WorldWideScience

Sample records for heavy metals zn

  1. HEAVY METALS (Ni, Cu, Zn AND Cd CONTENT IN SERUM OF RAT FED GREEN MUSSELS

    Directory of Open Access Journals (Sweden)

    Muhammad Yudhistira Azis

    2015-11-01

    Full Text Available Green mussel (Perna viridis can playing role as bio-indicator or biomonitoring agent for heavy-metalcontaminations in the sea. In this research, the concentrations of four elements Ni, Cu, Zn and Cd in P. viridis and in the serum of rat which orally feed by P. viridis were determined by Atomic Absorption Spectrometry (AAS following dry acid digestion. Parameter analysis was evaluated by determining confidence limit for the obtained results. The result showed that there was a sequence of heavy-metal content in green mussels sample and laboratory rats serum, such as Ni < Cd < Cu < Zn. Keywords: heavy metals, green mussels, laboratory rats serum, AAS

  2. Heavy metal (Cu, Cr, Zn, and Fe) concentration on coralreef in panjang island coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Ali Arman L; Yulizon Menri

    2008-01-01

    Observation on the accumulation of Cu, Cr, Zn, and Fe heavy metals in coral tissue were carried out in Panjang island, Jepara by NAA method. The purpose of this research is to determine the concentration of heavy metals on coral reef tissue in order to update environmental data to support site licensing and Environmental Impact Assessment (EIA) of Nuclear Power Plants (NPP). The result indicated that the concentration of Zn is 1,78 - 42,34 ppm, Cu is undetected - 0,41 ppm, Cr is 0,03 - 0,35 ppm and Fe is 5,25 - 30,56 ppm. The data shows that the accumulation of heavy metals in the coral reef tissue is higher than environmental threshold value, especially for marine biota life referring to the Environmental Ministry Decree Number 51 year 2004. (author)

  3. Spatial heavy metals Zn and Cr distribution in soil samples taken from Tatra Mountains

    International Nuclear Information System (INIS)

    Stobinski, M.; Misiak, R.; Kubica, B.

    2008-03-01

    The basic issue of presented report is showing the spatial heavy metals (Zn and Cr) distribution in soil samples taken from High Mts area. The expertise was done using two analytical techniques: AAS (atomic absorption spectroscopy) and micro-PIXIE (proton induced X-ray emission).Given heavy metals concentration were originated either from soil surface (10 cm depth) or from the whole soil profile. Our evaluation indicates that the Zn and Cr levels measured for mountains region were comparable to the data presented by other authors. Furthermore, the amount of heavy metals is strongly correlated with its natural concentration in parental rock.We also observed that zinc was prone to accumulate in surface, rich in organic matter, soil levels. (author)

  4. Decreasing Ni, Cu, Cd, and Zn heavy metal magnetite-bentonite nanocomposites and adsorption isotherm study

    Science.gov (United States)

    Eskandari, M.; Zakeri Khatir, M.; Khodadadi Darban, A.; Meshkini, M.

    2018-04-01

    This present study was conducted to investigate the effect of magnetite-bentonite nanocomposite on heavy metal removal from an effluent. For this purpose, magnetite-bentonite nanocomposite was prepared through the chemical method and characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques, followed by studying the effect of produced nanocomposite on the removal of Ni2+, Cu2+, Cd2+, and Zn2+ heavy metal ions. The results showed that adsorption capacity of magnetite-bentonite nanocomposites for the studied ions is in the order of Zn2+ > Cd2+ > Cu2+ > Ni2+. Adsorption isotherms were drawn for Ni2+, Cu2+, Cd2+, and Zn2+ cations and found that cations adsorption on nanocomposite fit into Langmuir model.

  5. The Enrichment and Transfer of Heavy Metals for Two Ferns in Pb-Zn Tailing

    Directory of Open Access Journals (Sweden)

    Mai Jiajie

    2017-01-01

    Full Text Available The enrichment and transfer of 8 heavy metals of Equisetum ramosissimum and Pteris vittata growing naturally close to edge of the sewage pool in Bencun Pb-Zn Tailing, Eastern Guangdong were investigated. The results indicated that the pollution of Cd, Pb, Hg, Zn was very severe in this tailing, followed by Cu and Mn. The potential ecological risk of heavy metals was assessed to be very strong based on soil background values of Guangdong Province and at high risk according to criteria of the second grade State Soil Environmental Quality Standard, and Cd, Hg, Pb were the main factors leading to potential ecological risk. The content of 8 heavy metals in the two ferns did not reach critical content of hyperaccumulator, so neither of them was typical hyperaccumulator, but both had a certain tolerance to these heavy metal pollution. Underground parts of Pteris vittata had an enrichment coefficient above 1 and that of Equisetum ramosissimum had a value near 1, therefore the two ferns could be utilized as potential enrichment plants. The two ferns have strong adaptability to the tailing habitat and can be used as pioneers in ecological restoration of Pb-Zn tailings.

  6. Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing

    International Nuclear Information System (INIS)

    Kovacs, Elza; Dubbin, William E.; Tamas, Janos

    2006-01-01

    Among the inorganic toxicants of greatest concern in mine tailings, Pb, Zn, Cu, Cd and As figure prominently due to their abundance and potential toxicity. Here we report on their biolability and solid-phase speciation in two sediment cores subject to variable hydrological regimes at an abandoned pyritic mine tailing. The oxic conditions of well-drained sediments induced pyrite oxidation and the subsequent liberation of H + , SO 4 2- and considerable quantities of Fe(III), which precipitated as goethite. Solubility of Pb, Zn, Cu and Cd was closely coupled to pH and goethite presence. Metal lability was particularly low in zones of neutralization, formed by the accumulation of calcite, first carried then deposited by percolating waters in both saturated and unsaturated cores. We conclude that differential hydrology induces variable heavy metal speciation and biolability in Pb-Zn mine tailings, and suggest that site-specific risk assessments must account for past and present hydrological regimes. - Variable hydrology influences heavy metal speciation and mobility, and the formation of neutralization zones, in a Pb-Zn mine tailing

  7. Screening of various types of lignin products for biosorption of heavy metals (Cu, Ni, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Gouda, H [Nile Research Inst., National Water Research Center, El Qanater (Egypt)

    2000-07-01

    This paper discussed the need to develop new technologies and approaches to meet strict environmental legislation and standards regarding the discharge of heavy metals to the environment by industry. A study was conducted to determine the feasibility of using different lignin materials for heavy metal removal using the BioElecDetox process. This process uses an unique combination of existing water and wastewater equipment and technology. The heavy metal removal efficiencies of grape stalks, pine bark, larch bark, pine sawdust, broccoli stems, and paper pulp were tested for their biosorption capacity, sedimentation, desorption and recycling for single solutions of copper, nickel and zinc (Cu, Ni and Zn respectively). Results showed that the grape stalk was the best biosorbent among the biomasses examined for Cu, Ni and Zn ions from single solution. The biomass biosorption capacity was determined using the Langmuir equation. Pine bark also gave good results and was considered to be the second best biosorbent. The biosorption for single metal solution was high for all metals. Biomass recycling had no impact on the efficiency of biosorption. It was recommended that future experiments should be conducted for industrial effluent using different biomasses at laboratory scale for the BioElecDetox process. 5 refs., 1 tab., 2 figs.

  8. Fate of Heavy Metals Pb and Zn in the West Season at Jeneberang Estuary, Makassar

    Directory of Open Access Journals (Sweden)

    Najamuddin .

    2017-08-01

    Full Text Available The pollutant quantity of heavy metals entering water environment does not give complete answer toward the generated effect and risk, however it needs thoroughly study related to the pollutant dynamic. The aim of this research was to investigate the fate of Pb and Zn in water, such as: distribution, behavior, and reactivity (case study: Jeneberang Estuary, Makassar. Pb and Zn concentrations were determined using Atomic Absorption Spectrophotometry (AAS. The distribution of dissolved Pb and Zn showed a pattern that the lowest concentration was in the fresh water (the river zone, whereas the highest concentration was in the salt water (the marine zone. The distribution pattern of particulate Pb and Zn showed that the highest concentration was in the fresh water (the river zone and the salt water (the marine zone, whereas the lowest concentration was in the estuary zone. The behavior of dissolved Pb and Zn tended to increase the concentration (desorption along the increased salinity gradient. The residual fraction was the dominant component of geochemical fractions in the sediment that indicated the sources of Pb and Zn mainly derived from a natural process and the reactivity was low in the water.   Keywords: distribution, behavior, reactivity, lead, zinc, pollution

  9. Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent.

    Science.gov (United States)

    El-Sayed, Mona; Eshaq, Gh; ElMetwally, A E

    2016-10-01

    In our study, Mg-Al-Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg-Al-Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N 2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg-Al-Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g -1 , and 70.4 mg g -1 , respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, q max , obtained was 113.8 mg g -1 , and 79.4 mg g -1 for Co(II), and Ni(II), respectively. Our results showed that Mg-Al-Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.

  10. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China.

    Science.gov (United States)

    Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang

    2018-03-07

    The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.

  11. Heavy metal contamination in the environs of the Zn-pB Mine in North-West of Tunisia

    International Nuclear Information System (INIS)

    Ben Guirat, S.; Ben Aissa, N.; Mhiri, A.

    2009-01-01

    The impact of industrial heavy metals (HM) pollution on soil quality and plant growth has become a public concern. To evaluate heavy metals concentration a Zn-Pb mine site was selected, as source of pollution, localized in BouGrine (BG) region at 120 km North-west of Tunis characterized by calcareous soils. Soils of the imine site are occupied by forest pine. (Author)

  12. Analysis of heavy metals (Pb and Zn) concentration in sediment of Blanakan fish ponds, Subang, West Java

    Science.gov (United States)

    Wiriawan, A.; Takarina, N. D.; Pin, T. G.

    2017-07-01

    Blanakan fish ponds receive water resource from Kali Malang and Blanakan rivers. Industrial and domestic activities along the river can cause pollution, especially heavy metals. Zinc (Zn) is an essential element that needed by an organism, while Lead (Pb) is a nonessential element that is not needed. Discharge of waste water from industries and anthropogenic activities continuously not only pollute the water but also the sediment and biota live on it. This research was aimed to know the heavy metals content in the sediment of Blanakan fish ponds. Sediment samples were taken on July and August 2016 at three locations. Heavy metals were analyzed using Atomic Absorption Spectrophotometry (AAS) Shimadzu 6300. The result of Lead (Pb) measurement showed that Fish Pond 1 had higher average concentration compared Fish Pond 2 and Fish Pond 3 which was 0.55 ppm. Standard for Lead (Pb) in sediment according to Ontario Sediment Standards (2008) is 31 ppm. Based on Zinc (Zn) measurement, it was known that average of Zinc (Zn) concentration also higher on Fish Pond 1 compared to Fish Pond 2 and 3 which was 1.93 ppm. According to Ontario Sediment Standards (2008), a standard for Zinc (Zn) in sediment is 120 ppm. This indicated that heavy metals in the sediment of fish ponds were below standards. Statistical analysis using t-test showed that there was no significant difference of heavy metals content among fish ponds.

  13. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    Science.gov (United States)

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu +2 , Hg +2 , Pb +2 , and Zn +2 ). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  14. Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China.

    Science.gov (United States)

    Qi, Jianying; Zhang, Hailong; Li, Xiangping; Lu, Jian; Zhang, Gaosheng

    2016-07-01

    China is one of the largest producers and consumers of lead and zinc in the world. Lead and zinc mining and smelting can release hazardous heavy metals such as Cd, Pb, Zn, and As into soils, exerting health risks to human by chronic exposure. The concentrations of Cd, Zn, Pb, and As in soil samples collected from a Pb-Zn mining area with exploitation history of 60 years were investigated. Health risks of the heavy metals in soil were evaluated using US Environmental Protection Agency (US EPA) recommended method. A geo-statistical technique (Kriging) was used for the interpolation of heavy metals pollution and Hazard Index (HI). The results indicated that the long-term Pb/Zn mining activities caused the serious pollution in the local soil. The concentrations of Cd, As, Pb, and Zn in topsoil were 40.3 ± 6.3, 103.7 ± 37.3, 3518.4 ± 896.1, and 10,413 ± 2973.2 mg/kg dry weight, respectively. The spatial distribution of the four metals possessed similar patterns, with higher concentrations around Aayiken (AYK), Maseka (MSK), and Kuangshan (KS) area and more rapidly dropped concentrations at upwind direction than those at downwind direction. The main pollutions of Cd and Zn were found in the upper 60 cm, the Pb was found in the upper 40 cm, and the As was in the upper 20 cm. The mobility of metals in soil profile of study area was classed as Cd > Zn ≫ Pb > As. Results indicated that there was a higher health risk (child higher than adult) in the study area. Pb contributed to the highest Hazard Quotient (57.0 ~ 73.9 %) for the Hazard Index.

  15. Adsorption of multi-heavy metals Zn and Cu onto surficial sediments: modeling and adsorption capacity analysis.

    Science.gov (United States)

    Li, Shanshan; Zhang, Chen; Wang, Meng; Li, Yu

    2014-01-01

    Improved multiple regression adsorption models (IMRAMs) was developed to estimate the adsorption capacity of the components [Fe oxides (Fe), Mn oxides (Mn), organic materials (OMs), residuals] in surficial sediments for multi-heavy metal Zn and Cu. IMRAM is an improved version over MRAM, which introduces a computer program in the model developing process. As MRAM, Zn(Cu) IMRAM, and Cu(Zn) IMRAM again confirmed that there is significant interaction effects that control the adsorption of compounded Zn and Cu, which was neglected by additional adsorption model. The verification experiment shows that the relative deviation of the IMRAMs is less than 13%. It is revealed by the IMRAMs that Mn, which has the greatest adsorption capability for compounded Zn and Cu (54.889 and 161.180 mg/l, respectively), follows by interference adsorption capacity of Fe/Mn (-1.072 and -24.591 mg/l respectively). Zn and Cu influence each other through different mechanisms. When Zn is the adsorbate, compounded Cu mainly affects the adsorption capacities of Fe/Mn and Fe/Mn/OMs; while when Cu is the adsorbate, compounded Zn mainly exerts its effect on Mn, Fe/Mn, and Mn/OMs. It also shows that the compounded Zn or Cu weakened the interference adsorption of Fe/Mn, and meanwhile, strengthened the interference adsorption of Mn/OMs.

  16. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (Ni, Mn, Pb, Fe, Zn, Cr)

    International Nuclear Information System (INIS)

    Hormozi Nejad, F.; Rastmanesh, F.; Zarasvandi, A.

    2016-01-01

    The highest concentrations were found at soil samples 4 and 12. Comparison of heavy metals concentration with unpolluted soil standard indicated that, concentrations of Cr, Zn, Fe, Ni and Pb is higher than that of unpolluted soil standard. In general, Manganese, Chromium, Zinc and Lead are the most important elements that are found in emissions of steel plants. The soil samples near the steel plant and downwind direction have much higher pollution level. The results showed that Mn, Pb and Zn is related to human activity and Cr have geogenic source and Fe and Ni have both geogenic and anthropogenic source in the study area in the city of Ahwaz.

  17. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    Science.gov (United States)

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Soil-plant abstract of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain)

    Science.gov (United States)

    López-Berdonces, Miguel; Higueras, Pablo; Esbrí, Jose Maria; González-Corrochano, Beatríz; García-Noguero, Eva Mª; Martínez-Coronado, Alba; Fernandez-Calderón, Sergio; García-Noguero, Carolina

    2013-04-01

    Soil-plant transfer of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain). Authors: Miguel A. López-Berdonces¹; Pablo Higueras¹; Jose María Esbrí¹; Beatriz González-Corrochano¹; Eva Mª García- Noguero¹; Alba Martínez Coronado¹; Sergio Fernández-Calderón¹; Carolina García-Noguero¹ ¹Instituto de Geología Aplicada, Universidad Castilla la Mancha, Pza. Manuel Meca, 1. 13400 Almadén, Spain. Alcudia Valley is a vast territory recently declared Natural Park, located in South of Spain. It is an area rich in mineral deposits of Zn and Pb and mining exists since the first millennium BC., having its highest ore production between mid-nineteenth century and the middle of the twentieth. This area has been selected because has more than 120 abandoned mines without remediation actions, with dumps and tailings with high contents of zinc and lead sulfides, and Cu, Ag, Cd, As, Sb in minor concentrations. In this study we determinate the transfer rate of these metals from soils to plants represented by oak leaves (Quercus ilex), because this specie is common within the selected area. To evaluate the soil-plant transfer were studied the correlation of contents, total and extractable, in soil-leaves. Extractable fraction was done by for different methods in water, EPA 1312 sulfuric acid: nitric acid 60:40 v., Ammonium Acetate and EDTA. To establish the correlation between heavy metals from soils to plants is necessary to know the contents of these and bioavailable content in soil. Three areas (S. Quintín, Romanilla, Bombita) were selected, taking 24 samples of soils and leaves. Analyzed leaves by XRF showed that Mn, Pb, Zn and Mo in S.Quintin and Romanilla, Mn, Pb in Bombita, exceeded the toxicity threshold. The same samples analyzed by ICP show us the toxicity threshold is exceeded Pb, Zn and Hg in S.Quintin, and Pb in Romanilla. The heavy metal content in leaves compared between two techniques analytical gives an acceptable correlation Zn - Pb

  19. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus.

    Science.gov (United States)

    Zaier, Hanen; Ghnaya, Tahar; Ben Rejeb, Kilani; Lakhdar, Abdelbasset; Rejeb, Salwa; Jemal, Fatima

    2010-06-01

    Sludge application is a reliable practice to ameliorate soil fertility. However, repetitive sludge addition represents a potential soil contamination source with heavy metals, which must be extracted. The aim of this study was to evaluate the capacity of Brassica napus to remove metals from soils amended with sludge, and to study the effect of EDTA on this process. Seedlings were cultivated in presence of sludge combined or not with EDTA. Results showed that sludge ameliorate significantly biomass production. This effect was accompanied with an increase in Pb, Zn and Mn shoot concentrations. EDTA application does not affect significantly plant growth. However, this chelator enhances shoot metals accumulation. It's therefore concluded that sludge has a beneficial effect on soil fertility, B. napus can be used for the decontamination of affected soils and that the EDTA addition increases the ability of B. napus to accumulate heavy metals. Published by Elsevier Ltd.

  20. Distribution of heavy metals (Cu, Zn and Cr in groundwater from the area of a future radioactive waste repository Saligny – Romania

    Directory of Open Access Journals (Sweden)

    Tudorache A.

    2013-04-01

    Full Text Available A study of some heavy metals (Cu, Zn and Cr concentrations in natural groundwater has been conducted, by considering samples collected from the area located in the neighbourhood of Saligny village (Cernavodă, Romania. Atomic absorption spectrometry methods with thermal and electrothermal atomization has been developed, tested and used for some heavy metals content determination. The results show various concentrations of Cu, Zn and Cr in groundwater samples.

  1. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts.

    Science.gov (United States)

    Gusiatin, Zygmunt Mariusz; Kulikowska, Dorota

    2016-09-01

    This study investigated how amendment with sewage sludge compost of different maturation times (3, 6, 12 months) affected metal (Cd, Cu, Ni, Pb, Zn) bioavailability, fractionation and redistribution in highly contaminated sandy clay soil. Metal transformations during long-term soil stabilization (35 months) were determined. In the contaminated soil, Cd, Ni and Zn were predominately in the exchangeable and reducible fractions, Pb in the reducible fraction and Cu in the reducible, exchangeable and oxidizable fractions. All composts decreased the bioavailability of Cd, Ni and Zn for up to 24 months, which indicates that cyclic amendment with compost is necessary. The bioavailability of Pb and Cu was not affected by compost amendment. Based on the reduced partition index (IR), metal stability in amended soil after 35 months of stabilization was in the following order: Cu > Ni = Pb > Zn > Cd. All composts were more effective in decreasing Cd, Ni and Zn bioavailability than in redistributing the metals, and increasing Cu redistribution more than that of Pb. Thus, sewage sludge compost of as little as 3 months maturation can be used for cyclic amendment of multi-metal-contaminated soil.

  2. Effects of Acute and Chronic Heavy Metal (Cu, Cd, and Zn Exposure on Sea Cucumbers (Apostichopus japonicus

    Directory of Open Access Journals (Sweden)

    Li Li

    2016-01-01

    Full Text Available Acute and chronic toxicity tests were conducted with sea cucumber (Apostichopus japonicus exposed to heavy metals. Acute toxicity values (96 h LC50 were 2.697, 0.133, and 1.574 mg L−1 for Zn, Cu, and Cd, respectively, and were ranked in order of toxicity: Cu > Cd > Zn. Under chronic metal exposure the specific growth rates of sea cucumbers decreased with the increase of metal concentration for all the three metals. After acute metal exposure, the oxygen consumption rate (OCR decreased. The OCRs in all groups were significantly different than control (P muscle > intestine in natural sea water. After chronic Zn, Cu, and Cd exposure, the change pattern of HK and PK in respiratory tree, muscle, and intestine varied slightly. However, the activity of the enzyme showed a general trend of increase and then decrease and the higher the exposure concentration was, the earlier the highest point of enzyme activity was obtained.

  3. Assessment Of Heavy Metal Contamination Of Water Sources From Enyigba Pb-Zn District South Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Nnabo Paulinus N

    2015-08-01

    Full Text Available Abstract A total of thirty 30 water samples were collected from the Enyigba PbZn mining district to assess the contamination of the water sources as a result of mining of lead and zinc minerals in the area. This comprises of 12 samples of surface water 14 from mine ponds and 4 from underground borehole water. The samples were acidified to stabilize the metals for periods more than four days without the use of refrigeration. The acidified water samples were analysed by a commercial laboratory at Projects Development Institute PRODA Enugu using Atomic Absorption Spectroscopy AAS. The elements determined by this method are lead Pb zinc Zn copper Cu arsenic As cadmium Cd nickel Ni manganese Mn and cobalt Co. The result and analysis of contamination factor showed that in surface water Cd had the highest concentration followed by As and Pb while Ni had the lowest. In mine ponds Cd also had the highest concentration and followed by Pb and As and Ni the lowest. In borehole water Cd has the highest concentration followed by Pb and As while Ni had the lowest concentration. Compared to WHO permissible limits the contamination of the heavy metals in all water sources are in order CdAsPbNiZnCu. In surface water the order is CdAsPbNiZnCu in mine ponds it is CdPbAsNiZnCu and in borehole water the order is CdAsPbZnNiCu. The calculated contamination factors show very high contamination status for Cd Pb and As. These levels of contamination and values indicate that under the prevailing conditions and environmental regulations in Nigeria the mining district would face major and hazardous discharges of these metals to the water sources.

  4. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China.

    Science.gov (United States)

    Shen, Feng; Liao, Renmei; Ali, Amjad; Mahar, Amanullah; Guo, Di; Li, Ronghua; Xining, Sun; Awasthi, Mukesh Kumar; Wang, Quan; Zhang, Zengqiang

    2017-05-01

    A large scale survey and a small scale continuous monitoring was conducted to evaluate the impact of Pb/Zn smelting on soil heavy metals (HMs) accumulation and potential ecological risk in Feng County, Shaanxi province of China. Soil parameters including pH, texture, CEC, spatial and temporal distribution of HMs (Cd, Cu, Ni, Pb and Zn), and BCR fractionation were monitored accordingly. The results showed the topsoil in the proximity of smelter, especially the smelter area and county seat, were highly polluted by HMs in contrast to the river basins. Fractionation of Cd and Zn in soil samples revealed higher proportion of mobile fractions than other HMs. The soil Cd and Zn contents decreased vertically, but still exceeded the second level limits of Environmental Quality Standard for Soils of China (EQSS) within 80cm. The dominated soil pollutant (Cd) had higher ecological risk than Cu, Ni, Zn and Pb. The potential ecological risk (PER) factor of Cd were 65.7% and 100% in surrounding county and smelter area, respectively. The long-term smelter dust emission mainly contributed to the HMs pollution and posed serious environment risk to living beings. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. An investigation of the evolution of evolution of distribution and accumulation of heavy metals(Cr, Ni, Cu, Cd, Zn and Pb) in Anzali wetland's sediments

    International Nuclear Information System (INIS)

    Sartaj, M.; Fatollahi, F.; Filizadeh, Y.

    2005-01-01

    To investigate the precipitation of heavy metals in Anzali wetland and evaluate its refining performance this study was carried out on the wetland. Monthly samples of sediments from 15 stations including inlets, outlets and some internal locations in the wetland were collected and analyzed over a period of six months (July - December 2002). Sediment samples were analyzed for six metals of Cr, Cd, Pb, Zn, Cu and Ni. Wet digestion method was employed for extraction of metals in samples by and through a solution containing HN03 and HCL. Atomic Adsorption spectrophotometry was employed for measurement of the heavy metals. Statistical methods, including analysis of variance (ANOVA), correlation and Cluster analysis were used for analysis of the data. The results indicated that concentration of heavy metals present in sediments (collected from different stations and at different times) here significantly different. Among the metals studied, Zn was of the highest concentration Heavy metal concentrations in stations 1 1, 12 and 13 were lower than in other stations. Sediments in station 5 contained the highest concentrations of heavy metals among all sediments. It can be stated that concentration of heavy metals decreases with an increase in the distance from delta of rivers entering the wetland.2. This is due to the role and performance of wetland chemical contents in reduction of pollutants, the self-purification action of wetland as well as precipitation of heavy metals at the beginning of the entries into the wetland

  6. 18O isotopic characterisation of non-point source contributed heavy metals (Zn and Cu) contamination of groundwater

    International Nuclear Information System (INIS)

    Datta, P.S.; Manjaiah, K.M.; Tyagi, S.K.

    1999-01-01

    In many urbanised areas, fast depletion and severe degradation of the of groundwater resource with contaminants such as nitrate, fluoride, and heavy metals is a common phenomenon, resulting in zonal disparity in fresh water availability. Therefore, for protection of groundwater from pollution and depletion, it is a matter of concern for the planners and decision makers to clearly characterise the sources of contamination and to search for an alternative approach for groundwater development and management. In this context, a new approach is presented here, based on monitoring of 18 O stable isotopic and heavy metals composition of groundwater, to clearly characterise non-point source contributed heavy metals pollution of groundwater in northern parts of Delhi area. In the investigated area, the Cu content in the groundwater ranges from 3-41 μg/l and Zn content ranges from 5-182 μg/l, showing considerable variation from location to location as well as within the small parts of a location. Wide variation in the 18 O stable isotope content of groundwater (δ value of -5.7 per mille to -8.5 per mille) is due to significant variation in the δ 18 O-contents of rainfall with space and time, as well as intensity and distribution of rainfall. Enrichment in 18 O composition with increasing Cu and Zn levels in groundwater suggest that infiltration of rain water, irrigation water and surface run-off water from the surrounding farm lands, along with agrochemicals and other salts present in the soil, to be the main processes causing groundwater contamination. The concentration of Cu and Zn in groundwater vary spatially, due to different degrees of evaporation/recharge, amounts of fertiliser applied and wastes disposed, adsorption/dispersion of species in the soils and lateral mixing of groundwater. Two opposite mechanisms adsorption and redistribution of infiltrating water along with Zn and Cu species in the soil zone are likely to affect the movement of the Zn and Cu species

  7. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, Dane T.; Ming Hui; Megharaj, Mallavarapu [Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106 (Australia); Naidu, Ravi, E-mail: ravi.naidu@crccare.com [Centre for Environmental Risk Assessment and Remediation, Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), P.O. Box 486, Salisbury, SA 5106 (Australia)

    2009-11-15

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl{sub 2}) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg{sup -1}, 10.3 to 95 mg kg{sup -1} Zn, 0.1 to 1.8 mg Cd kg{sup -1} and 5.2 to 183 mg kg{sup -1} Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg{sup -1}, 312 to 39,000 mg kg{sup -1} Zn, 6 to 302 mg Cd kg{sup -1} and 609 to 12,000 mg kg{sup -1} Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K{sub d}) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  8. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils

    International Nuclear Information System (INIS)

    Lamb, Dane T.; Ming Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2009-01-01

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl 2 ) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg -1 , 10.3 to 95 mg kg -1 Zn, 0.1 to 1.8 mg Cd kg -1 and 5.2 to 183 mg kg -1 Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg -1 , 312 to 39,000 mg kg -1 Zn, 6 to 302 mg Cd kg -1 and 609 to 12,000 mg kg -1 Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K d ) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  9. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes

    OpenAIRE

    Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun

    2017-01-01

    Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepare...

  10. The Content of Heavy Metals (Cu, Zn, Cr, Ni, Pb in The Soil Near The Arterial Roads in Wroclaw (Poland

    Directory of Open Access Journals (Sweden)

    Sobczyk Karolina

    2017-01-01

    Full Text Available The concentrations of heavy metals in soils along the motorway bypass of Wroclaw (AOW and the Eastern Ring Road of Wroclaw (WOW, Poland, have been determined. The soil samples were collected from the levels of 0-25 cm within 2 m from the edge of the road. The mineralizates were prepared in HNO3, 60%, using the Microwave Digestion System. The content of Cu, Zn, Cr, Ni and Pb in soils were determined using FAAS method. The physicochemical parameters, the conductivity and pH of the soil solutions were measured to evaluate the salinity of the soils and their active and exchangeable acidity. The pollution indexes (WN showing the enrichment of soils in metals have been determined. Excess of metal concentrations in soils compared to the geochemical background in uncontaminated soils of Poland has been observed. Permissible concentrations of heavy metals relative to the standard for soils, according to the Polish Ministry of Environment Regulation from September 1st, 2016, have not been exceeded.

  11. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (KSC (Ni, Mn, Pb, Fe, Zn, Cr

    Directory of Open Access Journals (Sweden)

    Fatemeh hormozi Nejad

    2017-02-01

    Full Text Available Introduction Soil plays a vital role in human life as the very survival of mankind is tied to the preservation of soil productivity (Kabata- Pendies and Mukherjee, 2007. The purpose of this study is the assessment of heavy metal contamination (Zn, Mn, Pb, Fe, Ni, Cr of the soil around the Khuzestan Steel Complex. Materials and methods For this purpose, 13 surface soil samples (0-10 cm were taken. Also a control sample was taken from an area away from the steel complex. The coordinates of each point were recorded by Global Positioning System (GPS. The samples were transferred to the laboratory and then were air dried at room temperature for 72 hours. Then they were sieved through a 2mm sieve for determining physical and chemical parameters (soil texture, pH, OC, and a 63-micron sieve for measurement of heavy metal concentration. pH was measured using a calibrated pH meter at a 2: 1 mixture (soil: water, and soil texture was determined using a hydrometer. The amount of organic matter was measured using the Valkey black method (Chopin and Alloway, 2007. After preparation of the samples in the laboratory, the samples were analyzed using the ICP-OES method to assess concentration of heavy metals. Measurement of heavy metals concentration was carried out at the Zar azma laboratory in Tehran. To ensure the accuracy of the analysis of soil samples, replicate samples were also sent to the laboratory. In order to assess the heavy metal pollution in the soil samples, different indices including contamination factor (CF, contamination degree (Cd, anthropogenic enrichment percent (An%, and saturation degree of metals (SDM were calculated. Discussion In addition, the mean concentrations of heavy metals in soil samples were compared to the concentration of these metals in Control Sample and unpolluted soil standard. Measurement of soil pH showed that the soil has a tendency to alkalinity. Also, soil texture is sandy loam (Moyes, 2011. The results showed that

  12. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species

    International Nuclear Information System (INIS)

    Canli, Mustafa; Atli, Gueluezar

    2003-01-01

    Significant relationships between metal concentrations and fish size were negative. - Heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) concentrations in the muscle, gill and liver of six fish species (Sparus auratus, Atherina hepsetus, Mugil cephalus, Trigla cuculus, Sardina pilchardus and Scomberesox saurus) from the northeast Mediterranean Sea were measured and the relationships between fish size (length and weight) and metal concentrations in the tissues were investigated by linear regression analysis. Metal concentrations (as μg/g d.w.) were highest in the liver, except for iron in the gill of Scomberesox saurus and lowest in the muscle of all the fish species. Highest concentrations of Cd (4.50), Cr (17.1) and Pb (41.2) were measured in liver tissues of T. cuculus, Sardina pilchardus and A. hepsetus, respectively. The liver of M. cephalus showed strikingly high Cu concentrations (202.8). The gill of Scomberesox saurus was the only tissue that showed highest (885.5) iron concentrations. Results of linear regression analysis showed that, except in a few cases, significant relationships between metal concentrations and fish size were negative. Highly significant (P<0.001) negative relationships were found between fish length and Cr concentrations in the liver of A. hepsetus and M. cephalus, and Cr concentrations in the gill of T. cuculus. Cr and Pb concentrations in the liver and Cu concentrations in all the tissues of Scomberesox saurus also showed very significant (P<0.001) negative relationships. Negative relationships found here were discussed

  13. Barley HvHMA1 is a heavy metal pump involved in mobilizing organellar Zn and Cu and plays a role in metal loading into grains

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Dalgaard; Pedas, Pai; Schiller, Michaela

    2012-01-01

    Heavy metal transporters belonging to the P1B-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. Heavy metal transporters belonging to the P1B-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. In this study we investigated...

  14. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  15. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake

    International Nuclear Information System (INIS)

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. - Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox with arbuscular mycorrhizal fungi resulted in improved nutrient and reduced Cd and Zn uptake

  16. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vogel-Mikus, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Pongrac, Paula [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Kump, Peter [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Necemer, Marijan [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)]. E-mail: marjana.regvar@bf.uni-lj.si

    2006-01-15

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. - Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox with arbuscular mycorrhizal fungi resulted in improved nutrient and reduced Cd and Zn uptake.

  17. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge.

    Science.gov (United States)

    Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An

    2018-01-01

    For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.

  18. Investigating the Role of Wind in the Dispersion of Heavy Metals Around Mines in Arid Regions (a Case Study from Kushk Pb-Zn Mine, Bafgh, Iran).

    Science.gov (United States)

    Mokhtari, Ahmad Reza; Feiznia, Sadat; Jafari, Mohammad; Tavili, Ali; Ghaneei-Bafghi, Mohammad-Javad; Rahmany, Farah; Kerry, Ruth

    2018-03-16

    The Kushk Pb-Zn mine is located in Central Iran and it has been in operation for the last 75 years. To investigate the role of wind dispersion of heavy metal pollutants from the mine area, dust samples were collected during 1 year and topsoil samples were collected around the mine. Results showed that the topsoil is polluted with Pb and Zn to about 1500 m away from the mine. It was also found that there was not a significant difference between the metal concentrations in topsoil and dust samples. The Pb and Zn concentrations in the dust samples exceeded 200 mg kg -1 and their lateral dispersion via wind was estimated to be about 4 km away from the mine. It has been shown that a combination of mining activities and mechanical dispersion via water and wind have caused lateral movement of heavy metals in this area.

  19. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  20. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria

    Science.gov (United States)

    Obiora, Smart C.; Chukwu, Anthony; Davies, Theophilus C.

    2016-04-01

    This study determined the heavy metals concentration in arable soils and associated food crops around the Pb-Zn mines in Enyigba, Nigeria, and metal transfer factors were calculated. Air-dried samples of the soils and food crops were analyzed for 8 known nutritional and toxic heavy metals by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) method. Eighty seven percent of all the 20 sampled soils contain Pb in excess of the maximum allowable concentration (MAC) set by Canadian Environmental Quality Guideline (CCME) and European Union (EU) Standard, while Zn in thirty-one percent of the samples exceeded the CCME for MAC of 200 mg/kg. All the food crops, with the exception of yam tuber, contain Pb which exceeded the 0.43 mg/kg and 0.3 mg/kg MAC standards of EU and WHO/FAO respectively, with the leafy vegetables accumulating more Pb than the tubers. The metal transfer factors in the tubers and the leafy vegetables were in the order: Mo > Cu > Zn > Mn > As > Cd > Cr > Ni > Pb and Cd > Cu > Zn > Mn > Mo > As > Ni > Pb > Cr, respectively. Risk assessment studies revealed no health risk in surrounding populations for most of the heavy metals. However, Pb had a high health risk index (HRI) of 1.1 and 1.3, in adults and children, respectively for cassava tuber; Pb had HRI > 1 in lemon grass while Mn also had HRI > 1 in all the leafy vegetables for both adult and children. This high level of HRI for Pb and Mn is an indication that consumers of the food crops contaminated by these metals are at risk of health problems such as Alzheimers' disease and Manganism, associated with excessive intake of these metals. Further systematic monitoring of heavy metal fluxes in cultivable soils around the area of these mines is recommended.

  1. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure.

    Science.gov (United States)

    Meng, Jun; Tao, Mengming; Wang, Lili; Liu, Xingmei; Xu, Jianming

    2018-08-15

    Biochar has been utilized as a good amendment to immobilize heavy metals in contaminated soils. However, the effectiveness of biochar in metal immobilization depends on biochar properties and metal species. In this study, the biochars produced from co-pyrolysis of rice straw with swine manure at 400°C were investigated to evaluate their effects on bioavailability and chemical speciation of four heavy metals (Cd, Cu, Pb and Zn) in a Pb-Zn contaminated soil through incubation experiment. Results showed that co-pyrolysis process significantly change the yield, ash content, pH, and electrical conductivity (EC) of the blended biochars compared with the single straw/manure biochar. The addition of these biochars significantly increased the soil pH, EC, and dissolved organic carbon (DOC) concentrations. The addition of biochars at a rate of 3% significantly reduced the CaCl 2 -extractable metal concentrations in the order of Pb>Cu>Zn>Cd. The exchangeable heavy metals decreased in all the biochar-amended soils whereas the carbonate-bound metal speciation increased. The increase in soil pH and the decrease in the CaCl 2 extractable metals indicated that these amendments can directly transform the highly availability metal speciation to the stable speciation in soils. In conclusion, biochar derived from co-pyrolysis of rice straw with swine manure at a mass ratio of 3:1 could most effectively immobilize the heavy metals in the soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    International Nuclear Information System (INIS)

    Wilczek, Grazyna; Babczynska, Agnieszka; Augustyniak, Maria; Migula, Pawel

    2004-01-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex

  3. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, Grazyna [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Babczynska, Agnieszka [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Augustyniak, Maria [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Migula, Pawel [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland)]. E-mail: migula@us.edu.pl

    2004-12-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex.

  4. Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum

    Directory of Open Access Journals (Sweden)

    Jaber SALEHZADEH

    2013-11-01

    Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. Heavy metals in water resources are one of the most important environmental problems of countries. The intensification of industrial activity and environmental stress greatly contributes to the significant rise of heavy metal pollution in water resources making threats on terrestrial and aquatic life. The toxicity of metal pollution is slow and interminable, as these metal ions are non bio-degradable. The adsorption capacity of Xanthium Pensylvanicum towards metal ions such as Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+, was studied. The adsorption capacity was performed by batch experiments as a function of process parameters (such as sorption time and pH. Experimental results showed that the removal percentages increasing of metal ions at pH=4, initial concentration of metal ions 10 mg/L, and after 90 min of shaking was: Zn2+ < Cd2+ < Cu2+ < Pb2+ < Ni2+ < Fe3+ < Co2+.

  5. Heavy metal (Pb, Cu, Zn and Cd content in wine produced from grape cultivar Mavrud, grown in an industrially polluted region

    Directory of Open Access Journals (Sweden)

    Violina Angelova

    1999-09-01

    Full Text Available The investigation was carried out in the period 1991-1993 with cv. Mavrud, grown in the region with a major industrial pollutant the Non-Ferrous-Metal Works (NFMW and a region with no industrial pollutants (as a control. The heavy metal content in soil, grapes and wine was determined. Most of the heavy metals in the grapes precipitate during fermentation into the sediments, which is the reason for their significantly lower content in the wine. Water washing of grape before processing leads to about 2 time decrease in the Pb, Cu, Zn and Cd contents of wine. The pre-washing of grapes does not lead to any quality deterioration in the wine produced. The amounts of Cu, Zn and Cd in the wine from cv. Mavrud, grown in the region of the NFMW-Plovdiv, are lower than the maximum admissible levels, while the Pb content exceeds them about two times.

  6. heavy metals

    African Journals Online (AJOL)

    NICO

    aDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, South Africa. bSchool of Health Systems and Public Health, Faculty of Health Sciences, ... ing the levels of toxic metals in food.15,19 Compared to ET-AAS or .... mum pressure 350 psi and maximum temperature 210 °C. The.

  7. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico

    International Nuclear Information System (INIS)

    Zarazua, G.; Avila P, P.; Tejeda, S.; Valdivia B, M.; Macedo M, G.; Zepeda G, C.

    2013-01-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  8. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes.

    Science.gov (United States)

    Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun

    2017-09-19

    Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at ~ 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at ~ 5 V, the highest luminance (160 cd/m 2 ) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.

  9. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes

    Science.gov (United States)

    Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun

    2017-09-01

    Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at 5 V, the highest luminance (160 cd/m2) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.

  10. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.

    Science.gov (United States)

    Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong

    2017-01-15

    Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl 2 . Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl 2 -and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p soils, especially at 5% application rate, than those in the unamended soil. Soil pH values were significantly correlated with CaCl 2 -extractable metal concentrations (p metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd metals were mainly bound in the soil organic matter fraction. The results demonstrated that the rice straw biochar can effectively immobilize heavy metals, thereby reducing their mobility and bioavailability in contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Heavy metals (Cd, Pb, Cu, Zn) in mudfish and sediments from three ...

    African Journals Online (AJOL)

    driniev

    2004-04-02

    Apr 2, 2004 ... and analysed for Cd and Pb by electro-thermal AAS, and for Cu and Zn by flame AAS. ... measurements and the dolomitic hard water and high pH of the Mooi River water .... Copper and zinc were determined by flame analysis at 324.8 nm ... were placed separately in clean 20 ml glass vials and one ml de-.

  12. Contamination and Health Risks from Heavy Metals (Cd and Pb and Trace Elements (Cu and Zn in Dairy Products

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghafari

    2017-08-01

    Conclusion: Considering the serious contamination of some brands of butter and cheese by Cu and Pb, a control of heavy metals and trace elements levels during the whole production processing of dairy products must be applied.

  13. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill

    International Nuclear Information System (INIS)

    Salazar, María Julieta; Rodriguez, Judith Hebelen; Nieto, Gastón Leonardo; Pignata, María Luisa

    2012-01-01

    Highlights: ► Soybean grown near metal sources presents a toxicological hazard from heavy metals for Chinese consumers. ► Rhizosphere soil is the most suitable compartment for toxicological studies. ► Soil guidelines should be modified considering the exchangeable metals. - Abstract: Argentina is one of the major producers of soybean in the world, this generates a high global demand for this crop leading to find it everywhere, even close to human activities involving pollutant emissions. This study evaluated heavy metal content, the transfer of metals and its relation to crop quality, and the toxicological risk of seed consumption, through soil and soybean sampling. The results show that concentrations of Pb and Cd in soils and soybeans at several sites were above the maximum permissible levels. The heavy metal bioaccumulation depending on the rhizosphere soil compartment showed significant and high regression coefficients. In addition, the similar behavior of Cd and Zn accumulation by plants reinforces the theory of other studies indicating that these metals are incorporated into the plant for a common system of transport. On the other hand, the seed quality parameters did not show a clear pattern of response to metal bioacumulation. Taken together, our results show that soybeans grown nearby to anthropic emission sources might represent a toxicological hazard for human consumption in a potential Chinese consumer. Hence, further studies should be carried out taking into account the potential negative health effects from the consumption of soybeans (direct or indirect through consumption of meat from cattle) in these conditions.

  14. Distribution of heavy metals (Pb, Cd, and Zn) in sediment profiles associated to Rhizophora mangle in Sevilla River - Cienaga Grande de Santa Marta, Colombia

    International Nuclear Information System (INIS)

    Parra, Juan Pablo; Espinosa, Luisa Fernanda

    2008-01-01

    In order to evaluate the vertical distribution of the heavy metals Pb, Cd, and Zn in sediments associated to Rhizophora mangle plants, potentially bioavailable and not bioavailable concentrations of these metals were determined in three sediment cores collected in the Sevilla River, Cienaga Grande de Santa Marta. Measurements were carried out by inductively coupled plasma-atomic emission spectrometry. The results showed that in Sevilla River mangrove ecosystem these metals are accumulated principally in non-bioavailable forms, this means that a great part or them are retained in the sediment. The retention of Pb, Cd, and Zn in the sediments of this mangrove ecosystem is strongly related to the physicochemical parameters pH, salinity, and redox potential, and to organic matter, and silt and clays contents

  15. ASSESSMENT OF HEAVY METALS AND CRUDE PROTEIN ...

    African Journals Online (AJOL)

    UNICORN

    to quantify heavy metals (Cu, Zn, Pb and Cd) and crude protein content of these species that are sold in ... in protein, omega 3 and low fat content. Furthermore ... high levels of cadmium can cause kidney and liver damage in man [6]. Motivation .... analysis. Determination of heavy metals in the edible tissues of the organisms.

  16. Behaviour of heavy metals in soils

    NARCIS (Netherlands)

    Harmsen, K.

