WorldWideScience

Sample records for heavy metals zn

  1. HEAVY METALS (Ni, Cu, Zn AND Cd CONTENT IN SERUM OF RAT FED GREEN MUSSELS

    Directory of Open Access Journals (Sweden)

    Muhammad Yudhistira Azis

    2015-11-01

    Full Text Available Green mussel (Perna viridis can playing role as bio-indicator or biomonitoring agent for heavy-metalcontaminations in the sea. In this research, the concentrations of four elements Ni, Cu, Zn and Cd in P. viridis and in the serum of rat which orally feed by P. viridis were determined by Atomic Absorption Spectrometry (AAS following dry acid digestion. Parameter analysis was evaluated by determining confidence limit for the obtained results. The result showed that there was a sequence of heavy-metal content in green mussels sample and laboratory rats serum, such as Ni < Cd < Cu < Zn. Keywords: heavy metals, green mussels, laboratory rats serum, AAS

  2. Surfactant and heavy metal interaction in poplar: a focus on SDS and Zn uptake.

    Science.gov (United States)

    Pierattini, Erika C; Francini, Alessandra; Raffaelli, Andrea; Sebastiani, Luca

    2018-01-01

    Surfactants are widely used detergent ingredients and, thanks to their chemical properties, they are applied for remediation of sites polluted by heavy metals and organic contaminants, both in soil flushing and in phytoremediation. However, their direct effects on tree physiology especially in consociation with heavy metal pollution, as well as their possible absorption by plants, have not been appropriately investigated. In order to evaluate plant uptake/translocation of the surfactant sodium dodecyl sulfate (SDS) and the heavy metal zinc (Zn) in Populus alba L. Villafranca clone, SDS was applied alone (0.5 mM) or in combination with Zn (1 mM). Physiological effects on plant growth and photosynthetic performance were investigated. An increasing trend of Zn translocation towards basal leaves as a consequence of SDS co-treatment (1 mM Zn + 0.5 mM SDS; P = 0.03) was observed, proving the ability of SDS to improve heavy metals translocation. However, SDS exposure (both in 0.5 mM SDS and 1 mM Zn + 0.5 mM SDS treated plants) resulted in the appearance of foliar necrosis that expanded with an acropetal trend and finally led to leaf abscission. This phenotype may be caused by the emergence of an additional stress during the experimental trial, which could be related to the dissociation of sodium (Na) ions from the dodecyl sulfate molecules in the hydroponic system. In fact, while liquid chromatography-tandem mass spectrometry measurements revealed that dodecyl sulfate is mainly retained at root levels, Na is translocated to the aerial parts of the plant. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The heavy metal ions (Cu2+, Zn2+, Cd+) toxic compounds influence on triticale plants growth

    Science.gov (United States)

    Brezoczki, V. M.; Filip, G. M.

    2017-05-01

    The presence of the heavy metals toxic compounds (CuSO4 · 5H2O, ZnSO4 · 7H2O and 3CdSO4·8H2O) in water and soil can be observed by their negative effects on the germination and growth process for different vegetable (barley, oat, maize) who are used for human and animal consumption. This paper it aims the determination of germination and growth inhibition negative effects for triticale plants in the heavy metals ions presence by ecotoxicological laboratory tests. The triticale plants was chosen for their different characteristics to the other grasses respectively: a very good resistance for a wide range of diseases, an accelerated growth and a very good tolerance for aluminum ions presents in acid soils. The determinations were conducted step by step, first, we put the triticale grains in contact with the heavy metal solutions with different concentration then for 3 days we noticed the triticale germination inhibition effects and finally we noticed the growth inhibition process for triticale plants respectively in 7th and 9th day from the start of the experiment. At the end of the tests we can conclude that the triticale roots have a very great sensibility to a CuSO4 solutions compared to the effects for their stalks. A positive effect for triticale stalks we can see for low CuSO4 solution concentrations thus for 5 mg Cu/l the growth is 19,44%. A positive effect for triticale roots it can see for low ZnSO4 solution concentrations so for 5 - 15 mg Zn/l the growth is 24,4%. In the presence of the CdSO4 solution all the processes are inhibited (germination and growth for triticale plants) even for a low concentrations for this toxic.

  4. [Estimation of soil's heavy metal concentrations (As, Cd and Zn) in Wansheng mining area with geochemistry and field spectroscopy].

    Science.gov (United States)

    Song, Lian; Jian, Ji; Tan, De-Jun; Xie, Hong-Bin; Luo, Zhen-Fu; Gao, Bo

    2014-03-01

    In the present paper, Chongqing Wansheng mining area was selected as the study area, and the ASD FieldSpec Pro III portable spectroradiometer (350 to 2,500 nm) was used as the spectral measurement instrument to collect the reflectance spectra of 171 soil samples and 123 soil samples in March and in August 2012 respectively. In order to create the retrieval model to retrieve soil heavy metal concentration, 40 among the 123 soil samples in August 2012 were collected to do chemical analysis. Then, the heavy metals' concentration and the reflectance of the 40 soil samples were analyzed together. The results show that the ratio of the reflectance at 2,320 and 1,755 nm in the nearinfrared range, the ratio of the reflectance on 2,260 and 2,210 nm in the nearinfrared range, and the ratio of the reflectance at 480 and 1,920 nm in the visible and near infrared range has a significant correlation with heavy metal concentration of As, Cd and Zn respectively, so the spectral absorption feature parameters (SAFP) for retrieving soil heavy metal concentration of As, Cd and Zn from soil reflectance was created. Thus, the soil heavy metal concentration of As, Cd and Zn of the soil samples can be retrieved with the reflectance spectra. Then the distributions of the soil heavy metal concentration of As, Cd and Zn were obtained with the interpolation method in study area in March and in August 2012 respectively.

  5. Heavy metal contamination in the environs of the Zn-pB Mine in North-West of Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Ben Guirat, S.; Ben Aissa, N.; Mhiri, A.

    2009-07-01

    The impact of industrial heavy metals (HM) pollution on soil quality and plant growth has become a public concern. To evaluate heavy metals concentration a Zn-Pb mine site was selected, as source of pollution, localized in BouGrine (BG) region at 120 km North-west of Tunis characterized by calcareous soils. Soils of the imine site are occupied by forest pine. (Author)

  6. Analysis of heavy metals (Pb and Zn) concentration in sediment of Blanakan fish ponds, Subang, West Java

    Science.gov (United States)

    Wiriawan, A.; Takarina, N. D.; Pin, T. G.

    2017-07-01

    Blanakan fish ponds receive water resource from Kali Malang and Blanakan rivers. Industrial and domestic activities along the river can cause pollution, especially heavy metals. Zinc (Zn) is an essential element that needed by an organism, while Lead (Pb) is a nonessential element that is not needed. Discharge of waste water from industries and anthropogenic activities continuously not only pollute the water but also the sediment and biota live on it. This research was aimed to know the heavy metals content in the sediment of Blanakan fish ponds. Sediment samples were taken on July and August 2016 at three locations. Heavy metals were analyzed using Atomic Absorption Spectrophotometry (AAS) Shimadzu 6300. The result of Lead (Pb) measurement showed that Fish Pond 1 had higher average concentration compared Fish Pond 2 and Fish Pond 3 which was 0.55 ppm. Standard for Lead (Pb) in sediment according to Ontario Sediment Standards (2008) is 31 ppm. Based on Zinc (Zn) measurement, it was known that average of Zinc (Zn) concentration also higher on Fish Pond 1 compared to Fish Pond 2 and 3 which was 1.93 ppm. According to Ontario Sediment Standards (2008), a standard for Zinc (Zn) in sediment is 120 ppm. This indicated that heavy metals in the sediment of fish ponds were below standards. Statistical analysis using t-test showed that there was no significant difference of heavy metals content among fish ponds.

  7. Synergism of inhibiting actions of heavy metals upon the fertilization and development of sea urchin eggs. [Cu, Zn, Ni, Cd

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, N.; Fujinaga, K.

    1976-04-01

    The effects of copper, zinc, nickel and cadmium on fertilization, cell division, and gastrulation of sea urchin eggs were studied, both as individual metals and paired. Hemicentrotus pulcherrimus and Anthocidaris crassispina were exposed to concentrations of metals at 2, 4, and 8 times the maximum level of non-inhibition. Hemicentrotus was more sensitive to the effect of heavy metals than was Anthocidaris. Decreased fertilization rates, cell division, and gastrulation resulted from heavy metals exposure as did the appearance of polyspermy, permanent blastula and exogastrula, and delay of development. Strong synergistic effects occurred with Cu plus Zn, and less strongly with Cu plus Cd and Zn plus Cd, Cu plus Ni, Zn plus Ni, and Ni plus Cd resulted in an additive inhibition.

  8. Ice-core based assessment of historical anthropogenic heavy metal (Cd, Cu, Sb, Zn) emissions in the Soviet Union.

    Science.gov (United States)

    Eichler, Anja; Tobler, Leonhard; Eyrikh, Stella; Malygina, Natalia; Papina, Tatyana; Schwikowski, Margit

    2014-01-01

    The development of strategies and policies aiming at the reduction of environmental exposure to air pollution requires the assessment of historical emissions. Although anthropogenic emissions from the extended territory of the Soviet Union (SU) considerably influenced concentrations of heavy metals in the Northern Hemisphere, Pb is the only metal with long-term historical emission estimates for this region available, whereas for selected other metals only single values exist. Here we present the first study assessing long-term Cd, Cu, Sb, and Zn emissions in the SU during the period 1935-1991 based on ice-core concentration records from Belukha glacier in the Siberian Altai and emission data from 12 regions in the SU for the year 1980. We show that Zn primarily emitted from the Zn production in Ust-Kamenogorsk (East Kazakhstan) dominated the SU heavy metal emission. Cd, Sb, Zn (Cu) emissions increased between 1935 and the 1970s (1980s) due to expanded non-ferrous metal production. Emissions of the four metals in the beginning of the 1990s were as low as in the 1950s, which we attribute to the economic downturn in industry, changes in technology for an increasing metal recovery from ores, the replacement of coal and oil by gas, and air pollution control.

  9. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.

    Science.gov (United States)

    Romero-Hernández, Jorge Alberto; Amaya-Chávez, Araceli; Balderas-Hernández, Patricia; Roa-Morales, Gabriela; González-Rivas, Nelly; Balderas-Plata, Miguel Ángel

    2017-03-04

    In the present investigation, four macrophytes, namely Typha latifolia (L.), Lemna minor (L.), Eichhornia crassipes (Mart.) Solms-Laubach, and Myriophyllum aquaticum (Vell.) Verdc, were evaluated for their heavy metal (Cu, Pb, Hg, and Zn) hyperaccumulation potential under laboratory conditions. Tolerance analyses were performed for 7 days of exposure at five different treatments of the metals mixture (Cu(+2), Hg(+2), Pb(+2), and Zn(+2)). The production of chlorophyll and carotenoids was determined at the end of each treatment. L. minor revealed to be sensitive, because it did not survive in all the tested concentrations after 72 hours of exposure. E. crassipes and M. aquaticum displayed the highest tolerance to the metals mixture. For the most tolerant species of aquatic macrophytes, The removal kinetics of E. crassipes and M. aquaticum was carried out, using the following mixture of metals: Cu (0.5 mg/L) and Hg, Pb, and Zn 0.25 mg/L. The obtained results revealed that E. crassipes can remove 99.80% of Cu, 97.88% of Pb, 99.53% of Hg, and 94.37% of Zn. M. aquaticum withdraws 95.2% of Cu, 94.28% of Pb, 99.19% of Hg, and 91.91% of Zn. The obtained results suggest that these two species of macrophytes could be used for the phytoremediation of this mixture of heavy metals from the polluted water bodies.

  10. Heavy metal

    African Journals Online (AJOL)

    niloticus after exposure to sublethal concentrations of heavy metals such as copper, lead and zinc for a 12-week period, using static renewable toxicity tests. The concentrations of the metals accumulated in the tissue of exposed fish were about 3-5 times higher than the concentrations detected in control fish.

  11. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil.

    Science.gov (United States)

    Yang, Xing; Liu, Jingjing; McGrouther, Kim; Huang, Huagang; Lu, Kouping; Guo, Xi; He, Lizhi; Lin, Xiaoming; Che, Lei; Ye, Zhengqian; Wang, Hailong

    2016-01-01

    Biochar is a carbon-rich solid material derived from the pyrolysis of agricultural and forest residual biomass. Previous studies have shown that biochar is suitable as an adsorbent for soil contaminants such as heavy metals and consequently reduces their bioavailability. However, the long-term effect of different biochars on metal extractability or soil health has not been assessed. Therefore, a 1-year incubation experiment was carried out to investigate the effect of biochar produced from bamboo and rice straw (at temperatures ≥500 °C) on the heavy metal (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) extractability and enzyme activity (urease, catalase, and acid phosphatase) in a contaminated sandy loam paddy soil. Three rates (0, 1, and 5%) and two mesh sizes (biochar applications were investigated. After incubation, the physicochemical properties, extractable heavy metals, available phosphorus, and enzyme activity of soil samples were analyzed. The results demonstrated that rice straw biochar significantly (P biochar significantly (P biochar application rate increased. The heavy metal extractability was significantly (P biochar resulted in the greatest reductions of extractable Cu and Zn, 97.3 and 62.2%, respectively. Both bamboo and rice straw biochar were more effective at decreasing extractable Cu and Pb than removing extractable Cd and Zn from the soil. Urease activity increased by 143 and 107% after the addition of 5% coarse and fine rice straw biochars, respectively. Both bamboo and rice straw biochars significantly (P biochar had greater potential as an amendment for reducing the bioavailability of heavy metals in soil than that of the bamboo biochar. The impact of biochar treatment on heavy metal extractability and enzyme activity varied with the biochar type, application rate, and particle size.

  12. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.

    Science.gov (United States)

    Stolpe, Clemens; Giehren, Franziska; Krämer, Ute; Müller, Caroline

    2017-07-01

    Plants that are able to hyperaccumulate heavy metals show increased concentrations of these metals in their leaf tissue. However, little is known about the concentrations of heavy metals and of organic defence metabolites in the phloem sap of these plants in response to either heavy metal-amendment of the soil or biotic challenges such as aphid-infestation. In this study, we investigated the effects of heavy metal-exposure and of aphid-infestation on phloem exudate composition of the metal hyperaccumulator species Arabidopsis halleri L. O'Kane & Al-Shehbaz (Brassicaceae). The concentrations of elements and of organic defence compounds, namely glucosinolates, were measured in phloem exudates of young and old (mature) leaves of plants challenged either by amendment of the soil with cadmium and zinc and/or by an infestation with the generalist aphid Myzus persicae. Metal-amendment of the soil led to increased concentrations of Cd and Zn, but also of two other elements and one indole glucosinolate, in phloem exudates. This enhanced defence in the phloem sap of heavy metal-hyperaccumulating plants can thus potentially act as effective protection against aphids, as predicted by the elemental defence hypothesis. Aphid-infestation also caused enhanced Cd and Zn concentrations in phloem exudates. This result provides first evidence that metal-hyperaccumulating plants can increase heavy metal concentrations tissue-specifically in response to an attack by phloem-sucking herbivores. Overall, the concentrations of most elements, including the heavy metals, and glucosinolates were higher in phloem exudates of young leaves than in those of old leaves. This defence distribution highlights that the optimal defence theory, which predicts more valuable tissue to be better defended, is applicable for both inorganic and organic defences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Soil-plant abstract of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain)

    Science.gov (United States)

    López-Berdonces, Miguel; Higueras, Pablo; Esbrí, Jose Maria; González-Corrochano, Beatríz; García-Noguero, Eva Mª; Martínez-Coronado, Alba; Fernandez-Calderón, Sergio; García-Noguero, Carolina

    2013-04-01

    Soil-plant transfer of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain). Authors: Miguel A. López-Berdonces¹; Pablo Higueras¹; Jose María Esbrí¹; Beatriz González-Corrochano¹; Eva Mª García- Noguero¹; Alba Martínez Coronado¹; Sergio Fernández-Calderón¹; Carolina García-Noguero¹ ¹Instituto de Geología Aplicada, Universidad Castilla la Mancha, Pza. Manuel Meca, 1. 13400 Almadén, Spain. Alcudia Valley is a vast territory recently declared Natural Park, located in South of Spain. It is an area rich in mineral deposits of Zn and Pb and mining exists since the first millennium BC., having its highest ore production between mid-nineteenth century and the middle of the twentieth. This area has been selected because has more than 120 abandoned mines without remediation actions, with dumps and tailings with high contents of zinc and lead sulfides, and Cu, Ag, Cd, As, Sb in minor concentrations. In this study we determinate the transfer rate of these metals from soils to plants represented by oak leaves (Quercus ilex), because this specie is common within the selected area. To evaluate the soil-plant transfer were studied the correlation of contents, total and extractable, in soil-leaves. Extractable fraction was done by for different methods in water, EPA 1312 sulfuric acid: nitric acid 60:40 v., Ammonium Acetate and EDTA. To establish the correlation between heavy metals from soils to plants is necessary to know the contents of these and bioavailable content in soil. Three areas (S. Quintín, Romanilla, Bombita) were selected, taking 24 samples of soils and leaves. Analyzed leaves by XRF showed that Mn, Pb, Zn and Mo in S.Quintin and Romanilla, Mn, Pb in Bombita, exceeded the toxicity threshold. The same samples analyzed by ICP show us the toxicity threshold is exceeded Pb, Zn and Hg in S.Quintin, and Pb in Romanilla. The heavy metal content in leaves compared between two techniques analytical gives an acceptable correlation Zn - Pb

  14. Distribution of heavy metals (Cu, Zn and Cr in groundwater from the area of a future radioactive waste repository Saligny – Romania

    Directory of Open Access Journals (Sweden)

    Tudorache A.

    2013-04-01

    Full Text Available A study of some heavy metals (Cu, Zn and Cr concentrations in natural groundwater has been conducted, by considering samples collected from the area located in the neighbourhood of Saligny village (Cernavodă, Romania. Atomic absorption spectrometry methods with thermal and electrothermal atomization has been developed, tested and used for some heavy metals content determination. The results show various concentrations of Cu, Zn and Cr in groundwater samples.

  15. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous.

    Science.gov (United States)

    Mufarrege, M M; Hadad, H R; Maine, M A

    2010-01-01

    The effects of Cr, Ni, Zn, and P exposure on the root anatomic structure, growth, and chlorophyll a concentration of Pistia stratiotes L. were studied. Plastic aquaria containing 50 g of wet plants and 5 L of pond water added with the contaminant(s) were disposed. The treatments were: (1) Cr, (2) Ni, (3) Zn, (4) P, (5) Cr + Ni + Zn, (6) Cr + Ni + Zn + P, and (7) control. Contaminant additions were done seven times. In each addition, concentrations of 1 mg of metals or 5 mg of P per liter of water were added. Chlorophyll a was an indicator more sensitive to Zn and Cr toxicity than the relative growth rate. Ni and Cr + Ni + Zn treatments were the most toxic ones, in which biomass and the root anatomical parameters (root length, cross-sectional areas [CSAs] of root, stele, and metaxylem vessels) decreased significantly. The addition of P to the treatment with combined metals attenuated the decrease in plant growth and root length, and caused a significant increase in CSAs of total metaxylem vessels, suggesting that P increased the tolerance of P. stratiotes to metals. This fact has important implications for the use of this macrophyte in constructed wetlands for industrial wastewater treatment.

  16. CONTRIBUTIONS TO THE STUDY OF HEAVY METALS DISTRIBUTION (Zn, Pb, Cd, Bi, Cu IN SOME SOILS FROM GIURGEU MOUNTAINS

    Directory of Open Access Journals (Sweden)

    D. Bulgariu

    2005-10-01

    Full Text Available In this paper are presented the results of mineralogical and geochemical studies, realized for few soils from Giurgeu Mountains, which have as main purpose the distribution and mobility interpretation of minor elements (Cd, Cu, Pb, Zn, Bi in studied soil samples. The determination of fixed fractions and mobile fractions weight, at total contents of studied elements, and relative association of these elements with main mineral and organic components of soil samples, was realized on the basis of results obtained by sequential solid/ liquid extraction. The same, we try to use the correlation establish between metallic ions contents, as indicators of mineral paragenesis (the genetic type and formation conditions. The obtained results are agree with the results of similar studies from literature and they, underline of some interesting aspects about of distribution and migration of heavy metals in soils: (1 exist of some selectivity in heavy metals distribution in mineral components from soils, correlated with reciprocals geochemical affinities between speciation forms of metals and mineral components, in a given pedogeochemical context; (2 the heavy metals distribution between solid phases and soil solution are realized in competitive regime, and the inter-phases equilibrium evolution are thermodynamic and kinetics controlled by the solid/ liquid interfaces processes; (3 the fast elementary processes and local fluctuations of physic-chemical parameters are the main factors which controlled the inter-phases transfer ratio and the evolution direction of equilibriums of heavy metals distribution.

  17. Heavy metals (Cd, Pb, Cu, Zn) in mudfish and sediments from three ...

    African Journals Online (AJOL)

    driniev

    2004-04-02

    Apr 2, 2004 ... where sedimentation processes act as a sink for metals (Harding and Whitton, 1978). Heavy metals such as lead, copper, nickel and zinc are usually deposited in sediments not deeper than 15 cm. (Ochsenbein et al., 1983; Santos Bermejo et al., 2003). The mine drainage from gold and uranium recovery ...

  18. Barley HvHMA1 Is a Heavy Metal Pump Involved in Mobilizing Organellar Zn and Cu and Plays a Role in Metal Loading into Grains

    DEFF Research Database (Denmark)

    Mikkelsen, Maria Dalgaard; Pedas, Pai; Schiller, Michaela

    2012-01-01

    to leaves. In leaves, HvHMA1 expression was moderately induced by Zn deficiency, but reduced by toxic levels of Zn, Cu and Cd. Isolated barley chloroplasts exported Zn and Cu when supplied with Mg-ATP and this transport was inhibited by the AtHMA1 inhibitor thapsigargin. Down-regulation of HvHMA1 by RNA...... interference did not have an effect on foliar Zn and Cu contents but resulted in a significant increase in grain Zn and Cu content. Heterologous expression of HvHMA1 in heavy metal-sensitive yeast strains increased their sensitivity to Zn, but also to Cu, Co, Cd, Ca, Mn, and Fe. Based on these results, we...... suggest that HvHMA1 is a broad-specificity exporter of metals from chloroplasts and serve as a scavenging mechanism for mobilizing plastid Zn and Cu when cells become deficient in these elements. In grains, HvHMA1 might be involved in mobilizing Zn and Cu from the aleurone cells during grain filling...

  19. Assessment Of Heavy Metal Contamination Of Water Sources From Enyigba Pb-Zn District South Eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Nnabo Paulinus N

    2015-08-01

    Full Text Available Abstract A total of thirty 30 water samples were collected from the Enyigba PbZn mining district to assess the contamination of the water sources as a result of mining of lead and zinc minerals in the area. This comprises of 12 samples of surface water 14 from mine ponds and 4 from underground borehole water. The samples were acidified to stabilize the metals for periods more than four days without the use of refrigeration. The acidified water samples were analysed by a commercial laboratory at Projects Development Institute PRODA Enugu using Atomic Absorption Spectroscopy AAS. The elements determined by this method are lead Pb zinc Zn copper Cu arsenic As cadmium Cd nickel Ni manganese Mn and cobalt Co. The result and analysis of contamination factor showed that in surface water Cd had the highest concentration followed by As and Pb while Ni had the lowest. In mine ponds Cd also had the highest concentration and followed by Pb and As and Ni the lowest. In borehole water Cd has the highest concentration followed by Pb and As while Ni had the lowest concentration. Compared to WHO permissible limits the contamination of the heavy metals in all water sources are in order CdAsPbNiZnCu. In surface water the order is CdAsPbNiZnCu in mine ponds it is CdPbAsNiZnCu and in borehole water the order is CdAsPbZnNiCu. The calculated contamination factors show very high contamination status for Cd Pb and As. These levels of contamination and values indicate that under the prevailing conditions and environmental regulations in Nigeria the mining district would face major and hazardous discharges of these metals to the water sources.

  20. Arsenic and heavy metal contamination and their seasonal variation in the paddy field around the Daduk Au-Pb-Zn mine in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Churl-Gyu [Korea Petroleum Association, Seoul(Korea); Chon, Hyo-Taek [Seoul National University, Seoul(Korea); Jung, Myung Chae [Semyung University, Jecheon(Korea)

    2000-02-28

    Arsenic and heavy metal contamination, seasonal variation of the metal contents in soils and plants and their migration characteristics from soils into plants in the vicinity of the abandoned Daduk Au-Pb-Zn mine were studied. Soils collected downstream from the mine show high contents of As and heavy metals due to surface erosion and wind blowing in the tailings. However, their contamination was limited around the old dressing plant and paddy field nearby the polluted stream. Enriched concentrations of Cd and Zn were found in various agricultural crops grown in the paddy fields nearby the mine site, and Zn was accumulated specially in soybean leaves. Elevated level of As was also found in rice stalks and leaves. Biological absorption coefficients of the crop plants for heavy metals decreased in the order of soybean leaves, red peppers, rice stalks and leaves, and rice grain, and were higher for Cd and Cu than Pb and Zn. Seasonal variation of As and heavy metals in paddy fields showed that relatively higher concentrations and biological absorption coefficients were found in rice stalks and leaves grown under oxidizing conditions in September rather than under reducing conditions in August, especially for As, Cd, Pb and Zn. It is suggested that the amount of As and heavy metals absorbed by rice crops might be changed under the different condition of paddy fields throughout the period of growing. (author). 26 refs., 6 tabs., 8 figs.

  1. Adsorption Equilibrium for Heavy Metal Divalent Ions (Cu2+, Zn2+, and Cd2+ into Zirconium-Based Ferromagnetic Sorbent

    Directory of Open Access Journals (Sweden)

    Agnes Yung Weng Lee

    2017-01-01

    Full Text Available Zirconium-based ferromagnetic sorbent was fabricated by coprecipitation of Fe2+/Fe3+ salts in a zirconium solution and explored as a potential sorbent for removing the Cu2+, Zn2+, and Cd2+ from aqueous solution. The sorbent could easily be separated from aqueous solution under the influence of external magnetic field due to the ferromagnetism property. A trimodal distribution was obtained for the sorbent with average particle size of 22.74 μm. The –OH functional groups played an important role for efficient removal of divalent ions. The surface of the sorbent was rough with abundant protuberance while the existence of divalent ions on the sorbent surface after the sorption process was demonstrated. Decontamination of the heavy metal ions was studied as a function of initial metal ions concentration and solution pH. Uptake of the heavy metal ions showed a pH-dependent profile with maximum sorption at around pH 5. The presence of the ferromagnetic sorbent in solution at different initial pH has shown a buffering effect. Equilibrium isotherms were analyzed using Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Adequacy of fit for the isotherm models based on evaluation of R2 and ARE has revealed that heavy metal ions decontamination was fitted well with the Freundlich model.

  2. Simultaneous recovery of heavy metals (Pb, Cd, Zn from diluted solutions by electroextraction technique

    Directory of Open Access Journals (Sweden)

    Smara A.

    2013-04-01

    Full Text Available Cadmium is mainly used in galvanoplasty and stabilisation of plastic materials. It accumulates continuously in soils. The analysis of soil samples gave concrete evidence of increase of concentration of this element during the past centunary [1]. Furthermore Cd and Pb attack selectively the kidneys and the liver with enzymatic troubles. The work has enabaled to put into evidence the contribution of the presence of resin to the conventional electrodialysis process. The optimal conditions for the elimination of Cd++, Zn++ and Pb++ ions were determined. These included influence of resin, imposed current density, flow rate of the feeding solution (diluat, different supporting electrolytes used during the electroextraction (HNO3, HCl and H2SO4 and concentration of the solution to be treated [2-3-4]. Furthermore the competition between the electroextraction of the metallic cations Cd++, Zn++and Pb++ was investigated for different mixtures.

  3. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.

    Science.gov (United States)

    Lu, Kouping; Yang, Xing; Gielen, Gerty; Bolan, Nanthi; Ok, Yong Sik; Niazi, Nabeel Khan; Xu, Song; Yuan, Guodong; Chen, Xin; Zhang, Xiaokai; Liu, Dan; Song, Zhaoliang; Liu, Xingyuan; Wang, Hailong

    2017-01-15

    Biochar has emerged as an efficient tool to affect bioavailability of heavy metals in contaminated soils. Although partially understood, a carefully designed incubation experiment was performed to examine the effect of biochar on mobility and redistribution of Cd, Cu, Pb and Zn in a sandy loam soil collected from the surroundings of a copper smelter. Bamboo and rice straw biochars with different mesh sizes (Heavy metal concentrations in pore water were determined after extraction with 0.01 M CaCl2. Phytoavailable metals were extracted using DTPA/TEA (pH 7.3). The European Union Bureau of Reference (EUBCR) sequential extraction procedure was adopted to determine metal partitioning and redistribution of heavy metals. Results showed that CaCl2-and DTPA-extractable Cd, Cu, Pb and Zn concentrations were significantly (p metal concentrations (p metal fractions, and the effect was more pronounced with increasing biochar application rate. The effect of biochar particle size on extractable metal concentrations was not consistent. The 5% rice straw biochar treatment reduced the DTPA-extractable metal concentrations in the order of Cd metals were mainly bound in the soil organic matter fraction. The results demonstrated that the rice straw biochar can effectively immobilize heavy metals, thereby reducing their mobility and bioavailability in contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Seasonal concentrations of some heavy metals (Cd, Pb, Zn, and Cu) in Ulva rigida J. Agardh (Chlorophyta) from Dardanelles (Canakkale, Turkey).

    Science.gov (United States)

    Ustunada, Mehtap; Erduğan, Hüseyin; Yılmaz, Selehattin; Akgul, Rıza; Aysel, Veysel

    2011-06-01

    In this study, changes in heavy metal accumulation in U. rigida J. Agardh taxon and seawater have been investigated with respect to different stations and seasons. For this purpose, the severity of heavy metal pollution in the Dardanelles has been presented through the determination of Cu, Pb, Zn, and Cd concentrations in U. rigida macroalgae and seawater taken seasonally from the stations located on six different regions on the strait. While the metal concentrations in alga specimens were found to be high in spring and winter in all stations; the metal concentrations in the seawater, particularly the Pb concentration, were found to be high in all seasons.

  5. Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components.

    Science.gov (United States)

    Leung, H M; Duzgoren-Aydin, N S; Au, C K; Krupanidhi, S; Fung, K Y; Cheung, K C; Wong, Y K; Peng, X L; Ye, Z H; Yung, K K L; Tsui, M T K

    2017-04-01

    The objective of this study is to evaluate the current status of heavy metal concentrations in constructed wetland, Shaoguan (Guangdong, China). Sediments, three wetland plants (Typha latifolia, Phragmites australis, and Cyperus malaccensis), and six freshwater fish species [Carassius auratus (Goldfish), Cirrhinus molitorella (Mud carp), Ctenopharyngodon idellus (Grass carp), Cyprinus carpio (Wild common carp), Nicholsicypris normalis (Mandarin fish), Sarcocheilichthys kiangsiensis (Minnows)] in a constructed wetland in Shaoguan were collected and analyzed for their heavy metal compositions. Levels of Pb, Zn, Cu, and Cd in sediments exceeded approximately 532, 285, 11, and 66 times of the Dutch Intervention value. From the current study, the concentrations of Pb and Zn in three plants were generally high, especially in root tissues. For fish, concentrations of all studied metals in whole body of N. mormalis were the highest among all the fishes investigated (Pb 113.4 mg/kg, dw; Zn 183.1 mg/kg, dw; Cu 19.41 mg/kg, dw; 0.846 mg/kg, dw). Heavy metal accumulation in different ecological compartments was analyzed by principle component analysis (PCA), and there is one majority of grouped heavy metals concentration as similar in composition of ecological compartment, with the Cd concentration quite dissimilar. In relation to future prospect, phytoremediation technology for enhanced heavy metal accumulation by constructed wetland is still in early stage and needs more attention in gene manipulation area.

  6. Heavy Metal Coprecipitation with Hydrozincite [Zn5(CO3)2(OH)6] from Mine Waters Caused by Photosynthetic Microorganisms

    Science.gov (United States)

    Podda, Francesca; Zuddas, Paola; Minacci, Andrea; Pepi, Milva; Baldi, Franco

    2000-01-01

    An iron-poor stream of nearly neutral pH polluted by mine tailings has been investigated for a natural phenomenon responsible for the polishing of heavy metals in mine wastewaters. A white mineralized mat, which was determined to be hydrozincite [Zn5(CO3)2(OH)6] by X-ray diffraction analysis, was observed in the stream sediments mainly in spring. The precipitate shows a total organic matter residue of 10% dry weight and contains high concentrations of Pb, Cd, Ni, Cu, and other metals. Scanning electron microscopy analysis suggests that hydrozincite is mainly of biological origin. Dormant photosynthetic microorganisms have been retrieved from 1-year-old dry hydrozincite. The autofluorescent microorganisms were imaged by a scanning confocal laser microscope. A photosynthetic filamentous bacterium, classified as Scytonema sp. strain ING-1, was found associated with microalga Chlorella sp. strain SA1. This microbial community is responsible for the natural polishing of heavy metals in the water stream by coprecipitation with hydrozincite. PMID:11055969

  7. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (KSC (Ni, Mn, Pb, Fe, Zn, Cr

    Directory of Open Access Journals (Sweden)

    Fatemeh hormozi Nejad

    2017-02-01

    Full Text Available Introduction Soil plays a vital role in human life as the very survival of mankind is tied to the preservation of soil productivity (Kabata- Pendies and Mukherjee, 2007. The purpose of this study is the assessment of heavy metal contamination (Zn, Mn, Pb, Fe, Ni, Cr of the soil around the Khuzestan Steel Complex. Materials and methods For this purpose, 13 surface soil samples (0-10 cm were taken. Also a control sample was taken from an area away from the steel complex. The coordinates of each point were recorded by Global Positioning System (GPS. The samples were transferred to the laboratory and then were air dried at room temperature for 72 hours. Then they were sieved through a 2mm sieve for determining physical and chemical parameters (soil texture, pH, OC, and a 63-micron sieve for measurement of heavy metal concentration. pH was measured using a calibrated pH meter at a 2: 1 mixture (soil: water, and soil texture was determined using a hydrometer. The amount of organic matter was measured using the Valkey black method (Chopin and Alloway, 2007. After preparation of the samples in the laboratory, the samples were analyzed using the ICP-OES method to assess concentration of heavy metals. Measurement of heavy metals concentration was carried out at the Zar azma laboratory in Tehran. To ensure the accuracy of the analysis of soil samples, replicate samples were also sent to the laboratory. In order to assess the heavy metal pollution in the soil samples, different indices including contamination factor (CF, contamination degree (Cd, anthropogenic enrichment percent (An%, and saturation degree of metals (SDM were calculated. Discussion In addition, the mean concentrations of heavy metals in soil samples were compared to the concentration of these metals in Control Sample and unpolluted soil standard. Measurement of soil pH showed that the soil has a tendency to alkalinity. Also, soil texture is sandy loam (Moyes, 2011. The results showed that

  8. Proper land use for heavy metal-polluted soil based on enzyme activity analysis around a Pb-Zn mine in Feng County, China.

    Science.gov (United States)

    Fang, Linchuan; Liu, Yuqing; Tian, Haixia; Chen, Hansong; Wang, Yunqiang; Huang, Min

    2017-12-01

    Enzymes in the soil are useful for assessing heavy metal soil pollution. We analyzed the activity of a number of enzymes, including urease, protease, catalase, and alkaline phosphatase, in three types of land (farmland, woodland, and grassland) to evaluate soil pollution by heavy metals (Pb, Zn, and Cd). Our results showed that the tested soil was polluted by a combination of Pb, Zn, and Cd, but the primary pollutant was Cd. An ecological dose analysis demonstrated that urease was the most sensitive enzyme to Pb and Cd in the farmland, and catalase and phosphatase were the most sensitive enzymes to Pb, Zn, and Cd in the woodland and grassland. The ecological risk of Cd (E Cd ) was the smallest in all three types of land, suggesting that Cd was the major metal inhibiting enzyme activity. Electrical conductivity (EC) was shown to be a negative regulator, while nitrogen, phosphorus, and clay contents were positive regulators of soil enzyme activity. The total enzyme index (TEI) inhibition rates in the woodland were 22.2 and 38.6% under moderate and heavy pollution, respectively, which were lower than those of the other two types of land. Therefore, woodlands might be the optimum land use choice in relieving heavy metal pollution. Taken together, this study identified the key metal pollutant inhibiting soil enzyme activity and suitable land use patterns around typical metal mine. These results provide possible improvement strategies to the phytomanagement of metal-contaminated land around world.

  9. A two-step leaching method designed based on chemical fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from metallurgical sludge.

    Science.gov (United States)

    Wang, Fen; Yu, Junxia; Xiong, Wanli; Xu, Yuanlai; Chi, Ru-An

    2018-01-01

    For selective leaching and highly effective recovery of heavy metals from a metallurgical sludge, a two-step leaching method was designed based on the distribution analysis of the chemical fractions of the loaded heavy metal. Hydrochloric acid (HCl) was used as a leaching agent in the first step to leach the relatively labile heavy metals and then ethylenediamine tetraacetic acid (EDTA) was applied to leach the residual metals according to their different fractional distribution. Using the two-step leaching method, 82.89% of Cd, 55.73% of Zn, 10.85% of Cu, and 0.25% of Pb were leached in the first step by 0.7 M HCl at a contact time of 240 min, and the leaching efficiencies for Cd, Zn, Cu, and Pb were elevated up to 99.76, 91.41, 71.85, and 94.06%, by subsequent treatment with 0.2 M EDTA at 480 min, respectively. Furthermore, HCl leaching induced fractional redistribution, which might increase the mobility of the remaining metals and then facilitate the following metal removal by EDTA. The facilitation was further confirmed by the comparison to the one-step leaching method with single HCl or single EDTA, respectively. These results suggested that the designed two-step leaching method by HCl and EDTA could be used for selective leaching and effective recovery of heavy metals from the metallurgical sludge or heavy metal-contaminated solid media.

