Multimedia

    PH Department

    2011-01-01

    LECTURE SERIES 14, 15 & 16 March 2011 Selected Topics in the Physics of Heavy Ion Collisions 11:00-12:00 - Bldg. 222-R-001 - Filtration Plant In these lectures, I discuss some classes of measurements accessible in heavy ion collisions at the LHC. How can these observables be measured, to what extent can they be calculated, and what do they tell us about the dense mesoscopic system created during the collision? In the first lecture, I shall focus in particular on measurements that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions. Organiser: Maureen Prola-Tessaur/PH-EDU  

  10. Electron-positron pairs in physics and astrophysics: From heavy nuclei to black holes

    Science.gov (United States)

    Ruffini, Remo; Vereshchagin, Gregory; Xue, She-Sheng

    2010-02-01

    Due to the interaction of physics and astrophysics we are witnessing in these years a splendid synthesis of theoretical, experimental and observational results originating from three fundamental physical processes. They were originally proposed by Dirac, by Breit and Wheeler and by Sauter, Heisenberg, Euler and Schwinger. For almost seventy years they have all three been followed by a continued effort of experimental verification on Earth-based experiments. The Dirac process, e+e-→2γ, has been by far the most successful. It has obtained extremely accurate experimental verification and has led as well to an enormous number of new physics in possibly one of the most fruitful experimental avenues by introduction of storage rings in Frascati and followed by the largest accelerators worldwide: DESY, SLAC etc. The Breit-Wheeler process, 2γ→e+e-, although conceptually simple, being the inverse process of the Dirac one, has been by far one of the most difficult to be verified experimentally. Only recently, through the technology based on free electron X-ray laser and its numerous applications in Earth-based experiments, some first indications of its possible verification have been reached. The vacuum polarization process in strong electromagnetic field, pioneered by Sauter, Heisenberg, Euler and Schwinger, introduced the concept of critical electric field Ec=me2c3/(eħ). It has been searched without success for more than forty years by heavy-ion collisions in many of the leading particle accelerators worldwide. The novel situation today is that these same processes can be studied on a much more grandiose scale during the gravitational collapse leading to the formation of a black hole being observed in Gamma Ray Bursts (GRBs). This report is dedicated to the scientific race. The theoretical and experimental work developed in Earth-based laboratories is confronted with the theoretical interpretation of space-based observations of phenomena originating on cosmological

  11. Nonperipheral heavy ion collisions in the GeV/nucl. region

    International Nuclear Information System (INIS)

    Schopper, E.; Baumgardt, H.G.

    1978-01-01

    The paper resumes results of collisions of fast projectiles (He, C, O, Ne, Ar - nuclei) in the energy region of 0.2 GeV/nucl. to 4.2 GeV/nucl. with the target nuclei Ag and Br in AgCl-monocrystals, and up to 2.1 GeV/nucl. in nuclear emulsion; the events induced inside the detectors are observed in 4π-geometry. (orig./WL) [de

  12. Collective azimuthal alignment and transverse momentum conservation in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bock, R.; Gutbrod, H.H.; Siemiarczuk, T.

    1987-08-01

    It is shown that transverse momentum conservation in the three-source Fai and Randrup statistical model does not explain the collective azimuthal alignment as observed in heavy-ion collisions at Bevelac energies. (orig.)

  13. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Tapia Araya, Sebastian; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in heavy-ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions , cold nuclear effects may also affect quarkonia production . Therefore, a full assessment requires detailed studies on the effects present in both A-A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt J/psi and psi(2S) productions as well as Upsilon production via the di-muon decay final states. The results are of the various measurements are discussed.

  14. Measurement of quarkonia production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    Kremer, Jakub Andrzej; The ATLAS collaboration

    2017-01-01

    The suppression of heavy quarkonia states in heavy-ion collisions is a phenomenon understood as a consequence of QGP formation in the hot, dense system formed in heavy-ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect quarkonia production. Therefore, a full assessment requires detailed studies on the effects present in both A-A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt J/psi and psi(2S) productions as well as Upsilon production via the di-muon decay final states. The results of the various measurements are discussed

  15. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... Photons; dileptons; Relativistic Heavy Ion Collider; Large Hadron Collider; quark ... the collisions produces relatively high pT photons, often referred to ..... energy have been found for identified charged hadrons at RHIC [25].

  16. Angular correlations of coincident electron-positron pairs in heavy ion collisions

    International Nuclear Information System (INIS)

    Graf, O.

    1988-10-01

    In the present thesis angular correlations of coincident electron-positron pairsnin heavy ion collisions are studied. It is meant as a contribution to the answer of fundamental questions in the quantum electrodynamics of strong fields. (orig./HSI) [de

  17. Two views on the Bjorken scenario for ultra-relativistic heavy-ion collisions

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The sketch describes the Bjorken scenario foreseen for the collision of ultra-relativistic heavy-ions, leading to the creation of strongly-interacting hot and dense deconfined matter, the so-called Quark-Gluon Plasma (QGP).