    1977-01-01

    Fractions of Zn, Cd, Cu, Pb, Fe and Mn extractable with water, a salt solution and dilute acid, and residual fractions were determined in soils with raised contents of heavy metals, near zinc smelters, along a river formerly discharging heavy metals, and in a sewage farm. Special attention

  17. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ge, Fei; Li, Meng-Meng; Ye, Hui; Zhao, Bao-Xiang

    2012-01-01

    We prepared novel Fe 3 O 4 magnetic nanoparticles (MNPs) modified with 3-aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA). The MNPs were characterized by transmission electron microscopy, X-ray diffraction, infra-red spectra and thermogravimetric analysis. We explored the ability of the MNPs for removing heavy metal ions (Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ ) from aqueous solution. We investigated the adsorption capacity of Fe 3 O 4 -APS-AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Moreover, adsorption isotherms, kinetics and thermodynamics were studied to understand the mechanism of the synthesized MNPs adsorbing metal ions. In addition, we evaluated the effect of background electrolytes on the adsorption. Furthermore, we explored desorption and reuse of MNPs. Fe 3 O 4 -APS-AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions.

  18. Evaluation of heavy metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg) in water, sediments and water lily (Eichornia crassipes) from Jose Antonio Alzate dam

    International Nuclear Information System (INIS)

    Avila P, P.

    1995-01-01

    Water, sediments and water lily (Eichornia crassipes) from the Jose Antonio Alzate Dam were analyzed in order to determine concentrations of chromium, iron, nickel, copper, zinc, cadmium, lead and mercury. Mercury, lead, chromium and iron were found in concentrations above permissible limits in water, and in high concentrations in sediments. Cadmium, nickel, copper and zinc never were found in concentrations above permissible limits in water. The highest concentrations of heavy metals in water lily were found in the root. Accumulation factors decreased in the following order: Zn> Cr> Fe> Ni> Cu> Pb> Hg and Cd. Statistical differences (α < 0.5) between the collection samples dates was observed. High correlations between metals concentrations in superficial water, sediment and water hyacinth were also observed. These correlations could indicate that the heavy metals studied here, are originated from a natural source such as sediments or from an industrial source. (Author)

  19. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  20. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator.

    Science.gov (United States)

    Grison, Claire M; Jackson, Stephen; Merlot, Sylvain; Dobson, Alan; Grison, Claude

    2015-05-01

    A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (ChimEc512(T)) was isolated from 56 host seedlings of the hyperaccumulating Anthyllis vulneraria legume, which was on an old zinc mining site at Les Avinières, Saint-Laurent-Le-Minier, Gard, South of France. On the basis of 16S rRNA gene sequence similarities, strain ChimEc512(T) was shown to belong to the genus Rhizobium and to be most closely related to Rhizobium endophyticum CCGE 2052(T) (98.4%), Rhizobium tibeticum CCBAU 85039(T) (98.1%), Rhizobium grahamii CCGE 502(T) (98.0%) and Rhizobium mesoamericanum CCGE 501(T) (98.0%). The phylogenetic relationships of ChimEc512(T) were confirmed by sequencing and analyses of recA and atpD genes. DNA-DNA relatedness values of strain ChimEc512(T) with R. endophyticum CCGE 2052(T), R. tibeticum CCBAU 85039(T), R. mesoamericanum CCGE 52(T), Rhizobium grahamii CCGE 502(T), Rhizobium etli CCBAU 85039(T) and Rhizobium radiobacter KL09-16-8-2(T) were 27, 22, 16, 18, 19 and 11%, respectively. The DNA G+C content of strain ChimEc512(T) was 58.9 mol%. The major cellular fatty acid was C18 : 1ω7c, characteristic of the genus Rhizobium . The polar lipid profile included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and moderate amounts of aminolipids, phospholipid and sulfoquinovosyl diacylglycerol. Although ChimEc512(T) was able to nodulate A. vulneraria, the nodC and nifH genes were not detected by PCR. The rhizobial strain was tolerant to high concentrations of heavy metals: up to 35 mM Zn and up to 0.5 mM Cd and its growth kinetics was not impacted by Zn. The results of DNA-DNA hybridizations and physiological tests allowed genotypic and phenotypic differentiation of strain ChimEc512(T) from species of the genus Rhizobium with validly published names. Strain ChimEc512(T), therefore, represents a novel species, for which the name Rhizobium metallidurans sp. nov. is proposed, with the type strain

  1. Oil Spill Related Heavy Metal: A Review

    International Nuclear Information System (INIS)

    Ahmad Dasuki Mustafa; Hafizan Juahir; Kamaruzzaman Yunus; Mohammad Azizi Amran; Che Noraini Che Hasnam; Fazureen Azaman; Ismail Zainal Abidin; Syahril Hirman Azmee; Nur Hishaam Sulaiman

    2015-01-01

    Oil spill occurs every day worldwide and oil contamination is a significant contributor for the higher levels of heavy metals in the environment. This study is purposely to summarize the heavy metals which significant to major oil spill incidents around the world and effects of toxic metals to human health. The study performed a comprehensive review of relevant scientific journal articles and government documents concerning heavy metals contamination and oil spills. Overall, the heavy metals most frequently been detected in oil spill related study where Pb>Ni>V>Zn>Cd and caused many effects to human health especially cancer. In conclusion, the comparison of heavy metal level between the post - spill and baseline levels must be done, and implementation of continuous monitoring of heavy metal. In addition, the result based on the strategies must be transparent to public in order to maintaining human health. (author)

  2. Mobilisation of heavy metals and arsenic by acid mine drainage in polluted sites of the Ag-Pb-Zn deposit near Wiesloch; Mobilisierbarkeit von Schwermetallen und Arsen durch saure Grubenabwaesser in Bergbaualtlasten der Ag-Pb-Zn-Lagerstaette in Wiesloch

    Energy Technology Data Exchange (ETDEWEB)

    Kappes, B.A.

    2000-07-01

    2000 years of small scale Ag-Pb-Zn mining has created a legacy of potentially hazardous waste material in Wiesloch. The objective of our study is to investigate the processes to identify the that might lead to a mobilisation of heavy metals and arsenic and their fate at this specific site. The objective of this study is: a) to examine in more detail the chemical and mineralogical composition of ore, dressing and slag material and b) to compare the heavy metal release potential to toxic elements of primary ore versus processing material if subjected to weathering. Three depth profiles due to drilling-operations retrieved mineralogical, chemical and physical data. The three most important pollutants are primary ore, dressing residue and slag. Apart from a chemical characterisation of these materials in order to establish the heavy metal and arsenic content field and laboratory experiments simulated worst case weathering conditions. Elution experiments demonstrated that heavy metal release is very much pH-dependent. The highest release potential was observed in flotation material from the dressing residue whereas primary ore and slag material released 10 times fewer heavy metals and arsenic. (orig.)

  3. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Maria Julieta [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina); Rodriguez, Judith Hebelen, E-mail: jrodriguez@com.uncor.edu [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina); Nieto, Gaston Leonardo; Pignata, Maria Luisa [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Soybean grown near metal sources presents a toxicological hazard from heavy metals for Chinese consumers. Black-Right-Pointing-Pointer Rhizosphere soil is the most suitable compartment for toxicological studies. Black-Right-Pointing-Pointer Soil guidelines should be modified considering the exchangeable metals. - Abstract: Argentina is one of the major producers of soybean in the world, this generates a high global demand for this crop leading to find it everywhere, even close to human activities involving pollutant emissions. This study evaluated heavy metal content, the transfer of metals and its relation to crop quality, and the toxicological risk of seed consumption, through soil and soybean sampling. The results show that concentrations of Pb and Cd in soils and soybeans at several sites were above the maximum permissible levels. The heavy metal bioaccumulation depending on the rhizosphere soil compartment showed significant and high regression coefficients. In addition, the similar behavior of Cd and Zn accumulation by plants reinforces the theory of other studies indicating that these metals are incorporated into the plant for a common system of transport. On the other hand, the seed quality parameters did not show a clear pattern of response to metal bioacumulation. Taken together, our results show that soybeans grown nearby to anthropic emission sources might represent a toxicological hazard for human consumption in a potential Chinese consumer. Hence, further studies should be carried out taking into account the potential negative health effects from the consumption of soybeans (direct or indirect through consumption of meat from cattle) in these conditions.

  4. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill].

    Science.gov (United States)

    Salazar, María Julieta; Rodriguez, Judith Hebelen; Leonardo Nieto, Gastón; Pignata, María Luisa

    2012-09-30

    Argentina is one of the major producers of soybean in the world, this generates a high global demand for this crop leading to find it everywhere, even close to human activities involving pollutant emissions. This study evaluated heavy metal content, the transfer of metals and its relation to crop quality, and the toxicological risk of seed consumption, through soil and soybean sampling. The results show that concentrations of Pb and Cd in soils and soybeans at several sites were above the maximum permissible levels. The heavy metal bioaccumulation depending on the rhizosphere soil compartment showed significant and high regression coefficients. In addition, the similar behavior of Cd and Zn accumulation by plants reinforces the theory of other studies indicating that these metals are incorporated into the plant for a common system of transport. On the other hand, the seed quality parameters did not show a clear pattern of response to metal bioacumulation. Taken together, our results show that soybeans grown nearby to anthropic emission sources might represent a toxicological hazard for human consumption in a potential Chinese consumer. Hence, further studies should be carried out taking into account the potential negative health effects from the consumption of soybeans (direct or indirect through consumption of meat from cattle) in these conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon

    International Nuclear Information System (INIS)

    Namasivayam, C.; Sangeetha, D.

    2006-01-01

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl 2 activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl 2 activated coir pith carbon is effective for the removal of toxic pollutants from water

  6. Hazard potential of widespread but hidden historic offshore heavy metal (Pb, Zn) contamination (Gulf of Cadiz, Spain).

    Science.gov (United States)

    Hanebuth, Till J J; King, Mary Lee; Mendes, Isabel; Lebreiro, Susana; Lobo, Francisco J; Oberle, Ferdinand K; Antón, Laura; Ferreira, Paulo Alves; Reguera, Maria Isabel

    2018-05-10

    Natural and human-induced seabed sediment disturbances affect wide areas of the global coastal ocean. These recurrent to chronic disturbances mobilize significant amounts of material, including substances that have the potential to significantly harm the environment once re-released. This very challenging issue is difficult to deal with if sub-surface contaminant concentrations are unknown. Based on the analysis of 11 new, up to 5-m long sediment cores taken offshore in the Gulf of Cadiz, the contamination history (using the trace elements lead and zinc) is well documented over major parts of the gulf. Ore mining and metal processing industries on the southwestern Iberian Peninsula started five thousand years ago and experienced a first peak during the Roman Period, which can be detected over the entire gulf. The Industrial Era added a massive, shelf-wide heavy metal excursion of unprecedented dimension. This metal contamination to the coastal ocean decreased in the 1990s and appears to be today limited to larger areas off the Tinto/Odiel and Guadiana River mouths. The unforeseen, significant finding of this study is that the gulf-wide, peak heavy metal concentration, stemming from the Industrial Era, is widely overlain by a modern sediment veneer just thick enough to cover the contaminant horizon, but thin enough to have this layer within the reach of natural or human-induced sediment mobilization events. Published by Elsevier B.V.

  7. Physicochemical characteristics and heavy metal levels in soil ...

    African Journals Online (AJOL)

    Distribution pattern of heavy metals in petrol stations, abattoirs, mechanic workshops and hospital incinerator sites were Mn > Zn > Pb > Cd, while for dumpsites Zn > Mn > Pb > Cd. Pollution index indicated that soil qualities varied between slightly contaminated to severely polluted status. This showed that the heavy metal ...

  8. HEAVY METALS IN VINEYARDS AND ORCHARD SOILS

    Directory of Open Access Journals (Sweden)

    GUSTAVO BRUNETTO

    Full Text Available ABSTRACT The application of foliar fungicides in vineyards and orchards can increase soil concentration of heavy metals such as copper (Cu and zinc (Zn, up to the toxicity threshold for fruit trees and cover crops. However, some agronomic practices, such as liming, addition of organic fertilizers, cultivation of soil cover crops and inoculation of young plants with arbuscular mycorrhizal fungi can decrease the availability and the potential of heavy metal toxicity to fruit trees. This review aims to compile and present information about the effects of increasing concentrations of heavy metals, especially Cu and Zn, on soils cultivated with fruit trees and provides some agronomic practices of remediation. Information about the sources of heavy metals found in soils cultivated with fruit trees are presented; mechanisms of absorption, transport, accumulation and potential toxicity to plants are described.

  9. Radionuclides (40K, 232Th and 238U) and Heavy Metals (Cr, Ni, Cu, Zn, As and Pb) Distribution Assessment at Renggam Landfill, Simpang Renggam, Johor, Malaysia

    Science.gov (United States)

    Zaidi, E.; FahrulRazi, MJ; Azhar, ATS; Hazreek, ZAM; Shakila, A.; Norshuhaila, MS; Omeje, M.

    2017-08-01

    The assessment of radioactivity levels and the distribution of heavy metals in soil samples at CEP Farm landfill, Renggam in Johor State was to determine the activity concentrations of naturally occurring radionuclides and heavy metal concentrations of this landfill. The background radiation was monitored to estimate the exposure level. The activity concentrations of radionuclides in soil samples were determined using HPGe gamma ray spectroscopy whereas the heavy metal concentration was measured using X-RF analysis. The mean exposure rate at the landfill site was 36.2±2.4 μR hr-1 and the annual effective dose rate at the landfill site was 3.19 ± 0.22 mSv yr-1. However, residential area has lower mean exposure dose rate of about 16.33±0.72 μR hr-1 and has an annual effective dose rate of 1.43±0.06 mSv yr-1 compared to landfill sites. The mean activity concentration of 40K, 238U and 232Th at landfill site were 239.95±15.89 Bq kg-1, 20.90±2.49 Bq kg-1 and 40.61±4.59 Bq kg-1, respectively. For heavy metal compositions, Cr, Ni and Cu have mean concentration of 232±10 ppm, 23±2 ppm, and 46±19 ppm, respectively. Whereas, Zn has concentration of 64±9 ppm and concentration of 12±1 ppm and 71±2 ppm was estimated for As and Pb respectively. The higher activity concentration of 40K down the slope through leaching process whereas the higher activity level of 238U content at the landfill site may be attributed to the soil disruption to local equilibrium.

  10. Heavy metal and proximate composition associated with the ...

    African Journals Online (AJOL)

    User

    2014-05-08

    May 8, 2014 ... Levels of Cu, Mn, Pd and Zn in mushroom samples analysed were ... metal concentration in soil and fungal factors such as species ..... Levels of trace elements in the fruiting bodies ... Toxicity of non-radioactive heavy metals.

  11. Forest Soil Pollution with Heavy Metals (Pb, Zn, Cd, and Cu in the Area of the “French Mines” on the Medvednica Mountain, Republic of Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Perković

    2017-01-01

    Full Text Available Background and Purpose: This paper deals with the results of the investigation of the selected heavy metal contents in forest soil in the region of an abandoned mine. The analysis of the forest ecosystem soil on the Medvednica Mountain was conducted in the region of the so-called “French Mines” (FM. The elements selected for analyses were cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn because of their toxicological characteristics. Material and Methods: In the investigated area - five entrances of the FM - composite topsoil samples (0–5 cm were taken. Those samples were compared to the control samples which were taken outside the area affected by mines. The soil samples were analysed for the following parameters: pH, particle size distribution, organic C content and pseudo-total mass fractions of the selected heavy metals. The heavy metals were determined by atomic emission spectrometry with inductively coupled plasma (ICP-MS. Results and Conclusion: The results reveal that the soil is locally polluted, i.e. the highest mass fraction values of these four heavy metals were found in the area of the FM. Average pseudo-total fraction of Cd in the analysed topsoil samples was in the range of 0.17–4.41 mg·kg−1 (median: 0.97 mg·kg−1. Cu was found in the range of 4.54–1260 mg·kg−1 (median: 45.7 mg·kg−1. In the case of Zn, mass fraction values were found in the range of 36.8–865 mg·kg−1 (median: 137 mg·kg−1. Finally, average values of the pseudo-total fraction of Pb were found in the range of 58.4–12000 mg·kg−1 (median: 238 mg·kg−1. The results reveal that mining activities leave consequences on soil for a long time.

  12. Removal of heavy metals from aqueous solutions using Fe{sub 3}O{sub 4}, ZnO, and CuO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, Shahriar, E-mail: smahdaviha@yahoo.com; Jalali, Mohsen, E-mail: jalali@basu.ac.ir [College of Agriculture, Bu-Ali Sina University, Department of Soil Science (Iran, Islamic Republic of); Afkhami, Abbas, E-mail: afkhami@basu.ac.ir [College of Chemistry, Bu-Ali Sina University, Department of Analytical Chemistry (Iran, Islamic Republic of)

    2012-08-15

    This study investigated the removal of Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Pb{sup 2+} from aqueous solutions with novel nanoparticle sorbents (Fe{sub 3}O{sub 4}, ZnO, and CuO) using a range of experimental approaches, including, pH, competing ions, sorbent masses, contact time, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The images showed that Fe{sub 3}O{sub 4}, ZnO, and CuO particles had mean diameters of about 50 nm (spheroid), 25 nm (rod shape), and 75 nm (spheroid), respectively. Tests were performed under batch conditions to determine the adsorption rate and uptake at equilibrium from single and multiple component solutions. The maximum uptake values (sum of four metals) in multiple component solutions were 360.6, 114.5, and 73.0 mg g{sup -1}, for ZnO, CuO, and Fe{sub 3}O{sub 4}, respectively. Based on the average metal removal by the three nanoparticles, the following order was determined for single component solutions: Cd{sup 2+} > Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+}, while the following order was determined in multiple component solutions: Pb{sup 2+} > Cu{sup 2+} > Cd{sup 2+} > Ni{sup 2+}. Sorption equilibrium isotherms could be described using the Freundlich model in some cases, whereas other isotherms did not follow this model. Furthermore, a pseudo-second order kinetic model was found to correctly describe the experimental data for all nanoparticles. Scanning electron microscopy, energy dispersive X-ray before and after metal sorption, and soil solution saturation indices showed that the main mechanism of sorption for Cd{sup 2+} and Pb{sup 2+} was adsorption, whereas both Cu{sup 2+} and Ni{sup 2+} sorption were due to adsorption and precipitation. These nanoparticles have potential for use as efficient sorbents for the removal of heavy metals from aqueous solutions and ZnO nanoparticles were identified as the most promising sorbent due to their high metal uptake.

  13. Comprehensive risk assessment and source identification of selected heavy metals (Cu, Cd, Pb, Zn, Hg, As) in tidal saltmarsh sediments of Shuangtai Estuary, China.

    Science.gov (United States)

    Liu, Chang-Fa; Li, Bing; Wang, Yi-Ting; Liu, Yuan; Cai, Heng-Jiang; Wei, Hai-Feng; Wu, Jia-Wen; Li, Jin

    2017-10-06

    Heavy metals do not degrade and can remain in the environment for a long time. In this study, we analyzed the effects of Cu, Cd, Pb, Zn, Hg, and As, on environmental quality, pollutant enrichment, ecological hazard, and source identification of elements in sediments using data collected from samples taken from Shuangtai tidal wetland. The comprehensive pollution indices were used to assess environmental quality; fuzzy similarity analysis and geoaccumulation index were used to analyze pollution accumulation; correlation matrix, principal component analysis, and clustering analysis were used to analyze pollution source; environmental risk index and ecological risk index were used to assess ecological risk. The results showed that the environmental quality was either clean or almost clean. Pollutant enrichment analysis showed that the four sub-regions had similar pollution-causing metals to the background values of the soil element of the Liao River Plain, which were ranked according to their similarity. Source identification showed that all the elements were correlated. Ecological hazard analysis showed that the environmental risk index in the study area was less than zero, posing a low ecological risk. Ecological risk of the six elements was as follows: As > Cd > Hg > Cu > Pb > Zn.

  14. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  15. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement.

    Science.gov (United States)

    Dai, Shijin; Li, Yang; Zhou, Tao; Zhao, Youcai

    2017-06-01

    Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.

  16. Efficient removal of dyes by a novel magnetic Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dan; Li, Yang; Zhang, Jia [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Li, Wenhui [Department of Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhou, Jizhi; Shao, Li [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Qian, Guangren, E-mail: grqian@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China)

    2012-12-15

    Graphical abstract: To purify heavy metal wastewater (pickling waste liquor (PWL{sub A} and PWL{sub B}) and electroplating wastewater (EPW{sub C} and EPW{sub D})), a novel magnetic Fe{sub 3}O{sub 4}/ZnCr-LDH material was formed via two-step microwave hydrothermal method (Step 1 and Step 2) and applicable for organic dyes wastewater treatment. Highlights: Black-Right-Pointing-Pointer Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent was produced from wastewater. Black-Right-Pointing-Pointer RSM was successfully applied to the optimization of the preparation conditions. Black-Right-Pointing-Pointer The maximum adsorption capacity of MO was found to be 240.16 mg/g. Black-Right-Pointing-Pointer The MO adsorption mechanism on MFLA was certified. Black-Right-Pointing-Pointer MFLA could be recycled after catalytic regeneration by the oxidation technology. - Abstract: A novel magnetic Fe{sub 3}O{sub 4}/ZnCr-layered double hydroxide adsorbent was produced from electroplating wastewater and pickling waste liquor via a two-step microwave hydrothermal method. Adsorption of methyl orange (MO) from water was studied using this material. The effects of three variables have been investigated by a single-factor method. The response surface methodology (RSM) based on Box-Behnken design was successfully applied to the optimization of the preparation conditions. The maximum adsorption capacity of MO was found to be 240.16 mg/g, indicating that this material may be an effective adsorbent. It was shown that 99% of heavy metal ions (Fe{sup 2+}, Fe{sup 3+}, Cr{sup 3+}, and Zn{sup 2+}) can be effectively removed into precipitates and released far less in the adsorption process. In addition, this material with adsorbed dye can be easily separated by a magnetic field and recycled after catalytic regeneration with advanced oxidation technology. Meanwhile, kinetic models, FTIR spectra and X-ray diffraction pattern were applied to the experimental data to examine uptake mechanism. The

  17. Bioaccumulation of Heavy Metals

    African Journals Online (AJOL)

    komla

    acute toxicity and sublethal chronic action the devastating effects that the accumulation - including ... the laboratory and kept in holding glass (a) Copper as CuSO,.5H,0 ... from 2 psu to 21 psu) depending on time of The choice of heavy metals for this s year. ... serving as substrate and food source for Salinity of test media.

  18. (17) ACCUMULATION OF HEAVY METAL

    African Journals Online (AJOL)

    Adeyinka Odunsi

    Spectrophotometer (AAS) 2ID using their respective lamp and wavelengths. Calculation ... (Table 2). Concentration of heavy metals in the cassava. Lead and chromium were not significantly ..... Market basket survey for some heavy metals in ...

  19. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico; Evaluacion de los metales pesados Cr, Mn, Fe, Cu, Zn y Pb en sombrerillo de agua (Hydrocotyle ranunculoides) del curso alto del Rio Lerma, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G.; Avila P, P.; Tejeda, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Valdivia B, M.; Macedo M, G. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Zepeda G, C., E-mail: graciela.zarazua@inin.gob.mx [Universidad Autonoma del Estado de Mexico, Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca, Estado de Mexico (Mexico)

    2013-07-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  20. Heavy metals in our foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The special group ''chemistry of food and forensic chemistry'' of the Association of German Analytical Chemists in Munich in 1983 issued a statement on that subject. The publication points out how heavy metals (examples: lead, cadmium and mercury) make their way into the foodstuffs, how many heavy metals are contained in our foodstuffs, which heavy metals are indispensable minerals and which aren't, and which heavy metals are ingested with food. It concludes by discussing how heavy metal contamination of our food can be prevented.

  1. Heavy metal / polyacid interaction : an electrochemical study of the binding of Cd(II), Pb(II) and Zn(II) to polycarboxylic and humic acids

    NARCIS (Netherlands)

    Cleven, R.F.M.J.

    1984-01-01

    Polyelectrolyte effects in the interaction of heavy metal ions with model polycarboxylic acids have been described, in order to establish the relevance of these effects in the interaction of heavy metal ions with naturally occurring humic and fulvic acids. The model systems consisted of Cd(II),

  2. Speciation of heavy metals Cu, Ni and Zn by modified BCR sequential extraction procedure in sediments from Banten Bay, Banten Province, Indonesia

    Science.gov (United States)

    Lestari; Budiyanto, F.; Hindarti, D.

    2018-02-01

    Banten Bay is categorized as a marine area that is busy with marine tourism activities, settlements and also industries. One potential impact of the condition is the occurrence of pollution from both industrial and domestic sources, erosion and sedimentation in the coastal environment. Samples were collected from 25 representative stations in April 2016. Chemical speciation of three heavy metals (Cu, Ni, and Zn) was studied using a modified sequential extraction procedure proposed by the European Standard, Measurements and Testing (SM&T) program, formerly the Community Bureau of Reference (BCR). The aims of this study are to determine geochemical speciation of 4 bounds of metal: acid-soluble, reducible, oxidizable and residual, and to assess their impacts in the sediments of Banten Bay, Indonesia. The result shows that the percentage of Copper (45.90-83.75%), Nickel (18.28-65.66%), and Zinc (30.45-79.51%) were mostly accumulated in residual fraction of the total concentrations. The Risk Assessment Code (RAC) reveals that about 0-7.07% of Copper and 1.11-24.35 % of Zinc at sites exist in exchangeable fraction and therefore, they are in low risk category. While 7.34-34.90 of Ni at sites exists in exchangeable fraction and therefore, it is in medium risk category to aquatic environment.

  3. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  4. Stormwater induced input of Pb, Cd, As, Zn and other toxic heavy metals into the sewer system of a region characterized by mining residues. Final report

    International Nuclear Information System (INIS)

    Cichos, C.; Muehle, K.

    1993-06-01

    An estimation of heavy metal transport within the river Freiberger Mulde as well as detailed knowledge about pollutant concentration in sewage sludges, in surface soil and in various mining residues give rise to assume that stormwater induced input especially of As, Pb, Cd and Zn into the sewer system of the town of Freiberg has a significant share of contribution to the high pollution of the river. It is the aim of the project to determine the heavy metal input quantitatively where beside the entire transport above all the main transport ways are to be investigated. In the first period of research reported about a movable monitoring station with rainfall gauge, flow rate meter and automatic sampler had to be supplied. First results of stormwater effects at the main intercepting sewer were discussed on the basis of dry-wether flow. For precipitation intensities of 0.5-1 mm/10 min with 4 to 5fold discharge rates at the maximum the measurements showed about 2 to 6fold dry-wether diurnal loads during a rain wether flow of only one hour. Thus, for the case of flood flow up to 100fold diurnal loads may be expected within an hour. The pollutant transport depends on the intensity of rain and on the duration of dry wether before the rain. Further studies above all apply to the main ways of transport but simultaneously to the entire loads to be measured before the storm sewage overflow. Data to be expected in this way may contribute to a long-term simulation of the sewerage as an important aid for planning storage basins. (orig.) [de

  5. Effect of depuration on heavy metal concentrations in periwinkle ...

    African Journals Online (AJOL)

    Tympanatonus fuscastus) was evaluated in this study. Periwinkle in depuration tanks were taken at intervals of 24, 48, 72 and 96 hours of depuration and analyzed for these heavy metals: Lead (Pb), Zinc (Zn), Chromium (Cr) and Cadmium (Cd).

  6. Heavy metal accumulation in a flow restricted, tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Laluraj, C.M.; Nair, M.; Joseph, T.; Sheeba, P.; Venugopal, P.

    Levels of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), organic carbon content and textural characteristics in the surficial sediments of Cochin estuary (SW coast of India) and adjacent coast are presented. Anthropogenic inputs from...

  7. Heavy metals in soils of cocoa plantation (Theobroma cacao L.)

    Science.gov (United States)

    Cocoa has experienced significant growth in recent years in Peru and the presence of heavy metals in the soils of these plantations is a potential problem for the export of this product. Contents of heavy metals (Cd, Ni, Pb, Fe, Cu, Zn, Mn) in soils from 19 plantations that have been in production f...

  8. Urban water pollution by heavy metals and health implication in ...

    African Journals Online (AJOL)

    Studies of common heavy metals were conducted at Onitsha, Anambra State, the most urbanized city in Southeastern Nigeria. It was discovered that both surface and subsurface water were heavily polluted. Seven (7) heavy metals namely: arsenic (As+2), cadmium (Cd+2), lead (Pb+2), mercury (Hg+2), zinc (Zn+2), copper ...

  9. Occurrence and distribution of heavy metals in indoor settled ...

    African Journals Online (AJOL)

    The results showed widespread heavy metals contamination especially Fe and Zn, which were present as the highest concentration while Cd was the lowest in the settled particles (dust). The order of occurrence of heavy metals in settled particles (dust) collected indoor in 2007 and 2008 respectively were as follows, ...

  10. Heavy metal accumulation in under crown Olea europaea L forest ...

    African Journals Online (AJOL)

    Heavy metal concentration in plants increased in site irrigation with wastewater. Zn, Pb and Ni exceeded their permitted limits in soils and Pb, Cr and Ni exceeded their permitted limits in roots of plants irrigated with wastewater. It was concluded that the use of wastewater in urban forest enriched the soils with heavy metals ...

  11. Effect of heavy metal and EDTA application on heavy metal uptake ...

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... Cadmium, lead and ... removal of Cd, Cr, Cu, Ni, Pb, and Zn (Prasad and ... collected for the analysis of heavy metal concentrations of Cd, Cr ... One hundred millgram (100 mg) of leaf tissues ..... Variability for the fatty acid.

  12. Heavy metals and related trace elements

    International Nuclear Information System (INIS)

    Leland, H.V.; Luoma, S.N.; Wilkes, D.J.

    1977-01-01

    A review is given of heavy metals and related trace elements in the aquatic environment. Other reviews and bibliographies are cited, dealing with the metabolism and transport of metal ions and with the toxic effects of stable and radioactive trace metals on aquatic organisms. The sources of trace elements in natural waters are discussed. It is suggested that atmospheric inputs of several trace metals comprise sizable fractions of total inputs to the Great Lakes and continental shelf waters. Information on stack emissions of trace elements from a coal-fired steam plant was used to estimate the likely range of air concentrations and inputs to a forested watershed in Tennessee. Some basic concepts of cycling of elements through aquatic communities were examined, such as the Pb, Mn and Zn concentrations in sediment and estuarine plants and animals colonizing dredge-spoil disposal areas. The use of plants as biological indicators of trace element contamination was outlined, as well as bioaccumulation in aquatic fauna. The effects of environmental factors on the kinetics of element exchange were noted, for example the influx rates of Cs 137 in tubificid worms, and Co 60 and Zn 65 in shrimp were shown to be temperature dependent. The toxicity of heavy metals on aquatic fauna was discussed, such as the histopathological lesions in the kidney and liver of fishes caused by heavy metals, and the effects of Hg and Cu on the olfactory response of rainbow trout

  13. Heavy Metal Pollution Around International Hatay Airport

    Directory of Open Access Journals (Sweden)

    Abdullah Özkan

    2017-02-01

    Full Text Available In this study, it was aimed to determine the heavy metal pollution in the agricultural lands around Hatay airport and travel possible alteration in the amount of heavy metal on the land in accordance with the distance to the airport. For this purpose, the airport was chosen as the center and 27 soil samples were obtained around the airport at 2 km intervals in depth ranging from 0 to 30 cm. Lead (Pb, cadmium (Cd, nickel (Ni, chrome (Cr, cobalt (Co, aluminium (Al, iron (Fe, copper (Cu, manganese (Mn and zinc (Zn elements in soil samples were analysed using MP-AES instrument by DTPA method. (3 repetition for each sample. As a result of the analysis, heavy metal concentrations were found as Pb 0-1.45 mg/kg, Cd 0-0.220 mg/kg, Ni 0-3.95 mg/kg, Cr 0-0.780 mg/kg, Co 0-0.270 mg/kg, Al 0-0.700 mg/kg, Fe 1.47- 16.2 mg/kg, Cu 0.400-5.35 mg/kg, Mn 0-19 mg/kg and Zn 0.050-3.14 mg/kg. When comparing the obtained data through this study with allowable concentrations of heavy metals in soil of Environment and Forest Directorates Guidance, it was determined that the heavy metal concentration of the soil does not pose any problems in terms of heavy metal pollution. Besides, iron concentration was decreased when the distance to the airport is increased.

  14. Study on the behavior of the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and 137Cs in an estuarine ecosystem using Mytilus galloprovincialis as a bioindicator species: the case of Thermaikos gulf, Greece

    International Nuclear Information System (INIS)

    Catsiki, Vassiliki-Angelique; Florou, H.

    2006-01-01

    Mussels are worldwide recognized as pollution bioindicators and used in Mussel Watch programs, because they accumulate pollutants in their tissues at elevated levels in relation to pollutant biological availability in the marine environment. The present study deals with the use of Mytilus galloprovincialis as a local bioindicator of heavy metal and 137 Cs contamination in an estuarine ecosystem (Thermaikos gulf, Greece in Eastern Mediterranean). M. galloprovincialis samples were collected monthly from two aquaculture farms during the period April to October 2000. Analyses for the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and 137 Cs showed that the concentrations measured were low and similar to those from other non-polluted Mediterranean areas. In terms of the two sampling stations, there were no statistically significant differences between them. On the contrary, the seasonal evolution of either heavy metals or 137 Cs levels presented high variation. The levels were found to increase during the cold period of the year, especially for Cu, Zn, Mn and Cr which are essential for life. Stable metals were positively inter-related and moreover, metals more involved in biochemical activities seem to present more correlations than others with less significant role in the metabolism of the organisms

  15. Heavy metals in carabids (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Ruslan Butovsky

    2011-05-01

    Full Text Available Carabid beetles (Coleoptera, Carabidae are one of the most studied soil groups in relation to heavy metal (HM accumulation and use for bioindication of environmental pollution. Accumulation of Zn and Cu in carabid beetles was species-, sex- and trophic group-specific. No differences were found in HM contents between omnivorous and carnivorous species. The use of carabid beetles as indicators of HM accumulation appears to be rather limited.

  16. Evaluation of heavy metals (Cr, Fe, Ni, Cu, Zn, Cd, Pb and Hg) in water, sediments and water lily (Eichornia crassipes) from Jose Antonio Alzate dam; Evaluacion de metales pesados Cr, Fe, Ni, Cu, Zn, Cd, Pb y Hg en agua, sedimento y lirio acuatico (Eichhornia crassipes) de la Presa Jose Antonio Alzate, Estado de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Avila P, P

    1996-12-31

    Water, sediments and water lily (Eichornia crassipes) from the Jose Antonio Alzate Dam were analyzed in order to determine concentrations of chromium, iron, nickel, copper, zinc, cadmium, lead and mercury. Mercury, lead, chromium and iron were found in concentrations above permissible limits in water, and in high concentrations in sediments. Cadmium, nickel, copper and zinc never were found in concentrations above permissible limits in water. The highest concentrations of heavy metals in water lily were found in the root. Accumulation factors decreased in the following order: Zn> Cr> Fe> Ni> Cu> Pb> Hg and Cd. Statistical differences ({alpha} < 0.5) between the collection samples dates was observed. High correlations between metals concentrations in superficial water, sediment and water hyacinth were also observed. These correlations could indicate that the heavy metals studied here, are originated from a natural source such as sediments or from an industrial source. (Author).

  17. Effect of heavy metal on survival of certain groups of indigenous soil ...

    African Journals Online (AJOL)

    Heavy metal pollution of soil is known to adversely effect microbial activities at elevated concentration. However, response of indigenous soil bacterial population to added heavy metal and metal combinations is poorly understood. In the present study salts of heavy metals like Cu, Cd, Cr, Hg, Mn, Ni, Pb and Zn were added ...

  18. 620 ASSESSMENT OF HEAVY METALS, pH AND EC IN EFFLUENT ...

    African Journals Online (AJOL)

    Osondu

    evaluated metals were Cu, Fe, Ni, Mn, Cr, Zn, Cd, Co, and Ag. The pH, EC, TDS, DO ... heavy metals, but the high heavy metal concentrations in the soil could seriously ... Key words: Heavy metals, AAS, contamination, floriculture and effluents.

  19. Heavy metals and soil microbes

    NARCIS (Netherlands)

    Giller, K.E.; Witter, E.; McGrath, S.

    2009-01-01

    The discovery in the early 1980s that soil microorganisms, and in particular the symbiotic bacteria Rhizobium, were highly sensitive to heavy metals initiated a new line of research. This has given us important insights into a range of topics: ecotoxicology, bioavailability of heavy metals, the role

  20. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Sandau, E.; Sandau, P.; Pulz, O.

    1996-01-01

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  1. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    The batch removal of heavy metals lead (Pb), zinc (Zn) and copper (Cu) from industrial wastewater effluent under different experimental conditions using hydrogen peroxide was investigated. Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb 57.63 mg/l, Zn 18.9 mg/l and Cu ...

  2. Assessment of heavy metals bioavailability in dumpsites of Zaria ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... Cd, Cu, Mn, Pb and Zn in refuse waste soils of some dumpsites in Zaria metropolis. The heavy metals .... soil solution ratio) in acid digestion Teflon cup. It was dry ashed ..... of Cu, Pb, Cd and Zn in soils from or near Donana National Park. J. Environ. ... Administrative Divisions of the World. http://www.world-.

  3. Bioaccumulation of Heavy Metals by Moringa Oleifera in Automobile ...

    African Journals Online (AJOL)

    User

    Pb > Cr > As > in the leaves; Zn > Cu > Pb > Cr = Mn > As in the seeds and Zn > Cu > Mn > Pb > Cr > As> in the barks. ... vital organs and glands in the human body, affecting brain ..... Bioremediation of Heavy metal toxicity. With Special.

  4. Analysis Of Non-Volatile Toxic Heavy Metals (Cd, Pb, Cu,Cr And Zn In ALLIUM SATIVUM (Garlic And Soil Samples ,Collected From Different Locations Of Punjab, Pakistan By Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ata S.

    2013-04-01

    Full Text Available Garlic is one of the most widely used medicinal plants. The monitoring of toxic metals such as lead, Cadmium, Chromium, Copper and Zinc in garlic and the soil of garlic fields collected from ten different cities of Punjab is critical for preventing public health against the hazards of metal toxicity. The levels of toxic heavy metals in garlic and soil samples were investigated using Atomic absorption spectrometer. The metal content in garlic samples was found to be in increasing order as Cr> Pb> Cd> Cu> Zn. Infield metal content in the soil also followed the same trend. In garlic samples, Pb, Cd, Cr, Zn and Cu ranged from 0.039mg/L to 0.757mg/L, N.D to 1.211mg/L, 0.03mg/L to 0.451mg/L, 0.02mg/Lto0.42mg/L and 0.451mg/L to 0.893mg/L respectively. In soil samples, Pb, Cd, Cr, Zn and Cu were ranged from 0.459mg/L to 0.797mg/L, 0.205mg/L to1.062mg/L, 0.074mg/L to 2.598mg/L, 0.124mg/L to 0.276mg/L and 0.494mg/L to 0.921mg/L respectively. In our study, the Pb and Cd was found more in garlic from Gujranwala and Jaranwala, Cu and Zn were more in samples from Kasur while Cr was predominant in sample from Sheikhupura. Heavy metal content in soil and garlic samples was within the permissible limits proposed by World Health Organization (WHO.

  5. Formation and stability of Pb-, Zn- and Cu-PO4 phases at low temperatures: Implications for heavy metal fixation in polar environments

    International Nuclear Information System (INIS)

    White, Duanne A.; Hafsteinsdóttir, Erla G.; Gore, Damian B.; Thorogood, Gordon; Stark, Scott C.

    2012-01-01

    Low temperatures and frequent soil freeze–thaw in polar environments present challenges for the immobilisation of metals. To address these challenges we investigated the chemical forms of Pb, Zn and Cu in an Antarctic landfill, examined in vitro reaction kinetics of these metals and orthophosphate at 2 and 22 °C for up to 185 days, and subjected the products to freeze–thaw. Reaction products at both temperatures were similar, but the rate of production varied, with Cu-PO 4 phases forming faster, and the Zn- and Pb-PO 4 phases slower at 2 °C. All metal-orthophosphate phases produced were stable during a 2.5 h freeze–thaw cycle to −30 °C. Metal immobilisation using orthophosphate can be successful in polar regions, but treatments will need to consider differing mineral stabilities and reaction rates at low temperatures. - Highlights: ► We identify Cu, Pb and Zn species in an Antarctic Landfill. ► We identify the products and rates of reactions between metals and PO 4 3− at 2 and 22 °C. ► We test the stability of metal-orthophosphate species during freeze–thaw. ► We conclude that orthophosphate may immobilize metals in freezing ground. - Pb, Cu and Zn react with PO 4 3− at low temperatures (2 °C) to form low solubility metal-PO 4 phases at rates that may enable the in-situ remediation of metal contaminated soils in polar areas.

  6. CHEMICAL DETERMINATION OF HEAVY METALS IN PB AND ZN CONCENTRATES OF TREPÇA (KOSOVO AND CORRELATIONS COEFFI CIENTS STUDY BETWEEN CHEMICAL DATA

    Directory of Open Access Journals (Sweden)

    Fatbardh Gashi

    2017-03-01

    Full Text Available Kosovo ore deposits are located in the Trepça belt which extends for over 80 km. The concentrate produced by the flotation process of the Trepça metallurgical corporation contains a considerable quantity of valuable metals, such as Pb, Zn, Fe and minor accompanying metals such as Cd, Cu, As, Sb, Bi, Ag, Au, etc. The subject of this work was to assess the concentration of major and minor metals in lead and zinc concentrates of Trepça and to study the correlation coefficients between metals. Chemical determination of concentrates was performed by using atomic absorption spectroscopy (AAS. In the content on lead concentrate samples, the following were found: Pb>Fe>Zn> Ag> As>Sb>Cd. In the content of zinc concentrate, the following were found: Zn>Fe>Pb>Ag>As>Cd. The program “Statistica ver. 6.0” has been used for calculations of basic statistical parameters, relationships between data and cluster analysis of R-mode. R-mode cluster analysis on lead concentrate samples showed that Pb has the closest linkages with Fe and they form one branch of the dendogram. On the zinc concentrate samples, Zn has the closest linkages with Fe and they form one branch of the dendogram.

  7. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  8. Heavy metals hazards from Nigerian spices.

    Science.gov (United States)

    Asomugha, Rose Ngozi; Udowelle, Nnaemeka Arinze; Offor, Samuel James; Njoku, Chinonso Judith; Ofoma, Ifeoma Victoria; Chukwuogor, Chiaku Chinwe; Orisakwe, Orish Ebere

    Natural spices are commonly used by the people in Nigeria. They may be easily contaminated with heavy metals when they are dried and then pose a health risk for the consumers. The aim of this study was to determine the levels of heavy metals in some commonly consumed natural spices namely Prosopis Africana, Xylopia aethiopica, Piper gineense, Monodora myristica, Monodora tenuifolia and Capsicum frutescens sold in the local markets of Awka, Anambra state, South East Nigeria to estimate the potential health risk. The range of heavy metal concentration was in the order: Zn (14.09 - 161.04) > Fe (28.15 - 134.59) > Pb (2.61 - 8.97) > Cr (0.001 - 3.81) > Co (0.28 - 3.07) > Ni (0.34 - 2.89). Pb, Fe and Zn exceeded the maximum allowable concentrations for spices. The Target Hazard Quotient (THQ) of the spices varied from 0.06-0.5. Estimated daily intakes (EDI) were all below the tolerable daily intake (TDI). The lead levels in Prosopis africana, Xylopia aethiopica, Piper gineense, Monodora myristica and Capsicum frutescens which are 8-30 times higher than the WHO/FAO permissible limit of 0.3 mg/kg. Lead contamination of spices sold in Awka (south east Nigeria) may add to the body burden of lead. A good quality control for herbal food is important in order to protect consumers from contamination. food products, spices, potential toxic metals, risk assessment, public health.

  9. Toxicity of heavy metals in the environment

    National Research Council Canada - National Science Library

    Oehme, F.W

    1978-01-01

    ... as the fundamental mechanisms of toxicity resulting from heavy metal chemicals. The more common toxic heavy metals, along with their biochemistry and associated clinical syndromes, are then described...

  10. Atmospheric heavy metal deposition in the Copenhagen area

    DEFF Research Database (Denmark)

    Andersen, Allan; Hovmand, Mads Frederik; Johnsen, Ib

    1978-01-01

    Atmospheric dry and wet deposition (bulk precipitation) of the heavy metals Cu, Pb, Zn, Ni, V and Fe over the Copenhagen area was measured by sampling in plastic funnels from 17 stations during a twelve-month period. Epigeic bryophytes from 100 stations in the area were analysed for the heavy...

  11. Heavy Metals Pollution in Lake Mariut

    International Nuclear Information System (INIS)

    Saad, M.A.H.; Ezzat, A.A.E.; El-Rayis, O.A.; Hafez, H.

    1981-01-01

    The occurrence and distribution of heavy metals in the water of the heavily polluted Lake Mariut (Egypt) during August 1978 to September 1979 as well as the accumulation of these metals in the different parts of the common fish, Tilapia species, were studied. The study represents a second part of a pilot project on pollution of Lake Mariut supported by IAEA. The mean concentrations of the measured Zn, Gu, Fe, Mn and Cd in the lake water were 10.9, 4.2, 19.1, 26.2 and 0.62 μg/l, respectively

  12. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco.