  10. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vogel-Mikus, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Pongrac, Paula [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia); Kump, Peter [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Necemer, Marijan [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Regvar, Marjana [Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, SI-1000 Ljubljana (Slovenia)]. E-mail: marjana.regvar@bf.uni-lj.si

    2006-01-15

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. - Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox with arbuscular mycorrhizal fungi resulted in improved nutrient and reduced Cd and Zn uptake.

  11. Contamination and Health Risks from Heavy Metals (Cd and Pb) and Trace Elements (Cu and Zn) in Dairy Products

    National Research Council Canada - National Science Library

    Hamid Reza Ghafari; Soheil Sobhanardakani

    2017-01-01

    .... This study was carried out to analyze the content of metals (Cd, Cu, Pb, and Zn) in butter and cheese, and evaluates the potential health risks of metals to humans through the consumption of dairy products...

  12. The acute toxicity of four heavy metals (Cd++, Cr+++, Cu++, and Zn++ to the juvenile spotted brown shrimp (Penaeus brasiliensis

    Directory of Open Access Journals (Sweden)

    K. S Chung

    1980-12-01

    Full Text Available The static biossays were performed to determine lethal concentration (LC50 values of four heavy metals (Cd++, Cr+++. Cu++. and Zn++ of spotted brown shrimp (Penaeus brasiliensis The test animals were collected from the Laguna of Restinga, Nueva Esparto, and were acclimated in the laboratory condition for 11-21 days. Temperature and salinity were 22 ºC and 36 ppt, respectively. The LC50 values (mg/l determined by probability-logarithm transformation were as follows-cadmium: 38 (24 -h, 21 (48 -h, and 12 (60 -h;chromium:40 (48 -h, 23 (60 -h, 13 (86 -h, and 10 (96 -h; copper: 24 (48 -h, 19 (60 -h, 16 (72 -h, 14 (86 -h, and 10 (144 -h; and zinc: 69 (24 -h, 25 (36 -h, 15 (48 -h and 8 (60 -h. The LC50 values of 48 -h and 60 -h indicate that the most toxic heavy metals to P. brasiliensis in order are zinc, cadmium, copper, and chromium.

  13. Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria

    Science.gov (United States)

    Obiora, Smart C.; Chukwu, Anthony; Davies, Theophilus C.

    2016-04-01

    This study determined the heavy metals concentration in arable soils and associated food crops around the Pb-Zn mines in Enyigba, Nigeria, and metal transfer factors were calculated. Air-dried samples of the soils and food crops were analyzed for 8 known nutritional and toxic heavy metals by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS) method. Eighty seven percent of all the 20 sampled soils contain Pb in excess of the maximum allowable concentration (MAC) set by Canadian Environmental Quality Guideline (CCME) and European Union (EU) Standard, while Zn in thirty-one percent of the samples exceeded the CCME for MAC of 200 mg/kg. All the food crops, with the exception of yam tuber, contain Pb which exceeded the 0.43 mg/kg and 0.3 mg/kg MAC standards of EU and WHO/FAO respectively, with the leafy vegetables accumulating more Pb than the tubers. The metal transfer factors in the tubers and the leafy vegetables were in the order: Mo > Cu > Zn > Mn > As > Cd > Cr > Ni > Pb and Cd > Cu > Zn > Mn > Mo > As > Ni > Pb > Cr, respectively. Risk assessment studies revealed no health risk in surrounding populations for most of the heavy metals. However, Pb had a high health risk index (HRI) of 1.1 and 1.3, in adults and children, respectively for cassava tuber; Pb had HRI > 1 in lemon grass while Mn also had HRI > 1 in all the leafy vegetables for both adult and children. This high level of HRI for Pb and Mn is an indication that consumers of the food crops contaminated by these metals are at risk of health problems such as Alzheimers' disease and Manganism, associated with excessive intake of these metals. Further systematic monitoring of heavy metal fluxes in cultivable soils around the area of these mines is recommended.

  14. Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress.

    Science.gov (United States)

    Erturk, Filiz Aygun; Agar, Guleray; Arslan, Esra; Nardemir, Gokce

    2015-07-01

    Conditions of environmental stress are known to lead genetic and epigenetic variability in plants. DNA methylation is one of the important epigenetic mechanisms and plays a critical role in epigenetic control of gene expression. Thus, the aim of the study was to investigate the alteration of genome methylation induced by zinc stress by using coupled restriction enzyme digestion-random amplification (CRED-RA) technique in maize (Zea mays L.) seedlings. In addition, to determine the effect of zinc on mitotic activity and phytohormone level, high-pressure liquid chromatography (HPLC) and mitotic index analysis were utilized. According to the results, mitotic index decreased in all concentrations of zinc except for 5 mM dose and chromosome aberrations such as c-mitosis, stickiness, and anaphase bridges were determined. It was also observed that increasing concentrations of zinc caused an increase in methylation patterns and decrease in gibberellic acid (GA), zeatin (ZA), and indole acetic acid (IAA) levels in contrast to abscisic acid (ABA) level. Especially increasing of ABA levels under zinc stress may be a part of the defense system against heavy metal accumulation in plants.

  15. Relations between metals (Zn, Pb, Cd and Cu) and glutathione-dependent detoxifying enzymes in spiders from a heavy metal pollution gradient

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, Grazyna [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Babczynska, Agnieszka [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Augustyniak, Maria [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Migula, Pawel [Department of Animal Physiology and Ecotoxicology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland)]. E-mail: migula@us.edu.pl

    2004-12-01

    We studied the relations between glutathione-dependent detoxifying enzymes and heavy metal burdens in the web-building spider Agelena labyrinthica (Agelenidae) and the wolf spider Pardosa lugubris (Lycosidae) from five meadow sites along a heavy metal pollution gradient. We assayed the activity of glutathione-S-transferase (GST) and glutathione peroxidases (GPOX, GSTPx), and glutathione (GSH) levels in both sexes. Except for GSH vs Pb content, we found significant correlations between GPOX and GSTPx activity and metal concentrations in females of A. labyrinthica. The highest activity of these enzymes measured in the web-building spiders was found in the individuals from the most polluted sites. In P. lugubris males significant correlations were found between GST and Pb and Zn concentrations, and between GPOX and GSTPx and the concentration of Cu. GST activity was higher in males collected from less polluted areas. Thus, detoxifying strategies against pollutants seemed to be sex-dependent. Actively hunting spiders had higher metal concentrations, maintaining lower activity of detoxifying enzymes and a lower glutathione level. - Capsule: Glutathione-linked enzyme activity in spiders from polluted areas depends on hunting strategy and sex.

  16. Removal of Heavy Metals Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+ from Aqueous Solutions by using Xanthium Pensylvanicum

    Directory of Open Access Journals (Sweden)

    Jaber SALEHZADEH

    2013-11-01

    Full Text Available The hazardous ill effects of heavy metals on the environment and public health is a matter of serious concern. Biosorption is emerging as a sustainable effective technology. Heavy metals in water resources are one of the most important environmental problems of countries. The intensification of industrial activity and environmental stress greatly contributes to the significant rise of heavy metal pollution in water resources making threats on terrestrial and aquatic life. The toxicity of metal pollution is slow and interminable, as these metal ions are non bio-degradable. The adsorption capacity of Xanthium Pensylvanicum towards metal ions such as Pb2+, Cu2+, Zn2+, Cd2+, Ni2+, Co2+ and Fe3+, was studied. The adsorption capacity was performed by batch experiments as a function of process parameters (such as sorption time and pH. Experimental results showed that the removal percentages increasing of metal ions at pH=4, initial concentration of metal ions 10 mg/L, and after 90 min of shaking was: Zn2+ < Cd2+ < Cu2+ < Pb2+ < Ni2+ < Fe3+ < Co2+.

  17. Transport, fate and speciation of heavy metals (Pb, Zn, Cu, Cd) in mine drainage: geochemical modeling and anodic stripping voltammetric analysis.

    Science.gov (United States)

    Yun, S T; Jung, H B; So, C S

    2001-07-01

    The maximum concentrations (ppb) of heavy metals in the mine drainage (pH: down to 3.3) of Chonam-ri creek in the abandoned Kwangyang gold-silver mine, South Korea, are 22600 Zn, 2810 Cu, 182 Cd, and 109 Pb. A small, limestone-infused retention pond, about 440 meters downstream from the waste dump, plays an important role in the removal of heavy metals: the factors of reduction for Zn, Cu, Cd, and Pb are 12, 24, 14, and 14, respectively. This is due to the pH increase (up to >5.4) accompanying adsorption onto and/or coprecipitation with Fe- and Al-hydroxides (goethite and gibbsite). From the waste dump to the pond, heavy metal concentrations also progressively decrease due to pH increase. Geochemical modeling (using the computer code WATEQ4F) predicts that free aqueous metal ions are dominant (mostly >70% for Cu and Zn, and >60% for Pb and Cd) in samples collected upstream from the pond, whereas complexing with sulfate, carbonate and hydroxyl ions becomes important in the samples collected downstream. The comparison between the concentrations of electrochemically labile species (determined by Anodic Stripping Voltammetry) and the result of computer modeling shows that Cd and Zn are present predominantly as labile inorganic species throughout the whole range of the creek. However, Cu and Pb in the samples collected downstream from the pond largely form electrochemically inert species (possibly, metal-organic complexes). The above results indicate that the retention pond is effective in reducing the toxicity of heavy metals, especially Cu and Pb.

  18. Green Synthesis of InP/ZnS Core/Shell Quantum Dots for Application in Heavy-Metal-Free Light-Emitting Diodes

    Science.gov (United States)

    Kuo, Tsung-Rong; Hung, Shih-Ting; Lin, Yen-Ting; Chou, Tzu-Lin; Kuo, Ming-Cheng; Kuo, Ya-Pei; Chen, Chia-Chun

    2017-09-01

    Quantum dot light-emitting diodes (QD-LEDs) have been considered as potential display technologies with the characterizations of high color purity, flexibility, transparency, and cost efficiency. For the practical applications, the development of heavy-metal-free QD-LEDs from environment-friendly materials is the most important issue to reduce the impacts on human health and environmental pollution. In this work, heavy-metal-free InP/ZnS core/shell QDs with different fluorescence were prepared by green synthesis method with low cost, safe, and environment-friendly precursors. The InP/ZnS core/shell QDs with maximum fluorescence peak at 530 nm, superior fluorescence quantum yield of 60.1%, and full width at half maximum of 55 nm were applied as an emission layer to fabricate multilayered QD-LEDs. The multilayered InP/ZnS core/shell QD-LEDs showed the turn-on voltage at 5 V, the highest luminance (160 cd/m2) at 12 V, and the external quantum efficiency of 0.223% at 6.7 V. Overall, the multilayered InP/ZnS core/shell QD-LEDs reveal potential to be the heavy-metal-free QD-LEDs for future display applications.

  19. Heavy metal (Pb, Zn) uptake and chemical changes in rhizosphere soils of four wetland plants with different radial oxygen loss.

    Science.gov (United States)

    Yang, Junxing; Ma, Zuoluo; Ye, Zhihong; Guo, Xueyan; Qiu, Rongliang

    2010-01-01

    Lead and Zn uptake and chemical changes in rhizosphere Soils of four emergent-rooted wetland plants; Aneilema bracteatum, Cyperus alternifolius, Ludwigia hyssopifolia and Veronica serpyllifolia were investigated by two experiments: (1) rhizobag filled with "clean" or metal-contaminated soil for analysis of Pb and Zn in plants and rhizosphere soils; and (2) applied deoxygenated solution for analyzing their rates of radial oxygen loss (ROL). The results showed that the wetland plants with different ROL rates had significant effects on the mobility and chemical forms of Pb and Zn in rhizosphere under flooded conditions. These effects were varied with different metal elements and metal concentrations in the soils. Lead mobility i n rhizosphere of the four plants both in t"clean" and contaminated soils was decreased, while Zn mobility was increased in the rhizosphere of the "clean" soil, but decreased in the contaminated soil. Among the four plants, V serpyllifolia, with the highest ROL, formed the highest degree of Fe plaque on the root surface, immobilized more Zn in Fe plaque, and has the highest effects on the changes of Zn form (EXC-Zn) in rhizosphere under both "clean" and contaminated soil conditions. These results suggested that ROL of wetland plants could play an important role in Fe plaque formation and mobility and chemical changes of metals in rhizosphere soil under flood conditions.

  20. Heavy metals (Cd, Pb, Cu, Zn) in mudfish and sediments from three ...

    African Journals Online (AJOL)

    Fish tissue from Labeo capensis and sediment core samples from three dams in the Mooi River catchment area were collected and analysed for Cd and Pb by electro-thermal AAS, and for Cu and Zn by flame AAS. The highest Cd concentrations were found in the clay fractions in all three dams, with a range between 66.0 ...

  1. A Zn2GeO4-ethylenediamine hybrid nanoribbon membrane as a recyclable adsorbent for the highly efficient removal of heavy metals from contaminated water.

    Science.gov (United States)

    Yu, Li; Zou, Rujia; Zhang, Zhenyu; Song, Guosheng; Chen, Zhigang; Yang, Jianmao; Hu, Junqing

    2011-10-14

    Zn(2)GeO(4)-ethylenediamine (ZGO-EDA) hybrid nanoribbons have been synthesized on a large-scale and directly assembled to membranes, which exhibit an excellent recyclability, high selectivity, and good thermal stability for highly efficient removal of heavy metal ions, i.e., Pb(2+), Cd(2+), Co(2+), and Cu(2+), from contaminated water. This journal is © The Royal Society of Chemistry 2011

  2. Contamination and Health Risks from Heavy Metals (Cd and Pb and Trace Elements (Cu and Zn in Dairy Products

    Directory of Open Access Journals (Sweden)

    Hamid Reza Ghafari

    2017-08-01

    Conclusion: Considering the serious contamination of some brands of butter and cheese by Cu and Pb, a control of heavy metals and trace elements levels during the whole production processing of dairy products must be applied.

  3. Experimental analysis of the simultaneous uptake of the heavy metals Cd, Hg, Pb, Cu, Zn, Se in the sporophore of mushrooms. Versuche ueber die simultane Aufnahme der Schwermetalle Cd, Hg, Pb, Cu, Zn und Se in Pilzfruchtkoerper

    Energy Technology Data Exchange (ETDEWEB)

    Suehs, K.

    With mushrooms of the species Agaricus bisporus and Boletus badius the simultaneous uptake of the heavy metals Cd, Hg, Pb, Cu, Zn, and Se from soil to the sporophore was studied. To avoid misleadingly overrated enrichmentfactors when comparing the heavy metal contents of dried mushrooms and soils, a so-called transfer factor TF[sub v] which is related to the volume is put to discussion here, this factor takes account of the relatively small amount of dry matter in mushrooms and of the different composition (that means specific weight) of the soils in question. With help of these transfer factors the conclusion is derived, that essential elements show a better enrichment behaviour than biologically superfluous heavy metals, at least this is true with the insignificantly contaminated soils we investigated. With Cd as an example of a ''superfluous'' element it is shown that there is a strict proportionality of Cd concentrations in the mushrooms and the corresponding soils, thus producing a constant transfer factor. Apart from this the uptake of copper into the mushrooms is promoted (growth of the transfer factor) by a larger Cd supply, whereas the other elements under investigation (even the classical antagonist Zn) are not significantly affected. Furthermore there is evidence that with increasing heavy metal concentration (Cd) first the fructification of the thallus is supported and moreover, that increasing age of this primary fungus corresponds with an increase of heavy metals in the mushrooms. (orig.)

  4. Regulation of essential heavy metals (Cu, Cr, and Zn) by the freshwater prawn macrobrachium malcolmsonii (Milne Edwards)

    Energy Technology Data Exchange (ETDEWEB)

    Vijayram, K. [Periyar E.V.R. College, Tiruchirappalli (India); Geraldine, P. [Bharathidasan Univ., Tiruchirappalli (India)

    1996-02-01

    Despite the low concentrations of heavy metals in the surrounding medium, aquatic organisms take them up and accumulate them in their soft tissues to concentrations several fold higher than those of ambient levels. Knowledge of accumulation patterns of a particular trace metal is a prerequisite for understanding the significance of an observed metal concentration in a particular animal, especially from the aspect of biomonitoring. Many marine invertebrates accumulate heavy metals without any regulation and the accumulation necessarily being associated with mechanisms to store the metals in a detoxified form. Two detoxification mechanisms have been described, both of which may occur in one specimen. Heavy metals can either be bound up in insoluble metalliferous {open_quote}granules{close_quote}, or are bound to soluble metal-binding ligands, such as metallothioneins. Some marine decapod crustaceans have an innate ability to regulate the internal concentrations of essential but potentially toxic metals within a constant level, presumably to meet their metabolic demands. However, at present, there is no such information relating to freshwater decapod crustaceans, especially shrimps which occupy a totally different environment. Macrobrachium malcolmsonii, a potential aquaculture species for freshwater is found in abundance in one of the major Indian rivers, the Cauvery. In the present study, an attempt was made to determine whether the freshwater prawn, M. malcolmsonlii, is able to regulate the three essential elements, copper, chromium and zinc, over a wide range of dissolved concentrations. These three metals were chosen because the Cauvery River receives pollutants containing these metals.

  5. Accumulation of heavy metals (Cd, Cr, Cu, Ni and Zn) in Raphanus sativus L. and Spinacia oleracea L. plants irrigated with industrial effluent.

    Science.gov (United States)

    Pandey, S N

    2006-05-01

    Effluent from electroplating industry contains various heavy metals like Cd, Cr, Cu, Ni and Zn, which are used in electroplating process of industry. Effluent was slightly greenish in colour and pungent in odour. Physico-chemical properties like total suspended solids (TSS), total solids (TS), alkalinity, Biological oxygen demand (BOD), and Chemical oxygen demand (COD) showed higher values in effluent with high metal contents like Cd, 0.013; Cr, 0.093; Ni, 0.935 and Zn 4.76 mg l(-1). plants of S. oleracea and R. sativus were raised in uncontaminated alluvial soil of Lucknow by soil pot culture method and irrigated with industrial effluent, showed visual toxic symptoms like stunted growth, necrosis followed by chlorosis in leaves and finally death of the plants. Severity of toxicity was less in plants treated with diluted effluent (50%). High accumulation of Cr, 302.0; Cu, 81.2; Ni, 155.1 and Zn 146.8 microg g(-1) dry weight in S. oleracea and Cr, 198.0; Cu, 41.0; Ni, 84.3 and Zn, 140.2 microg g(-1) dry weight in R. sativus were determined. Tissue concentration of metals and toxic effects was more in S. oleracea plants. The tissue concentration of metals showed much higher values in treated plants than that of their respective control.

  6. Rhizobium metallidurans sp. nov., a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator.

    Science.gov (United States)

    Grison, Claire M; Jackson, Stephen; Merlot, Sylvain; Dobson, Alan; Grison, Claude

    2015-05-01

    A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming bacterium (ChimEc512(T)) was isolated from 56 host seedlings of the hyperaccumulating Anthyllis vulneraria legume, which was on an old zinc mining site at Les Avinières, Saint-Laurent-Le-Minier, Gard, South of France. On the basis of 16S rRNA gene sequence similarities, strain ChimEc512(T) was shown to belong to the genus Rhizobium and to be most closely related to Rhizobium endophyticum CCGE 2052(T) (98.4%), Rhizobium tibeticum CCBAU 85039(T) (98.1%), Rhizobium grahamii CCGE 502(T) (98.0%) and Rhizobium mesoamericanum CCGE 501(T) (98.0%). The phylogenetic relationships of ChimEc512(T) were confirmed by sequencing and analyses of recA and atpD genes. DNA-DNA relatedness values of strain ChimEc512(T) with R. endophyticum CCGE 2052(T), R. tibeticum CCBAU 85039(T), R. mesoamericanum CCGE 52(T), Rhizobium grahamii CCGE 502(T), Rhizobium etli CCBAU 85039(T) and Rhizobium radiobacter KL09-16-8-2(T) were 27, 22, 16, 18, 19 and 11%, respectively. The DNA G+C content of strain ChimEc512(T) was 58.9 mol%. The major cellular fatty acid was C18 : 1ω7c, characteristic of the genus Rhizobium . The polar lipid profile included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine and moderate amounts of aminolipids, phospholipid and sulfoquinovosyl diacylglycerol. Although ChimEc512(T) was able to nodulate A. vulneraria, the nodC and nifH genes were not detected by PCR. The rhizobial strain was tolerant to high concentrations of heavy metals: up to 35 mM Zn and up to 0.5 mM Cd and its growth kinetics was not impacted by Zn. The results of DNA-DNA hybridizations and physiological tests allowed genotypic and phenotypic differentiation of strain ChimEc512(T) from species of the genus Rhizobium with validly published names. Strain ChimEc512(T), therefore, represents a novel species, for which the name Rhizobium metallidurans sp. nov. is proposed, with the type strain

  7. Dispersion, Speciation, and Pollution Assessment of Heavy Metals Pb and Zn in Surface Sediment from Disturbed Ecosystem of Jeneberang Waters

    Science.gov (United States)

    Najamuddin; Surahman

    2017-10-01

    Surface sediments were collected from seventeen stations in Jeneberang waters (riverine, estuarine, and marine). Lead (Pb) and zinc (Zn) concentrations were determined by atomic absorption spectrometry, and the speciation of metals was obtained by a sequential extraction procedure. Dispersion of Pb and Zn were found higher in the riverine and marine samples than the estuarine samples. Following speciation, the metals were found similar composition of fraction in the riverine and estuarine samples but any different in the marine samples. The results indicated that there is a change of dispersion pattern and speciation composition of metals due to the presence of the dam that lies at the boundary between the estuary and the river. The toxicity unit was indicated low toxicity level; pollution level was in weakly to moderately polluted while the aquatic environment risk attributed were no risky to light risk.

  8. Concentration of heavy metal As, Pb, Mn, Ni, Sn, Zn, Cr, Fe and radon gas in bottom sediment from abandoned tin mines in the Phuket Province

    Directory of Open Access Journals (Sweden)

    Suteerasak, T.

    2006-05-01

    Full Text Available This research is aimed at analyzing the heavy metals: As, Pb, Mn, Ni, Sn, Zn, Cr, Fe, and radon gas emission in bottom sediment from six abandoned tin mines in Phuket Province. Fe, Mn, and Sn were found in higher concentrations (but non-polluting than Cr and Ni. As, Pb, and Zn were polluting at lower levels. The concentration ranges for As, Pb, and Zn were 75.3-169, 98.6-547.5, and 120.4-323.3 mg/kg respectively. The activity of radon gas emission from bottom sediment from an abandoned tin mine in Amphur Muang was in the range of 162-212 Bq/kg., in the Amphur Katoo mine the range was 122-266 Bq/kg. and in the Amphur Talang mine the range was 180-263 Bq/kg. All these sites have higher concentrations of radon gas emissions than other similar sites. The heavy metals and radon gas come from geochemical materials such as soil and granite rock, found around the abandoned tin mines.

  9. Atmospheric Heavy Metal Pollution

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  10. Analysis of heavy metal content of Cd and Zn in ballast water tank of commercial vessels in Port of Tanjung Emas Semarang, Central Java Province

    Science.gov (United States)

    Tjahjono, A.; Bambang, A. N.; Anggoro, S.

    2017-02-01

    Commercial vessels that do not conduct ballast water exchange, in accordance with International Convention Ballast Water Management, will endager the environment of ports. This research is aimed to know the metal content in ballast water tank of commercial vessels that have not performed ballast water exchange, in accordance with regulations of International Maritime Organization (IMO). The present research is focused on the heavy metal content of ballast water of commercial vessels, both passenger or cargo vessells, berthing in Port of Tanjung Emas Semarang (PTES). Water sample in ballast tank is collected by method of AAS (Atomic Absorption Spectrophotometer). Results of the research show that the content of Cd is about 0.001-0.46 mg l-1, and Zn is about 0.001-2.464 mg l-1. Based on the Decree of Minister of Environment Number 51/2004, the heavy metal content of Cd and Zn has exceeded quality standards of sea water for port water, which is 0.1 mg l-1 both.

  11. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Maria Julieta [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina); Rodriguez, Judith Hebelen, E-mail: jrodriguez@com.uncor.edu [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina); Nieto, Gaston Leonardo; Pignata, Maria Luisa [Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator Section, Faculty of Physical and Natural Sciences, National University of Cordoba, Av. Velez Sarsfield 1611, X5016CGA Cordoba (Argentina)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Soybean grown near metal sources presents a toxicological hazard from heavy metals for Chinese consumers. Black-Right-Pointing-Pointer Rhizosphere soil is the most suitable compartment for toxicological studies. Black-Right-Pointing-Pointer Soil guidelines should be modified considering the exchangeable metals. - Abstract: Argentina is one of the major producers of soybean in the world, this generates a high global demand for this crop leading to find it everywhere, even close to human activities involving pollutant emissions. This study evaluated heavy metal content, the transfer of metals and its relation to crop quality, and the toxicological risk of seed consumption, through soil and soybean sampling. The results show that concentrations of Pb and Cd in soils and soybeans at several sites were above the maximum permissible levels. The heavy metal bioaccumulation depending on the rhizosphere soil compartment showed significant and high regression coefficients. In addition, the similar behavior of Cd and Zn accumulation by plants reinforces the theory of other studies indicating that these metals are incorporated into the plant for a common system of transport. On the other hand, the seed quality parameters did not show a clear pattern of response to metal bioacumulation. Taken together, our results show that soybeans grown nearby to anthropic emission sources might represent a toxicological hazard for human consumption in a potential Chinese consumer. Hence, further studies should be carried out taking into account the potential negative health effects from the consumption of soybeans (direct or indirect through consumption of meat from cattle) in these conditions.

  12. HEAVY METALS IN VINEYARDS AND ORCHARD SOILS

    Directory of Open Access Journals (Sweden)

    GUSTAVO BRUNETTO

    Full Text Available ABSTRACT The application of foliar fungicides in vineyards and orchards can increase soil concentration of heavy metals such as copper (Cu and zinc (Zn, up to the toxicity threshold for fruit trees and cover crops. However, some agronomic practices, such as liming, addition of organic fertilizers, cultivation of soil cover crops and inoculation of young plants with arbuscular mycorrhizal fungi can decrease the availability and the potential of heavy metal toxicity to fruit trees. This review aims to compile and present information about the effects of increasing concentrations of heavy metals, especially Cu and Zn, on soils cultivated with fruit trees and provides some agronomic practices of remediation. Information about the sources of heavy metals found in soils cultivated with fruit trees are presented; mechanisms of absorption, transport, accumulation and potential toxicity to plants are described.

  13. Physicochemical characteristics and heavy metal levels in soil ...

    African Journals Online (AJOL)

    Distribution pattern of heavy metals in petrol stations, abattoirs, mechanic workshops and hospital incinerator sites were Mn > Zn > Pb > Cd, while for dumpsites Zn > Mn > Pb > Cd. Pollution index indicated that soil qualities varied between slightly contaminated to severely polluted status. This showed that the heavy metal ...

  14. Ecological risk assessment of heavy metals pollution on irrigated ...

    African Journals Online (AJOL)

    This paper assessed the heavy metals pollution in irrigated soil of salanta river valley of Sharada industrial area with aim of assessing the potential ecological risk of Cd, Cu, Cr and Zn. Soil samples were collected from five plots randomly selected along the stream and heavy metals (Cd, Cu, Cr and Zn) and pH were ...

  15. Bioaccumulation of Heavy Metals

    African Journals Online (AJOL)

    komla

    acute toxicity and sublethal chronic action the devastating effects that the accumulation - ... surrounding waters. The results showed a programmes of heavy metals in aquatic strong and positive correlation (r = 0.97) ecosystems. between amounts of metals in the aquatic ...... Chemical composition of agricultural waste.

  16. Heavy metals in equine biological components

    Directory of Open Access Journals (Sweden)

    Maria Verônica de Souza

    2014-02-01

    Full Text Available The objective of this research was to determine the concentration of heavy metals in the blood (Pb, Ni and Cd, serum (Cu and Zn and hair (Pb, Ni, Cd, Cu and Zn of horses raised in non-industrial and industrial areas (with steel mill, and to verify the possibility to use these data as indicators of environmental pollution. The samples were collected during summer and winter, aiming to verify animal contamination related to environment and season of the year. Copper and Zn contents determined in the serum and Cd and Ni contents obtained in the blood indicated no contamination effects of industries. For some animals, contents of Pb in the blood were higher than those considered acceptable for the species, but without relationship with industrialization and without clinical signs of Pb intoxication. The heavy metals evaluated on the hair of horses in this study were not increased with the presence of industries, but Cu and Cd contents were influenced by the season. The contents of some heavy metals in biological components analyzed were influenced by season sampling; however, serum, blood and hair may not be suitable to indicate differences in environmental contamination between the two contrasting areas. Most part of the heavy metal contents was lower or close to the reference values for horses. Serum, blood and hair components from horses may not be effective as indicators of environmental pollution with heavy metals. Industrialization and seasons have no effects on most part of heavy metals contents from those components.

  17. Radionuclides (40K, 232Th and 238U) and Heavy Metals (Cr, Ni, Cu, Zn, As and Pb) Distribution Assessment at Renggam Landfill, Simpang Renggam, Johor, Malaysia

    Science.gov (United States)

    Zaidi, E.; FahrulRazi, MJ; Azhar, ATS; Hazreek, ZAM; Shakila, A.; Norshuhaila, MS; Omeje, M.

    2017-08-01

    The assessment of radioactivity levels and the distribution of heavy metals in soil samples at CEP Farm landfill, Renggam in Johor State was to determine the activity concentrations of naturally occurring radionuclides and heavy metal concentrations of this landfill. The background radiation was monitored to estimate the exposure level. The activity concentrations of radionuclides in soil samples were determined using HPGe gamma ray spectroscopy whereas the heavy metal concentration was measured using X-RF analysis. The mean exposure rate at the landfill site was 36.2±2.4 μR hr-1 and the annual effective dose rate at the landfill site was 3.19 ± 0.22 mSv yr-1. However, residential area has lower mean exposure dose rate of about 16.33±0.72 μR hr-1 and has an annual effective dose rate of 1.43±0.06 mSv yr-1 compared to landfill sites. The mean activity concentration of 40K, 238U and 232Th at landfill site were 239.95±15.89 Bq kg-1, 20.90±2.49 Bq kg-1 and 40.61±4.59 Bq kg-1, respectively. For heavy metal compositions, Cr, Ni and Cu have mean concentration of 232±10 ppm, 23±2 ppm, and 46±19 ppm, respectively. Whereas, Zn has concentration of 64±9 ppm and concentration of 12±1 ppm and 71±2 ppm was estimated for As and Pb respectively. The higher activity concentration of 40K down the slope through leaching process whereas the higher activity level of 238U content at the landfill site may be attributed to the soil disruption to local equilibrium.

  18. Roles of catalase (CAT) and ascorbate peroxidase (APX) genes in stress response of eggplant (Solanum melongena L.) against Cu(+2) and Zn(+2) heavy metal stresses.

    Science.gov (United States)

    Soydam-Aydın, Semra; Büyük, İlker; Cansaran-Duman, Demet; Aras, Sümer

    2015-12-01

    Eggplant (Solanum melongena L.) is a good source of minerals and vitamins and this feature makes its value comparable with tomato which is economically the most important vegetable worldwide. Due to its common usage as food and in medicines, eggplant cultivation has a growing reputation worldwide. But genetic yield potential of an eggplant variety is not always attained, and it is limited by some factors such as heavy metal contaminated soils in today's world. Today, one of the main objectives of plant stress biology and agricultural biotechnology areas is to find the genes involved in antioxidant stress response and engineering the key genes to improve the plant resistance mechanisms. In this regard, the current study was conducted to gain an idea on the roles of catalase (CAT) and ascorbate peroxidase (APX) genes in defense mechanism of eggplant (S. melongena L., Pala-49 (Turkish cultivar)) treated with different concentrations of Cu(+2) and Zn(+2). For this aim, the steady-state messenger RNA (mRNA) levels of CAT and APX genes were determined by quantitative real-time PCR (qRT-PCR) in stressed eggplants. The results of the current study showed that different concentrations of Cu(+2) and Zn(+2) stresses altered the mRNA levels of CAT and APX genes in eggplants compared to the untreated control samples. When the mRNA levels of both genes were compared, it was observed that CAT gene was more active than APX gene in eggplant samples subjected to Cu(+2) contamination. The current study highlights the importance of CAT and APX genes in response to Cu(+2) and Zn(+2) heavy metal stresses in eggplant and gives an important knowledge about this complex interaction.

  19. Forest Soil Pollution with Heavy Metals (Pb, Zn, Cd, and Cu in the Area of the “French Mines” on the Medvednica Mountain, Republic of Croatia

    Directory of Open Access Journals (Sweden)

    Ivan Perković

    2017-01-01

    Full Text Available Background and Purpose: This paper deals with the results of the investigation of the selected heavy metal contents in forest soil in the region of an abandoned mine. The analysis of the forest ecosystem soil on the Medvednica Mountain was conducted in the region of the so-called “French Mines” (FM. The elements selected for analyses were cadmium (Cd, copper (Cu, lead (Pb, and zinc (Zn because of their toxicological characteristics. Material and Methods: In the investigated area - five entrances of the FM - composite topsoil samples (0–5 cm were taken. Those samples were compared to the control samples which were taken outside the area affected by mines. The soil samples were analysed for the following parameters: pH, particle size distribution, organic C content and pseudo-total mass fractions of the selected heavy metals. The heavy metals were determined by atomic emission spectrometry with inductively coupled plasma (ICP-MS. Results and Conclusion: The results reveal that the soil is locally polluted, i.e. the highest mass fraction values of these four heavy metals were found in the area of the FM. Average pseudo-total fraction of Cd in the analysed topsoil samples was in the range of 0.17–4.41 mg·kg−1 (median: 0.97 mg·kg−1. Cu was found in the range of 4.54–1260 mg·kg−1 (median: 45.7 mg·kg−1. In the case of Zn, mass fraction values were found in the range of 36.8–865 mg·kg−1 (median: 137 mg·kg−1. Finally, average values of the pseudo-total fraction of Pb were found in the range of 58.4–12000 mg·kg−1 (median: 238 mg·kg−1. The results reveal that mining activities leave consequences on soil for a long time.

  20. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  1. Comprehensive risk assessment and source identification of selected heavy metals (Cu, Cd, Pb, Zn, Hg, As) in tidal saltmarsh sediments of Shuangtai Estuary, China.

    Science.gov (United States)

    Liu, Chang-Fa; Li, Bing; Wang, Yi-Ting; Liu, Yuan; Cai, Heng-Jiang; Wei, Hai-Feng; Wu, Jia-Wen; Li, Jin

    2017-10-06

    Heavy metals do not degrade and can remain in the environment for a long time. In this study, we analyzed the effects of Cu, Cd, Pb, Zn, Hg, and As, on environmental quality, pollutant enrichment, ecological hazard, and source identification of elements in sediments using data collected from samples taken from Shuangtai tidal wetland. The comprehensive pollution indices were used to assess environmental quality; fuzzy similarity analysis and geoaccumulation index were used to analyze pollution accumulation; correlation matrix, principal component analysis, and clustering analysis were used to analyze pollution source; environmental risk index and ecological risk index were used to assess ecological risk. The results showed that the environmental quality was either clean or almost clean. Pollutant enrichment analysis showed that the four sub-regions had similar pollution-causing metals to the background values of the soil element of the Liao River Plain, which were ranked according to their similarity. Source identification showed that all the elements were correlated. Ecological hazard analysis showed that the environmental risk index in the study area was less than zero, posing a low ecological risk. Ecological risk of the six elements was as follows: As > Cd > Hg > Cu > Pb > Zn.

  2. Assessment of Heavy Metal Contamination in Soils around Cassava ...

    African Journals Online (AJOL)

    Assessment of Heavy Metal Contamination in Soils around Cassava Processing Mills in Sub- Urban Areas of Delta State, Southern Nigeria. ... The percent anthropogenic fraction of metals in the soil follow the order Cd > Zn > Ni > Cu > Fe > Cr > Pb. Keywords: Anthropogenic input, cassava, heavy metals, pollution index ...

  3. Heavy Metal Pollution Assessment by Partial Geochemical ...

    African Journals Online (AJOL)

    Mn and Fe oxides are powerful absorbents of heavy metal cations in soils and stream sediments therefore considered in this environmental geochemical investigation. Steam sediment samples were collected from Au-Ag and Pb-Zn-Cu mineralized areas of the Rodalquilar old gold mine, located in the southeastern part of ...

  4. Changes in Morphological Indexes of Young Atlantic Salmon (Salmo salar L. Exposed to hEavy Metal (Zn, Cu, Ni, Cr, Pb, Cd Mixture: an Experimental Study

    Directory of Open Access Journals (Sweden)

    Gintarė Sauliutė

    2016-10-01

    Full Text Available Morphological indexes are indicative of toxicant effects in fish. Unfortunately, morphological parameters [gill-, liver-, kidney-, viscero-, etc., somatic indexes and the integrated condition factor (CF], are usually determined in field studies to assess the general fish condition under effect of multicomponent pollution and did not reflect the effects of specific polluting substances (e.g. heavy metals. The purpose of this study was to experimentally evaluate the effect of priority heavy metal model mixture formed based on Maximum-Allowable-Concentration accepted for Lithuanian receiving water bodies (Zn – 0.1, Cu – 0.01, Ni – 0.01, Cr – 0.01, Pb – 0.005 and Cd – 0.005 mg/L, respectively on condition parameters of one-year-old Atlantic salmon after seven-, fourteen- and twenty eight- day exposure. Significant changes in liver-, kidney- and viscero-somatic indexes were determined, while CF and branchio-somatic-index were found to be not indicative for such kind of the exposure. Correlation analysis between the parameters studied revealed a number of meaningful patterns. The obtained data were compared with the results of the field study in salmonid rivers.

  5. Reclamation of heavy metals from contaminated soil using organic acid liquid generated from food waste: removal of Cd, Cu, and Zn, and soil fertility improvement.