  18. On the quantum mechanics of deep inelastic collisions between heavy ions

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de

    1981-06-01

    An overview of the quantum-mechanical foundations of the dynamical behaviour of deep inelastic collisions between heavy ions is given. The use of time dependent Hartree-Fock method is stressed. (L.C.) [pt

  19. Population and particle decay of isobaric analog states in medium heavy nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1980-05-01

    The systematic features of proton stripping and neutron pick-up reactions to Isobaric Analog States in medium heavy nuclei are presented. The ( 3 He,d) reaction investigated at high incident energy is shown to selectively excite high-spin particle-analog states. Similarly the ( 3 He,α) reaction populates hole-analog states. The recent results related to such highly excited states in a wide range of nuclei ( 48 Ca to 208 Pb) are discussed in the framework of the DWBA theory of direct reactions with special emphasis on the treatment of unbound proton states or deeply-bound neutron hole states. The particle decay of Isobaric Analog States are investigated using the ( 3 He,d p) and ( 3 He, α p) sequential processes. The experimental method developed at Orsay (0 0 detection) for particle-particle angular correlations is presented. The advantage and the limits of such approach are illustrated by typical examples of particle decays: core-excited states, neutron particle-hole multiplets and the first observation of the proton emission of hole-analog levels. In conclusion new experimental approaches such as asymmetry measurements for analog states observed in transfer reactions or possible population of double analog states in heavy nuclei are discussed

  20. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Science.gov (United States)

    Oganessian, Yu. Ts.; Shchepunov, V. A.; Dmitriev, S. N.; Itkis, M. G.; Gulbekyan, G. G.; Khabarov, M. V.; Bekhterev, V. V.; Bogomolov, S. L.; Efremov, A. A.; Pashenko, S. V.; Stepantsov, S. V.; Yeremin, A. V.; Yavor, M. I.; Kalimov, A. G.

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3. The set up can work in the wide mass range from A≈20 to A≈500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90° electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  1. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    CERN Document Server

    Oganessian, Yu T; Dmitriev, S N; Itkis, M G; Gulbekyan, G G; Khabarov, M V; Bekhterev, V V; Bogomolov, S L; Efremov, A A; Pashenko, S V; Stepantsov, S V; Yeremin, A V; Yavor, M I; Kalimov, A G

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 sup - sup 3. The set up can work in the wide mass range from A approx 20 to A approx 500, its mass acceptance is as large as +-2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considere...

  2. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    International Nuclear Information System (INIS)

    Oganessian, Yu.Ts.; Shchepunov, V.A.; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G.

    2003-01-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10 -3 . The set up can work in the wide mass range from A∼20 to A∼500, its mass acceptance is as large as ±2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given

  3. The project of the mass separator of atomic nuclei produced in heavy ion induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Oganessian, Yu.Ts.; Shchepunov, V.A. E-mail: shchepun@sunhe.jinr.rushchepun@cv.jinr.ru; Dmitriev, S.N.; Itkis, M.G.; Gulbekyan, G.G.; Khabarov, M.V.; Bekhterev, V.V.; Bogomolov, S.L.; Efremov, A.A.; Pashenko, S.V.; Stepantsov, S.V.; Yeremin, A.V.; Yavor, M.I.; Kalimov, A.G

    2003-05-01

    A new separator and mass analyzer, named MASHA (mass analyzer of super heavy atoms), has been designed at the Flerov Laboratory JINR Dubna to separate and measure masses of nuclei and molecules with precision better than 10{sup -3}. The set up can work in the wide mass range from A{approx}20 to A{approx}500, its mass acceptance is as large as {+-}2.8%. In particular, it allows unambiguous mass identification of super heavy nuclei with a resolution better than 1 amu at the level of 300 amu. Synthesized in nuclear reactions nuclides are emitted from an ECR ion source at energy E=40 kV and charge state Q=+1. Then they pass the following steps of separation and analysis: the first section of rough separation, the second section of separation and mass analysis and the final section of separation with a 90 deg. electrostatic deflector. In the focal plane of the device, a focal plane detector determines positions (masses) of studied nuclei. Ion optics of the analyzer, optimized up to the second order, is considered. Description of its elements and subsystems is given.

  4. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    Science.gov (United States)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. / in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  5. Heavy-ion collisions and the nuclear equation of state

    International Nuclear Information System (INIS)

    Keane, D.

    1993-01-01

    The overall goal of this project is to study nucleus-nucleus collisions experimentally at intermediate and relativistic energies, with emphasis on measurement and interpretation of correlation effects that provide insight into the nuclear phase diagram and the nuclear equation of state. During the course of this reporting period, the PI returned to Kent from a 15-month leave at Lawrence Berkeley Lab, which had been devoted 100% to work on this research project. The EOS Time Projection Chamber at LBL's Bevalac accelerator has continued to be the major focus of research for all of the supported personnel; about a year ago, this detector successfully took data in production mode for the first time, and accumulated in excess of 1000 hours of beam time before the termination of the Bevalac in February 1993. Reduction and analysis of these data is currently our first priority. Effort has also been devoted to the STAR detector at the Relativistic Heavy Ion Collider, in the form of contributions to the Conceptual Design Report, work on HV control hardware and software for use with the STAR Time Projection Chamber, and tracking software development

  6. Partial correlation analysis method in ultrarelativistic heavy-ion collisions

    Science.gov (United States)