    Science.gov (United States)

    El Azhari, Abdellah; Rhoujjati, Ali; El Hachimi, Moulay Laârabi; Ambrosi, Jean-Paul

    2017-10-01

    This study discussed the environmental fate and ecological hazards of heavy metals in the soil-plant system and sediment-water column around the former Pb-Zn mining Zeïda district, in Northeastern Morocco. Spatial distribution, pollution indices, and cluster analysis were applied for assessing Pb, Zn, As, Cu and Cd pollution levels and risks. The geo-accumulation index (I geo ) was determined using two different geochemical backgrounds: i) the commonly used upper crust values, ii) local geochemical background calculated with exploratory data analysis. The soils in the vicinity of the tailings, as well as the sediments downstream of the latter, displayed much higher metal concentrations, I geo, and potential ecology risk coefficient values than other sites, classifying these sites as highly contaminated and severely hazardous. The concentrations of Pb in contaminated sediment samples also exceeded the PEC limits and are expected to cause harmful effects on sediment-dwelling organisms. Based on the comparison with the toxicity limits, the most contaminated plant samples were found around the tailings piles. The metal concentrations in both raw and filtrated water samples were overall below the drinking water standards in samples upstream and downstream of the mining center, indicating that heavy metals levels in the Moulouya River surface waters were not affected by the tailings spill. Cluster analysis suggest that: i) Pb and Zn in sediments were derived from the abandoned tailings and are mainly stored and transported as particle-bound to the bedload, ii) Pb, Zn, and Cu in the soil-plant system were related to the dispersion of tailings materials while As and Cd originated primarily from natural geological background in both the soil-plant and the water-sediment systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  14. Heavy metal emissions for Danish road transport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Slentoe, E.

    2010-04-15

    This report presents new heavy metal emission factors for cars, vans, trucks, buses, mopeds and motorcycles for each of the emission sources fuel consumption, engine oil, tyre wear, brake wear and road abrasion. The emission components covered are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn), all of them relevant for emission reporting to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long Range Transboundary Pollutants) convention. The report also presents a new Danish inventory for the year 2007. The following emissions in total TSP (in brackets) are calculated for the year 2007: As (8 kg), Cd (48 kg), Cr (197 kg), Cu (51 779 kg), Hg (28 kg), Ni (158 kg), Pb (6 989 kg), Se (33 kg) and Zn (28 556 kg). Per vehicle type cars are the most important source of emission for all heavy metal species, followed by vans, trucks, buses and 2-wheelers. By using the detailed emission factors and inventory calculation methods established in the present project, estimates of heavy metal emissions can be made for other years than 2007. (author)

  15. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  16. Bioaccumulation of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in a tissue of earthworms exposed to sewage sludge amended soils

    Czech Academy of Sciences Publication Activity Database

    Dočekal, Bohumil; Marek, Petr; Večeřa, Zbyněk

    2002-01-01

    Roč. 9, 2-3 (2002), s. 159-167 ISSN 1231-7098 R&D Projects: GA MŠk OK 385 Grant - others:Copernicus(XE) ERB IC-15-CT98-0124 Institutional research plan: CEZ:AV0Z4031919 Keywords : earthworm tissue * heavy metals * biomonitoring Subject RIV: CB - Analytical Chemistry, Separation

  17. Characterization of sewage sludge amended soils and related crop plants with respect to phytoavailability of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn)

    Czech Academy of Sciences Publication Activity Database

    Večeřa, Zbyněk; Dočekal, Bohumil; Marek, Petr; Sáňka, M.

    2001-01-01

    Roč. 8, 2-3 (2001), s. 243-252 ISSN 1231-7098 R&D Projects: GA MŠk OK 385 Grant - others:Copernicus(BE) ERB IC-15-CT98-0124 Institutional research plan: CEZ:AV0Z4031919 Keywords : determination of heavy metals * sewage sludge * soil analysis Subject RIV: CB - Analytical Chemistry, Separation

  18. Transformation of heavy metals in lignite during supercritical water gasification

    International Nuclear Information System (INIS)

    Chen, Guifang; Yang, Xinfei; Chen, Shouyan; Dong, Yong; Cui, Lin; Zhang, Yong; Wang, Peng; Zhao, Xiqiang; Ma, Chunyuan

    2017-01-01

    Highlights: • The transformations of heavy metals during lignite SCWG were investigated. • The risks of heavy metals in lignite and residues after SCWG were evaluated. • The effects of experimental conditions on corrosion during SCWG were studied. - Abstract: Transformation characteristics of heavy metals during lignite supercritical water gasification (SCWG) were studied. A sequential extraction procedure (modified Tessier method) was used to selectively extract different fractions of Pb, Cd, Cr, Mn, Cu, Ni, and Zn. Heavy metals transformed into more stable fractions after SCWG. For Pb, Cd, Mn, Cu, and Zn, SCWG reduced the bioavailability and the risks posed by heavy metals in lignite. Under the experimental conditions, the conversion rates for Pb and Cd were 16.0%–25.2% and 16.3%–23.4%, respectively, whereas those for Mn, Cu, and Zn were much lower. Solid products enriched with Pb, Cd, Mn, Cu, and Zn were obtained after SCWG; the contents of these metals varied slightly in the liquid products under different experimental conditions. Excess Cr and Ni that did not originate from lignite were found in the residues, owing to reactor corrosion during lignite SCWG. Higher temperatures alleviated corrosion, whereas higher pressures and equivalence ratios (ER) had the opposite effect. None of the heavy metals were detected in the gas phase under the experimental conditions used in the present study. The correlation between the distributions of heavy metals and the experimental conditions were also studied. The transformation pathways of Pb, Cd, Mn, Cu, and Zn during SCWG were deduced according to the experimental results.

  19. Heavy metal speciation and their accumulation in sediments of Lake ...

    African Journals Online (AJOL)

    Several sediment samples in Lake Burullus have been affected by the discharges of heavy metals through different drains. The study aimed to analyze the chemical speciation of these metals. In particular, the chemical forms of Cd, Cu, Fe, Mn, Pb and Zn in sediments collected in spring season were studied using a ...

  20. Study of heavy metals bioaccumulation in the process of ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... The bioaccumulation of heavy metals (Cd, Zn, Ni, Pb and Cr) and the relationship between them was investigated on ... this elements in 14 days) exposure, the metal accumulation was measured using atomic absorption spectroscopy. ... sed to the point that it endangers human life in some areas, and the ...

  1. Physicochemical Characteristics and Levels of Some Heavy Metals ...

    African Journals Online (AJOL)

    Michael Horsfall

    indicated a significant degree of soil contamination for Pd, Cd, Co, Cu and Zn in the soils studied showing a higher ... disposed waste. These metals which are not biodegradable are accumulated in living organisms when released into the environment. Although trace ... heavy metals in Nigerian soils if such solid waste.

  2. Determination of Levels of Essential and Toxic Heavy Metals in ...

    African Journals Online (AJOL)

    The concentrations of trace essential metals (Co, Cu, Fe, Mn, Ni and Zn) and toxic heavy metals (Cd and Pb) in lentil samples collected from Dejen (East Gojjam), Boset (East Shewa) and Molale (North Shewa), Ethiopia, were determined by flame atomic absorption spectrometry. A wet digestion procedure, using mixtures of ...

  3. Heavy metals burden in Kidney and heart tissues of Scarus ...

    African Journals Online (AJOL)

    Levels of selected heavy metals (Pb, Co, Cu, Ni, Zn, Mn and Cd) in the heart and kidney tissues of parrot fish, collected from the Arabian Gulf, Eastern Province of Saudi Arabia, were determined by wet-digestion based atomic absorption method. The results showed that accumulation pattern of analyzed metals in the kidney ...

  4. Heavy metals binding properties of esterified lemon

    Energy Technology Data Exchange (ETDEWEB)

    Arslanoglu, Hasan; Altundogan, Hamdi Soner [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey); Tumen, Fikret, E-mail: ftumen@firat.edu.tr [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey)

    2009-05-30

    Sorption of Cd{sup 2+}, Cr{sup 3+}, Cu{sup 2+}, Ni{sup 2+}, Pb{sup 2+} and Zn{sup 2+} onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni{sup 2+} > Cd{sup 2+} > Cu{sup 2+} > Pb{sup 2+} > Zn{sup 2+} > Cr{sup 3+}. The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+} > Cd{sup 2+} > Zn{sup 2+} > Cr{sup 3+}. The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol{sup -1} for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The {Delta}G{sup o} and {Delta}H{sup o} values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low {Delta}H{sup o} values revealed that physical adsorption significantly contributed to the mechanism.

  5. Sediment, water pollution indicators for heavy metals

    International Nuclear Information System (INIS)

    Cabaleiro, S.; Horn, A.

    2010-01-01

    The complexity of an aquatic system requires consideration of its dynamics: spatial and temporal variations of physical, chemical and biological. Heavy metals have peculiar behavior in the aquatic system and may not be available in the waters, but on sediments.The sub-basin of the Sarandi stream is responsible for the contamination of Pampulha Lake. The Instituto Mineiro das Águas – IGAM - uses tool for monitoring the quality of surface water for developing strategies for conservation, restoration and rational use of water resources. So through the indices: IQA ( Indice de qualidade de águas) Index of water quality, and TC- toxic contamination, reduces conflicts, implements the disciplining of the environmental economy.This study determined the monitoring of sediment and water of Sarandi Stream, so in the samples collected during dry and rainy seasons (2007- 2008) were analyzed heavy metals (Cu, Cd, Cr, Co, Ni, Zn, Pb) and physical-chemical factors (conductivity, solids dissolved, temperature, turbidity). This allowed the determination of Hackanson factors of contamination and Muller Index geoaccumulation, indicating very high contamination in sediments regarding the elements Cr, Cu, and Cd, and high contamination for Pb, Zn, and Mn. The comparison with the indices of water quality- IQA (IGAM - 2006, 2007 and 2008), combined with exploratory data analysis and graphs of correlation between the variables indicated favorable conditions for metals contamination on water and sediment for these metals, besides allowing the identification of its source

  6. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  7. Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.

    Science.gov (United States)

    Expósito, Nora; Kumar, Vikas; Sierra, Jordi; Schuhmacher, Marta; Giménez Papiol, Gemma

    2017-12-01

    Microalgae growth inhibition assays are candidates for referent ecotoxicological assays, and are a fundamental part in the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Raphidocelis subcapitata exposed to heavy metals following standardized growth inhibition assays has been assessed in three different scenarios: 1) dilutions of single heavy metals, 2) artificial mixture of heavy metals at similar levels than those found in natural rivers and, 3) natural samples containing known mixtures of contaminants (heavy metals). Chemical speciation of heavy metals has been estimated with Eh-pH diagram and Visual MINTEQ software; heavy metal and free heavy metal ion concentrations were used as input data, together with microalgae growth inhibition, for Dr. Fit software. The final goal was to assess the suitability of the ecotoxicological test based on the growth inhibition of microalgae cultures, and the mathematic models based on these results, for regulatory and decision-making purposes. The toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical and biological interaction play an important role in the final toxicity. Raphidocelis subcapitata 48h-h-EC50 for tested heavy metals (especially Cu and Zn) were in agreement with previous studies, when ion metal bioavailability was assumed to be 100%. Nevertheless, the calculated growth inhibition was not in agreement with the obtained inhibition when exposed to the artificial mixture of heavy metals or the natural sample. Interactions between heavy metal ions and the compounds of the culture media and/or the natural sample determine heavy metal bioavailability, and eventually their toxicity. More research is needed for facing the challenge posed by pollutant mixtures as they are present in natural environments, and make microalgae-based assays suitable for pollution management and regulatory purposes. Copyright

  8. Solubility of heavy metals added to MSW

    International Nuclear Information System (INIS)

    Lo, H.M.; Lin, K.C.; Liu, M.H.; Pai, T.Z.; Lin, C.Y.; Liu, W.F.; Fang, G.C.; Lu, C.; Chiang, C.F.; Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C.

    2009-01-01

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO 3 and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K d (l g -1 ) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K d (l g -1 ) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions

  9. Solubility of heavy metals added to MSW

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H.M. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)], E-mail: hmlo@cyut.edu.tw; Lin, K.C. [Department of Occupational Safety and Health, Chung Shan Medical University, 110, Sec. 1, Jiangguo N. Rd., Taichung 402, Taiwan (China); Liu, M.H.; Pai, T.Z. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China); Lin, C.Y. [Department of Soil and Water Conservation, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Liu, W.F. [Department of Electronical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 407, Taiwan (China); Fang, G.C. [Department of Environmental Engineering, Hungkuang University, 34 Chung-Chie Road, Sha Lu, Taichung 433, Taiwan (China); Lu, C. [Department of Environmental Engineering, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Chiang, C.F. [Department of Health Risk Management, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)

    2009-01-15

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO{sub 3} and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K{sub d} (l g{sup -1}) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K{sub d} (l g{sup -1}) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions.

  10. Energy-dispersive X-ray fluorescence analysis of traces of heavy metals (Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb, U) in mineral waters after separation on the cellulose-exchanger Hyphan

    International Nuclear Information System (INIS)

    Burba, P.; Lieser, K.H.

    1979-01-01

    Trace elements in mineral water are separated in small columns on the cellulose-exchanger Hyphan, eluted by diluted hydrochloric acid, bound on 100 mg of Hyphan by shaking and determined by energy-dispersive X-ray fluorescence. The following heavy metals can be analysed quantitatively if present in water in concentrations >= 1 ppb: Mn, Fe, Co, Ni, Cu, Zn, Ta, Pb and U. Several commercial mineral waters, a sodium chloride spring and seawater were analyzed for trace elements. The results obtained by X-ray fluorescence and by atomic absorption agree within the limits of error. (orig.) [de

  11. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  12. Heavy metal concentration of settled surface dust in residential building

    International Nuclear Information System (INIS)

    Nor Aimi abdul Wahab; Fairus Muhamad Darus; Norain Isa; Siti Mariam Sumari; Nur Fatihah Muhamad Hanafi

    2012-01-01

    The concentrations of heavy metals (Cu, Ni, Pb and Zn) in settled surface dust were collected from nine residential buildings in different areas in Seberang Prai Tengah District, Pulau Pinang. The samples of settled surface dust were collected in 1 m 2 area by using a polyethylene brush and placed in the dust pan by sweeping the living room floor most accessible to the occupants. Heavy metals concentrations were determined by using inductively coupled plasma optical emission spectrometer (ICP-OES) after digestion with nitric acid and sulphuric acid. The results show that the range of heavy metals observed in residential buildings at Seberang Prai Tengah were in the range of 2.20-14.00 mg/ kg, 1.50-32.70 mg/ kg, 1.50-76.80 mg/ kg and 14.60-54.40 mg/ kg for Cu, Ni, Pb and Zn respectively. The heavy metal concentration in the investigated areas followed the order: Pb > Zn > Ni > Cu. Statistical analysis indicates significant correlation between all the possible pairs of heavy metal. The results suggest a likely common source for the heavy metal contamination, which could be traced most probably to vehicular emissions, street dust and other related activities. (author)

  13. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    Science.gov (United States)

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  14. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China

    OpenAIRE

    Yang, Pingguo; Yang, Miao; Mao, Renzhao; Shao, Hongbo

    2014-01-01

    The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and C...

  15. Migration of heavy metals in soils in a uranium mining area

    International Nuclear Information System (INIS)

    Hu Ruixia; Gao Bai; Hu Baoqun; Feng Jiguang

    2009-01-01

    Contents of several heavy metals (Zn,Ni,Cu,Cd,Pb) in soil samples collected from different depths of the soil sections in a uranium mining area were analyzed, and vertical migration dis-ciplines of heavy metals were obtained. The results show that the concents of heavy metals in vertical direction decrease as the soil increases in thickness and there is a trend of facies-cumulation for the heavy metals. The accumulation status of each heavy metal in soils differs, which is dependent on the content and migration velocity of the heavy metal itself, the local natural environment about the soil, etc. (authors)

  16. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  17. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  18. Heavy Metals Accumulation Characteristics of Vegetables in Hangzhou City, China

    Directory of Open Access Journals (Sweden)

    GU Yan-qing

    2015-08-01

    Full Text Available A field survey of heavy metal concentrations in soils and vegetables grown in 30 vegetable farmlands of Hangzhou City were carried out. Through calculating the bioconcentration factor(BCFand transfer factor(TFfor different heavy metals(Cu, Zn, Cd, Cr and Pbin 27 kinds of different vegetables which belong to leafy vegetables, root vegetables or eggplant fruit vegetables, assessing their accumulation characteristics of heavy metals according to the differences of the bio-concentration factor, the reasonable proposals were put forward to optimize the planting structure of vegetables in mild and middle-level heavy metal contamination soils. The experimental results were as follows: In soils with mild and middle-level heavy metal contamination, leafy vegetables, such as crown daisy, cabbage, celery and Chinese long cabbage, had relatively low enrichment ability of heavy metals, so as the root and fruit vegetables like white radish, carrot, tomatoes, hence these vegetables could be planted preferentially. In contrast, some kinds of vegetables, including white amaranth, red amaranth, tatsoi, broccoli, gynura, brassica juncea and lettuce of leafy vegetables, lactuca sativa, taro, red radish and cherry radish of rhizome vegetables and sweet pepper of fruit vegetables, had relatively high accumulation ability of heavy metal, which should be avoided to be planted in soils with mild and middle-level heavy metal contamination.

  19. Heavy metals' data in soils for agricultural activities

    Directory of Open Access Journals (Sweden)

    T.A. Adagunodo

    2018-06-01

    Full Text Available In this article, the heavy metals in soils for agricultural activities were analyzed statistically. Ten (10 soil samples were randomly taken across the agricultural zones in Odo-Oba, southwestern Nigeria. Ten (10 metals; namely: copper (Cu, lead (Pb, chromium (Cr, arsenic (As, zinc (Zn, cadmium (Cd, nickel (Ni, antimony (Sb, cobalt (Co and vanadium (V were determined and compared with the guideline values. When the values were compared with the international standard, none of the heavy metals in the study area exceeded the threshold limit. However, the maximum range of the samples showed that Cr and V exceeded the permissible limit which could be associated with ecological risk. The data can reveal the distributions of heavy metals in the agricultural topsoil of Odo-Oba, and can be used to estimate the risks associated with the consumption of crops grown on such soils. Keywords: Agricultural soils, Heavy metals, Contamination, Environment, Soil screening, Geostatistics

  20. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  1. Adsorption of heavy metal ions on activated carbon, (5)

    International Nuclear Information System (INIS)

    Yoshida, Hisayoshi; Kamegawa, Katsumi; Arita, Seiji

    1978-01-01

    The adsorption effect of heavy metal ions Cd 2+ , Zn 2+ and Hg 2+ on activated carbon by adding EDTA is reported, utilizing the experimental data. The activated carbons used for the experiment are mostly D, and B, C and F partly. As for the experimental procedure, the solutions of 100 ml which are composed of activated carbon, pH adjusting liquid, EDTA solution and solutions of heavy metals Cd, Zn and Hg, are shaken for 24 hours at 20 deg C, and after the activated carbon is centrifuged and separated for 15 minutes at 3000 rpm, the remaining heavy metal concentrations and pH in the supernatant are measured. The experimental results showed the useful effect on the adsorption of heavy metal ions of Cd, Zn and Hg by adding about 1 mol ratio of (EDTA/heavy metals). The individual experimental results are presented in detail. Concerning the adsorption quantity, 83% of Cd ions remained in the supernatant without addition of EDTA, but less than 1% with addition of about 1 to 5 mol ratio of (EDTA/Cd), and this adsorption effect was almost similar to Zn and Hg, i.e. 100% to 1% in Zn and 70% to 2 or 3% in Hg, under the condition written above. As for the influence of pH on Cd adsorption, the remaining Cd ratio is less than 10%, when pH is 7 to 10.5 at the mol ratio of 1 and 5.5 to 9 at the mol ratio of 10. The adsorption effect was different according to the kinds of activated carbon. The influencing factors for adsorption effect are the concentration of coexisting cations in the solution and the mixing time, etc. The effects of pH on Zn and Hg adsorption were almost similar to Cd. (Nakai, Y.)

  2. Adsorption of heavy metals by road deposited solids.

    Science.gov (United States)

    Gunawardana, Chandima; Goonetilleke, Ashantha; Egodawatta, Prasanna

    2013-01-01

    The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb, for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments, confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electronegativity and high charge density of trivalent cation (Cr(3+)). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.

  3. Heavy metals in Mindhola river estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Rokade, M.A; Mandalia, A

    The heavy metal concentrations are studied along the Mindhola river estuary. Surface and bottom water samples were collected using Niskin Sampler. The sediment samples were collected using a Van Veen grab. The heavy metal concentration is estimated...

  4. Heavy metal content in compost and earthworms from home composters

    Directory of Open Access Journals (Sweden)

    Bożym Marta

    2017-12-01

    Full Text Available The paper presents the results of compost tests from home composters and earthworms living there, that treating waste into compost. The samples were taken from home composters and allotment gardens from Opole Region. The composting material was green waste. The total content of heavy metals (Cd, Pb, Cu, Zn, Ni Cr in compost and compost earthworms’ samples were determined. It was found that the compost samples were not contaminated with heavy metals. According to the Polish classification of composts from municipal wastes, the composts met the requirements for first class of quality. The composts did not exceed the limits of heavy metals specified in the Polish law for solid organic fertilizers. The degree of metal accumulation by compost earthworms depended on the type of metal. The high value of the bioaccumulation factor (BAF was obtained for Cd, Pb and Zn. No accumulation of other metals (Ni, Cr, Cu in earthworm bodies was found. It has been found that earthworm species, naturally occurring in Poland, can also be used as potential bioindicators of metals in the environment, such as the species Eisenia fetida. The aim of the study was to evaluate the heavy metal content in composts from home composters and ability to accumulate metals by compost earthworms.

  5. Short-term uptake of heavy metals by periphyton algae

    Energy Technology Data Exchange (ETDEWEB)

    Vymazal, J.

    1984-12-31

    The utilization of periphyton for the removal of heavy metals from enriched small streams has been examined. By means of short-term batch laboratory experiments the courses of metal uptake have been studied. For uptake study naturally growing periphyton community and periphytic filamentous algae Cladophora glomerata and Oedogonium rivulare have been used. Uptakes of nine heavy metals (Pb, Cd, Cu, Co, Cr, Ni, Zn, Fe and Mn) have been determined during four hours exposure. In addition the influence of humic substances on heavy metals uptake has been determined. Uptake of all metals increased during four hours exposure but not in the same way. Some metals were removed continuously (Ni, Cr, Fe and Mn), other metals were removed more rapidly during the first hour or first two hours of exposure and then only slight removal continued (Cu, Pb, Cd, Co). Uptake of Zn was rather unambiguous. Results of these experiments suggest that the course of uptake for individual metals could be similar for most periphyton algae. It was established that humic substances significantly reduce heavy metals uptake. The highest decrease of uptake was observed in Cu, Cr, Co and Cd. The results of model experiments are being tested in a pilot scale with respect to the demands of engineering practice. (J.R.)

  6. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    Science.gov (United States)

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Levels of micronutrients and heavy metals in cord blood and ...

    African Journals Online (AJOL)

    The basis of the impact of HAP on maternal and fetal health was assessed by determining the levels of teratogenic heavy metals [Lead (Pb), Mercury (Hg)] and micronutrients associated with DNA methylation [Zinc (Zn), Iodine (I), vitamins B6 and B12, folic acid and homocysteine] in cord blood of babies and maternal blood ...

  8. Characterization of Heavy Metals in Vegetables Using Inductive ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... Cauliflower and Onion showed high amount of Pb. On the other hand, Cucumber and Cauliflower registered maximum content of Zn. The heavy metal concentration in vegetables was within the prescribed safety limits except Fe owing to iron-rich soil of the ...

  9. Heavy metals and inorganic constituents in medicinal plants of ...

    African Journals Online (AJOL)

    Heavy metals such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd, and inorganic ions like HCO3-, CO32-, Ca2+, Mg2+, Cl-, Na+, SO42-, NO3-, Fe2+ and F- were investigated in medicinally important plants: Taraxacam officinale, Cichorium intybus and Figonia critica, applying atomic absorption spectrophotometer techniques. In the ...

  10. Heavy metal pollution assessment in the sediments of lake Chad ...

    African Journals Online (AJOL)

    Sediments were collected from Dumba and KwataYobe of Lake Chad, Nigerian Sector.The aim was to assess the pollution statusof the sediments of the lake. The concentration of heavy metals, Cadmium (Cd), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), lead (Pb), Z (Zn) and Arsenic (As) were ...

  11. Evaluation of Heavy Metals in Stream Sediments from Abakaliki Pb ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Evaluation of Heavy Metals in Stream Sediments from Abakaliki Pb – Zn Ore Mining. Areas of Ebonyi ... produced both for local consumption and also for food supplies to other .... of deionised water using a pH-meter (Aqualytica. Model pH 17).

  12. Seasonal variations in heavy metal concentrations in soil and some ...

    African Journals Online (AJOL)

    In this study, the seasonal variations in concentrations of the heavy metals - As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn - in soil and crops from a farm near the refuse dump site of Obafemi Awolowo University, Ile-Ife, Nigeria were investigated during the two major seasons of Nigeria. This was done to assess the pollution ...

  13. Heavy metals concentrations in water bodies around aquamarine ...

    African Journals Online (AJOL)

    Water samples from three streams in the mining area of Eggon Hill were analysed. The Physicochemical values obtained were compared with WHO permissible standards in drinking water. Except for Cu and Zn with levels within permissible limits, other heavy metals determined were found to have levels above the WHO ...

  14. Heavy metals contamination of topsoil and dispersion in the ...

    African Journals Online (AJOL)

    Growing concern about reclamation of auto-repair workshop areas for residential and agricultural purposes makes risk assessment of heavy metal contamination of the study area imperative. In addition, the study is aimed at ascertaining the dispersion of contaminated Zn, Ni, Cr, Hg, and Pb within the soil profile. A total of 75 ...

  15. Water quality characteristics and pollution levels of heavy metals in ...

    African Journals Online (AJOL)

    The main aim of this study was to assess the level of water quality of Lake Haiq, Ethiopia with respect to selected physical ... gated using standard analytical procedures. the level of the studied heavy metals (Pb, Cd, Cu and Zn) was determined using the .... no known discharge and hence used as reference site. Sampling ...

  16. heavy metal pollution asse al pollution assessment in the sediments

    African Journals Online (AJOL)

    User

    ABSTRACT. Sediments were collected from Dumba and to assess the pollution statusof the sedim. Cadmium (Cd), Chromium (Cr), Copper (Cu. (Zn) and Arsenic (As) were analysed using concentration of heavy metals varies bet with standard average shale to assess pollution in Dumba and KwataYobe sedi assessed ...

  17. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils.

    Science.gov (United States)

    Hussain Lahori, Altaf; Zhang, Zengqiang; Guo, Zhanyu; Mahar, Amanullah; Li, Ronghua; Kumar Awasthi, Mukesh; Ali Sial, Tanveer; Kumbhar, Farhana; Wang, Ping; Shen, Feng; Zhao, Junchao; Huang, Hui

    2017-11-01

    This explorative study was aimed to assess the efficiency of lime alone and in combined with additives to immobilize Pb, Cd, Cu and Zn in soil and reduce their phytoavailability for plant. A greenhouse pot experiment was performed by using low and heavily contaminated top soils viz. Tongguan contaminated (TG-C); Fengxian heavily contaminated (FX-HC) and Fengxian low contaminated (FX-LC). The contaminated soils were treated with lime (L) alone and in combined with Ca-bentonite (CB), Tobacco biochar (TB) and Zeolite (Z) at 1% and cultivated by Chinese cabbage (Brassica campestris L). Results revealed that all amendments (plime alone and in combined with additives were drastically decreased the dry biomass yield of Brassica campestris L. as compared with control. Thus, these feasible amendments potentially maximum reduced the uptake by plant shoots upto Pb 53.47 and Zn 67.93% with L+Z and L+TB in FX-LC soil, while Cd 68.58 and Cu 60.29% with L+TB, L+CB in TG-C soil but Cu uptake in plant shoot was observed 27.26% and 30.17% amended with L+TB and L+Z in FX-HC and FX-LC soils. On the other hand, these amendments were effectively reduced the potentially toxic metals (PTMs) in roots upto Pb77.77% L alone in FX-HC, Cd 96.76% with L+TB in TG-C, while, Cu 66.70 and Zn 60.18% with L+Z in FX-LC. Meanwhile, all amendments were responsible for increasing soil pH and CEC but decreased soils EC level. Based on this result, these feasible soil amendments were recommended for long term-study under field condition to see the response of another hyper accumulator crop. Copyright © 2017. Published by Elsevier Inc.

  18. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    Science.gov (United States)

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Nutrients and heavy metal distribution in thermally treated pig manure

    DEFF Research Database (Denmark)

    Kuligowski, Ksawery; Poulsen, Tjalfe G.; Stoholm, Peder

    2008-01-01

    Ash from pig manure treated by combustion and thermal gasification was characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations...... that ash from gasified manure contained more water-extractable K in comparison with combusted manure whereas the opposite was the case with respect to P. Heavy metals Ni, Cr and Cd were present in higher concentrations in the fine particle size fractions (

  20. Sublethal effects of heavy metals on biochemical composition and their recovery in Indian major carps

    International Nuclear Information System (INIS)

    Garg, Smita; Gupta, R.K.; Jain, K.L.

    2009-01-01

    Studies were conducted to assess the effects of sublethal exposure of heavy metals cadmium, arsenic and zinc for 45 days on Indian major carps, Labeo rohita, Cirrhinus mrigala and Catla catla. Heavy metal treatments in general showed significant reduction in carbohydrate and lipid contents content in muscles as well as in gills in all the three fish species. The order of reduction of muscle and gill carbohydrate and lipid content due to different treatments was Cd + As + Zn > Cd + As > As + Zn > Cd + Zn > Cd > As > Zn. When fish were transferred to metal free water for 30 days, the level of carbohydrate and lipid contents improved considerably in all the three fish species

  1. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  2. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. Heavy metals in atmospheric surrogate dry deposition

    Science.gov (United States)

    Morselli; Cecchini; Grandi; Iannuccilli; Barilli; Olivieri

    1999-02-01

    This paper describes a methodological approach for the assessment of the amount of surrogate dry deposition of several toxic heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) associated with atmospheric particulate matter at ground level. The objectives of the study were twofold: i) the evaluation of several techniques for the digestion of dry deposition samples for trace metal analysis; ii) the comparison of the results from two samplers with different collecting surfaces. A dry solid surface sampler (DRY sampler, Andersen--USA) and a water layer surface sampler (DAS sampler--MTX Italy) were employed. The samples were collected over a one-year period in an urban site of Bologna (northern Italy). A description is given of the complete procedure, from sampling to data elaboration, including sample storage, digestion and analytical methods. According to the results obtained with three different digestion techniques (Teflon bomb, microwave digester and Teflon flask with vapour cooling system), the highest recovery rate was achieved by the Teflon bomb procedure employing an NBS 1648 Standard Reference Material; 90-95% of the elements considered were recovered by dissolution in a pressurized Teflon bomb with an HNO3-HF mixture. Given these results, the technique was adopted for dry deposition sample digestion. On the basis of the amount of heavy metals measured as monthly deposition fluxes (microg/m2), the collecting efficiency of the DAS sampler for a number of elements was found to be as much as two to three times greater than that of the DRY sampler.

  4. Micromycetes sensitiveness to heavy metals

    Directory of Open Access Journals (Sweden)

    O. N. Korinovskaya

    2011-07-01

    Full Text Available The sensitivity of 33 micromycete species to nitric compounds of copper, lead, zinc, nickel and cadmium has been determined. Absidia butleri Lendn, Mortierella vanesae Dixon-Stewart, Cunninghamella echinulata Thaxte, Curvularia tuberculata Jain, Cladosporium cladosporiodes (Fresen G. A. de Vries and Fusarium solani (C. Mart. Appel et Wollenw are sensitive to minimal content of the heavy metals (0.75 of maximum permissible concentration (MPC in the growth medium. At the same time Trixoderma longibrachiatiim Rifai, Alternaria alternatа (Fr. Keissl and Penicillium sp. 4 demonstrated moderate growth under maximal concentration (50 MPC. It is determined that minimal content of the heavy metals in the initial stage of influence (up to 48 h promotes growth of only Fusarium oxysporum E. F. Sm. et Swingle, while retards growth of the other species.

  5. Heavy metal content of soil in urban parks of Belgrade

    Directory of Open Access Journals (Sweden)

    Kuzmanoski Maja M.

    2014-01-01

    Full Text Available This study focuses on soil pollution in four urban parks of Belgrade. The sampling locations within each park were chosen based on proximity to streets characterized by heavy traffic, and soil samples were taken at different depths down to 50 cm. Concentrations of six heavy metals (Cr, Cu, Fe, Mn, Ni and Zn were measured using Energy Dispersive X-Ray Fluorescence (EDXRF spectrometer. The following average abundance order of heavy metals was found: Fe >> Mn > Zn > Cr > Ni > Cu in topsoil samples. The highest enrichment in topsoil was observed for Zn. Copper and Zn, metals mainly related to traffic emissions, exhibited the highest concentrations at the sampling location close to a bus and trolleybus terminus. The highest Ni and Cr concentrations were observed in a park located in a city suburb, where a large number of individual heating units is present. The largest decrease in concentrations with soil dept was observed for Zn and Cu, followed by Ni and Cr, in the parks with the highest concentrations of these elements in topsoil. Generally high topsoil Cr and Ni concentrations were observed in comparison with average values reported in literature for other world cities. [Projekat Ministartsva nauke Republike Srbije, br. III43007

  6. Source of atmospheric heavy metals in winter in Foshan, China.

    Science.gov (United States)

    Tan, Ji-Hua; Duan, Jing-Chun; Ma, Yong-Liang; Yang, Fu-Mo; Cheng, Yuan; He, Ke-Bin; Yu, Yong-Chang; Wang, Jie-Wen

    2014-09-15

    Foshan is a ceramics manufacturing center in the world and the most polluted city in the Pearl River Delta (PRD) in southern China measured by the levels of atmospheric heavy metals. PM2.5 samples were collected in Foshan in winter 2008. Among the 22 elements and ions analyzed, 7 heavy metals (Zn, V, Mn, Cu, As, Cd and Pb) were studied in depth for their levels, spatiotemporal variations and sources. The ambient concentrations of the heavy metals were much higher than the reported average concentrations in China. The levels of Pb (675.7 ± 378.5 ng/m(3)), As (76.6 ± 49.1 ng/m(3)) and Cd (42.6 ± 45.2 ng/m(3)) exceeded the reference values of NAAQS (GB3095-2012) and the health guidelines of the World Health Organization. Generally, the levels of atmospheric heavy metals showed spatial distribution as: downtown site (CC, Chancheng District)>urban sites (NH and SD, Nanhai and Shunde Districts)>rural site (SS, Shanshui District). Two sources of heavy metals, the ceramic and aluminum industries, were identified during the sampling period. The large number of ceramic manufactures was responsible for the high levels of atmospheric Zn, Pb and As in Chancheng District. Transport from an aluminum industry park under light north-west winds contributed high levels of Cd to the SS site (Shanshui District). The average concentration of Cd under north-west wind was 220 ng/m(3), 20.5 times higher than those under other wind directions. The high daily maximum enrichment factors (EFs) of Cd, Pb, Zn, As and Cu at all four sites indicated extremely high contamination by local emissions. Back trajectory analysis showed that the heavy metals were also closely associated with the pathway of air mass. A positive matrix factorization (PMF) method was applied to determine the source apportionment of these heavy metals. Five factors (industry including the ceramic industry and coal combustion, vehicle emissions, dust, transportation and sea salt) were identified and industry was the most

  7. Heavy metals in sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, S.A. (Millersville State College, PA); Frazier, J.G.

    1982-07-01

    Bone and barnacle samples from sea turtles (Hepidochelys olivacea) in Ecuador were analyzed for manganese, iron, copper, zinc and lead. Analysis was performed by flame atomic absorption spectroscopy. Results show that zinc and iron levels in bone and barnacles were greater than copper, manganese and lead levels. The significance of the findings is difficult to interpret because so little is known about baseline levels and physiological effects of heavy metals in the animals. (JMT)

  8. Micromycetes sensitiveness to heavy metals

    OpenAIRE

    O. N. Korinovskaya; V. N. Gryshko

    2011-01-01

    The sensitivity of 33 micromycete species to nitric compounds of copper, lead, zinc, nickel and cadmium has been determined. Absidia butleri Lendn, Mortierella vanesae Dixon-Stewart, Cunninghamella echinulata Thaxte, Curvularia tuberculata Jain, Cladosporium cladosporiodes (Fresen) G. A. de Vries and Fusarium solani (C. Mart.) Appel et Wollenw are sensitive to minimal content of the heavy metals (0.75 of maximum permissible concentration (MPC)) in the growth medium. At the same time Trixoderm...

  9. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Skubala, Piotr, E-mail: piotr.skubala@us.edu.pl [Department of Ecology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Zaleski, Tomasz [Department of Soil Science and Soil Protection, Agricultural University in Krakow, Mickiewicza 21, 31-120 Cracow (Poland)

    2012-01-01

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (K{sub av}, P{sub av}, N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals - the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. - Highlights: Black-Right-Pointing-Pointer Responses of oribatid mites to metal contamination along a gradient in meadow soils were studied. Black-Right-Pointing-Pointer Small concentrations of heavy metals positively influenced the abundance of oribatid mites. Black-Right-Pointing-Pointer Four different responses of oribatid species to heavy metal pollution were recognised. Black-Right-Pointing-Pointer Bioaccumulation of the toxic metal and essential elements proceeded differently in oribatid species. Black-Right-Pointing-Pointer Five studied oribatid species were deconcentrators of cadmium.

  10. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  11. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  12. Heavy metal accumulation by carrageenan and agar producing algae

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, K.S. [Moscow State Univ. (Russian Federation). Faculty of Biology; Bird, K.T. [North Carolina Univ., Wilmington, NC (United States). Center for Marine Science Research

    1994-09-01

    The accumulation of six heavy metals Cu, Cd, Ni, Zn, Mn and Pb was measured in living and lzophilized algal thalli. The agar producing algae were Gracilaria tikvahiae and Gelidium pusillum. The carrageenan producing macroalgae were Agardhiella subulata and the gametophyte and tetrasporophyte phases of Chondrus crispus. These produce primarily iota, kappa and lambda carrageenans, respectively. At heavy metal concentrations of 0.5 mg L{sup -1}, living thalli of Gracilaria tikvahiae generally showed the greatest amount of accumulation of the 6 heavy metals tested. The accumulation of Pb was greater in the living thalli of all four species than in the lyophilized thalli. Except for Agardhiella subulata, lyophilized thalli showed greater accumulation of Ni, Cu and Zn. There was no difference in heavy metal accumulation between living and lyophilized thalli in the accumulation of Cd. Manganese showed no accumulation at the tested concentration. There did not appear to be a relationship between algal hydrocolloid characteristics and the amounts of heavy metals accumulated. (orig.)

  13. Heavy metal content of combustible municipal solid waste in Denmark.

    Science.gov (United States)

    Riber, Christian; Fredriksen, Gry S; Christensen, Thomas H

    2005-04-01

    Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.

  14. Disponibilidade dos metais pesados tóxicos cádmio, chumbo e cromo no solo e tecido foliar da soja adubada com diferentes fontes de NPK+Zn Availability of cadmium, lead and chromium toxic heavy metals in soil and soybean leaf tissue fertilized with different sources of NPK+Zn

    Directory of Open Access Journals (Sweden)

    Ivair André Nava

    2011-10-01

    Full Text Available Os fertilizantes utilizados para suprir micronutrientes podem apresentar metais pesados tóxicos em sua composição que podem proporcionar severas consequências ao meio ambiente. Plantas cultivadas na presença de determinadas concentrações de elementos tóxicos podem oferecer risco de contaminação, pois os acumulam em seus tecidos. Desse forma, neste trabalho objetivou-se avaliar a disponibilização dos metais pesados tóxicos Cd, Pb, e Cr para o solo e tecido foliar da cultura da soja, cultivada a campo e fertilizada com um formulado N:P2O5:K2O e diferentes fontes de Zn. O delineamento experimental utilizado foi o de blocos ao acaso, em esquema fatorial [(5+1x2], com três repetições. Os tratamentos foram constituídos de cinco diferentes fertilizantes NPK+Zn (quatro fontes com Zn e uma sem Zn, um tratamento sem adubação e duas doses de adubação (uma vez e o seu dobro. Com base nos resultados obtidos foi concluído que a aplicação dos tratamentos disponibilizou Cd, Pb e Cr para as plantas de soja e para o solo do experimento nas duas doses de adubação utilizadas.Fertilizers used to supply micronutrients may have toxic heavy metals in their composition, which can have severe consequences for the environment. Plants grown in the presence of certain concentrations of toxic elements may present a risk of contamination because the toxins accumulate in their tissues. This study aimed to measure the presence of the toxic heavy metals Cd, Pb and Cr in the soil and leaf tissue of field-grown soybean plants, fertilized with a formulated N:P2O5:K2O and different sources of Zn. The experimental design utilized randomized blocks in a factorial scheme [(5+1x2], with three replications. The treatments consisted of five different fertilizers NPK + Zn (four sources with Zn and one without Zn, a treatment without fertilizer and two fertilizer levels (a single and double application. Based on obtained results it was concluded that the double

  15. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  16. Analysis of heavy metals in road-deposited sediments.

    Science.gov (United States)

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A

    2006-07-07

    Road-deposited sediments were analysed for heavy metal concentrations at three different landuses (residential, industrial, commercial) in Queensland State, Australia. The sediments were collected using a domestic vacuum cleaner which was proven to be highly efficient in collecting sub-micron particles. Five particle sizes were analysed separately for eight heavy metal elements (Zn, Fe, Pb, Cd, Cu, Cr, Al and Mn). At all sites, the maximum concentration of the heavy metals occurred in the 0.45-75 microm particle size range, which conventional street cleaning services do not remove efficiently. Multicriteria decision making methods (MCDM), PROMETHEE and GAIA, were employed in the data analysis. PROMETHEE, a non-parametric ranking analysis procedure, was used to rank the metal contents of the sediments sampled at each site. The most polluted site and particle size range were the industrial site and the 0.45-75 microm range, respectively. Although the industrial site displayed the highest metal concentrations, the highest heavy metal loading coincided with the highest sediment load, which occurred at the commercial site. GAIA, a special form of principal component analysis, was applied to determine correlations between the heavy metals and particle size ranges and also to assess possible correlation with total organic carbon (TOC). The GAIA-planes revealed that irrespective of the site, most of the heavy metals are adsorbed to sediments below 150 microm. A weak correlation was found between Zn, Mn and TOC at the commercial site. This could lead to higher bioavailability of these metals through complexation reactions with the organic species in the sediments.

  17. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Science.gov (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  18. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    Science.gov (United States)

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  19. Characterization of Heavy metals from banana farming soils

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dian; Huang, Cheng He; Huang, Dong Yi [College of Agronomy, Hainan University, Haikou City, Hainan Province (China); Ouyang, Ying [Department of Water Resources, St. Johns River Water Management District, Palatka, FL (United States)

    2010-06-15

    There is a growing public concern about the contamination of heavy metals in agricultural soils in China due to the increasingly applications of chemical fertilizers and pesticides during the last two decades. This study characterized the variability of heavy metals, including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), and nickel (Ni), from the banana farming soils in western Hainan Island, China. Five banana farms from different locations in the island were selected to collect 69 mixed-soil samples in this study. Experimental data showed that concentrations of Cu ranged from 3.38 to 54.52, Zn from 24.0 to 189.8, Pb from 15.98 to 58.42, Cd from 0.43 to 3.21, and Ni from 3.47 to 121.86 mg kg{sup -1} dry wt. In general, concentrations of the heavy metals varied with metal species and changed from location to location, which occurred presumably due to the variations of soil parent materials and to a certain extent due to the use of different types of agrochemicals. Our study further revealed that concentrations of Cu and Zn were higher in the banana farming soils than in the natural (control) soils among all of the five locations, whereas mixed results were observed for Pb, Cd, and Ni in both the banana farming and control soils, depending on the locations. Comparisons of the heavy metal concentrations with the Chinese Soil Quality Standards (CSQSs) showed that Cu, Zn, and Pb contents were lower but Cd and Ni contents were higher in the banana farming soils than the Class II standard of the CSQSs. Results suggested that accumulation of Cu, Zn, and Pb in the soils is safe for banana fruit production, whereas accumulation of Cd and Ni in the same soils could potentially pose threats to banana fruit safety. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    Science.gov (United States)

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  1. Behavior of heavy metals during fluidized bed combustion of poultry litter

    OpenAIRE

    Lynch, Deirdre; Low, Fiona; Henihan, Anne Marie; Garcia, Alberto; Kwapinski, Witold; Zhang, Lian; Leahy, J.J.

    2014-01-01

    peer-reviewed In this study, we have examined the behavior of heavy metals during fluidized bed combustion of poultry litter. Heavy metals examined include As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V, and Zn. Solid and gaseous streams were analyzed and compared with relevant guidelines to determine the potential environmental impact of combustion and subsequent land spreading or landfill of the resulting ash. The majority of heavy metals were associated with the solid ash fraction, with low ...

  2. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    OpenAIRE

    Muneeb Ur Rahman Khattak, Muhammad; Zahoor, Muhammad; Muhammad, Bakhtiar; Khan, Farhat Ali; Ullah, Riaz; AbdEI-Salam, Naser M.