    Science.gov (United States)

    Dai, Shijin; Li, Yang; Zhou, Tao; Zhao, Youcai

    2017-06-01

    Food waste fermentation generates complicated organic and acidic liquids with low pH. In this work, it was found that an organic acid liquid with pH 3.28 and volatile low-molecular-weight organic acid (VLMWOA) content of 5.2 g/L could be produced from food wastes after 9-day fermentation. When the liquid-to-solid ratio was 50:1, temperature was 40 °C, and contact time was 0.5-1 day, 92.9, 78.8, and 52.2% of the Cd, Cu, and Zn in the contaminated soil could be washed out using the fermented food waste liquid, respectively. The water-soluble, acid-soluble, and partly reducible heavy metal fractions can be removed after 0.5-day contact time, which was more effective than that using commercially available VLMWOAs (29-72% removal), as the former contained microorganisms and adequate amounts of nutrients (nitrogen, phosphorous, and exchangeable Na, K, and Ca) which favored the washing process of heavy metals. It is thus suggested that the organic acid fractions from food waste has a considerable potential for reclaiming contaminated soil while improving soil fertility.

  6. Heavy Metal Uptake by Novel Miscanthus Seed-Based Hybrids Cultivated in Heavy Metal Contaminated Soil

    Science.gov (United States)

    Krzyżak, Jacek; Pogrzeba, Marta; Rusinowski, Szymon; Clifton-Brown, John; McCalmont, Jon Paul; Kiesel, Andreas; Mangold, Anja; Mos, Michal

    2017-09-01

    When heavy metal contaminated soils are excluded from food production, biomass crops offer an alternative commercial opportunity. Perennial crops have potential for phytoremediation. Whilst the conditions at heavy metal contaminated sites are challenging, successful phytoremediation would bring significant economic and social benefits. Seed-based Miscanthus hybrids were tested alongside the commercial clone Miscanthus × giganteus on arable land, contaminated with Pb, Cd and Zn near Katowice. Before the randomized experimental plots were established (25m2 plots with plant density 2/m2) `time-zero' soil samples were taken to determine initial levels of total (aqua regia) and bioavailable (CaCl2 extraction) concentration of Pb, Cd and Zn. After the growing season plant material was sampled during autumn (October, green harvest) and winter (March, brown harvest) to determine differences in heavy metal uptake. Results after the first growing season are presented, including the plot establishment success, biomass yield and heavy metal uptake.

  7. Zn-bis-glutathionate is the best co-substrate of the monomeric phytochelatin synthase from the photosynthetic heavy metal-hyperaccumulator Euglena gracilis.

    Science.gov (United States)

    García-García, Jorge D; Girard, Lourdes; Hernández, Georgina; Saavedra, Emma; Pardo, Juan P; Rodríguez-Zavala, José S; Encalada, Rusely; Reyes-Prieto, Adrián; Mendoza-Cózatl, David G; Moreno-Sánchez, Rafael

    2014-03-01

    The phytochelatin synthase from photosynthetic Euglena gracilis (EgPCS) was analyzed at the transcriptional, kinetic, functional, and phylogenetic levels. Recombinant EgPCS was a monomeric enzyme able to synthesize, in the presence of Zn(2+) or Cd(2+), phytochelatin2-phytochelatin4 (PC2-PC4) using GSH or S-methyl-GS (S-methyl-glutathione), but not γ-glutamylcysteine or PC2 as a substrate. Kinetic analysis of EgPCS firmly established a two-substrate reaction mechanism for PC2 synthesis with Km values of 14-22 mM for GSH and 1.6-2.5 μM for metal-bis-glutathionate (Me-GS2). EgPCS showed the highest Vmax and catalytic efficiency with Zn-(GS)2, and was inactivated by peroxides. The EgPCS N-terminal domain showed high similarity to that of other PCSases, in which the typical catalytic core (Cys-70, His-179 and Asp-197) was identified. In contrast, the C-terminal domain showed no similarity to other PCSases. An EgPCS mutant comprising only the N-terminal 235 amino acid residues was inactive, suggesting that the C-terminal domain is essential for activity/stability. EgPCS transcription in Euglena cells was not modified by Cd(2+), whereas its heterologous expression in ycf-1 yeast cells provided resistance to Cd(2+) stress. Phylogenetic analysis of the N-terminal domain showed that EgPCS is distant from plants and other photosynthetic organisms, suggesting that it evolved independently. Although EgPCS showed typical features of PCSases (constitutive expression; conserved N-terminal domain; kinetic mechanism), it also exhibited distinct characteristics such as preference for Zn-(GS)2 over Cd-(GS)2 as a co-substrate, a monomeric structure, and ability to solely synthesize short-chain PCs, which may be involved in conferring enhanced heavy-metal resistance.

  8. Effect of heavy metals on enzymes production by Hebeloma crustuliniforme

    Directory of Open Access Journals (Sweden)

    Hanna Dahm

    2014-08-01

    Full Text Available Studies were carried out in order to dętermine the effect of some heavy metals (Cu, Cd, Pb, Zn on the production of enzymes (cellulases, peetinases. proteases by ectomycorrhizal fungus Hebeloma crusliliniforme (Buli.: Fr. Quél. All the heavy metals inhibited the general enzymatic activity regardless of the source of carbon used. The metals reduced the egzocellulolytic activity more in media with cellulose powder than with CMC (carboxymethylocellulosc. Among pectolytic enzymes heavy metals most strongly inhibited polygalacturonase (PG. The heavy metals did not harmful affect the activity of pectate lyase (PGL. Proteolytic activity of Hebeloma crustuliniforme was leasi affected by zinc (Zn. The degree of inhibition of enzymes by heavy metals can be presented in the following order Pb < Zn < Cd

  9. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  10. Bioaccumulation of heavy metals in water, sediment and fish ...

    African Journals Online (AJOL)

    The highest levels of heavy metal accumulated in the liver of C. anguillaris were Fe, Cu, Pb, Cd and Zn than accumulated in O. niloticus. In gills of C. anguillaris, the highest accumulation of metal levels were Zn, Fe, Pb, Cd and Cu than accumulation in gills of O. niloticus. In muscles of C. anguillaris, the highest accumulation ...

  11. Phytoremediation of Heavy Metals in Aqueous Solutions

    OpenAIRE

    Felix Aibuedefe AISIEN; Oluwole FALEYE; Eki Tina AISIEN

    2010-01-01

    One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd), lead (Pb) and zinc (Zn). Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especia...

  12. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico; Evaluacion de los metales pesados Cr, Mn, Fe, Cu, Zn y Pb en sombrerillo de agua (Hydrocotyle ranunculoides) del curso alto del Rio Lerma, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G.; Avila P, P.; Tejeda, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Valdivia B, M.; Macedo M, G. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Zepeda G, C., E-mail: graciela.zarazua@inin.gob.mx [Universidad Autonoma del Estado de Mexico, Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca, Estado de Mexico (Mexico)

    2013-07-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  13. Heavy metal / polyacid interaction : an electrochemical study of the binding of Cd(II), Pb(II) and Zn(II) to polycarboxylic and humic acids

    NARCIS (Netherlands)

    Cleven, R.F.M.J.

    1984-01-01

    Polyelectrolyte effects in the interaction of heavy metal ions with model polycarboxylic acids have been described, in order to establish the relevance of these effects in the interaction of heavy metal ions with naturally occurring humic and fulvic acids. The model systems consisted of Cd(II),

  14. 255 effects of some heavy metal pollutants on fertility characteristics

    African Journals Online (AJOL)

    DR. AMINU

    2010-06-01

    ) and Zinc (Zn). As Aydinalp and Marinova (2003) observe, a precise knowledge of heavy metals concentration and the forms in which they are found, their dependence on soil's physico-chemical properties provide a basis.

  15. Assessment of heavy metals in Lake Uluabat, Turkey | Elmaci ...

    African Journals Online (AJOL)

    The accumulation of heavy metals (Cu, Ni, Zn, Cd, Pb, Cr, B, As) was measured in water, plankton and sediment samples taken from different areas of Lake Uluabat during January 2003 to February 2004. The sequential extraction used in this study is useful to assess the potential mobility of heavy metals in the sediment ...

  16. Characterization of Heavy Metals in Vegetables Using Inductive ...

    African Journals Online (AJOL)

    The heavy metals or trace elements play an important role in the metabolic pathways during the growth and development of plants, when available in required concentration. The heavy metal concentration of. Cadmium (Cd), Cobalt (Co), Copper (Cu), Iron (Fe), Nickel (Ni), Lead (Pb) and Zinc (Zn) was analyzed using ...

  17. Urban water pollution by heavy metals and health implication in ...

    African Journals Online (AJOL)

    Studies of common heavy metals were conducted at Onitsha, Anambra State, the most urbanized city in Southeastern Nigeria. It was discovered that both surface and subsurface water were heavily polluted. Seven (7) heavy metals namely: arsenic (As+2), cadmium (Cd+2), lead (Pb+2), mercury (Hg+2), zinc (Zn+2), copper ...

  18. Heavy metal bioaccumulation in the fish communities of Areba River ...

    African Journals Online (AJOL)

    All the 22 fish species analysed were contaminated with heavy metals ranging from 2 to 7 times above the WHO and New Zealand maximum acceptable limits for food. Fe and Zn were the highest bioaccumulated heavy metals while Mn and V where generally the lowest. Ni was not detected in Ischthys henryi, so also were ...

  19. Relationships between heavy metals in the catfish, Chrysicthys ...

    African Journals Online (AJOL)

    Relationships between heavy metals in the catfish, Chrysicthys nigrodigitatus , water column and sediments of taylor creek, southern Nigeria. ... The best relationships were observed for Ni-Zn (r=0.72) and Cd-Pb (r=0.65). Partitioning coefficients (£d) of heavy metals between dissolved phase and SPM were generally low, ...

  20. Concentrations of Heavy Metals in Some Important Rivers of Owerri ...

    African Journals Online (AJOL)

    Water samples from Rivers Azaraegbelu, Ogochie, Okatankwu and Otamiri were analyzed for lead (Pb), arsenic (As), cadmium (Cd) and zinc (Zn). The concentration of lead was highest in water samples ... values of the heavy metals analyzed. Keywords: Heavy metals, concentration, river, pollution, bioavailability, toxicity ...

  1. Heavy metals in soils of cocoa plantation (Theobroma cacao L.)

    Science.gov (United States)

    Cocoa has experienced significant growth in recent years in Peru and the presence of heavy metals in the soils of these plantations is a potential problem for the export of this product. Contents of heavy metals (Cd, Ni, Pb, Fe, Cu, Zn, Mn) in soils from 19 plantations that have been in production f...

  2. Levels of some heavy metals in cassava and plantain from ...

    African Journals Online (AJOL)

    Test

    ABSTRACT: The concentrations of heavy metals (Ni, Zn, Cu, Pb and Fe) were determined in cassava and plantain from farmlands in kaani and Kpean Communities in Khana Local. Government Area of Rivers State, Nigeria. Samples were collected, prepared, digested and analyzed using AAS. The levels of heavy metals ...

  3. Heavy metal accumulation in Melilotus officinalis under crown Olea ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... This study was conducted to investigate heavy metal accumulation in Melilotus officinalis under crown. Olea europaea L forest in Rey town (Tehran, Iran), irrigated with wastewater and well water. Zn, Pb, Cr and Ni were determined at two sites. Heavy metal total concentrations (mg kg-1) in clay soils of pH ...

  4. Assessment Of Heavy Metal Contamination Of Water Sources From Enyigba Pb-Zn District South Eastern Nigeria

    National Research Council Canada - National Science Library

    Nnabo Paulinus N

    2015-01-01

    Abstract A total of thirty 30 water samples were collected from the Enyigba PbZn mining district to assess the contamination of the water sources as a result of mining of lead and zinc minerals in the area...

  5. Heavy Metals Acting as Endocrine Disrupters

    Directory of Open Access Journals (Sweden)

    Bogdan Georgescu

    2011-10-01

    Full Text Available Last years researches focused on several natural and synthetic compounds that may interfere with the major functionsof the endocrine system and were termed endocrine disrupters. Endocrine disrupters are defined as chemicalsubstances with either agonist or antagonist endocrine effects in human and animals. These effects may be achievedby interferences with the biosynthesis or activity of several endogenous hormones. Recently, it was demonstratedthat heavy metals such as cadmium (Cd, arsen (As, mercury (Hg, nickel (Ni, lead (Pb and zinc (Zn may exhibitendocrine-disrupting activity in animal experiments. Emerging evidence of the intimate mechanisms of action ofthese heavy metals is accumulating. It was revealed, for example, that the Zn atom from the Zn fingers of theestrogen receptor can be replaced by several heavy metal molecules such as copper, cobalt, Ni and Cd. By replacingthe Zn atom with Ni or copper, binding of the estrogen receptor to the DNA hormone responsive elements in the cellnucleus is prevented. In both males and females, low-level exposure to Cd interferes with the biological effects ofsteroid hormones in reproductive organs. Arsen has the property to bind to the glucocorticoid receptor thusdisturbing glucocorticoids biological effects. With regard to Hg, this may induce alterations in male and femalefertility, may affect the function of the hypothalamo-pituitary-thyroid axis or the hypothalamo-pituitary-adrenal axis,and disrupt biosynthesis of steroid hormones.

  6. Distribution of Heavy Metal Pb

    OpenAIRE

    Samawi, Muh. Farid; Tambaru, Rahmadi; Husain, Aida Ala; Burhanuddin, Andi Iqbal

    2014-01-01

    Distribution of Heavy Metal Pb in Benthic Organism and Sediment Bonebatang Island Waters Benthic organisms Bonebatang Island waters consist of branching hard corals, massive hard corals, soft corals, sponges, macroalgae, coralline algae, seagrass and mussels have the potential to accumulate heavy metals Pb from the water column. Results of studies have determined the rate of accumulation of heavy metals Pb some benthic organisms in the Bonebatang Island waters. Branching hard corals have a...

  7. Functional analysis of the heavy metal binding domains of the Zn/Cd-transporting ATPase, HMA2, in Arabidopsis thaliana.

    Science.gov (United States)

    Wong, Chong Kum Edwin; Jarvis, Renée S; Sherson, Sarah M; Cobbett, Christopher S

    2009-01-01

    The Zn/Cd-transporting ATPase, HMA2, has N- and C-terminal domains that can bind Zn ions with high affinity. Mutant derivatives were generated to determine the significance of these domains to HMA2 function in planta. Mutant derivatives, with and without a C-terminal GFP tag, were expressed from the HMA2 promoter in transgenic hma2,hma4, Zn-deficient, plants to test for functionality. A deletion mutant lacking the C-terminal 244 amino acids rescued most of the hma2,hma4 Zn-deficiency phenotypes with the exception of embryo or seed development. Root-to-shoot Cd translocation was fully rescued. The GFP-tagged derivative was partially mis-localized in the root pericycle cells in which it was expressed. Deletion derivatives lacking the C-terminal 121 and 21 amino acids rescued all phenotypes and localized normally. N-terminal domain mutants localized normally but failed to complement the hma2,hma4 phenotypes. These observations suggest that the N-terminal domain of HMA2 is essential for function in planta while the C-terminal domain, although not essential for function, may contain a signal important for the subcellular localization of the protein.

  8. Heavy Metal Pollution Around International Hatay Airport

    Directory of Open Access Journals (Sweden)

    Abdullah Özkan

    2017-02-01

    Full Text Available In this study, it was aimed to determine the heavy metal pollution in the agricultural lands around Hatay airport and travel possible alteration in the amount of heavy metal on the land in accordance with the distance to the airport. For this purpose, the airport was chosen as the center and 27 soil samples were obtained around the airport at 2 km intervals in depth ranging from 0 to 30 cm. Lead (Pb, cadmium (Cd, nickel (Ni, chrome (Cr, cobalt (Co, aluminium (Al, iron (Fe, copper (Cu, manganese (Mn and zinc (Zn elements in soil samples were analysed using MP-AES instrument by DTPA method. (3 repetition for each sample. As a result of the analysis, heavy metal concentrations were found as Pb 0-1.45 mg/kg, Cd 0-0.220 mg/kg, Ni 0-3.95 mg/kg, Cr 0-0.780 mg/kg, Co 0-0.270 mg/kg, Al 0-0.700 mg/kg, Fe 1.47- 16.2 mg/kg, Cu 0.400-5.35 mg/kg, Mn 0-19 mg/kg and Zn 0.050-3.14 mg/kg. When comparing the obtained data through this study with allowable concentrations of heavy metals in soil of Environment and Forest Directorates Guidance, it was determined that the heavy metal concentration of the soil does not pose any problems in terms of heavy metal pollution. Besides, iron concentration was decreased when the distance to the airport is increased.

  9. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products

    OpenAIRE

    Limmatvapirat, C.; Limmatvapirat, S.; Charoenteeraboon, J.; Wessapan, C.; Kumsum, A.; Jenwithayaamornwech, S.; Luangthuwapranit, P.

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as li...

  10. Heavy metals in carabids (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Ruslan Butovsky

    2011-05-01

    Full Text Available Carabid beetles (Coleoptera, Carabidae are one of the most studied soil groups in relation to heavy metal (HM accumulation and use for bioindication of environmental pollution. Accumulation of Zn and Cu in carabid beetles was species-, sex- and trophic group-specific. No differences were found in HM contents between omnivorous and carnivorous species. The use of carabid beetles as indicators of HM accumulation appears to be rather limited.

  11. Species sensitivity analysis of heavy metals to freshwater organisms.

    Science.gov (United States)

    Xin, Zheng; Wenchao, Zang; Zhenguang, Yan; Yiguo, Hong; Zhengtao, Liu; Xianliang, Yi; Xiaonan, Wang; Tingting, Liu; Liming, Zhou

    2015-10-01

    Acute toxicity data of six heavy metals [Cu, Hg, Cd, Cr(VI), Pb, Zn] to aquatic organisms were collected and screened. Species sensitivity distributions (SSD) curves of vertebrate and invertebrate were constructed by log-logistic model separately. The comprehensive comparisons of the sensitivities of different trophic species to six typical heavy metals were performed. The results indicated invertebrate taxa to each heavy metal exhibited higher sensitivity than vertebrates. However, with respect to the same taxa species, Cu had the most adverse effect on vertebrate, followed by Hg, Cd, Zn and Cr. When datasets from all species were included, Cu and Hg were still more toxic than the others. In particular, the toxicities of Pb to vertebrate and fish were complicated as the SSD curves of Pb intersected with those of other heavy metals, while the SSD curves of Pb constructed by total species no longer crossed with others. The hazardous concentrations for 5 % of the species (HC5) affected were derived to determine the concentration protecting 95 % of species. The HC5 values of the six heavy metals were in the descending order: Zn > Pb > Cr > Cd > Hg > Cu, indicating toxicities in opposite order. Moreover, potential affected fractions were calculated to assess the ecological risks of different heavy metals at certain concentrations of the selected heavy metals. Evaluations of sensitivities of the species at various trophic levels and toxicity analysis of heavy metals are necessary prior to derivation of water quality criteria and the further environmental protection.

  12. Study on the relationship between speciation of heavy metals and their ecotoxicity. I. Toxicity of Cu, Cd, Pb and Zn in seawater to three marine algae in the presence of different complexation agents

    Science.gov (United States)

    Zhang, Manping; Wang, Juying; Bao, Junbo

    1992-09-01

    Heavy metal is a main pollutant in the marine ecosystem, so study on the effect of heavy metal on phytoplankton is important. Algae ( Chaetoceros sp., Dunaliella sp., Dicrateria zhanjiangenis Hu. var. sp.) were laboratory cultured to observe the effect of heavy metals on their growth. The effect of different metal ion concentration, the detoxication effect of complexation agents and the growth of algae in different media and different nutrition levels were studied to evaluate the effect of metal speciation. It is proved that trace amount of heavy metals can stimulate the growth of algae cells but that high concentration is lethal. The sequence of toxicity is Cd2+>Zn2+>Pb2+. In ordinary nutrition conditions, the detoxication sequence of complexation agents to Chaetoceros sp. is EDTA >sodium salicylate>sodium oxalate >sodium citrate>sulfanilic acid>O-phenanthroline. This is in good conformity with the stability constant sequence of these agents with copper and good evidence that toxicity of metal ion is related to its activity and not to its total concentration.

  13. Effects of three low-molecular-weight organic acids (LMWOAs) and pH on the mobilization of arsenic and heavy metals (Cu, Pb, and Zn) from mine tailings.

    Science.gov (United States)

    Wang, Suiling; Mulligan, Catherine N

    2013-02-01

    Natural organic acids may play an important role in influencing the mobility of toxic contaminants in the environment. The mobilization of arsenic (As) and heavy metals from an oxidized Pb-Zn mine tailings sample in the presence of three low-molecular-weight organic acids, aspartic acid, cysteine, and succinic acid, was investigated at a mass ratio of 10 mg organic additive/g mine tailings in this study. The effect of pH was also evaluated. The mine tailings sample, containing elevated levels of As (2,180 mg/kg), copper (Cu, 1,100 mg/kg), lead (Pb, 12,860 mg/kg), and zinc (Zn, 5,075 mg/kg), was collected from Bathurst, New Brunswick, Canada. It was found that the organic additives inhibited As and heavy metal mobilization under acidic conditions (at pH 3 or 5), but enhanced it under neutral to alkaline conditions (at pH above 7) through forming aqueous organic complexes. At pH 11, As, Cu, Pb, and Zn were mobilized mostly by the organic additives, 45, 46, 1,660, and 128 mg/kg by aspartic acid, 31, 28, 1,040, and 112 mg/kg by succinic acid, and 53, 38, 2,020, and 150 mg/kg by cysteine, respectively, whereas those by distilled water were 6, 16, 260, and 52 mg/kg, respectively. It was also found that the mobilization of As and the heavy metals was closely correlated, and both were closely correlated to Fe mobilization. Arsenic mobilization by the three LMWOAs was found to be consistent with the order of the stability of Fe-, Cu-, Pb-, and Zn-organic ligand complexes. The organic acids might be used potentially in the natural attenuation and remediation of As and heavy metal-contaminated sites.

  14. Study on the behavior of the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and {sup 137}Cs in an estuarine ecosystem using Mytilus galloprovincialis as a bioindicator species: the case of Thermaikos gulf, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Catsiki, Vassiliki-Angelique [Hellenic Centre for Marine Research, Mavro Lithari, 46.7 Km Athens-Sounio, Anavyssos Attikis 19013 (Greece)]. E-mail: cats@ath.hcmr.gr; Florou, H. [National Centre for Scientific Research ' Demokritos' , Ag. Paraskevi 153 10, Athens (Greece)

    2006-07-01

    Mussels are worldwide recognized as pollution bioindicators and used in Mussel Watch programs, because they accumulate pollutants in their tissues at elevated levels in relation to pollutant biological availability in the marine environment. The present study deals with the use of Mytilus galloprovincialis as a local bioindicator of heavy metal and {sup 137}Cs contamination in an estuarine ecosystem (Thermaikos gulf, Greece in Eastern Mediterranean). M. galloprovincialis samples were collected monthly from two aquaculture farms during the period April to October 2000. Analyses for the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and {sup 137}Cs showed that the concentrations measured were low and similar to those from other non-polluted Mediterranean areas. In terms of the two sampling stations, there were no statistically significant differences between them. On the contrary, the seasonal evolution of either heavy metals or {sup 137}Cs levels presented high variation. The levels were found to increase during the cold period of the year, especially for Cu, Zn, Mn and Cr which are essential for life. Stable metals were positively inter-related and moreover, metals more involved in biochemical activities seem to present more correlations than others with less significant role in the metabolism of the organisms.

  15. Geochemical behavior of heavy metals in a Zn-Pb-Cu mining area in the State of Mexico (central Mexico).

    Science.gov (United States)

    Lizárraga-Mendiola, L; González-Sandoval, M R; Durán-Domínguez, M C; Márquez-Herrera, C

    2009-08-01

    The geochemical behavior of zinc, lead and copper from sulfidic tailings in a mine site with potential to generate acidic drainage (pyrite (55%) and sphalerite (2%)) is reported in this paper. The mining area is divided in two zones, considering the topographic location of sampling points with respect to the tailings pile: (a) outer zone, out of the probable influence of acid mine drainage (AMD) pollution, and (b) inner zone, probably influenced by AMD pollution. Maximum total ions concentrations (mg/L) measured in superficial waters found were, in the outer zone: As (0.2), Cd (0.9), Fe (19), Mn (39), Pb (5.02), SO4(2-) (4650), Zn (107.67), and in the inner zone are As (0.1), Cd (0.2), Fe (88), Mn (13), Pb (6), SO4(2-) (4,880), Zn (46). The presence of these ions that exceeding the permissible maximum limits for human consume, could be associated to tailings mineralogy and acid leachates generated in tailings pile.

  16. Removal of heavy metal from industrial wastewater using hydrogen ...

    African Journals Online (AJOL)

    The batch removal of heavy metals lead (Pb), zinc (Zn) and copper (Cu) from industrial wastewater effluent under different experimental conditions using hydrogen peroxide was investigated. Experimental results indicated that at pH 6.5, pre-treatment analysis gave the following values: Pb 57.63 mg/l, Zn 18.9 mg/l and Cu ...

  17. Heavy metal contamination of mangrove sediments and the ...

    African Journals Online (AJOL)

    Mangrove wetlands are efficient in trapping pollutants that may have detrimental effects on mangrove dependent food chains. Mangrove ecosystems that are within ... Of the seven heavy metals (pb, zn, cu, co, ni, cr and v), only pb, zn and cu were found to be of anthropogenic origin. Overall, the mangroves and associated ...

  18. (17) ACCUMULATION OF HEAVY METAL

    African Journals Online (AJOL)

    Adeyinka Odunsi

    The mean metal content of cassava leaf indicated that all the metals were higher in the leaf at high ... components of petroleum hydrocarbons ..... Atmos. Environ. 40: 5929-5941. Onder, S., Dursun, S., Gezgin, S. and. Demirbas, A. (2007). Determination. Accumulation of heavy metal pollutants on soil microbial population.

  19. Atmospheric heavy metal deposition in the Copenhagen area

    DEFF Research Database (Denmark)

    Andersen, Allan; Hovmand, Mads Frederik; Johnsen, Ib

    1978-01-01

    Atmospheric dry and wet deposition (bulk precipitation) of the heavy metals Cu, Pb, Zn, Ni, V and Fe over the Copenhagen area was measured by sampling in plastic funnels from 17 stations during a twelve-month period. Epigeic bryophytes from 100 stations in the area were analysed for the heavy met...

  20. Photosynthesis, growth and competitive ability of some coniferous forest mosses and the influence of herbicides and heavy metals (Cu, Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Stjernquist, I.

    1981-12-01

    The importance of morphological characteristics and environmental variables as controlling factors for photo- synthesis and growth of Dicranum polysetum, Pleurozium schreberi and Ptilium crista-castrensis were studied. The three mosses had maximum assimilation capacity in different segments of the shoot and the growth form determined to what degree the capacity could be utilized. CO/sub 2/ fixation was limited by nutrient supply and selectivity affected by the environmental variables. In situ growth in a certain habitat or during a certain season closely corresponded to the oscillation of the variables important for CO/sub 2/ fixation. Application of 2,4-D,MCPA,Triclopyr and Glyphosate to populations of Dicranum, Pleurozium and five co-existing species gave selective effects on assimilation and respiration depending on bryophyte and herbicide. Generally, Glyphosate had negative long-term effects on photosynthesis of coniferous mosses with the exception of Sphagnum squarrosum. MCPA, 2,4-D and Triclopyr immediately decreased CO/sub 2/ fixation to maximally 30% of the control (Pleurozium and Hylocomium splendens). After one month CO/sub 2/ assimilation increased. Effects of varying concentrations of 2,4-D, and Glyphosate were studied and the influence on growth discussed. Assimilation and respiration of Dicranum was negatively related to increasing content of Cu+Zn in the shoot. The effect was significant at concentrations twice the background level.

  1. Heavy Metal Concentrations in Maltese Potable Water

    Directory of Open Access Journals (Sweden)

    Roberta Bugeja

    2015-05-01

    Full Text Available This study evaluates the levels of aluminum (Al, cadmium (Cd, chromium (Cr, copper (Cu, iron (Fe, lead (Pb, nickel (Ni and zinc (Zn in tap water samples of forty localities from around the Maltese Islands together with their corresponding service supply reservoirs. The heavy metal concentrations obtained indicated that concentrations of the elements were generally below the maximum allowed concentration established by the Maltese legislation. In terms of the Maltese and EU water quality regulations, 17.5% of the localities sampled yielded water that failed the acceptance criteria for a single metal in drinking water. Higher concentrations of some metals were observed in samples obtained at the end of the distribution network, when compared to the concentrations at the source. The observed changes in metal concentrations between the localities’ samples and the corresponding supply reservoirs were significant. The higher metal concentrations obtained in the samples from the localities can be attributed to leaching in the distribution network.

  2. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    thereafter dies as a burnt-out, dim "white dwarf" . Stars with masses between 0.8 and 8 times that of the Sun are believed to evolve to AGB-stars and to end their lives in this particular way. At the same time, they produce beautiful nebulae like the "Dumbbell Nebula". Our Sun will also end its active life this way, probably some 7 billion years from now. Low-metallicity stars The detailed understanding of the "s-process" and, in particular, where it takes place inside an AGB-star, has been an area of active research for many years. Current state-of-the-art computer-based stellar models predict that the s-process should be particularly efficient in stars with a comparatively low content of metals ("metal-poor" or "low-metallicity" stars) . In such stars - which were born at an early epoch in our Galaxy and are therefore quite old - the "s-process" is expected to effectively produce atomic nuclei all the way up to the most heavy, stable ones, like Lead (atomic number 82 [2]) and Bismuth (atomic number 83) - since more neutrons are available per Iron-seed nucleus when there are fewer such nuclei (as compared to the solar composition). Once these elements have been produced, the addition of more s-process neutrons to those nuclei will only produce unstable elements that decay back to Lead. Hence, when the s-process is sufficiently efficient, atomic nuclei with atomic numbers around 82, that is, the Lead region, just continue to pile up. As a result, when compared to stars with "normal" abundances of the metals (like our Sun), those low-metallicity stars should thus exhibit a significant "over-abundance" of those very heavy elements with respect to Iron, in particular of Lead . Looking for Lead Direct observational support for this theoretical prediction would be the discovery of some low-metallicity stars with a high abundance of Lead. At the same time, the measured amounts of all the heavy elements and their relative abundances would provide very valuable information and

  3. CHEMICAL DETERMINATION OF HEAVY METALS IN PB AND ZN CONCENTRATES OF TREPÇA (KOSOVO AND CORRELATIONS COEFFI CIENTS STUDY BETWEEN CHEMICAL DATA

    Directory of Open Access Journals (Sweden)

    Fatbardh Gashi

    2017-03-01

    Full Text Available Kosovo ore deposits are located in the Trepça belt which extends for over 80 km. The concentrate produced by the flotation process of the Trepça metallurgical corporation contains a considerable quantity of valuable metals, such as Pb, Zn, Fe and minor accompanying metals such as Cd, Cu, As, Sb, Bi, Ag, Au, etc. The subject of this work was to assess the concentration of major and minor metals in lead and zinc concentrates of Trepça and to study the correlation coefficients between metals. Chemical determination of concentrates was performed by using atomic absorption spectroscopy (AAS. In the content on lead concentrate samples, the following were found: Pb>Fe>Zn> Ag> As>Sb>Cd. In the content of zinc concentrate, the following were found: Zn>Fe>Pb>Ag>As>Cd. The program “Statistica ver. 6.0” has been used for calculations of basic statistical parameters, relationships between data and cluster analysis of R-mode. R-mode cluster analysis on lead concentrate samples showed that Pb has the closest linkages with Fe and they form one branch of the dendogram. On the zinc concentrate samples, Zn has the closest linkages with Fe and they form one branch of the dendogram.

  4. Heavy metal emissions for Danish road transport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Slentoe, E.

    2010-04-15

    This report presents new heavy metal emission factors for cars, vans, trucks, buses, mopeds and motorcycles for each of the emission sources fuel consumption, engine oil, tyre wear, brake wear and road abrasion. The emission components covered are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn), all of them relevant for emission reporting to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long Range Transboundary Pollutants) convention. The report also presents a new Danish inventory for the year 2007. The following emissions in total TSP (in brackets) are calculated for the year 2007: As (8 kg), Cd (48 kg), Cr (197 kg), Cu (51 779 kg), Hg (28 kg), Ni (158 kg), Pb (6 989 kg), Se (33 kg) and Zn (28 556 kg). Per vehicle type cars are the most important source of emission for all heavy metal species, followed by vans, trucks, buses and 2-wheelers. By using the detailed emission factors and inventory calculation methods established in the present project, estimates of heavy metal emissions can be made for other years than 2007. (author)

  5. Monitoring marine heavy metal contamination via the chemical analysis of foraminifera and growth increments in bivalves - a pilot study from a Pb and Zn mining region in western Greenland

    Science.gov (United States)

    Jessen, C.; Asmund, G.; Elberling, B.; Frei, D.; Knudsen, C.; Rasmussen, P.

    2011-12-01

    Annual monitoring of heavy metal concentrations in the fjords (sea water, seaweed, lichens, blue mussels, shorthorn sculpin and Northern prawn) adjacent to the Black Angel lead-zinc mine (active 1973-1990) at Maarmorilik, western Greenland was initiated during operation of the mine and continues through to today. This pilot study tests whether the calcareous shells of bivalves and foraminifera register these known variations in heavy metal concentrations. Live individuals of Mytilus edulis were collected through a transect of monitoring stations in 2009 and PB-Zn concentrations were measured at multiple points within the yearly increments using LA-ICP-MS. Individuals aged between 12 and 28 years were measured and demonstrated a clear signal of mine closure even at 40 km distance from the plant. Foraminifera (Melonis barleeanus) from a sediment core dating from 1880 AD to present have previously been shown to display a greater percentage of deformities during the period of mining activity (Elberling et al. 2003) possibly suggesting a correlation between heavy metal concentrations in sea water and morphological development. LA-ICP-MS analysis of individual foraminifera confirms an increase in Pb-Zn uptake during mining operations. Although it could therefore be expected that Pb-Zn concentrations would be enhanced in the 'deformed' foraminifera relative to the 'non-deformed', no difference in Pb-Zn was concentrations was detected. This short pilot study (Jessen et al.2010) demonstrates the potential of calcareous material as indicators of environmental pollution and their applicability as a monitoring tool in remote regions. Jessen CA, Asmund G, Elberling B, Frei D, Knudsen C and Rasmussen P. 2010 Monitoring marine heavy metal contamination via the chemical analysis of growth increments in bivalves - a pilot study. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2010/86. 1-20 Elberling, B., Knudsen, K. L., Kristensen, P. H., and Asmund, G. (2003) Applying

  6. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  7. Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils.

    Science.gov (United States)

    Huang, Qingyun; Yu, Zhen; Pang, Ya; Wang, Yueqiang; Cai, Zhihong

    2015-04-01

    In this study, bioleaching was coupled with electrokinetics (BE) to remove heavy metals (Cu, Zn, Cr and Pb) from contaminated soil. For comparison, bioleaching (BL), electrokinetics (EK), and the chemical extraction method were also applied alone to remove the metals. The results showed that the BE method removed more heavy metals from the contaminated soil than the BL method or the EK method alone. The BE method was able to achieve metal solubilization rates of more than 70 % for Cu, Zn and Cr and of more than 40 % for Pb. Within the range of low current densities (electrokinetics can effectively remediate heavy metal-contaminated soils and that preliminary tests should be conducted before field operation to detect the lowest current density for the greatest metal removal.

  8. Speciation of Heavy Metals in Sediment of Agbabu Bitumen deposit ...

    African Journals Online (AJOL)

    Speciation of heavy metals Cu, Cd, Pb, Ni, Zn, Mn, Fe, Cr and Hg was carried out on sediment of Agbabu with a sequential extraction procedure in the dry and rainy seasons of year 2008. Hg was not detected in all the fractions in the two seasons. In the dry season, all the metals were mostly abundant in Fraction-5, however ...

  9. Heavy metal speciation and their accumulation in sediments of Lake ...

    African Journals Online (AJOL)

    Several sediment samples in Lake Burullus have been affected by the discharges of heavy metals through different drains. The study aimed to analyze the chemical speciation of these metals. In particular, the chemical forms of Cd, Cu, Fe, Mn, Pb and Zn in sediments collected in spring season were studied using a ...

  10. Modeling effluent heavy metal concentrations in a bioleaching ...

    African Journals Online (AJOL)

    SONY

    Artifical neural networks practices were used to predict the recovery of heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) from dewatered metal plating sludge (with no sulfide or sulfate compounds) using bioleaching process involving Acidithiobacillus ferrooxidans. The bioleaching process was operated as a completely mixed batch ...

  11. Nutrients and heavy metal distribution in thermally treated pig manure

    DEFF Research Database (Denmark)

    Kuligowski, Ksawery; Poulsen, Tjalfe G.; Stoholm, Peder

    2008-01-01

    Ash from pig manure treated by combustion and thermal gasification was characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations...

  12. Determination of essential and heavy metals in Kenyan honey by ...

    African Journals Online (AJOL)

    In this project, honey samples collected from different parts of Kenya, namely, Laikipia, Baringo, Nairobi, Ngong, Mbeere, Embu, Kitui, Kibwezi and Lamu were analysed to determine the levels of selected heavy metals (Pb, Cd, Zn, Cu, As) and essential metals (K, Na, Ca, Mg, Fe). The samples were analysed using flame ...

  13. Heavy metals burden in Kidney and heart tissues of Scarus ...

    African Journals Online (AJOL)

    Levels of selected heavy metals (Pb, Co, Cu, Ni, Zn, Mn and Cd) in the heart and kidney tissues of parrot fish, collected from the Arabian Gulf, Eastern Province of Saudi Arabia, were determined by wet-digestion based atomic absorption method. The results showed that accumulation pattern of analyzed metals in the kidney ...

  14. Pollution and ecological risk assessment of heavy metals in the soil-plant system and the sediment-water column around a former Pb/Zn-mining area in NE Morocco.