    Olszewski, Adam; Broniowski, Wojciech

    2017-11-01

    We argue that statistical data analysis of two-particle longitudinal correlations in ultrarelativistic heavy-ion collisions may be efficiently carried out with the technique of partial covariance. In this method, the spurious event-by-event fluctuations due to imprecise centrality determination are eliminated via projecting out the component of the covariance influenced by the centrality fluctuations. We bring up the relationship of the partial covariance to the conditional covariance. Importantly, in the superposition approach, where hadrons are produced independently from a collection of sources, the framework allows us to impose centrality constraints on the number of sources rather than hadrons, that way unfolding of the trivial fluctuations from statistical hadronization and focusing better on the initial-state physics. We show, using simulated data from hydrodynamics followed with statistical hadronization, that the technique is practical and very simple to use, giving insight into the correlations generated in the initial stage. We also discuss the issues related to separation of the short- and long-range components of the correlation functions and show that in our example the short-range component from the resonance decays is largely reduced by considering pions of the same sign. We demonstrate the method explicitly on the cases where centrality is determined with a single central control bin or with two peripheral control bins.

  7. INFN what next ultra-relativistic heavy-ion collisions

    CERN Document Server

    Dainese, A.; Usai, G.; Antonioli, P.; Arnaldi, R.; Beraudo, A.; Bruna, E.; Bruno, G.E.; Bufalino, S.; Di Nezza, P.; Lombardo, M.P.; Nania, R.; Noferini, F.; Oppedisano, C.; Piano, S.; Prino, F.; Rossi, A.; Agnello, M.; Alberico, W.M.; Alessandro, B.; Alici, A.; Andronico, G.; Antinori, F.; Arcelli, S.; Badala, A.; Barbano, A.M.; Barbera, R.; Barile, F.; Basile, M.; Becattini, F.; Bedda, C.; Bellini, F.; Beole, S.; Bianchi, L.; Bianchin, C.; Bonati, C.; Bossu, F.; Botta, E.; Caffarri, D.; Camerini, P.; Carnesecchi, F.; Casula, E.; Cerello, P.; Cicalo, C.; Cifarelli, M.L.; Cindolo, F.; Colamaria, F.; Colella, D.; Colocci, M.; Corrales Morales, Y.; Cortese, P.; De Caro, A.; De Cataldo, G.; De Falco, A.; De Gruttola, D.; D'Elia, M.; De Marco, N.; De Pasquale, S.; Di Bari, D.; Elia, D.; Fantoni, A.; Feliciello, A.; Ferretti, A.; Festanti, A.; Fionda, F.; Fiorenza, G.; Fragiacomo, E.; Fronze, G.G.; Girard, M. Fusco; Gagliardi, M.; Gallio, M.; Garg, K.; Giubellino, P.; Greco, V.; Grossi, E.; Guerzoni, B.; Hatzifotiadou, D.; Incani, E.; Innocenti, G.M.; Jacazio, N.; Das, S. Kumar; La Rocca, P.; Lea, R.; Leardini, L.; Leoncino, M.; Lunardon, M.; Luparello, G.; Mantovani Sarti, V.; Manzari, V.; Marchisone, M.; Margagliotti, G.V.; Masera, M.; Masoni, A.; Mastroserio, A.; Mazzilli, M.; Mazzoni, M.A.; Meninno, E.; Mesiti, M.; Milano, L.; Moretto, S.; Muccifora, V.; Nappi, E.; Nardi, M.; Nicassio, M.; Pagano, P.; Pappalardo, G.S.; Pastore, C.; Paul, B.; Petta, C.; Pinazza, O.; Plumari, S.; Preghenella, R.; Puccio, M.; Puddu, G.; Ramello, L.; Ratti, C.; Ravasenga, I.; Riggi, F.; Ronchetti, F.; Rucci, A.; Ruggieri, M.; Rui, R.; Sakai, S.; Scapparone, E.; Scardina, F.; Scarlassara, F.; Scioli, G.; Siddhanta, S.; Sitta, M.; Soramel, F.; Suljic, M.; Terrevoli, C.; Trogolo, S.; Trombetta, G.; Turrisi, R.; Vercellin, E.; Vino, G.; Virgili, T.; Volpe, G.; Williams, M.C.S.; Zampolli, C.

    2016-01-01

    This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target p...

  8. Two-pion correlations in heavy ion collisions

    International Nuclear Information System (INIS)

    Zajc, W.A.

    1982-08-01

    An application of intensity interferometry to relativistic heavy ion collisions is reported. Specifically, the correlation between two like-charged pions is used to study the reactions Ar+KCl→2π/sup +-/+X and Ne+NaF→2π - +X. Source sizes are obtained that are consistent with a simple geometric interpretation. Lifetimes are less well determined but are indicative of a faster pion production process than predicted by Monte Carlo cascade calculations. There appears to be a substantial coherent component of the pion source, although measurement is complicated by the presence of final state interactions. Additionally, the generation of spectra of uncorrelated events is discussed. In particular, the influence of the correlation function on the background spectrum is analyzed, and a prescription for removal of this influence is given. A formulation to describe the statistical errors in the background is also presented. Finally, drawing from the available literature, a self-contained introduction to Bose-Einstein correlations and the Hanbury-Brown - Twiss effect is provided, with an emphasis on points of contact between classical and quantum mechanical descriptions