    2017-01-01

    Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA) and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn) from water. The adsorption parameters were determined for heavy metals adsorpti...

  3. heavy metal profiles in various matrices of the bonny/new calabar ...

    African Journals Online (AJOL)

    PROF EKWUEME

    Nigeria's foreign exchange earnings through oil ... B. B. Babatunde, Centre for Marine Pollution Monitoring and Seafood Safety, University of .... calculated using Microsoft Excel package 2010. ..... effects of heavy metals such as Pb, Zn, Cr, Cd.

  4. Heavy metal concentrations in soil and earthworms in a floodplain grassland

    NARCIS (Netherlands)

    Vliet, van P.C.J.; Zee, van der S.E.A.T.M.; Ma, W.C.

    2005-01-01

    We determined accumulated heavy metal concentrations (Cd, Pb, Cu, Zn) of earthworms in moderately contaminated floodplain soils. Both soil and mature earthworms were sampled before and after flooding and earthworm species were identified to understand species specific differences in

  5. Heavy metals biogeochemistry in abandoned mining areas

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available Plants growing on the abandoned Portuguese mines, highly contaminated with W, Sn, As, Cd, Cu, Zn and Pb, have been studied for their biogeochemical indication/prospecting and mine restoration potential. The results of analysis show that the species best suited for biogeochemical indicating are: aerial tissues of Halimium umbellatum (L. Spach, for As and W; leaves of Erica arborea L. for Bi, Sn, W and mostly Pb; stems of Erica arborea L. for Pb; needles of Pinus pinaster Aiton and aerial tissues of Pteridium aquilinum (L. Kuhn for W; and leaves of Quercus faginea Lam. for Sn. The aquatic plant studied (Ranunculus peltatus Schrank can be used to decrease the heavy metals, and arsenic amounts into the aquatic environment affected by acid mine drainages.

  6. Effect of heavy metals on growth and heavy metal content of Allium porrum L. and Pisum sativum L

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhage, L.; Jaeger, H.J.

    1985-01-01

    The effects of cadmium, lead, zinc and copper, singly and in combination, on yield, heavy metal content and the mineral composition of Allium porrum L. and Pisum sativum L. have been investigated. The Cd, Pb, Zn and Cu concentrations of shoots and roots of Allium porrum increased with increasing heavy metal contamination of soil. However, no visible symptoms of heavy metal toxicity were recognized. The dry matter production was reduced as a function of heavy metal concentration and combination. The mechanisms of combinations were mostly synergistic. The correlation between pollutant contents (nmol/shoot) and yield was higher than the correlation between heavy metal concentrations of soil or shoots (ppm) and yield. Results of regression analyses showed that the inhibition of copper translocation caused by Cd, Pb and Zn was responsible for the yield depressions. The antagonism between Cd and N-deficiency showed that the level of N-supply was without negative effects on yield depressions of Pisum sativum caused by Cd. In contrast to this, the N-form played an important role in Cd-toxicity as the synergism between Cd and NH4 illustrated. K-deficiency as well as acidic nutrient solution (pH=4) diminished the root/shoot-barrier for Cd and therefore Cd-translocation from roots to shoots increased. Concerning calcium, magnesium and iron the decrease of ion uptake caused by Cd was statistically significant higher than yield depression.

  7. Assessment of some heavy metals in the surrounding soils of an ...

    African Journals Online (AJOL)

    OYELEKE PETER

    soils of an automobile battery factory in Ibadan, Nigeria. Peter Olaoye Oyeleke ... The levels of heavy metals (Pd, Zn, Cr, Cd, Fe and Cu in mg/kg) in soils were assessed with respect to distance in ... potential health risk. ..... Management, Nigeria (2004). ... heavy metals in sediments in the vicinity of Ashaka Cement Factory,.

  8. Evaluation of some heavy metals loading in dust fall of three ...

    African Journals Online (AJOL)

    Generally for the three sites used, the heavy metal concentrations decreased in the following order: Mn>Zn>Pb>Ni>Cu>Cd. This implies that dust-fall in the parks are heavily loaded with some heavy metals that are of concentrations above Romania standard threshold limit for Cd and Pb while concentration values obtained ...

  9. Bioethanol production from recovered napier grass with heavy metals.

    Science.gov (United States)

    Ko, Chun-Han; Yu, Fan-Chun; Chang, Fang-Chih; Yang, Bing-Yuan; Chen, Wen-Hua; Hwang, Wen-Song; Tu, Ta-Chih

    2017-12-01

    Using plants to absorb and accumulate heavy metals from polluted soil, followed by the recycling of explants containing heavy metals, can help achieve the goal of reverting contaminated soil to low heavy-metal content soil. However, the re-use of recovered explants can also be problematic. Meanwhile, bioethanol has become a popular energy source. In this study, napier grass was used for the remediation of soil contaminated with heavy metals (artificially contaminated soil). The influence of bioethanol production from napier grass after phytoremediation was also investigated. The concentration of Zn, Cd, and Cr in the contaminated soil was 1000, 100, and 250 mg/kg, respectively. After napier grass phytoremediation, the concentration (dry biomass) of Zn, Cd, and Cr in the explants was 2701.97 ± 173.49, 6.1 ± 2.3, and 74.24 ± 1.42 mg/kg, respectively. Biomass production in the unpolluted soil was 861.13 ± 4.23 g. The biomass production ratio in high Zn-polluted soil was only 3.89%, while it was 4.68% for Cd and 21.4% for Cr. The biomass obtained after napier grass phytoremediation was pretreated using the steam explosion conditions of 180 °C, for 10 min, with 1.5% H 2 SO 2 , followed by enzymatic hydrolysis. The efficiency of enzymatic hydrolysis for Zn-polluted biomass was 90% of the unpolluted biomass, while it was 77% for Cd, and approximately the same for Cr. The fermentation efficiency of the heavy-metal-containing biomass was higher than the control biomass. The fermentation ethanol concentration obtained was 8.69-12.68, 13.03-15.50, and 18.48-19.31 g/L in Zn, Cd, and Cr environments, respectively. Results show that the heavy metals had a positive effect on bacteria fermentation. However, the fermentation efficiency was lower for biomass with severe heavy metal pollution. Thus, the utilization of napier grass phytoremediation for bioethanol production has a positive effect on the sustainability of environmental resources. Copyright © 2017

  10. Indicators of Lake Temsah Potential by some heavy metals Heavy Metals in Sediment

    International Nuclear Information System (INIS)

    Abdel Sabour, M.F.; Aly, R.O.; Khalil, M.T.; Attwa, A.H.A.

    1999-01-01

    The Environmental impact of industrial, agricultural and domestic waster on heavy metals sediment content in lake Temsah has been investigated. Seven sites were chosen, differ in nature of activity and quantity of wastes, namely from south to north-west; Arab contractors shipyard workshop(A), The junction between the western logon and the lake(B), El-Temsah workshop (C), El-Temsah shipyard (private workshop) (D), El-Karakat workshop for SCA (E), El-Forsan drain out fall to the lake (F) and SCA Press outlet (G). Eight of heavy metal concentrations of concern (Fe, Mn, Zn, Cu, Co, Ni, Cd and Pb) were estimated in sediment samples collected from different chosen sites during the seasons; summer , autumn 1995 and winter , spring 1996. Results of this study reveal that pollution is directly related to the type of the activity in each site. Sediment samples results showed that the most suffering sites were found to be in the order of B> D> C> G> F, and the least polluted ones were E> A. And the highest polluted season was summer, whereas the least one was winter. It is obvious that the general mean values of Cu, Ni and Cd are exceeding the allowed concentrations documented for diverse trace components in coastal sediments. Strict regulations that must be followed in order to minimize this pollution specially, by heavy metals from marine workshop

  11. Heavy Metals in the Vegetables Collected from Production Sites

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  12. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  13. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  14. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    Science.gov (United States)

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Distribution of heavy metals from flue gas in algal bioreactor

    Science.gov (United States)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  16. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  17. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  18. Observation on Heavy Metals in Sediment of Jakarta Bay Waters

    Directory of Open Access Journals (Sweden)

    Abdul Rozak

    2007-04-01

    Full Text Available Observation on heavy metals in Jakarta Bay, from June and September 2003. Heavy metals Pb in sediment at the West have been conductet of Jakarta Bay Waters varied between Pb = 8,49-31,22 ppm, Cd = <0,001-0,47 ppm, Cu = 13,81-193,75 ppm, Zn = 82,18-533,59 ppm and Ni = 0,99-35,38 ppm,while those at the Center of Jakarta Bay, varied between Pb = 2,21-69,22 ppm, Cd = <0,001-0,28 ppm, Cu = 3,36-50,65 ppm, Zn = 71,13-230,54 ppm and Ni = 0,42-15,58 ppm and at the East of Jakarta Bay, Pb content varied between 0,25-77,42 ppm, Cd = <0,001-0,42 ppm, Cu = 0,79-44,94 ppm, Zn = 93,21-289,00 ppm and Ni = 0,42-128,47 ppm. Hevy metals content in sediment the West of Jakarta Bay was high of equivalent the Center and East of Jakarta Bay. At than those composition sediment at the west was black, that indicated high heavy metals content.

  19. The ecological risk assessment of heavy metals in the Kuihe River basin (Xuzhou section) and the characteristics of plant enrichment

    Science.gov (United States)

    Sun, Ling; Zheng, Lei

    2018-01-01

    In order to investigate Kuihe River basin of heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) pollution, the determination of the Kuihe River water body, the bottom of the river silt, riparian soil plants and heavy metal content of 9 kinds of riparian plants, investigate the pollution situation, so as to screen out the plants that has potential of enrichment and rehabilitation of heavy metal pollution. The results showed that Cd and Mn in the water body exceed bid; The pollution of Zn and Cu in the bottom mud is serious, potential ecological risk of heavy metals is Zn>Cu>Pb>Ni>Cd>As>Cr>Mn Riparian soil affected by sewage and overflow of sediment has significant positive correlation with soil heavy metals, among them, the Zn and Cu are heavy pollution; The selective absorption of heavy metals by 9 kinds of dominant plant leads to its bio concentration factor (BCF) of Cr and Pb on the low side, are all less than 1, from the translocation factor (TF), Setcreasea purpurea and Poa annua showed obvious roots type hoarding. Poa annua and Lycium chinense have a resistance on the absorption of heavy metals, Lythrum salicaria, Photinia serrulata and Broussonetia papyrifera have a unique advantage on enrichment of heavy metals, Broussonetia papyri era on a variety of strong ability of enrichment and transfer of heavy metals suggests that the woody plants in the vast application prospect in the field of rehabilitation technology of heavy metals.

  20. Accumulation of heavy metals in a tropical soil type Oxisol

    International Nuclear Information System (INIS)

    Reynaldo, I.M.; Escudey, M.; Utria, E.; Garcia, D.; Cartaya, O.; Morua, A.

    2003-01-01

    In this investigation sewage sludges from Quibu plant, located in City of the Havana, with the objective of evaluating the capacity of accumulation of heavy metals in a tropical soil type Oxisol when in the wheat plants are cultivated (Triticum aestivum L.) , as well as the potential damages in this plants. Rates of 0, 60, 180 and 300 sludges tons/ soil hectare was applied and the plants were growth in recipient of 5 L of capacity. The levels of heavy metals were evaluated before the and after the crop. The extraction one carries out with the mixture HCl:HNO3 and they were determined by spectroscopy inductively coupled to plasma. Presence of Zn, Cu and Pb were detected in sludges and a tendency decrease is observed to heavy metals retention is observed in soil with the increase of the disposition rate together to a differential behavior of the different chemical species

  1. Heavy metal concentrations in forest litter - indicators of pollutant depositions

    International Nuclear Information System (INIS)

    Angehrn-Bettinazzi, C.; Hertz, J.

    1990-01-01

    By means of a comparison of the heavy metal concentrations in organic litter from different sites it was examined to what extent the heavy metal concentrations correlate with the atmospheric pollution situation. It follows from the variance analyses: The atmospheric pollution situation is the dominating factor for the heavy metal concentration in L litter. The elements Cd and Zn show a pH-sensitivity at the same time. The lead concentration in the L n and L v horizons reflects the atmospheric pollution situation of the corresponding site. Specific pollution patterns, e.g. in the case of hillside sites, are neither detected through the gravitational deposition (open land) nor through the airborne dust concentration; these can be recognized by the monitor 'litter'. Only horizons in the intercrown area with identical tree vegetation, which are characterized in detail, must be used for monitoring. (orig.) [de

  2. Assessment of heavy metal contents of green leafy vegetables

    Directory of Open Access Journals (Sweden)

    V. Jena

    2013-01-01

    Full Text Available Vegetables are rich sources of vitamins, minerals, and fibers, and have beneficial antioxidative effects. Ingestion of vegetables containing heavy metals is one of the main routes through which these elements enter the human body. Slowly released into the body, however, heavy metals can cause an array of diseases. In this study we investigated the concentrations of copper, chromium, zinc, and lead in the most frequently consumed vegetables including Pimpinella anisum, Spinacia oleracea, Amaranthus viridis, Coriandrum sativum, and Trigonella foenum graecum in various sites in Raipur city, India. Atomic absorption spectrophotometry was used to estimate the levels of these metals in vegetables. The mean concentration for each heavy metal in the samples was calculated and compared with the permissible levels set by the Food and Agriculture Organization and World Health Organization. The intake of heavy metals in the human diet was also calculated to estimate the risk to human health. Our findings indicated the presence of heavy metals in vegetables in the order of Cr > Zn > Cu > Pb. Based on these findings, we conclude that the vegetables grown in this region are a health hazard for human consumption.

  3. IOLOGICAL IMPORTANCE AND TOXICITY OF HEAVY METALS FOR BIOTA OF FRESHWATER BODIES (REVIEW)

    OpenAIRE

    I. Hrytsyniak; N. Kolesnyk

    2014-01-01

    Purpose. To investigate the sources of scientific information on biological functions of heavy metals (Fe, Zn, Mn, Cu, Ni, Co, Pb, Cd) and their negative effect on biota of fresh water bodies. Findings. A review of works of a variety of scientists showed that the majority of the studied heavy metals (Fe, Zn, Mn, Cum and Co) played an important role in vital functions of freshwater organisms. The significance of other studied heavy metals (Ni, Pb, and Cd) is probable or unknown. Besides bi...

  4. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    Science.gov (United States)

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2018-01-01

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  6. Bioremoval of heavy metals by bacterial biomass.

    Science.gov (United States)

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

  7. Heavy metal uptake of Geosiphon pyriforme

    Energy Technology Data Exchange (ETDEWEB)

    Scheloske, Stefan E-mail: stefan.scheloske@mpi-hd.mpg.de; Maetz, Mischa; Schuessler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  8. Heavy metals adsorption on blast furnace sludges; Adsorcion de metales pesados sobre lodos de horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Delgado, A.; Perez, C.; Lopez, F.A. [Centro Nacional de Investigaciones Metalurgicas. CENIM. Madrid (Spain)

    1998-10-01

    Most of industrial liquid effluents have high contents of heavy metals. The recovery of these metals is environmental and economically interesting. In this work we study the use of sludge, a by-product of the steel industry, as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Pb``2+, Zn``2+, Cd``2+, Cu``2+ and Cr``3+ on the sludge was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on sludge adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Freundlich and Langumuir and the thermodynamic values {Delta}G, {Delta}H and {Delta}S corresponding to each adsorption process were calculated. Blast furnace sludge was found to be an effective sorbent for Pb, Zn, Cd, Cu and Cr-ions within the range of ion concentrations employed. (Author) 5 refs.

  9. Heavy metals in the landscape components of the Kalmykia

    Directory of Open Access Journals (Sweden)

    L. Ch. Sangadzhieva

    2010-01-01

    Full Text Available The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Cd, Pb in the soil of nord-west part of Precaspian low-land and their subsequent distribution over the trophic chain: plant fodder - sheep are investiqаtеd. It was revealed that the highest biogenic accumulation is characteristic of Zn and Cu at all the levels of trophic chain. An increase in the transition coefficients for the most toxic elements Pb, Cd is observed, which is an evidence of their accumulation in the higher levels of trophic chain.

  10. Determination of heavy metals in soil and different parts of Diplazium esculentum (medicinal fern)

    Science.gov (United States)

    Jasim, Hind S.; Idris, Mushrifah; Abdullah, Aminah; Kadhum, A. A. H.

    2014-09-01

    Diplazium esculentum is a widely used medicinal fern in Malaysia and other regions worldwide. Heavy metals in plants should be determined because prolonged human intake of toxic trace elements, even at low doses, results in organ malfunction and causes chronic toxicity. Hence, substantial information should be obtained from plants that grow on soils containing high concentrations of heavy metals. This study aimed to determine the physicochemical characteristics of soil and heavy metal concentrations (Pb, Cr, Mn, Cu, and Zn) in different parts of D. esculentum and soil, which were collected from the fern garden of Universiti Kebangsaan Malaysia. Results showed that heavy metals were highly accumulated in D. esculentum roots.

  11. Effective ways of decrease in the maintenance of heavy metals in soils and vegetative production

    International Nuclear Information System (INIS)

    Komarova, N.A.; Komarov, V.I.; Grishina, A.V.; Akanova, N.I.

    2008-01-01

    Receptions detoxication of heavy metals and reception vegetative production adequating to sanitary-and-hygienic norms are developed and scientifically proved. Correlation dependence between pH, concentration of heavy metals in vegetative production and level of productivity of agricultural crops is established. The most essential factor reducing till 8-10 of time receipt in plants Cu, Cd, Zn and Pb, level of reaction of environment in soil is. Dynamics of migration of heavy metals from the soil polluted water-soluble form of heavy metals is investigated

  12. Toxic heavy metal contamination assessment and speciation in sugarcane soil

    Science.gov (United States)

    Wang, Xiaofei; Deng, Chaobing; Yin, Juan; Tang, Xiang

    2018-01-01

    The increasing heavy metal pollution in the sugarcane soils along the Great Huanjiang River was caused by leakage and spills of Lead (Pb) and Zinc (Zn) tailing dams during a flood event. Copper (Cu), Zn, Pb, Cadmium (Cd), and Arsenic (As) concentrations of soil samples collected from 16 different sites along the Great Huanjiang River coast typical pollution area were analyzed by Inductive Coupled Plasma Mass Spectrometry (ICP-MS). The mean concentrations of Pb, Cd, Zn, Cu, and As in the sugarcane soils were 151.57 mg/kg, 0.33 mg/kg, 155.52 mg/kg, 14.19 mg/kg, and 18.74 mg/kg, respectively. Results from the analysis of heavy metal speciation distribution showed that Cu, Zn, Pb, and Cd existed in weak acid, reducible, and oxidizable fractions, and the sum of these fractions accounted for significant proportions in sugarcane soils. However, the residual fraction of As with high proportion of reducible fraction indicated that this trace element still poses some environmental risk in the sugarcane soils because of its high content. Assessments of pollution levels revealed that the highest environmental risk was arouse by Pb. In addition, moderate to strong Cd and Zn pollution were found, while As has zero to medium level of pollution and Cu has zero level.

  13. Assessment of heavy metal contamination and sediment quality in the Cimadur river, Banten

    International Nuclear Information System (INIS)

    Rina Mulyaningsih; Siti Suprapti

    2015-01-01

    River sediment quality assessment can be done by the calculation of pollution index. The existence of gold mining activities in Cikotok suspected to have an impact on Cimadur river quality degradation. Calculations pollution index by heavy metal Hg, As, Cr, Co and Zn contained in river sediment Cimadur Cikotok Banten have been performed. Sediment sampling has conducted at 9 locations along the Cimadur River. Quantification of heavy metals in the samples was done by using the neutron activation analysis technique. The result of assessment based on enrichment factor showed that there has been an increase in concentration of heavy metals Hg, As, Cr, Co and Zn due to anthropogenic factors. Based on the value of index geo accumulation it was known that the sampling location has been polluted, predominantly by Hg and As. Heavy metals contained in the sediments provide ecological risk to the environment with following order: Cr < Zn < As < Hg. Based on the value of pollution load index (PLI), all locations were polluted by heavy metals Hg, As, Cr, Co and Zn. The sources of heavy metals could be from natural rocks or gold mining activities. Evaluation based on potential ecological risk index, showed that heavy metal pollution will give impact of ecological risk to the surrounding environment from low level to high, so it is necessary to do environmental monitoring and management appropriate for reducing the pollution in that location. (author)

  14. The Sensitivity to Aminoglycosides and Heavy Metals of Isolates of ...

    African Journals Online (AJOL)

    Eighty-two clinical isolates of Pseudomonas aeruginosa strains were tested for their sensitivity to aminoglycosides by an agar diffusion method and to heavy metals by a dilution technique on tri –buffered mineral salt agar containing 10 – 100mg/L CdCl2.H20, CoCl2.6H20, ZnCl2, AgNO3 and HgCl2. All the strains tested ...

  15. Heavy metal evaporation kinetics in thermal waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Ch; Stucki, S; Schuler, A J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    To investigate the evaporation kinetics of heavy metals, experiments were performed by conventional thermogravimetry and a new method using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The new method allows online measurements in time intervals that are typically below one minute. The evaporation of Cd, Cu, Pb, and Zn from synthetic mixtures and filter ashes from municipal solid waste incineration (MSWI) was of major interest. (author) 2 figs., 4 refs.

  16. Heavy Metals Bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida in the Sewage Sludge Vermicomposting

    Directory of Open Access Journals (Sweden)

    MR Shahmansouri, H Pourmoghadas, AR Parvaresh, H Alidadi

    2005-01-01

    Full Text Available Vermicomposting of organic waste has an important part to play in an integrated waste management strategy. In this study, the possibility of heavy metals accumulation with two groups of Iranian and Australian earthworms in sewage sludge vermicompost was investigated. Eisenia fetida was the species of earthworms used in the vermicomposting process. The bioaccumulation of Cr, Cd, Pb, Cu, and Zn as heavy metals by Iranian and Australian earthworms was studied. The results indicated that heavy metals concentration decreased with increasing vermicomposting time. Comparison of the two groups of earthworms showed that the Iranian earthworms consumed higher quantities of micronutrients such as Cu and Zn comparing with the Australian earthworms, while the bioaccumulation of non-essential elements such as Cr, Cd, and Pb by the Australian group was higher. The significant decrease in heavy metal concentrations in the final vermicompost indicated the capability of both Iranian and Australian E.fetida species in accumulating heavy metals in their body tissues.

  17. Spatial distribution and risk assessment of heavy metals in sediments of Shuangtaizi estuary, China

    International Nuclear Information System (INIS)

    Li, Chen; Song, Chengwen; Yin, Yanyan; Sun, Menghan; Tao, Ping; Shao, Mihua

    2015-01-01

    Highlights: • Five heavy metals are analyzed in the sediments from Shuangtaizi estuary. • Particle size of the sediment effects the concentration of heavy metals. • Pb, Cu, Zn and Hg pose low ecological risks in the Shuangtaizi estuary. • Heavy metal pollution in Shuangtaizi estuary is mainly dominated by Cd. - Abstract: In order to evaluate the spatial distribution and potential ecological risk of Pb, Cu, Zn, Cd, and Hg, the surface sediments were collected from 18 sites in the Shuangtaizi estuary. The concentrations of Pb, Cu, Zn, Cd, and Hg were analyzed by atomic absorption spectrophotometry and atomic fluorescence spectrometry after digestion. The particle sizes of the sediments were analyzed using a laser diffraction particle size analyzer. The results show that the heavy metal contents in the sediments are observed in the following order: Zn (18.25–126.75 mg/kg) > Pb (4.38–9.65 mg/kg) > Cu (1.80–17.68 mg/kg) > Cd (0.241–0.764 mg/kg) > Hg (0.007–0.021 mg/kg). In comparison with the concentrations of heavy metals in other regions, the concentrations of Pb, Cu, and Zn in the Shuangtaizi estuary are generally low, and the Cd concentrations are close to those reported in other regions. Both the potential ecological risk index and the geoaccumulation index reveal that the heavy metal pollution in Shuangtaizi estuary is mainly dominated by Cd

  18. Heavy metals in edible seaweeds commercialised for human consumption

    Science.gov (United States)

    Besada, Victoria; Andrade, José Manuel; Schultze, Fernando; González, Juan José

    2009-01-01

    Though seaweed consumption is growing steadily across Europe, relatively few studies have reported on the quantities of heavy metals they contain and/or their potential effects on the population's health. This study focuses on the first topic and analyses the concentrations of six typical heavy metals (Cd, Pb, Hg, Cu, Zn, total As and inorganic As) in 52 samples from 11 algae-based products commercialised in Spain for direct human consumption ( Gelidium spp.; Eisenia bicyclis; Himanthalia elongata; Hizikia fusiforme; Laminaria spp.; Ulva rigida; Chondrus crispus; Porphyra umbilicales and Undaria pinnatifida). Samples were ground, homogenised and quantified by atomic absorption spectrometry (Cu and Zn by flame AAS; Cd, Pb and total As by electrothermal AAS; total mercury by the cold vapour technique; and inorganic As by flame-hydride generation). Accuracy was assessed by participation in periodic QUASIMEME (Quality Assurance of Information in Marine Environmental Monitoring in Europe) and IAEA (International Atomic Energy Agency) intercalibration exercises. To detect any objective differences existing between the seaweeds' metal concentrations, univariate and multivariate studies (principal component analysis, cluster analysis and linear discriminant analysis) were performed. It is concluded that the Hizikia fusiforme samples contained the highest values of total and inorganic As and that most Cd concentrations exceeded the French Legislation. The two harvesting areas (Atlantic and Pacific oceans) were differentiated using both univariate studies (for Cu, total As, Hg and Zn) and a multivariate discriminant function (which includes Zn, Cu and Pb).

  19. Heavy metals in packaging : a literature survey

    NARCIS (Netherlands)

    van Putten EM; IMG

    2011-01-01

    The use of the heavy metals cadmium, mercury, chromium and lead in packaging is forbidden internationally for some years because these substances are harmful to the environment. In 2002 the Dutch national Inspectorate for the Environment determined the presence of heavy metals in packaging for

  20. Microbial treatment of heavy metal leachates

    International Nuclear Information System (INIS)

    Alvarez Aliaga, M. T.

    2009-01-01

    Ore-mining metallurgy and other industrial activities represent the source of heavy metal and radionuclide contamination in terrestrial and aquatic environments. Physico-chemical processes are employed for heavy metal removal from industrial wastewaters. However, limitations due to the cost-effectiveness and use of contaminating reagents make these processes not environmentally friendly. (Author)

  1. Concentración de metales pesados (Cu, Ni, Zn, Cd, Pb en la biota y sedimentos de una playa artificial, en la bahía San Jorge 23°S, norte de Chile Heavy metals concentration (Cu, Ni, Zn, Cd, Pb, in biota and sediments of an artificial beach, in San Jorge bay 23°S, northern Chile

    Directory of Open Access Journals (Sweden)

    Gabriel Castro

    2012-07-01

    Full Text Available Se evaluó el contenido de metales pesados (Cu, Ni, Zn, Cd, Pb en la biota y el sedimento de una playa artificial (Paraíso y una playa natural (El Lenguado, ubicadas en la bahía San Jorge, norte de Chile. Los resultados fueron utilizados para comparar ambos sistemas, el grado de cumplimiento de la normativa ambiental nacional e internacional, y el efecto de la construcción de la playa artificial sobre el nivel de contaminación por metales existentes históricamente en esa zona. En cada playa se ubicaron estaciones equidistantes que abarcaron desde el intermareal hasta el submareal de las cuales fueron extraídos los organismos. Se tomaron muestras de sedimento en cada playa y se determinaron las pendientes con el método de Emery. El análisis granulométrico evidenció el predominio de arena media en playa El Lenguado, y arena media y fina en playa Paraíso. El contenido de materia orgánica fue mayor en El Lenguado. En playa Paraíso se determinaron cinco phylum/superclase agrupados en 19 taxa, mientras que en El Lenguado se encontraron cuatro phylum/superclase agrupados en cc taxa. El contenido de metales en sedimentos y en la mayoría de organismos presentó valores mayores en playa Paraíso. Estos resultados, junto a las normas de calidad chilenas y norteamericanas, sugieren un evidente deterioro en la calidad ambiental de playa Paraíso lo que se demostró por un incremento en las concentraciones de estos metales desde su construcción, los que sobrepasan los límites establecidos por ambas normas.It was evaluated the heavy metal content (Cu, Ni, Zn, Cd, Pb in biota and sediment of an artificial beach (Paraíso and a natural beach (El Lenguado, both located in San Jorge bay, northern Chile. The results were used to compare both systems, the degree of fulfillment of national and international environmental regulations, and the effect of the construction of the artificial beach on the level of metal contamination historically existing in

  2. Characterization of landfill leachates and studies on heavy metal removal.

    Science.gov (United States)

    Ceçen, F; Gürsoy, G

    2000-10-01

    This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.

  3. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  4. Heavy metals pollution influence the community structure of Cyanobacteria in nutrient rich tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jasmin, C.; Sheeba V.A.; Gireeshkumar, T.R; Nair, S.

    , Mn, Fe, Ni, Cu and Zn) on community structure of cyanobacteria in a nutrient rich tropical estuary, Cochin Estuary (CE), across the southwest coast of India. Dissolved heavy metals were higher in CE during dry season, with Zn as major pollutant...

  5. The role of dissolved organic matter in adsorbing heavy metals in clay-rich soils

    NARCIS (Netherlands)

    Refaey, Y.; Jansen, B.; El-Shater, A.H.; El-Haddad, A.A.; Kalbitz, K.

    2014-01-01

    Adsorption of tested heavy metals on Egyptian soils was large in all situations tested and follows the order: Cu >> Ni ≈ Zn. Copper was influenced by the timing of dissolved organic matter addition more than Ni and Zn. Specific binding mechanisms (inner-sphere complexes) dominated the affinity of Cu

  6. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  7. Competitive adsorption of heavy metals in soil underlying an infiltration facility installed in an urban area.

    Science.gov (United States)

    Hossain, M A; Furumai, H; Nakajima, F

    2009-01-01

    Accumulation of heavy metals at elevated concentration and potential of considerable amount of the accumulated heavy metals to reach the soil system was observed from earlier studies in soakaways sediments within an infiltration facility in Tokyo, Japan. In order to understand the competitive adsorption behaviour of heavy metals Zn, Ni and Cu in soil, competitive batch adsorption experiments were carried out using single metal and binary metal combinations on soil samples representative of underlying soil and surface soil at the site. Speciation analysis of the adsorbed metals was carried out through BCR sequential extraction method. Among the metals, Cu was not affected by competition while Zn and Ni were affected by competition of coexisting metals. The parameters of fitted 'Freundlich' and 'Langmuir' isotherms indicated more intense competition in underlying soil compared to surface soil for adsorption of Zn and Ni. The speciation of adsorbed metals revealed less selectivity of Zn and Ni to soil organic matter, while dominance of organic bound fraction was observed for Cu, especially in organic rich surface soil. Compared to underlying soil, the surface soil is expected to provide greater adsorption to heavy metals as well as provide greater stability to adsorbed metals, especially for Cu.

  8. Heavy Metal Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/heavymetalbloodtest.html Heavy Metal Blood Test To use the sharing features ... this page, please enable JavaScript. What is a Heavy Metal Blood Test? A heavy metal blood test ...

  9. Electrodialytic removal of heavy metals from MSWI fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, A.J.; Ottosen, L.M.; Villumsen, A. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark)

    2001-07-01

    In this work a method called electrodialytic remediation, which is a combination of electrokinetic remediation and electrodialysis, is used for the extraction of heavy metals from MSWI fly ashes. It is shown that the use of electric current enhances the metal desorption significantly compared to traditional, chemical extraction. The metals of concern are Cd, Pb, Zn, Cu and Cr. Addition of ammonium citrate to the ash before and during remediation enhances the desorption and removal rate of all the examined heavy metals (Cd, Pb, Zn, Cu and Cr) compared to experiments only added distilled water. By introducing continuous stirring of the ash slurry during electrodialytic remediation, it is shown that the remediation rate is improved significantly compared to 'traditional' electrodialytic remediation experiments. The development of the acidic front is avoided due to better pH-control, and a better contact between the ash particles and the liquid is achieved. Up to 62% of the initial Cd, 8.3% Pb, 73% Zn, 59% Cu, and 20% Cr has been removed from two different fly ashes in electrodialytic remediation experiments. (orig.)

  10. Heavy metals detoxification in soil performed by sulfate - reducing bacteria

    International Nuclear Information System (INIS)

    Pado, R.; Pawlowska-Cwiek, L.; Szwagrzyk, J.

    1994-01-01

    The process of sulfate reduction carried out by mixed bacteria cultures in the presence of heavy cations (Fe 2+ , Pb 2+ , Cd 2+ , Zn 2+ , Cu 2+ ) was investigated. The range of harmful metals concentrations responded to the acceptable levels in soil and their multiplications (10-100 times) in contaminated soil. The results show the possibility of detoxicating these metals, especially lead. In the highest lead concentrations (3950 and 7500 ppm), only after one month of activities conducted by bacteria dissimilating hydrogen sulfide, between about 73 and 81 per cent of lead was converted into practically insoluble PbS. It was found that detoxication process with the presence of bacteria from this group prolonged with the increase of metal concentration (Zn 2+ and Cd 2+ in particular. (author). 30 refs, 5 figs, 3 tabs

  11. Estimation of some heavy metals in polluted well water and mercury accumulation in broiler organs

    OpenAIRE

    Hussein, Hussein Khamis; Abu-Zinadah, Osama Abdullah; EL-Rabey, Haddad Abdulsameih; Meerasahib, Mohammed Fareez

    2013-01-01

    The aim of this study was to investigate the relationship between the concentrations of heavy metals in well water and bioaccumulation of the most abundant metals in chicken tissues in some areas in the province of Mecca Almokaramah, Saudi Arabia. Among the heavy metals (Cd, Zn, Cr, Mn, Cu Hg, Pb and Ni) studied, mercury (Hg) revealed highest in concentration in well waters. The concentration of mercury in the ground water, beside in liver, kidney, muscle and blood samples of ten chickens fro...

  12. Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines

    Science.gov (United States)

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok

    2009-01-01

    Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231

  13. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    Science.gov (United States)

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Determination of heavy metal pollutants such as Hg, Zn, Se, Cd, and Cu in aquatic environment of Thana Creek by radiochemical thermal neutron activation analysis

    International Nuclear Information System (INIS)

    khan, S.Z.; Shah, P.K.; Ramani Rao, V.; Turel, Z.r.; Haldar, B.C.

    1984-01-01

    A rapid method has been developed for the radiochemical separation of Cu, As, Se, Hg, and Zn from thermal neutron irradiated environmental samples. The concentration of the elements in the environmental samples has been ascertained by radiochemical neutron activation analysis. The accuracy, precision and sensitivity of the method has been determined. The results of the analysis indicates the location of maximum pollution of the aquatic environment and the extent of pollution in the 5 locations of Thana Creek. 1 reference, 3 tables

  15. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    Science.gov (United States)

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Heavy metals phytoremediation potential of Hevea brasiliensis in Bentong, Malaysia

    Science.gov (United States)

    Yusof, Muhammad Jefri Mohd; Latif, Mohd Talip; Yusoff, Siti Fairus Mohd

    2018-04-01

    Biomonitoring uses living organisms to assess environmental quality and being preferred over conventional methods that use fully or semi-automatic gauges for its lower cost and practicality. Recently, higher plants are widely used for biomonitoring purposes by means of their species identification simplicity, larger availability of biological substantial, and easy to sample. In this study, samples of Hevea brasiliensis (i.e leaves, barks, and latex as well as surrounding soils) from outskirts of Pelangai, Bentong were tested for heavy metals by using inductively coupled plasma optical emission spectroscopy (ICP-OES). Enrichment factor of soils indicated that some metals (B, Ca, Cu, Mn, Pb, Zn, As and Na) were anthropogenic which most likely originated from traffic emissions. In addition, leaves trapped the most heavy metals compared to barks and latex. The accumulation of pollutants in those samples has identified biomonitoring abilities of Hevea brasiliensis.

  18. Trends and sources for heavy metals in urban atmosphere

    International Nuclear Information System (INIS)

    Kemp, Kaare

    2002-01-01

    The concentrations of a number of heavy metals in the air in three Danish cities have been measured by means of PIXE for more than two decades. The well-known capability of PIXE for fast and efficient analysis of aerosol samples has been employed for analysis of daily samples from several sites during the whole period. The main sources are traffic, domestic heating and long-range transport. Source apportionment and trends for single metals are assessed by means of simple statistical methods. The most striking change has occurred for the Pb concentration, which is reduced by almost a factor of 100 following the reduction of the Pb content in petrol. The main source of Cu, Cr and Zn is the traffic. The concentrations of these elements have been slightly increasing. The concentrations for most of the other heavy metals, which originate mainly from sources outside the cities, have been decreasing

  19. Trends and sources for heavy metals in urban atmosphere

    Science.gov (United States)

    Kemp, Kåre

    2002-04-01

    The concentrations of a number of heavy metals in the air in three Danish cities have been measured by means of PIXE for more than two decades. The well-known capability of PIXE for fast and efficient analysis of aerosol samples has been employed for analysis of daily samples from several sites during the whole period. The main sources are traffic, domestic heating and long-range transport. Source apportionment and trends for single metals are assessed by means of simple statistical methods. The most striking change has occurred for the Pb concentration, which is reduced by almost a factor of 100 following the reduction of the Pb content in petrol. The main source of Cu, Cr and Zn is the traffic. The concentrations of these elements have been slightly increasing. The concentrations for most of the other heavy metals, which originate mainly from sources outside the cities, have been decreasing.

  20. A novel method for the sequential removal and separation of multiple heavy metals from wastewater.

    Science.gov (United States)

    Fang, Li; Li, Liang; Qu, Zan; Xu, Haomiao; Xu, Jianfang; Yan, Naiqiang

    2018-01-15

    A novel method was developed and applied for the treatment of simulated wastewater containing multiple heavy metals. A sorbent of ZnS nanocrystals (NCs) was synthesized and showed extraordinary performance for the removal of Hg 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The removal efficiencies of Hg 2+ , Cu 2+ , Pb 2+ and Cd 2+ were 99.9%, 99.9%, 90.8% and 66.3%, respectively. Meanwhile, it was determined that solubility product (K sp ) of heavy metal sulfides was closely related to adsorption selectivity of various heavy metals on the sorbent. The removal efficiency of Hg 2+ was higher than that of Cd 2+ , while the K sp of HgS was lower than that of CdS. It indicated that preferential adsorption of heavy metals occurred when the K sp of the heavy metal sulfide was lower. In addition, the differences in the K sp of heavy metal sulfides allowed for the exchange of heavy metals, indicating the potential application for the sequential removal and separation of heavy metals from wastewater. According to the cumulative adsorption experimental results, multiple heavy metals were sequentially adsorbed and separated from the simulated wastewater in the order of the K sp of their sulfides. This method holds the promise of sequentially removing and separating multiple heavy metals from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Microplastics as vector for heavy metal contamination from the marine environment

    Science.gov (United States)

    Brennecke, Dennis; Duarte, Bernardo; Paiva, Filipa; Caçador, Isabel; Canning-Clode, João

    2016-09-01

    The permanent presence of microplastics in the marine environment is considered a global threat to several marine animals. Heavy metals and microplastics are typically included in two different classes of pollutants but the interaction between these two stressors is poorly understood. During 14 days of experimental manipulation, we examined the adsorption of two heavy metals, copper (Cu) and zinc (Zn), leached from an antifouling paint to virgin polystyrene (PS) beads and aged polyvinyl chloride (PVC) fragments in seawater. We demonstrated that heavy metals were released from the antifouling paint to the water and both microplastic types adsorbed the two heavy metals. This adsorption kinetics was described using partition coefficients and mathematical models. Partition coefficients between pellets and water ranged between 650 and 850 for Cu on PS and PVC, respectively. The adsorption of Cu was significantly greater in PVC fragments than in PS, probably due to higher surface area and polarity of PVC. Concentrations of Cu and Zn increased significantly on PVC and PS over the course of the experiment with the exception of Zn on PS. As a result, we show a significant interaction between these types of microplastics and heavy metals, which can have implications for marine life and the environment. These results strongly support recent findings where plastics can play a key role as vectors for heavy metal ions in the marine system. Finally, our findings highlight the importance of monitoring marine litter and heavy metals, mainly associated with antifouling paints, particularly in the framework of the Marine Strategy Framework Directive (MSFD).

  2. Size distribution, characteristics and sources of heavy metals in haze episode in Beijing.

    Science.gov (United States)

    Duan, Jingchun; Tan, Jihua; Hao, Jiming; Chai, Fahe

    2014-01-01

    Size segragated samples were collected during high polluted winter haze days in 2006 in Beijing, China. Twenty nine elements and 9 water soluble ions were determined. Heavy metals of Zn, Pb, Mn, Cu, As, Cr, Ni, V and Cd were deeply studied considering their toxic effect on human being. Among these heavy metals, the levels of Mn, As and Cd exceeded the reference values of National Ambient Air Quality Standard (GB3095-2012) and guidelines of World Health Organization. By estimation, high percentage of atmospheric heavy metals in PM2.5 indicates it is an effective way to control atmospheric heavy metals by PM2.5 controlling. Pb, Cd, and Zn show mostly in accumulation mode, V, Mn and Cu exist mostly in both coarse and accumulation modes, and Ni and Cr exist in all of the three modes. Considering the health effect, the breakthrough rates of atmospheric heavy metals into pulmonary alveoli are: Pb (62.1%) > As (58.1%) > Cd (57.9%) > Zn (57.7%) > Cu (55.8%) > Ni (53.5%) > Cr (52.2%) > Mn (49.2%) > V (43.5%). Positive matrix factorization method was applied for source apportionment of studied heavy metals combined with some marker elements and ions such as K, As, SO4(2-) etc., and four factors (dust, vehicle, aged and transportation, unknown) are identified and the size distribution contribution of them to atmospheric heavy metals are discussed.

  3. Heavy metal stabilization in contaminated road-derived sediments.

    Science.gov (United States)

    Rijkenberg, Micha J A; Depree, Craig V

    2010-02-01

    There is increasing interest in the stabilization of heavy metals in road-derived sediments (RDS), to enable environmentally responsible reuse applications and circumvent the need for costly landfill disposal. To reduce the mobility of heavy metals (i.e. Cu, Pb and Zn) the effectiveness of amendments using phosphate, compost and fly ash addition were investigated using batch leaching experiments. In general, phosphate amendments of RDS were found to be ineffective at stabilizing heavy metals, despite being used successfully in soils. Phosphate amendment resulted in enhanced concentrations of dissolved organic carbon (DOC), which increased the solubilisation of heavy metals via complexation. Amendment with humified organic matter (compost) successfully stabilized Cu and Pb in high DOC leaching RDS with an optimum loading of 15-20% (w/w). Compost, however, was ineffective at stabilizing Zn. Increasing the pH by amending RDS/compost blends with 2.5-15% (w/w) coal fly ash resulted in the stabilization of Zn, Cu and Pb. However, above a pH of approximately 7.5 and 8 enhanced leaching of organic matter resulted in an increase in leached Cu and Pb, respectively. Accordingly, the optimum level of fly ash amendment for the RDS/compost blends was estimated to be ca. 10%. Boosted regression trees analysis (BRT) of the data revealed that DOC accounted for 56% and 65% of the Cu and Pb leaching, respectively, whereas pH only accounted for ca. 18% of Cu and Pb leaching. RDS sample characteristics (i.e. metal concentrations, size fractionation and organic matter content) were more important at reconciling the leaching concentrations of copper Cu (27%) than Pb (16%). The most important parameter explaining Zn leaching was pH. Overall, the choice of a suitable stabilization agent/s depends on the composition of RDS with respect to the amount of organic matter present, and the sorption chemistry of the heavy metal of interest. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Health risks associated with heavy metals in the drinking water of Swat, northern Pakistan.

    Science.gov (United States)

    Lu, Yonglong; Khan, Hizbullah; Zakir, Shahida; Ihsanullah; Khan, Sardar; Khan, Akbar Ali; Wei, Luo; Wang, Tieyu

    2013-10-01

    The concentrations of heavy metals such as Cd, Cr, Cu, Mn, Ni, Pb and Zn were investigated in drinking water sources (surface and groundwater) collected from Swat valley, Khyber Pakhtunkhwa, Pakistan. The potential health risks of heavy metals to the local population and their possible source apportionment were also studied. Heavy metal concentrations were analysed using atomic absorption spectrometer and compared with permissible limits set by Pakistan Environmental Protection Agency and World Health Organization. The concentrations of Cd, Cr, Ni and Pb were higher than their respective permissible limits, while Cu, Mn and Zn concentrations were observed within their respective limits. Health risk indicators such as chronic daily intake (CDI) and health risk index (HRI) were calculated for adults and children separately. CDIs and HRIs of heavy metals were found in the order of Cr > Mn > Ni > Zn > Cd > Cu > Pb and Cd > Ni > Mn > Cr > Cu > Pb > Zn, respectively. HRIs of selected heavy metals in the drinking water were less than 1, indicating no health risk to the local people. Multivariate and univariate statistical analyses showed that geologic and anthropogenic activities were the possible sources of water contamination with heavy metals in the study area.