    Science.gov (United States)

    El Azhari, Abdellah; Rhoujjati, Ali; El Hachimi, Moulay Laârabi; Ambrosi, Jean-Paul

    2017-10-01

    This study discussed the environmental fate and ecological hazards of heavy metals in the soil-plant system and sediment-water column around the former Pb-Zn mining Zeïda district, in Northeastern Morocco. Spatial distribution, pollution indices, and cluster analysis were applied for assessing Pb, Zn, As, Cu and Cd pollution levels and risks. The geo-accumulation index (Igeo) was determined using two different geochemical backgrounds: i) the commonly used upper crust values, ii) local geochemical background calculated with exploratory data analysis. The soils in the vicinity of the tailings, as well as the sediments downstream of the latter, displayed much higher metal concentrations, Igeo, and potential ecology risk coefficient values than other sites, classifying these sites as highly contaminated and severely hazardous. The concentrations of Pb in contaminated sediment samples also exceeded the PEC limits and are expected to cause harmful effects on sediment-dwelling organisms. Based on the comparison with the toxicity limits, the most contaminated plant samples were found around the tailings piles. The metal concentrations in both raw and filtrated water samples were overall below the drinking water standards in samples upstream and downstream of the mining center, indicating that heavy metals levels in the Moulouya River surface waters were not affected by the tailings spill. Cluster analysis suggest that: i) Pb and Zn in sediments were derived from the abandoned tailings and are mainly stored and transported as particle-bound to the bedload, ii) Pb, Zn, and Cu in the soil-plant system were related to the dispersion of tailings materials while As and Cd originated primarily from natural geological background in both the soil-plant and the water-sediment systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The comparison of micro elements (Mn, Fe and Zn and heavy metals (Co, Cr and Cd in the soil of perennial farms of saffron (Crocus sativus L. in southern Khorasan Province

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Behdani

    2016-05-01

    Full Text Available In order to study concentrations of soil micro and heavy metal elements in some saffron planting regions of Birjand Province, an experiment was performed as factorial layout based on a completely randomized block design with three replications at year 2013. Treatments were three field ages (annual, triennial and quinquennial and five saffron regions including Aryan shahr, Hosseinabad, Khosef, Golferiz and Mahmoei. Soil microelement and hevey methal concentrations such as Fe, Zn, Mn, Co, Cr and Cd of soil were measured. The results showed that the concentrations of Fe, Zn, Mn and Cr in soil were significantly affected by field age (p≤0.05. Effect of planting region was significant on soil Fe, Zn, Mn, Co and Cr concentrations (p≤0.01. Interaction effects between field age and planting region were significant on Fe, Zn and Co concentrations (p≤0.01. By increasing in field age soil Zn concentration was declined and heavy metal concentrations such as Co, Cr and Cd of soil were enhanced. Mn concentration in the quinquennial fields was 29 and 34% higher than annual and triennial first fields, respectively. Co content in the quinquennial fields was 53 and 46% higher than annual and triennial first fields, respectively. The maximum and minimum Fe concentrations were observed with 1.65 and 0.77 ppm for the fields of Khosef and Hosseinabad, respectively. The highest and lowest Fe concentrations were obtained with 2.436 and 0.77 ppm for the annual fields of Khosef and Hosseinabad, respectively. The highest Co concentrations were recorded in Hosseinabad and Khosef fields with 8.7 and 4.31 ppm, respectively. Thus, it is recommended to use ecological managemens such as reducing the application of chemical fertilizers and improving the organic fertilizers to decline the concentrations of these elements in saffron fields.

  16. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    OpenAIRE

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the...

  17. Heavy metals bioaccumulation by edible saprophytic mushrooms

    Directory of Open Access Journals (Sweden)

    Ivan ŠIRIĆ

    2016-09-01

    Full Text Available The aim of this study was to determine the concentration of heavy metals Fe, Zn, Cu, Ni, Pb i Cd in certain edible species of saprophytic fungi and the substrate on three area of sampling, and to assess the role of individual species as biological indicators of environmental pollution. In this study were used three species of wild edible mushrooms (Agaricus macroarpus Bohus, Clitocybe inversa (Scop. ex Fr. Pat. and Macrolepiota procera (Scop. ex Fr. Sing.,. Completely developed and mature fruiting bodies were collected at random selection in localities of Trakošćan, Jaska and Petrova gora. At the same time, the substrate soil samples were collected from the upper horizon (0-10. Determination of heavy metals in mushrooms and the substrate soil were carried out by X-ray Fluorescence Spectrometry. The data obtained were analysed by means of the statistical program SAS V9.2. Significant differences were found in the concentrations of Fe, Zn, Cu, Ni, Pb and Cd between analysed species of mushrooms and localities of sampling (P 1. The consumption of investigated mushrooms poses no toxicological risk to human health due to low concentrations analysed metals.

  18. Heavy Metals Accumulation Characteristics of Vegetables in Hangzhou City, China

    Directory of Open Access Journals (Sweden)

    GU Yan-qing

    2015-08-01

    Full Text Available A field survey of heavy metal concentrations in soils and vegetables grown in 30 vegetable farmlands of Hangzhou City were carried out. Through calculating the bioconcentration factor(BCFand transfer factor(TFfor different heavy metals(Cu, Zn, Cd, Cr and Pbin 27 kinds of different vegetables which belong to leafy vegetables, root vegetables or eggplant fruit vegetables, assessing their accumulation characteristics of heavy metals according to the differences of the bio-concentration factor, the reasonable proposals were put forward to optimize the planting structure of vegetables in mild and middle-level heavy metal contamination soils. The experimental results were as follows: In soils with mild and middle-level heavy metal contamination, leafy vegetables, such as crown daisy, cabbage, celery and Chinese long cabbage, had relatively low enrichment ability of heavy metals, so as the root and fruit vegetables like white radish, carrot, tomatoes, hence these vegetables could be planted preferentially. In contrast, some kinds of vegetables, including white amaranth, red amaranth, tatsoi, broccoli, gynura, brassica juncea and lettuce of leafy vegetables, lactuca sativa, taro, red radish and cherry radish of rhizome vegetables and sweet pepper of fruit vegetables, had relatively high accumulation ability of heavy metal, which should be avoided to be planted in soils with mild and middle-level heavy metal contamination.

  19. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected...... that the speciation of these metals was similar in the two ashes. On the other hand, the leaching behaviour (and concentration) of Cr was diverse. The apparent similar speciation of Cd, Pb, Zn and Cu was only partly confirmed in the following electrodialytic remediation experiments. Significant differences in re......Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...

  20. Heavy metals in Mindhola river estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Rokade, M.A; Mandalia, A

    The heavy metal concentrations are studied along the Mindhola river estuary. Surface and bottom water samples were collected using Niskin Sampler. The sediment samples were collected using a Van Veen grab. The heavy metal concentration is estimated...

  1. Simultaneous Treatment of Organic (Phenol and Heavy Metal (Cr6+ or Pt4+ Wastes over TiO2, ZnO-TiO2 and CdS-TiO2 Photocatalysts

    Directory of Open Access Journals (Sweden)

    Slamet Slamet

    2010-10-01

    Full Text Available Treatment of heavy metal (Cr6+ and Pt4+ and organic (phenol wastes has been studied using the relatively new method, i.e. simultaneous photocatalytic process over TiO2 photocatalysts in the batch photoreactor. Following the photocatalytic reduction of the heavy metal wastes, recovery of Cr and Pt was carried out by precipitation and leaching method, respectively.  The experimental results show that in the simultaneous photocatalytic system, there is a synergism effect between the photocatalytic reduction of heavy metal waste (Cr6+ or Pt4+ and the oxidation of organic waste (phenol, so that increasing the conversion of each other. Dopant of ZnO with the optimum loading (0.5 wt% could slightly increase the performance of TiO2 photocatalyst in photocatalytic treatment of the wastes. Whereas CdS dopant with the optimum loading of 1 wt% could significantly enhance the  performance of TiO2 photocatalyst in simultaneous Cr(VI reduction and phenol oxidation with the highest conversion of ≥ 97 % and 93 %, respectively. Photocatalytic reduction of Pt(IV under 0.5%ZnO-TiO2 and 1%CdS-TiO2 photocatalysts effectively occurred with a high conversion (> 99 % in 2 hours irradiation of UV. The optimum precipitation condition of Cr(III recovery was achieved at pH = 9, with the efficiency of recovery was 91 %. Optimum temperature of leaching process in Pt recovery was 100 oC, with the efficiency of recovery was 86 %.

  2. Comparison of Eleven Heavy Metals in Moringa Oleifera Lam. Products.

    Science.gov (United States)

    Limmatvapirat, C; Limmatvapirat, S; Charoenteeraboon, J; Wessapan, C; Kumsum, A; Jenwithayaamornwech, S; Luangthuwapranit, P

    2015-01-01

    Eleven heavy metals in various products of Moringa oleifera were analyzed to determine eleven heavy metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, and Zn) using Inductively Coupled Plasma-Mass Spectrometry. The products of M. oleifera were purchased in Nakhon Pathom, Thailand. All products were digested with nitric acid solution before determining the concentrations of heavy metals. The recoveries of all heavy metals were found to be in the range of 99.89-103.05%. Several criteria such as linearity, limits of detection, limits of quantification, specificity, precision under repeatability conditions and intermediate precision reproducibility were evaluated. Results indicate that this method could be used in the laboratory for determination of eleven heavy metals in M. oleifera products with acceptable analytical performance. The results of analysis showed that the highest concentrations of As, Cr, Hg, and Mn were found in tea leaves while the highest concentrations of Al, Cd, Cu, Fe, Ni, Pb, and Zn were found in leaf capsules. Continuous monitoring of heavy metals in M. oleifera products is crucial for consumer health.

  3. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    Science.gov (United States)

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn2+, Mn2+ and Cr6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr6+ > Mn2+ > Zn2+. Compared with the SRB system, the SRB+Fe0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe0 system, except for Mn2+. The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn2+ and hydroxide for Mn2+ and Cr6+.The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The environmental impact of gold mines: pollution by heavy metals

    Science.gov (United States)

    Abdul-Wahab, Sabah; Marikar, Fouzul

    2012-06-01

    The gold mining plant of Oman was studied to assess the contribution of gold mining on the degree of heavy metals into different environmental media. Samples were collected from the gold mining plant area in tailings, stream waters, soils and crop plants. The collected samples were analyzed for 13 heavy metals including vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), cadmium (Cd), cobalt (Co), lead (Pb), zinc (Zn), aluminium (Al), strontium (Sr), iron (Fe) and barium (Ba). The water in the acid evaporation pond showed a high concentration of Fe as well as residual quantities of Zn, V, and Al, whereas water from the citizens well showed concentrations of Al above those of Omani and WHO standards. The desert plant species growing closed to the gold pit indicated high concentrations of heavy metals (Mn, Al, Ni, Fe, Cr, and V), while the similar plant species used as a control indicated lesser concentrations of all heavy metals. The surface water (blue) indicated very high concentrations of copper and significant concentrations of Mn, Ni, Al, Fe, Zn, lead, Co and Cd. The results revealed that some of the toxic metals absorbed by plants indicated significant metal immobilization.

  5. Variations in the mineral composition and heavy metals content of ...

    African Journals Online (AJOL)

    The parts of Moringa oleifera were assessed for mineral composition and some heavy metal contents in this study, which included Ca, Mg, K, Na, Mn, Fe, Zn, Co, Se, Pb and Cd. Parts of the plant were obtained from Badagry in Lagos State, Nigeria. The samples were digested with HNO3 and analysed for the mineral ...

  6. Heavy Metals Accumulation In Roadside Soil And Vegetation Along ...

    African Journals Online (AJOL)

    Levels of some heavy metals in soil and vegetation along a major highway in Libya were determined by Atomic Absorption Spectrophotometry. The concentrations of Pb, Cd, Ni, Zn, Cu, Cr and Mn in soil and vegetation all decreased with distance from the road, indicating their relation to traffic. The concentrations of the ...

  7. heavy metal pollution asse al pollution assessment in the sediments

    African Journals Online (AJOL)

    User

    ABSTRACT. Sediments were collected from Dumba and to assess the pollution statusof the sedim. Cadmium (Cd), Chromium (Cr), Copper (Cu. (Zn) and Arsenic (As) were analysed using concentration of heavy metals varies bet with standard average shale to assess pollution in Dumba and KwataYobe sedi assessed ...

  8. Heavy metal pollution assessment in the sediments of lake Chad ...

    African Journals Online (AJOL)

    Sediments were collected from Dumba and KwataYobe of Lake Chad, Nigerian Sector.The aim was to assess the pollution statusof the sediments of the lake. The concentration of heavy metals, Cadmium (Cd), Chromium (Cr), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni), lead (Pb), Z (Zn) and Arsenic (As) were ...

  9. Assessment of heavy metals in chicken feeds available in Sokoto ...

    African Journals Online (AJOL)

    ADEYEYE

    2014-12-08

    Dec 8, 2014 ... Abstract. In the present work six metals (Cu, Pb, Zn, Cd, Mn and Ni) were analyzed for, using atomic absorption ... been detected in liver, kidney and muscle of broilers. (Coleman et al., 1992). Evidence of nickel deficiencies in chicks has been reported (NAS, 1980) ..... pollution on the levels of some heavy.

  10. Potential Human Health Risk Assessment of Heavy Metals Intake via ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: This work investigated six heavy metals (Pb, Cr, Zn, Cd, Ni and Cu) accumulation in five popular leafy vegetables: Telferia occidentalis (fluted pumpkin), Talinum triangulare. (waterleaf), Ocimum gratissimum (scent leaves), Celosia argentea (plumed cockscomb), and. Amaranthus viridis (slender amaranth) ...

  11. Heavy metals concentrations in water bodies around aquamarine ...

    African Journals Online (AJOL)

    Water samples from three streams in the mining area of Eggon Hill were analysed. The Physicochemical values obtained were compared with WHO permissible standards in drinking water. Except for Cu and Zn with levels within permissible limits, other heavy metals determined were found to have levels above the WHO ...

  12. Heavy metal contamination of mangrove sediments and the ...

    African Journals Online (AJOL)

    Crabs generally contained higher concentrations of heavy metals (pb, zn and cu) on dry weight basis compared with sediment and mangrove plant parts. Copper enrichment in crabs, for example, was more than six times compared with the concentration in sediment samples from msimbazi mangrove mangrove forest.

  13. Heavy metal accumulation in under crown Olea europaea L forest ...

    African Journals Online (AJOL)

    Zn, Pb and Ni exceeded their permitted limits in soils and Pb, Cr and Ni exceeded their permitted limits in roots of plants irrigated with wastewater. It was concluded that the use of wastewater in urban forest enriched the soils with heavy metals to concentrations that may pose potential environmental and health risks on the ...

  14. Evaluation of antibiotic resistance patterns and heavy metals ...

    African Journals Online (AJOL)

    This work investigated the antibiotic resistance patterns and heavy metals such as Lead (Pb), Zinc (Zn), Cadmium (Cd) and iron (Fe) tolerance of selected bacteria isolated from contaminated soils and sediments around Warri area of Delta State. The heterotrophic bacterial counts for the sampled soils and sediments ranged ...

  15. Evaluation of heavy metals' health risk index in vegetable amaranth ...

    African Journals Online (AJOL)

    The lack of regular Control of pollution produce from industries affects both air and soil in the environment. Vegetable Amaranth and Sunflower flower were used to study the presence of heavy metals (Mn, Zn, Cr, Fe, Cd, Pb, Ni and Cu) produced as pollutants, within five (5) selected areas in Kano state, Nigeria. Atomic ...

  16. Safety Evaluation of Osun River Water Containing Heavy Metals and ...

    African Journals Online (AJOL)

    Male and female rats were exposed to Osun river water for three weeks and then sacrificed. The abundance of heavy metals in Osun river followed the trend Pb > Cd > Zn > Fe > Cr > Cu while VOCs followed the trend benzene < ethylbenzene < toluene < xylene. The concentrations of Pb, Cd and benzene were higher than ...

  17. Assessment of Heavy Metals and Their Estimated Daily Intakes from ...

    African Journals Online (AJOL)

    Most foodstuffs sold in Nigerian outdoor markets are often susceptible to pollution due to poor packaging. As a case study, this work was aimed at the evaluation of heavy metal (Cd, Cu, Zn, As, Pb and Ni) content of two widely consumed snack foods in the country, namely melon (robo) and groundnut (kulikuli). The Robo ...

  18. Heavy metals contamination of topsoil and dispersion in the ...

    African Journals Online (AJOL)

    Growing concern about reclamation of auto-repair workshop areas for residential and agricultural purposes makes risk assessment of heavy metal contamination of the study area imperative. In addition, the study is aimed at ascertaining the dispersion of contaminated Zn, Ni, Cr, Hg, and Pb within the soil profile. A total of 75 ...

  19. Study of heavy metals bioaccumulation in the process of ...

    African Journals Online (AJOL)

    The bioaccumulation of heavy metals (Cd, Zn, Ni, Pb and Cr) and the relationship between them was investigated on earthworm (Eisenia fetida) physiology during the process of vermicomposting. The soil samples were obtained from Roudehen city in the eastern area of Tehran. E. fetida specimens were exposed to a ...

  20. Heavy metals and inorganic constituents in medicinal plants of ...

    African Journals Online (AJOL)

    Heavy metals such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd, and inorganic ions like HCO3-, CO32-, Ca2+, Mg2+, Cl-, Na+, SO42-, NO3-, Fe2+ and F- were investigated in medicinally important plants: Taraxacam officinale, Cichorium intybus and Figonia critica, applying atomic absorption spectrophotometer techniques. In the ...

  1. Heavy metal and faecal bacterial contamination of urban lakes in ...

    African Journals Online (AJOL)

    Concentrations of faecal bacteria and heavy metals (Cr, Cd, Hg, Pb and Zn) were measured in fish, mud and water from two urban lakes in Yaoundé, Cameroon. The mean densities of faecal coliforms (FC) and faecal streptococci (FS) in water were 6 160 ± 8 493CFU 100ml-1 and 387 ± 320CFU 100ml-1, respectively, ...

  2. Assessment of Heavy Metal Pollution in Drinking Water Due to ...

    African Journals Online (AJOL)

    Akorede

    water sources. The toxicity of these heavy metals from the mining, milling and smelting companies can cause harmful and even lethal effects on the human health. The objective of this study was to investigate the level of As, Cr, Zn,. Mg, Fe, Pb, Cd, Cu, Ag and Mn in well and tap water and assess the degree of pollution in ...

  3. Hunting practices and heavy metals concentrations in fresh and ...

    African Journals Online (AJOL)

    The consumption of bush meat is currently a common practice in sub-urban and urban communities of Africa. The study investigates hunting practices and heavy metals (Cu, Zn, Fe, Pb, Cd and Mn) concentrations in fresh and smoked bush meats in Kumasi, Ghana. The animal samples were obtained from Sekyere Dumase, ...

  4. Heavy Metal Concentrations around a Hospital Incinerator and a ...

    African Journals Online (AJOL)

    Studies to determine the concentrations of heavy metals in the surrounding soils and bottom ash of a hospital incinerator and a municipal dumpsite were carried out in Ibadan City, South-West Nigeria from November 2010 to January 2011. Samples were analyzed for Pb, Fe, Cu, Zn, Cr and Ni using Flame Atomic Absorption ...

  5. Assessment of heavy metals bioavailability in dumpsites of Zaria ...

    African Journals Online (AJOL)

    SERVER

    2008-01-18

    Jan 18, 2008 ... The objectives of this study was to investigate the chemical fractionation, mobility and bioavailability of. Cd, Cu, Mn, Pb and Zn in refuse waste soils of some dumpsites in Zaria metropolis. The heavy metals in the waste soils samples were sequentially extracted and measured using atomic absorption.

  6. Assessment of heavy metals bioavailability in dumpsites of Zaria ...

    African Journals Online (AJOL)

    The objectives of this study was to investigate the chemical fractionation, mobility and bioavailability of Cd, Cu, Mn, Pb and Zn in refuse waste soils of some dumpsites in Zaria metropolis. The heavy metals in the waste soils samples were sequentially extracted and measured using atomic absorption spectrometry. Mean of ...

  7. Determination of some total and bioavailable heavy metals in ...

    African Journals Online (AJOL)

    The work assessed the distribution of Cd, Cu, Mn, Ni, Pb and Zn in the farmland soils around Rivers Niger and Benue and beyond the confluence in Lokoja, Nigeria. The samples were collected in the dry and rainy seasons of 2013 and 2014, digested with aqua regia and analysed for heavy metals using atomic absorption ...

  8. Levels of micronutrients and heavy metals in cord blood and ...

    African Journals Online (AJOL)

    The basis of the impact of HAP on maternal and fetal health was assessed by determining the levels of teratogenic heavy metals [Lead (Pb), Mercury (Hg)] and micronutrients associated with DNA methylation [Zinc (Zn), Iodine (I), vitamins B6 and B12, folic acid and homocysteine] in cord blood of babies and maternal blood ...

  9. Removal of Heavy Metals and PAH in Highway Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Thorndahl, Søren Liedtke

    2005-01-01

    , which has been designed according to standard design criteria for several decades. The study will focus on heavy metals (Cd, Cr, Cu, Pb and Zn) and polyaromatic hydrocarbons (PAH). The long-term simulation of input of flow and pollution to the ponds will be a hind cast based on time series of historical...

  10. Comparative assessment of the levels of some heavy metals in ...

    African Journals Online (AJOL)

    Plastic bottles and sachets for water packaging manufactured from 3 different factories in Minna, Niger State of Nigeria were collected and analyzed to determine the concentration of heavy metals (Mn, Fe, Cu, Zn, Co, Cd, Pb and Ni) in them. The plastics are categorized as virgin and used plastics. The plastics were first ...

  11. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    Science.gov (United States)

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis.

    Directory of Open Access Journals (Sweden)

    Ranhao Sun

    Full Text Available The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals.

  13. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    Science.gov (United States)

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  14. [Effect of arbuscular mycorrhizae on growth, heavy metal uptake and accumulation of Zenia insignis Chun seedlings].

    Science.gov (United States)

    Li, Xia; Peng, Xia-Wei; Wu, Song-Lin; Li, Zhi-Ru; Feng, Hong-Mei; Jiang, Ze-Ping

    2014-08-01

    To solve the trace metal pollution of a Pd/Zn mine in Hunan province, a greenhouse pot experiment was conducted to investigate the effect of two arbuscular mycorrhizal fungi, Glomus mosseae (Gm) and Glomus intraradices (Gi), on the growth, heavy metal uptake and accumulation of Zenia insignis Chun, the pioneer plant there. The results showed that symbiotic associations were successfully established between the two isolates and Z. insignis in heavy metal contaminated soil. AM fungi improved P absorption, biomass and changed heavy metal uptake and distribution of Z. insignis. AM fungi-inoculated plants had significantly lower Fe, Cu, Zn, Pd concentrations and higher Fe, Cu, Zn, Pd accumulation than non-inoculated plants. However, Gm and Gi showed different mycorrhizal effects on the distribution of heavy metal in hosts, depending on the species of heavy metal. Gi-inoculated Z. insignis showed significantly lower TF values of Fe, Zn, Pd than Gm and non-inoculated plants, while both strains had no effect on TF value of Cu, which indicated that Gi enhanced trace metal accumulation in root system, playing a filtering/sequestering role in the presence of trace metals. The overall results demonstrated that AM fungi had positive effect on Z. insignis in enhancing the ability to adapt the heavy metal contaminated soil and played potential role in the revegetation of heavy metal contaminated soil. But in practical application, the combination of AM, hosts and heavy metal should be considered.

  15. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  16. Heavy metals in sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, S.A. (Millersville State College, PA); Frazier, J.G.

    1982-07-01

    Bone and barnacle samples from sea turtles (Hepidochelys olivacea) in Ecuador were analyzed for manganese, iron, copper, zinc and lead. Analysis was performed by flame atomic absorption spectroscopy. Results show that zinc and iron levels in bone and barnacles were greater than copper, manganese and lead levels. The significance of the findings is difficult to interpret because so little is known about baseline levels and physiological effects of heavy metals in the animals. (JMT)

  17. Phytoremediation of heavy metal contaminated soil by Jatropha curcas.

    Science.gov (United States)

    Chang, Fang-Chih; Ko, Chun-Han; Tsai, Ming-Jer; Wang, Ya-Nang; Chung, Chin-Yi

    2014-12-01

    This study employed Jatropha curcas (bioenergy crop plant) to assist in the removal of heavy metals from contaminated field soils. Analyses were conducted on the concentrations of the individual metals in the soil and in the plants, and their differences over the growth periods of the plants were determined. The calculation of plant biomass after 2 years yielded the total amount of each metal that was removed from the soil. In terms of the absorption of heavy metal contaminants by the roots and their transfer to aerial plant parts, Cd, Ni, and Zn exhibited the greatest ease of absorption, whereas Cu, Cr, and Pb interacted strongly with the root cells and remained in the roots of the plants. J. curcas showed the best absorption capability for Cd, Cr, Ni, and Zn. This study pioneered the concept of combining both bioremediation and afforestation by J. curcas, demonstrated at a field scale.

  18. Survey of Heavy Metals Concentration (Fe، Ni، Cu، Zn، Pb in Farmland Soils of Sistan Central Part

    Directory of Open Access Journals (Sweden)

    Safoora Javan Siamardi

    2014-12-01

    Full Text Available Background: Heavy metals pollution not only influences directly on physical and chemical properties, biological activity reduction, and mass access reduction of rich materials of soil, but also is considered as a serious harm in food safety and environment security. Therefore, protection of this resource and security of permanency is important. For this purpose, in this study concentration of heavy metals such as iron, copper, zinc, and nickel has been explored in agriculture soil of Sistan province central area. Methods: This study was applicable-infrastructural and 160 samples of soil from agriculture lands of central of Sistan's area were collected randomly. Iron, copper, zinc, lead, and nickel have been measured using FlameAtomic Absorption Spectrometer according t standard method.  Results: Concentration average of Iron, nickel, Copper, zinc, and lead were 340.96, 18.56, 7.28, 19.806, and 29.909 mg/kg, respectively. Conclusion: The concentration of iron, lead, nickel, zinc, and cooper in agricultural soil was less than limited levels of WHO and according to this case; there was no problem in soil health.

  19. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  20. Effect of heavy-metal on synthesis of siderophores by Pseudomonas aeruginosa ZGKD3

    Science.gov (United States)

    Shi, Peili; Xing, Zhukang; Zhang, Yuxiu; Chai, Tuanyao

    2017-01-01

    Most siderophore-producing bacteria could improve the plant growth. Here, the effect of heavy-metal on the growth, total siderophore and pyoverdine production of the Cd tolerance Pseudomonas aeruginosa ZGKD3 were investigated. The results showed that ZGKD3 exhibited tolerance to heavy metals, and the metal tolerance decreased in the order Mn2+>Pb2+>Ni2+>Cu2+>Zn2+>Cd2+. The total siderophore and pyoverdine production of ZGKD3 induced by metals of Cd2+, Cu2+, Zn2+, Ni2+, Pb2+ and Mn2+ were different, the total siderophore and pyoverdine production reduced in the order Cd2+>Pb2+>Mn2+>Ni2+>Zn2+ >Cu2+ and Zn2+>Cd2+>Mn2+>Pb2+>Ni2+>Cu2+, respectively. These results suggested that ZGKD3 could grow in heavy-metal contaminated soil and had the potential of improving phytoremediation efficiency in Cd and Zn contaminated soils.

  1. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Skubala, Piotr, E-mail: piotr.skubala@us.edu.pl [Department of Ecology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Zaleski, Tomasz [Department of Soil Science and Soil Protection, Agricultural University in Krakow, Mickiewicza 21, 31-120 Cracow (Poland)

    2012-01-01

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (K{sub av}, P{sub av}, N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals - the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. - Highlights: Black-Right-Pointing-Pointer Responses of oribatid mites to metal contamination along a gradient in meadow soils were studied. Black-Right-Pointing-Pointer Small concentrations of heavy metals positively influenced the abundance of oribatid mites. Black-Right-Pointing-Pointer Four different responses of oribatid species to heavy metal pollution were recognised. Black-Right-Pointing-Pointer Bioaccumulation of the toxic metal and essential elements proceeded differently in oribatid species. Black-Right-Pointing-Pointer Five studied oribatid species were deconcentrators of cadmium.

  2. Heavy metals status of street roaming ruminants in north western ...

    African Journals Online (AJOL)

    The metals (Cd, Cu, Cr, Fe, Mn, Ni, Pb and Zn) levels were determined using atomic absorption spectroscopy (Alpha Star Model 4, Chem Tech Analytical) after acid digestion. The results showed that heavy metals concentration in cow blood ranged from 1.53+1.20 to 29.92+2.60 mg/L, goats from 3.11+0.02 to 17.57+0.05 ...

  3. Heavy metal adsorption of Streptomyces chromofuscus K101

    Directory of Open Access Journals (Sweden)

    Said Mohamed Daboor

    2014-06-01

    Full Text Available Objective: To find the best actinomycete that has potential application value in the heavy metal remediation due to its special morphological and physiological metabolism. Methods: In some areas of River Nile, Egypt, a total of 67 actinomycete isolates (17 isolates from surface water and 50 from sediment were identified. In addition, the studied area was characterized by a large amount of submerged macrophyte species Ceratophyllum demersum, one free floating species Eichhornia crassipes and two emergent species Polygonum tomentosum and Saccharum spontaneum with the highest biomass production values. Many methods are used in this research like qualitative evaluation of heavy metals, minimum inhibitory concentration of heavy metal determination, metal binding assay, heavy metal assessment, etc. Results: Many actinomycetes isolates were isolated from River Nile, Egypt, the absorbent efficiency of one isolate Streptomyces chromofuscusK101 showed the most efficient metal binding activity. The adsorption process of Zn2+ , Pb2+ and Fe 2+ single or mixture metal ions was investigated, where the order of adsorption potential ( Zn2+ >Pb2+ >Fe 2+ was observed in single metal reaction. The adsorption in mixed metal reactions was the same order as in single-metal ion with a significant decrease in Fe 2+ and Pb2+ adsorption. Conclusions: In conclusion the metal adsorption reactions were very fast, pH dependent and culture age-independent, suggestive of a physicochemical reaction between cell wall components and heavy metal ions. The absorbent removal efficiency was determined as a function of ion concentration, pH and temperature.

  4. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  5. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  6. Heavy metal accumulation by carrageenan and agar producing algae

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, K.S. [Moscow State Univ. (Russian Federation). Faculty of Biology; Bird, K.T. [North Carolina Univ., Wilmington, NC (United States). Center for Marine Science Research

    1994-09-01

    The accumulation of six heavy metals Cu, Cd, Ni, Zn, Mn and Pb was measured in living and lzophilized algal thalli. The agar producing algae were Gracilaria tikvahiae and Gelidium pusillum. The carrageenan producing macroalgae were Agardhiella subulata and the gametophyte and tetrasporophyte phases of Chondrus crispus. These produce primarily iota, kappa and lambda carrageenans, respectively. At heavy metal concentrations of 0.5 mg L{sup -1}, living thalli of Gracilaria tikvahiae generally showed the greatest amount of accumulation of the 6 heavy metals tested. The accumulation of Pb was greater in the living thalli of all four species than in the lyophilized thalli. Except for Agardhiella subulata, lyophilized thalli showed greater accumulation of Ni, Cu and Zn. There was no difference in heavy metal accumulation between living and lyophilized thalli in the accumulation of Cd. Manganese showed no accumulation at the tested concentration. There did not appear to be a relationship between algal hydrocolloid characteristics and the amounts of heavy metals accumulated. (orig.)

  7. Heavy metals biogeochemistry in abandoned mining areas

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available Plants growing on the abandoned Portuguese mines, highly contaminated with W, Sn, As, Cd, Cu, Zn and Pb, have been studied for their biogeochemical indication/prospecting and mine restoration potential. The results of analysis show that the species best suited for biogeochemical indicating are: aerial tissues of Halimium umbellatum (L. Spach, for As and W; leaves of Erica arborea L. for Bi, Sn, W and mostly Pb; stems of Erica arborea L. for Pb; needles of Pinus pinaster Aiton and aerial tissues of Pteridium aquilinum (L. Kuhn for W; and leaves of Quercus faginea Lam. for Sn. The aquatic plant studied (Ranunculus peltatus Schrank can be used to decrease the heavy metals, and arsenic amounts into the aquatic environment affected by acid mine drainages.

  8. Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass

    OpenAIRE

    Muhammad Muneeb Ur Rahman Khattak; Muhammad Zahoor; Bakhtiar Muhammad; Farhat Ali Khan; Riaz Ullah; AbdEI-Salam, Naser M.

    2017-01-01

    Heavy metals contamination of drinking water has significant adverse effects on human health due to their toxic nature. In this study a new adsorbent, magnetic graphitic nanostructures were prepared from watermelon waste. The adsorbent was characterized by different instrumental techniques (surface area analyzer, FTIR, XRD, EDX, SEM, and TG/DTA) and was used for the removal of heavy metals (As, Cr, Cu, Pb, and Zn) from water. The adsorption parameters were determined for heavy metals adsorpti...

  9. Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1

    OpenAIRE

    Adams, Joshua P.; Adeli, Ardeshir; Hsu, Chuan-Yu; Harkess, Richard L.; Page, Grier P.; dePamphilis, Claude W.; Schultz, Emily B.; Yuceer, Cetin

    2011-01-01

    Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but exce...

  10. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    Science.gov (United States)

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  11. Effect of heavy metals on growth and heavy metal content of Allium porrum L. and Pisum sativum L

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhage, L.; Jaeger, H.J.

    1985-01-01

    The effects of cadmium, lead, zinc and copper, singly and in combination, on yield, heavy metal content and the mineral composition of Allium porrum L. and Pisum sativum L. have been investigated. The Cd, Pb, Zn and Cu concentrations of shoots and roots of Allium porrum increased with increasing heavy metal contamination of soil. However, no visible symptoms of heavy metal toxicity were recognized. The dry matter production was reduced as a function of heavy metal concentration and combination. The mechanisms of combinations were mostly synergistic. The correlation between pollutant contents (nmol/shoot) and yield was higher than the correlation between heavy metal concentrations of soil or shoots (ppm) and yield. Results of regression analyses showed that the inhibition of copper translocation caused by Cd, Pb and Zn was responsible for the yield depressions. The antagonism between Cd and N-deficiency showed that the level of N-supply was without negative effects on yield depressions of Pisum sativum caused by Cd. In contrast to this, the N-form played an important role in Cd-toxicity as the synergism between Cd and NH4 illustrated. K-deficiency as well as acidic nutrient solution (pH=4) diminished the root/shoot-barrier for Cd and therefore Cd-translocation from roots to shoots increased. Concerning calcium, magnesium and iron the decrease of ion uptake caused by Cd was statistically significant higher than yield depression.

  12. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    On behalf of the Ministry of the Environment DCE at Aarhus University annually reports heavy metals (HM) emissions to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution). This report presents updated heavy metal emission factors...... for stationary combustion plants and the corresponding improved emission inventories for the following HMs: Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn). The report presents data for the year 2009 and time series for 1990...

  13. CORRECTION THE LEVEL OF HEAVY METALS WITH EXTRACT OF ECHINACEA ASSISTANCE IN PRODUCTIONMADE FROM MILK

    OpenAIRE

    PECHAR N.P.; BUTSYAK V.I.; KURLYAK I.

    2009-01-01

    The level of bioflavonoid in Extract of Echinacea was investigated. When Extract of Echinacea was in ferment for cottage cheese and it protection against influence of heavy metals (Pb, Zn, Cu, Cd) was investigated.

  14. Heavy metal concentrations in soil and earthworms in a floodplain grassland

    NARCIS (Netherlands)

    Vliet, van P.C.J.; Zee, van der S.E.A.T.M.; Ma, W.C.

    2005-01-01

    We determined accumulated heavy metal concentrations (Cd, Pb, Cu, Zn) of earthworms in moderately contaminated floodplain soils. Both soil and mature earthworms were sampled before and after flooding and earthworm species were identified to understand species specific differences in

  15. Determination of the level of some heavy metals in water collected ...

    African Journals Online (AJOL)

    In view of this, levels of some heavy metals, Zn, Pb, Cr, Cu, Ni, Co, Ag, Fe and Mn were determined in water samples collected from two pollution prone areas around Kano (Sharada and Bompai industrial estates) and control site (Thomas Dam, Dambatta). The levels of the heavy metals were determined by Atomic ...

  16. Transfer of heavy metals from soil to lettuce (Lactuca sativa) grown ...

    African Journals Online (AJOL)

    This studied was carried out to investigate the amount of heavy metals (Fe, Cd, Zn,Cu and Pd) transferred from soil to lettuce so as to know the extent of contamination from Soil and lettuce samples collected from different irrigated farmlands of Kaduna metropolis and Rigachikun as control site. These heavy metals were ...

  17. Evaluation of some heavy metals loading in dust fall of three ...

    African Journals Online (AJOL)

    A 0.1 g of dust sample was digested with 20 ml of HNO3, HClO4 and HF in ratio of (3:2:1) respectively and heavy metals (Mn, Cu, Zn, Cd, Pb, and Ni) were analysed using atomic absorption spectrophotometer (Buck Scientific model 210 VGP). Results of heavy metal concentrations showed decrease in the following order: ...

  18. The Heavy Metal Subculture and Suicide.

    Science.gov (United States)

    Stack, Steven; And Others

    1994-01-01

    Assessed relationship between heavy metal music and suicide with data on heavy metal magazine subscriptions and youth suicide in 50 states. Found that, controlling for other predictors of suicide, greater strength of metal subculture, higher youth suicide rate, suggests that music perhaps nurtures suicidal tendencies already present in subculture.…

  19. Industrial hygiene of selected heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Woodring, J.L.

    1993-08-01

    The industrial hygiene of heavy metals consists of recognition, evaluation, and control of exposures in the occupational environment. Several of these metals have been in use since ancient times. Reports of health effects and poisonings from overexposures also have a long history. This report discusses the industrial hygiene of the heavy metals, lead, cadmium, mercury, and manganese.