  9. Multiple electromagnetic pair production in ultrarelativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Best, C.

    1992-04-01

    The problem of the unitary violation in the pair production in ultrarelativistic heavy ion collisions was studied by a consideration of the field-theoretical foundations. The quantum electrodynamics in an external field were thereby reduced to a Dirac-sea model, the equivalence of which to the non-radiative QED resulted from the equality of the generating functionals. The latter can both be expressed explicitely by means of the complet set of the solutions of the Dirac equation in an external field. This method is based solely on the path-integral approach, which makes it possible to discriminate clearly between the physically given correlation functions and their generating functional at the one hand and at the other hand between the models constructed to their interpretation. From the model expression for the pair production amplitudes and multiplicities could be calculated, for which only the knowledge of the one-particle S matrix is necessary. For the calculation of the multiplicities different forms of the perturbation theory were discussed. Finally an impact-parameter dependent Weizsaecker-Williams approximation for the calculation of arbitrary two-photon graphs was constructed and applied to the given problem. The results indicate that at small distances very high pair multiplicities are to be expected. Finally a new approach to the pair production in an external field was discussed, which is not based on the canonical field theory, but on the formalism of the Wigner functions. (orig./HSI) [de

  10. Thermal electromagnetic radiation in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R. [Texas A and M University, Cyclotron Institute and Department of Physics and Astronomy, College Station, TX (United States); Hees, H. van [Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute of Advanced Studies (FIAS), Frankfurt (Germany)

    2016-08-15

    We review the potential of precise measurements of electromagnetic probes in relativistic heavy-ion collisions for the theoretical understanding of strongly interacting matter. The penetrating nature of photons and dileptons implies that they can carry undistorted information about the hot and dense regions of the fireballs formed in these reactions and thus provide a unique opportunity to measure the electromagnetic spectral function of QCD matter as a function of both invariant mass and momentum. In particular we report on recent progress on how the medium modifications of the (dominant) isovector part of the vector current correlator (ρ channel) can shed light on the mechanism of chiral symmetry restoration in the hot and/or dense environment. In addition, thermal dilepton radiation enables novel access to (a) the fireball lifetime through the dilepton yield in the low invariant-mass window 0.3 GeV ≤ M ≤ 0.7 GeV, and (b) the early temperatures of the fireball through the slope of the invariant-mass spectrum in the intermediate-mass region (1.5 GeV < M < 2.5 GeV). The investigation of the pertinent excitation function suggests that the beam energies provided by the NICA and FAIR projects are in a promising range for a potential discovery of the onset of a first-order phase transition, as signaled by a non-monotonous behavior of both low-mass yields and temperature slopes. (orig.)

  11. The study of hadron dynamics in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Venema, L.B.

    1994-01-01

    In this thesis, pion emission patterns were studied in two reaction systems Ar + Ca and Au + Au at 1 GeV/u, with the aim to improve the understanding of the pion production in relativistic heavy ion collisions. The study of the high energy tail of the π 0 -momentum spectrum was regarded as promising because of its sensitivity to compression since it did not appear in small reaction systems. Experiments were performed with TAPS together with the Forward Wall of the FoPi-collaboration at GSI. The combined measurement of charged particle multiplicities in the Forward Wall and the particles entering TAPS enabled an exclusive study of the pion production. TAPS was tested in separate experiments and its capabilities were demonstrated by measuring different reaction products, like photons, charged particles and neutrons. The data analysis involved new methods to treat the background contamination below the invariant mass peak of the π 0 -meson due to the geometry of the detector and to perform particle identification in a high particle multiplicity environment. (orig.)

  12. Role of giant resonance excitation in heavy ion collisions

    International Nuclear Information System (INIS)

    Catara, F.; Chomaz, Ph.

    1987-01-01

    In this paper we discuss several aspects of heavy ion collisions involving collective vibrational modes. In our approach the relative motion is treated in a semiclassical approximation, while the intrinsic degrees of freedom are described microscopically within the RPA. The differences with respect to macroscopic models are analyzed in the appendix. First we present some results on the inelastic scattering cross section and we show that the structures observed experimentally can be explained in terms of multiple excitation of the Giant Quadrupole Resonance. After we calculate an adiabatic polarization potential describing the coupling to the collective vibrational modes and show that it produces a strong enhancement of the subbarrier fusion cross section. This enhancement is found to be enough to reproduce the experimental data for symmetric systems, while for asymmetric reactions the coupling to other degrees of freedom, like transfer, is needed. Finally we report some preliminary results on a dynamical calculation of the real and imaginary parts of the polarization potential. We show that at high incident energies (E/A > 20MeV) the role of the Giant Quadrupole Resonance becomes dominant

  13. Open heavy-flavor measurements in ultra-relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Averbeck, Ralf

    2016-12-15

    Recent results from open heavy-flavor measurements in proton-proton (pp), proton/deuteron-nucleus (p/d-A), and nucleus-nucleus collisions (A-A) at RHIC and at the LHC are presented. Predictions from theoretical models are compared with the data, and implications for the properties of the hot and dense medium produced in ultra-relativistic heavy-ion collisions are discussed.