  5. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    Science.gov (United States)

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd Zn < Pb < Cr < Cu < As < Hg Zn in corn grains were 0.054, 6.65 × 10 -4 , 7.94 × 10 -4 , 0.0044, 0.028, 0.13, and 0.19, respectively. The corresponding BCFs values for wheat grains were 0.25, 0.0045, 5.42 × 10 -4 , 0.009, 4.03 × 10 -4 , 0.11, and 0.054, respectively.

  6. Analysis Of Non-Volatile Toxic Heavy Metals (Cd, Pb, Cu,Cr And Zn) In ALLIUM SATIVUM (Garlic) And Soil Samples ,Collected From Different Locations Of Punjab, Pakistan By Atomic Absorption Spectroscopy

    OpenAIRE

    Ata S.; Tayyab S.; Rasool A.

    2013-01-01

    Garlic is one of the most widely used medicinal plants. The monitoring of toxic metals such as lead, Cadmium, Chromium, Copper and Zinc in garlic and the soil of garlic fields collected from ten different cities of Punjab is critical for preventing public health against the hazards of metal toxicity. The levels of toxic heavy metals in garlic and soil samples were investigated using Atomic absorption spectrometer. The metal content in garlic samples was found to be in increasing order as Cr> ...

  7. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  8. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  9. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India

    Directory of Open Access Journals (Sweden)

    Richa Bhardwaj

    2017-04-01

    Full Text Available The objective of the present study is to investigate the current status of heavy metal pollution in River Yamuna, Delhi stretch. The concentrations of Nickel, Cadmium, Chromium, Copper, Iron, Lead, and Zinc in water samples have been studied during December 2013–August 2015. The overall mean concentration of heavy metals was observed in the following order Fe > Cu > Zn > Ni > Cr > Pb > Cd. Correlation analysis formed two distinct groups of heavy metals highlighting similar sources. This was further corroborated by results from principal components analysis that showed similar grouping of heavy metals (Ni, Zn, Fe, Pb, Cd into PC1 having one common source for these heavy metals and PC2 (Cu, Cr having another common source. Further, our study pointed out two sites i.e. Najafgarh drain and Shahdara drain outlet in river Yamuna as the two potential sources responsible for the heavy metal contamination. Based on heavy metal pollution index value (1491.15, we concluded that our study area as a whole is critically polluted with heavy metals under study due to pollutant load from various anthropogenic activities.

  10. Bio-geochemical studies of indus delta mangrove ecosystem through heavy metal assessment

    International Nuclear Information System (INIS)

    Ismail, S.; Saifullah, S.M.

    2014-01-01

    In the present study monitoring of heavy metal pollution was done in the mangrove habitats of Indus Delta. Different levels of four heavy metal (Pb, Cu, Cd, and Zn) in abiotic component (sediments and water) and biotic components (mangrove plants parts like, (Pneumatophores, bark, leaves, flowers, and fruits) were determined. The highest average concentration of heavy metals (111 ppm Zn, 60.0 ppm Pb, 52.2 ppm Cu, 1.43 ppm Cd) were measured in sediments and the lowest in the water (0.13 ppm Zn, 0.0014 ppm Cu, 0.0007 ppm Pb , 0.00061 ppm Cd). Among the four heavy metals, Zn was the most abundant metal in all components of the ecosystem, followed by Cu, Pb, and Cd (Zn>Cu>Pb>Cd), and hence A. marina can be proposed as a hyper-accumulator for Zn, which opens doors for further research. The pollution load index (PLI) had values higher than 1 and varied between 2.02-1.70 at Indus Delta, whereas at MianiHor the PLI was 0.65, which indicated that Indus Delta mangrove Ecosystem was under threat of pollution under the present scenario. (author)

  11. A Study on Characteristics of Atmospheric Heavy Metals in Subway Station

    Science.gov (United States)

    Kim, Chun-Huem; Yoo, Dong-Chul; Kwon, Young-Min; Han, Woong-Soo; Kim, Gi-Sun; Park, Mi-Jung; Kim, Young Soon

    2010-01-01

    In this study, we investigated the atmospheric heavy metal concentrations in the particulate matter inside the subway stations of Seoul. In particular, we examined the correlation between the heavy metals and studied the effect of the heavy metals on cell proliferation. In six selected subway stations in Seoul, particulate matter was captured at the platforms and 11 types of heavy metals were analyzed. The results showed that the mean concentration of iron was the highest out of the heavy metals in particulate matter, followed by copper, potassium, calcium, zinc, nickel, sodium, manganese, magnesium, chromium and cadmium in that order. The correlation analysis showed that the correlations between the heavy metals was highest in the following order: (Cu vs Zn) , (Ca vs Na) , (Ca vs Mn) , (Ni vs Cr) , (Na vs Mn) , (Cr vs Cd) , (Zn vs Cd) , (Cu vs Cd) , (Ni vs Cd) , (Cu vs Ni) , (K vs Zn) , (Cu vs K) , (Cu vs Cr) , (K vs Cd) , (Zn vs Cr) , (K vs Ni) , (Zn vs Ni) , (K vs Cr) , and (Fe vs Cu) . The correlation coefficient between zinc and copper was 0.937, indicating the highest correlation. Copper, zinc, nickel, chromium and cadmium, which are generated from artificial sources in general, showed correlations with many of the other metals and the correlation coefficients were also relatively high. The effect of the heavy metals on cell proliferation was also investigated in this study. Cultured cell was exposed to 10 mg/l or 100 mg/l of iron, copper, calcium, zinc, nickel, manganese, magnesium, chromium and cadmium for 24 hours. The cell proliferation in all the heavy metal-treated groups was not inhibited at 10 mg/l of the heavy metal concentration. The only exception to this was with the cadmium-treated group which showed a strong cell proliferation inhibition. This study provides the fundamental data for the understanding of simultaneous heavy metal exposure tendency at the time of particulate matter exposure in subway stations and the identification of heavy metal

  12. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  13. Elimination of heavy metals from leachates by membrane electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R. [Technische Universitaet Dresden, Institut fuer Siedlungs- und Industriewasserwirtschaft, Mommsenstrasse 13, 01062 Dresden (Germany); Seidel, H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Bioremediation, Permoserstrasse 15, D-04318 Leipzig (Germany); Rahner, D. [Technische Universitaet Dresden, Institut fuer Physikalische Chemie und Eektrochemie, Mommsenstrasse 13, D-01062 Dresden (Germany); Morgenstern, P. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Analytik, Permoserstrasse 15, D-04318 Leipzig (Germany); Loeser, C. [Technische Universitaet Dresden, Institut fuer Lebensmittel- und Bioverfahrenstechnik, Bergstrasse 120, D-01062 Dresden (Germany)

    2004-10-01

    The elimination of heavy metals from bioleaching process waters (leachates) by electrolysis was studied in the anode and cathode region of a membrane electrolysis cell at current densities of 5-20 mA/cm{sup 2} using various electrode materials. The leaching waters containing a wide range of dissolved heavy metals, were high in sulfate, and had pH values of approx. 3. In preliminary tests using a rotating disc electrode the current density-potential curve (CPK) was recorded at a rotation velocity of 0, 1000 and 2000 rpm and a scan rate of 10 mV/s in order to collect information on the influence of transport processes on the electrochemical processes taking place at the electrodes. The electrochemical deposition-dissolution processes at the cathode are strongly dependent on the hydrodynamics. Detailed examination of the anodic oxidation of dissolved Mn(II) indicated that the manganese dioxide which formed adhered well to the electrode surface but in the cathodic return run it was again reduced. Electrode pairs of high-grade steel, lead and coal as well as material combinations were used to investigate heavy metal elimination in a membrane electrolysis cell. Using high-grade steel, lead and carbon electrode pairs, the reduction and deposition of Cu, Zn, Cr, Ni and some Cd in metallic or hydroxide form were observed in an order of 10-40 % in the cathode chamber. The dominant process in the anode chamber was the precipitation of manganese dioxide owing to the oxidation of dissolved Mn(II). Large amounts of heavy metals were co-precipitated by adsorption onto the insoluble MnO{sub 2}. High-grade steel and to some extent lead anodes were dissolved and hence were proven unsuitable as an anode material. These findings were largely confirmed by experiments using combination electrodes of coal and platinized titanium as an anode material and steel as a cathode material.The results indicate that electrochemical metal separation in the membrane electrolysis cell can represent a

  14. Heavy Metals in Agricultural Soils in Nigeria: A Review

    Directory of Open Access Journals (Sweden)

    J. J. Musa

    2017-10-01

    Full Text Available This review paper presents the health risks of heavy metals such as: lead (Pb, chromium (Cr, zinc (Zn, cadmium (Cd, copper (Cu, mercury (Hg, nickel (Ni and arsenic (As etc contamination in soils. The review reveals the major sources of these metals which are urban and industrial effluents, deterioration of sewage pipe, treatment water works, sewage sludge, fertilizers and pesticides. It also reveals the adopted standard for drinking water (maximum tolerable limit by FAO, JECFA and WHO which are as follows: 0.05mg/L, 0.05mg/L, 1.5mg/L, 0.001mg/L, 0.02mg/L, 15mg/L, 0.3mg/L, 0.5mg/L, 0.01mg/L, 0.05mg/L and 0.05mg/L for Pb, Cr, Cu, Hg, Ni, Zn, Fe, Mn, Se, As and Cd respectively. The accumulation of heavy metals in agricultural soils is of increasing concern because of food safety issues, potential health risks such as neurological disorder, cancer, kidney damage, fragile bone etc and their detrimental effects on soil ecosystem. However, the regular monitoring of levels of these metals from dump sites, effluents and sewages in soil and drinking water is essential to prevent excessive buildup of these metals thereby increasing toxicity and elevating the public health risk.

  15. HEAVY METALS IN SURFACE MUD SEDIMENT IN EKATERINBURG (RUSSIA

    Directory of Open Access Journals (Sweden)

    A. A. Seleznev

    2018-03-01

    Full Text Available Problem Statement. Now the most part of the world’s population lives in cities, thus, it is relevant the search for universal, low-cost and express methods for environmental geochemical investigations of an urban environment. The objective of the study is the assessment of content and properties of surface mud sediment at the urban territory (on the example of Ekaterinburg, Russia. Methods of the study. The 30 samples of surface mud sediment, soils and ground were collected in the residential area of the city. Particle size composition, measurements of heavy metals content, correlation analysis was conducted for the samples. Results. Surface mud sediment at the residential territories can be classified as surface facie of the recent anthropogenic sediment. Samples of the environmental compartments were collected at the territories of six blocks of houses of various years of construction, located in various parts of the city and at the various geological units. Five samples were collected in each block: 3 samples within the block and 2 samples – outside. The content of Pb, Zn, Cu, Ni, Co, and Mn was measured in particle size fractions of the samples. Particle size composition of the surface mud sediment in Ekaterinburg is similar to the particle size composition of the grounds formed on the sediments of Holocene age in Urals region. The positive statistically significant correlation was found between the couples of metals: Zn and Pb, Zn and Cu, Co and Ni. The distribution of concentrations of Pb, Zn and Cu over particle size fractions of surface mud sediment is heterogeneous. Pollution of the ground and soil in urban areas is due to the transition of heavy metals with particles of dust and fine sand. Typical geochemical association of metals for particle size fraction of surface mud sediment 0.002–0.01 mm – Mn-Zn-Ni-Cu-Pb-Co, that is similar to the association for sediments of surface puddles in local zones of relief, soils and bottom

  16. Phytoremediation of heavy metals: Recent techniques | Jadia ...

    African Journals Online (AJOL)

    microorganisms/biomass or live plants to clean polluted areas. Phytoremediation is an emerging technology for cleaning up contaminated sites, which is ... A brief review on phytoremediation of heavy metals and its effect on plants have been ...

  17. Atmospheric Heavy Metal Pollution - Development of Chronological ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  18. Spectrophotometric Determination Of Heavy Metals In Cosmetics

    African Journals Online (AJOL)

    ISSN 1597-6343. Spectrophotometric Determination Of Heavy Metals In Cosmetics ... analysed using atomic absorption spectrophotometer – coupled with a hydride ... presence of arsenic (As), mercury (Hg), cadmium (Cd) and lead. (Pb) in ...

  19. Heavy metal leaching from mine tailings as affected by plants

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Schwab, A.P.; Banks, M.K.

    1999-12-01

    A column experiment was conducted to determine the impact of soil cover and plants on heavy metal leaching from mine tailings and heavy metal contaminated soil. Columns made of PVC were constructed with 30 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm of clean topsoil. Two grasses, tall fescue (Festuca arundinacea Schreb.) and big bluestem (Andropogon gerardii), were grown in the columns. The columns were leached at a slow rate for 1 yr with a 0.001 M CaCl{sub 2} solution under unsaturated conditions. The presence of both tall fescue and big bluestem increased Zn and Cd concentrations in the leachate. Lead concentrations in leachates were not affected by the presence of plants. Although plants generally reduced the total amount of water leached, total mass of Zn and Cd leached generally was not impacted by plants. Total mass of Pb leached was positively correlated with total leachate collected from each column. Covering the mine tailings with 60 cm of topsoil increased the mass of Zn and Cd leached relative to no topsoil. When the subsoil was absent, Zn and Cd leaching increased by as much as 20-fold, verifying the ability of soil to act as a sink for metals. Mine tailing remediation by establishing vegetation can reduce Pb movement but may enhance short-term Cd and Zn leaching. However, the changes were relatively small and do not outweigh the benefits of using vegetation in mine tailings reclamation.

  20. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors.

    Science.gov (United States)

    Wang, Meie; Zhang, Haizhen

    2018-05-24

    Heavy metal contamination in roadside soil due to traffic emission has been recognized for a long time. However, seldom has been reported regarding identification of critical factors influencing the accumulation of heavy metals in urban roadside soils due to the frequent disturbances such as the repair of damaged roads and green belt maintanance. Heavy metals in the roadside soils of 45 roads in Xihu district, Hangzhou city were investigated. Results suggested the accumulation of Cu, Pb, Cd, Cr, and Zn in roadside soil was affected by human activity. However, only two sites had Pb and Zn excessing the standards for residential areas, respectively, according to Chinese Environmental Quality Standards for soils. The concentrations of Cu, Pb, Cd, and Zn were significantly and positively correlated to soil pH and organic matter. An insignificant correlation between the age of the roads or vegetation cover types and the concentration of heavy metals was found although they were reported closely relating to the accumulation of heavy metals in roadside soils of highways. The highest Pb, Cd, and Cr taking place in sites with heavy traffic and significant differences in the concentrations of Cu, Pb, Cd, and Zn among the different categories of roads suggested the contribution of traffic intensity. However, it was difficult to establish a quantitative relationship between traffic intensity and the concentrations of heavy metals in the roadside soil. It could be concluded that impaction of traffic emission on the accumulation of heavy metals in roadside soils in urban area was slight and soil properties such as pH and organic matters were critical factors influencing the retention of heavy metals in soils.

  1. EVALUATION OF LANDFILL POLLUTION WITH SPECIAL EMPHASIS ON HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Magdalena Vaverková

    2014-04-01

    Full Text Available Monitoring leachate, groundwater and surface water aiming to determinate the concentration of heavy metals (Hg, Zn, Ni, Cr6+,Cd, Pb at the municipal solid waste landfill Štěpánovice took place in the years 2002–2010. The values of heavy metals concentration oscillated as follows: Zn (0.05 – 0.37 μg/dm3, Cr+6 (0.01 – 3.3 μg/dm3, Hg (0.0001 – 0.001 (μg/dm3, Ni (0.001 – 0.19 μg/dm3, Cd (0.001 – 0.007 μg/dm3 and Pb (0.002 – 0.176 μg/dm3. The measured data show that the concentrations of heavy metals met the limits provided by law. Under the current landfill operation mode, the results of measurements do not indicate any negative impact on the quality of surface water, groundwater or leachate water.

  2. Investigation of heavy metals release from sediment with bioturbation/bioirrigation.

    Science.gov (United States)

    He, Yi; Men, Bin; Yang, Xiaofang; Li, Yaxuan; Xu, Hui; Wang, Dongsheng

    2017-10-01

    Bioturbation/bioirrigation can affect the remobilization of metals from sediments. In this study, experiments were performed to examine the effect of bioturbation/bioirrigation by different organisms on cadmium (Cd), copper (Cu), zinc (Zn) and lead (Pb) releasing from the spiked sediment. The diffusive gradient in thin films technique (DGT) revealed that at the end of exposure time, the labile heavy metals concentrations in the pore water for all metal and organisms combinations except Cu and chironomid larvae were much lower than that in the control group. However, the concentrations of heavy metals detected by the DGT were virtually indistinguishable among the treatments with tubificid, chironomid larvae and loach. The correlation analysis of heavy metals with iron (Fe) and manganese (Mn) suggested that Cd, Zn and Pb were most likely bound as Fe-Mn oxidation form in the pore water, but Cu was in other forms. After 28 d of exposure, bioturbation/bioirrigation produced a significant release of particulate heavy metals into the overlying water, especially in the treatment with loach. The bioturbation/bioirrigation impact on the Pb remobilization was less than the other three heavy metals. The effects of bioturbaiton/bioirrigation on the heavy metals remobilization in the sediment were complex that with studying the heavy metals remobilization in the sediment and water interface, the biological indicators should be recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Heavy metal removal and recovery using microorganisms

    International Nuclear Information System (INIS)

    Wilde, E.W.; Benemann, J.R.

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  4. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  5. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Salati, S.; Quadri, G.; Tambone, F. [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Adani, F., E-mail: fabrizio.adani@unimi.i [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2010-05-15

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  6. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    International Nuclear Information System (INIS)

    Salati, S.; Quadri, G.; Tambone, F.; Adani, F.

    2010-01-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  7. Comparison of heavy metals and uranium removal using adsorbent in soil

    Science.gov (United States)

    Choi, Jaeyoung; Yun, Hunsik

    2017-04-01

    This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.

  8. Heavy metals anthropogenic pollutants in Austria

    International Nuclear Information System (INIS)

    Anderl, M.; Gager, M.; Gugele, B.; Huttunen, K.; Kurzweil, A.; Poupa, S.; Ritter, M.; Wappel, D.; Wieser, M.

    2004-01-01

    Several heavy metals from anthropogenic sources are emitted in the atmosphere damaging the air quality and the human health, besides they accumulate on the soil and lately are transmitted into the human food chain. Therefore at international level there is a concern to reduce them. Austrian heavy metals emissions (cadmium, mercury and lead) during 1990-2002 are given including an analysis of causes and sources. Lead is the main pollutant and the main sector responsible is the industry. 5 figs. (nevyjel)

  9. One-century sedimentary record of heavy metal pollution in western Taihu Lake, China.

    Science.gov (United States)

    Li, Yan; Zhou, Shenglu; Zhu, Qing; Li, Baojie; Wang, Junxiao; Wang, Chunhui; Chen, Lian; Wu, Shaohua

    2018-05-16

    Long-term trends of sediment compositions are important for assessing the impact of human activities on the sediment and protecting the sediment environment. In this study, based on the contents of heavy metals and the Pb isotope ratios in lake sediments, atmospheric dustfall and soil in Yixing, China, the representative heavy metals (Zn, Pb, Cr and Cd) in lake sediments from western Taihu Lake were studied. The evolution history of heavy metals in the local environment was constructed for the past 100 years. From 1892 to the 1990s, the anthropogenic fluxes of the representative heavy metals were negligible, indicating minimal anthropogenic emissions of heavy metals. Since the 1990s, anthropogenic fluxes of the representative heavy metals began to increase, concurrent with the economic growth and development in the western Taihu Lake Basin after the Chinese economic reform. The maximum flux percentage of the heavy metals in the sediments, caused by human activities, is 23.0% for Zn, 31.6% for Pb, 39.5% for Cr and 85.3% for Cd, indicating that most of the Cd comes from human activities. The Cd content in the western Taihu Lake Basin was significantly higher than that in the other areas, and the rapid development of the industry in the western Taihu Lake Basin and ceramics in Yixing led to the enrichment of heavy metals in local sediments. Since the 21st century, measures have been taken to control the pollution of heavy metals, including the increase in local government attention and the deployment of environmental monitoring technology. However, heavy metal content remains high, and the Pb content is still increasing. The ratios of Pb isotopes show that the main sources of heavy metals in the western Taihu Lake sediments, the local soil of Yixing and the atmospheric dustfall are coal combustion, leaded gasoline combustion, industrial wastewater and domestic sewage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Willow trees from heavy metals phytoextraction as energy crops

    International Nuclear Information System (INIS)

    Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Habart, Jan; Svoboda, Karel; Punčochář, Miroslav

    2012-01-01

    Phytoextraction ability of some fast growing plant species leads to the idea of connecting biomass production with soil remediation of contaminated industrial zones and regions. This biomass will contain significant amount of heavy metals and its energetic utilization has to be considered carefully to minimize negative environmental impacts. This study was focused on potential disposal methods of willow trees contaminated by heavy metals (Cd, Cu, Pb, Zn) with the emphasis on energetic utilization of biomass. Composting seems to be suitable pre-treatment method resulting in decrease of heavy metals leachability and biomass weight reduction. The possibility of willow trees application for energetic purposes was investigated and consequently incineration tests of willow trees samples in fluidized bed reactor were realized. Distribution of selected heavy metals in different ash fractions and treatment methods of produced ashes were studied as well. -- Highlights: ► Composting is an appropriate pre-treatment method for phytoextraction crops. ► Fluidized bed combustion is suitable disposal method of phytoextraction crops. ► Ashes from phytoextraction crops combustion cannot be used as fertilizers.

  11. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  12. Risk assessment of excessive CO{sub 2} emission on diatom heavy metal consumption

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengjiao; Li, Shunxing, E-mail: shunxing_li@aliyun.com; Zheng, Fengying; Huang, Xuguang

    2016-10-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO{sub 2} in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r = 0.989, total intracellular concentration) and between Zn and Cd (r = 0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidification < acidification + desalination < desalination for Zn, acidification < desalination < acidification + desalination for Cu and Cd, i.e., heavy metal uptake (or release) were controlled by environmental stress. Our findings showed that heavy metal uptake (or release) was already responded to ongoing excessive CO{sub 2} emission-driven acidification and desalination, which was important for risk assessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. - Highlights: • Excessive CO{sub 2} in seawater may causes ocean acidification and desalination. • The relationships between Cu, Zn, and Cd were all positively correlated by desalination. • Significant effects of salinity on intracellular concentration of Cu and Cd • Cu and Cd in marine phytoplankton could be regulated by metal excretion. • Heavy metal consumption was affect by excessive CO{sub 2}.

  13. Risk assessment of excessive CO_2 emission on diatom heavy metal consumption

    International Nuclear Information System (INIS)

    Liu, Fengjiao; Li, Shunxing; Zheng, Fengying; Huang, Xuguang

    2016-01-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO_2 in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r = 0.989, total intracellular concentration) and between Zn and Cd (r = 0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidification < acidification + desalination < desalination for Zn, acidification < desalination < acidification + desalination for Cu and Cd, i.e., heavy metal uptake (or release) were controlled by environmental stress. Our findings showed that heavy metal uptake (or release) was already responded to ongoing excessive CO_2 emission-driven acidification and desalination, which was important for risk assessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. - Highlights: • Excessive CO_2 in seawater may causes ocean acidification and desalination. • The relationships between Cu, Zn, and Cd were all positively correlated by desalination. • Significant effects of salinity on intracellular concentration of Cu and Cd • Cu and Cd in marine phytoplankton could be regulated by metal excretion. • Heavy metal consumption was affect by excessive CO_2.

  14. Heavy-metal balances of agro-ecosystems in the Netherlands.

    NARCIS (Netherlands)

    Moolenaar, S.W.; Lexmond, Th.M.

    1998-01-01

    Heavy-metal flows (Cd, Cu, Pb, and Zn) of arable, dairy and mixed farming systems in the Netherlands were studied, and farm-gate and field-scale balances calculated. On the field-scale, static and dynamic balances were distinguished. By determining the characteristic metal flows, it became possible

  15. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  16. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  17. Heavy Metal Concentrations in an Important Mangrove Species, Sonneratia caseolaris, in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Fazlin Nazli

    2010-01-01

    Full Text Available Mangrove forests in Peninsular Malaysia are increasingly threatened by heavy metal pollution. Due to their unique location, mangroves receive heavy metal pollution from upstream areas and the sea. However, little is known about the capacity of mangrove plants to take up and store heavy metals. In this study, the concentrations of cadmium (Cd, chromium (Cr, copper (Cu, lead (Pb and zinc (Zn in an important mangrove species, Sonneratia caseolaris, were measured. It was found that the total concentrations of Cd, Cr, Cu, Pb, and Zn in the sediments were below the general critical soil concentrations. However, the total concentrations of Cu and Pb in both the roots and leaves of Sonneratia caseolaris exceeded the general normal upper range in plants. This study has therefore shown the potential of Sonneratia caseolaris as a phytoremediation species for selected heavy metals in Malaysian mangrove ecosystem.

  18. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    Science.gov (United States)

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  19. Comparative Study of Heavy Metals in Soil and Selected Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Afzal Shah

    2013-01-01

    Full Text Available Essential and nonessential heavy metals like iron (Fe, nickel (Ni, manganese (Mn, zinc (Zn, copper (Cu, cadmium (Cd, chromium (Cr, and lead (Pb were analyzed in four selected medicinal plants such as Capparis spinosa, Peganum harmala, Rhazya stricta, and Tamarix articulata by flame atomic absorption spectrophotometer (FAAS. These medicinal plants are extensively used as traditional medicine for treatment of various ailments by local physicians in the area from where these plants were collected. The concentration level of heavy metals in the selected plants was found in the decreasing order as Fe > Zn > Mn > Cu > Ni > Cr > Cd > Pb. The results revealed that the selected medicinal plants accumulate these elements at different concentrations. Monitoring such medicinal plants for heavy metals concentration is of great importance for physicians, health planners, health care professionals, and policymakers in protecting the public from the adverse effects of these heavy metals.

  20. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai, Tamil Nadu, India

    Science.gov (United States)

    Sridhar, S. G. D.; Sakthivel, A. M.; Sangunathan, U.; Balasubramanian, M.; Jenefer, S.; Mohamed Rafik, M.; Kanagaraj, G.

    2017-12-01

    The assessment of groundwater quality is an obligatory pre-requisite to developing countries like India with rural-based economy. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai was analyzed to assess the acquisition process. The study area has rapid urbanization since few decades, which deteriorated the condition of the aquifer of the area. Totally 30 groundwater samples were collected during pre-monsoon (June 2014) and post-monsoon (January 2015) from the same aquifer to assess the heavy metal concentration in groundwater. Groundwater samples were analyzed for heavy metals such as Fe, Pb, Zn, Cu, Ni, Cr, Co and Mn using atomic absorption spectrophotometry (AAS). Correlation matrix revealed that there is no significant correlation between heavy metals and other parameters during pre-monsoon except EC with Cr but Fe and Zn have good positive correlation during post-monsoon.

  1. Estimation of heavy metals in dust fall samples from three different industrial areas of Karachi

    International Nuclear Information System (INIS)

    Hashmi, D.R.; Khan, F.A.; Shareef, A.; Bano, A.B.; Munshi, A.B.

    2010-01-01

    The study of accumulation of heavy metals, Fe, Cu, Mn, Zn, Pb and Cd, in the dust fall samples, collected from three selected industrial areas of Karachi, showed the level of heavy metals to decrease gradually from sites of high activity to those of low activity such as from roundabouts to main roads to side roads. Concentration of heavy metal showed a variation of the order Fe>Zn>Pb>Mn>Cu>Cd. Iron had the highest concentration in all the sampling areas in the range of 1.947 +- 0.00 to 30.039 +- 0.01 mg/g. Lower values were observed for Cd with respective ranges of 0.001 +- 0.00 to 0.009 +- 0.01 mg/g. The results suggested that heavy metal pollution in the dust fall samples of industrial areas may be due to automobile and industrial exhaust from different industrial units. (author)

  2. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary

    International Nuclear Information System (INIS)

    Liu, W.X.; Li, X.D.; Shen, Z.G.; Wang, D.C.; Wai, O.W.H.; Li, Y.S.

    2003-01-01

    Multivariate statistical analysis identified the heavy metal accumulation layers of sediment profiles and showed the various sources of metals in the estuary. - The concentrations and chemical partitioning of heavy metals in the sediment cores of the Pearl River Estuary were studied. Based on Pearson correlation coefficients and principal component analysis results, Al was selected as the concentration normalizer for Pb, while Fe was used as the normalizing element for Co, Cu, Ni and Zn. In each profile, sections with metal concentrations exceeding the upper 95% prediction interval of the linear regression model were regarded as metal enrichment layers. The heavy metal accumulation mainly occurred at sites in the western shallow water areas and east channel, which reflected the hydraulic conditions and influence from riparian anthropogenic activities. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. Since the residual, Fe/Mn oxides and organic/sulfide fractions were dominant geochemical phases in the enriched sections, the bioavailability of heavy metals in sediments was generally low. The 206 Pb/ 207 Pb ratios in the metal-enriched sediment sections also revealed the influence of anthropogenic sources. The spatial distribution of cumulative heavy metals in the sediments suggested that the Zn and Cu mainly originated from point sources, while the Pb probably came from non-point sources in the estuary

  3. Study on accumulation of heavy metals in Mangrove sediments, Gabrik Creek (Jask)

    International Nuclear Information System (INIS)

    Zarezadeh, R.; Rezaee, P.

    2016-01-01

    Gabrik in the East of Hormozgan province is Mangrove habitat and one of the important Mangrove protected area. This area is located in Oman coasts. This zone because of building Jagin dam on Gabrick River and existence of sand barrier and exposure of pollution, it is possible to destroy or to be important threats of this planet. Base on importance of this sea inhabitation some of sedimentology parameters and geochemical Mangrove's sediments have been analyzed. In this study for sieve used Hydrometric method and for Identification of organic matter used electronic furnace heat 500 degree centigrade for 6 hours. Quantity of calcium carbonate analyzed by titration and for condenses of heavy metal Zn, Pb and Ni chemical decomposition atomic absorption by Thermo-solaar (±1µg/g). Results showed that mean content of carbonate and organic matter in the sediments is 27 percent and 3.36 percent respectively. Contamination heavy metals Pb, Zn and Ni in the sediments of this mangrove, were studied throughout Gabrik creek. Metal concentration analyses were performed using atomic absorption spectrometry (AAS). Mean concentration of the heavy metals Pb, Zn and Ni in sediments was measured 67.63, 69.63 and 76.53 µg/g dry weights respectively. According to determine geoaccumulation index (Igeo), contamination factor (CF), the degree of contamination correction (mCd) and compared the heavy metal concentrations with to the mean concentrations of heavy metals in sedimentary rock (shales) and China and American standards. The results in this study showed that there is no pollution from Zn metal but there are pollutions from Ni and Pb metals and concentration this heavy metals aren't critical. The origin of these heavy metals can be a result of maintenance of fishing vessels in Gabrik Creek, activities or fuel smuggling and perhaps oil compounds spill into the water and human refuse in the region.

  4. Gender identity and the electric guitar in heavy metal music

    OpenAIRE

    Kelly, Philip

    2009-01-01

    In this chapter I will attempt to outline the gendered characteristics of heavy metal and the electric guitar and address the question: has society’s impression of heavy metal as a primarily masculine pursuit been so imbedded in Western culture that we will never see a female heavy metal band achieve the same level of success as a male heavy metal band?

  5. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phyto remediation using XRF and SEM/EDX

    International Nuclear Information System (INIS)

    Suhailly Jamari; Zaidi Embong; Zaidi Embong; Ismail Bakar

    2013-01-01

    Full-text: Electrokinetic (EK)-assisted phyto remediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phyto remediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6 V/ cm -1 electric field for 4 hours/ day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope/ Energy Dispersive X-ray Spectroscopy (SEM/ EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phyto remediation plant powder samples had increase while elemental concentrations in the post-hydrotreatment soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phyto remediation process has increase the efficiency of plant uptake. (author)

  6. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    International Nuclear Information System (INIS)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    2014-01-01

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm −1 electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake

  7. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    Energy Technology Data Exchange (ETDEWEB)

    Jamari, Suhailly [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (UTHM) (Malaysia); Embong, Zaidi [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (UTHM) and Research Center for Soft Soils (RECESS), Office of Research, Innovation, Commercialization and Consultancy Management - ORRIC, Universiti Tun Hussein (Malaysia); Bakar, Ismail [Research Center for Soft Soils (RECESS), Office of Research, Innovation, Commercialization and Consultancy Management (ORRIC), Universiti Tun Hussein Onn Malaysia -UTHM, 86400 Batu Pahat, Johor (Malaysia)

    2014-02-12

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.

  8. Characteristics of Heavy Metals Contamination in Lotus Root in the Dongting Lake Area, China

    Directory of Open Access Journals (Sweden)

    LUO Man

    2016-11-01

    Full Text Available Heavy metal contamination in soils in the Dongting Lake areas has evoked widespread concerns about the excessive heavy metals in aquatic product. Based on the national standards of food contaminant limits and the method of comprehensive pollution index, heavy metals of Cd, Pb, Cu, Zn, Mn in lotus root were clarified through field investigation in the Dongting Lake area. Results showed that lotus root in the Dongting Lake area was contaminated seriously by heavy metals. Cd and Pb were two main pollutants and the single pollution indices were 5.70 and 8.35 respectively. According to the comprehensive pollution index of heavy metals, lotus root in Yueyanglou District and Yuanjiang City were classified into medium pollution and Junshan District, Huarong County, Nan County, and Datong District were classified into heavy pollution. Principal component analysis showed that planting areas of lotus root were clumped and medium and heavy pollution areas were separated significantly. Habitat contamination by heavy metals and decreasing area of lotus ponds were two main factors for excessive heavy metals in lotus root. Thus, some measurements, such as habit restoration, were proposed for local government to decrease heavy metals in planting areas and to promote the healthy development of lotus root industry in the Dongting Lake area.

  9. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bentonite Nanocomposites.

    Science.gov (United States)

    Ma, Jing; Su, Guojun; Zhang, Xueping; Huang, Wen

    2016-08-01

    A series of bentonite nanocomposites have been synthesized by modifying bentonite with hexadecyltrimethylammonium bromide (CTMAB) and the common complexing agents, complexone (ethylene diamine tetraacetic acid, EDTA) or mercaptocomplexant (2-Mercaptobenzothiazole, MBT). These adsorbents are used to remove heavy metal ions (Cu(2+), Zn(2+), Mn(2+),Co(2+)). The Bent-CTMAB-MBT adsorbed metal ions are higher than Bent-CTMAB-EDTA under the same ion concentration in AAS. Compared with the single ion system, the adsorption of the mixed ion system of Cu(2+), Zn(2+), Mn(2+), Co(2+) had decreased differently. In the mixed system, the adsorption of Mn(2+) is significantly lower, but the adsorption of Cu(2+) was highest. The adsorption sequence of these four metal ions was Cu(2+) > Zn(2+) > Co(2+) > Mn(2+), and the selective adsorption was closely related to the hydration energy of heavy metal ions. We could remove more metal ions in different stages with the adsorption sequence.

  10. Investigation of heavy metals content in medicinal plant, eclipta alba L

    International Nuclear Information System (INIS)

    Hussain, I.; Khan, H.

    2010-01-01

    Heavy metal such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd were investigated in a= medicinally important plant, Eclipta alba L. as well as in the soil it was grown using atomic absorption spectrophotometer. The plant samples were collected from their natural habitat at three different locations of Peshawar Pakistan. The whole plant materials (roots, stems and leaves) were found to contain all heavy metals except Cd, which corresponds to their concentration in the soil it was grown. Among all the heavy metals, Fe was found to be at the highest level (8.95 to 27.7 mg/kg) followed by Mn (0.44 to 14.0 mg/kg) and Zn (1.04 to 4.50 mg/kg), while the rest of metals were at low concentration. The present study showed that E. alba L. is suitable for the control of environmental pollutants such as heavy metals, however, for medicinal purposes; it should be collected from those areas which are not contaminated with heavy metals. The purpose of the current study was to standardize various indigenous medicinal plants for heavy metals contamination and to make awareness among the public regarding its safer use and collection areas, containing high level of heavy metals and their adverse health affects. (author)

  11. Shells of Nerita gastropod bio-monitors of heavy metals pollution around the Indian Ocean

    International Nuclear Information System (INIS)

    Badran, M.I.

    1999-01-01

    Minor and heavy metals Mg, Sr, Mn, Fe and Zn were measured in individual shells of four different Nerita species collected from Phuket Island, Thailand. Shell weight and crystallography were also recorded. Heavy metal concentrations were poorly correlated with both shell weight and crystallography. Out of the four species, N. albicilla acquired the highest heavy metal concentrations. Subsequently shells of N. albicilla collected from different sites around the Indian Ocean were compared for their metal concentrations. Shells of industrial sites in Kenya and India had significantly higher heavy metal concentrations than shells from pristine sites in Mauritius and Aldabra. Discussing the factors that may affect the shell metal concentration, the variations encountered herein are best attributed to the ambient bio-available metal concentration. (author)

  12. Phycoremediation of Heavy Metals in Wet Market Wastewater

    Science.gov (United States)

    Apandi, Najeeha; Saphira Radin Mohamed, Radin Maya; Al-Gheethi, Adel; Latiffi, Atikah; Nor Hidayah Arifin, Siti; Gani, Paran

    2018-04-01

    The efficiency of phycoremediation using microalgae for removing nutrients and heavy metals from wastewaters has been proved. However, the differences in the composition of wastewaters as well as microalgae species play an important role in the efficient of this process. Therefore, the present study aimed to investigate the effectiveness of Scenedesmus sp. to removal of heavy metals from wet market wastewater. Scenedesmus sp. was inoculated with 106 cells/mL into each wet market wastewater concentration included 10, 25, 50, 75 and 100% and incubated for 18 days. The highest growth rate was recorded in 50% WM with a maximum dry weight of 2006 mg L-1 which subsequently removed 93.06% of Cd, 91.5% of Cr, 92.47% of Fe, 92.40% of Zn. These findings reflected the high potential of Scenedesmus sp. in the treatment of wet market wastewater and production microalgae biomass.

  13. Factors affecting heavy metal uptake in plant selection for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Anton, A.; Mathe-Gaspar, G. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The heavy metal uptake of ten plant species was studied under different soil and climatic conditions. Effects of soil pH, temperature, plant species and phenophase on the heavy metal content of stems and leaves were determined in pot experiments. Plants and soil samples were collected from a lead/zinc mine ore (Gyoengyoesoroszi, Hungary) and characterised by high contents of Pb, Zn, As, Cd, Cu. The possibility of an adapted phytoremediation technology was indicated by different bioconcentration factors (BCF). The BCF depended markedly (10- to 100-fold) on plant species and environmental conditions. Based on our results a ''season-adapted'' phytoextraction technology with different plant species (utilising their different temperature requirements and/or harvest time) is suggested. (orig.)

  14. Heavy metals distribution in the Dead Sea black mud, Jordan

    International Nuclear Information System (INIS)

    Momani, K.; El-Hasan, T.; Auaydeh, S.

    2009-01-01

    The concentrations of trace metals (Fe, Mn, Ni, Zn, Co, Cr, Cu and Pb) were investigated in the Dead Sea black mud and river sediments in the northern basin of the Dead Sea region, Jordan. The pH of the mud was slightly above 8 while it was around 6 for the seawater. All analyzed heavy metal content in the black mud, except Pb, was less than their contents in other types of mud. Tlis might be due to the effect of the mildly acideic pH of seawater, which would enhance the metal solubility or incorporation within salt mineral structure, rather than precipitation. The sequential extraction results showed that Ni and Co transferred into the carbonate fraction, Mn is found mostly as manganese-iron oxide, and the residual phase contained Cr, Cu, Fe,and Pb. This study illustrated that the black mud had low heavy metal contents, thus indicating low toxicity. additionally, it shows insignificance effect of the mixing of freshwater with seawater on the heavy metal contents in the black mud. (authors).

  15. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi

    2017-01-01

    This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.

  16. Resistance of Bacteria Isolated from Otamiri River to Heavy Metals and Some Selected Antibiotics

    OpenAIRE

    I.C. Mgbemena; J.C. Nnokwe; L.A. Adjeroh; N.N. Onyemekara

    2012-01-01

    This study is aimed at determining the resistance of bacteria to heavy metals and some antibiotics. The ability of aquatic bacteria isolates from Otamiri River at Ihiagwa in Owerri North, Imo State to tolerate or resist the presence of certain selected heavy metals: Pb+, Zn2+ and Fe2+ and some antibiotics was investigated. Identification tests for the bacteria isolates from Otamiri River revealed them to belong to the genera Pseudomonas, Aeromonas, Bacillus, Escherichia, Micrococcus and Prote...

  17. Stress induced by heavy metals on breeding of magpie (Pica pica) from central Iran.

    Science.gov (United States)

    Zarrintab, Mohammad; Mirzaei, Rouhollah

    2017-09-01

    The aim of this study was to address the impacts of some heavy metals (Cd, Pb, Zn, Ni and Cu) contamination on laying behavior, egg quality and breeding performance of Pica pica in north of Isfahan Province, Iran. During the breeding season of 2013, magpie's egg content and eggshell as well as nestling excrements and feathers were collected and total concentrations of heavy metals were measured by ICP-OES. Except for Zn in nestling feathers, the significantly higher concentrations of heavy metals were observed in nestling excrements than other samples. Also, comparison of heavy metals concentrations in egg content and eggshell showed that egg content had significantly higher concentrations of Zn and Pb, instead eggshell had significantly higher amount of Cu and Cd. Except for Cu, all heavy metals concentrations in eggshell had a negative relationship with morphological characters; and also concentration of Cu in egg content showed a significantly negative correlation with egg weight and volume. The most of heavy metals in nestling feathers and excrements had strongly positive correlations with each other. Also all heavy metals levels in eggshell and egg content had significantly positive correlations (except for Cu). Unhatched eggs had significantly lower weight but also greater levels of Zn, Cd, and Pb, than randomly collected eggs. No significant differences were observed for morphometric measurements of eggs between different sites, however, a decreased gradient was observed in egg volume toward the brick kiln site. Samples collected in brick kiln site accumulated higher concentrations of heavy metals than other sites. Although numbers of clutch size in brick kiln site were significantly higher than other sites, however, other breeding variable were lower than other sites. It can be suggested that ecosystem contamination may be caused to decrease the reproduction rate of Pica pica in brick kiln, probably by laying more poor quality eggs per clutch and nestling

  18. Linen Fire as Biosorbent to Remove Heavy Metal Ions From Wastewater Modeling

    OpenAIRE

    Ildar G. Shaikhiev

    2014-01-01

    The possibility of using linen fires – lnopererabotk i waste as a sorption material for the extraction of heavy metal ions from wastewater modeling. It is shown that treatment with acid solutions linen fires a low concentration increases the surface area of linen fires and thus sorption capacity for heavy metal ions. The values of the maximum sorption capacity ions Fe (III), Co (II), Ni (II) and Zn (II) under static and dynamic conditions. IR spectroscopy...

  19. Heavy metal tolerance in the psychrotolerant Cryptococcus sp. isolated from deep-sea sediments of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, P.; Raghukumar, C.; Parvatkar, R.R.; Mascarenhas-Pereira, M.B.L.

    of the heavy metal salts i.e., ZnSO sub(4) , CuSO sub(4), Pb(CH sub(3) COO) sub(2) and CdCl sub(2). It demonstrated considerable growth in the presence of 100 mg/l concentrations of the above-mentioned four heavy metal salts both at 30 degrees C and 15 degrees...

  20. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    Science.gov (United States)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2018-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  1. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China.

    Science.gov (United States)

    Wang, Zhixiu; Yao, Lu; Liu, Guihua; Liu, Wenzhi

    2014-09-01

    Through retaining runoff and pollutants such as heavy metals from surrounding landscapes, ponds around a lake play an important role in mitigating the impacts of human activities on lake ecosystems. In order to determine the potential for heavy metal accumulation of submerged macrophytes, we investigated the concentrations of 10 heavy metals (i.e., As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in water, sediments, and submerged macrophytes collected from 37 ponds around the Dianchi Lake in China. Our results showed that both water and sediments of these ponds were polluted by Pb. Water and sediments heavy metal concentrations in ponds received urban and agricultural runoff were not significantly higher than those in ponds received forest runoff. This result indicates that a large portion of heavy metals in these ponds may originate from atmospheric deposition and weathering of background soils. Positive relationships were found among heavy metal concentrations in submerged macrophytes, probably due to the coaccumulation of heavy metals. For most heavy metals, no significant relationships were found between submerged macrophytes and their water and sediment environments. The maximum concentrations of Cr, Fe and Ni in Ceratophyllum demersum were 4242, 16,429 and 2662mgkg(-1), respectively. The result suggests that C. demersum is a good candidate species for removing heavy metals from polluted aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Heavy metals: teeth as environmental biomarkers

    OpenAIRE

    Lumbau, Aurea Maria Immacolata; Lugliè, Pietrina Francesca; Carboni, Donatella; Ginesu, Sergio; Falchi, Simonetta; Schinocca, Laura

    2012-01-01

    Aim of this study was to measure the concentration of heavy metals in tooth matrix and to determine the factors that affect their presence. During tooth development and mineralization several metals can be absorbed in the tooth matrix, thus allowing us to use them as biological markers.

  3. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza; Siam, Rania; Mohamed, Yasmine M.

    2014-01-01

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II

  4. Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines.