  20. Speciation of heavy metal ions as influenced by interactions with montmorillonite, Al hydroxide polymers and citrate

    NARCIS (Netherlands)

    Janssen, R.P.T.

    1995-01-01

    Clay minerals, metal-hydroxides and organic matter can bind metal ions; moreover they also interact with each other. These mutual interactions influence the metal binding to a significant extent. In this study, the speciation of the heavy metal ions Zn and Ph was investigated in model

  1. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  2. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, Jan-Erik; Andrews, David; Futaana, Yoshifumi; Masters, Adam; Thomas, Nicolas; De Sanctis, Maria Cristina; Herique, Alain; Retherford, Kurt; Tortora, Paolo; Trigo-Rodriguez, Joseph; Ivchenko, Nickolay; Simon, Sven

    2017-04-01

    We propose a spacecraft mission (Heavy Metal) to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×10(19) kg make it one of the largest and densest of asteroids, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. The M5 mission Heavy Metal will investigate if (16) Psyche is the exposed metallic core of a planetesimal, formed early enough to melt and differentiate. High-resolution mapping of the surface in optical, IR, UV and radar wavebands, along with the determination of the shape and gravity field will be used to address the formation and subsequent evolution of (16) Psyche, determining the origin of metallic asteroids. It is conceivable that a cataclysmic collision with a second body led to the ejection of all or part of the differentiated core of the parent body. Measurements at (16) Psyche therefore provide a possibility to directly examine an iron-rich planetary core, similar to that expected at the center of all the major planets including Earth. A short-lived dynamo producing a magnetic field early in the life of (16) Psyche could have led to a remnant field (of tens of micro Tesla) being preserved in the body today. (16) Psyche is embedded in the variable flow of the solar wind. Whereas planetary magnetospheres and induced magnetospheres are the result of intense dynamo fields and dense conductive ionospheres presenting obstacles to the solar wind, (16) Psyche may show an entirely new 'class' of interaction as a consequence of its lack of a significant atmosphere, the extremely high bulk electrical conductivity of the asteroid, and the possible presence of intense magnetic fields retained in iron-rich material. The small characteristic scale of (16) Psyche ( 200 km) firmly places any solar wind interaction in the "sub-MHD" scale, in which kinetic

  3. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    Science.gov (United States)

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  4. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].

    Science.gov (United States)

    Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen

    2016-05-15

    A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF.

  5. Influence of the heavy metals Pb, Cd, Zn, Mn, Cu, Hg and Be on the glutathione-S-transferases of rat liver. Einfluss der Schwermetalle Pb, Cd, Zn, Mn, Cu, Hg und Be auf die Glutathion-S-Transferasen der Rattenleber

    Energy Technology Data Exchange (ETDEWEB)

    Hosny Abd El-Fadil, I.H.

    1988-07-04

    The aim of this study was to explore the influence of the heavy metal salts Pb-acetate, CdCl[sub 2], ZnSO[sub 4], MnCl[sub 2], CuCl, HgNO[sub 3], and BeSO[sub 4] on the two glutathione S-transferase (GST) isoenzymes glutathione S-epoxide transferase and glutathione S-aryltransferase after addition of these salts to rat liver enzyme preparations. Rat liver enzyme preparations were also investigated after pretreatment of the animals with these salts. (orig./VT).

  6. Heavy Metals in the Vegetables Collected from Production Sites

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  7. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  8. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    Science.gov (United States)

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Heavy metals in Antarctic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, J.E.A. de; Moreno, V.J. [Universidad Nacional de Mar del Plata (Argentina); Gerpe, M.S.; Vodopivez, C. [Instituto Antartico Argentino, Buenos Aires (Argentina)

    1997-02-01

    To evaluate levels of essential (zinc and copper) and non-essential (mercury and cadmium) heavy metals, 34 species of organisms from different areas close to the Antarctic Peninsula were analysed. These included algae, filter-feeders, omnivorous invertebrates and vertebrates. Mercury was not detected, while cadmium was found in the majority of organisms analysed (detection limit was 0.05 ppm for both metals). The highest cadmium concentration was observed in the starfish Odontaster validus. Anthozoans, sipunculids and nudibranchs showed maximum levels of zinc, while the highest copper level was found in the gastropod Trophon brevispira. Mercury and cadmium levels in fishes were below the detection limit. Concentrations of essential and non-essential metals in birds were highest in liver followed by muscle and eggs. Cadmium and mercury levels in muscle of southern elephant seals were above the detection limit, whereas in Antarctic fur seals they were below it. The objective of the study was to gather baseline information for metals in Antarctic Ocean biota that may be needed to detect, measure and monitor future environmental changes. 46 refs., 7 figs., 8 tabs.

  10. Distribution of heavy metals from flue gas in algal bioreactor

    Science.gov (United States)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  11. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  12. Toxicity and Bioaccumulation of Heavy Metals in Spinach (Spinacia oleracea Grown in a Controlled Environment

    Directory of Open Access Journals (Sweden)

    Naz Alia

    2015-06-01

    Full Text Available The impact of heavy metal toxicity on the shoot and root lengths, total protein, fiber characteristics, moisture content and nutrient composition of spinach (Spinacia oleracea was evaluated. Plants were grown in pots containing soil and treated with different concentrations (mg/kg of lead (Pb; 300, 400 and 500, cadmium (Cd; 0.5, 1 and 1.5 and zinc (Zn; 250, 500, and 700 as well as mixtures of Cd and Pb (0.5/300, 1/400, 1.5/500, Cd and Zn (0.5/250, 1/500, 1.5/700, and Pb and Zn (300/250, 400/500, 500/700. Soil contaminated by long-term irrigation with wastewater containing heavy metals was simulated. An increase in concentrations of heavy metals both individually and as mixtures significantly (p < 0.05 reduced the growth parameters and nutrient contents of S. oleracea. The uptake patterns of heavy metals in mixtures showed antagonistic impacts on each other. The toxicities of the mixtures Cd and Pb, Cd and Zn as well as Pb and Zn were higher than those observed in separate heavy metal applications but less than their additive sums. The toxicity caused by individual heavy metals was the highest for Cd followed by Pb and Zn. The highest toxicity was observed in plants grown in soil contaminated by Cd and Pb.

  13. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  14. [Heavy metals pollution and its stability assessment of sediments in flowing rivers around lake Taihu].

    Science.gov (United States)

    Lu, Shao-Yong; Jiao, Wei; Jin, Xiang-Can; Yuan, Ye; Zhang, Ye; Li, Guang-De

    2010-10-01

    16 main inflow and outflow rivers around Lake Taihu were chosen as the research object, and the concentrations and distribution of four heavy metals (Pb, Cd, Cu and Zn) in the surface sediments of these river estuaries were detected. The pollution extent and stability were analyzed by using three-step sequential extraction method (BCR method). Aim of this study is to control heavy metal pollution of Lake Taihu and provide the basic information. Based on the results, the monitored river estuaries all had been contaminated by different degrees, and four heavy metals' concentrations all exceeded the threshold effect level (TEL) at most sampling sites. A distinct spatial heterogeneity was found in extracted fractions of these heavy metals distribution: northern rivers > southern rivers, inflow rivers > outflow rivers. The Stability Assessment Code (SAC) for different metals varied in the descending order of Cd, Zn, Pb and Cu. Compared with Pb and Cu, Cd and Zn had a higher second release potential and ecological risk.

  15. Dustfall Heavy Metal Pollution During Winter in North China.

    Science.gov (United States)

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Shu, Tong-tong; Chen, Fan-tao; Zheng, Xiao-xia; Gong, Zhao-ning

    2015-10-01

    In order to study heavy metal pollution in dustfall during Winter in North China, forty-four dustfall samples were collected in North China Region from November 2013 to March 2014. Then forty trace elements content were measured for each sample by inductively coupled plasma-mass spectrometry. Finally, the contamination characteristics of the main heavy metals were studied through a multi-method analysis, including variability analysis, Pearson correlation analysis and principal component analysis. Results showed that the relative contents of cadmium (Cd), zinc (Zn), copper (Cu), bismuth (Bi), lead (Pb) exceeded the standards stipulated in Chinese soil elements background values by amazing 4.9 times. In this study, conclusions were drawn that dustfall heavy metal pollution in the region was mainly caused by transport pollution, metallurgy industrial pollution, coal pollution and steel industrial pollution.

  16. The ecological risk assessment of heavy metals in the Kuihe River basin (Xuzhou section) and the characteristics of plant enrichment

    Science.gov (United States)

    Sun, Ling; Zheng, Lei

    2018-01-01

    In order to investigate Kuihe River basin of heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) pollution, the determination of the Kuihe River water body, the bottom of the river silt, riparian soil plants and heavy metal content of 9 kinds of riparian plants, investigate the pollution situation, so as to screen out the plants that has potential of enrichment and rehabilitation of heavy metal pollution. The results showed that Cd and Mn in the water body exceed bid; The pollution of Zn and Cu in the bottom mud is serious, potential ecological risk of heavy metals is Zn>Cu>Pb>Ni>Cd>As>Cr>Mn Riparian soil affected by sewage and overflow of sediment has significant positive correlation with soil heavy metals, among them, the Zn and Cu are heavy pollution; The selective absorption of heavy metals by 9 kinds of dominant plant leads to its bio concentration factor (BCF) of Cr and Pb on the low side, are all less than 1, from the translocation factor (TF), Setcreasea purpurea and Poa annua showed obvious roots type hoarding. Poa annua and Lycium chinense have a resistance on the absorption of heavy metals, Lythrum salicaria, Photinia serrulata and Broussonetia papyrifera have a unique advantage on enrichment of heavy metals, Broussonetia papyri era on a variety of strong ability of enrichment and transfer of heavy metals suggests that the woody plants in the vast application prospect in the field of rehabilitation technology of heavy metals.

  17. Survey of persistent organochlorine contaminants (PCBs, PCDD/Fs, and PAHs), heavy metals (Cu, Cd, Zn, Pb, and Hg), and arsenic in food samples from Huelva (Spain): levels and health implications.

    Science.gov (United States)

    Bordajandi, Luisa R; Gómez, Gema; Abad, Esteban; Rivera, Josep; Del Mar Fernández-Bastón, María; Blasco, Julián; González, María José

    2004-02-25

    Concentrations of PCBs, PCDDs, and PCDFs, heavy metals (Cu, Cd, Zn, Pb, and Hg), and arsenic have been determined in a great variety of food samples purchased in different markets across the city of Huelva, located in southwestern Spain and under strong industrial activity. All samples analyzed presented concentrations below the maximum allowed by the European Community regarding PCDD/Fs, with the exception of samples within the meat group. An estimation of the daily intake resulted in 1.15 pg of WHO(PCDD/Fs)-TEQ/kg of body weight/day for a 70 kg person and 2.63 pg of WHO-TEQ/kg of body weight/day when PCBs were included, therefore accounting for a similar or even higher percentage than PCDD/Fs and showing the importance of their inclusion in monitoring studies. Meat and meat products, together with vegetable oils and dairy products, were the major food groups contributing to the estimated daily intake. For heavy metals and arsenic, the concentrations found were under the value proposed by European regulations, and estimated daily intakes were well below those proposed by the WHO for all metals investigated. PAHs have been analyzed in food samples from marine origin, values ranging from 8.22 to 71.4 ng/g of fresh weight. Pyrene was the most abundant compound, accounting for >80% in the samples investigated. The most carcinogenic PAHs, such as benzo[a]pyrene and dibenz[a,h]anthracene, were in all cases below the limits of detection. Therefore, the samples analyzed in this survey can be considered as safe with regard to the levels obtained and the in-force legislation.

  18. Hazards of heavy metal contamination.

    Science.gov (United States)

    Järup, Lars

    2003-01-01

    The main threats to human health from heavy metals are associated with exposure to lead, cadmium, mercury and arsenic. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. Cadmium compounds are currently mainly used in re-chargeable nickel-cadmium batteries. Cadmium emissions have increased dramatically during the 20th century, one reason being that cadmium-containing products are rarely re-cycled, but often dumped together with household waste. Cigarette smoking is a major source of cadmium exposure. In non-smokers, food is the most important source of cadmium exposure. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. Many individuals in Europe already exceed these exposure levels and the margin is very narrow for large groups. Therefore, measures should be taken to reduce cadmium exposure in the general population in order to minimize the risk of adverse health effects. The general population is primarily exposed to mercury via food, fish being a major source of methyl mercury exposure, and dental amalgam. The general population does not face a significant health risk from methyl mercury, although certain groups with high fish consumption may attain blood levels associated with a low risk of neurological damage to adults. Since there is a risk to the fetus in particular, pregnant women should avoid a high intake of certain fish, such as shark, swordfish and

  19. Assessment of heavy metal contents of green leafy vegetables

    Directory of Open Access Journals (Sweden)

    V. Jena

    2013-01-01

    Full Text Available Vegetables are rich sources of vitamins, minerals, and fibers, and have beneficial antioxidative effects. Ingestion of vegetables containing heavy metals is one of the main routes through which these elements enter the human body. Slowly released into the body, however, heavy metals can cause an array of diseases. In this study we investigated the concentrations of copper, chromium, zinc, and lead in the most frequently consumed vegetables including Pimpinella anisum, Spinacia oleracea, Amaranthus viridis, Coriandrum sativum, and Trigonella foenum graecum in various sites in Raipur city, India. Atomic absorption spectrophotometry was used to estimate the levels of these metals in vegetables. The mean concentration for each heavy metal in the samples was calculated and compared with the permissible levels set by the Food and Agriculture Organization and World Health Organization. The intake of heavy metals in the human diet was also calculated to estimate the risk to human health. Our findings indicated the presence of heavy metals in vegetables in the order of Cr > Zn > Cu > Pb. Based on these findings, we conclude that the vegetables grown in this region are a health hazard for human consumption.

  20. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  1. Heavy metal uptake of Geosiphon pyriforme

    Science.gov (United States)

    Scheloske, Stefan; Maetz, Mischa; Schüßler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  2. Biosorption of Heavy Metals by Biomass

    OpenAIRE

    AKÇİN, Göksel

    2014-01-01

    Wetland plants are successfully used in the biosorption of heavy metals in natural and constructed wetlands. In this study, the removal of heavy metals by water hyacinth [ Eichhornia crassipes (Mart.)Solms)] were investigated. The plants were grown under control in the Turkish climate. The biosorption was dependent on factors such as metal concentration, constant temperature, pH and relative moisture. The plants were exposed to different metal concentrations of Chromium(III), Chromi...

  3. Use of cestodes as indicator of heavy-metal pollution.

    Science.gov (United States)

    Yen Nhi, Tran Thi; Mohd Shazili, Noor Azhar; Shaharom-Harrison, Faizah

    2013-01-01

    Thirty snakehead fish, Channa micropeltes (Cuvier, 1831) were collected at Lake Kenyir, Malaysia. Muscle, liver, intestine and kidney tissues were removed from each fish and the intestine was opened to reveal cestodes. In order to assess the concentration of heavy metal in the environment, samples of water in the surface layer and sediment were also collected. Tissues were digested and the concentrations of manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) were analysed by using inductively-coupled plasma mass-spectrometry (ICP-MS) equipment. The results demonstrated that the cestode Senga parva (Fernando and Furtado, 1964) from fish hosts accumulated some heavy metals to a greater extent than the water and some fish tissues, but less than the sediment. In three (Pb, Zn and Mn) of the five elements measured, cestodes accumulated the highest metal concentrations, and in remaining two (Cu and Cd), the second highest metal accumulation was recorded in the cestodes when compared to host tissues. Therefore, the present study indicated that Senga parva accumulated metals and might have potential as a bioindicator of heavy-metal pollution. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    Science.gov (United States)

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2017-11-15

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Heavy Metal Music and Adolescent Suicidal Risk.

    Science.gov (United States)

    Lacourse, Eric; Claes, Michel; Villeneuve, Martine

    2001-01-01

    Studied differentiating characteristics of youth who prefer heavy metal music, worship music, and use music for vicarious release. Data for 275 secondary school students suggest that heavy metal music preference and worshipping is not related to suicidal risk when controlling for other suicide factors. Discusses findings in the context of…

  6. Heavy Metal Levels, Physicochemical Properties and Microbial ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Heavy Metal Levels, Physicochemical Properties and Microbial Diversity of Soil Matrix from University Solid Waste ... characteristics of soil samples from five different waste collection sites within the University of Benin, Benin City and evaluated using ...... phytoremediation of heavy metals contaminated soils: A review.

  7. Heavy metal evaporation kinetics in thermal waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Ch.; Stucki, S.; Schuler, A.J. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    To investigate the evaporation kinetics of heavy metals, experiments were performed by conventional thermogravimetry and a new method using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The new method allows online measurements in time intervals that are typically below one minute. The evaporation of Cd, Cu, Pb, and Zn from synthetic mixtures and filter ashes from municipal solid waste incineration (MSWI) was of major interest. (author) 2 figs., 4 refs.

  8. The Sensitivity to Aminoglycosides and Heavy Metals of Isolates of ...

    African Journals Online (AJOL)

    Eighty-two clinical isolates of Pseudomonas aeruginosa strains were tested for their sensitivity to aminoglycosides by an agar diffusion method and to heavy metals by a dilution technique on tri –buffered mineral salt agar containing 10 – 100mg/L CdCl2.H20, CoCl2.6H20, ZnCl2, AgNO3 and HgCl2. All the strains tested ...

  9. Heavy Metals and Physicochemical Properties of Soils in Kano ...

    African Journals Online (AJOL)

    Heavy Metals and Physicochemical Properties of Soils in Kano Urban Agricultural Lands. ... The mean ranges of total Cu, Cr, Ni, Zn, Pb and Cd were 4.95 – 5.99, 5.85 – 165.66, 54.03 – 57.77, 55.07 – 255.52, 42.84 – 68.12 and 0.59 – 11.81mg/kg respectively. All the values were lower than the maximum allowable ...

  10. Speciation of Heavy Metals in Sediment of Agbabu Bitumen deposit ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: Speciation of heavy metals Cu, Cd, Pb, Ni, Zn, Mn, Fe, Cr and Hg was carried out on sediment of. Agbabu with a sequential .... sulphide:The residue from fraction 3 was oxidized as follows: 3ml of 0.02M HNO3 and 5ml of ... Another 3ml of 30% hydrogen peroxide, adjusted to. pH2 with HNO3, was then added.

  11. The impacts of common ions on the adsorption of heavy metal

    Science.gov (United States)

    He, Jiang; Xue, Hong-Xi; Lü, Chang-Wei; Fan, Qing-Yun; Liang, Ying; Sun, Ying; Shen, Li-Li; Bai, Saruli

    2009-10-01

    Researches on the impact of common ions onto sediments are of great importance for the study of the heavy metal adsorption mechanisms. Considering the surface sediments from the relatively clean reach in the Baotou section of the Yellow River as the adsorbent, this work presents the impacts of common ions (Na+, Mg2+, K+, Ca2+, Cl-, SO4 2-, and NH4 +) on heavy metals (Cu2+, Zn2+, Cd2+, and Pb2+) adsorption. The experimental results reveal that the adsorptive capacities of the heavy metals are controlled by different adsorption mechanisms in different ion concentration ranges. With the increase of the ionic strength, the adsorption of the heavy metals increases for the compression of the electric double layer, whereas decreases for the decreasing of the ionic activities of the heavy metals. The competitive adsorption and complexations between the heavy metals and common ions are also important factors controlling the heavy metal adsorption. According to the experimental results and the real concentration of common ions in the Baotou section of the Yellow River, the increase of the concentrations of Na+, Mg2+, K+, and Ca2+ would cause the increase of Zn2+ adsorption and reduce the Zn pollution. The NH4 + from the industrial discharge of the tributaries has a strong impact on the heavy metal adsorption.

  12. Interactions between calcium and heavy metals in Norway spruce : Accumulation and binding of metals in wood and bark

    OpenAIRE

    Österås, Ann Helén

    2004-01-01

    Waste products from the forest industry are to be spread in forests in Sweden to counteract nutrient depletion due to whole tree harvesting. This may increase the bioavailability of calcium (Ca) and heavy metals, such as cadmium (Cd), copper (Cu) and zinc (Zn) in forest soils. Heavy metals, like Cd, have already been enriched in forest soils in Sweden, due to deposition of air pollutions, and acidification of forest soils has increased the bioavailability of toxic metals for plant uptake. Cha...

  13. Heavy Metals Bioaccumulation by Iranian and Australian Earthworms (Eisenia fetida in the Sewage Sludge Vermicomposting

    Directory of Open Access Journals (Sweden)

    MR Shahmansouri, H Pourmoghadas, AR Parvaresh, H Alidadi

    2005-01-01

    Full Text Available Vermicomposting of organic waste has an important part to play in an integrated waste management strategy. In this study, the possibility of heavy metals accumulation with two groups of Iranian and Australian earthworms in sewage sludge vermicompost was investigated. Eisenia fetida was the species of earthworms used in the vermicomposting process. The bioaccumulation of Cr, Cd, Pb, Cu, and Zn as heavy metals by Iranian and Australian earthworms was studied. The results indicated that heavy metals concentration decreased with increasing vermicomposting time. Comparison of the two groups of earthworms showed that the Iranian earthworms consumed higher quantities of micronutrients such as Cu and Zn comparing with the Australian earthworms, while the bioaccumulation of non-essential elements such as Cr, Cd, and Pb by the Australian group was higher. The significant decrease in heavy metal concentrations in the final vermicompost indicated the capability of both Iranian and Australian E.fetida species in accumulating heavy metals in their body tissues.

  14. Relationship between the Concentrations of Heavy Metals and Bioelements in Aging Men with Metabolic Syndrome

    OpenAIRE

    Iwona Rotter; Danuta Kosik-Bogacka; Barbara Dołęgowska; Krzysztof Safranow; Anna Lubkowska; Maria Laszczyńska

    2015-01-01

    Heavy metals may exacerbate metabolic syndrome (MS) but abnormal serum concentrations of bioelements may also co-exist with MS. The primary aim of the study was to assess the relationship of blood heavy metal and bioelement concentrations and MS, in men aged 50–75 years. Heavy metals—lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As), tungsten (W), Macroelements—magnesium (Mg) and calcium (Ca), and microelements—iron (Fe), zinc (Zn) copper (Cu), chromium (Cr), molybdenum (Mo), selenium (Se) ...

  15. Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng; Qiu, Jianrong

    2012-03-01

    This paper investigated the volatilization behavior of heavy metals during thermal treatment of model solid waste in a fluidized bed reactor. Four metal chlorides (Cd, Pb, Cu and Zn) were chosen as metal sources. The influence of redox conditions, water and mineral matrice on heavy metal volatilization was investigated. In general, Cd shows significant vaporization especially when HCl was injected, while Cu and Pb vaporize moderately and Zn vaporization is negligible. Increasing oxygen concentration can lower heavy metal vaporization. Heavy metal interactions with the mineral matter can result in the formation of stable metallic species thus playing a negative effect on their behavior. However, HCl can promote the heavy metal release by preventing the formation of stable metallic species. The chemical sorption (either physical or chemical) inside the pores, coupled with the internal diffusion of gaseous metal species, may also control the vaporization process. With SO(2) injected, Cd and Pb show a higher volatility as a result of SO(2) reducing characteristics. From the analysis, the subsequent order of heavy metal volatility can be found: Cd>Cu≥Pb≫Zn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Heavy metals in edible seaweeds commercialised for human consumption

    Science.gov (United States)

    Besada, Victoria; Andrade, José Manuel; Schultze, Fernando; González, Juan José

    2009-01-01

    Though seaweed consumption is growing steadily across Europe, relatively few studies have reported on the quantities of heavy metals they contain and/or their potential effects on the population's health. This study focuses on the first topic and analyses the concentrations of six typical heavy metals (Cd, Pb, Hg, Cu, Zn, total As and inorganic As) in 52 samples from 11 algae-based products commercialised in Spain for direct human consumption ( Gelidium spp.; Eisenia bicyclis; Himanthalia elongata; Hizikia fusiforme; Laminaria spp.; Ulva rigida; Chondrus crispus; Porphyra umbilicales and Undaria pinnatifida). Samples were ground, homogenised and quantified by atomic absorption spectrometry (Cu and Zn by flame AAS; Cd, Pb and total As by electrothermal AAS; total mercury by the cold vapour technique; and inorganic As by flame-hydride generation). Accuracy was assessed by participation in periodic QUASIMEME (Quality Assurance of Information in Marine Environmental Monitoring in Europe) and IAEA (International Atomic Energy Agency) intercalibration exercises. To detect any objective differences existing between the seaweeds' metal concentrations, univariate and multivariate studies (principal component analysis, cluster analysis and linear discriminant analysis) were performed. It is concluded that the Hizikia fusiforme samples contained the highest values of total and inorganic As and that most Cd concentrations exceeded the French Legislation. The two harvesting areas (Atlantic and Pacific oceans) were differentiated using both univariate studies (for Cu, total As, Hg and Zn) and a multivariate discriminant function (which includes Zn, Cu and Pb).

  17. Effects of chlorine on the volatilization of heavy metals during the co-combustion of sewage sludge.

    Science.gov (United States)

    Yu, Shengrong; Zhang, Bin; Wei, Jiangxiong; Zhang, Tongsheng; Yu, Qijun; Zhang, Wensheng

    2017-04-01

    To clarify the volatilization of heavy metals (Cu, Ni, Pb, and Zn) in sewage sludge during co-combustion in cement kiln, effects of addition and types of four chlorides and temperature on the volatilization of heavy metals in raw meal with 25wt.% sewage sludge were investigated. The results showed that the volatilization of Cu, Ni, and Pb increased significantly with increase of chlorides addition, while no obvious change in the volatilization of Zn was observed. The effectiveness of chlorides on the volatilization of heavy metals depended on their release capacity of chlorine radicals and the chlorine combined capacity of heavy metals. Higher calcination temperature resulted in dramatically increase in the volatilization of heavy metals due to easier formation of volatile heavy metal chlorides. The results will provide a guideline for co-combusting heavy metals contained solid wastes in cement kiln on the basis of security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: An emphasis on permissible limits and risk assessment of exposure to heavy metals.

    Science.gov (United States)

    Shahbazi, Yasser; Ahmadi, Farhad; Fakhari, Farnoosh

    2016-02-01

    This study was carried out to determine the concentrations of some heavy metals in dairy products, collected from five industrial regions in Iran (n = 250 samples) during winter and summer in 2013. The samples were analyzed using the differential pulse anodic and cathodic stripping voltammetry technique. The obtained ranges of mean Pb, Cd, Cu, Zn and Se were as follow: in raw milk 14.0, 1.11, 427, 571, 2.19 μg kg(-1), in pasteurized milk 9.59, 1.0, 378, 447, 1.78 μg kg(-1), in cheese 14.5, 1.25, 428, 586, 1.68 μg kg(-1), in yoghurt 7.54, 0.99, 399, 431, 1.23 μg kg(-1) and in doogh 7.2, 0.84, 320, 369, 0.99 μg kg(-1), respectively. In nearly all cases the concentrations of the metals were below the international permissible limits and do not pose a health concern for the consumption of milk and dairy products in Iran. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Plasma polymer-functionalized silica particles for heavy metals removal.

    Science.gov (United States)

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  20. Phytomining of heavy metals from soil by Croton bonplandianum using phytoremediation technology

    Science.gov (United States)

    Panchal, K. J.; Dave, B. R.; Parmar, P. P.; Subramanian, R. B.

    2015-12-01

    Metal ions are not only valuable intermediates in metal extraction, but also important raw materials for technical applications. They possess some unique but, identical physical and chemical properties, which make them useful probes of low temperature geochemical reactions. Heavy metals are natural constituents of the earth's crust, but indiscriminate human activities have drastically altered their geochemical cycles and biochemical balance. Metal concentration in soil typically ranges from less than one to as high as 100,000 mg/kg. Heavy metal contaminations of land resources continue to be the focus of numerous environmental studies and attract a great deal of attention worldwide. This is attributed to no--biodegradability and persistence of heavy metals in soils. Prolonged exposure to heavy metals such as cadmium, copper, lead, nickel, and zinc can cause deleterious health effects in humans. Complexation, separation, and removal of metal ions have become increasingly attractive areas of research and have led to new technical developments like phytoremediation that has numerous biotechnological implications of understanding of plant metal accumulation. Croton bonplandianum is newly identified as a potential heavy metal hypreaccumulator. In this study Croton bonplandianum was subjected for in vitro heavy metal accumulation, to explore the accumulation pattern of four heavy metals viz Cadmium, Lead, Nickel and Zinc in various parts of Croton bonplandianum plant parts. It was found that the efficiency of Croton bonplandianum to accumulate heavy metals is Cd>Pb>Zn>Ni. The absorption of these heavy metals in plant parts revealed that the highest translocation of metals from ground to root was ground to be in the order of Pb (1.12) > Zn (0.26) > Ni (0.18) > Cd (0.15). The distribution of Cd in Croton bonplandianum followed the trend Root>Stem>Leaf; with Ni it was Root>Leaf>Stem, while Pb showed leaf>stem>root. Translocation of metals in Croton bonplandianum plant parts

  1. Accumulation rates of airborne heavy metals in wetlands

    Science.gov (United States)

    Souch, C.J.; Filippelli, G.M.; Dollar, N.; Perkins, S.; Mastalerz, Maria

    2002-01-01

    Accumulation rates of heavy metals (Cd, Cr, Cu, Mn, Pb, and Zn) retained in wetland sediments in northwest Indiana-downwind of the Chicago-Gary-Hammond industrial area-are quantified to assess anthropogenic influences on atmospheric fluxes. Metal concentrations for 22 sediment cores are determined by ICP-AES after ashing and strong acid extraction. Relations between organic content and metal concentrations at depth are used to separate natural and anthropogenic sources. Accumulation rates over the lifetime of the wetlands (???4500 years) have averaged 0.2 (Cd), 1.4 (Cu), 1.7 (Cr), 13.4 (Mn), 4.8 (Pb), and 18.7 (Zn) mg m-2 y-1. Rates for the last 100 years have increased on average by factors of 6 (Cd), 8 (Cu), 10 (Mn), 15 (Pb), and 30 (Zn), remaining effectively constant for Cr. Where the wetlands have been drained, metals have been lost from the sediments, owing to changes in organic content and local hydrochemistry (exposure to acidic rainfall). Sediment-based accumulation rates at the undrained sites are higher, though generally consistent, with measured and modeled atmospheric fluxes documented by short-term studies conducted over the last three decades. The fraction of the total metals in the wetlands estimated to be of anthropogenic origin ranges from approximately 3% for Cr, up to approximately 35% for Pb, and 70% for Zn. This historic legacy of contamination must be considered in land management decisions, particularly when wetlands are drained.

  2. Plants accumulating heavy metals in the Danube River wetlands.

    Science.gov (United States)

    Matache, Marius L; Marin, Constantin; Rozylowicz, Laurentiu; Tudorache, Alin

    2013-12-20

    We present herein our results regarding the accumulation of four heavy metals (copper, cadmium, lead, and zinc) in four aquatic species plants (Ceratophyllum demersum, Potamogeton pectinatus, Potamogeton lucens, Potamogeton perfoliatus) collected from the Danube River, South-Western part of Romania and their possible use as indicators of aquatic ecosystems pollution with heavy metals. Elements concentration from the vegetal material was determined through Inductively Coupled Plasma - Mass Spectrometry. The species were chosen based on their previous use as bioindicators in aquatic ecosystems and due to the fact they are one of the most frequent aquatic plant species of the Danube River ecosystems within the Iron Gates Natural Park. Highest amounts are recorded for Ceratophyllum demersum (3.52 μg/g for Cd; 22.71 μg/g for Cu; 20.06 μg/g for Pb; 104.23 μg/g for Zn). Among the Potamogeton species, the highest amounts of heavy metals are recorded in Potamogeton perfoliatus (1.88 μg/g for Cd; 13.14 μg/g for Cu; 13.32 μg/g for Pb; 57.96 μg/g for Zn). The sequence for the bioconcentration factors (BCFs) calculated in order to describe the accumulation of the four metals is Cd > Zn > Pb > Cu. Increase of the zinc concentration determines an increase of the cadmium concentration (Spearman rho=0.40, p=0.02). Despite the low ambiental levels of heavy metals, the four aquatic plants have the ability to accumulate significant amounts, which make them useful as biological indicators. BCF value for Ceratophyllum demersum indicated this species as a cadmium hyperaccumulator.

  3. Plants accumulating heavy metals in the Danube River wetlands

    Science.gov (United States)

    2013-01-01

    Background We present herein our results regarding the accumulation of four heavy metals (copper, cadmium, lead, and zinc) in four aquatic species plants (Ceratophyllum demersum, Potamogeton pectinatus, Potamogeton lucens, Potamogeton perfoliatus) collected from the Danube River, South-Western part of Romania and their possible use as indicators of aquatic ecosystems pollution with heavy metals. Methods Elements concentration from the vegetal material was determined through Inductively Coupled Plasma – Mass Spectrometry. Results The species were chosen based on their previous use as bioindicators in aquatic ecosystems and due to the fact they are one of the most frequent aquatic plant species of the Danube River ecosystems within the Iron Gates Natural Park. Highest amounts are recorded for Ceratophyllum demersum (3.52 μg/g for Cd; 22.71 μg/g for Cu; 20.06 μg/g for Pb; 104.23 μg/g for Zn). Among the Potamogeton species, the highest amounts of heavy metals are recorded in Potamogeton perfoliatus (1.88 μg/g for Cd; 13.14 μg/g for Cu; 13.32 μg/g for Pb; 57.96 μg/g for Zn). The sequence for the bioconcentration factors (BCFs) calculated in order to describe the accumulation of the four metals is Cd >> Zn > Pb > Cu. Increase of the zinc concentration determines an increase of the cadmium concentration (Spearman rho=0.40, p=0.02). Conclusions Despite the low ambiental levels of heavy metals, the four aquatic plants have the ability to accumulate significant amounts, which make them useful as biological indicators. BCF value for Ceratophyllum demersum indicated this species as a cadmium hyperaccumulator. PMID:24359799

  4. Heavy metal content in fish and water from River Niger at ...

    African Journals Online (AJOL)

    The concentrations of Lead (Pb), Copper (Cu), Cadmium (Cd) and Zinc (Zn) in fish and water from River Niger at Agenebode, Nigeria were determined by atomic absorption spectrometric technique. The mean concentrations of heavy metals in water ranged from 0.00742 mg/L for Pb to 0.239 mg/L for Zn. The summary ...

  5. Heavy metal content in fish and water from River Niger at ...

    African Journals Online (AJOL)

    user

    The concentrations of Lead (Pb), Copper (Cu), Cadmium (Cd) and Zinc (Zn) in fish and water from River. Niger at Agenebode, Nigeria were determined by atomic absorption spectrometric technique. The mean concentrations of heavy metals in water ranged from 0.00742 mg/L for Pb to 0.239 mg/L for Zn. The summary ...

  6. The role of dissolved organic matter in adsorbing heavy metals in clay-rich soils

    NARCIS (Netherlands)

    Refaey, Y.; Jansen, B.; El-Shater, A.H.; El-Haddad, A.A.; Kalbitz, K.

    2014-01-01

    Adsorption of tested heavy metals on Egyptian soils was large in all situations tested and follows the order: Cu >> Ni ≈ Zn. Copper was influenced by the timing of dissolved organic matter addition more than Ni and Zn. Specific binding mechanisms (inner-sphere complexes) dominated the affinity of Cu

  7. Distribution and risk assessment of heavy metals in sewage sludge after ozonation.

    Science.gov (United States)

    Zhang, Jian; Tian, Yu; Zhang, Jun; Li, Ning; Kong, Lingchao; Yu, Ming; Zuo, Wei

    2017-02-01

    In this paper, transformation of chemical forms of heavy metals (Cu, Zn, Ni, Pb, Cr, Cd, Mn, and Mg) in sewage sludge (SS) during ozonation was investigated. Meanwhile, the risk of heavy metals to environment in ozonated sludge (OS) and SS was estimated according to risk assessment code (RAC). The residual rates of heavy metals were over 72.8 %, which demonstrated that the heavy metals in SS were mainly existed in the OS after ozonation. The results indicated that the ozonation had an effect on the redistribution of heavy metals. The comparisons of the RAC between OS and SS indicated that the environmental risk of heavy metals in OS was aggravated compared to SS, except for Mg. Consequently, it was suggested that the OS should be pretreated before application.

  8. [Heavy metals and their sources in outdoor settled dusts in different function areas of cities].

    Science.gov (United States)

    Li, Xiao-yan; Liu, Yan-qing

    2013-09-01

    To study the distribution of heavy metals in outdoor settled dusts in different functional areas, based on the literature published, we described the difference in heavy metal accumulation in functional areas and their sources by comparing and analyzing the data of heavy metal concentrations in some capital cities. The results showed that industrial area had the highest heavy metal concentration, followed in descending order by residential area and commercial area, and finally, traffic area. The levels of Zn and Pb in the four functional areas showed higher spatial variability, while there was little difference in Cu and Cd levels. Compared to the heavy metal concentration in urban soils, industrial area appeared heavily accumulated and traffic area appeared lighter accumulated with heavy metals, while there was little difference among other three functional areas expect industrial area. The accumulation of Cd in the four functional areas showed the lowest spatial variability.

  9. Toxicity and Bioaccumulation of Heavy Metals in Spinach (Spinacia oleracea) Grown in a Controlled Environment.

    Science.gov (United States)

    Alia, Naz; Sardar, Khan; Said, Muhammad; Salma, Khalid; Sadia, Alam; Sadaf, Siddique; Toqeer, Ahmed; Miklas, Scholz

    2015-06-30

    The impact of heavy metal toxicity on the shoot and root lengths, total protein, fiber characteristics, moisture content and nutrient composition of spinach (Spinacia oleracea) was evaluated. Plants were grown in pots containing soil and treated with different concentrations (mg/kg) of lead (Pb; 300, 400 and 500), cadmium (Cd; 0.5, 1 and 1.5) and zinc (Zn; 250, 500, and 700) as well as mixtures of Cd and Pb (0.5/300, 1/400, 1.5/500), Cd and Zn (0.5/250, 1/500, 1.5/700), and Pb and Zn (300/250, 400/500, 500/700). Soil contaminated by long-term irrigation with wastewater containing heavy metals was simulated. An increase in concentrations of heavy metals both individually and as mixtures significantly (p impacts on each other. The toxicities of the mixtures Cd and Pb, Cd and Zn as well as Pb and Zn were higher than those observed in separate heavy metal applications but less than their additive sums. The toxicity caused by individual heavy metals was the highest for Cd followed by Pb and Zn. The highest toxicity was observed in plants grown in soil contaminated by Cd and Pb.