  14. Numerical analysis of energy density and particle density in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Fu Yuanyong; Lu Zhongdao

    2004-01-01

    Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared. The results show that Gauss-Laguerre formulas is a good method in calculations of high energy heavy-ion collisions. (author)

  15. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  16. Ultra relativistic heavy ions collisions or the search for quark-gluon plasmas

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1985-03-01

    This paper reviews some aspects of the physics of ultra-relativistic heavy ion collisions. The qualitative changes expected in the properties of hadronic matter at high temperature and/or large baryon density are described in terms of simple models. We discuss a scenario giving the space-time evolution of a quark-gluon plasma. Finally we address the difficult question of the possible signatures of the formation of a quark-gluon plasma in heavy ion collisions

  17. Towards high-density matter with relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Nagamiya, Shoji.

    1990-04-01

    Recent progress in nucleus-nucleus collisions at BNL and CERN suggests a hint that the formation of high-density nuclear matter could be possible with relativistic heavy-ion beams. What is the maximum density that can be achieved by heavy-ion collisions? Are there data which show evidence or hints on the formation of high density matter? Why is the research of high-density interesting? How about the future possibilities on this subject? These points are discussed. (author)

  18. Energy and centrality dependence of dN_c_h/dη and dE_T/dη in heavy-ion collisions from √(s_N_N) = 7.7 GeV to 5.02 TeV

    International Nuclear Information System (INIS)

    Nath Mishra, Aditya; Sahoo, Raghunath; Sahoo, Pragati; Pareek, Pooja; Behera, Nirbhay K.; Nandi, Basanta K.

    2016-01-01

    The centrality dependence of pseudorapidity density of charged particles and transverse energy is studied for a wide range of collision energies for heavy-ion collisions at midrapidity from 7.7 GeV to 5.02TeV. A two-component model approach has been adopted to quantify the soft and hard components of particle production, coming from nucleon participants and binary nucleon-nucleon collisions, respectively. Within experimental uncertainties, the hard component contributing to the particle production has been found not to show any clear collision energy dependence from RHIC to LHC. The effect of centrality and collision energy in particle production seems to factor out with some degree of dependency on the collision species. The collision of uranium-like deformed nuclei opens up new challenges in understanding the energy-centrality factorization, which is evident from the centrality dependence of transverse energy density, when compared to collision of symmetric nuclei. (orig.)

  19. Energy and centrality dependence of dN{sub ch}/dη and dE{sub T}/dη in heavy-ion collisions from √(s{sub NN}) = 7.7 GeV to 5.02 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Nath Mishra, Aditya; Sahoo, Raghunath; Sahoo, Pragati; Pareek, Pooja; Behera, Nirbhay K. [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India); Nandi, Basanta K. [Indian Institute of Technology Bombay, Department of Physics, Mumbai (India)

    2016-10-15

    The centrality dependence of pseudorapidity density of charged particles and transverse energy is studied for a wide range of collision energies for heavy-ion collisions at midrapidity from 7.7 GeV to 5.02TeV. A two-component model approach has been adopted to quantify the soft and hard components of particle production, coming from nucleon participants and binary nucleon-nucleon collisions, respectively. Within experimental uncertainties, the hard component contributing to the particle production has been found not to show any clear collision energy dependence from RHIC to LHC. The effect of centrality and collision energy in particle production seems to factor out with some degree of dependency on the collision species. The collision of uranium-like deformed nuclei opens up new challenges in understanding the energy-centrality factorization, which is evident from the centrality dependence of transverse energy density, when compared to collision of symmetric nuclei. (orig.)

  20. Selected Topics in the Physics of Heavy Ion Collisions (1/3)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions.

  1. Hard photons beyond proton-neutron Bremsstrahlung in heavy-ion collisions

    International Nuclear Information System (INIS)

    Gudima, K.; Ploszajczak, M.

    1998-01-01

    The study of extremely high energy photons, pions and etas, produced in intermediate energy heavy-ion collisions is presented. Possibility of imaging the final-state phase space in these collisions by the Bose-Einstein correlations for photons is critically examined. (author)

  2. Baryon production and the centrality dependence of limiting fragmentation in heavy ion collision

    International Nuclear Information System (INIS)

    Mondal, M.M.; Chattopadhyay, S.

    2006-01-01

    In experiments with the relativistic heavy ion collisions the primary goals is to study the particle distribution in pseudorapidity variable. From the study of the distribution information of the collision mechanism such as the study of hypothesis of limiting fragmentation can be made

  3. Ekpyrosis and inflationary dynamics in heavy ion collisions: the role of quantum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Dusling, K.; Venugopalan, R.; Gelis, F.

    2011-05-23

    We summarize recent significant progress in the development of a first-principles formalism to describe the formation and evolution of matter in very high energy heavy ion collisions. The key role of quantum fluctuations both before and after a collision is emphasized. Systematic computations are now feasible to address early time isotropization, flow, parton energy loss and the Chiral Magnetic Effect.