    Science.gov (United States)

    Navarrete, Ian A; Gabiana, Christella C; Dumo, Joan Ruby E; Salmo, Severino G; Guzman, Maria Aileen Leah G; Valera, Nestor S; Espiritu, Emilyn Q

    2017-04-01

    Limited data have been published on the chemistry of urban soils and vegetation in the Philippines. The aim of this study is to quantify the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in soils and vegetation in the urban landscape of Quezon City, Philippines, and to elucidate the relationships between soil properties and the concentration of heavy metals pertaining to different land uses [i.e., protected forest (LM), park and wildlife area (PA), landfill (PL), urban poor residential and industrial areas (RA), and commercial areas (CA)]. Soil (0-15 cm) and senescent plant leaves were collected and were analyzed for soil properties and heavy metal concentrations. Results revealed that the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in urban soils were higher in areas where anthropogenic activities or disturbance (PL, RA, and CA) were dominant as compared to the less disturbed areas (LM and PA). Organic matter and available phosphorous were strongly correlated with heavy metal concentrations, suggesting that heavy metal concentrations were primarily controlled by these soil properties. The average foliar heavy metal concentrations varied, ranging from 0 to 0.4 mg/kg for Cd, 0-10 mg/kg for Cr, 2-22 mg/kg for Cu, 0-5 mg/kg for Pb, and 11-250 mg/kg for Zn. The concentrations of Cd and Cr exceeded the critical threshold concentrations in some plants. Leaves of plants growing in PL (i.e., landfill) showed the highest levels of heavy metal contamination. Our results revealed that anthropogenic activities and disturbance caused by the rapid urbanization of the city are major contributors to the heavy metal accumulation and persistence in the soils in these areas.

  5. [Mapping Critical Loads of Heavy Metals for Soil Based on Different Environmental Effects].

    Science.gov (United States)

    Shi, Ya-xing; Wu, Shao-hua; Zhou, Sheng-lu; Wang, Chun-hui; Chen, Hao

    2015-12-01

    China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution.

  6. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Heavy metal contamination in the muscle of Aegean chub (Squalius fellowesii) and potential risk assessment.

    Science.gov (United States)

    Şaşi, Hüseyin; Yozukmaz, Aykut; Yabanli, Murat

    2018-03-01

    Especially after the industrial revolution, the amount of contaminants released in aquatic ecosystems has considerably increased. For this reason, the necessity to carry on research on the existence of contaminants, specifically heavy metals, has emerged. In this study, heavy metal concentrations in muscle tissues of Aegean chub, which was an endemic species of south western part of Turkey, gathered from Tersakan River were examined. Heavy metal concentrations of the samples were analyzed with ICP-MS. Estimated daily intakes (EDI), target hazard quotient (THQ), and carcinogenic risk (CR) of elements were calculated. The heavy metals detected in muscle tissues were Zn > Cu > Cr > Mn > Pb > Cd, consecutively. According to the results of the applied health risk assessment (EDI, THQ and CR) for heavy metal exposure from fish consumption in children and adults, it was determined that there was no any significant threat to human health.

  8. Heavy metals in garden soils along roads in Szeged, Hungary

    Science.gov (United States)

    Szolnoki, Zsuzsanna; Farsang, Andrea

    2010-05-01

    The soils of the urban environment, owing to the various anthropogenic activities, can be contaminated by heavy metals. The traffic is well-known for more decades to be main source of heavy metals mostly in cities. The accumulation of these elements can have different effects, either directly endangering the natural soil functions, or indirectly endangering the biosphere by bio-accumulation and inclusion in the food chain. The hobby gardens and the vegetable gardens directly along roads can be potential risky for people since unknown amount of heavy metals can be accumulated into organization of local residents due to consumption of vegetables and fruits grown in their own garden. The aim of this study was to determine the heavy metal content of garden soils directly along roads with heavy traffic in order to assess possible risk for human health. The total content and the mobile content of Cd, Co, Cr, Cu, Ni, Pb and Zn have been determined in samples from garden soils along 5 busy roads of Szeged, South Hungary. Enrichment factor has been calculated with the help of control soil samples far from roads. The soil properties basically influencing on metal mobility have also been examined. Finally, the human health risk of these garden soils has been modelled by determination of health risk quotient (HRQ). As a result of our investigations, it can be claimed that mostly Cu, Zn and to a lesser degree the Ni, Cr and Pb accumulated in garden soils along roads depending on the traffic density. In general, the topsoils (0-10 cm) had higher amount of these metals rather than the subsoils (40-50 cm). Ni of these metals has approached; Cu has exceeded limit value while Pb is under it. Cd is very high in both soils along roads and control ones far from roads. Garden soils along the roads have such basic soil parameters (pH, mechanical soil type, humus content) that prove fairly high metal-binding capacity for these soils. Total risk of usage of these gardens (ingestion of soil

  9. Heavy Metal Pollution Potential of Zinc Leach Residues Discarded in çinkur Plant

    OpenAIRE

    ALTUNDOĞAN, H. Soner; ERDEM, Mehmet; ORHAN, Ramazan

    1998-01-01

    In this paper, results of the study on heavy metals solubility behaviour of filter cakes from leaching of clinkerized Waelz oxide and flue dust collected during clinkerization in çinkur plant are given. The release of heavy metals into water was investigated by subjecting the cakes to solubility tests systematically. The effect of contact time, pH, liquid/solid ratio and successive extractions on the releasing of heavy metals (Cd, Pb, Mn and Zn) into water was examined and their conc...

  10. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  11. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple

  12. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  13. Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.

    Science.gov (United States)

    Naderi, Arman; Delavar, Mohammad Amir; Kaboudin, Babak; Askari, Mohammad Sadegh

    2017-05-01

    This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.

  14. Releasing characteristics and fate of heavy metals from phytoremediation crop residues during anaerobic digestion.

    Science.gov (United States)

    Lee, Jongkeun; Park, Ki Young; Cho, Jinwoo; Kim, Jae Young

    2018-01-01

    In this study, lab-scale batch tests were conducted to investigate releasing characteristics of heavy metals according to degradation of heavy metal containing biomass. The fate of heavy metals after released from biomass was also determined through adsorption tests and Visual MINTEQ simulation. According to the anaerobic batch test results as well as volatile solids and carbon balance analyses, maximum of 60% by wt. of biomass was degraded. During the anaerobic biodegradation, among Cd, Cu, Ni, Pb, and Zn, only Cu and Zn were observed in soluble form (approximately 40% by wt. of input mass). The discrepancy between degradation ratio of biomass and ratio of released heavy metals mass from biomass was observed. It seems that this discordance was caused by the fate (i.e., precipitated with sulfur/hydroxide or adsorbed onto sorbents) of each heavy metal types in solution after being released from biomass. Thus, releasing characteristics and fate of heavy metal should be considered carefully to predict stability of anaerobic digestion process for heavy metal-containing biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Assessment of heavy metals in Averrhoa bilimbi and A. carambola fruit samples at two developmental stages.

    Science.gov (United States)

    Soumya, S L; Nair, Bindu R

    2016-05-01

    Though the fruits of Averrhoa bilimbi and A. carambola are economically and medicinally important, they remain underutilized. The present study reports heavy metal quantitation in the fruit samples of A. bilimbi and A. carambola (Oxalidaceae), collected at two stages of maturity. Heavy metals are known to interfere with the functioning of vital cellular components. Although toxic, some elements are considered essential for human health, in trace quantities. Heavy metals such as Cr, Mn, Co, Cu, Zn, As, Se, Pb, and Cd were analyzed by atomic absorption spectroscopy (AAS). The samples under investigation included, A. bilimbi unripe (BU) and ripe (BR), A. carambola sour unripe (CSU) and ripe (CSR), and A. carambola sweet unripe (CTU) and ripe (CTR). Heavy metal analysis showed that relatively higher level of heavy metals was present in BR samples compared to the rest of the samples. The highest amount of As and Se were recorded in BU samples while Mn content was highest in CSU samples and Co in CSR. Least amounts of Cr, Zn, Se, Cd, and Pb were noted in CTU while, Mn, Cu, and As were least in CTR. Thus, the sweet types of A. carambola (CTU, CTR) had comparatively lower heavy metal content. There appears to be no reason for concern since different fruit samples of Averrhoa studied presently showed the presence of various heavy metals in trace quantities.

  16. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    Science.gov (United States)

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Space-time quantitative source apportionment of soil heavy metal concentration increments.

    Science.gov (United States)

    Yang, Yong; Christakos, George; Guo, Mingwu; Xiao, Lu; Huang, Wei

    2017-04-01

    Assessing the space-time trends and detecting the sources of heavy metal accumulation in soils have important consequences in the prevention and treatment of soil heavy metal pollution. In this study, we collected soil samples in the eastern part of the Qingshan district, Wuhan city, Hubei Province, China, during the period 2010-2014. The Cd, Cu, Pb and Zn concentrations in soils exhibited a significant accumulation during 2010-2014. The spatiotemporal Kriging technique, based on a quantitative characterization of soil heavy metal concentration variations in terms of non-separable variogram models, was employed to estimate the spatiotemporal soil heavy metal distribution in the study region. Our findings showed that the Cd, Cu, and Zn concentrations have an obvious incremental tendency from the southwestern to the central part of the study region. However, the Pb concentrations exhibited an obvious tendency from the northern part to the central part of the region. Then, spatial overlay analysis was used to obtain absolute and relative concentration increments of adjacent 1- or 5-year periods during 2010-2014. The spatial distribution of soil heavy metal concentration increments showed that the larger increments occurred in the center of the study region. Lastly, the principal component analysis combined with the multiple linear regression method were employed to quantify the source apportionment of the soil heavy metal concentration increments in the region. Our results led to the conclusion that the sources of soil heavy metal concentration increments should be ascribed to industry, agriculture and traffic. In particular, 82.5% of soil heavy metal concentration increment during 2010-2014 was ascribed to industrial/agricultural activities sources. Using STK and SOA to obtain the spatial distribution of heavy metal concentration increments in soils. Using PCA-MLR to quantify the source apportionment of soil heavy metal concentration increments. Copyright © 2017

  18. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region

    International Nuclear Information System (INIS)

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-01-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0–20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. - Causation between the

  19. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  20. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore.

    Science.gov (United States)

    Ramachandra, T V; Sudarshan, P B; Mahesh, M K; Vinay, S

    2018-01-15

    Heavy metals are one among the toxic chemicals and accumulation in sediments and plants has been posing serious health impacts. Wetlands aid as kidneys of the landscape and help in remediation through uptake of nutrients, heavy metals and other contaminants. The analyses of macrophytes and sediment samples help in evaluating pollution status in aquatic environment. In this study concentration of six heavy metals (Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn)) were assessed in sediment and dominant macrophyte samples collected from Bellandur Lake, largest Lake of Bangalore, India. Sediment samples reveal of heavy metals in the inlet regions and shore samples. The accumulation of metals in sediments were in the order of Zn > Cu > Cr > Pb > Ni > Cd. All metals exceeded the critical limits of metals in the sediment. Concentration of different metals in the macrophyte samples ranked as: Cr > Cu > Zn > Pb > Ni > Cd. Chromium and Copper were found to be more than critical range. Typha angustata had the higher accumulation of all metals except chromium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary

    2009-01-01

    The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).

  2. Heavy metals in the surface sediments of lakes on the Tibetan Plateau, China.

    Science.gov (United States)

    Guo, Bixi; Liu, Yongqin; Zhang, Fan; Hou, Juzhi; Zhang, Hongbo; Li, Chaoliu

    2018-02-01

    Heavy metal contamination has affected many regions in the world, particularly the developing countries of Asia. We investigated 8 heavy metals (Cu, Zn, Cd, Pb, Cr, Co, Ni, and As) in the surface sediments of 18 lakes on the Tibetan Plateau. It was found that the distributions of the heavy metals showed no clear spatial pattern on the plateau. The results indicated that the mean concentrations of these metals in the sediment samples diminished as follows: Cr > As > Zn > Ni > Pb > Cu > Co > Cd. The results of geoaccumulation index (I geo ) and potential ecological risk factor (E i r ) assessments showed that the sediments were moderately polluted by Cd and As, which posed much higher risks than the other metals. The values of the potential ecological risk index (RI) showed that lake Bieruoze Co has been severely polluted by heavy metals. Principal component analysis, hierarchical cluster analysis, and Pearson correlation analysis results indicated that the 8 heavy metals in the lake surface sediments of the Tibetan Plateau could be classified into four groups. Group 1 included Cu, Zn, Pb, Co, and Ni which were mainly derived from both natural and traffic sources. Group 2 included Cd which mainly originated from anthropogenic sources like alloying, electroplating, and dyeing industries and was transported to the Tibetan Plateau by atmospheric circulation. Group 3 included Cr and it might mainly generate from parent rocks of watersheds. The last Group (As) was mainly from manufacturing, living, and the striking deterioration of atmospheric environment of the West, Central Asia, and South Asia.

  3. Assessment of physicochemical qualities, heavy metal ...

    African Journals Online (AJOL)

    Ogbe

    2012-08-23

    Aug 23, 2012 ... dominance of metals in the water followed the sequence: Al > Zn > Cu > Fe > Mn > Cd > Pb > Hg > As. ... ted and treated waters poses a considerable health risk ..... quently used to assess the general hygienic quality of water ...

  4. Inversion voltammeter definition of heavy metals in tooth pastes

    International Nuclear Information System (INIS)

    Kurbatov, D.I.; Buldakova, L.Yu.; Pichugina, A.S.

    2004-01-01

    Electrochemical behaviour of some heavy metals at their combined presence is studied by voltammetric method with use of graphite content sensor. The method of determination of Hg, Pb, Cd, Cu, and Zn in the tooth pastes, based on transfer of hallmark in a solution and voltammeter diagram registration is developed. Duration of the analysis (3 collateral hallmarks) makes no more than 1.5 h. An error - 10-15 % at the contents of determined elements of the (1-5) x 10 -4 % [ru

  5. Streptomyces communities in soils polluted with heavy metals

    Science.gov (United States)

    Grishko, V. N.; Syshchikova, O. V.

    2009-02-01

    The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.

  6. Study of heavy metals in urban runoff

    International Nuclear Information System (INIS)

    Nabizadeh, R.; Mahvi, A.; Mardani, G.; Yunesian, M.

    2005-01-01

    A cross-sectional survey was conducted through Tehran city and a field study was conducted to prepare main and accessory drainage channels map. Three main drainage channels were identified for this research and some sampling stations were chosen. Three stations selected in south of Tehran. The reason for selecting these stations is that all urban surface run off completely pass through these points and samples taken from these points are representative of all kinds of pollutants that transit from city surface. Another three stations were selected in center and further three stations were selected at north of Tehran. Surface runoff flow in three main channels, from north of south of Tehran, converge at south of Rey city and finally end up to Ghom Salt lake. The stations were chosen at three trajectories Sorkhe Hesar, Emad Avard, Kan. At each month two samples were from nine different stations. After collection of samples with respect to standard methods, they were dissolved in nitric acid and then analyzed by atomic absorption device. The results show that the concentrations of pollutants increased from north to south. For instance, Zinc had most concentration with monthly average of 0.98 mg/l and Nickel had the lowest amount with 0.02 mg/l in southern stations. Average concentration of Zn, Pb, Cd, Cu and Ni were: 0.638, 0.97, 0.04 and 0.035 mg/l respectively. Total average concentrations of heavy metals at three main channels were of 0.177, 0.176 and 0.145 mg/l. Emad Avard was the most polluted channel

  7. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  8. [Resistance to heavy metals in ruminal staphylococci].

    Science.gov (United States)

    Lauková, A

    1994-01-01

    Ruminal, coagulase-negative, urease and bacteriocin-like substances producing staphylococci were screened for their heavy metal ions and antibiotics resistance. All strains tested were resistant to disodium arsenate at a minimal inhibition concentration (MIC > 5 g/l) and cadmium sulphate (MIC > 4 g/l). MIC = 50-60 mg/l was determined in eight staphylococci screened in mercury chloride resistance test (Tab. I). Silver nitrate resistance was detected in seven of the bacteria used (MIC = 40-50 mg/l). All strains were novobiocin resistant. Staphylococcus cohnii subsp. urealyticum SCU 40 was found as a strain with resistance to all heavy metal ions and 5 antibiotics (Tab. II). In addition, this strain produced bacteriocin-like substance which inhibited growth of six indicators of different origin (Tab. II). The most of staphylococci were detected as heavy metal ion polyresistant strains and antibiotic polyresistant strains producing antimicrobial substances with inhibition effects against at least one indicator of different origin. These results represent the first information on heavy metal ion resistance in ruminal bacteria. They also show relation or coresistance between heavy metal ions and antibiotics. Resulting from this study, staphylococci can be used as a bioindicator model for animal environmental studies. In addition, it can be used for specific interactions studies within the framework of ruminal bacterial ecosystem and also mainly with regard to molecular genetic studies.

  9. Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances

    Directory of Open Access Journals (Sweden)

    Vaibhav Srivastava

    2017-10-01

    Full Text Available With modern day urbanization and industrialization, heavy metal (HM contamination has become a prime concern for today's society. The impacts of metal contamination on agriculture range from the agricultural soil to the produce in our food basket. The heavy metals (HMs and metalloids, including Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Hg, Pb, among others, can result in significant toxic impacts. The intensification of agricultural land use and changes in farming practices along with technological advancement have led to heavy metal pollution in soil. Metals/metalloids concentrations in the soil are increasing at alarming rate and affect plant growth, food safety, and soil microflora. The biological and geological reorganization of heavy metal depends chiefly on green plants and their metabolism. Metal toxicity has direct effects to flora that forms an integral component of ecosystems. Altered biochemical, physiological, and metabolic processes are found in plants growing in regions of high metal pollution. However, metals like Cu, Mn, Co, Zn, and Cr are required in trace amounts by plants for their metabolic activities. The present review aims to catalog major published works related to heavy metal contamination in modern day agriculture, and draw a possible road map toward future research in this domain.

  10. Heavy Metals Contamination in Coastal Sediments of Karachi, Pakistan

    Science.gov (United States)

    Siddique, A.; Mumtaz, M.; Zaigham, N. A.; Mallick, K. A.; Saied, S.; Khwaja, H. A.

    2008-12-01

    Toxic compounds such as heavy metals exert chronic and lethal effects in animals, plants, and human health. With the rapid industrialization, urbanization, and economic development in Karachi, heavy metals are continuing to be introduced to estuarine and coastal environment through rivers, runoff and land-based point sources. Pollution in the Karachi coastal region (167 km long) is mainly attributed to Lyari and Malir Rivers flowing through the city of Karachi. Both rivers are served by various channels of domestic and industrial wastes carrying more than 300 million gallons per day untreated effluent of 6000 industries and ultimately drain into the beaches of Arabian Sea. Concentrations of selected heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in surface sediments from eighty-eight sites in Karachi coastal region were studied in order to understand metal contamination due to industrialization, urbanization, and economic development in Karachi. Sediment samples were collected in 2005 and 2006. We have found that heavy metal concentrations in surface sediments varied from 0.006 to 24.3 ug/g for Cd, 5.1 to 95 ug/g for Co, 2.9 to 571 ug/g for Cr, 6.9 to 272 ug/g for Cu, 0.55 to 6.5% for Fe, 1.2 to 318 ug/g for Mn, 7.5 to 75 ug/g for Ni, 6.3 to 121 ug/g for Pb, and 3.3 to 389 ug/g for Zn. Enrichment factors (EFs) were calculated to assess whether the concentrations observed represent background or contaminated levels. The highest levels of metals were found to be at the confluence of the Lyari and Malir River streams at the Arabian Sea, indicating the impact of the effluents of the highly urbanized and industrialized city of Karachi. Furthermore, this study assessed heavy metal toxicity risk with the application of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM). Results indicated that the potential toxicity of marine environment can cause adverse biological effects to the biota directly and the human health

  11. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  12. Influence of land fires on increase of heavy metal concentrations in river wasters of Lithuania

    OpenAIRE

    Ignatavičius, Gytautas; Sakalauskienė, Gaudenta; Oškinis, Vytautas

    2006-01-01

    Comparison of long-term environmental monitoring data show that in August and September 2002 heavy metal (Cu, Pb and Zn) concentrations increased in Lithuanian rivers. Resent investigation has indicated that increase of heavy metals (Cu, Pb and Zn) by 60–81 % in all the rivers that are subject to the State River Monitoring and could be correlative with land fires. Fires of forests and peat bogs have outspread all over Lithuania in the summer and the first half of autumn of 2002. This paper at...

  13. [Effect of inorganic amendments on the stabilization of heavy metals in contaminated soils].

    Science.gov (United States)

    Cao, Meng-hua; Zhu, Xi; Liu, Huang-cheng; Wang, Lin-ling; Chen, Jing

    2013-09-01

    Effects of single and mixed inorganic amendments on the stabilization of heavy metals in contaminated soils were investigated. Significant synergistic effects on the stabilization of Zn and Cu were observed with the mixed inorganic amendments of KH2PO4 and Ca(OH)2 in the laboratory test. In the field test, the stabilization ratios of Zn, Cu and Cd were 41.8%, 28.2% and 48.4%, respectively, with the dosage of 0.5 kg x m(-2). The growth of peanut was inhibited by the addition of the inorganic amendments. Meanwhile, the uptake of heavy metals was reduced in peanut.

  14. Pathogens and Heavy Metals Concentration in Green Leafy Vegetables

    Directory of Open Access Journals (Sweden)

    Abida Begum

    2010-01-01

    Full Text Available Presence of heavy metal and bacterial pathogen in randomly collected samples of green leafy from various stations of Bengaluru city was detected. Heavy metals (cadmium, zinc, copper, iron, chromium, nickel and lead were analyzed by tri-acid digestion method. The presence of heavy metals in general was in the order of Cd>Zn>Cu>Fe>Cr>Pb. Trace metal concentration in all green leafy vegetables of stations 1-5 were within permissible limit and it has been exceeded in station 6-10. This indicated high levels of soil contamination pose potential danger for the vegetables grown in the vicinity of Arakere lake, Bannerghatta road, Gottigere lake, Naganaikanakere, Bommasandra lake, Hulimavu lake, Kelaginakere and Amblipura lake. The total bacteria and coliforms were enumerated on TSA (Tryptone Soya Agar and VRBA (Violet Red Bile Agar media respectively. The total bacterial count in randomly collected samples of coriander ranged from 296 cfu/g to 8 cfu/g, in palak from 16 cfu/g to 0.9 cfu/g, whereas in case of cabbage was 104 cfu/g to 0.9 cfu/g which is an indication of improper pre-harvest and post harvest handling.

  15. Heavy Metal Pollution Evolution in Sediments from Urdaibai Bay (Spain)

    International Nuclear Information System (INIS)

    Soto, J.; Soto, J.A.; Corral, D.; Gelen, A.; Diaz, O.; Navas, A.

    2003-01-01

    Full Text: The Urdaibai bay is a biosphere reservoir located in the north of Spain. The mayor components of bay sediments come from marls and clays eroded which are deposited together with metallic pollutants present in water, air and rain. For this reason it is possible to study the temporal evolution of the bay pollution by measuring the heavy metal concentrations in the sediments and considering the correspondence with its age. To this aim, sediments cores were taken in two different points of the Urdaibai bay. The cores were cut into 1 cm thick horizontal sections. Sediment dating was performed using a low background gamma spectrometry with GeHP to determine Cs-137, Ra-226 and Pb-210 activities and applying the CIC and CRS models. The heavy metal concentrations in sediments were determined by ICP-MS. The obtained results in one of the studied positions show an increment of the Pb, Zn, Ni, Cu and Cr concentrations in the first 10 cm of the sediment core. This fact can be related to an increase of the bay pollution in the last 100 years. In the second studied core the heavy metal concentrations are constant in depth or lower in the superficial layers. This could be due to an increment the deposition rate of eroded material

  16. Occurrence of tributyltin compounds and characteristics of heavy metals

    International Nuclear Information System (INIS)

    Sheikh, M. A.; Oomori, T.; Noah, N. M.; Tsuha, K.

    2007-01-01

    Surface sediment samples were collected from Tanzanian major commercial ports and studied for the distribution and behavior of tributyltin compounds and heavy metals. The content of tributyltin in sediments ranged from ND-3670 ng (Sn) g 1 dry wt (1 780 ± 1720) (Mean ± SD) at Zanzibar and from ND-16700 ng (Sn)g 1 dry wt (4080 ± 7540) at Dar Es Salaam ports, respectively. Maximum tributyltin levels were detected inside the both ports. Metabolic degradation of butyltin compounds showed that MBT + DBT > TBT %, this may be attributed by the warm ambient water and intense sunlight in the tropical regions. A sequential extraction procedure was undertaken to provide detailed chemical characteristics of heavy metals in the sediments. The procedure revealed that about 50 % of Fe in the both ports is in immobile fraction (residual fraction) while other metals; Cd, Cu, Ni, Co, Zn, Pb. and Mn were mostly found in exchangeable or carbonate fractions and thus can be easily remobilized and enter the aquatic food chain. This paper provides basic information of tributyltin compounds contamination and chemical characteristics of heavy metals in the marine ecosystem in Tanzania. To our knowledge, this is the first documentation of Organotin compounds in marine environments in East Africa and suggests the importance of further detailed Organotin compounds studies in other sub-Saharan Africa regions

  17. Monitoring of heavy metal load - by mosses or rain water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ruoho-Airola, T. [Finnish Meteorological Inst., Helsinki (Finland); Maekelae, K. [National Board of Waters and the Environment, Helsinki (Finland)

    1995-12-31

    The deposition of heavy metals is usually determined from precipitation chemistry but the moss technique has been increasingly used, particularly in the Nordic countries. Some international monitoring programmes, e.g. UN/ECE Integrated Monitoring, give them as alternative methods. However, their comparability has not been sufficiently determined. This study compares the two monitoring methods for Pb, Cd, Cu and Zn, which have different sources. The metal industry is an important source of Pb and Cd emissions. Long- range transport as well as traffic and local emissions are also important sources for Pb. The use of fertilizers and fossil fuels also result in Cd emissions. Cu and Zn are emitted from metal industries and local sources. Unlike Pb and Cd, Cu and Zn are essential elements for living organisms. Cu and Zn are needed in many enzymes and Zn in proteins. Mosses are thought to take all their nutrients from the air. The deposition of heavy metals is also effectively retained by mosses and may be used to indicate levels of heavy metal deposition. In northern countries the mosses are isolated from air (and therefore also from deposition) by snow in winter. In this study both the bulk deposition of the whole year (later `total deposition`) and the bulk deposition of the snow-free period (later `bare ground deposition`) are compared to the metal concentrations in mosses. (author)

  18. Monitoring of heavy metal load - by mosses or rain water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ruoho-Airola, T [Finnish Meteorological Inst., Helsinki (Finland); Maekelae, K [National Board of Waters and the Environment, Helsinki (Finland)

    1996-12-31

    The deposition of heavy metals is usually determined from precipitation chemistry but the moss technique has been increasingly used, particularly in the Nordic countries. Some international monitoring programmes, e.g. UN/ECE Integrated Monitoring, give them as alternative methods. However, their comparability has not been sufficiently determined. This study compares the two monitoring methods for Pb, Cd, Cu and Zn, which have different sources. The metal industry is an important source of Pb and Cd emissions. Long- range transport as well as traffic and local emissions are also important sources for Pb. The use of fertilizers and fossil fuels also result in Cd emissions. Cu and Zn are emitted from metal industries and local sources. Unlike Pb and Cd, Cu and Zn are essential elements for living organisms. Cu and Zn are needed in many enzymes and Zn in proteins. Mosses are thought to take all their nutrients from the air. The deposition of heavy metals is also effectively retained by mosses and may be used to indicate levels of heavy metal deposition. In northern countries the mosses are isolated from air (and therefore also from deposition) by snow in winter. In this study both the bulk deposition of the whole year (later `total deposition`) and the bulk deposition of the snow-free period (later `bare ground deposition`) are compared to the metal concentrations in mosses. (author)

  19. [Heavy Metals Pollution in Topsoil from Dagang Industry Area and Its Ecological Risk Assessment].

    Science.gov (United States)

    Zhang, Qian; Chen, Zong-juan; Peng, Chang-sheng; Li, Fa-sheng; Gu, Qing-bao

    2015-11-01

    Based on previous studies and field investigation of Dagang industry area in Tianjin, a total of 128 topsoil samples were collected, and contents of 10 heavy metals (As, Cd, Cr, Co, Cu, Pb, Ni, V, Zn and Hg) were determined. The geoaccumulation index and geostatistics were applied to examine the degree of contamination and spatial distribution of heavy metals in topsoil. The assessment on ecological risk of heavy metals was carried out using Hakanson's method, and the main resources of the heavy metals were analyzed as well. It was found that As, Cd and Co had the highest proportions exceeding Tianjin background value, which were 100%, 97.66% and 96.88%, respectively; the heavy-metal content increased to some extent comparing with that in 2004, and the pollutions of As and Cd were the worst, and other metals were at moderate pollution level or below. The ecological risks of heavy metals were different in topsoil with different land use types, the farmland soil in the southwest as well as soils adjacent to the industrial land were at relatively high potential ecological risk level, and the integrated ecological risk index reached up to 1 437.37. Analysis of correlation and principal component showed that traffic and transportation as well as agricultural activities might be the main resources of heavy metals in the area, besides, the industrial activities in the region might also affect the accumulation of heavy metals.

  20. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Hongwei; Huang, Lei; Wang, Jingyu; He, Guojian [The State Key Laboratory of Hydro Science and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084 (China); Reible, Danny, E-mail: danny.reible@ttu.edu [Department of Civil & Environmental Engineering, Texas Tech University, Lubbock, TX 79409-1023 (United States)

    2016-01-25

    Highlights: • An integrated model of hydrodynamics, sediment and heavy metal transport. • Simulated heavy metal transport and transformation in the Hangzhou Bay. • Evaluated accidental discharge of {sup 137}Cs from the QFNPP was assumed. • The sediment effects on the mobility of heavy metals were analyzed. - Abstract: The environmental impact of heavy metal (Cu, Cd, Zn, Pb, Ni, {sup 90}Sr and {sup 137}Cs) transport and transformation in the Hangzhou Bay (China) was assessed through a comprehensive model that integrates hydrodynamics, sediment and heavy metal transport. A mechanistic surface complexation model was used to estimate the adsorption and desorption of heavy metal by suspended sediment under different aqueous chemistry conditions. The dynamics of metal exchange to and from the seabed was also assessed. The primary processes regulating heavy metal distribution, i.e., convection–diffusion, adsorption–desorption, sedimentation–resuspension, as well as other physical and chemical processes related to mass exchange between adjacent sediment layers, were considered in detail. The accidental discharge of {sup 137}Cs was simulated as an example and results showed that {sup 137}Cs transported along the coast driven by tidal flow. Most {sup 137}Cs distributed near the outfall and accumulated in the seabed sediment. The proposed model can be a useful tool for predicting heavy metal transport and fate and provide a theoretical basis to guide field sampling, assessment of risks and the design of remediation strategies.

  1. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China

    International Nuclear Information System (INIS)

    Fang, Hongwei; Huang, Lei; Wang, Jingyu; He, Guojian; Reible, Danny

    2016-01-01

    Highlights: • An integrated model of hydrodynamics, sediment and heavy metal transport. • Simulated heavy metal transport and transformation in the Hangzhou Bay. • Evaluated accidental discharge of "1"3"7Cs from the QFNPP was assumed. • The sediment effects on the mobility of heavy metals were analyzed. - Abstract: The environmental impact of heavy metal (Cu, Cd, Zn, Pb, Ni, "9"0Sr and "1"3"7Cs) transport and transformation in the Hangzhou Bay (China) was assessed through a comprehensive model that integrates hydrodynamics, sediment and heavy metal transport. A mechanistic surface complexation model was used to estimate the adsorption and desorption of heavy metal by suspended sediment under different aqueous chemistry conditions. The dynamics of metal exchange to and from the seabed was also assessed. The primary processes regulating heavy metal distribution, i.e., convection–diffusion, adsorption–desorption, sedimentation–resuspension, as well as other physical and chemical processes related to mass exchange between adjacent sediment layers, were considered in detail. The accidental discharge of "1"3"7Cs was simulated as an example and results showed that "1"3"7Cs transported along the coast driven by tidal flow. Most "1"3"7Cs distributed near the outfall and accumulated in the seabed sediment. The proposed model can be a useful tool for predicting heavy metal transport and fate and provide a theoretical basis to guide field sampling, assessment of risks and the design of remediation strategies.

  2. [Heavy metals in environmental media around drinking water conservation area of Shanghai].

    Science.gov (United States)

    Shi, Gui-Tao; Chen, Zhen-Lou; Zhang, Cui; Bi, Chun-Juan; Cheng, Chen; Teng, Ji-Yan; Shen, Jun; Wang, Dong-Qi; Xu, Shi-Yuan

    2008-07-01

    The levels of heavy metals in Shanghai drinking water conservation area were determined, and the spatial distributions and main sources of heavy metals were investigated. Moreover, the ecological risk assessment of heavy metals was conducted. Some conclusions can be drawn as follows: (1) The average concentrations of Cd, Hg, Pb, Cu, Zn, Ni, Cr and As in road dust were 0.80, 0.23, 148.45, 127.52, 380.57, 63.17, 250.38 and 10.37 mg x kg(-1) respectively. In terms of the pollution level, the values of soils were relatively lower, with the mean contents of 0.16 (Cd), 0.33 (Hg), 30.14 (Pb), 30.66 (Cu), 103.79 (Zn), 24.04 (Ni), 65.75 (Cr) and 6.31 mg x kg(-1) (As) severally; meanwhile the average levels of heavy metals in vegetables were 0.010 (Cd), 0.016 (Hg), 0.36 (Pb), 12.80 (Cu), 61.69 (Zn), 2.04 (Ni), 2.41 (Cr) and 0.039 mg x kg(-1) (As) respectively. (2) Semivariogram and multivariate analysis indicated that heavy metals pollution of soils was induced by anthropogenic activities mostly, and the pollutants produced by traffic were the major source of heavy metals in road dust. (3) The order for heavy metal enrichment coefficients of vegetables was as following: Zn (0.589) > Cu (0.412) > 0.102 (Ni) > Cd (0.059) > Cr (0.061) > Hg (0.056) > Pb (0.012) > As (0.007), and the results indicated that Cd and Zn in vegetables were mainly from the soils, and the other metals were probably from the pollutants in the atmosphere. (4) Sediments in drinking water conservation area were probably derived from soils around; however, there was no significant relationship between heavy metals contents of them. (5) The results of ecological risk assessment of heavy metals showed that heavy metals in soils were in no-warning to warning situation, and warning to light-warning situation for road dust and vegetables. The fuzzy synthesis judgment for all the environmental media around drinking water conservation area was warning to light-warning.

  3. Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China.

    Science.gov (United States)

    Wang, Zuwei; Yu, Xiaoman; Geng, Mingshuo; Wang, Zilu; Wang, Qianqian; Zeng, Xiangfeng

    2017-05-01

    Heavy metal concentrations in soil, wheat, and scalp hair exposed to Beijing sewage discharge channel sewage irrigation area (BSIA) in Tianjin were studied to evaluate the influence of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, with 55.2 and 8.62% of soil samples accumulating Cd and Zn, respectively, at concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain from BSIA were higher than these from the clean water irrigation area by 63.2% for Cd, 3.8% for Cu, 100% for Pb, 6.6% for Zn, and 326.7% for Cr. The heavy metal bioaccumulation factor (BAF) of wheat/soil in BSIA showed the following order: Zn > Cd > Cu > Pb > Cr. Interestingly, these accumulation of heavy metals in soil after sewage irrigation could increase the migration ability of heavy metals (particularly Zn and Cd) from soil to wheat. Mean concentrations of heavy metals in the hair of residents followed the decreasing trend of Zn > Cu > Pb > Cr > Cd, which were higher than the control area by 110.0% for Cd, 20.0% for Cu, 55.9% for Zn, 36.6% for Pb, and 64.6% for Cr. Concentrations of heavy metals in male human hair in BSIA were higher than those of females. And the concentrations of heavy metals except for Pb in human hair increased with their increasing ages. The heavy metal BAF values of wheat/soil in BSIA showed the trend of Zn (98.0057) > Pb (7.0162) > Cr (5.5788) > Cu (5.4853) > Cd (3.5584); heavy metals had obvious biological amplification from wheat to human hair. These results indicated that local population health was potentially exposed to the heavy metal risk via wheat consumption.

  4. Heavy metals pollution and pb isotopic signatures in surface sediments collected from Bohai Bay, North China.

    Science.gov (United States)

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.

  5. [Enhanced Phytoextraction of Heavy Metals from Contaminated Soils Using Sedum alfredii Hance with Biodegradable Chelate GLDA].

    Science.gov (United States)

    Wei, Ze-bin; Chen, Xiao-hong; Wu, Qi-tang; Tan, Meng

    2015-05-01

    Chemically enhanced phytoextraction by hyperaccumulator has been proposed as an effective approach to remove heavy metals from contaminated soil. Pot experiment was conducted to investigate the effect of application of the biodegradable chelate GLDA (L glutamic acid N,N-diacetic acid) at different doses or the combination of GLDA with EDTA (ethylenediamine tetraacetic acid) or CIT (citric acid) on the uptake of Cd, Zn and Pb by Sedum alfredii Hance (a Zn and Cd hyperaccumulator). Experimental results showed that GLDA addition to soil significantly increased the concentrations of Cd and Zn in Sedum alfredii Hance and its Cd and Zn phytoextraction compared to the control. Additionally, GLDA at 2.5 mmol · kg(-1) resulted in the highest phytoextraction, being 2.5 and 2.6 folds of the control for Cd and Zn, respectively. However, the combined application of GLDA + EDTA (1:1) and GLDA + CIT (1 :1 and 1:3) at a total dose of 5 mmol · kg(-1) did not increase the phytoextraction of Zn and Cd, compared to the GLDA only treatment. Therefore, the biodegradable chelate GLDA could be regarded as a good chelate candidate for the phytoextraction of heavy metals of heavy metals from contaminated soils, particularly for Cd and Zn contaminated soils.

  6. Routine soil testing to monitor heavy metals and boron

    Directory of Open Access Journals (Sweden)

    Abreu Cleide Aparecida de

    2005-01-01

    Full Text Available Microelements are an important issue in agriculture, due to their need as micronutrients for plants and also to the possibility of the build-up of toxic levels for plants and animals. Five micronutrients (B, Cu, Fe, Mn, and Zn are routinely determined in soil analysis for advisory purposes. Other four elements (Cd, Cr, Pb, and Ni are considered environmentally important heavy metals in farmland soils. Thus high contents of these metals in cropland might go eventually unnoticed. In this paper we present an approach that can be used to monitor the contents of the nine elements in farmland soils using advisory soil testing. A total of 13,416 soil samples from 21 Brazilian states, 58% of them from the state of São Paulo, sent by farmers were analyzed. Boron was determined by hot water extraction and the other metals were determined by DTPA (pH 7.3 extraction. The ranges of content, given in mg dm-3 soil, were the following: B, 0.01-10.6; Cu, 0.1-56.2; Fe, 0.5-476; Mn, 1-325; Zn, 1-453; Cd, 0.00-3.43, Cr, 0.00-42.9; Ni, 0.00-65.1; Pb, 0.00-63.9. The respective average values for São Paulo were: B-0.32; Cu-2.5; Fe-36; Mn-16; Zn-4.8; Cd-0.02; Cr-0.03; Ni-0.18; Pb-0.85. For other states the results are in the same ranges. The higher values are indicative of anthropogenic inputs, either due to excess application of fertilizers or to industrial or mining activities. The conclusion is that massive chemical analysis of farmland soil samples could serve as a database for indicating potential micronutrient deficiency and excesses or heavy metal buil-up in croplands, allowing preventive actions to be taken.

  7. Detection of Genetic Variations in Marine Algae Ulva lactuca (Chlorophyta Induced by Heavy Metal Pollutants

    Directory of Open Access Journals (Sweden)

    Basel Saleh

    2015-09-01

    Full Text Available Ulva lactuca (Chlorophyta green macroalgae has been successfully used as bioindicator for heavy metals pollution in ecosystems. Random amplified microsatellite polymorphism (RAMP marker was employed to investigate genetic DNA pattern variability in green U. lactuca 5 days after exposure to Cu, Pb, Cd and Zn heavy metals stress. Genomic template stability (GTS% value was employed as a qualitative DNA changes measurement based on RAMP technique. In this respect, estimated GTS% value was recorded to be 65.215, 64.630, 59.835 and 59.250% for Pb, Cu, Cd and Zn treatment, respectively. Moreover, genetic similarity (GS induced by the above heavy metals was also evaluated to measure genetic distance between algae treated plants and their respective control. In this respect, estimated GS values generated by RAMP marker ranged between 0.576 (between control and Zn treatment - 0.969 (for both case; between Pb and Cu and between Cd and Zn treatment with an average of 0.842. Based upon data presented herein based on variant bands number (VB, GTS% and GS values; the present study could be suggested that Pb and Cu followed similar tendency at genomic DNA changes. Similar finding was also observed with Cd and Zn ions. Thereby, RAMP marker successfully highlighted DNA change patterns induced by heavy metals stress.

  8. Heavy metal hazards of Nigerian herbal remedies

    Energy Technology Data Exchange (ETDEWEB)

    Obi, E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria); Akunyili, Dora N. [National Agency of Food and Drug Administration and Control (NAFDAC), Lagos (Nigeria); Ekpo, B. [Department of Biochemistry, College of Medical Sciences, Abia State University, Uturu (Nigeria); Orisakwe, Orish E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria)]. E-mail: eorish@yahoo.com

    2006-10-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO{sub 3}.The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies.

  9. Heavy metal hazards of Nigerian herbal remedies

    International Nuclear Information System (INIS)

    Obi, E.; Akunyili, Dora N.; Ekpo, B.; Orisakwe, Orish E.

    2006-01-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO 3 .The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies

  10. Heavy metal pollution of agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.C.

    1975-01-01

    Inputs of heavy metals to soils have increased recently and there is much concern that they may be toxic at various stages along the food chain and ultimately to man. Cobalt, copper, iron, manganese, molybdenum, zinc, chromium, nickel, cadmium and lead move from geochemical sources to plants and then to animals and man; they then are returned in various forms to soil to complete the cycle. The ways in which heavy metals may be added to soils are reviewed. They include: aerial inputs by air pollution, fertilizers, pesticides, farm slurries and sewage sludge. Possibly the source of contamination which is to have the most impact on soils used for the production of crops is sewage sludge. The fate of heavy metal added to soils is discussed in relation to form, mobility, uptake by plants, effect of soil conditions on availability to plants, and toxicity to animals. 56 references.

  11. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China.

    Science.gov (United States)

    Lin, Yuesheng; Fang, Fengman; Wang, Fei; Xu, Minglu

    2015-09-01

    Zn, Pb, Cu, Cr, V, Ni, Co, and As concentrations of indoor dust in Anhui rural were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The degrees of metal pollution in indoor dust ranked as follows: Zn > Pb > Cr > Cu > V > Ni > Co > As, on average. The arithmetic means of Zn, Pb, Cu, Cr, V, Ni, Co, and As were 427.17, 348.73, 107.05, 113.68, 52.64, 38.93, 10.29, and 4.46 mg/kg, respectively. These were higher than background values of Anhui soil for Zn, Pb, Cu, Cr, and Ni, especially for Pb with the mean value of 13.21 times the background value. Heavy metal concentrations of indoor dust were different from different rural areas. House type (bungalows or storied house), sweeping frequency, and external environment around the house (such as the road grade) affected heavy metal concentrations in indoor dust. The results of factor analysis and correlation analysis indicated that Cu, Cr, Ni, Zn, and Co concentrations were mainly due to interior paint, metal objects, and building materials. Pb and As concentrations were due to vehicle emissions. V concentration was mainly of natural source. Average daily doses for the exposure pathway of the studied heavy metals decreased in children in the following order: hand-to-mouth ingestion > dermal contact > inhalation. The non-carcinogenic risks of heavy metals ranked as Pb > V > Cr > Cu > Zn > As > Co > Ni, and the carcinogenic risks of metals decreased in the order of Cr > Co > As > Ni. The non-carcinogenic hazard indexes and carcinogenic risks of metals in indoor dust were both lower than the safe values.

  12. Heavy metal migration through clay below a domestic waste site

    Energy Technology Data Exchange (ETDEWEB)

    Yanful, E K

    1986-01-01

    Migration of contaminants from a domestic waste landfill overlying a 30 m thick natural clay deposit is presented. Profiles for Na/sup +/, Mg/sup 2 +/, DOC and other soluble species indicate that, at 16 years, contaminants have migrated up to 130 cm from the waste. Profiles for conservative species suggest that Cl-, /sup 3/H, /sup 18/O and /sup 2/H fronts are ahead of those species such as Na/sup +/, K/sup +/ and DOC. In comparison, the heavy metals, Fe, Mn, Cu, Zn and Pb, have migrated only 10-20 cm. Batch equilibrium studies involving Fe/sup 2 +/, Cu/sup 2 +/, Zn/sup 2 +/ and Pb/sup 2 +/ result in classical adsorption-pH curves which show increasing adsorption at higher pH levels and vice versa. The presence of soil carbonates is shown to significantly increase the mass of Pb and Cu removed from domestic landfill leachate.

  13. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    Science.gov (United States)

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  14. Heavy metal pollution and forest health in the Ukrainian Carpathians

    International Nuclear Information System (INIS)

    Shparyk, Y.S.; Parpan, V.I.