  10. IMPACT OF HEAVY METALS ON ANTIOXIDANT ACTIVITY IN DIFFERENT TISSUE OF MILK FISH Chanos chanos.

    OpenAIRE

    Sivakumar Rajeshkumar,; Jayaprakash Mini,; Natesan Munuswamy

    2013-01-01

    The impact of heavy metal accumulation on antioxidant activity in Chanos chanos, (Milk fish) was studied in two different locations polluted sites (Kaattuppalli Island) and less polluted sites (Kovalam estuary). Accumulation of heavy metals in the gills, liver and muscles were observed Zn >Fe >Cu >Pb >Mn >Cd >Ni. The results reveal that highest concentration of metals in muscle, gills and liver were observed in Kaattuppalli Island when compared to Kovalam estuary. The antioxidant activity sho...

  11. Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances

    OpenAIRE

    Vaibhav Srivastava; Abhijit Sarkar; Sonu Singh; Pooja Singh; Ademir S. F. Araujo; Rajeev P. Singh

    2017-01-01

    With modern day urbanization and industrialization, heavy metal (HM) contamination has become a prime concern for today's society. The impacts of metal contamination on agriculture range from the agricultural soil to the produce in our food basket. The heavy metals (HMs) and metalloids, including Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Hg, Pb, among others, can result in significant toxic impacts. The intensification of agricultural land use and changes in farming practices along with technological a...

  12. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Analysis of heavy metal sources in soil using kriging interpolation on principal components.

    Science.gov (United States)

    Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A

    2014-05-06

    Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.

  14. Red-blood-cell-like BSA/Zn3(PO4)2 hybrid particles: Preparation and application to adsorption of heavy metal ions

    Science.gov (United States)

    Zhang, Baoliang; Li, Peitao; Zhang, Hepeng; Li, Xiangjie; Tian, Lei; Wang, Hai; Chen, Xin; Ali, Nisar; Ali, Zafar; Zhang, Qiuyu

    2016-03-01

    A novel kind of red-blood-cell-like bovine serum albumin (BSA)/Zn3(PO4)2 hybrid particle is prepared at room temperature by a facile and rapid one-step method based on coordination between BSA and zinc ion. The morphology of the monodisperse hybrid particle shows oblate spheroidal type with a one sided single hole on the surface. The hybrid particle is constructed with BSA/Zn3(PO4)2 nanoplates of 35 nm thick. The average particle size of hybrid particle is 2.3 μm, and its BET specific surface area is 146.64 cm2/g. To clarify the evolution of BSA/Zn3(PO4)2 hybrid particle, SEM and elemental analysis as a function of particle growth time are investigated. The formation mechanism of BSA/Zn3(PO4)2 hybrid particle, which can be described as crystallization, coordination and self-assembly process, is illustrated in detail. The as-prepared BSA/Zn3(PO4)2 hybrid particle is used for adsorption of Cu2+. The hybrid particle displayed excellent adsorption properties on Cu2+. The adsorption efficiency of BSA/Zn3(PO4)2 hybrid particles at 5 min and 30 min are 86.33% and 98.9%, respectively. The maximum adsorption capacity is 6.85 mg/g. Thus, this kind of novel adsorbent shows potential application value in ultra-fast and highly efficient removal of Cu2+.

  15. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    Science.gov (United States)

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    Science.gov (United States)

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Airborne heavy metal pollution in the environment of a danish steel plant

    DEFF Research Database (Denmark)

    Vestergaard, N. K.; Stephansen, U.; Rasmussen, L.

    1986-01-01

    to electric-arc furnaces. The samples were analyzed for Cd, Cr, Cu, Fe, Mn, Pb and Zn.The results show that heavy metal pollution from the steelworks still is severe and that it follows a decreasing power curve when the distance to the steelworks is increased. However, a reduction in the deposition of heavy...

  18. Heavy metals in source-separated compost and digestates.

    Science.gov (United States)

    Kupper, Thomas; Bürge, Diane; Bachmann, Hans Jörg; Güsewell, Sabine; Mayer, Jochen

    2014-05-01

    The production of compost and digestate from source-separated organic residues is well established in Europe. However, these products may be a source of pollutants when applied to soils. In order to assess this issue, composts, solid and liquid digestates from Switzerland were analyzed for heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) addressing factors which may influence the concentration levels: the treatment process, the composition, origin, particle size and impurity content of input materials, the season of input materials collection or the degree of organic matter degradation. Composts (n=81) showed mean contents being at 60% or less of the legal threshold values. Solid digestates (n=20) had 20-50% lower values for Cd, Co, Pb and Zn but similar values for Cr, Cu and Ni. Liquid digestates (n=5) exhibited mean concentrations which were approximately twice the values measured in compost for most elements. Statistical analyses did not reveal clear relationships between influencing factors and heavy metal contents. This suggests that the contamination was rather driven by factors not addressed in the present study. According to mass balance calculations related to Switzerland, the annual loads to agricultural soils resulting from the application of compost and digestates ranged between 2% (Cd) and 22% (Pb) of total heavy metal loads. At regional scale, composts and digestates are therefore minor sources of pollution compared to manure (Co, Cu, Ni, Zn), mineral fertilizer (Cd, Cr) and aerial deposition (Pb). However, for individual fields, fertilization with compost or digestates results in higher heavy metal loads than application of equivalent nutrient inputs through manure or mineral fertilizer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Riesgo por metales pesados en horticultura urbana Heavy metals risk in urban agriculture

    Directory of Open Access Journals (Sweden)

    Lidia Giuffré

    2005-07-01

    Full Text Available La agricultura urbana y periurbana puede implicar riesgos para la salud humana si no es adecuadamente manejada. El objetivo de esta contribución fue presentar un relevamiento de metales pesados en suelos hortícolas de Buenos Aires. La información se comparó con estandares de calidad nacionales e internacionales, y se calcularon factores de enriquecimiento con referencia a estandares holandeses. Con respecto a la corteza terrestre, el Cd. Pb, Cu y Zn se incrementaron. Los factores medios y máximos de enriquecimiento fueron mayores para Cu, Pb, Cd y Zn. Los suelos hortícolas urbanos y periurbanos deben ser cuidadosamente monitoreados considerando el riesgo de entrada de metales en al cadena alimenticia.Urban and periurban agriculture may imply risks for human health if it is not appropriately conducted. The objective of this contribution was to present a survey of heavy metal content in horticultural soils of Buenos Aires. The information is compared to national and international quality standards, and enrichment factors for heavy metals were calculated with reference to Dutch values. With reference to earth crust, Cd, Pb, Cu and Zn were increased. Mean and maximum enrichment factors were higher for Cu, Pb, Cd and Zn. Horticultural urban and periurban soils must be carefully monitored considering risk of metal input in food chain.

  20. A novel method for the sequential removal and separation of multiple heavy metals from wastewater.

    Science.gov (United States)

    Fang, Li; Li, Liang; Qu, Zan; Xu, Haomiao; Xu, Jianfang; Yan, Naiqiang

    2018-01-15

    A novel method was developed and applied for the treatment of simulated wastewater containing multiple heavy metals. A sorbent of ZnS nanocrystals (NCs) was synthesized and showed extraordinary performance for the removal of Hg(2+), Cu(2+), Pb(2+) and Cd(2+). The removal efficiencies of Hg(2+), Cu(2+), Pb(2+) and Cd(2+) were 99.9%, 99.9%, 90.8% and 66.3%, respectively. Meanwhile, it was determined that solubility product (Ksp) of heavy metal sulfides was closely related to adsorption selectivity of various heavy metals on the sorbent. The removal efficiency of Hg(2+) was higher than that of Cd(2+), while the Ksp of HgS was lower than that of CdS. It indicated that preferential adsorption of heavy metals occurred when the Ksp of the heavy metal sulfide was lower. In addition, the differences in the Ksp of heavy metal sulfides allowed for the exchange of heavy metals, indicating the potential application for the sequential removal and separation of heavy metals from wastewater. According to the cumulative adsorption experimental results, multiple heavy metals were sequentially adsorbed and separated from the simulated wastewater in the order of the Ksp of their sulfides. This method holds the promise of sequentially removing and separating multiple heavy metals from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Comparison of heavy metal toxicity in continuous flow and batch reactors

    Science.gov (United States)

    Sengor, S. S.; Gikas, P.; Moberly, J. G.; Peyton, B. M.; Ginn, T. R.

    2009-12-01

    The presence of heavy metals may significantly affect microbial growth. In many cases, small amounts of particular heavy metals may stimulate microbial growth; however, larger quantities may result in microbial growth reduction. Environmental parameters, such as growth pattern may alter the critical heavy metal concentration, above which microbial growth stimulation turns to growth inhibition. Thus, it is important to quantify the effects of heavy metals on microbial activity for understanding natural or manmade biological reactors, either in situ or ex situ. Here we compare the toxicity of Zn and Cu on Arthrobacter sp., a heavy metal tolerant microorganism, under continuous flow versus batch reactor operations. Batch and continuous growth tests of Arthrobacter sp. were carried out at various individual and combined concentrations of Zn and Cu. Biomass concentration (OD) was measured for both the batch and continuous reactors, whereas ATP, oxygen uptake rates and substrate concentrations were additionally measured for the continuous system. Results indicated that Cu was more toxic than Zn under all conditions for both systems. In batch reactors, all tested Zn concentrations up to 150 uM showed a stimulatory effect on microbial growth. However, in the case of mixed Zn and Cu exposures, the presence of Zn either eliminated (at the 50 uM level both Zn and Cu) or reduced by ~25% (at the 100 and 150 uM levels both Zn and Cu) the Cu-induced inhibition. In the continuous system, only one test involved combined Cu (40uM) and Zn (125uM) and this test showed similar results to the 40uM Cu continuous test, i.e., no reduction in inhibition. The specific ATP concentration, i.e., ATP/OD, results for the continuous reactor showed an apparent recovery for both Cu-treated populations, although neither the OD nor glucose data showed any recovery. This may reflect that the individual microorganisms that survived after the addition of heavy metals, kept maintaining the usual ATP

  2. Microplastics as vector for heavy metal contamination from the marine environment

    Science.gov (United States)

    Brennecke, Dennis; Duarte, Bernardo; Paiva, Filipa; Caçador, Isabel; Canning-Clode, João

    2016-09-01

    The permanent presence of microplastics in the marine environment is considered a global threat to several marine animals. Heavy metals and microplastics are typically included in two different classes of pollutants but the interaction between these two stressors is poorly understood. During 14 days of experimental manipulation, we examined the adsorption of two heavy metals, copper (Cu) and zinc (Zn), leached from an antifouling paint to virgin polystyrene (PS) beads and aged polyvinyl chloride (PVC) fragments in seawater. We demonstrated that heavy metals were released from the antifouling paint to the water and both microplastic types adsorbed the two heavy metals. This adsorption kinetics was described using partition coefficients and mathematical models. Partition coefficients between pellets and water ranged between 650 and 850 for Cu on PS and PVC, respectively. The adsorption of Cu was significantly greater in PVC fragments than in PS, probably due to higher surface area and polarity of PVC. Concentrations of Cu and Zn increased significantly on PVC and PS over the course of the experiment with the exception of Zn on PS. As a result, we show a significant interaction between these types of microplastics and heavy metals, which can have implications for marine life and the environment. These results strongly support recent findings where plastics can play a key role as vectors for heavy metal ions in the marine system. Finally, our findings highlight the importance of monitoring marine litter and heavy metals, mainly associated with antifouling paints, particularly in the framework of the Marine Strategy Framework Directive (MSFD).

  3. Heavy metal speciation and toxicity characteristics of tannery sludge

    Science.gov (United States)

    Juel, Md. Ariful Islam; Chowdhury, Zia Uddin Md.; Ahmed, Tanvir

    2016-07-01

    Heavy metals present in tannery sludge can get mobilized in the environment in various forms and can be a cause for concern for the natural ecosystem and human health. The speciation of metals in sludge provides valuable information regarding their toxicity in the environment and determines their suitability for land application or disposal in landfills. Concentrations of seven heavy metals (Cr, Pb, Cd, Ni, Zn, As and Cu) in tannery sludge were determined to evaluate their toxicity levels. Metal contents ranged over the following intervals: As: 1.52-2.07 mg/kg; Pb: 57.5-67 mg/kg; Cr: 15339-26501 mg/kg; Cu: 261.3-579.5 mg/kg; Zn: 210.2-329.1 mg/kg and Ni: 137.5-141.3 mg/kg (dry weight basis). The concentrations of all heavy metals in the sludge samples were lower compared to EPA guidelines except chromium which was found to be several orders of magnitude higher than the guideline value. Toxicity Characteristics Leaching Procedure (TCLP) test indicated that the leaching potential of chromium was higher compared to the other heavy metals and exceeded the EPA land disposal restriction limits. To quantitatively assess the environmental burden of the chromium associated with tannery sludge, the IMPACT 2002+ methodology was adopted under the SimaPro software environment. Considering the USEPA limit for chromium as the baseline scenario, it was found that chromium in the tannery sludge had 6.41 times higher impact than the baseline in the categories of aquatic ecotoxicity, terrestrial ecotoxicity and non-carcinogens. Chromium has the highest contribution to toxicity in the category of aquatic ecotoxicity while copper is the major contributor to the category of terrestrial ecotoxicity in the tannery sludge.

  4. Accumulation of heavy metals in soil-crop systems: a review for wheat and corn.

    Science.gov (United States)

    Wang, Shiyu; Wu, Wenyong; Liu, Fei; Liao, Renkuan; Hu, Yaqi

    2017-06-01

    The health risks arising from heavy metal pollution (HMP) in agricultural soils have attracted global attention, and research on the accumulation of heavy metals in soil-plant systems is the basis for human health risk assessments. This review studied the accumulation of seven typical heavy metals-Cd, Cr, As, Pb, Hg, Cu, and Zn-in soil-corn and soil-wheat systems. The findings indicated that, in general, wheat was more likely to accumulate heavy metals than corn. Bioconcentration factor (BCF) of the seven heavy metals in wheat and corn grains decreased exponentially with their average concentrations in soil. The seven heavy metals were ranked as follows, in ascending order of accumulation in corn grains: Pb < Cr < Zn < As < Cu < Cd Zn < Pb < Cr < Cu < As < Hg Zn in corn grains were 0.054, 6.65 × 10-4, 7.94 × 10-4, 0.0044, 0.028, 0.13, and 0.19, respectively. The corresponding BCFs values for wheat grains were 0.25, 0.0045, 5.42 × 10-4, 0.009, 4.03 × 10-4, 0.11, and 0.054, respectively.

  5. Heavy metal removal from MSS fly ash by thermal and chlorination treatments

    Science.gov (United States)

    Liu, Jingyong; Chen, Jiacong; Huang, Limao

    2015-01-01

    The thermal behavior of heavy metals in the co-incineration of municipal solid waste-sludge incinerator fly ash (MSS fly ash) was studied using a laboratory-scale tube furnace. The results indicate that without the addition of chlorinating agents, temperature was an important parameter and had significantly influenced on heavy metal removal, whereas the residence time had a weak effect. Between 900 and 1000 °C for 60 to 300 min, heavy metals reacted with chloride-inherent in the fly ash, and approximately 80 to 89% of Pb, 48% to 56% of Cd, 27% to 36% of Zn and 6% to 24% of Cu were removed. After the adding chlorinating agents, the evaporation rate of the heavy metals improved dramatically, where the evaporation rates of Cu and Zn were larger than that of Pb and Cd. As the amount of added chlorinating agents increased, the removal rate of heavy metals increased. However, the effect of the type of chlorinating agent on the chlorination of heavy metals differed considerably, where NaCl had the weakest effect on the removal rate of Cu, Cd and Zn. In terms of resource recovery and decontamination, MgCl2 and CaCl2 are the best choices due to their efficient removal of Zn. PMID:26602592

  6. Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1.

    Science.gov (United States)

    Adams, Joshua P; Adeli, Ardeshir; Hsu, Chuan-Yu; Harkess, Richard L; Page, Grier P; dePamphilis, Claude W; Schultz, Emily B; Yuceer, Cetin

    2011-07-01

    Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation.

  7. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  8. [Study on canopy spectral characteristics of paddy polluted by heavy metals].

    Science.gov (United States)

    Ren, Hong-Yan; Zhuang, Da-Fang; Pan, Jian-Jun; Shi, Xue-Zheng; Shi, Run-He; Wang, Hong-Jie

    2010-02-01

    Because of frequent mining, heavy metals are brought into environment like soils, water and atmosphere, resulting heavy metal contamination in the agricultural region beside mines. Heavy metals contamination causes vegetation stress like destruction of chloroplast structure, chlorophyll content decrease, blunt photosynthesis, etc. Spectral responses to changes in chlorophyll content and photosynthesis make it possible that remote sensing is applied in monitoring heavy metals stress on paddy plants. Field spectroradiometer was used to acquire canopy reflectance spectra of paddy plants contaminated by heavy metals released from local mining. The present study was conducted to (1) investigate discrimination of canopy reflectance spectra of heavy metal polluted and normal paddy plants; (2) extract spectral characteristics of contaminated paddy plants and compare them. By means of correlation analysis, sensitive bands (SB) were firstly picked out from canopy spectra. Secondly, on the basis of these sensitive bands, normalized difference vegetation indices (NDVI) were established, and then red edge position (REP) was extracted from canopy spectra via curve fitting of inverted Gaussian model. As a result of correlation analysis, 460, 560, 660 and 1 100 nm were considered respectively as sensitive band for Pb, Zn, Cu and As concentration in paddy leaves. Furthermore, heavy metal concentrations (Pb, Zn, Cu and As) were significantly correlated with NDVIs (Pb, NDV(510, 810); Zn, NDVI(510, 870; Cu, NDVI(660, 870); As, NDVI(510, 810)). Heavy metals were also significantly correlated with REP, however, the inflexion termed as spectral critical value (SCV) between low and high heavy metals concentrations should be considered during applying REP in remote sensing monitoring. Moreover, NDVI and REP are much better than SB in terms of capability of expressing spectral information. Therefore, heavy metals contamination in paddy plants can be remotely monitored via ground

  9. ASSESSMENT OF MACRONUTRIENTS AND HEAVY METALS IN ...

    African Journals Online (AJOL)

    Preferred Customer

    The dietary supplements of macronutrients and trace heavy metals from herbs and ... sustain temperature up to 230 oC and pressure up to 625 psi. .... manufacture of energy maintenance of health of reproductive system, immune system and.

  10. Elimination of heavy metals from leachates by membrane electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R. [Technische Universitaet Dresden, Institut fuer Siedlungs- und Industriewasserwirtschaft, Mommsenstrasse 13, 01062 Dresden (Germany); Seidel, H. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Bioremediation, Permoserstrasse 15, D-04318 Leipzig (Germany); Rahner, D. [Technische Universitaet Dresden, Institut fuer Physikalische Chemie und Eektrochemie, Mommsenstrasse 13, D-01062 Dresden (Germany); Morgenstern, P. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Department Analytik, Permoserstrasse 15, D-04318 Leipzig (Germany); Loeser, C. [Technische Universitaet Dresden, Institut fuer Lebensmittel- und Bioverfahrenstechnik, Bergstrasse 120, D-01062 Dresden (Germany)

    2004-10-01

    The elimination of heavy metals from bioleaching process waters (leachates) by electrolysis was studied in the anode and cathode region of a membrane electrolysis cell at current densities of 5-20 mA/cm{sup 2} using various electrode materials. The leaching waters containing a wide range of dissolved heavy metals, were high in sulfate, and had pH values of approx. 3. In preliminary tests using a rotating disc electrode the current density-potential curve (CPK) was recorded at a rotation velocity of 0, 1000 and 2000 rpm and a scan rate of 10 mV/s in order to collect information on the influence of transport processes on the electrochemical processes taking place at the electrodes. The electrochemical deposition-dissolution processes at the cathode are strongly dependent on the hydrodynamics. Detailed examination of the anodic oxidation of dissolved Mn(II) indicated that the manganese dioxide which formed adhered well to the electrode surface but in the cathodic return run it was again reduced. Electrode pairs of high-grade steel, lead and coal as well as material combinations were used to investigate heavy metal elimination in a membrane electrolysis cell. Using high-grade steel, lead and carbon electrode pairs, the reduction and deposition of Cu, Zn, Cr, Ni and some Cd in metallic or hydroxide form were observed in an order of 10-40 % in the cathode chamber. The dominant process in the anode chamber was the precipitation of manganese dioxide owing to the oxidation of dissolved Mn(II). Large amounts of heavy metals were co-precipitated by adsorption onto the insoluble MnO{sub 2}. High-grade steel and to some extent lead anodes were dissolved and hence were proven unsuitable as an anode material. These findings were largely confirmed by experiments using combination electrodes of coal and platinized titanium as an anode material and steel as a cathode material.The results indicate that electrochemical metal separation in the membrane electrolysis cell can represent a

  11. Heavy Metal Distribution in Street Dust from Traditional Markets and the Human Health Implications

    Directory of Open Access Journals (Sweden)

    Jin Ah Kim

    2016-08-01

    Full Text Available Street dust is a hazard for workers in traditional markets. Exposure time is longer than for other people, making them vulnerable to heavy metals in street dust. This study investigated heavy metal concentrations in street dust samples collected from different types of markets. It compared the results with heavy metal concentrations in heavy traffic and rural areas. Street dust was significantly enriched with most heavy metals in a heavy traffic area while street dust from a fish market was contaminated with cupper (Cu, lead (Pb and zinc (Zn. Street dust from medicinal herb and fruit markets, and rural areas were not contaminated. Principal component and cluster analyses indicated heavy metals in heavy traffic road and fish market dust had different sources. Relatively high heavy metal concentration in street dust from the fish market may negatively affect worker’s mental health, as depression levels were higher compared with workers in other markets. Therefore, intensive investigation of the relationship between heavy metal concentrations in street dust and worker’s health in traditional marketplaces should be conducted to elucidate the effect of heavy metals on psychological health in humans.

  12. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India

    Directory of Open Access Journals (Sweden)

    Richa Bhardwaj

    2017-04-01

    Full Text Available The objective of the present study is to investigate the current status of heavy metal pollution in River Yamuna, Delhi stretch. The concentrations of Nickel, Cadmium, Chromium, Copper, Iron, Lead, and Zinc in water samples have been studied during December 2013–August 2015. The overall mean concentration of heavy metals was observed in the following order Fe > Cu > Zn > Ni > Cr > Pb > Cd. Correlation analysis formed two distinct groups of heavy metals highlighting similar sources. This was further corroborated by results from principal components analysis that showed similar grouping of heavy metals (Ni, Zn, Fe, Pb, Cd into PC1 having one common source for these heavy metals and PC2 (Cu, Cr having another common source. Further, our study pointed out two sites i.e. Najafgarh drain and Shahdara drain outlet in river Yamuna as the two potential sources responsible for the heavy metal contamination. Based on heavy metal pollution index value (1491.15, we concluded that our study area as a whole is critically polluted with heavy metals under study due to pollutant load from various anthropogenic activities.

  13. THE IMPACT OF HEAVY METAL CONCENTRATION ON

    African Journals Online (AJOL)

    Temitope

    Key words: Water, contamination degree, geochemical factors, public health, heavy metal. INTRODUCTION. Earth is unique among other planets in the solar system since it has an environment where it has been able to thrive. Pure water rarely occurs in nature due to the capacity to dissolve numerous substances of heavy.

  14. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  15. Heavy metals and specific porphyrine levels in children with autism

    Directory of Open Access Journals (Sweden)

    Marta Macedoni-Lukšič

    2014-06-01

    Full Text Available Background: The aim of our study was to determine the levels of heavy metals in blood (zinc, copper, aluminium, lead, mercury, as well as the specific porphyrin levels in the urine of patients with ASD compared with patients with other neurological disorders.Methods: The study was performed in a group of children with ASD (N = 52, average age = 6.2y and control group of children with other neurological disorders (N = 22, average age = 6.6y, matched in terms of intellectual abilities (Mann-Whitney U = 565.0, p = .595. Measurement of heavy metals in blood was performed by atomic absorption spectrometry, while the HPLC method by means of a fluorescence detector was used to test urinary porphyrin levels. Results were compared across groups using a multivariate analysis of covariance (MANCOVA. In addition, a generalized linear model was used to establish the impact of group membership on the blood Cu/Zn ratio.Results: In terms of heavy metal blood levels, no significant difference between the groups was found. However, compared to the control group, ASD group had significantly elevated blood Cu/Zn ratio (Wald χ2 = 6.6, df = 1, p = .010. Additionaly, no significant difference between the groups was found in terms of Uroporphyrin I, Heptacarboxyporphyrin I, Hexacarboxyporphyrin and Pentacarboxyporphyrin I. However, the levels of Coproporphyrin I and Coproporphyrin III were lower in the ASD group compared to the controls.Conclusions: Due to the observed higher Cu/Zn ratio we’d suggest that blood levels of zinc and cupper should be tested in all children with ASD and a Zn supplement should be given as needed.

  16. EVALUATION OF LANDFILL POLLUTION WITH SPECIAL EMPHASIS ON HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Magdalena Vaverková

    2014-04-01

    Full Text Available Monitoring leachate, groundwater and surface water aiming to determinate the concentration of heavy metals (Hg, Zn, Ni, Cr6+,Cd, Pb at the municipal solid waste landfill Štěpánovice took place in the years 2002–2010. The values of heavy metals concentration oscillated as follows: Zn (0.05 – 0.37 μg/dm3, Cr+6 (0.01 – 3.3 μg/dm3, Hg (0.0001 – 0.001 (μg/dm3, Ni (0.001 – 0.19 μg/dm3, Cd (0.001 – 0.007 μg/dm3 and Pb (0.002 – 0.176 μg/dm3. The measured data show that the concentrations of heavy metals met the limits provided by law. Under the current landfill operation mode, the results of measurements do not indicate any negative impact on the quality of surface water, groundwater or leachate water.

  17. Comparison of heavy metals and uranium removal using adsorbent in soil

    Science.gov (United States)

    Choi, Jaeyoung; Yun, Hunsik

    2017-04-01

    This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.

  18. Investigation of heavy metals release from sediment with bioturbation/bioirrigation.

    Science.gov (United States)

    He, Yi; Men, Bin; Yang, Xiaofang; Li, Yaxuan; Xu, Hui; Wang, Dongsheng

    2017-10-01

    Bioturbation/bioirrigation can affect the remobilization of metals from sediments. In this study, experiments were performed to examine the effect of bioturbation/bioirrigation by different organisms on cadmium (Cd), copper (Cu), zinc (Zn) and lead (Pb) releasing from the spiked sediment. The diffusive gradient in thin films technique (DGT) revealed that at the end of exposure time, the labile heavy metals concentrations in the pore water for all metal and organisms combinations except Cu and chironomid larvae were much lower than that in the control group. However, the concentrations of heavy metals detected by the DGT were virtually indistinguishable among the treatments with tubificid, chironomid larvae and loach. The correlation analysis of heavy metals with iron (Fe) and manganese (Mn) suggested that Cd, Zn and Pb were most likely bound as Fe-Mn oxidation form in the pore water, but Cu was in other forms. After 28 d of exposure, bioturbation/bioirrigation produced a significant release of particulate heavy metals into the overlying water, especially in the treatment with loach. The bioturbation/bioirrigation impact on the Pb remobilization was less than the other three heavy metals. The effects of bioturbaiton/bioirrigation on the heavy metals remobilization in the sediment were complex that with studying the heavy metals remobilization in the sediment and water interface, the biological indicators should be recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Temporal variation and regional transfer of heavy metals in the Pearl (Zhujiang) River, China.

    Science.gov (United States)

    Zhen, Gengchong; Li, Ying; Tong, Yindong; Yang, Lei; Zhu, Yan; Zhang, Wei

    2016-05-01

    Heavy metals are highly persistent in water and have a particular significance in ecotoxicology. Heavy metals loading from the Pearl River are likely to cause significant impacts on the environment in the South China Sea and the West Pacific. In this study, using monthly monitoring data from a water quality monitoring campaign during 2006-2012, the temporal variation and spatial transfer of six heavy metals (lead (Pb), copper (Cu), cadmium (Cd), zinc (Zn), arsenic (As), and mercury (Hg)) in the Pearl River were analyzed, and the heavy metal fluxes into the sea were calculated. During this period, the annual heavy metal loads discharged from the Pearl River into the South China Sea were 5.8 (Hg), 471.7 (Pb), 1524.6 (Cu), 3819.6 (Zn), 43.9 (Cd), and 621.9 (As) tons, respectively. The metal fluxes showed a seasonal variation with the maximum fluxes occurring from June to July. There is a close association between metal fluxes and runoff. The analysis of the heavy metal transfer from the upstream to the downstream revealed that the transfer from the upstream accounted for a major portion of the heavy metals in the Pearl River Delta. Therefore, earlier industry relocation efforts in the Pearl River watershed may have limited effect on the water quality improvement in surrounding areas. It is suggested that watershed-based pollution control measures focusing on wastewater discharge in both upstream and downstream areas should be developed and implemented in the future.

  20. [Heavy metals in the surface sediment of the dumping ground outside Jiaozhou Bay and their potential ecological risk].

    Science.gov (United States)

    Cao, Cong-hua; Zhang, Nai-xing; Wu, Feng-cong; Sun, Bin; Ren, Rong-zhu; Sun, Xu; Lin, Sen; Zhang, Shao-ping

    2011-05-01

    Based on the monitoring data of heavy metals (Cr, Hg, Cd, Pb, Zn, Cu) in the surface sediment of the dumping ground outside Jiaozhou Bay from 2003 to 2008, the distribution patterns, factors controlling the distribution, and the potential ecological risks of heavy metals were studied with the data in 2007-08, and the fluctuation trends of heavy metals in the surface sediment over the 6 years were also discussed. The average concentrations of heavy metals Cr, Hg, Cd, Pb, Zn, Cu in the surface sediment were 29.47, 0.065, 0.105, 1.145, 9.63, 3.355 microg/g, respectively. Except for Cr, the concentration of heavy metals was high in the central dumping area while low outside the dumping ground, suggesting that the dredged material dumped was the main source of heavy metals. Organic carbon content in the surface sediment had a significant positive correlation with heavy metals except for Cr. Based on the results of ecological risk assessment, Hg had a medium potential ecological risk, while the other heavy metals had low potential ecological risk. The overall risk index (RI) of the heavy metals was 100.50, which was considered as a level of low potential ecological risk. The average concentration of heavy metals showed a decreasing trend over the 6 years, except Hg. In conclusion, the quality of surface sediment in term of heavy metals in the dumping ground outside Jiaozhou Bay is relatively good.

  1. Responses of Niphargus montellianus and Gammarus balcanicus (Crustacea, Amphipoda) from karst waters to heavy metal exposure

    Science.gov (United States)

    Coppellotti Krupa, O.; Guidolin, L.

    2003-05-01

    The response to some heavy metals (Cd, Cu, and Zn) was examined in two amphipods, Niphargus montellianus and Gammarus balcanicus, living in karst waters and endowed with different ecological characteristics. Exposure experiments were made, in the controlled conditions of a biospeleology laboratory, to increasing concentrations of metals in the range 0.1 10 μg ml^{-1} for up to 10 days. Hypogean and epigean amphipods differed in their responses, G. balcanicus being more sensitive to the toxic effects of heavy metals than the hypogean N montellianus. The degree of tolerance was CuZn in both organisms. Metal contents were checked in amphipods in natural conditions and after metal exposure; differences in accumulation rates suggest the potential use of Niphargus as a biological indicator for monitoring groundwater heavy metal pollution.

  2. Distribution of heavy metals in sediments of ligurian coastal areas

    Energy Technology Data Exchange (ETDEWEB)

    Picollo, A.; Frache, R.; Magi, E.; Ianni, C. [Genua Univ., Genua (Italy). Dept. of Chemistry and Industrial Chemistry

    2000-08-01

    A study on the concentration and distribution of heavy metals (Zn, Pb, Fe, Cr, V, Mn, Cu) in the sediments of the Ligurian coast was carried out. The data are interpreted by the Principal Component Analysis and related, for Cr and Fe, to the fluvial sediments. The comparison between the data obtained from the present study and similar matrices of Mediterranean coastal environment has allowed the determination of values due chiefly to natural input. [Italian] Il lavoro riguarda la distribuzione e la concentrazione di alcuni metalli pesanti (Zn, Pb, Fe, Cr, V, Mn, Cu) nei sedimenti costieri della Liguria. I dati ottenuti sono stati interpretati con l'ausilio dell'analisi delle componenti principali (PCA) e i valori di concentrazione del Cr e del Fe sono risultati correlati agli apporti fluviali. Il confronto tra i dati ottenuti con matrici similari di ambienti costieri del Mediterraneo ha permesso di riscontrare valori dovuti principalmente ad apporti naturali.

  3. Studies on the occurrence and distribution of heavy metals in ...

    African Journals Online (AJOL)

    EJIRO

    induced pollution and high levels of heavy metals can often be attributed to anthropogenic influences, rather ... of heavy metal ions on bacteria and determined the heavy metals by bioassay. Collins and Stotzky (1992) ... the microbe, which alter the net charge of the cell. Once heavy metals are discharged into estuarine and ...

  4. Risk assessment of excessive CO{sub 2} emission on diatom heavy metal consumption

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengjiao; Li, Shunxing, E-mail: shunxing_li@aliyun.com; Zheng, Fengying; Huang, Xuguang

    2016-10-01

    Diatoms are the dominant group of phytoplankton in the modern ocean, accounting for approximately 40% of oceanic primary productivity and critical foundation of coastal food web. Rising dissolution of anthropogenic CO{sub 2} in seawater may directly/indirectly cause ocean acidification and desalination. However, little is known about dietary diatom-associated changes, especially for diatom heavy metal consumption sensitivity to these processes, which is important for seafood safety and nutrition assessment. Here we show some links between ocean acidification/desalination and heavy metal consumption by Thalassiosira weissflogii. Excitingly, under desalination stress, the relationships between Cu, Zn, and Cd were all positively correlated, especially between Cu and Zn (r = 0.989, total intracellular concentration) and between Zn and Cd (r = 0.962, single-cell intracellular concentration). Heavy metal consumption activity in decreasing order was acidification < acidification + desalination < desalination for Zn, acidification < desalination < acidification + desalination for Cu and Cd, i.e., heavy metal uptake (or release) were controlled by environmental stress. Our findings showed that heavy metal uptake (or release) was already responded to ongoing excessive CO{sub 2} emission-driven acidification and desalination, which was important for risk assessment of climate change on diatom heavy metal consumption, food web and then seafood safety in future oceans. - Highlights: • Excessive CO{sub 2} in seawater may causes ocean acidification and desalination. • The relationships between Cu, Zn, and Cd were all positively correlated by desalination. • Significant effects of salinity on intracellular concentration of Cu and Cd • Cu and Cd in marine phytoplankton could be regulated by metal excretion. • Heavy metal consumption was affect by excessive CO{sub 2}.

  5. Heavy metal enrichment in the seagrasses of Lakshadweep group of islands--a multivariate statistical analysis.

    Science.gov (United States)

    Thangaradjou, T; Raja, S; Subhashini, Pon; Nobi, E P; Dilipan, E

    2013-01-01

    An assessment on heavy metal (Al, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb and Zn) accumulation by seven seagrass species of Lakshadweep group of islands was carried out using multivariate statistical tools like principal component analysis (PCA) and cluster analysis (CA). Among all the metals, Mg and Al were determined in higher concentration in all the seagrasses, and their values varied with respect to different seagrass species. The concentration of the four toxic heavy metals (Cd, Pb, Zn and Cu) was found higher in all the seagrasses when compared with the background values of seagrasses from Flores Sea, Indonesia. The contamination factor of these four heavy metals ranged as Cd (1.97-12.5), Cu (0.73-4.40), Pb (2.3-8.89) and Zn (1.27-2.787). In general, the Pollution Load Index (PLI) calculated was found to be maximum for Halophila decipiens (58.2). Results revealed that Halophila decipiens is a strong accumulator of heavy metals, followed by Halodule uninervis and Halodule pinifolia, among all the tested seagrasses. Interestingly, the small-leaved seagrasses were found to be efficient in heavy metal accumulation than the large-leaved seagrass species. Thus, seagrasses can better be used for biomonitoring, and seagrasses can be used as the heavy metal sink as the biomass take usually long term to get remineralize in nature.

  6. Influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on development and efficacy of vesicular-arbuscular mycorrhiza in tropical and subtropical plants. Einfluss von Al und den Schwermetallen Fe, Mn, Zn, Cu, Pb und Cd auf die Effizienz der VA-Mykorrhiza bei tropischen und subtropischen Pflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Fabig, B.

    1982-07-08

    In greenhouse experiments the influence of Al and the heavy metals Fe, Mn, Zn, Cu, Pb, and Cd on the efficacy of VA-mycorrhizal fungi was tested with special regard to several soil pH levels and soil water regimes in different combinations. The most important results were: The inoculation led to a significantly better growth of all test plants in the presence of Al, Fe, Mn, Zn, Cu, Pb, and Cd up to a specific amount of the soil-applied element; beyond this specific limit the efficacy of the mycorrhiza was more or less inhibited depending on the element. In correlation with the growth, the nearly always better P uptake of the inoculated plants was impaired only by the highest toxic amounts of the elements. In comparison with the uninoculated plants, all the inoculated plants showed higher P and Pb concentrations. The mycorrhizal plants generally had significantly higher concentrations of the elements Al, Mn, Zn, Cu, and Cd in the roots than the uninoculated plants. Generally even toxic levels of Fe in the soil did not lead to higher Fe concentrations in the plants. Even the highest amounts of Al, Fe, Mn, Zn, and Cu did not cause microscopically visible injuries to the development of the mycorrhiza and did not impede the infection. Only the toxic levels of Pb led to a decrease of the infection rate of about 50%. Pb and Cd were the reason for morphological changes of the different developmental phases of the fungus. High amounts of Pb induced an increased formation of vesicles. The highest amounts of Cd were accompanied by the crowded occurrence of arbuscules.