  4. Measurement of charmonium production in heavy-ion collisions with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00511724; The ATLAS collaboration

    2017-01-01

    The suppression of heavy charmonia states in heavy-ion collisions is a phenomenon understood as a consequence of quark gluon plasma formation in the hot, dense system formed in heavy ion collisions at the LHC. In addition to hot matter effects in heavy-ion collisions, cold nuclear effects may also affect heavy charmonia production. Therefore, a full assessment requires detailed studies on the effects present in both A+A and p+A collisions. Based on p+Pb data collected in 2013 and pp and Pb+Pb data collected in 2015 at the LHC, the ATLAS experiment has studied prompt and non-prompt $J/\\psi$ and $\\psi$(2S) productions via the dimuon decay final states. The production and excited-to-ground state ratios of heavy charmonia measured in both p+Pb and Pb+Pb collision data with respect to that measured in pp collision data will be presented in intervals of transverse momentum, rapidity and centrality.

  5. Mechanism of f-decay - spontaneous emission of fragments by heavy nuclei

    International Nuclear Information System (INIS)

    Rubchenya, V.A.; Ehjsmont, V.P.; Yavshits, S.G.

    1987-01-01

    A new type of model of radioactive decay - spontaneous emission of fragments by heavy nuclei, for which f-decay has been suggested, is formulated. The consideration is based on representation about a disintegrating configuration, for which the probability of f-cluster formation is close to 1. The moments method is used to determine the parameters of the disintegrating configuration. The probability of disintegrating configuration formation is determined by collective properties of a disintegrating nucleus. Effect of nucleon shells of the daughter nucleus and fragment leads to more compact disintegrating configuration and to decay energy increase, that's why at f-decay magic nuclei are formed. Probable spontaneous f-decay values calculated agree satisfactorily with experimental data. The calculational results testify to considerable decrease of f-decay probability at Z≥94

  6. Photo-disintegration of heavy nuclei at the core of Cen A

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Esha [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Gupta, Nayantara, E-mail: esha.kundu@gmail.com, E-mail: nayan@rri.res.in [Raman Research Institute, Sadashiva Nagar, Bangalore 560080 (India)

    2014-04-01

    Fermi LAT has detected gamma ray emissions from the core of Cen A. More recently, a new component in the gamma ray spectrum from the core has been reported in the energy range of 4 GeV to tens of GeV. We show that the new component and the HESS detected spectrum of gamma rays from the core at higher energy have possibly a common origin in photo-disintegration of heavy nuclei. Assuming the cosmic rays are mostly Fe nuclei inside the core and their spectrum has a low energy cut-off at 52 TeV in the wind frame moving with a Doppler factor 0.25 with respect to the observer on earth, the cosmic ray luminosity required to explain the observed gamma ray flux above 1 GeV is found to be 1.5 × 10{sup 43} erg/sec.

  7. Formation of heavy compound nuclei, their survival and correlation with longtime-scale fission

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Yakushev, A.B.

    2006-01-01

    Fusion of two massive nuclei with formation of super-heavy compound nucleus (CN) is driven by the potential energy gradient, as follows from the analysis of nuclear reaction cross-sections. The conservative energy of the system is deduced in simple approximation using regularized nuclear mass and interaction barrier values. Different reactions for the synthesis of Z c 110-118 nuclei are compared and the favourable conditions are found for fusion of the stable (W-Pt) isotopes with radioactive fission fragment projectiles, like 94 Kr or 100 Sr. Thus, the cold fusion method can be extended for a synthesis of elements with Z > 113. Survival of the evaporation residue is defined by the neutron-to-fission probability ratio and by the successful emission of gammas at the final step of the reaction. Numerical estimates are presented. Fixation of evaporation residue products must correlate with longtime-scale fission and available experimental results are discussed

  8. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    1012 K, were deconfined and existed as a quark gluon plasma (QGP). These ideas can be tested in collisions of nuclei at ultra-relativistic energies. At the relativistic heavy-ion collider (RHIC), nuclei as heavy as gold are accelerated to an energy of 100 GeV per nucleon. A total energy of 40 TeV is available in the collision of.

  9. New signatures on dissipation from fission induced by relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Enqvist, T.; Kelic, A.; Rejmund, F.; Benlliure, J.; Junghans, A.R.

    2004-03-01

    Fissile nuclei with small shape distortion relative to the ground-state deformation and with low angular momentum were produced in peripheral heavy-ion collisions. Under the conditions of small shape distortions and low angular momentum, the theoretical description of the fission process can be considerably simplified, and the relevant information on dissipation can be better extracted than in conventional experiments based on fusion-fission reactions. In addition, this experimental approach induces very high excitation energies, a condition necessary to observe transient effects. The experimental data were taken at GSI using a set-up especially conceived for fission studies in inverse kinematics. This set-up allowed determining three observables whose sensitivity to dissipation was investigated for the first time: the total fission cross sections of 238 U at 1 A GeV as a function of the target mass, and, for the reaction of 238 U at 1 A GeV on a (CH 2 ) n target, the partial fission cross sections and the partial charge distributions of the fission fragments. The comparison of the new experimental data with a reaction code adapted to the conditions of the reactions investigated leads to clear conclusions on the strength of dissipation at small deformation where the existing results are rather contradictory. (orig.)