    2004-01-01

    The Ukrainian Carpathians are characterized by high air pollution caused by emissions from numerous industries. We have been monitoring the state of forests in this region since 1989. The highest levels of tree defoliation (>30%) are found close to industrial emission sources and in the upper mountain forests of the Ivano-Frankivsk and Chernivtsi regions. This is caused by a combination of strong anthropogenic influences (pollution, illegal uses, recreation) as well as poor site and climatic conditions. In the Ivano-Frankivsk region, Cd and Mo accumulate in forest soils; Cr, Mo and Zn soil concentrations are higher than their limit levels; and Pb concentrations exceed toxic levels close to industrial areas (10% of the region territory). Local background levels of heavy metals are greatly exceeded in snow close to industrial regions. Analysis of correlation matrices shows that the chemical elements Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn occur at pollution levels in natural ecosystems in the Ukrainian Carpathians. Maximum concentrations of toxic elements occur in the oak forest zone; the most industrially developed area of the region. Toxic heavy metals in the Ukrainian Carpathians forests enter with precipitation and dustfall, then become fixed in soil and accumulate in leaves, needles of vascular plants and mosses. Concentrations of these metals decrease with altitude: highest in the oak forests, less in beech, and lowest in the spruce forest zones. However, some chemical elements have the highest concentrations in spruce forests; V in needles, As in snow, and Ba and Al in soils. - Local industrial emissions of heavy metal pollution and the condition of Ukrainian Carpathians forests are examined

  15. MOSSES AND LICHENS – BIOINDICATORS OF HEAVY METALS POLLUTION OF FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    BEGU A.

    2014-03-01

    Full Text Available This study is a comparative investigation of the content of heavy metals (Pb, Cu, Ni, Zn and Cr in mosses and lichens recorded in ten deciduous forests in the Republic of Moldova included in a transnational grid (16x16 km of forest monitoring throughout Europe. The content of heavy metals doesn’t differ significant by depending on the location of studied forest ecosystems. The trends of larger accumulation are observed near the local stationary and mobile sources of pollution. Mosses were confirmed as good indicators of air pollution with heavy metals to forest ecosystems located near sources of pollution and lichens show good bio-indicators particularities for background pollution. The good correlation between the concentrations of moss and lichen were Cr, Cu and Ni, and the low correlation between Pb and Zn, which are considered to be metals which are amenable to long-distance dispersal.

  16. Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil.

    Science.gov (United States)

    Wang, Xin; Jia, Youngfeng

    2010-08-01

    Field experiments at the Shenyang Experimental Station of Ecology were conducted to study the adsorption, accumulation, and remediation of heavy metals by poplar and larch grown in artificially contaminated soil. The soil was spiked with a combination of Cd, Cu, and Zn at concentrations of 1.5, 100, and 200 mg.kg(-1), respectively. The results showed that the biomass of poplar (Populus canadensis Moench) was lower by 26.0% in the soil spiked with a mixture of Cd, Cu, and Zn, compared with the control. Concentrations of Cd in poplar leaf and Cu in poplar roots in the treated soil were 4.11 and 14.55 mg kg(-1), respectively, which are much greater than in corresponding controls. The migration of heavy metals in woody plant body was in the order Cd > Zn > Cu. Poplar had higher metal concentrations in aboveground tissues and a higher biomass compared with larch of the same age and therefore is potentially more suitable for remediation. In the heavy metal-polluted soil of this study, phytoremediation by poplar may take 56 and 245 years for Cd and Cu, respectively, for meeting the soil standards of heavy metals, and the corresponding phytoremediation times by larch would take 211 and 438 years. The research findings could be used as a basis to develop ecological engineering technologies for environmental control and remediation of pollution caused by heavy metals in soils.

  17. Mushrooms pollution by radioactivity and heavy metals

    International Nuclear Information System (INIS)

    Delatouche, L.

    2001-01-01

    Some basic notions of radioactivity are recalled first (definition, origin, measurement units, long- and short-term effects..). Then, the pedology of soils and the properties and toxicity of 3 heavy metals (lead, cadmium, mercury) are presented to better understand the influence of some factors (genre, age, ecological type, pollution, conservation..) on the contamination of macro-mycetes by radioactivity and heavy metals. The role of chemists is to inform the consumers about these chemical and radioactive pollutions and to give some advices about the picking up (quantities, species and places to avoid) and the cooking of mushrooms. (J.S.)

  18. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  19. Data mining using multivariate statistical analysis: The case of heavy metals in sediments of the Msimbazi Creek mangrove wetland

    Directory of Open Access Journals (Sweden)

    A. Mrutu

    2013-12-01

    Full Text Available Mangrove wetlands are important biological systems that usually filter out organic and inorganic contaminants from the wastewaters before entering the ocean. Our previous work showed that sediments of the Msimbazi Creek wetland are contaminated with heavy metals and the amounts decreased with increasing depth. However, the hidden relationships between the heavy metals and clay particles were not fully understood based on the numerical data. Therefore this work used the data from literature and the Statistical Package for Social Sciences (SPSS software to study how significant the relationships are and predict the sources of heavy metals and clays. The results showed that Cd is the only metal that showed insignificant correlations with other heavy metals (with Pb and Zn while the rest of heavy metals exhibited significant positive correlation (except Pb vs. Ni. Cluster analysis classified the heavy metals based on the concentration and the first 50 cm cores (0-50 cm had higher heavy metals and % clay than the second 50 cm cores (51-100 cm. The results from the factor analysis suggests that Pb, Cd, Ni, and clay owe their source mostly from anthropogenic activities while Fe, Co, Cr, Zn and sand come from both anthropogenic and natural sources. These results support our previous suggestions that heavy metals and clays found in this wetland have mostly anthropogenic origin. However, we recommend isotopic tracing studies in order to accurately identify the origins of the heavy metals and clays in sediments of Msimbazi Creek mangrove wetland.

  20. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.

    Science.gov (United States)

    Bang, Jihye; Kamala-Kannan, Seralathan; Lee, Kui-Jae; Cho, Min; Kim, Chang-Hwan; Kim, Young-Jin; Bae, Jong-Hyang; Kim, Kyong-Ho; Myung, Hyun; Oh, Byung-Taek

    2015-01-01

    The aim of this study is to characterize the heavy metal phytoremediation potential of Miscanthus sp. Goedae-Uksae 1, a hybrid, perennial, bio-energy crop developed in South Korea. Six different metals (As, Cu, Pb, Ni, Cd, and Zn) were used for the study. The hybrid grass effectively absorbed all the metals from contaminated soil. The maximum removal was observed for As (97.7%), and minimum removal was observed for Zn (42.9%). Similarly, Goedae-Uksae 1 absorbed all the metals from contaminated water except As. Cd, Pb, and Zn were completely (100%) removed from contaminated water samples. Generally, the concentration of metals in roots was several folds higher than in shoots. Initial concentration of metals highly influenced the phytoremediation rate. The results of the bioconcentration factor, translocation factor, and enrichment coefficient tests indicate that Goedae-Uksae 1 could be used for phytoremediation in a marginally contaminated ecosystem.

  1. Mechanism of biosorption of Heavy metals by mucor rouxii

    Energy Technology Data Exchange (ETDEWEB)

    Yan, G. [Alberta Capital Region Wastewater Commission, Fort Saskatchewan, Alberta (Canada); Viraraghavan, T. [Faculty of Engineering, University of Regina, Regina, Saskatchewan (Canada)

    2008-08-15

    Fungi such as Aspergillus niger and Mucor rouxii are capable of removing heavy metals from aqueous solutions. The role various functional groups play in the cell wall of M. rouxii in metal biosorption of lead, cadmium, nickel and zinc was investigated in this paper. The biomass was chemically treated to modify the functional carboxyl, amino and phosphate groups. These modifications were examined by means of infrared spectroscopy. It was found that an esterification of the carboxyl groups and phosphate and a methylation of the amine groups significantly decreased the biosorption of the heavy metals studied. Thus, the carboxylate, amine and phosphate groups were recognized as important in the biosorption of metal ions by M. rouxii biomass. The role the lipids fraction play was not significant. The study showed that Na, K, Ca and Mg ions were released from the biomass after biosorption of Pb,Cd,Ni and Zn, indicating that ion exchange was a key mechanism in the biosorption of metal ions by M. rouxii biomass. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  2. Transfer of heavy metals through terrestrial food webs: a review.

    Science.gov (United States)

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  3. Assessment of arsenic and heavy metal contents in cockles (Anadara granosa) using multivariate statistical techniques

    International Nuclear Information System (INIS)

    Abbas Alkarkhi, F.M.; Ismail, Norli; Easa, Azhar Mat

    2008-01-01

    Cockles (Anadara granosa) sample obtained from two rivers in the Penang State of Malaysia were analyzed for the content of arsenic (As) and heavy metals (Cr, Cd, Zn, Cu, Pb, and Hg) using a graphite flame atomic absorption spectrometer (GF-AAS) for Cr, Cd, Zn, Cu, Pb, As and cold vapor atomic absorption spectrometer (CV-AAS) for Hg. The two locations of interest with 20 sampling points of each location were Kuala Juru (Juru River) and Bukit Tambun (Jejawi River). Multivariate statistical techniques such as multivariate analysis of variance (MANOVA) and discriminant analysis (DA) were applied for analyzing the data. MANOVA showed a strong significant difference between the two rivers in term of As and heavy metals contents in cockles. DA gave the best result to identify the relative contribution for all parameters in discriminating (distinguishing) the two rivers. It provided an important data reduction as it used only two parameters (Zn and Cd) affording more than 72% correct assignations. Results indicated that the two rivers were different in terms of As and heavy metal contents in cockle, and the major difference was due to the contribution of Zn and Cd. A positive correlation was found between discriminate functions (DF) and Zn, Cd and Cr, whereas negative correlation was exhibited with other heavy metals. Therefore, DA allowed a reduction in the dimensionality of the data set, delineating a few indicator parameters responsible for large variations in heavy metals and arsenic content. Taking into account of these results, it can be suggested that a continuous monitoring of As and heavy metals in cockles be performed in these two rivers

  4. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance.

    Science.gov (United States)

    Zhang, Xincheng; Lin, Li; Chen, Mingyue; Zhu, Zhiqiang; Yang, Weidong; Chen, Bao; Yang, Xiaoe; An, Qianli

    2012-08-30

    Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Intertidal beach sands as monitors for heavy metal pollution in coastal water bodies

    International Nuclear Information System (INIS)

    Lacerda, L.D. de; Pfeiffer, W.C.; Fiszman, M.

    Intertidal beach sands were investigated for their use as indicators of metal transport in a contaminated water body, Sepetiba Bay, Rio de Janeiro, Brazil, and are proposed as an alternative and rapid screening method to determine metal pollution status of coastal areas. The results showed that, at least for Cu, Cr, Zn and Pb, beach sands can be included in the existing environmental monitoring programs for heavy metal pollution in water bodies. (Author) [pt

  6. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning

    International Nuclear Information System (INIS)

    Huber, Maximilian; Welker, Antje; Helmreich, Brigitte

    2016-01-01

    A dataset of 294 monitored sites from six continents (Africa, Asia, Australia, Europe, North and South America) was compiled and evaluated to characterize the occurrence and fate of heavy metals in eight traffic area categories (parking lots, bridges, and three types each of both roads and highways). In addition, site-specific (fixed and climatic) and method-specific (related to sample collection, preparation, and analysis) factors that influence the results of the studies are summarized. These factors should be considered in site descriptions, conducting monitoring programs, and implementing a database for further research. Historical trends for Pb show a sharp decrease during recent decades, and the median total Pb concentrations of the 21st century for North America and Europe are approximately 15 μg/L. No historical trend is detected for Zn. Zn concentrations are very variable in traffic area runoff compared with other heavy metals because of its presence in galvanized structures and crumbs of car tire rubber. Heavy metal runoff concentrations of parking lots differ widely according to their use (e.g., employee, supermarket, rest areas for trucks). Bridge deck runoff can contain high Zn concentrations from safety fences and galvanizing elements. Roads with more than 5000 vehicles per day are often more polluted than highways because of other site-specific factors such as traffic signals. Four relevant heavy metals (Zn, Cu, Ni, and Cd) can occur in the dissolved phase. Knowledge of metal partitioning is important to optimize stormwater treatment strategies and prevent toxic effects to organisms in receiving waters. - Highlights: • Heavy metal runoff concentrations in parking lots, bridges, and roads • Large dataset of dissolved and total metal concentrations in traffic area runoff • Description of site-specific and monitoring method-specific factors • Summary of traffic-related and anthropogenic heavy metals in road runoff • Reduction in Pb

  7. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Maximilian [Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 8, 85748 Garching (Germany); Welker, Antje [Fachgebiet Siedlungswasserwirtschaft und Hydromechanik, Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt am Main (Germany); Helmreich, Brigitte, E-mail: b.helmreich@tum.de [Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 8, 85748 Garching (Germany)

    2016-01-15

    A dataset of 294 monitored sites from six continents (Africa, Asia, Australia, Europe, North and South America) was compiled and evaluated to characterize the occurrence and fate of heavy metals in eight traffic area categories (parking lots, bridges, and three types each of both roads and highways). In addition, site-specific (fixed and climatic) and method-specific (related to sample collection, preparation, and analysis) factors that influence the results of the studies are summarized. These factors should be considered in site descriptions, conducting monitoring programs, and implementing a database for further research. Historical trends for Pb show a sharp decrease during recent decades, and the median total Pb concentrations of the 21st century for North America and Europe are approximately 15 μg/L. No historical trend is detected for Zn. Zn concentrations are very variable in traffic area runoff compared with other heavy metals because of its presence in galvanized structures and crumbs of car tire rubber. Heavy metal runoff concentrations of parking lots differ widely according to their use (e.g., employee, supermarket, rest areas for trucks). Bridge deck runoff can contain high Zn concentrations from safety fences and galvanizing elements. Roads with more than 5000 vehicles per day are often more polluted than highways because of other site-specific factors such as traffic signals. Four relevant heavy metals (Zn, Cu, Ni, and Cd) can occur in the dissolved phase. Knowledge of metal partitioning is important to optimize stormwater treatment strategies and prevent toxic effects to organisms in receiving waters. - Highlights: • Heavy metal runoff concentrations in parking lots, bridges, and roads • Large dataset of dissolved and total metal concentrations in traffic area runoff • Description of site-specific and monitoring method-specific factors • Summary of traffic-related and anthropogenic heavy metals in road runoff • Reduction in Pb

  8. Approaches for enhanced phytoextraction of heavy metals.

    Science.gov (United States)

    Bhargava, Atul; Carmona, Francisco F; Bhargava, Meenakshi; Srivastava, Shilpi

    2012-08-30

    The contamination of the environment with toxic metals has become a worldwide problem. Metal toxicity affects crop yields, soil biomass and fertility. Soils polluted with heavy metals pose a serious health hazard to humans as well as plants and animals, and often requires soil remediation practices. Phytoextraction refers to the uptake of contaminants from soil or water by plant roots and their translocation to any harvestable plant part. Phytoextraction has the potential to remove contaminants and promote long-term cleanup of soil or wastewater. The success of phytoextraction as a potential environmental cleanup technology depends on factors like metal availability for uptake, as well as plants ability to absorb and accumulate metals in aerial parts. Efforts are ongoing to understand the genetics and biochemistry of metal uptake, transport and storage in hyperaccumulator plants so as to be able to develop transgenic plants with improved phytoremediation capability. Many plant species are being investigated to determine their usefulness for phytoextraction, especially high biomass crops. The present review aims to give an updated version of information available with respect to metal tolerance and accumulation mechanisms in plants, as well as on the environmental and genetic factors affecting heavy metal uptake. The genetic tools of classical breeding and genetic engineering have opened the door to creation of 'remediation' cultivars. An overview is presented on the possible strategies for developing novel genotypes with increased metal accumulation and tolerance to toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Heavy metal pollutant tolerance of Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.; Jana, S.

    1986-01-01

    The effects of Hg, As, Pb, Cu, Cd, and Cr (1,2 and 5 mg L/sup -1/ each) on Azolla pinnata R. Br. were analyzed. The treatments (2 and 5 mg L/sup -1/) of the heavy metal pollutants decreased Hill activity, chlorophyll, protein and dry wt, and increased tissue permeability over control values. The effects were most pronounced with the treatment of 5 mg L/sup -1/. The harmful effects of the metals were, in general, found by the treatments in the order: Cd > Hg > Cu > As > Pb > Cr. There was no significant change in these parameters at 1 mg L/sup -1/ of the metals over control. Thus Azolla pinnata shows tolerance to the heavy metals tested up to 1 mg L/sup -1/ each.

  10. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  11. Effect of heavy metals on soil enzyme activity at different field conditions in Middle Spis mining area (Slovakia).

    Science.gov (United States)

    Angelovičová, Lenka; Lodenius, Martin; Tulisalo, Esa; Fazekašová, Danica

    2014-12-01

    Heavy metals concentrations were measured in the former mining area located in Hornad river valley (Slovakia). Soil samples were taken in 2012 from 20 sites at two field types (grasslands, heaps of waste material) and two different areas. Total content of heavy metals (Cu, Pb, Zn, Hg), urease (URE), acid phosphatase (ACP), alkaline phosphatase (ALP), soil reaction (pH) were changing depending on the field/area type. The tailing pond and processing plants have been found as the biggest sources of pollution. URE, ACP and ALP activities significantly decreased while the heavy metal contents increased. Significant differences were found among area types in the heavy metal contents and activity of URE. No statistical differences in the content of heavy metals but significant statistical differences for soil pH were found for field types (grassland and heaps). Significant negative correlation was found for URE-Pb, URE-Zn and also between soil reaction and ACP and ALP.

  12. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90.

    Science.gov (United States)

    Yang, Zhihui; Zhang, Zhi; Chai, Liyuan; Wang, Yong; Liu, Yi; Xiao, Ruiyang

    2016-01-15

    Bioleaching is an environment-friendly and economical technology to remove heavy metals from contaminated soils. In this study, a biosurfactant-producing strain with capacity of alkaline production was isolated from cafeteria sewer sludge and its capability for removing Zn, Pb, Mn, Cd, Cu, and As was investigated. Phylogenetic analysis using 16S rDNA gene sequences confirmed that the strain belonged to Burkholderia sp. and named as Z-90. The biosurfactant was glycolipid confirmed by thin layer chromatography and Fourier-transform infrared spectroscopy. Z-90 broth was then used for bioleaching remediation of heavy metal-contaminated soils. The removal efficiency was 44.0% for Zn, 32.5% for Pb, 52.2% for Mn, 37.7% for Cd, 24.1% for Cu and 31.6% for As, respectively. Mn, Zn and Cd were more easily removed from soil than Cu, Pb and As, which was attributed to the presence of high acid-soluble fraction of Mn, Zn and Cd and high residual fraction of Cu, Pb and As. The heavy metal removal in soils was contributed to the adhesion of heavy metal-contaminated soil minerals with strain Z-90 and the formation of a metal complex with biosurfactant. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.

    Science.gov (United States)

    Salati, S; Quadri, G; Tambone, F; Adani, F

    2010-05-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Earliest evidence of pollution by heavy metals in archaeological sites.

    Science.gov (United States)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  15. Pyrolized biochar for heavy metal adsorption

    Science.gov (United States)

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  16. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    Science.gov (United States)

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  17. Risk Assessment of Heavy Metal Pollution in Soils of Gejiu Tin Ore and Other Metal Deposits of Yunnan Province

    Science.gov (United States)

    Yang, Shuran; Danek, Tomas; Cheng, Xianfeng; Huang, Qianrui

    2017-12-01

    This paper aims to study three main metal mining areas in Yunnan Province, to summarize and analyze the heavy metal pollution situation in each mining area, and to assess the ecological risk of the mining areas. The results showed that heavy metal pollution existed in different regions of the three mining areas with pollution elements of Cd, As, Cu, Pb, Zn. Risk level, besides Zhen Yuan mining area (class C), for the other two areas was class D, with Beichang mining area in Lanping as the most serious polluted mining area.

  18. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China.

    Science.gov (United States)

    Briki, Meryem; Zhu, Yi; Gao, Yang; Shao, Mengmeng; Ding, Huaijian; Ji, Hongbing

    2017-08-19

    Mining and smelting areas in Hezhang have generated a large amount of heavy metals into the environment. For that cause, an evaluative study on human exposure to heavy metals including Co, Ni, Cu, Zn, Cr, As, Cd, Pb, Sb, Bi, Be, and Hg in hair and urine was conducted for their concentrations and correlations. Daily exposure and non-carcinogenic and carcinogenic risk were estimated. Sixty-eight scalp hair and 66 urine samples were taken from participants of different ages (6-17, 18-40, 41-60, and ≥ 65 years) living in the vicinity of an agricultural soil near mine and smelting areas. The results compared to the earlier studies showed an elevated concentration of Pb, Be, Bi, Co, Cr, Ni, Sb, and Zn in hair and urine. These heavy metals were more elevated in mining than in smelting. Considering gender differences, females were likely to be more affected than male. By investigating age differences in this area, high heavy metal concentrations in male's hair and urine existed in age of 18-40 and ≥ 66, respectively. However, females did not present homogeneous age distribution. Hair and urine showed a different distribution of heavy metals in different age and gender. In some cases, significant correlation was found between heavy metals in hair and urine (P > 0.05 and P > 0.01) in mining area. The estimated average daily intake of heavy metals in vegetables showed a great contribution compared to the soil and water. Non-carcinogenic and carcinogenic risk values of total pathways in mining and smelting areas were higher than 1 and exceeded the acceptable levels. Thus, the obtained data might be useful for further studies. They can serve as a basis of comparison and assessing the effect of simultaneous exposure from heavy metals in mining and smelting areas, and potential health risks from exposure to heavy metals in vegetables need more consideration.

  19. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region.

    Science.gov (United States)

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-07-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All

  20. Effects of heavy metal pollution on enzyme activities in railway cut slope soils.

    Science.gov (United States)

    Meng, Xiaoyi; Ai, Yingwei; Li, Ruirui; Zhang, Wenjuan

    2018-03-07

    Railway transportation is an important transportation mode. However, railway transportation causes heavy metal pollution in surrounding soils. Heavy metal pollution has a serious negative impact on the natural environment, including a decrease of enzyme activities in soil and degradation of sensitive ecosystems. Some studies investigated the heavy metal pollution at railway stations or certain transportation hubs. However, the pollution accumulated in artificial cut slope soil all along the rails is still questioned. The interest on non-point source pollution from railways is increasing in an effort to protect the soil quality along the line. In this study, we studied spatial distributions of heavy metals and five enzyme activities, i.e., urease (UA), saccharase (SAC), protease (PRO), catalase (CAT), and polyphenol oxidase (POA) in the soil, and the correlation among them beside three different railways in Sichuan Province, China, as well. Soil samples were respectively collected from 5, 10, 25, 50, 100, and 150 m away from the rails (depth of 0-8 cm). Results showed that Mn, Cd, Cu, and Zn were influenced by railway transportation in different degrees while Pb was not. Heavy metal pollution was due to the abrasion of the gravel bed as well as the tracks and freight transportation which caused more heavy metal pollution than passenger transportation. Enzymatic activities were significantly negatively correlated with heavy metals in soils, especially Zn and Cu. Finally, it is proposed that combined use of PRO and POA activities could be an indicator of the heavy metal pollution in cut slope soils. The protective measures aimed at heavy metal pollution caused by railway transportation in cut slope soils are urgent.

  1. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard.

    Science.gov (United States)

    Rahman, M Azizur; Rahman, Mohammad Mahmudur; Reichman, Suzie M; Lim, Richard P; Naidu, Ravi

    2014-02-01

    Dietary exposure to heavy metals is a matter of concern for human health risk through the consumption of rice, vegetables and other major foodstuffs. In the present study, we investigated concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in Australian grown and imported rice and vegetables on sale in Australia. The mean concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Australian grown rice were 7.5 µg kg(-1), 21 µg kg(-1), 144 µg kg(-1), 2.9 mg kg(-1), 24.4 mg kg(-1), 166 µg kg(-1), 375 µg kg(-1), and 17.1 mg kg(-1) dry weight (d. wt.), respectively. Except Cd, heavy metal concentrations in Australian grown rice were higher than Bangladeshi rice on sale in Australia. However, the concentrations of Cd, Cr, Cu, and Ni in Indian rice on sale in Australia were higher than Australian grown rice. The concentrations of Cu and Ni in Vietnamese rice, and that of Cd, Cr, Cu, Ni, and Pb in Thai rice on sale in Australia were also higher than Australian grown rice. Heavy metal concentrations in Pakistani rice on sale in Australia were substantially lower than that in Australian grown rice. In Australian grown rice varieties, the concentrations of heavy metals were considerably higher in brown rice varieties than white rice varieties, indicating Australian brown rice as a potential source of dietary heavy metals for Australian consumers. The mean concentrations of heavy metals in Australian grown and Bangladeshi vegetables on sale in Australia were also determined. Some of the Australian grown and Bangladeshi vegetables contained heavy metals higher than Australian standard maximum limits indicating them as potential sources of dietary heavy metals for Australian consumers. Further investigation is required to estimate health risks of heavy metals from rice and vegetables consumption for Australian consumers. © 2013 Published by Elsevier Inc.

  2. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture.

    Science.gov (United States)

    Seiler, Claudia; Berendonk, Thomas U

    2012-01-01

    The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance, and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn). If those metals reach the environment and accumulate to critical concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Hg, Cd, Cu, and Zn as selecting heavy metals. Nevertheless, the respective environmental background has to be taken into account.

  3. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture

    Directory of Open Access Journals (Sweden)

    Claudia eSeiler

    2012-12-01

    Full Text Available The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as copper (Cu and zinc (Zn. If those metals reach the environment and accumulate to selective concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Cu and Zn as selecting heavy metals. Furthermore, results of the general selection mechanisms need to be carefully evaluated and the respective environmental background has to be taken into account.

  4. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    Science.gov (United States)

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  5. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    Full Text Available Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry and inorganic amendments (lime, superphosphate, and potassium phosphate on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1. A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the

  6. Ecology of heavy metals - a regional and historical study

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, A; Tyler, G

    1969-01-01

    Samples of Hypnum cupressiforme, collected during 1968-1969 in northeastern Goetaland, the low-land areas and the ridge areas of Skane (southern Sweden) have been analyzed for Pb, Zn, Cu, Ni, and Cr. The concentration of these metals were significantly lower in the north-eastern area than in the areas of Skane, particularly in Pb, Ni, and Cr. Between the two areas in Skane differences were only established for Pb and Cu, with the largest concentrations in the humid ridge areas. The differences in the concentrations of these heavy metals between northeastern Goetaland and Skane will be explained by the geographical position with respect to the large industrial regions of Europe. Samples of the same species, collected in Skane 1870-1943 have also been analyzed. Significant increases during the decades around 1900 were demonstrated for Cu and Zn. In the concentrations of Ni a rapid rise has occurred since about 1920, when this metal was introduced in the world production. The content of Ni in the samples from 1969 is more than twice as large as in the samples collected before 1926. The historical trends in the concentrations of Pb have earlier been demonstrated (Ruehling and Tyler 1968). There is little doubt that the rise in the concentrations of these metals is an effect of a larger air-borne supply, originating from human activity. 8 references.

  7. Soil microbial effects of smelter induced heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A

    1986-01-01

    The soil concentrations of Cu and Zn at the secondary smelter were 20 00 mu g/g dry soil. Close to the primary smelter the soil was contaminated with more than ten elements including Pb, Zn, Cu and As at levels ranging between 6000 and 1000 mu g/g dry soil. The correlations between the concentrations of the metals were high at both smelters. Soil respiration rate decreased by about 75% close to both smelters. Total and fluorescein diacetate stained mycelial lengths decrease with increasing heavy metal pollution at the secondary but not at the primary smelter. The fungal community structure was strongly affected by the contamination. General common in coniferous forest soils such as Penicillium and Oidiodendron virtually vanished, while less frequent species like Paecilomyces farinosus and Geomyces pannorum dominated the site close to the smelter. Colony forming units of a number of functional groups of bacteria were found to be very sensitive to metal contamination. The urease activity of the soil was inhibited. Multivariate statistical analyses showed that the metal contamination was the major environmental influence on the microbiotain the soils studied. A study of about 200 decomposition curves resulting from glutamic acid additions to the different soils produced four microbially related parameters: basal respiration rate, initial respiration rate after the addition of the glutamic acid, specific respiration rate during the exponential increase of the respiration rate and the lag time before the exponential phase. With 53 refs.

  8. Radioactivity and heavy metal monitoring in Guacanayabo Gulf sediments

    International Nuclear Information System (INIS)

    Gelen, A.; Diaz Rizo, O.; D'Alessandro, K.; Lopez, N.; Arado, J. O.; Ruiz, G.; Arencibia, G.

    2013-01-01

    Specific activities were measured along a sediment profile collected nearby to the Yara River mouth at the Guacanayabo Gulf. X-Ray fluorescence was also used to measure K, Ca, Ti, Fe, Mn, Cu, Ni, Co, Pb and Zn in this profile and in surface samples along the coastline near of estuary Yara. The measurement of the specific activities evidenced strong mixture process, Heavy metal concentrations have similar values along the profile, excepting Pb that has the greatest values at the surface. All the samples have different pollution levels mainly of Zn, Pb, Cu and Co elements. With the calculated index (Geo-accumulation (Igeo) and Enrichment Factor (EF) index) this coastal environment can be classified as unpolluted to moderately pollute. According to the NOOA indicators, bay levels of before mentioned metals, mainly Cu and Co, were considered as potentially toxic, therefore, further investigations are strongly recommended. An increase in the level of pollutants was evidenced in relation to previous study performed in 2008. The obtained results have shown the influence of the sewer city system, which collects spills of several activities, agricultural use of metal-containing fertilizers and pesticides, and the emission of untreated sewage and also metal contaminated effluents from medical use and industrial units. (Author)

  9. Heavy metal atmospheric deposition study in the South Ural Mountains

    International Nuclear Information System (INIS)

    Frontasyeva, M.V.; Smirnov, L.I.; Lyapunov, S.M.

    2004-01-01

    Samples of the mosses Hylocomium splendens and Pleurozium schreberi, collected in the summer of 1998, were used to study the atmospheric deposition of heavy metals and other toxic elements in the Chelyabinsk Region situated in the South Urals, one of the most heavily polluted industrial areas of the Russian Federation. Samples of natural soils were collected simultaneously with moss at the same 30 sites in order to investigate surface accumulation of heavy metals and to examine the correlation of elements in moss and soil samples in order to separate contributions from atmospheric deposition and from soil minerals. A total of 38 elements (Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Rb, Sr, Zr, Mo, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Hf, Ta, W, Au, Th, U) in soil and 33 elements Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Au, Th, U) were determined by epithermal neutron activation analysis. The elements Cu, Cd and Pb (in moss samples only) were obtained by atomic absorption spectrometry. VARIMAX rotated principal component analysis was used to identify and characterize different pollution sources and to point out the most polluted areas. (author)

  10. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, Rongzhong; Wei, Jingjing; Huang, Chao; Xu, Piao; Wan, Jia; Zhang, Chen

    2018-04-01

    This study aimed to investigate the effect of pyrolysis on the stabilization of heavy metals in plant residues obtained after phytoremediation. Ramie residues, being collected after phytoremediation of metal contaminated sediments, were pyrolyzed at different temperatures (300-700 °C). Results indicated that pyrolysis was effective in the stabilization of Cd, Cr, Zn, Cu, and Pb in ramie residues by converting the acid-soluble fraction of metals into residual form and decreasing the TCLP-leachable metal contents. Meanwhile, the reutilization potential of using the pyrolysis products generated from ramie residues obtained after phytoremediation as sorbents was investigated. Adsorption experiments results revealed that the pyrolysis products presented excellent ability to adsorb methylene blue (MB) with a maximum adsorption capacity of 259.27 mg/g. This study demonstrated that pyrolysis could be used as an efficient alternative method for stabilizing heavy metals in plant residues obtained after phytoremediation, and their pyrolysis products could be reutilized for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Evaluation of Physicochemical Properties and Heavy Metals ...

    African Journals Online (AJOL)

    Physicochemical properties of municipal dumpsite compost in Kano metropolis and concentration of heavy metals were investigated. Analysis was carried out by atomic absorption spectrometry (Buck Scientific VPG 210). The results shows that the compost pH (6.63-8.19), electric conductivity of compost (638-933μs/cm), ...

  12. Heavy metal contamination in TIMS Branch sediments

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1990-01-01

    The objective of this memorandum is to summarize results of previous sediment studies on Tims Branch and Steed's Pond conducted by Health Protection (HP) and by the Savannah River Laboratory (SRL) in conjunction with Reactor Materials Engineering ampersand Technology (RMET). The results for other heavy metals, such as lead, nickel, copper, mercury, chromium, cadmium, zinc, and thorium are also summarized

  13. Heavy metal bioaccumulation in Callinectes amnicola and ...

    African Journals Online (AJOL)

    The bioaccumulation of heavy metals in organisms is as a result of pollutants discharge generated by anthropogenic and natural activities which has become a tremendous concern in developing nations. The levels of cadmium, copper, chromium, lead, zinc and nickel in the tissue of Callinectes amnicola and ...

  14. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    This study investigates the presence of heavy metal contamination of Chrysichthys nigrodigitatus and Lates niloticus. Adult C. nigrodigitatus and L. niloticus were obtained from fishermen in Ikere Gorge, Oyo state, Nigeria. Water samples were also collected during the wet and dry seasons of the year in the same locality.

  15. Heavy metal levels, physicochemical properties and microbial ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... out to assess the microbial, physicochemical and heavy metal characteristics of soil samples from five different waste collection sites within the University of Benin, Benin City and evaluated using standard analytical and classical microbiological methods.

  16. On chemical activity of heavy metal oxides

    International Nuclear Information System (INIS)

    Mechev, V.V.

    1994-01-01

    Interaction of solid oxides of heavy nonferrous metals with sulfur and carbon is investigated. The results are discussed. Direct dependence of chemical activity of oxides on disordering of their crystal lattice at heating is established. Beginning of interaction in the systems studied is accompanied by change of oxide conductivity type

  17. Photoelectrochemical detection of toxic heavy metals

    CSIR Research Space (South Africa)

    Chamier, J

    2010-09-01

    Full Text Available on various substrates introduced the possibility for portable and on-site instant verification of heavy metal pollutants. In this work, the favorable properties of the mercury-sensitive fluorescent molecule, Rhodamine 6G hydrozone derivative (RS), were...

  18. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  19. HEAVY METALS CONTAMINATION OF TOPSOIL AND ...

    African Journals Online (AJOL)

    a

    emissions from automobile exhaust, waste incineration, land disposal of wastes, use of .... of total organic carbon increased from 2.0 ± 1.5 % in the top soil to 3.42 ± 0.83 ..... Thus, accumulation of heavy metals in the soil has potential to restrict.

  20. Uptake of heavy metals by the marine algae Padina gymnospora from Sepetiba Bay (RJ, Brazil) through radiotracers

    International Nuclear Information System (INIS)

    Magalhaes, V.F. de.

    1991-01-01

    The accumulation and the loss of 210 Pb, 51 Cr and 65 Zn by the alga Padina gymnospora is studied through radiotracer experiments. The evaluation of the alga as a bio indicator of these heavy metals pollution is presented. The use of this seaweed species to study the transfer of Pb, Cr, and Zn through the food chain is discussed. (M.A.C.)

  1. Effect of leaf and soil contaminations on heavy metals content in spring wheat crops

    International Nuclear Information System (INIS)

    Weber, R.; Hrynczuk, B.

    2000-01-01

    Glass house experiments were carried out in Wagner pots containing 6 kg of soil. The amounts were compared of Zn, Pb and Cd taken up by the crop of spring wheat from contamination introduced into the soil or upon leaves. The heavy metals were labelled with the radioactive isotopes 65 Zn, 210 Pb and 115 Cd. The experiment was performed as a series of independent analyses in four replications. The dynamics of the labelled heavy metals translocation from contaminations sprayed on the upper or bottom side of the flag leaf was also tested. The highest concentration of 65 Zn was found in the straw and gain of wheat. much higher amounts of the metals appeared to have been taken up by the plants from leaf contamination than from soil. The highest dynamics of translocation from leaves to other vegetative and generative organs of plants was that of zinc. (author)

  2. Leachability of heavy metals from scrap dirt sampled at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, Peter Engelund; Christensen, Thomas Højlund

    2000-01-01

    Column and batch leaching experiments were performed to quantify leaching of heavy metals (Pb, Cu, Cd and Zn) from scrap dirt representing different activities at two iron scrap and metal recycling facilities. The scrap dirt is often found directly upon the bare unprotected soil at recycling...... battery salvage locations was different, showing lower pH and signi®cant leaching of lead (up to 8000 mg Pb l±1), cadmium (up to 40 mg Cd l±1), and zinc (up to 2000 mg Zn l±1). The column and batch leaching experiments gave comparable results at the order of magnitude level, and both approaches are......, at that level, useful for evaluation of leaching potentials from scrap dirt. The experiments showed that scrap dirt at recycling facilities constitutes only a modest leaching problem, but a long-term soil pollution problem from a land-use perspective. Leaching experiments with compost solution indicated...

  3. Analysis of heavy metals concentration in water and sediment in the Hara biosphere reserve, southern Iran.

    Science.gov (United States)

    Nowrouzi, Mohsen; Mansouri, Borhan; Nabizadeh, Sahar; Pourkhabbaz, Alireza

    2014-02-01

    This study determined the concentration of heavy metals (Al, Cr, Cu, and Zn) in water and sediments at nine sites in the Hara biosphere reserve of southern Iran during the summer and winter 2010. Determination of Al, Cr, Cu, and Zn in water was carried out by graphite furnace atomic absorption spectrometer (Shimadzu, AA 610s) and in sediment by flame atomic absorption spectrometer (Perkin Elmer, AA3030). Results showed that the heavy metal concentrations in the water samples decreased in the sequence of Zn > Al > Cu > Cr, while in sediment samples were Cr > Zn > Cu > Al. Data analysis indicated that with the exception of Al, there was a Pearson's correlation coefficient between pH and Cu, Zn, and Cr at α = 0.01, 0.05, and 0.001 in sediment (in winter), respectively. There were also significant differences between heavy metals of Cr, Cu, and Zn during the two seasons (p < 0.001) in the water and sediment.

  4. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution.

  5. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution. PMID:28234944

  6. Distribution and Analysis of Heavy Metals Contamination in Soil, Perlis, Malaysia

    Science.gov (United States)

    Nihla Kamarudzaman, Ain; Woo, Yee Shan; Jalil, Mohd Faizal Ab

    2018-03-01

    The concentration of six heavy metals such as Cu, Cr, Ni, Cd, Zn and Mn were studied in the soils around Perlis. The aim of the study is to assess the heavy metals contamination distribution due to industrialisation and agricultural activities. Soil samples were collected at depth of 0 - 15 cm in five stations around Perlis. The soil samples are subjected to soil extraction and the concentration of heavy metals was determined via ICP - OES. Overall concentrations of Cr, Cu, Zn, Ni, Cd and Mn in the soil samples ranged from 0.003 - 0.235 mg/L, 0.08 - 41.187 mg/L, 0.065 - 45.395 mg/L, 0.031 - 2.198 mg/L, 0.01 - 0.174 mg/L and 0.165 - 63.789 mg/L respectively. The concentration of heavy metals in the soil showed the following decreasing trend, Mn > Zn > Cu > Ni > Cr > Cd. From the result, the level of heavy metals in the soil near centralised Chuping industrial areas gives maximum value compared to other locations in Perlis. As a conclusion, increasing anthropogenic activities have influenced the environment, especially in increasing the pollution loading.

  7. Analysis of Heavy Metals in Water and Fish (Tilapia sp.) Samples from Tasik Mutiara, Puchong

    International Nuclear Information System (INIS)

    Ismaniza Ismail; Idaliza Mat Saleh

    2012-01-01

    The concentrations of seven heavy metals (Al, As, Cd, Cu, Fe, Pb and Zn) were detected in muscle tissues of Tilapia sp. (black tilapia) collected from the lake of Taman Mutiara, Puchong. Samples were collected for several months in the end of 2009 at three sampling points. Heavy metals in fish and water samples were analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). Only Al, Cu, Fe and Zn were detected in the order Fe > Zn > Al > Cu, whereas concentrations of As, Cd and Pb were below the detection limit. The concentrations of heavy metals in water samples were low and below the detection limit. The levels of heavy metals in the fish samples can be considered as a serious matter of concern as it may be consumed and it signifies the degradation of lake quality. Generally, the sources of heavy metals in the Tasik Mutiara, Puchong could be attributed to the illegal waste dumping activity and discharge from the nearby sewage treatment plant into the lake which promote eutrophication in the lake. It could also be attributed to the Low Dissolved Oxygen (DO) levels in the lake. (author)

  8. Phytoremediation of heavy metal-contaminated water and sediment by eleocharis acicularis

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Masayuki; Ha, Nguyen Thi Hoang [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Ohmori, Yuko [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Taisei Kiso Sekkei Co., Ltd., Tokyo (Japan); Sano, Sakae [Faculty of Education, Ehime University, Matsuyama (Japan); Sera, Koichiro [Cyclotron Center, Iwate Medical University, Takizawa-mura (Japan)

    2011-08-15

    Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log-linear fashion. The bioconcentration factor for these elements decreases log-linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. THE INFLUENCE OF SELECTED FACTORS ON THE LEACHING OF HEAVY METALS FROM SMELTER WASTE

    OpenAIRE

    Kamila Mizerna; Anna Król

    2015-01-01

    The paper presents the results of leaching research of selected heavy metals (Pb, Cu, Zn, Ni, Cd, Cr) from industrial waste. The impact of waste fragmentation on the level of heavy metals leaching was analyzed. The decrease of copper and zinc release and the increase of nickel leaching were observed with increasing grain size fraction of waste. Furthermore, release of contaminants in different ratio of liquid to solid (L/S = 10 dm3/kg and 2 dm3/kg) was studied. Higher concentrations of heavy ...

  10. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    Science.gov (United States)

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  11. High resolution Moessbauer spectroscopy with 67Zn in metallic systems

    International Nuclear Information System (INIS)

    Potzel, W.

    1985-01-01

    Moessbauer experiments on metallic systems are described where the high resolution 93.3 keV resonance in 67 Zn is used. In the first part, the Cu-Zn alloy system is investigated and the high energy resolution of this Moessbauer transition is employed to determine small changes of the s-electron density at the 67 Zn nucleus when the Zn concentration is changed. In the second part, Zn metal is taken as an example to demonstrate that the 93.3 keV transition is also extremely sensitive to small changes of lattice dynamical effects. 7 refs., 18 figs. (author)

  12. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  13. Heavy Metal Displacement in Chelate-Assisted Phytoremediation of Biosolids Soil

    Science.gov (United States)

    Kirkham, M. B.; Liphadzi, M. S.

    2005-05-01

    Heavy metals in biosolids (sewage sludge) applied to land contaminate the soil. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with biosolids following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals, as affected by a chelate, in soil (Haynie very fine sandy loam) from a 25-year old sludge farm. Soil columns (105 cm long; 39 cm in diameter) either had a plant (hybrid poplar; Populus deltoides Marsh. x P. nigra L.) or no plant. When the poplars were 144 days old, the tetrasodium salt of the chelating agent EDTA (ethylenediamine-tetraacetic acid) was irrigated onto the soil at a rate of 1 g per kg of soil. Drainage water, soil, and plants were analyzed for three toxic heavy metals (Cd, Ni, Pb) and four essential heavy metals (Cu, Fe, Mn, Zn). Without EDTA, concentrations of the seven heavy metals in the leachate from columns with or without plants were low or below detection limits. With or without plants, the EDTA mobilized all heavy metals and increased their concentration in drainage water. Without plants, the concentrations of Cd, Cu, Fe, Pb, and Zn in the leachate from columns with EDTA were above drinking-water standards. (There is no drinking-water standard for Ni.) The presence of poplar plants in the soil reduced the concentrations of Cu, Fe, and Zn in the leachate so it fell within drinking-water standards. Concentrations of Cd and Pb in the leachate remained above drinking-water standards with or without plants. At harvest (124 days after the EDTA application), total concentration of each heavy metal in the soil at different depths in the columns with EDTA was similar to that in the columns without EDTA. The chelate did not affect the concentration of heavy metals in the roots, stems, or leaves

  14. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    Science.gov (United States)

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  15. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    Science.gov (United States)

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    Science.gov (United States)

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Regulation of the heavy metal pump AtHMA4 by a metal-binding autoinhibitory domain

    DEFF Research Database (Denmark)

    Bækgaard, Lone; Roed, Maria Dalgaard; Zhang, Yang

    Heavy metal pumps, or P1B ATPases, are important for heavy metal homeostasis in most cells. In general, these pumps contain extended N- and/or C-termini with one or more metal-binding domains (MBDs), but the role of the extended termini is still not clear. The Arabidopsis thaliana Zn2+-ATPase At......HMA4 contains a very long C-terminus with 13 cysteine pairs and an 11 amino acid residue long histidine stretch at the end. To ascertain the role of the potentially metal-binding domains in the C-terminus of AtHMA4, the C-terminal region alone was expressed in yeast. This resulted in increased Zn...

  18. Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium.