  7. An optimised method for electrodialytic removal of heavy metals from harbour sediments

    DEFF Research Database (Denmark)

    Pedersen, Kristine B.; Jensen, Pernille Erland; Ottosen, Lisbeth M.

    2015-01-01

    . By employing m1ultivariate modelling and investigating additional experimental variables, the relative importance of variables effecting remediation was determined and response surfaces for heavy metal removal were calculated. Employing optimal conditions it was possible to remove targeted metals (Pb, Cu, Zn...

  8. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  9. speciation of heavy metals in the sidments of gubi dam, bauchi state ...

    African Journals Online (AJOL)

    Admin

    have always focused on point source pollution with much attention being paid to ... and Zn at industrial and non-industrial areas. (Saenz et al., 2005). ... (v/v). The heavy metal concentrations in the digest were determined a Buck Scientific Model. GP. 210 using. Atomic. Absorption. Spectrophotometer (AAS). Metal Speciation.

  10. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    Science.gov (United States)

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  11. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai, Tamil Nadu, India

    Science.gov (United States)

    Sridhar, S. G. D.; Sakthivel, A. M.; Sangunathan, U.; Balasubramanian, M.; Jenefer, S.; Mohamed Rafik, M.; Kanagaraj, G.

    2017-11-01

    The assessment of groundwater quality is an obligatory pre-requisite to developing countries like India with rural-based economy. Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai was analyzed to assess the acquisition process. The study area has rapid urbanization since few decades, which deteriorated the condition of the aquifer of the area. Totally 30 groundwater samples were collected during pre-monsoon (June 2014) and post-monsoon (January 2015) from the same aquifer to assess the heavy metal concentration in groundwater. Groundwater samples were analyzed for heavy metals such as Fe, Pb, Zn, Cu, Ni, Cr, Co and Mn using atomic absorption spectrophotometry (AAS). Correlation matrix revealed that there is no significant correlation between heavy metals and other parameters during pre-monsoon except EC with Cr but Fe and Zn have good positive correlation during post-monsoon.

  12. Comparative Study of Heavy Metals in Soil and Selected Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Afzal Shah

    2013-01-01

    Full Text Available Essential and nonessential heavy metals like iron (Fe, nickel (Ni, manganese (Mn, zinc (Zn, copper (Cu, cadmium (Cd, chromium (Cr, and lead (Pb were analyzed in four selected medicinal plants such as Capparis spinosa, Peganum harmala, Rhazya stricta, and Tamarix articulata by flame atomic absorption spectrophotometer (FAAS. These medicinal plants are extensively used as traditional medicine for treatment of various ailments by local physicians in the area from where these plants were collected. The concentration level of heavy metals in the selected plants was found in the decreasing order as Fe > Zn > Mn > Cu > Ni > Cr > Cd > Pb. The results revealed that the selected medicinal plants accumulate these elements at different concentrations. Monitoring such medicinal plants for heavy metals concentration is of great importance for physicians, health planners, health care professionals, and policymakers in protecting the public from the adverse effects of these heavy metals.

  13. Heavy Metal Concentrations in an Important Mangrove Species, Sonneratia caseolaris, in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Fazlin Nazli

    2010-01-01

    Full Text Available Mangrove forests in Peninsular Malaysia are increasingly threatened by heavy metal pollution. Due to their unique location, mangroves receive heavy metal pollution from upstream areas and the sea. However, little is known about the capacity of mangrove plants to take up and store heavy metals. In this study, the concentrations of cadmium (Cd, chromium (Cr, copper (Cu, lead (Pb and zinc (Zn in an important mangrove species, Sonneratia caseolaris, were measured. It was found that the total concentrations of Cd, Cr, Cu, Pb, and Zn in the sediments were below the general critical soil concentrations. However, the total concentrations of Cu and Pb in both the roots and leaves of Sonneratia caseolaris exceeded the general normal upper range in plants. This study has therefore shown the potential of Sonneratia caseolaris as a phytoremediation species for selected heavy metals in Malaysian mangrove ecosystem.

  14. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-27

    Sep 27, 2010 ... and the lowest concentration was in the muscle. These findings agree with the result of Manahan (1992) that lower concentrations of heavy metals occurred in gills and bones than in the intestines and muscles. The metal, iron was found to have the highest concen- tration in the tissues of C. nigrodigitatus, ...

  15. Assessment of suspended particulate matters and their heavy metal content in the ambient air of Mobarakeh city, Isfahan, Iran

    OpenAIRE

    Avazali Saririan Mobarakeh; Bibi Fatemeh Nabavi; Mahnaz Nikaeen; Mohammad Mehdi Amin; Akbar Hassanzadeh; Kazem Nadafi

    2014-01-01

    Aim: This study was carried out to investigate the quality of Mobarakeh ambient air in terms of suspended particles and heavy metals. Material and Methods: The current study was carried out in Mobarakeh city, Isfahan, Iran. Air sampling was performed in three sites for a 1-year period (in 2007). Measurement of total suspended particles (TSP) and heavy metals was achieved using high volume air sampler with fiberglass filter. The concentration of heavy metals, including Pb, Ni, Zn, Fe, and ...

  16. Ulva rigida’daki Ağır Metal (Pb, Cu, Zn ve Fe) Düzeyleri (Dardanel, Çanakkale)

    OpenAIRE

    Özden, Serkan; TUNÇER, Sezginer

    2015-01-01

    This study aims to determine the some heavy metal (Pb, Cu, Zn and Fe) concentrations in Ulva rigida at Çanakkale Strait (Dardanelles) to understand of the sea pollution. U. rigida has been collected from five different stations and in six seasonal periods between 2009 and 2013 years. Fe has the highest value heavy metal in this alge species. Mean seasonal results are arranged as: Fe > Zn > Cu > Pb. Heavy metal concentrations determined in U. rigida at five stations, respectively in G...

  17. Constraints in cropping heavy-metal contaminated fluvial sediments

    Energy Technology Data Exchange (ETDEWEB)

    Smilde, K.W.; van Driel, W.; van Luit, B.

    1982-11-01

    Growth and heavy-metal uptake of various food crops and grass cultivated on harbour dredge spoils were studied, and health aspects in consuming the marketable products were discussed. Vegetables (potato, carrot, radish, endive, lettuce) and grass (English ryegrass) performed well on dredge spoils, but small grains (wheat, barley) were affected by manganese deficiency. As compared with crops grown on uncontaminated reference soils, there was a net accumulation of As and heavy metals, especially so Cd, Zn and Cu, and a reduced uptake of Mn. Mainly because of the elevated Cd concentrations of the edible parts, exceeding the guideline of 0.1 mg/kg in fresh matter, the harbour dredge spoils investigated are considered unfit for the production of food crops, but may be used as grassland for dairy cattle. Highest Cd concentrations were attained in leafy vegetables and wheat (grain) and lowest in potato (tuber).

  18. Bioaccumulation of Some Heavy Metals in the Liver Flukes Fasciola hepatica and F. gigantica.

    Directory of Open Access Journals (Sweden)

    Wael Mohamed Lotfy

    2013-12-01

    Full Text Available Heavy metals tend to bioaccumulate in living organisms, and their accumulation has been a major concern. As mammals are known to excrete heavy metals via their bile, it seems to be very promising to analyse metal burdens of parasites that infect the biliary tree such as liver flukes of the genus Fasciola. The present study was carried out to evaluate F. hepatica and F. gigantica as bioaccumulators of heavy metals, and to estimate their use as sensitive markers of environmental pollution with heavy metals.A total of 36 slaughtered buffaloes (26 infected and 10 controls collected from the slaughter-house of Tanta City, Egypt were used. Samples of muscle and liver tissues were taken from each buffalo. A total of 44 adult Fasciola flukes were collected from the 26 infected buffaloes. Quantification of some heavy metals (Cd, Cr, Cu, Pb and Zn in samples was carried out using electrothermal atomic absorption spectrometry.Results revealed different concentrations of heavy metals in different host tissues. The adult flukes were classified into F. hepatica (n = 25 and F. gigantica (n = 19. The bio-concentration factor (BCF of Cr was significantly higher in F. hepatica (P = 0.0465 while BCF of Zn was significantly higher in F. gigantica (P = 0.0189. A comparative study between the two species as regards the BCF was never done before.The obtained results indicate the possibility of use of Fasciola flukes as markers of environmental pollution with some heavy metals.

  19. Heavy metal distribution of natural and reclaimed tidal riparian wetlands in south estuary, China.

    Science.gov (United States)

    Zhang, Honggang; Cui, Baoshan; Zhang, Kejiang

    2011-01-01

    We evaluated the distribution and accumulation of Cd, Cr, Cu, Ni, Pb and Zn in two plant species (Scirpus tripueter Linn. and Cyperus malaccensis Lam.), in water and soils sampled from the reclaimed tidal riparian wetlands (RTRWs) and the natural riparian wetlands (NRWs) in the Pearl River Estuary (PRE). The results showed that the concentrations of studied heavy metals in soils exceeded the eco-toxic threshold recommended by US EPA. The concentrations of Cd, Cr and Zn in plants may lead to toxic effects. The heavy metal concentrations were high in water and low in soils of RTRWs compared with that in the NRWs. The accumulation of heavy metals in the roots of plants was higher in NRWs than those in RTRWs while the opposite result was found for heavy metal accumulation in shoots. Based on the bioaccumulation and translocation factors, the plants in NRWs had a higher capacity to accumulate heavy metals while higher abilities to transport heavy metals from roots to shoots were observed in RTRWs. Heavy metal contaminations in RTRWs were dominated by anthropogenic sources from both side uplands and river water, whereas in NRWs, the metal accumulations were simultaneously affected by anthropogenic and natural factors

  20. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China.

    Science.gov (United States)

    Wang, Zhixiu; Yao, Lu; Liu, Guihua; Liu, Wenzhi

    2014-09-01

    Through retaining runoff and pollutants such as heavy metals from surrounding landscapes, ponds around a lake play an important role in mitigating the impacts of human activities on lake ecosystems. In order to determine the potential for heavy metal accumulation of submerged macrophytes, we investigated the concentrations of 10 heavy metals (i.e., As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in water, sediments, and submerged macrophytes collected from 37 ponds around the Dianchi Lake in China. Our results showed that both water and sediments of these ponds were polluted by Pb. Water and sediments heavy metal concentrations in ponds received urban and agricultural runoff were not significantly higher than those in ponds received forest runoff. This result indicates that a large portion of heavy metals in these ponds may originate from atmospheric deposition and weathering of background soils. Positive relationships were found among heavy metal concentrations in submerged macrophytes, probably due to the coaccumulation of heavy metals. For most heavy metals, no significant relationships were found between submerged macrophytes and their water and sediment environments. The maximum concentrations of Cr, Fe and Ni in Ceratophyllum demersum were 4242, 16,429 and 2662mgkg(-1), respectively. The result suggests that C. demersum is a good candidate species for removing heavy metals from polluted aquatic environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Changes of Heavy Metals in Pollutant Release and Transfer Registers (PRTRs) in Korea

    Science.gov (United States)

    Kwon, Yong-Su; Bae, Mi-Jung; Park, Young-Seuk

    2014-01-01

    Industrial effluent containing heavy metals discharged into streams may pose high toxicity risks to aquatic organisms and to human health. Therefore, it is important to understand how to change the amount of effluent with heavy metals discharged from industries into open aquatic ecosystems both for effective management of heavy metals and to foster sustainable ecosystems. This study was conducted to characterize the release of heavy metals from industries based on the Pollutant Release and Transfer Registers database in Korea from 1999 to 2010. From the database, we selected nine heavy metals (Pb, Cd, Mn, Sb, Cu, Zn, Cr, Sn, and Ni) and compared the differences in their effluent for different types of industries. The heavy metal effluents released into freshwater ecosystems were classified into four clusters through the learning process of the self-organizing map. Cluster 1 was characterized by the relatively higher effluent volumes of heavy metals, whereas cluster 4 had lower effluent volumes. The different patterns of the effluent volumes in heavy metals were closely associated with the differences of industrial types, and the changes of effluents of heavy metals reflected the changes in regulations and laws for aquatic ecosystem management. PMID:24577281

  2. Distribution of rare earth elements and heavy metals in the surficial sediments of the Himalayan river system

    National Research Council Canada - National Science Library

    Ramesh, R; Ramanathan, Al; Ramesh, S; Purvaja, R; Subramanian, V

    2000-01-01

    .... REEs and heavy metals (V, Pb, Cr, Co, Ag, Zn, Cd, Ni) were analyzed from the suspended sediments of Ganges and surficial sediments of Yamuna, Brahmaputra, Jamuna, Padma and Meghna, using VG Thermal Ionization Mass Spectrometer...

  3. Соntent of the heavy metal in the organism of brown frogs of the city zone of Kiev

    Directory of Open Access Journals (Sweden)

    V. I. Mozhanovskyi

    2007-08-01

    Full Text Available The content and distribution of heavy metals (Pb, Cd, Zn, Cu, Cr in organs and tissues of Rana temporaria and R. arvalis from biotopes near some reservoirs in the city zone of Kyiv are studied.

  4. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi

    2017-01-01

    This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.

  5. Stress induced by heavy metals on breeding of magpie (Pica pica) from central Iran.

    Science.gov (United States)

    Zarrintab, Mohammad; Mirzaei, Rouhollah

    2017-09-01

    The aim of this study was to address the impacts of some heavy metals (Cd, Pb, Zn, Ni and Cu) contamination on laying behavior, egg quality and breeding performance of Pica pica in north of Isfahan Province, Iran. During the breeding season of 2013, magpie's egg content and eggshell as well as nestling excrements and feathers were collected and total concentrations of heavy metals were measured by ICP-OES. Except for Zn in nestling feathers, the significantly higher concentrations of heavy metals were observed in nestling excrements than other samples. Also, comparison of heavy metals concentrations in egg content and eggshell showed that egg content had significantly higher concentrations of Zn and Pb, instead eggshell had significantly higher amount of Cu and Cd. Except for Cu, all heavy metals concentrations in eggshell had a negative relationship with morphological characters; and also concentration of Cu in egg content showed a significantly negative correlation with egg weight and volume. The most of heavy metals in nestling feathers and excrements had strongly positive correlations with each other. Also all heavy metals levels in eggshell and egg content had significantly positive correlations (except for Cu). Unhatched eggs had significantly lower weight but also greater levels of Zn, Cd, and Pb, than randomly collected eggs. No significant differences were observed for morphometric measurements of eggs between different sites, however, a decreased gradient was observed in egg volume toward the brick kiln site. Samples collected in brick kiln site accumulated higher concentrations of heavy metals than other sites. Although numbers of clutch size in brick kiln site were significantly higher than other sites, however, other breeding variable were lower than other sites. It can be suggested that ecosystem contamination may be caused to decrease the reproduction rate of Pica pica in brick kiln, probably by laying more poor quality eggs per clutch and nestling

  6. Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines.

    Science.gov (United States)

    Navarrete, Ian A; Gabiana, Christella C; Dumo, Joan Ruby E; Salmo, Severino G; Guzman, Maria Aileen Leah G; Valera, Nestor S; Espiritu, Emilyn Q

    2017-04-01

    Limited data have been published on the chemistry of urban soils and vegetation in the Philippines. The aim of this study is to quantify the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in soils and vegetation in the urban landscape of Quezon City, Philippines, and to elucidate the relationships between soil properties and the concentration of heavy metals pertaining to different land uses [i.e., protected forest (LM), park and wildlife area (PA), landfill (PL), urban poor residential and industrial areas (RA), and commercial areas (CA)]. Soil (0-15 cm) and senescent plant leaves were collected and were analyzed for soil properties and heavy metal concentrations. Results revealed that the concentrations of heavy metals (i.e., Cr, Ni, Cu, Zn, and Pb) in urban soils were higher in areas where anthropogenic activities or disturbance (PL, RA, and CA) were dominant as compared to the less disturbed areas (LM and PA). Organic matter and available phosphorous were strongly correlated with heavy metal concentrations, suggesting that heavy metal concentrations were primarily controlled by these soil properties. The average foliar heavy metal concentrations varied, ranging from 0 to 0.4 mg/kg for Cd, 0-10 mg/kg for Cr, 2-22 mg/kg for Cu, 0-5 mg/kg for Pb, and 11-250 mg/kg for Zn. The concentrations of Cd and Cr exceeded the critical threshold concentrations in some plants. Leaves of plants growing in PL (i.e., landfill) showed the highest levels of heavy metal contamination. Our results revealed that anthropogenic activities and disturbance caused by the rapid urbanization of the city are major contributors to the heavy metal accumulation and persistence in the soils in these areas.

  7. Removal of heavy metals from biowaste : modelling of heavy metal behaviour and development of removal technologies

    NARCIS (Netherlands)

    Veeken, A.H.M.

    1998-01-01

    In the Netherlands, recycling of solid organic waste streams as compost only becomes possible if the compost complies with the heavy metals standards of the BOOM decree. This dissertation focuses on the removal of heavy metals from biowaste, i.e. the source separated organic fraction of

  8. Dissolution of magnetite and redistribution of heavy metals in urban soils (model experiment)

    Science.gov (United States)

    Vodyanitskii, Yu. N.

    2013-06-01

    Technogenic magnetite in urban soils is extremely various in properties. Its particles strongly differ in magnetic susceptibility and degree of association with heavy metals. In the city of Perm, particles of magnetite enriched with different heavy metals are precipitated, which indicates different sources of technogenic magnetite within the limits of the city. The dissolution of magnetite and the effect of this process on the behavior of heavy metals have been simulated by the magnetochemical method. In strongly magnetic soils, the dissolution of highly magnetic macrocrystalline magnetite is accompanied by the dissolution of heavy metals: Cr, Mn, Ni, Zn, Pb, and Cu. The secondary precipitates of hydroxides of iron and heavy metals (predominantly Pb, Cu, and Ni) are formed relatively rarely, mainly in weakly magnetic soils, where slightly magnetic and dispersed magnetite is present. In cities, the dissolution of magnetite is favored by the added salts and organic acids released by plants.

  9. Physiological responses of Bituminaria bituminosa to heavy metals.

    Science.gov (United States)

    Martínez-Fernández, Domingo; Walker, David J; Romero-Espinar, Pascual; Flores, Pilar; del Río, José Antonio

    2011-12-15

    Two hydroponic experiments were performed to study the physiological responses to heavy metals (HMs) of two populations of Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae): one ("C2") from a site contaminated by HMs and one from a non-contaminated site ("LA"). In the first, we studied the effects of elevated concentrations of Zn (12 and 61 μM). Population C2 was more tolerant in terms of root and shoot growth at 61 μM Zn, relative to control plants (1 μM Zn). The similar tissue Zn levels of the two populations suggest that C2 is more tolerant of high tissue Zn. Of the parameters measured that could be related to Zn phytotoxicity (micro and macronutrients, root hydraulic activity, water-extractable Zn and organic acids), none could explain totally the superior tolerance of C2. In the second assay, the effects of Cd (4.4 μM), Cu (7.8 μM) and Zn (76 μM) on plant accumulation of the furanocoumarins (FCs) psoralen and angelicin, which function as feeding deterrents and photo-activated toxins, were assessed. For population C2, all three HMs increased the root FC concentrations, while Cd also raised shoot levels. For LA, Cu raised the root concentrations of both FCs. There was a relationship between plant stress, manifested as proline accumulation and disruption of plant water relations, and increased FC accumulation. Higher tissue levels of FCs likely provide greater protection against bacterial or fungal infection and herbivores. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun

    2017-10-01

    A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. [Soil Heavy Metal Spatial Distribution and Source Analysis Around an Aluminum Plant in Baotou].

    Science.gov (United States)

    Zhang, Lian-ke; Li, Hai-peng; Huang, Xue-min; Li, Yu-mei; Jiao, Kun-ling; Sun, Peng; Wang, Wei-da

    2016-03-15

    The soil with 500 m distance from an aluminum plant in Baotou was studied. A total of 64 soil samples were taken from the 0-5 cm, 5-20 cm, 20-40 cm and 40-60 cm layers, and the contents of Cu, Pb, Zn, Cr, Cd, Ni and Mn were tested, respectively. The correlation analysis and principal component analysis were used to identify the sources of these heavy metals in soils. The results suggested that the contents of Cu, Pb, Zn, Cr, Cd, Ni and Mn in study area were 32.9, 50.35, 69.92, 43.78, 0.54, 554.42 and 36.65 mg · kg⁻¹ respectively. All seven heavy metals tested were overweight compared with the background values of soil in Inner Mongolia. The spatial distribution of heavy metals showed that the horizontal distribution of heavy metals was obviously enriched in the southwest, while in vertical distribution, the heavy metal content (0 to 5 cm) was highest in the surface soil, and the heavy metal content decreased with increasing depth and tended to be stabilized when the depth was over 20 cm. Source analysis showed that the source of Cu, Zn, Cr and Mn might be influenced by the aluminum plant and the surrounding industrial activity. The source of Pb and Cd might be mainly related to road transportation. The source of Ni may be affected by agricultural activities and soil parent material together.

  12. Health Risk Assessment of Heavy Metal in Urban Surface Soil (Klang District, Malaysia).

    Science.gov (United States)

    Yuswir, Nurul Syazani; Praveena, Sarva Mangala; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Hashim, Zailina

    2015-07-01

    Urban environmental quality is vital to be investigated as the majority of people live in cities. However, given the continuous urbanization and industrialization in urban areas, heavy metals are continuously emitted into the terrestrial environment and pose a great threat to human. In this study, a total of 76 urban surface soil samples were collected in the Klang district (Malaysia), and analyzed for total and bioavailable heavy metal concentrations by inductively coupled plasma-optical emission spectrometry. Results showed that the concentrations of bioavailable heavy metals declined in the order of Al, Fe, Zn, Cu, Co, Cd, Pb, and Cr, and the concentrations of total heavy metals declined in the order of Fe, Al, Cu, Zn, Pb, Cr, Co, and Cd. Principal component analysis (PCA) showed that heavy metals could be grouped into three principal components, with PC1 containing Al and Fe, PC2 comprising Cd, Co, Cr, and Cu, and PC3 with only Zn. PCA results showed that PC1 may originate from natural sources, whereas PC2 and PC3 most likely originated from anthropogenic sources. Health risk assessment indicated that heavy metal contamination in the Klang district was below the acceptable threshold for carcinogenic and non-carcinogenic risks in adults, but above the acceptable threshold for carcinogenic and non-carcinogenic risks in children.

  13. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    Energy Technology Data Exchange (ETDEWEB)

    Jamari, Suhailly [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (UTHM) (Malaysia); Embong, Zaidi [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia (UTHM) and Research Center for Soft Soils (RECESS), Office of Research, Innovation, Commercialization and Consultancy Management - ORRIC, Universiti Tun Hussein (Malaysia); Bakar, Ismail [Research Center for Soft Soils (RECESS), Office of Research, Innovation, Commercialization and Consultancy Management (ORRIC), Universiti Tun Hussein Onn Malaysia -UTHM, 86400 Batu Pahat, Johor (Malaysia)

    2014-02-12

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzed using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.

  14. Heavy metals phyto-assessment in commonly grown vegetables: water spinach (I. aquatica) and okra (A. esculentus)

    OpenAIRE

    Ng, Chuck Chuan

    2016-01-01

    The growth response, metal tolerance and phytoaccumulation properties of water spinach (Ipomoea aquatica) and okra (Abelmoschus esculentus) were assessed under different contaminated spiked metals: control, 50 mg Pb/kg soil, 50 mg Zn/kg soil and 50 mg Cu/kg soil. The availability of Pb, Zn and Cu metals in both soil and plants were detected using flame atomic absorption spectrometry. The concentration and accumulation of heavy metals from soil to roots and shoots (edible parts) were evaluated...

  15. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  16. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    Directory of Open Access Journals (Sweden)

    Miroslava Marić

    2008-09-01

    Full Text Available Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil.

  17. Utilizing heavy metal-laden water hyacinth biomass in vermicomposting.

    Science.gov (United States)

    Tereshchenko, Natalya N; Akimova, Elena E; Pisarchuk, Anna D; Yunusova, Tatyana V; Minaeva, Oksana M

    2015-05-01

    We studied the efficiency of water treatment by water hyacinth (Eichhornia crassipes) from heavy metals (Zn, Cd, Pb, Cu), as well as a possibility of using water hyacinth biomass obtained during treatment for vermicomposting by Eisenia fetida and the vermicompost quality in a model experiment. The results showed that the concentration of heavy metals in the trials with water hyacinth decreased within 35 days. We introduced water hyacinth biomass to the organic substrate for vermicomposting, which promoted a significant weight gain of earthworms and growth in their number, as well as a 1.5- to 3-fold increase in coprolite production. In the trial with 40 % of Eichhornia biomass in the mixture, we observed a 26-fold increase in the number and a 16-fold weight gain of big mature individuals with clitellum; an increase in the number of small individuals 40 times and in the number of cocoons 140 times, as compared to the initial substrate. The utilization of water hyacinth biomass containing heavy metals in the mixture led to a 10-fold increase in the number of adult individuals and cocoons, which was higher than in control. We found out that adding 10 % of Eichhornia biomass to the initial mixture affected slightly the number of microorganisms and their species diversity in the vermicompost. Adding Eichhornia biomass with heavy metals reduced the total number of microorganisms and sharply diminished their species diversity. In all trials, adding water hyacinth in the mixture for vermicomposting had a positive impact on wheat biometric parameters in a 14-day laboratory experiment, even in the trial with heavy metals.

  18. Concentration of heavy metals in ash produced from Lithuanian forests

    Science.gov (United States)

    Baltrenaite, Edita; Pereira, Paulo; Butkus, Donatas; Úbeda, Xavier

    2010-05-01

    Wood ash contains important amounts of heavy metals. This quantity depends on burned specie, temperature of exposition and heat duration time. Due the high mineralization imposed by the temperatures, ash is used as lime product in agriculture and forests. Also, after a forest fire large quantities of ash are produced and distributed in soil surface. This mineralized organic matter can induce important environmental problems, including soil toxicity provoked by heavy metals leachates from ash. There is an extensive literature about heavy metals contents on ash in different species. However, it recently highlighted that the same species placed in different environments can respond diversely to same temperatures. This question is of major importance because temperature effects on severity can be a function of the plant communities instead of specie characteristics. These findings add a higher degree of complexity in the understanding of temperature effects on ash composition and consequent availability of heavy metals. The aim of this study is to compare the ash chemical heavy metal composition, Cobalt (Co), Chromium (Cr), Cooper (Cu), Silver (Ag), Lead (Pb), Nickel (Ni), Manganese (Mn) and Zinc (Zn), from Pinus sylvestris and Betula pendula, collected in key and representative areas of Lithuanian forests, located in southern, coastal and central part. Samples were collected from alive trees, taken to laboratory and air dried. Subsequently were crushed and submitted to muffle furnace at temperature of 550°C during two hours. The ash samples were digested and in a HNO3-HCl solution and then analysed with AAS. Comparisons between species and sites were performed with a Non-parametric one-way ANOVA‘s on rank transformed data followed by Tukey‘s HSD, significant at a pcommunication.

  19. Chelant extraction of heavy metals from contaminated soils.

    Science.gov (United States)

    Peters, R W

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  20. [Speciation and Risk Assessment of Heavy Metals in Surface Sediments from the Heavily Polluted Area of Xiaoqing River].

    Science.gov (United States)

    Huang, Ying; Li, Yong-xia; Gao, Fu-wei; Xu, Min-min; Sun, Bo; Wang, Ning; Yang, Jian

    2015-06-01

    Th concentrations of Cu, As, Pb, Zn, Cr, Cd, Ni in interstitial water were analyzed by ICP-MS from the heavily polluted area of Xiaoqing River. A modified BCR's sequential extraction procedure was used to investigate the fraction of the heavy metals in the surface sediments. The aquatic toxicity of heavy metals in interstitial water was assessed by US Water Quality Criteria (CCC, CMC). Based on the speciation of the metals in the surface sediments, the ecological risk of heavy metals was assessed with methods of risk assessment code (RAC) and potential ecological risk index. The results showed that: The tested heavy metals would not pose chronic toxicity for aquatic ecosystem. The contents of heavy metals (Cu, Pb, Zn, Cr, Cd, Ni) in the surface sediments were higher than the background values of the local soils, indicating enrichment of heavy metals. Cu, As and Ni were mainly composed with residual fractions, Pb and Cr were mainly constituted of residual and oxidizable fractions, and mass fractions of Zn and Cd existed mainly in acid soluble and reducible factions. The contents of bio-available fractions of Cd, Zn, Cr and Pb in the sediments were higher those of residual fractions, indicating high potential for secondary release. Based on calculation of RAC method, Cu, Pb, Cr and As posed extremely low to low risk to the environment. Accordingly, Ni was of low to medium risk, Cd was of medium to high risk, and Zn was of medium to extremely high risk to the environment. The potential ecological risk of heavy metals in the sediments was in the descending order of Cd > Zn > Ni > As > Cu > Cr > Pb. Cd had high to very high potential ecological risk comparing with the other heavy metals. The potential ecological risk indexes (RI) of the heavy metals in the sediments were in the range of 136.83-264.83, and posed medium to high potential ecological risks for Xiaoqing River.

  1. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  2. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China

    Directory of Open Access Journals (Sweden)

    Pingguo Yang

    2014-01-01

    Full Text Available The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and Cd, which indicates that Cu, Zn, and Cd are associated with and controlled by anthropic activities. The average value of heavy metal is lower than the second grade standard values of soil environmental quality standards in China. Single pollution index is lower than 1, and the Nemerow integrated pollution index is 0.305, which means that study area has not been polluted. The semivariograms of soil heavy metal single pollution index fitted spherical and exponential models. The variable ratio of single pollution index showed moderately spatial dependence. Heavy metal contents showed relative safety in the study area.

  3. Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery.

    Science.gov (United States)

    Naderi, Arman; Delavar, Mohammad Amir; Kaboudin, Babak; Askari, Mohammad Sadegh

    2017-05-01

    This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.

  4. Space-time quantitative source apportionment of soil heavy metal concentration increments.

    Science.gov (United States)

    Yang, Yong; Christakos, George; Guo, Mingwu; Xiao, Lu; Huang, Wei

    2017-04-01

    Assessing the space-time trends and detecting the sources of heavy metal accumulation in soils have important consequences in the prevention and treatment of soil heavy metal pollution. In this study, we collected soil samples in the eastern part of the Qingshan district, Wuhan city, Hubei Province, China, during the period 2010-2014. The Cd, Cu, Pb and Zn concentrations in soils exhibited a significant accumulation during 2010-2014. The spatiotemporal Kriging technique, based on a quantitative characterization of soil heavy metal concentration variations in terms of non-separable variogram models, was employed to estimate the spatiotemporal soil heavy metal distribution in the study region. Our findings showed that the Cd, Cu, and Zn concentrations have an obvious incremental tendency from the southwestern to the central part of the study region. However, the Pb concentrations exhibited an obvious tendency from the northern part to the central part of the region. Then, spatial overlay analysis was used to obtain absolute and relative concentration increments of adjacent 1- or 5-year periods during 2010-2014. The spatial distribution of soil heavy metal concentration increments showed that the larger increments occurred in the center of the study region. Lastly, the principal component analysis combined with the multiple linear regression method were employed to quantify the source apportionment of the soil heavy metal concentration increments in the region. Our results led to the conclusion that the sources of soil heavy metal concentration increments should be ascribed to industry, agriculture and traffic. In particular, 82.5% of soil heavy metal concentration increment during 2010-2014 was ascribed to industrial/agricultural activities sources. Using STK and SOA to obtain the spatial distribution of heavy metal concentration increments in soils. Using PCA-MLR to quantify the source apportionment of soil heavy metal concentration increments. Copyright © 2017

  5. Speciation of heavy metals in River Rhine

    NARCIS (Netherlands)

    Vega, F.A.; Weng, L.

    2013-01-01

    Chemical speciation of Zn, Cu, Ni, Cd and Pb in River Rhine was studied by measuring free ion concentration and distribution in nanoparticles, and by comparing the measurement with speciation modeling. Concentrations of free metal ions were determined in situ using Donnan Membrane Technique (DMT).

  6. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution.

    Science.gov (United States)

    Huang, Limin; Jin, Qiang; Tandon, Puja; Li, Aimin; Shan, Aidang; Du, Jiajie

    2018-04-01

    Investigating competitive adsorption on river/lake sediments is valuable for understanding the fate and transport of heavy metals. Most studies have studied the adsorption isotherms of competitive heavy metals, which mainly comparing the adsorption information on the same concentration. However, intrinsically, the concentration of each heavy metal on competitive adsorption sites is different, while the adsorption energy is identical. Thus, this paper introduced the site energy distribution theory to increase insight into the competitive adsorption of heavy metals (Cu, Cd and Zn). The site energy distributions of each metal with and without other coexisting heavy metals were obtained. It illustrated that site energy distributions provide much more information than adsorption isotherms through screening of the full energy range. The results showed the superior heavy metal in each site energy area and the influence of competitive metals on the site energy distribution of target heavy metal. Site energy distributions can further help in determining the competitive sites and ratios of coexisting metals. In particular, in the high-energy area, which has great environmental significance, the ratios of heavy metals in the competitive adsorption sites obtained for various competitive systems were as follows: slightly more than 3:1 (Cu-Cd), slightly less than 3:1 (Cu-Zn), slightly more than 1:1 (Cd-Zn), and nearly 7:2:2 (Cu-Cd-Zn). The results from this study are helpful to deeply understand competitive adsorption of heavy metals (Cu, Cd, Zn) on sediment. Therefore, this study was effective in presenting a general pattern for future reference in competitive adsorption studies on sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Heavy metal distribution in sediment profiles of Tuul River, Mongolia

    Science.gov (United States)

    Soyol-Erdene, T. O.; Lin, S.; Tuuguu, E.; Daichaa, D.; Ulziibat, B.; Enkh-Amgalan, T.; Hsieh, I. C.

    2016-12-01

    The distribution, enrichment, and accumulation of heavy metals in the sediments of Tuul River, Mongolia were investigated. Sediment core samples with depths of 4.0-49 cm from thirteen locations along the Tuul River were collected in the period from Sept. 2013 to Aug. 2014 and characterized for metal contents (e.g., Al, Fe, Cu, Zn, Pb, Ni, Cd, Hg and Cr), water content, and grain size. Results showed that metal average concentrations in the sample cores varied from 0.02 mg kg-1 for Hg (0.01 - 0.03 mg kg-1) to 481 mg kg-1 for Mn (277 - 623 mg kg-1). Metal concentrations at the downstream of the capital city were higher than those at other locations. All heavy metals studied, had average enrichment factors less than 3.0, but some sites had relatively higher values of enrichment factors up to 18 for Cu, 4.1 for Hg, 5.9 for Zn, and 25 for Cr, especially at middle depth ( 8-12 cm) of the cores. Importantly, severe pollution of mercury (Hg) was found at the downstream of the capital city which requires immediate remediation before this metal propagates into the food chain. Metal concentrations correlated to the physical-chemical properties of the sediments, which suggested the influence of industrial and municipal wastewaters discharged from the nearby cities. Results of this work would help to develop strategy to remediate of Tuul river sediment and to reduce the exposure of inhabitants to toxic substances.

  8. Pathogens and Heavy Metals Concentration in Green Leafy Vegetables

    Directory of Open Access Journals (Sweden)

    Abida Begum

    2010-01-01

    Full Text Available Presence of heavy metal and bacterial pathogen in randomly collected samples of green leafy from various stations of Bengaluru city was detected. Heavy metals (cadmium, zinc, copper, iron, chromium, nickel and lead were analyzed by tri-acid digestion method. The presence of heavy metals in general was in the order of Cd>Zn>Cu>Fe>Cr>Pb. Trace metal concentration in all green leafy vegetables of stations 1-5 were within permissible limit and it has been exceeded in station 6-10. This indicated high levels of soil contamination pose potential danger for the vegetables grown in the vicinity of Arakere lake, Bannerghatta road, Gottigere lake, Naganaikanakere, Bommasandra lake, Hulimavu lake, Kelaginakere and Amblipura lake. The total bacteria and coliforms were enumerated on TSA (Tryptone Soya Agar and VRBA (Violet Red Bile Agar media respectively. The total bacterial count in randomly collected samples of coriander ranged from 296 cfu/g to 8 cfu/g, in palak from 16 cfu/g to 0.9 cfu/g, whereas in case of cabbage was 104 cfu/g to 0.9 cfu/g which is an indication of improper pre-harvest and post harvest handling.

  9. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.

    Science.gov (United States)

    Basile, A; Sorbo, S; Conte, B; Cobianchi, R Castaldo; Trinchella, F; Capasso, C; Carginale, V

    2012-04-01

    A comprehensive understanding of the uptake, tolerance, and transport of heavy metals by plants will be essential for the development of phytoremediation technologies. In the present paper, we investigated accumulation, tissue and intracellular localization, and toxic effects of cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) in three aquatic macrophytes (the angiosperms Lemna minor and Elodea canadensis, and the moss Leptodictyum riparium). We also tested and compared their capacity to absorb heavy metal from water under laboratory conditions. Our data showed that all the three species examined could be considered good bioaccumulators for the heavy metals tested. L. riparium was the most resistant species and the most effective in accumulating Cu, Zn, and Pb, whereas L. minor was the most effective in accumulating Cd. Cd was the most toxic metal, followed by Pb, Cu, and Zn. At the ultrastructural level, sublethal concentrations of the heavy metals tested caused induced cell plasmolysis and alterations of the chloroplast arrangement. Heavy metal removal experiments revealed that the three macrophytes showed excellent performance in removing the selected metals from the solutions in which they are maintained, thus suggesting that they could be considered good candidates for wastewaters remediation purpose.