  10. New signatures on dissipation from fission induced by relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, B.; Schmitt, C.; Schmidt, K.H.; Enqvist, T.; Kelic, A.; Rejmund, F.; Benlliure, J. [Universidad de Santiago de Compostela (Spain); Junghans, A.R. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany)

    2004-03-01

    Fissile nuclei with small shape distortion relative to the ground-state deformation and with low angular momentum were produced in peripheral heavy-ion collisions. Under the conditions of small shape distortions and low angular momentum, the theoretical description of the fission process can be considerably simplified, and the relevant information on dissipation can be better extracted than in conventional experiments based on fusion-fission reactions. In addition, this experimental approach induces very high excitation energies, a condition necessary to observe transient effects. The experimental data were taken at GSI using a set-up especially conceived for fission studies in inverse kinematics. This set-up allowed determining three observables whose sensitivity to dissipation was investigated for the first time: the total fission cross sections of {sup 238}U at 1 A GeV as a function of the target mass, and, for the reaction of {sup 238}U at 1 A GeV on a (CH{sub 2}){sub n} target, the partial fission cross sections and the partial charge distributions of the fission fragments. The comparison of the new experimental data with a reaction code adapted to the conditions of the reactions investigated leads to clear conclusions on the strength of dissipation at small deformation where the existing results are rather contradictory. (orig.)

  11. Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production vs. coalescence

    International Nuclear Information System (INIS)

    Steinheimer, J.; Gudima, K.; Botvina, A.; Mishustin, I.; Bleicher, M.; Stöcker, H.

    2012-01-01

    We study the production of (hyper-)nuclei and dibaryons in most central heavy ion collisions at energies of E lab =1-160 A GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange and non-strange clusters is estimated by assuming thermal production from the intermediate phase of the UrQMD-hydro hybrid model and alternatively by the coalescence mechanism from a hadronic cascade model. Both model types are compared in detail. For most energies we find that both approaches agree in their predictions for the yields of the clusters. Only for very low beam energies, and for dibaryons including Ξ's, we observe considerable differences. We also study the production of anti-matter clusters up to top RHIC energies and show that the observation of anti- 4 He and even anti- 4 Λ He is feasible. We have found a considerable qualitative difference in the energy dependence of the strangeness population factor R H when comparing the thermal production with the coalescence results.

  12. Dynamic processes in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Prendergast, E. P.

    1999-03-01

    This thesis describes the study of the reaction dynamics in heavy-ion collisions of small nuclear systems at intermediate energies. For this, experiments were performed of 24Mg+27A1 at 45 and 95 AMeV. The experiments described in this thesis were performed at the GANIL accelerator facility in Caeri (France) using the Huygens detectors in conjunction with the ‘MUR’. The Huygens detectors consist of the CsI(Tl)-Wall (CIW) covering the backward hemisphere and, located at mid-rapidity, the central trigger detector (CTD), a gas chamber with microstrip read-out backed by 48 plastic scintillators. The forward region is covered by 16 of the plastic scintillators of the CTD and by the MUR, a time-of-flight wall consisting of 96 plastic scintillator sheets. In earlier experiments only fragments with atomic number, Z, greater then two could be identifled in the CTD. Therefore, an investigation was done into the properties of different drift gases. The use of freon (CF4) in the drift chamber, combined with an increase of the gas pressure to 150 mbar, makes it possible to identify all particles with Z ≥ 2. Under these conditions particles with Z = 1 can only be identifled to approximately 25 AMeV. The Isospin Quantum Molecular Dynamics (IQMD) model has been used, to interpret the measured data. This model gives a microscopical description of heavy-ion collisions and simulates collisions on an event by event basis. In IQMD all protons and neutrons are represented as individual Gaussian wave packets. After initialisation the path of each nucleon is calculated for 200 fm/c, after which the simulation is stopped. At this time, nucleons which are close in space are clustered into fragments. The events generated by IQMD can then be processed by a GEANT detector simulation. This calculation takes into account the effects of the detector on the incoming particles. By using the GEANT simulation it is possible to give a direct comparison between the results of IQMD and the

  13. The formation and deexcitation of hot nuclei in 40Ar + 197Au collisions at 44 and 77 MeV/A. Neutrons emission light charged particles and complex fragments

    International Nuclear Information System (INIS)

    Sokolov, A.

    1990-05-01

    This work is a contribution to the study of the formation and decay of hot nuclei produced in heavy ion collisions at intermediate energies. By studying the system Ar + Au and Ar + Th at 44 MeV/u and 77 MeV/u we first show how to classify events in two groups: peripheral and very dissipative collisions, measuring the number of evaporated neutrons, which depend directly on the violence of the collision. Associated with these neutrons, different deexcitation channels were observed (heavy residues, fission fragments, light charged particles, intermediate mass fragments). The ratio between peripheral and very dissipative collisions was found independent of the system and the same as the one observed at lower incident energy. The most probable neutron multiplicity for very dissipative collisions is not very different at 44 MeV/u and 77 MeV/u. A measurement of the angular distribution of fission fragments and heavy residues was performed. Detected products are essentially associated with large neutron multiplicity and have a cross section close to the one for the very dissipative collisions. The total mass of the fission fragments is close to the mass of the target, while the mass of the heavy residue is much smaller. The backward evaporated light charged particles are also produced in very dissipative collisions. The characteristics of their energy spectra as well as their multiplicities are very similar at 44 MeV/u 77 MeV/u. From the number of evaporated light charged particles, the estimation of the quasi-target excitation energy was done and found to be close to 600 MeV at 44 MeV/u and 77 MeV/u [fr

  14. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  15. Production of nuclei far from the beta stability line using intermediate-energy heavy ions

    International Nuclear Information System (INIS)

    Guerreau, D.