    NARCIS (Netherlands)

    Keltjens, W.G.; Beusichem, van M.L.

    1998-01-01

    Abstract

    Heavy metal contaminated soils often show increased levels of more than one metal, e.g. copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb) or nickel (Ni). In case such soils are used for crop production, prediction of yield reduction or quality decline due to heavy metals in the soil

  19. Biosorption of multi-heavy metals by coral associated phosphate solubilising bacteria Cronobacter muytjensii KSCAS2.

    Science.gov (United States)

    Saranya, Kailasam; Sundaramanickam, Arumugam; Shekhar, Sudhanshu; Meena, Moorthy; Sathishkumar, Rengasamy Subramaniyan; Balasubramanian, Thangavel

    2018-06-02

    This paper examines the potential detoxification efficiency of heavy metals by phosphate solubilising bacteria (PSB) that were isolated from coral, sea grass and mangrove environment. Initially, four potential bacterial isolates were selected based on their phosphate solubilisation index from 42 strains and were used for the metal tolerance test. Among the four isolates, KSCAS2 exhibited maximum tolerance to heavy metals and the phenotype indicated the production of extra polymeric substances. In a multi-heavy metal experimental setup at two concentrations (100 and 200 mg L -l ), it has been demonstrated that the bacteria have extracellularly sequestered metal ions in amorphous deposits and this has been confirmed by scanning electron microscopy. In experiments with a 100 mg L -1 initial metal concentration, the percentages of metal removal by bacteria were 55.23% of Cd, 72.45% of Cr, 76.51% of Cu and 61.51% of Zn, respectively. In subsequent experiments, when the metal concentration was increased up to 200 mg L -l , the metal removal capacity decreased as follows: 44.62%, 63.1%, 67% and 52.80% for Cd, Cr, Cu and Zn, respectively. In addition, the biosorption of heavy metals was confirmed by the Fourier transform infrared Spectroscopy (FT-IR) and scanning electron microscopy (SEM) analysis. The heavy metal concentrations in a broth culture were analysed by inductively coupled plasma-optical emission spectroscopy (ICP-OES). The study suggests that PSB Cronobacter muytjensii KSCAS2 can efficiently remove the heavy metals and these bacteria could be used for the metal removal from the agricultural soils. Copyright © 2018. Published by Elsevier Ltd.

  20. Metabolic Demands of Heavy Metal Drumming

    Directory of Open Access Journals (Sweden)

    Bryan Romero

    2016-07-01

    Full Text Available Background: The drum set involves dynamic movement of all four limbs. Motor control studies have been done on drum set playing, yet not much is known about the physiological responses to this activity. Even less is known about heavy metal drumming. Aims: The purpose of this study was to determine metabolic responses and demands of heavy metal drumming. Methods: Five semi-professional male drummers (mean ± SD age = 27.4 ± 2.6 y, height = 177.2 ± 3.8 cm, body mass = 85.1 ± 17.8 kg performed four prescribed and four self-selected heavy metal songs. Oxygen consumption (VO2, minute ventilation (VE and respiratory exchange ratio (RER were measured using a metabolic cart.  Heart rate (HR was measured using a heart rate monitor. VO2max was determined using a graded cycle ergometer test. Results: The results indicated a metabolic cost of 6.3 ± 1.4 METs and heart rate of 145.1 ± 15.7 beats·min-1 (75.4 ± 8.3% of age-predicted HRmax. VO2 peak values reached approximately 90% of the drummer’s VO2max when performing at the fastest speeds. According to these results, heavy metal drumming may be considered vigorous intensity activity (≥ 6.0 METs. The relative VO2max of 40.2 ± 9.5 mL·kg·min-1 leads to an aerobic fitness classification of “average” for adult males. Conclusions: The metabolic demands required during heavy metal drumming meet the American College of Sports Medicine guidelines for the development of health related fitness.  Keywords: Drum set, Exercise physiology, VO2, Music

  1. Lauryl Amine as heavy metal collector of boiler ash from pulp and paper mill waste

    Science.gov (United States)

    Sembiring, M. P.; Kaban, J.; Bangun, N.; Saputra, E.

    2018-04-01

    Theincreasing of demand of pulp and paper products, will following with the growing the pulp and paper industryand generate significant mill waste. The total waste reached 1/3 of the amount raw materials used and ash boiler is the waste with the largest percentage of 52%. For that it takes effort to manage the existing waste. The boiler ash contained the chemical elements, it can be utilized such as fertilizer, because it also contains transition metals in form of heavy metal such as Cadmium (Cd), Cobalt (Co), Chrome (Cr), Cupprum (Cu), Ferrum (Fe), Nickel (Ni), and Zinc (Zn), the use of boiler ash must follow the threshold specified by the Government. Several studies have been undertaken to reduce and extract heavy metals from ash and sand of the boiler by using carbon dioxide as its ligand. Eelectrochemical method was used to remove and recovery of heavy metals from the incenerator. This study focused on removal of heavy metals using Lauryl Amine as collector and three solvents namely Dichloromethane, Ethanol and n-Hexane. The treatmentswas able to extract the heavy metal and generally reduce the heavy metal content of ash boiler pulp and paper mill waste. The combination treatment used toreduce the heavy metal content of 5 gram Lauryl Amine collector in Dichloromethane solvent for 4 hours process time.

  2. Capability and Mechanisms of Macrofungi in Heavy Metal Accumulation:A Review

    Directory of Open Access Journals (Sweden)

    CHEN Miao-miao

    2017-10-01

    Full Text Available Some macrofungi have the ability to accumulate heavy metals, which is comparable to hyper-accumulator plants. Cordyceps militaris can accumulate Zn up to 20 000 mg·kg-1. Therefore, macrofungi have the potential to be used as an important bioremediation tool for heavy metals. In this review, we summarized the heavy metal resistant capacity of typical macrofungi and known relevant mechanisms. Generally, straw-decay fungi presented better capability for Cu, Ag and Cd enrichment than wood-decay fungi, while wood-decay fungi could accumulate Cr, Mg, Se and Pb. Different macrofungi species, different growth periods(mycelium and fruiting body and different parts of fruiting body showed different capability for heavy metals accumulation. General mechanisms for heavy metals accumulation in macrofungi included extracellular precipitation in the forms of polymeric substances, cell wall adsorption and intracellular absorption. Macrofungi could also detoxify by chelating metal ions by metallothionein(MT, secreting antioxidant enzymes(SOD, CAT, POD and degradating the misfolded proteins by ubiquitin-proteasome system(UPS. We also explored the potential of macrofungi in heavy metal remediation and pollution diagnostics as a biological indicator. Some macrofungi had been applied in the remediation of heavy metal contaminated soils and water. Finally, some future research areas including strain breeding and genetic engineering were discussed, which might provide references for the future studies.

  3. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, J.-E.; Andrews, D. J.

    2017-09-01

    We propose an ESA/M5 spacecraft mission to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×1019 kg of (16) Psyche make it one of the largest and densest of asteroids, 4.5 g cm-3, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. (16) Psyche orbits the Sun with semi-major axis 2.9 AU, 3º inclination, and is as yet unexplored in-situ.

  4. Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments.

    Science.gov (United States)

    Krami, Loghman Khoda; Amiri, Fazel; Sefiyanian, Alireza; Shariff, Abdul Rashid B Mohamed; Tabatabaie, Tayebeh; Pradhan, Biswajeet

    2013-12-01

    One hundred and thirty composite soil samples were collected from Hamedan county, Iran to characterize the spatial distribution and trace the sources of heavy metals including As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Fe. The multivariate gap statistical analysis was used; for interrelation of spatial patterns of pollution, the disjunctive kriging and geoenrichment factor (EF(G)) techniques were applied. Heavy metals and soil properties were grouped using agglomerative hierarchical clustering and gap statistic. Principal component analysis was used for identification of the source of metals in a set of data. Geostatistics was used for the geospatial data processing. Based on the comparison between the original data and background values of the ten metals, the disjunctive kriging and EF(G) techniques were used to quantify their geospatial patterns and assess the contamination levels of the heavy metals. The spatial distribution map combined with the statistical analysis showed that the main source of Cr, Co, Ni, Zn, Pb, and V in group A land use (agriculture, rocky, and urban) was geogenic; the origin of As, Cd, and Cu was industrial and agricultural activities (anthropogenic sources). In group B land use (rangeland and orchards), the origin of metals (Cr, Co, Ni, Zn, and V) was mainly controlled by natural factors and As, Cd, Cu, and Pb had been added by organic factors. In group C land use (water), the origin of most heavy metals is natural without anthropogenic sources. The Cd and As pollution was relatively more serious in different land use. The EF(G) technique used confirmed the anthropogenic influence of heavy metal pollution. All metals showed concentrations substantially higher than their background values, suggesting anthropogenic pollution.

  5. classification of plants according to their heavy metal content around

    African Journals Online (AJOL)

    Mgina

    accumulated heavy metals around North Mara Gold Mine were not known. To study such ... heavy metal hyperaccumulator plants for possible future remediation of the study area. ... mine is about 100 kilometers east of Lake. Victoria and 20 ...

  6. Evaluation of some heavy metal contaminants in biscuits, fruit drinks ...

    African Journals Online (AJOL)

    Evaluation of some heavy metal contaminants in biscuits, fruit drinks, concentrates, ... effect in human due to continual consumption of food contaminated with heavy metals gotten from raw materials, manufacturing and packaging processes.

  7. Determination of selected heavy metals in inland fresh water of ...

    African Journals Online (AJOL)

    Agadaga

    Key words: Heavy metals, freshwater, concentrations, quality, variation, distribution. ... prevalence of heavy metals in inland water of lower River. Niger drain are scarce ..... Niger waters at Ajaokuta were found to be low and within guideline.

  8. Concentration and Health Implication of Heavy Metals in Drinking ...

    African Journals Online (AJOL)

    Concentration and Health Implication of Heavy Metals in Drinking Water from Urban ... water is not mentioned by WHO, but all the samples analyzed were found to ... Key words: Drinking water quality, Heavy metals, Maximum admissible limit, ...

  9. Phytoremediation of heavy metals with several efficiency enhancer ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Key words: phytoremediation, heavy metal, plant growth promoting rhizobacteria, multi-functional method. ... population in the twentieth century, heavy metal ... This natural and environmental friendly technology is.

  10. heavy metals and cyanide distribution in the villages surrounding ...

    African Journals Online (AJOL)

    detection limit) were higher in the wells closest to the Tailing Storage Facility ... Key Words: Heavy metals pollution, Total cyanide, ground water pollution and ..... cyanide, heavy metals and probably other hazardous substances, leakage of.

  11. Studies of heavy metal contents and microbial composition of ...

    African Journals Online (AJOL)

    FLEXI-DONEST

    the use of private electricity generating sets, in recent times, have ... soil and evaluate the impact of heavy metal on soil degradable ..... a reasonable length of time by herbivores may .... Heavy Metals in Root, Stem and Leaves of Acalypha.

  12. Total Contents and Sequential Extraction of Heavy Metals in Soils Irrigated with Wastewater, Akaki, Ethiopia

    Science.gov (United States)

    Fitamo, Daniel; Itana, Fisseha; Olsson, Mats

    2007-02-01

    The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0-20 and 30-50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0-20 cm; and Cr, Ni, Cu, Cd, and Zn at 30-50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction

  13. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type

    DEFF Research Database (Denmark)

    Egemose, Sara; Sønderup, Melanie J.; Grudinina, Anna

    2015-01-01

    Heavy metals have toxic effects on flora and fauna in the aquatic environments and are of great concern in stormwater. Heavy metal runoff was studied in 37 stormwater ponds in Denmark with varying heavy metal load, catchment type and pond design. The studied metals were Cu, Cr, Cd, Pb, Ni and Zn...... difficult to retain. The removal efficiency in the ponds varied considerably, with the highest retention of Pb, Ni and Zn due to higher particulate fraction. The retention increased with increased pond volume-to-reduced catchment area ratio. In addition, the pond age affected the efficiency; whereas ponds...... less than 1-2 years efficiently removed all metals, 30-40-year-old ponds only removed Pb, Ni and Zn, but steeply decreasing over the years. Physical parameters such as pond size, age and sedimentation patterns were found to play a more significant role in the removal compared with chemical parameters...

  14. Leaching of heavy metals from steelmaking slags

    International Nuclear Information System (INIS)

    Gomez, J. F. P.; Pino, C. G.

    2006-01-01

    Leaching tests with EAF and Ladle slags were performed, using a flow through tests and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. the chemical analysis of the leachates during this period shows, in general, for both types of slag, and increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slang samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-though test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5% (Ca) and 1% (other elements). (Author) 12 refs

  15. Structural and functional studies of heavy metal ATPases

    DEFF Research Database (Denmark)

    Sitsel, Oleg

    2015-01-01

    to handle heavy metal ions. LpCopA is then compared to its two human homologues ATP7A and ATP7B, which cause the severe Menkes and Wilson diseases when malfunctioning. The differences between the three proteins are described and disease-causing mutations in the human proteins are analyzed. The crystal......Copper and zinc are trace elements that are crucial for the well-being of all cells and are an indispensable part of many proteins. At the same time, the intracellular levels of these metals require careful regulation, as an excess or deficiency may be lethal. P1B-ATPases are key players in Cu......+ and Zn2+ homeostasis that belong to the superfamily of P-type ATPases, transmembrane proteins which are present in virtually all lifeforms, with functions ranging from membrane potential generation to muscle relaxation. The goal of this thesis is to improve our understanding of P1B-ATPases by focusing...

  16. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    International Nuclear Information System (INIS)

    Hsu, M.J.; Selvaraj, K.; Agoramoorthy, G.

    2006-01-01

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan

  17. Accumulation of Heavy Metals by Small Mammals the Background and Polluted Territories of the Urals

    Directory of Open Access Journals (Sweden)

    Kovalchuk L. A.

    2017-08-01

    Full Text Available Accumulation of heavy metals (Cu, Zn, Cd in hemopoietic-competent organs of ecologically contrast species of small mammals (Clethrionomys glareolus, Sorex araneus, Apodemus uralensis from natural populations of the Middle and South Urals were considered. The content of exogenous and essential trace elements in animal tissues (a liver, kidney, a spleen was determined by atomic absorption spectroscopy. It has been shown that bioaccumulation of heavy metals in organs of insectivores significantly differs from it of bank voles and wood mice. The smallest total content of heavy metals is shown in wood mice in technogenic territories of the Middle Urals. The submitted data demonstrate the competitive mechanism of the Cu, Zn, Cd. The increased concentrations of endogenous trace elements (copper, zinc in relation to a toxicant (cadmium, other things being equal, reduce cadmium accumulation level in the tissues Sorex araneus.

  18. Assessment of Heavy Metal Contamination in Marine Sediments of East Coast of Tamil Nadu Affected by Different Pollution Sources.

    Science.gov (United States)

    Harikrishnan, N; Ravisankar, R; Chandrasekaran, A; Suresh Gandhi, M; Kanagasabapathy, K V; Prasad, M V R; Satapathy, K K

    2017-08-15

    The aim of this study was to determine the concentration of heavy metals in the sediments of Periyakalapet to Parangipettai coast, east coast of Tamil Nadu, by using energy-dispersive X-ray fluorescence (EDXRF) technique. The average heavy metal concentrations in the sediment samples were found in the order Al>Fe>Ca>Ti>K>Mg>Mn>Ba>V>Cr>Zn>La>Ni>Pb>Co>Cd>Cu. The average heavy metal concentrations were below the world crustal average. The degree of contamination by heavy metals was evaluated using pollution indices. The results of pollution indices revealed that titanium (Ti) and cadmium (Cd) were significantly enriched in sediments. Pearson correlation analysis was performed among heavy metal concentrations to know the existing relationship between them. Multivariate statistical technique was employed to identify the heavy metal pollution sources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    Science.gov (United States)

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-01-01

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr. PMID:26561822

  20. The pollution and the potential ecological risk of heavy metals in swan lake wetland of Sanmenxia

    Science.gov (United States)

    Li, Jifeng

    2018-04-01

    The soil samples were collected from swanlake wetland and digested by the national standard method. The contents of Pb, Cr, Cu, Zn and Mn were detected and the potential ecological risk was estimated by the the potential ecological risk index. The result shows the wetland was slightly ecological hazarded. The ecosystem has been affected by the heavy metal.

  1. Fractionation of heavy metals and assessment of contamination of the sediments of Lake Titicaca.

    Science.gov (United States)

    Cáceres Choque, Luis Fernando; Ramos Ramos, Oswaldo E; Valdez Castro, Sulema N; Choque Aspiazu, Rigoberto R; Choque Mamani, Rocío G; Fernández Alcazar, Samuel G; Sracek, Ondra; Bhattacharya, Prosun

    2013-12-01

    Chemical weathering is one of the major geochemical processes that control the mobilization of heavy metals. The present study provides the first report on heavy metal fractionation in sediments (8-156 m) of Lake Titicaca (3,820 m a.s.l.), which is shared by the Republic of Peru and the Plurinational State of Bolivia. Both contents of total Cu, Fe, Ni, Co, Mn, Cd, Pb, and Zn and also the fractionation of these heavy metals associated with four different fractions have been determined following the BCR scheme. The principal component analysis suggests that Co, Ni, and Cd can be attributed to natural sources related to the mineralized geological formations. Moreover, the sources of Cu, Fe, and Mn are effluents and wastes generated from mining activities, while Pb and Zn also suggest that their common source is associated to mining activities. According to the Risk Assessment Code, there is a moderate to high risk related to Zn, Pb, Cd, Mn, Co, and Ni mobilization and/or remobilization from the bottom sediment to the water column. Furthermore, the Geoaccumulation Index and the Enrichment Factor reveal that Zn, Pb, and Cd are enriched in the sediments. The results suggest that the effluents from various traditional mining waste sites in both countries are the main source of heavy metal contamination in the sediments of Lake Titicaca.

  2. Modeling of heavy metal salt solubility using the Extended UNIQUAC model

    DEFF Research Database (Denmark)

    Iliuta, Maria Cornelia; Thomsen, Kaj; Rasmussen, Peter

    2002-01-01

    Solid-liquid equilibria in complex aqueous systems involving a heavy metal cation (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+) and one or more ions for which Extended UNIQUAC parameters have been published previously are modeled using the Extended UNIQUAC model. Model parameters are determined...

  3. Heavy metals in fishes from coastal waters of Cochin, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, M.; Balachandran, K.K.; Sankaranarayanan, V.N.; Joseph, T.

    to species. Copper, Zn, Fe and Mn showed increased levels in the gills and alimentary canal compared to the muscle. Difference in heavy metal concentration in various species studied is attributed to the varying feeding habits. The observed levels were below...

  4. Analysis of the distribution of heavy metals in the soils of Bagega ...

    African Journals Online (AJOL)

    Uncontrolled exploitation and degradation in the environment over the past few decades as the result of urbanization and poverty has caused a serious damage to lives and properties. The study analysed the spatial distribution of heavy metal (Fe, Cu and Zn) in Bagega, Zamfara state. Three mapping units were identified ...

  5. Glomalin in a mediterranean ecosystem affected by mining activities and its contribution to heavy metals sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, P.; Meier, F.; Borie, G.; Borie, F.

    2009-07-01

    Glomalin-related soil protein (GRSP), a glycoprotein produced by arbuscular mycorrhizal fungi (AMF) and usually presents in high amounts in soil, may stabilize heavy metals such as Cu an Zn in soils affected by mining activities, as large areas of central Chile. (Author)

  6. Study of heavy metal in sewage sludge and in Chinese cabbage ...

    African Journals Online (AJOL)

    The study was performed to investigate the heavy metal content and availability for crops in sewage sludge and its accumulation in Chinese cabbage grown in sewage sludge amended soil. We determined the total and chemical fraction of As, Cr, Cd, Pb, Ni, Cu, Zn, Fe, Mg and Mn in sewage sludge and the total content of ...

  7. Levels of heavy metals in fish obtained from two fishing sites in ...

    African Journals Online (AJOL)

    Ekam

    Akwa Ibom State is located in the Niger Delta region of Nigeria and a substantial amount of the fishes consumed in the area are bought at Ifiayong and Ibaka beaches. This study was carried out to analyze heavy metals (Zn, Cu, Cd, Pb, Cr and As) in kidney, heart, gills and liver of silver catfish (Chrysichthys nigrodigitatus) ...

  8. Distribution and Ecological Risk Assessment of Heavy Metals in Arable Soils in Bijiang Watershed, China

    Directory of Open Access Journals (Sweden)

    HUANG Wei-heng

    2017-08-01

    Full Text Available It has been paid much attention to soil heavy metal pollution in the Bijiang watershed caused by the Lanping lead-zinc mine. We collected 35 arable soil samples along Bijiang, then sampled and tested the contents of As, Cu, Zn, Cd, Pb, Hg. And then with Nemerow Multi-Factor Index and the Potential Ecological Risk Index method, we evaluated the heavy metal pollution risk. The results showed:(1The accumulation of Pb, Zn, Cd was in a relatively high level, the average was 1 146.97, 579.15, 4.85 mg·kg-1 respectively, which was seriously polluted; the average accumulation of As was 26.85 mg·kg-1; but Cu, Hg was slightly polluted. (2Statistical analysis showed that Lanping area was a main point source pollution of As, Zn, Pb, Cd, while Cu, Hg was pollution caused by different non-point source pollution.(3Within this basin, the Nemerow index was 17.69, which was serious heavy metal pollution, while the comprehensive potential ecological risk index was 773.38, which was a strong potential ecological risk. The contribution of pollutants was Cd > Pb > Zn> As> Hg > Cu. (4As a whole, the soil heavy metal pollution of paddy field was higher than of the dry land.

  9. Leaching of heavy metals from contaminated soils: An experimental and modeling study

    NARCIS (Netherlands)

    Dijkstra, J.J.; Meeussen, J.C.L.; Comans, R.N.J.

    2004-01-01

    In this paper, we characterize the leaching of heavy metals (Ni, Cu, Zn, Cd, and Pb) from eight contaminated soils over a wide range of pH (pH 0.4-12) using an original approach based on batch pH-static leaching experiments in combination with selective chemical extractions and geochemical modeling.

  10. IMMOBILIZATION OF HEAVY METALS IN SOILS AND WATER BY A MANGANESE MINERAL

    Science.gov (United States)

    A synthesized Mn mineral used in study on adsorption of heavy metals from water has shown a great adsorption capability for Pb, Cu, Cd, Co, Ni and Zn on this mineral over a pH range from 2 to 8. The retention of Pb on this mineral was as high as 10% of its weight. Application of ...

  11. Assessment of toxicity of heavy metal contaminated soils for Collembola in the field and laboratory

    DEFF Research Database (Denmark)

    Xu, Jie; Krogh, Paul Henning; Luo, Yongming

    2008-01-01

    We present a field and laboratory investigation of effects of increasing levels of heavy metal contamination on the biodiversity and performance of collembolans. A 40 year old pollution with Cu, Zn, Pb and Cd pollution due to Cu smelting over 40 years was investigated in a paddy field area of Zhe...

  12. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China

    International Nuclear Information System (INIS)

    Lu Xinwei; Wang Lijun; Li, Loretta Y.; Lei Kai; Huang Li; Kang Dan

    2010-01-01

    The concentrations of Pb, Cu, Zn, Mn, Ni, Co and Cr in street dust samples from Baoji in north-west China were measured by wavelength dispersive X-ray fluorescence spectrometry, while As and Hg in street dust samples were determined by atomic fluorescence spectrometry. Principal component analysis and cluster analysis, coupled with correlation coefficient analysis, were used to analyze the data and to identify possible sources of these heavy metals. The results indicate that street dust in Baoji has elevated heavy metal concentrations, especially Hg, Pb, Zn and Cu, which are 16-77, 7-92, 6-26 and 4-12 times the background levels in Shaanxi soil, respectively. The mean heavy metal concentrations in street dust divided by the corresponding background values of Shaanxi soil decrease in the order of Hg > Pb > Zn > Cu > Cr > As > Ni > Co > Mn > V. Three main sources of these heavy metals were identified. As, V, Pb and Co originated from nature and traffic. Cu, Zn, Hg and Mn, especially the former two, mainly derive from industry sources, as well as traffic. Cr and Ni mainly originate from soil.

  13. Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields.

    Science.gov (United States)

    Rafique, Nazia; Tariq, Saadia R

    2016-05-01

    Heavy metals enriched agricultural soils have been the subject of great concern because these metals have potential to be transferred to the soil solution and afterward accumulated in food chain. To study the trace metal persistence in crop soil, 90 representative soil samples were collected and analyzed for heavy metal (As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn) and anions (chloride, nitrates, phosphates and sulfates). Cluster and factor analysis techniques were used for the source identification of these excessive heavy metal levels and ecological risk was determined with potential ecological risk assessment. The degree of enrichment of eight studied heavy metals in comparison with the corresponding background levels decreased in order: Cd > Pb > Fe > Ni > Mn > As > Cu ~ Zn. Arsenic and cadmium exhibited 1.30- and 1.64-fold exceeded levels than threshold limits set by National environment quality standards, respectively. Cd in cotton field's soil may lead to higher potential risk than other heavy metals. On overall basis, the cumulative mean potential ecological risk for the district (207.75) corresponded to moderate risk level with higher contributions from As and Pb especially from Cd. Cadmium formed strong positive correlation with phosphate content of soil at p < 0.01. Cluster analysis indicated that Cluster 1 (extremely polluted) probably originated from anthropogenic inputs of phosphate fertilizer and past usage of arsenical pesticides.

  14. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin

    Energy Technology Data Exchange (ETDEWEB)

    Yi Yujun [State Key Laboratory of Water Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875 (China); Yang Zhifeng, E-mail: zfyang@bnu.edu.cn [State Key Laboratory of Water Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875 (China); Zhang Shanghong [Renewable Energy School, North China Electric Power University, Beijing 102206 (China)

    2011-10-15

    The concentrations of heavy metals (Cr, Cd, Hg, Cu, Zn, Pb and As) in the water, sediment, and fish were investigated in the middle and lower reaches of the Yangtze River, China. Potential ecological risk analysis of sediment heavy metal concentrations indicated that six sites in the middle reach, half of the sites in the lower reach, and two sites in lakes, posed moderate or considerable ecological risk. Health risk analysis of individual heavy metals in fish tissue indicated safe levels for the general population and for fisherman but, in combination, there was a possible risk in terms of total target hazard quotients. Correlation analysis and PCA found that heavy metals (Hg, Cd, Pb, Cr, Cu, and Zn) may be mainly derived from metal processing, electroplating industries, industrial wastewater, and domestic sewage. Hg may also originate from coal combustion. Significant positive correlations between TN and As were observed. - Highlights: > Field survey, test and relationship of the concentrations of heavy metals in the water, sediment, and fish. > Potential ecological risk assessment of heavy metals in sediment. > Non-cancer health risk assessment of heavy metals in fish tissue. > Possible pollution source of heavy metals analyzed. - Possible ecological risk of sediment and slight non-cancer health risk of eating fish were found in the middle and lower reaches of the Yangtze River.

  15. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin

    International Nuclear Information System (INIS)

    Yi Yujun; Yang Zhifeng; Zhang Shanghong

    2011-01-01

    The concentrations of heavy metals (Cr, Cd, Hg, Cu, Zn, Pb and As) in the water, sediment, and fish were investigated in the middle and lower reaches of the Yangtze River, China. Potential ecological risk analysis of sediment heavy metal concentrations indicated that six sites in the middle reach, half of the sites in the lower reach, and two sites in lakes, posed moderate or considerable ecological risk. Health risk analysis of individual heavy metals in fish tissue indicated safe levels for the general population and for fisherman but, in combination, there was a possible risk in terms of total target hazard quotients. Correlation analysis and PCA found that heavy metals (Hg, Cd, Pb, Cr, Cu, and Zn) may be mainly derived from metal processing, electroplating industries, industrial wastewater, and domestic sewage. Hg may also originate from coal combustion. Significant positive correlations between TN and As were observed. - Highlights: → Field survey, test and relationship of the concentrations of heavy metals in the water, sediment, and fish. → Potential ecological risk assessment of heavy metals in sediment. → Non-cancer health risk assessment of heavy metals in fish tissue. → Possible pollution source of heavy metals analyzed. - Possible ecological risk of sediment and slight non-cancer health risk of eating fish were found in the middle and lower reaches of the Yangtze River.

  16. Soil and groundwater contamination with heavy metals at two scrap iron and metal recycling facilities

    DEFF Research Database (Denmark)

    Jensen, Dorthe Lærke; Holm, P. E.; Christensen, Thomas Højlund

    2000-01-01

    Field studies were performed at two actual scrap iron and metal recycling facilities in order to evaluate the extent of heavy metal migration into subsoil and groundwater caused by more than 25 years of handling scrap directly on the ground without any measures to prevent leaching. Surface soil...... samples, called `scrap dirt', representing the different activities on the two recycling facilities, all showed very high concentrations of lead (Pb), copper (Cu) and zinc (Zn), high concentrations of cadmium (Cd) , chromium (Cr) and nickel (Ni) and somewhat elevated concentrations of many other metals....... In particular high concentrations were found for Pb at the car-battery salvage locations (13 to 26 g Pb kg±1) and Cu at the cable burning location (22 g Cu kg±1) at one site. The migration of metals below the surface in general (except at the car-battery salvage locations) was very limited even after...

  17. The effects of fire temperatures on water soluble heavy metals.

    Science.gov (United States)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem, because at long term can increase soil acidity. After all base cations have being leached, pH values decrease, and

  18. Influence of temperature and salinity on heavy metal uptake by submersed plants

    Energy Technology Data Exchange (ETDEWEB)

    Fritioff, A. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)]. E-mail: fritioff@botan.su.se; Kautsky, L. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden); Greger, M. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants.

  19. Influence of temperature and salinity on heavy metal uptake by submersed plants

    International Nuclear Information System (INIS)

    Fritioff, A.; Kautsky, L.; Greger, M.

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants

  20. Heavy metal vaporization and abatement during thermal treatment of modified wastes

    International Nuclear Information System (INIS)

    Rio, S.; Verwilghen, C.; Ramaroson, J.; Nzihou, A.; Sharrock, P.

    2007-01-01

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere

  1. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    Science.gov (United States)

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  2. Screening heavy metals levels in hair of sanitation workers by X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Md Khudzari, Jauharah; Wagiran, Husin; Hossain, I.; Ibrahim, Noorddin

    2013-01-01

    This work presents a study of human hair as a bio-indicator for detection of heavy metals as part of environmental health surveillance programs project to develop a subject of interest in the biomedical and environmental sciences. A total of 34 hair samples were analyzed that consisting of 29 samples from sanitation workers and five samples from students. The hair samples were prepared and treated in accordance to the International Atomic Energy Agency (IAEA) recommendations. The concentrations of heavy metals were analyzed using the energy dispersive X-ray fluorescence (EDXRF) technique by X-50 Mobile X-ray Fluorescence (XRF) at Oceanography Institute, Universiti Malaysia Terengganu. The performance of EDXRF analyzer was tested by Standard Reference Material (SRM 2711) Montana Soil which was in good agreement with certified value within 14% deviations except for Hg. While seven heavy metals: Mn, Fe, Ni, Cu, Zn, Se, and Sb were detected in both groups, three additional elements, i.e. As, Hg and Pb, were detected only in sanitation workers group. For sanitation workers group, the mean concentration of six elements, Mn, Fe, Cu, Zn, Se, and Sb, shows elevated concentration as compared to the control samples concentration. Results from both groups were compared and discussed in relation to their respective heavy metals concentrations. - Highlights: ► We determine heavy metals in hair sample of sanitation workers and control group. ► 7 heavy metals, Mn, Fe, Ni, Cu, Zn, Se, and Sb, were detected in both groups. ► Additional elements of As, Hg and Pb were discovered only in sanitation workers. ► Generally, mean concentration of sanitation workers show elevation in comparison. ► We report results in relation to their respective heavy metals concentrations.

  3. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    Science.gov (United States)

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  4. Heavy Metallic Element Distribution in Cisadane River Estuary's Water and Sediment

    Directory of Open Access Journals (Sweden)

    M. Taufik Kaisupy

    2006-04-01

    Full Text Available Observation of heavy metallic elements in Cisadane River Estuary has been done in July and November 2005. The results show that heavy metallic elements content in seawater is lower and still below the treshold value stated by government for fisheries. There was an indication of heavy metallic elements on sediment. Distribution of Pb on July and of Cu on November 2005 were found higher near the coast and decrease towards the sea, and commonly were found in front of estuary such as Cisadane, Muara Saban and Tanjung Pasir. High Pb and Zn distributions on November 2005 were found only in front of Cisadane estuary. Cd distribution of Cisadane estuary was constant at all station but did not show any correlation with the distance of station and estuary. The Cd content on July and November 2005 is lower than 0,001 ppm. Generally, heavy metallic elements content have a uniform distribution at all stations inspite of its distance to estuary.

  5. The Extent and Prediction of Heavy Metal Pollution in Soils of Shahrood and Damghan, Iran.

    Science.gov (United States)

    Sakizadeh, Mohamad; Mirzaei, Rouhollah; Ghorbani, Hadi

    2015-12-01

    The levels of 12 heavy metals (Ag, Ba, Be, Cd, Co, Cr, Cu, Ni, Pb, Tl, V, Zn) were considered in 229 soil samples in Semnan Province, Iran. To discriminate between natural and anthropogenic inputs of heavy metals, factor analysis was used. Seven factors accounting for 90.5 % of the total variance were extracted. The mining and agricultural activities along with geogenic sources have been attributed as the main causes of the levels of heavy metals in the study area. The partial least squares regression was utilized to predict the level of soil pollution index (SPI) considering the concentrations of 12 heavy metals. The eigenvectors from the first three PLS represented more than 98 % of the overall variance. The correlation coefficient between the observed and predicted SPI was 0.99 indicating the high efficiency of this method. The resultant coefficient of determination for three PLS components was 0.984 confirming the predictive ability of this method.

  6. Assessment of heavy metals leaching from (biochar obtained from industrial sewage sludge

    Directory of Open Access Journals (Sweden)

    Julija Pečkytė

    2015-10-01

    Full Text Available Biochar can be produced from many various feedstock including biomass residues such as straw, branches, sawdust and other agricultural and forestry waste. One of the alternatives is to obtain biochar from industrial sewage sludge, however, the use of such a product could be limited due to high quantities of heavy metals in the biochar as a product. Total concentration of heavy metals provides only limited information on the behavior of heavy metals, therefore, batch leaching and up-flow percolation leaching tests were applied to study the leaching of heavy metals (Cd, Pb, Cr, Ni, Zn, Cu from (biochar produced from two types of sewage sludge: from paper mill and leather industries.

  7. Behavior of solid matters and heavy metals during conductive drying process of sewage sludge

    Directory of Open Access Journals (Sweden)

    Jianping Luo

    2016-12-01

    Full Text Available Behavior of solid matters and heavy metals during conductive drying process of sewage sludge was evaluated in a sewage sludge disposal center in Beijing, China. The results showed most of solid matters could be retained in the dried sludge after drying. Just about 3.1% of solid matters were evaporated with steam mainly by the form of volatile fatty acids. Zn was the dominant heavy metal in the sludge, followed by Cu, Cr, Pb, Ni, Hg, and Cd. The heavy metals in the condensate were all below the detection limit except Hg. Hg in the condensate accounted for less than 0.1% of the total Hg. It can be concluded that most of the heavy metals are also retained in the dried sludge during the drying process, but their bioavailability could be changed significantly. The results are useful for sewage sludge utilization and its condensate treatment.

  8. Contamination by urban superficial runoff: accumulated heavy metals on a road surface

    Directory of Open Access Journals (Sweden)

    Carlos Alfonso Zafra Mejía

    2007-01-01

    Full Text Available Studying the behaviour of accumulated contamination on urban surfaces is important in designing control methods minimising the impacts of surface runoff on the environment. This paper presents data regarding the sediment collected on the surface of an urban road in the city of Torrelavega in northern Spain during a period of 65 days during which 132 samples were collected. Two types of sediment collection samples were obtained: vacuumed dry samples (free load and those swept up following vacuuming (fixed load. The results showed that heavy metal concentration in the collected sediment (Pb, Zn, Cu and Cd was inversely proportional to particle diameter. High heavy metal concentrations were found in the smaller fraction (63 pm. Regression equations were calculated for heavy metal concentration regarding particle diameter. Large heavy metal loads were found in the larger fraction (125 pm. The results provide information for analysing runoff water quality in urban areas and designing treatment strategies.

  9. Effects of heavy metals on enzyme synthesis in substrate-amended river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Wainwright, M; Duddridge, J E

    1982-01-01

    The effects of heavy metals in diverse substrate-amended river sediments were studied. Cd/sup 2 +/, Pb/sup 2 +/ and Zn/sup 2 +/ generally had a marked inhibitory effect on the synthesis of amylase, cellulase and urease, on numbers of substrate-hydrolysing bacteria, in all sediments studied. Inhibition increased with increasing metal concentration, and amylase was particularly sensitive. Pb/sup 2 +/ generally had the least effect. We conclude that enzyme synthesis measurements are useful in determining the effects of heavy metals on the degradation of organic pollutants in river sediments.

  10. An optimised method for electrodialytic removal of heavy metals from harbour sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2015-01-01

    A 2-compartment electrodialytic cell set-up for treatment of solid materials has in many respects proven superior to other types of cells in removing heavy metals from sediments. Most notably, remediation times were shorter, energy consumption was lower and higher removal efficiencies were observed....... By employing m1ultivariate modelling and investigating additional experimental variables, the relative importance of variables effecting remediation was determined and response surfaces for heavy metal removal were calculated. Employing optimal conditions it was possible to remove targeted metals (Pb, Cu, Zn...

  11. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    Science.gov (United States)

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  12. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    Science.gov (United States)

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health.

  13. Estimation of Heavy Metal Contamination in Groundwater and Development of a Heavy Metal Pollution Index by Using GIS Technique.

    Science.gov (United States)

    Tiwari, Ashwani Kumar; Singh, Prasoon Kumar; Singh, Abhay Kumar; De Maio, Marina

    2016-04-01

    Heavy metal (Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentration in sixty-six groundwater samples of the West Bokaro coalfield were analyzed using inductively coupled plasma-mass spectroscopy for determination of seasonal fluctuation, source apportionment and heavy metal pollution index (HPI). Metal concentrations were found higher in the pre-monsoon season as compared to the post-monsoon season. Geographic information system (GIS) tool was attributed to study the metals risk in groundwater of the West Bokaro coalfield. The results show that 94 % of water samples were found as low class and 6 % of water samples were in medium class in the post-monsoon season. However, 79 % of water samples were found in low class, 18 % in medium class and 3 % in high class in the pre-monsoon season. The HPI values were below the critical pollution index value of 100. The concentrations of Al, Fe, Mn, and Ni are exceeding the desirable limits in many groundwater samples in both seasons.

  14. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  15. Heavy metals content in the stem bark of Detarium microcarpum ...

    African Journals Online (AJOL)

    The heavy metal analysis was carried out on the stem bark of D. microcarpum using an atomic absorption spectrophotometer (AAS). The heavy metals screened for include: lead, chromium, manganese, zinc and iron. The levels of manganese, zinc and iron were 13.91, 4.89 and 21.89 mg/L respectively. These heavy metals ...

  16. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    Science.gov (United States)

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  17. Classification of Plants According to Their Heavy Metal Content ...

    African Journals Online (AJOL)

    Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals around North ...

  18. Bioaccumulation and toxic effects of some heavy metals in ...

    African Journals Online (AJOL)

    The contamination of the aquatic systems with heavy metals from natural anthropogenic sources has become a global problem which poses threats to ecosystems and natural communities. Hence this study reviews the effects of heavy metals in freshwater fishes. Fishes bioaccumulate heavy metals (including cadmium, zinc ...

  19. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  20. Heavy metal contamination of stream water and sediment in the Taejon area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Woong [Paichai University, Taejon (Korea, Republic of); Lee, Hyun Koo [Chungnam National University, Taejon (Korea, Republic of)

    1996-08-31

    Associated with the rapid pace of overpopulation and industrialization is the increase of municipal and industrial wastewater and heavy metal contamination from these point sources have received much attention in the Taejon area. To reduce the environmental problems, 21 stream sediments from Gap-chun, Yudeung-chun, Yusung-chun and Keum river have been analyzed for Cd, Cu, Pb and Zn. The results show that heavy metal concentrations are high in sediments from the Sintanjin and Taehwa Industrial Complex area with particular reference to 1388 {mu}g/g Cu in the stream sediment of Yusung-chun. When the geochemical map drawn from the Kriging technique of these data are compared with the industrialization and urbanization index map, high concentrations of heavy metals are found in stream sediments in industrialized areas resulting from the accumulation of heavy metals from the polluting factories. Concentrations of Cu in sediments from the Taehwa Industrial Complex area and those of Zn in sediments from the Sintanjin Complex area higher than EPA standard in the U.S.A and may be the potential sources of pollution in Keum river with possible implications to human health. For the speciation of Cu, Pb and Zn, the high proportions of exchangeable phase of Cu and Zn in stream sediments indicate that the metals originate not from parent materials but from wastewater and exist as the adsorbed phase on the surface of sediments. These metals are easily dissolved into the water by the reaction and relative amounts of easily dissolved phase of metals are in the order of Cu = Zn > Pb. (author). 17 refs., 4 tabs., 7 figs.

  1. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Ding, Wei-Xu; Shen, Dong-Sheng, E-mail: shends@zju.edu.cn

    2013-10-15

    Highlights: • Cu, Zn, Pb, and Ni are enriched in bottom ash from WEEE dismantling residues. • The heavy metal residual fraction restricts transfer in the incinerator. • Pre-treatment to remove heavy metals from WEEE residues would reduce emissions. -- Abstract: The large amount of residues generated from dismantling waste electrical and electronic equipment (WEEE) results in a considerable environmental burden. We used material flow analysis to investigate heavy metal behavior in an incineration plant in China used exclusively to incinerate residues from WEEE dismantling. The heavy metals tested were enriched in the bottom and fly ashes after incineration. However, the contents of heavy metals in the bottom ash, fly ash and exhaust gas do not have a significant correlation with that of the input waste. The evaporation and recondensation behavior of heavy metals caused their contents to differ with air pollution control equipment because of the temperature difference during gas venting. Among the heavy metals tested, Cd had the strongest tendency to transfer during incineration (T{sub Cd} = 69.5%) because it had the lowest melting point, followed by Cu, Ni, Pb and Zn. The exchangeable and residual fractions of heavy metals increased substantially in the incineration products compared with that of the input residues. Although the mass of residues from WEEE dismantling can be reduced by 70% by incineration, the safe disposal of the metal-enriched bottom and fly ashes is still required.

  2. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling

    International Nuclear Information System (INIS)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Ding, Wei-Xu; Shen, Dong-Sheng

    2013-01-01

    Highlights: • Cu, Zn, Pb, and Ni are enriched in bottom ash from WEEE dismantling residues. • The heavy metal residual fraction restricts transfer in the incinerator. • Pre-treatment to remove heavy metals from WEEE residues would reduce emissions. -- Abstract: The large amount of residues generated from dismantling waste electrical and electronic equipment (WEEE) results in a considerable environmental burden. We used material flow analysis to investigate heavy metal behavior in an incineration plant in China used exclusively to incinerate residues from WEEE dismantling. The heavy metals tested were enriched in the bottom and fly ashes after incineration. However, the contents of heavy metals in the bottom ash, fly ash and exhaust gas do not have a significant correlation with that of the input waste. The evaporation and recondensation behavior of heavy metals caused their contents to differ with air pollution control equipment because of the temperature difference during gas venting. Among the heavy metals tested, Cd had the strongest tendency to transfer during incineration (T Cd = 69.5%) because it had the lowest melting point, followed by Cu, Ni, Pb and Zn. The exchangeable and residual fractions of heavy metals increased substantially in the incineration products compared with that of the input residues. Although the mass of residues from WEEE dismantling can be reduced by 70% by incineration, the safe disposal of the metal-enriched bottom and fly ashes is still required

  3. Customizable Biopolymers for Heavy Metal Remediation

    International Nuclear Information System (INIS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred

    2005-01-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted

  4. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies

    Science.gov (United States)

    Duan, Jingchun; Tan, Jihua

    2013-08-01

    In recent years, heavy metal pollution accidents were reported frequently in China. The atmospheric heavy metal pollution is drawing all aspects of attention. This paper summarizes the recent research results from our studies and previous studies in recent years in China. The level, temporal variation, seasonal variation and size distribution of the heavy metals of atmospheric Lead(Pb), Vanadium(V), Manganese(Mn), Nickel(Ni), Chromium(Cr), Cadmium(Cd), Copper(Cu), Zinc(Zn) and Arsenic(As) were characterized in China. The emission characteristics and sources of atmospheric heavy metals and As in China were reviewed. Coal burning, iron and steel industry and vehicle emission are important sources in China. Control policies and effects in China were reviewed including emission standards, ambient air quality standards, phase out of leaded gasoline and so on, and further works for atmospheric heavy metals control were suggested. The comprehensive heavy metals pollution control measures and suggestions were put forward based on the summarization of the development and experience of the atmospheric heavy metal pollution control abroad.

  5. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    International Nuclear Information System (INIS)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-01-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb"2"+), copper (Cu"2"+), nickel (Ni"2"+), and zinc (Zn"2"+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  6. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Science.gov (United States)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-04-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb2+), copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  7. Spatial distribution of heavy metal