    1986-05-01

    The production of far unstable nuclei using heavy ion accelerators in the intermediate energy domain is reviewed. The various mechanisms responsible for the production of exotic species, mainly the projectile fragmentation and transfer reactions, are discussed, and the first experimental results presented. Results can be summarized as follows: existence of 4 new isotopes 22 C, 23 N, 29 Ne, 30 Ne; indication of bound character of 71 Ni, 72 Ni; clear evidence for bound character of 23 Si, 27 S, 31 Ar, 35 Ca; indications of bound character of 43 V, 46 Mn, 47 Mn, 48 Fe, 50 Co, 52 Co, 52 Ni, 55 Cu, 56 Cu

  16. Hypothetical interaction mechanisms for heavy-ion collisions between 20 and 50 MeV/u

    International Nuclear Information System (INIS)

    Ngo, C.; Dalili, D.; Lucas, R.

    1985-01-01

    A brief survey of some aspects of heavy-ion interaction mechanisms, at bombarding energies between 20 and 50 MeV/u is presented. The maximum energy content of a nuclear system, the most probable linear momentum transfer and the possible existence of a ''calefaction'' phenomenon in heavy-ion collisions have also been investigated

  17. MEGHNAD – A multi element detector array for heavy ion collision ...

    Indian Academy of Sciences (India)

    When heavy ion beam available from such machines fall on a target and undergo collision, very rich and often pristine fields of research open up. In order to carry on such activities, we have taken up a project to build a multi element gamma, heavy ion and neutron array of detectors (MEGHNAD) to detect and study the ...

  18. Photon and dilepton production in high-energy heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-07

    May 7, 2015 ... The recent results on direct photons and dileptons in high-energy heavy-ion collisions, obtained particularly at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the ...

  19. Transfer products from the reactions of heavy ions with heavy nuclei

    International Nuclear Information System (INIS)

    Thomas, K.E. III.

    1979-11-01

    Production of nuclides heavier than the target from 86 Kr- and 136 Xe-induced reactions with 181 Ta and 238 U was investigated. Attempts were made to produce new neutron-excess Np and Pu isotopes by the deep inelastic mechanism. No evidence was found for 242 Np or 247 Pu. Estimates were made for the production of 242 Np, 247 Pu, and 248 Am from heavy-ion reactions with uranium targets. Comparisons of reactions of 86 Kr and 136 Xe ions with thick 181 Ta targets and 86 Kr, 136 Xe and 238 U ions with thick 238 U targets indicate that the most probable products are not dependent on the projectile. The most probable products can be predicted by the equation Z - Z/sub target/ = 0.43 (A - A/sub target/) + 1.0. The major effect of the projectile is the magnitude of the production cross section of the heavy products. Based on these results, estimates are made of the most probable mass of element 114 produced from heavy-ion reactions with 248 Cm and 254 Es targets. These estimates give the mass number of element 114 as approx. 287 if produced in heavy-ion reactions with these very heavy targets. Excitation functions of gold and bismuth isotopes arising from 86 Kr- and 136 Xe-induced reactions with thin 181 Ta targets were measured. These results indicate that the shape and location (in Z and A above the target) of the isotopic distributions are not strongly dependent on the projectile incident energy. Also, the nuclidic cross sections are found to increase with an increase in projectile energy to a maximum at approximately 1.4 to 1.5 times the Coulomb barrier. Above this maximum, the nuclidic cross sections are found to decrease with an increase in projectile energy. This decrease in cross section is believed to be due to fission of the heavy products caused by high excitation energy and angular momentum. 111 references, 39 figures, 34 tables

  20. Transfer reaction studies in the region of heavy and superheavy nuclei at SHIP

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, S; Comas, V; Hofmann, S; Ackermann, D; Heredia, J; Hessberger, F P; Khuyagbaatar, J; Kindler, B; Lommel, B; Mann, R, E-mail: s.heinz@gsi.de [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2011-02-01

    We studied multi-nucleon transfer reactions in the region of heavy and superheavy nuclei. The goal was to investigate these reactions as possibility to create new superheavy neutron-rich isotopes, which cannot be produced in fusion reactions. The experiments have been performed at the velocity filter SHIP at GSI. At SHIP we can detect and identify the heavy, target-like, transfer products. Due to the low background at the focal plane detector and the isotope identification via radioactive decays, the setup allows to reach an upper cross-section limit of 10 pb/sr within one day of beamtime. We investigated the systems {sup 58,64}Ni + {sup 207}Pb and {sup 48}Ca + {sup 248}Cm at beam energies below and up to 20% above the Coulomb barrier. At all energies we observed a massive transfer of protons and neutrons, where transfer products with up to eight neutrons more than the target nucleus could be identified.