  10. Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances

    Directory of Open Access Journals (Sweden)

    Vaibhav Srivastava

    2017-10-01

    Full Text Available With modern day urbanization and industrialization, heavy metal (HM contamination has become a prime concern for today's society. The impacts of metal contamination on agriculture range from the agricultural soil to the produce in our food basket. The heavy metals (HMs and metalloids, including Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Hg, Pb, among others, can result in significant toxic impacts. The intensification of agricultural land use and changes in farming practices along with technological advancement have led to heavy metal pollution in soil. Metals/metalloids concentrations in the soil are increasing at alarming rate and affect plant growth, food safety, and soil microflora. The biological and geological reorganization of heavy metal depends chiefly on green plants and their metabolism. Metal toxicity has direct effects to flora that forms an integral component of ecosystems. Altered biochemical, physiological, and metabolic processes are found in plants growing in regions of high metal pollution. However, metals like Cu, Mn, Co, Zn, and Cr are required in trace amounts by plants for their metabolic activities. The present review aims to catalog major published works related to heavy metal contamination in modern day agriculture, and draw a possible road map toward future research in this domain.

  11. [Heavy Metals Pollution in Topsoil from Dagang Industry Area and Its Ecological Risk Assessment].

    Science.gov (United States)

    Zhang, Qian; Chen, Zong-juan; Peng, Chang-sheng; Li, Fa-sheng; Gu, Qing-bao

    2015-11-01

    Based on previous studies and field investigation of Dagang industry area in Tianjin, a total of 128 topsoil samples were collected, and contents of 10 heavy metals (As, Cd, Cr, Co, Cu, Pb, Ni, V, Zn and Hg) were determined. The geoaccumulation index and geostatistics were applied to examine the degree of contamination and spatial distribution of heavy metals in topsoil. The assessment on ecological risk of heavy metals was carried out using Hakanson's method, and the main resources of the heavy metals were analyzed as well. It was found that As, Cd and Co had the highest proportions exceeding Tianjin background value, which were 100%, 97.66% and 96.88%, respectively; the heavy-metal content increased to some extent comparing with that in 2004, and the pollutions of As and Cd were the worst, and other metals were at moderate pollution level or below. The ecological risks of heavy metals were different in topsoil with different land use types, the farmland soil in the southwest as well as soils adjacent to the industrial land were at relatively high potential ecological risk level, and the integrated ecological risk index reached up to 1 437.37. Analysis of correlation and principal component showed that traffic and transportation as well as agricultural activities might be the main resources of heavy metals in the area, besides, the industrial activities in the region might also affect the accumulation of heavy metals.

  12. Comparative study of heavy metals in some selected medicinal plants

    Directory of Open Access Journals (Sweden)

    Paul Chigbogu MADUBUIKE

    2017-12-01

    Full Text Available Essential and nonessential heavy metals like Pb, Co, Fe, Zn, Cu, Cd, Cr, Ca, Mg, and Mn were analyzed in four selected medicinal plants such Asam paya, Okoubaka aubrevellei, Clove and Vitex doniana leaves by atomic absorption spectrophotometer (AAS. The results showed differences in metal concentrations in the investigated medicinal plants. The concentration of Pb ranged from 0.05 -0.29mg/kg on dry wet basis, where as that of Co ranged from 0.04-0.05mg/kg. Fe concentration ranged from 0.11-0.52mg/kg, Zn from 0.03-0.48mg/kg, Cu from 0.32-0.98mg/kg, Cd from 0.30-0.46mg/kg, Cr from 0.02-0.09mg/kg, Ca from 0.21-0.81mg/kg, Mg from 0.12-1.40mg/kg, while Mn from 0.02-0.95 mg/kg respectively. The results indicated that all the investigated heavy metals were below the WHO permissible limit except in Okoubaka sample which showed higher concentration of Mg that is above permissible limit of WHO.

  13. Heavy metal hazards of Nigerian herbal remedies

    Energy Technology Data Exchange (ETDEWEB)

    Obi, E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria); Akunyili, Dora N. [National Agency of Food and Drug Administration and Control (NAFDAC), Lagos (Nigeria); Ekpo, B. [Department of Biochemistry, College of Medical Sciences, Abia State University, Uturu (Nigeria); Orisakwe, Orish E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria)]. E-mail: eorish@yahoo.com

    2006-10-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO{sub 3}.The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies.

  14. Heavy metals in bottom sediments of Lake Umbozero in Murmansk Region, Russia

    DEFF Research Database (Denmark)

    Jernström, Jussi; Lehto, J.; Dauvalter, A.

    2010-01-01

    Sediment cores collected from different locations of Lake Umbozero were studied with respect to concentration and mobility of trace and heavy metals Co, Cu, Fe, Mn, Ni, Pb, U, and Zn. Lake Umbozero is the second largest lake in the Murmansk Region and subjected to contamination by air-borne emiss......Sediment cores collected from different locations of Lake Umbozero were studied with respect to concentration and mobility of trace and heavy metals Co, Cu, Fe, Mn, Ni, Pb, U, and Zn. Lake Umbozero is the second largest lake in the Murmansk Region and subjected to contamination by air...

  15. [Determination of heavy metal by AAS in railway rock-cut slope soil].

    Science.gov (United States)

    Xiao, Yu-Hong; Ai, Ying-Wei; Chen, Li-Ping; Li, Wei; Chen, Zhao-Qiong; Fang, Chen; Li, De-Hua

    2012-09-01

    Heavy metal contents in railway rock-cut slope soil have directly influenced ecosystem on rock-cut slope and eco-envi- ronment safety of farmland nearby. In the study heavy metal Pb, Cd, Zn, Cu and Mn was determined by AAS in railway rock-cut slope and control soil samples on Cheng-Da Railway crossing purple soil in Sichuan province. The results showed that Pb and Mn were significantly higher in rock-cut soil than in control soil, that is 29.7%-35.4%, while Cd, Zn and Cu were similar in both soils.

  16. EXAMINATION OF THE HEAVY METAL UPTAKE OF CARROT (DAUCUS CAROTA IN DIFFERENT SOIL TYPES

    Directory of Open Access Journals (Sweden)

    GYÖRGY SZABÓ

    2009-12-01

    Full Text Available In this paper the heavy metal uptake of carrot (Daucus carota is studied in sample areas with different soil types. Our aim is to examine how the different soil types possessing different characteristics affect the heavy metal uptake and distribution in the plant. Correlation analyses were carried out in order to determine which of the total heavy metal concentrations and soil characteristics(pH, CaCO3-content, humus content, granulometric composition play the most important role in the uptake of the Co, Cu, Fe, Ni, Mn, Zn and in the metal distribution in the examined plant. Soil and plant samples were collected from 5 different Hungarian areas in July, 2008. In the cases of soils with different soil characteristics, the examined plants are supposed to give varied physiological responses.During the examination we proved that the genetic type and the heavy metal content of the soil do not significantly affect the heavy metal uptake of carrot. The granulometric composition of the soil has the most considerable effect but this factor only affects the rate of the metal uptake in 50% of the examined heavy metals (Ni, Mn, Zn.

  17. [Heavy metals in environmental media around drinking water conservation area of Shanghai].

    Science.gov (United States)

    Shi, Gui-Tao; Chen, Zhen-Lou; Zhang, Cui; Bi, Chun-Juan; Cheng, Chen; Teng, Ji-Yan; Shen, Jun; Wang, Dong-Qi; Xu, Shi-Yuan

    2008-07-01

    The levels of heavy metals in Shanghai drinking water conservation area were determined, and the spatial distributions and main sources of heavy metals were investigated. Moreover, the ecological risk assessment of heavy metals was conducted. Some conclusions can be drawn as follows: (1) The average concentrations of Cd, Hg, Pb, Cu, Zn, Ni, Cr and As in road dust were 0.80, 0.23, 148.45, 127.52, 380.57, 63.17, 250.38 and 10.37 mg x kg(-1) respectively. In terms of the pollution level, the values of soils were relatively lower, with the mean contents of 0.16 (Cd), 0.33 (Hg), 30.14 (Pb), 30.66 (Cu), 103.79 (Zn), 24.04 (Ni), 65.75 (Cr) and 6.31 mg x kg(-1) (As) severally; meanwhile the average levels of heavy metals in vegetables were 0.010 (Cd), 0.016 (Hg), 0.36 (Pb), 12.80 (Cu), 61.69 (Zn), 2.04 (Ni), 2.41 (Cr) and 0.039 mg x kg(-1) (As) respectively. (2) Semivariogram and multivariate analysis indicated that heavy metals pollution of soils was induced by anthropogenic activities mostly, and the pollutants produced by traffic were the major source of heavy metals in road dust. (3) The order for heavy metal enrichment coefficients of vegetables was as following: Zn (0.589) > Cu (0.412) > 0.102 (Ni) > Cd (0.059) > Cr (0.061) > Hg (0.056) > Pb (0.012) > As (0.007), and the results indicated that Cd and Zn in vegetables were mainly from the soils, and the other metals were probably from the pollutants in the atmosphere. (4) Sediments in drinking water conservation area were probably derived from soils around; however, there was no significant relationship between heavy metals contents of them. (5) The results of ecological risk assessment of heavy metals showed that heavy metals in soils were in no-warning to warning situation, and warning to light-warning situation for road dust and vegetables. The fuzzy synthesis judgment for all the environmental media around drinking water conservation area was warning to light-warning.

  18. Monitoring of heavy metal load - by mosses or rain water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ruoho-Airola, T. [Finnish Meteorological Inst., Helsinki (Finland); Maekelae, K. [National Board of Waters and the Environment, Helsinki (Finland)

    1995-12-31

    The deposition of heavy metals is usually determined from precipitation chemistry but the moss technique has been increasingly used, particularly in the Nordic countries. Some international monitoring programmes, e.g. UN/ECE Integrated Monitoring, give them as alternative methods. However, their comparability has not been sufficiently determined. This study compares the two monitoring methods for Pb, Cd, Cu and Zn, which have different sources. The metal industry is an important source of Pb and Cd emissions. Long- range transport as well as traffic and local emissions are also important sources for Pb. The use of fertilizers and fossil fuels also result in Cd emissions. Cu and Zn are emitted from metal industries and local sources. Unlike Pb and Cd, Cu and Zn are essential elements for living organisms. Cu and Zn are needed in many enzymes and Zn in proteins. Mosses are thought to take all their nutrients from the air. The deposition of heavy metals is also effectively retained by mosses and may be used to indicate levels of heavy metal deposition. In northern countries the mosses are isolated from air (and therefore also from deposition) by snow in winter. In this study both the bulk deposition of the whole year (later `total deposition`) and the bulk deposition of the snow-free period (later `bare ground deposition`) are compared to the metal concentrations in mosses. (author)

  19. Heavy metal contamination in the seaweeds of the Venice lagoon.

    Science.gov (United States)

    Caliceti, M; Argese, E; Sfriso, A; Pavoni, B

    2002-04-01

    The concentrations of heavy metals (Fe, Zn, Cu, Cd, Ni, Pb, Cr, As) were determined in seven seaweeds of environmental and commercial relevance (Ulva rigida C. Ag., Gracilaria gracilis (Stackhouse) Steentoft, L. Irvine and Farnham, Porphyra leucosticta Thuret, Grateloupia doryphora (Montagne) Howe., Undaria pinnatifida (Harv.) Suringar, Fucus virsoides J. Agardh, Cystoseira barbata (Good. et Wood.) Ag.) collected in four sampling sites in the lagoon of Venice, in spring and autumn 1999. Metals were extracted using hot concentrated acids in a Microwave Digestion Rotor and analysed by absorption spectrophotometry using a flame mode for Fe and Zn and a graphite furnace for Pb, Cr, Cd, Cu, Ni and As. High contamination levels, especially for Pb, were detected in Ulva and to a lesser extent in Gracilaria. Brown seaweeds, especially Cystoseira was highly contaminated by As. The least contaminated genera with all metals except As were Porphyra and Undaria. A concentration decrease for Zn and Cd was observed from the inner parts of the central lagoon, close to the industrial district, towards the lagoon openings to the sea.

  20. Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure.

    Science.gov (United States)

    Sauge-Merle, Sandrine; Lecomte-Pradines, Catherine; Carrier, Patrick; Cuiné, Stéphan; Dubow, Michael

    2012-08-01

    Metallothioneins (MTs) are ubiquitous metal-binding, cysteine-rich, small proteins known to provide protection against toxic heavy metals such as cadmium. In an attempt to increase the ability of bacterial cells to accumulate heavy metals, sheep MTII was produced in fusion with the maltose binding protein (MBP) and localized to the cytoplasmic or periplasmic compartments of Escherichia coli. For all metals tested, higher levels of bioaccumulation were measured with strains over-expressing MBP-MT in comparison with control strains. A marked bioaccumulation of Cd, As, Hg and Zn was observed in the strain over-expressing MBP-MT in the cytoplasm, whereas Cu was accumulated to higher levels when MBP-MT was over-expressed in the periplasm. Metal export systems may also play a role in this bioaccumulation. To illustrate this, we over-expressed MBP-MT in the cytoplasm of two mutant strains of E. coli affected in metal export. The first, deficient in the transporter ZntA described to export numerous divalent metal ions, showed increasing quantities of Zn, Cd, Hg and Pb being bioaccumulated. The second, strain LF20012, deficient in As export, showed that As was bioaccumulated in the form of arsenite. Furthermore, high quantities of accumulated metals, chelated by MBP-MT in the cytoplasm, conferred greater metal resistance levels to the cells in the presence of added toxic metals, such as Cd or Hg, while other metals showed toxic effects when the export systems were deficient. The strain over-expressing MBP-MT in the cytoplasm, in combination, with disruption of metal export systems, could be used to develop strategies for bioremediation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Heavy Metals Pollution and Pb Isotopic Signatures in Surface Sediments Collected from Bohai Bay, North China

    Science.gov (United States)

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as “the unpolluted” level, while Ni, Cu, and Pb were ranked as “unpolluted to moderately polluted” level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for 206Pb/207Pb and from 2.456 to 2.482 for 208Pb/207Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources. PMID:24982926

  2. Routine soil testing to monitor heavy metals and boron

    Directory of Open Access Journals (Sweden)

    Abreu Cleide Aparecida de

    2005-01-01

    Full Text Available Microelements are an important issue in agriculture, due to their need as micronutrients for plants and also to the possibility of the build-up of toxic levels for plants and animals. Five micronutrients (B, Cu, Fe, Mn, and Zn are routinely determined in soil analysis for advisory purposes. Other four elements (Cd, Cr, Pb, and Ni are considered environmentally important heavy metals in farmland soils. Thus high contents of these metals in cropland might go eventually unnoticed. In this paper we present an approach that can be used to monitor the contents of the nine elements in farmland soils using advisory soil testing. A total of 13,416 soil samples from 21 Brazilian states, 58% of them from the state of São Paulo, sent by farmers were analyzed. Boron was determined by hot water extraction and the other metals were determined by DTPA (pH 7.3 extraction. The ranges of content, given in mg dm-3 soil, were the following: B, 0.01-10.6; Cu, 0.1-56.2; Fe, 0.5-476; Mn, 1-325; Zn, 1-453; Cd, 0.00-3.43, Cr, 0.00-42.9; Ni, 0.00-65.1; Pb, 0.00-63.9. The respective average values for São Paulo were: B-0.32; Cu-2.5; Fe-36; Mn-16; Zn-4.8; Cd-0.02; Cr-0.03; Ni-0.18; Pb-0.85. For other states the results are in the same ranges. The higher values are indicative of anthropogenic inputs, either due to excess application of fertilizers or to industrial or mining activities. The conclusion is that massive chemical analysis of farmland soil samples could serve as a database for indicating potential micronutrient deficiency and excesses or heavy metal buil-up in croplands, allowing preventive actions to be taken.

  3. Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China.

    Science.gov (United States)

    Wang, Zuwei; Yu, Xiaoman; Geng, Mingshuo; Wang, Zilu; Wang, Qianqian; Zeng, Xiangfeng

    2017-05-01

    Heavy metal concentrations in soil, wheat, and scalp hair exposed to Beijing sewage discharge channel sewage irrigation area (BSIA) in Tianjin were studied to evaluate the influence of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, with 55.2 and 8.62% of soil samples accumulating Cd and Zn, respectively, at concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain from BSIA were higher than these from the clean water irrigation area by 63.2% for Cd, 3.8% for Cu, 100% for Pb, 6.6% for Zn, and 326.7% for Cr. The heavy metal bioaccumulation factor (BAF) of wheat/soil in BSIA showed the following order: Zn > Cd > Cu > Pb > Cr. Interestingly, these accumulation of heavy metals in soil after sewage irrigation could increase the migration ability of heavy metals (particularly Zn and Cd) from soil to wheat. Mean concentrations of heavy metals in the hair of residents followed the decreasing trend of Zn > Cu > Pb > Cr > Cd, which were higher than the control area by 110.0% for Cd, 20.0% for Cu, 55.9% for Zn, 36.6% for Pb, and 64.6% for Cr. Concentrations of heavy metals in male human hair in BSIA were higher than those of females. And the concentrations of heavy metals except for Pb in human hair increased with their increasing ages. The heavy metal BAF values of wheat/soil in BSIA showed the trend of Zn (98.0057) > Pb (7.0162) > Cr (5.5788) > Cu (5.4853) > Cd (3.5584); heavy metals had obvious biological amplification from wheat to human hair. These results indicated that local population health was potentially exposed to the heavy metal risk via wheat consumption.

  4. Detection of Genetic Variations in Marine Algae Ulva lactuca (Chlorophyta Induced by Heavy Metal Pollutants

    Directory of Open Access Journals (Sweden)

    Basel Saleh

    2015-09-01

    Full Text Available Ulva lactuca (Chlorophyta green macroalgae has been successfully used as bioindicator for heavy metals pollution in ecosystems. Random amplified microsatellite polymorphism (RAMP marker was employed to investigate genetic DNA pattern variability in green U. lactuca 5 days after exposure to Cu, Pb, Cd and Zn heavy metals stress. Genomic template stability (GTS% value was employed as a qualitative DNA changes measurement based on RAMP technique. In this respect, estimated GTS% value was recorded to be 65.215, 64.630, 59.835 and 59.250% for Pb, Cu, Cd and Zn treatment, respectively. Moreover, genetic similarity (GS induced by the above heavy metals was also evaluated to measure genetic distance between algae treated plants and their respective control. In this respect, estimated GS values generated by RAMP marker ranged between 0.576 (between control and Zn treatment - 0.969 (for both case; between Pb and Cu and between Cd and Zn treatment with an average of 0.842. Based upon data presented herein based on variant bands number (VB, GTS% and GS values; the present study could be suggested that Pb and Cu followed similar tendency at genomic DNA changes. Similar finding was also observed with Cd and Zn ions. Thereby, RAMP marker successfully highlighted DNA change patterns induced by heavy metals stress.

  5. Structural and functional studies of heavy metal ATPases

    DEFF Research Database (Denmark)

    Sitsel, Oleg

    2015-01-01

    of SsZntA using a broad range of techniques reveals an array of unique Zn2+-ATPase features relating to ion uptake, binding, discharge and countertransport. These results are then used to comprehensively compare Zn2+-ATPases with their Cu+-transporting counterparts, showing how the two have managed...... to handle heavy metal ions. LpCopA is then compared to its two human homologues ATP7A and ATP7B, which cause the severe Menkes and Wilson diseases when malfunctioning. The differences between the three proteins are described and disease-causing mutations in the human proteins are analyzed. The crystal...... to adapt to transport of distinct ion types while still maintaining all the major features of the P1B-ATPase subclass....

  6. Heavy metals effects on proteolytic system in sunflower leaves.

    Science.gov (United States)

    Pena, Liliana B; Zawoznik, Myriam S; Tomaro, María L; Gallego, Susana M

    2008-06-01

    Plant proteolytic system includes proteases, mainly localized inside the organelles, and the ubiquitin-proteasome pathway in both, the cytoplasm and the nucleus. It was recently demonstrated that under severe Cd stress sunflower (Helianthus annuus L.) proteasome activity is reduced and this results in accumulation of oxidized proteins. In order to test if under other heavy metal stresses sunflower proteolytic system undergoes similar changes, an hydroponic experiment was carried out. Ten days old sunflower plants were transferred to hydroponic culture solutions devoid (control) or containing 100 microM of AlCl(3), CoCl(2), CuCl(2), CrCl(3), HgCl(2), NiCl(2), PbCl(2) or ZnCl(2) and analyzed for protein oxidative damage and proteolytic activities. After 4 days of metal treatment, only Co(2+), Cu(2+), Hg(2+), and Ni(2+) were found to increase carbonyl groups content. Except for Al(3+) and Zn(2+), all metals tested significantly reduced all proteasome activities (chymotrypsin-like, trypsin-like and PGPH) and acid and neutral proteases activities. The effect on basic proteases was more variable. Abundance of 20S protein after metal treatments was similar to that obtained for control samples. Co(2+), Cu(2+), Hg(2+), Ni(2+), Cr(3+), and Pb(2+) induced accumulation of ubiquitin conjugated proteins. It is concluded that heavy metal effects on proteolytic system cannot be generalized; however, impairment of proteasome functionality and decreased proteases activities seem to be a common feature involved in metal toxicity to plants.

  7. Transfer of heavy metals through terrestrial food webs: a review.

    Science.gov (United States)

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  8. Mineral phases containing heavy metals in the suspended dust from Budapest, Hungary

    Directory of Open Access Journals (Sweden)

    Sipos P.

    2013-04-01

    Full Text Available The mineralogy, geochemistry and magnetic properties of total suspended particulate (TSP matter in Budapest, Hungary were studied to identify their heavy metal-bearing mineral phases. Amorphous organic matter, magnetite, salts as well as mineral phases characteristic of the surrounding geology are the main components of the TSP. They show significant enrichment in several heavy metals, such as Zn (up to 19 046 mg/kg, Pb (up to 3597 mg/kg, Cu (up to 699 mg/kg and Mo (up to 53 mg/kg. The most frequent heavy metal-bearing mineral phases are spherular or xenomorphic magnetite particles containing 2-3 wt% Pb and Zn. They often form aggregates and are closely associated with soot and/or clay minerals. The size of these particles is rarely below 30 nm. Cu and Mo could be associated to magnetite too. Clay minerals and mica particles may also contain significant amount of Zn (up to 5wt%. Additionally, ZnO and ZnCO3 particles were found in the sample with highest Zn content and our data suggest the potential association of Pb and carbonates, as well. Magnetite particles are resistant to weathering releasing its toxic components slowly to the environment, while layer silicates (and carbonates may be the potential source of mobile toxic metals in the TSP.

  9. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  10. Heavy metals in sea cucumber juveniles from coastal areas of Bohai and Yellow seas, north China.

    Science.gov (United States)

    Jiang, Haifeng; Tang, Shizhan; Qin, Dongli; Chen, Zhongxiang; Wang, Jinlong; Bai, Shuyan; Mou, Zhenbo

    2015-05-01

    The study was undertaken to assess the contents of heavy metals (Cu, Zn, Cr, Pb, Cd, As and Hg) in sea cucumber (Apostichopus japonicus) juveniles from coastal areas of Bohai and Yellow seas in northern China. Sea cucumber juveniles were collected from twenty commercial hatcheries distributed in five coastal cities. The mean concentrations obtained for heavy metals in mg/kg were as follows: Cu (0.179), Zn (2.634), Cr (0.108), Pb (0.065), Cd (0.161), As (0.372), Hg (0.034). All the mean concentrations were below the maximum residual limits set by Chinese legislation, but As in 10 % samples exceeded the safety threshold. Significant differences in contents of Cr, Pb and Hg were found among the five investigated areas. Overall, the heavy metal levels in sea cucumber juveniles were relatively low and more attention should be paid to toxic metals Pb, Cd, As and Hg in future routine monitoring program.

  11. Variation in oxidative stress indices of two green seaweeds growing under different heavy metal stresses.

    Science.gov (United States)

    Ismail, Gehan A; Ismail, Mona M

    2017-02-01

    Concentrations of nine heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined in the green seaweed species Cladophora glomerata and Ulva compressa collected from El-Mex and Sidi Kirayr locations. The heavy metal concentrations in algal tissues were in direct correlation with their soluble concentrations in seawater with the descending order: FePbseaweeds from El-Mex bay. Additionally, the estimated metal pollution index and pollution load index for the tested algae and seawaters ensured their ability as metal pollution bioindicators for monitoring marine environment quality and as biomarkers for oxidative damage assessment.

  12. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.

    Science.gov (United States)

    Martínez-Alcalá, I; Walker, D J; Bernal, M P

    2010-05-01

    To understand better the suitability of white lupin (Lupinus albus L.) for phytoremediation of heavy metal-contaminated soils, the effect of its roots on chemical and biological properties of the rhizosphere affecting soil metal fractionation was studied. Plants were cultivated in two similar soils, with high levels of Zn, Cd, Cu and Pb but differing pH values (4.2 and 6.8). In the rhizosphere of both soils, its roots induced increases in water-soluble carbon, which influenced the fractionation of heavy metals and ultimately their uptake by plant roots. In the rhizosphere of the acid soil, the concentrations of 0.1M CaCl(2)-extractable Mn, Zn and Cu were lower than in the bulk soil, possibly due to their increased retention on Fe (III) hydroxides/oxyhydroxides, while in the neutral soil only the Zn concentration was lower. Higher concentrations of heavy metals were found in plants growing on the acid soil, reflecting their greater availability in this soil. The restricted transfer of heavy metals to the shoot confirms the potential role of this species in the initial phytoimmobilisation of heavy metals, particularly in neutral-alkaline soils. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  13. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    Science.gov (United States)

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  14. Heavy metal mining using microbes.

    Science.gov (United States)

    Rawlings, Douglas E

    2002-01-01

    The use of acidiphilic, chemolithotrophic iron- and sulfur-oxidizing microbes in processes to recover metals from certain types of copper, uranium, and gold-bearing minerals or mineral concentrates is now well established. During these processes insoluble metal sulfides are oxidized to soluble metal sulfates. Mineral decomposition is believed to be mostly due to chemical attack by ferric iron, with the main role of the microorganisms being to reoxidize the resultant ferrous iron back to ferric iron. Currently operating industrial biomining processes have used bacteria that grow optimally from ambient to 50 degrees C, but thermophilic microbes have been isolated that have the potential to enable mineral biooxidation to be carried out at temperatures of 80 degrees C or higher. The development of higher-temperature processes will extend the variety of minerals that can be commercially processed.

  15. Pyrolized biochar for heavy metal adsorption

    Science.gov (United States)

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  16. Heavy metal detoxification in eukaryotic microalgae.

    Science.gov (United States)

    Perales-Vela, Hugo Virgilio; Peña-Castro, Julián Mario; Cañizares-Villanueva, Rosa Olivia

    2006-06-01

    Microalgae are aquatic organisms possessing molecular mechanisms that allow them to discriminate non-essential heavy metals from those essential ones for their growth. The different detoxification processes executed by algae are reviewed with special emphasis on those involving the peptides metallothioneins, mainly the post transcriptionally synthesized class III metallothioneins or phytochelatins. Also, the features that make microalgae suitable organisms technologies specially to treat water that is heavily polluted with metals is discussed.

  17. Data mining using multivariate statistical analysis: The case of heavy metals in sediments of the Msimbazi Creek mangrove wetland

    Directory of Open Access Journals (Sweden)

    A. Mrutu

    2013-12-01

    Full Text Available Mangrove wetlands are important biological systems that usually filter out organic and inorganic contaminants from the wastewaters before entering the ocean. Our previous work showed that sediments of the Msimbazi Creek wetland are contaminated with heavy metals and the amounts decreased with increasing depth. However, the hidden relationships between the heavy metals and clay particles were not fully understood based on the numerical data. Therefore this work used the data from literature and the Statistical Package for Social Sciences (SPSS software to study how significant the relationships are and predict the sources of heavy metals and clays. The results showed that Cd is the only metal that showed insignificant correlations with other heavy metals (with Pb and Zn while the rest of heavy metals exhibited significant positive correlation (except Pb vs. Ni. Cluster analysis classified the heavy metals based on the concentration and the first 50 cm cores (0-50 cm had higher heavy metals and % clay than the second 50 cm cores (51-100 cm. The results from the factor analysis suggests that Pb, Cd, Ni, and clay owe their source mostly from anthropogenic activities while Fe, Co, Cr, Zn and sand come from both anthropogenic and natural sources. These results support our previous suggestions that heavy metals and clays found in this wetland have mostly anthropogenic origin. However, we recommend isotopic tracing studies in order to accurately identify the origins of the heavy metals and clays in sediments of Msimbazi Creek mangrove wetland.

  18. Soil microbial-legume interacts in heavy metal contaminated at Palmerton, PA

    Energy Technology Data Exchange (ETDEWEB)

    Angle, J.S.; Spiro, M.A.; Heggo, A.M.; El-Kherbawy, M.; Chaney, R.L.

    1988-01-01

    The interaction between soil pH, vesicular-arbuscular mycorrhiza (VAM) and heavy metal uptake into soybeans (Glycine max) and alfalfa (Medicago sativa) was studied in the heavy metal stressed soils of Palmerton, PA. The dry weight of soybeans grown in soil with an available Zn concentration of 132 ug/g soil was 2.0 g/plant as compared to 0.13 g/plant for soybeans grown in soil containing 862 ug Zn/g soil. In the same soils, the foliar uptake of Zn was increased from 186 to 1020 ug Zn/g tissue. When VAM were inoculated into the soil with a high Zn content, the foliar Zn content was reduced from 968 to 780 ug/g tissue. Similar observations were noted for Cd and Mn. When, however, the soil metal concentration was low, VAM significantly increased heavy metal uptake. Vesicular-arbuscular mycorrhiza increased Zn uptake from 201 to 251 ug/g. Similar results were observed when the pH of a single soil was altered. Metal uptake, as affected by VAM, was generally decreased from soils with a low pH (6.0). At a soil pH of 6.7 and 7.2, VAM increased foliar heavy metal uptake. Both VAM colonization and plant growth were also increased by increasing soil pH. At a pH of 6.0, VAM colonization and plant growth were 15.5% and 0.37 g/10 alfalfa plants, respectively. At a pH of 7.2, VAM colonization was rated at 32.0% while plant growth of 0.76 g/10 plants was noted.

  19. Microwave enhanced stabilization of heavy metal sludge.

    Science.gov (United States)

    Hsieh, Ching-Hong; Lo, Shang-Lien; Chiueh, Pei-Te; Kuan, Wen-Hui; Chen, Ching-Lung

    2007-01-02

    A microwave process can be utilized to stabilize the copper ions in heavy metal sludge. The effects of microwave processing on stabilization of heavy metal sludge were studied as a function of additive, power, process time, reaction atmosphere, cooling gas, organic substance, and temperature. Copper leach resistance increased with addition of aluminum metal powder, with increased microwave power, increased processing time, and using a gaseous environment of nitrogen for processing and air for cooling [N2/air]. The organic in the sludge affected stabilization, whether or not the organic smoldered. During heating in conventional ovens, exothermic oxidation of the organic resulted in sludge temperatures of about 500 degrees C for oven control temperatures of 200-500 degrees C. After microwave heating dried the sludge, the sludge temperature rose to 500 degrees C. The reaction between copper ions and metal aluminum in the dried sludge should be regarded as a solid phase reaction. Adding aluminum metal powder and reaction temperature were the key parameters in stabilizing copper in the heavy metal sludge, whether heated by microwave radiation or conventional oven. The mass balance indicates insignificant volatization of the copper during heating.

  20. Electrokinetic removal of heavy metals from soil

    Directory of Open Access Journals (Sweden)

    Puvvadi Venkata Sivapullaiah

    2015-03-01

    Full Text Available Removal of heavy metal ions from soils by electrokinetic treatment has several advantages. The extent of removal, however, is both soil specific and ion specific. The conditions to be maintained have to be established based on laboratory studies. With a view to maximize the removal of metal ions the trends of removal of heavy metal ions such as iron, nickel and cadmium form a natural Indian kaolinitic red earth during different conditions maintained in the electrokinetic extraction process are studied. A laboratory electrokinetic extraction apparatus was assembled for this purpose. Attempts are also made to elucidate the mechanism of removal of the metal ions from soil. The composition of the flushing fluid, voltage and duration of extraction are varied. While dilute acetic acid has been used to neutralize the alkalinity that develops at the cathode, EDTA solution has been used to desorb heavy metals from clay surface. Generally the extent of removal was proportional to the osmotic flow. Nickel and Cadmium are more effectively removed than iron. The percentage removal of Ni is generally proportional to the osmotic flow but shows sensitivity to the pH of the system. There is an optimum voltage for removal of metal ions from soil. The removal of iron was negligible under different conditions studied.

  1. Distribution, bioavailability, and leachability of heavy metals in soil particle size fractions of urban soils (northeastern China).

    Science.gov (United States)

    Yutong, Zong; Qing, Xiao; Shenggao, Lu

    2016-07-01

    This study examines the distribution, mobility, and potential environmental risks of heavy metals in various particle size fractions of urban soils. Representative urban topsoils (ten) collected from Anshan, Liaoning (northeastern China), were separated into six particle size fractions and their heavy metal contents (Cr, Cu, Cd, Pb, and Zn) were determined. The bioaccessibility and leachability of heavy metals in particle size fractions were evaluated using the toxicity characteristic leaching procedure (TCLP) and ethylenediaminetetraacetic acid (EDTA) extraction, respectively. The results indicated that the contents of five heavy metals (Cd, Cr, Cu, Pb and Zn) in the size fractions increased with the decrease of particle size. The clay fraction of size fractions in urban topsoils. Cr also concentrated in the coarse fraction of 2000-1000 μm, indicating a lithogenic contribution. However, the dominant size fraction responsible for heavy metal accumulation appeared to belong to particle fraction of 50-2 μm. The lowest distribution factors (DFs) of heavy metals were recorded in the 2000- to 1000-μm size fraction, while the highest in the clay fraction. The DFs of heavy metals in the clay fraction followed Zn (3.22) > Cu (2.84) > Pb (2.61) > Cr (2.19) > Cd (2.05). The enrichment factor suggested that the enrichment degree of heavy metal increased with the decrease of the particle size, especially for Cd and Zn. The TCLP- and EDTA-extractable concentrations of heavy metals in the clay fraction were relatively higher than those in coarse particles. Cd bioavailability was higher in the clay fraction than in other fractions or whole soils. In contrast, Cr exhibits similar bioaccessibilities in the six size fractions of soils. The results suggested that fine particles were the main sources of potentially toxic metals in urban soils. The variation of heavy metals in various size fractions should be taken into account in environment assessments.

  2. Cultivable endophytic bacteria from heavy metal(loid)-tolerant plants.

    Science.gov (United States)

    Román-Ponce, Brenda; Ramos-Garza, Juan; Vásquez-Murrieta, María Soledad; Rivera-Orduña, Flor Nohemí; Chen, Wen Feng; Yan, Jun; Estrada-de Los Santos, Paulina; Wang, En Tao

    2016-12-01

    To evaluate the interactions among endophytes, plants and heavy metal/arsenic contamination, root endophytic bacteria of Prosopis laevigata (Humb and Bonpl. ex Willd) and Sphaeralcea angustifolia grown in a heavy metal(loid)-contaminated zone in San Luis Potosi, Mexico, were isolated and characterized. Greater abundance and species richness were found in Prosopis than in Sphaeralcea and in the nutrient Pb-Zn-rich hill than in the poor nutrient and As-Cu-rich mine tailing. The 25 species identified among the 60 isolates formed three groups in the correspondence analysis, relating to Prosopis/hill (11 species), Prosopis/mine tailing (4 species) and Sphaeralcea/hill (4 species), with six species ungrouped. Most of the isolates showed high or extremely high resistance to arsenic, such as ≥100 mM for As(V) and ≥20 mM for As(III), in mineral medium. These results demonstrated that the abundance and community composition of root endophytic bacteria were strongly affected by the concentration and type of the heavy metals and metalloids (arsenic), as well as the plant species.

  3. Application of Innovative Remediation Processes to Mining Effluents contaminated by Heavy Metals

    Directory of Open Access Journals (Sweden)

    Ubaldini S.

    2013-04-01

    Full Text Available The scope of the paper was to demonstrate the technical feasibility of the remediation processes by electrowinning and selective sequential precipitation, for toxic metals removal from acid mine drainage. By electrochemical experiments, high metals removal has been achieved: in particular, by Zn and Mn electrodeposition, it was possible to achieve about 93-99% Zn and Mn removal (as MnO2, with a relatively low energetic consumption. The principle of the heavy metals selective sequential precipitation is the combined application of sodium hydroxide solution and hydrogen sulfide produced by sulfate-reducing bacteria. For the hydrogen sulfide production the sulphate-reducing bacteria of genus Desulfovibrio was used. The selective sequential precipitation process reaches the selective precipitation of chosen metals with 99% efficiency – Fe, As, Al and Mn in the form of metal hydroxides, Cu and Zn as metal sulfides.

  4. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Maximilian [Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 8, 85748 Garching (Germany); Welker, Antje [Fachgebiet Siedlungswasserwirtschaft und Hydromechanik, Frankfurt University of Applied Sciences, Nibelungenplatz 1, 60318 Frankfurt am Main (Germany); Helmreich, Brigitte, E-mail: b.helmreich@tum.de [Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 8, 85748 Garching (Germany)

    2016-01-15

    A dataset of 294 monitored sites from six continents (Africa, Asia, Australia, Europe, North and South America) was compiled and evaluated to characterize the occurrence and fate of heavy metals in eight traffic area categories (parking lots, bridges, and three types each of both roads and highways). In addition, site-specific (fixed and climatic) and method-specific (related to sample collection, preparation, and analysis) factors that influence the results of the studies are summarized. These factors should be considered in site descriptions, conducting monitoring programs, and implementing a database for further research. Historical trends for Pb show a sharp decrease during recent decades, and the median total Pb concentrations of the 21st century for North America and Europe are approximately 15 μg/L. No historical trend is detected for Zn. Zn concentrations are very variable in traffic area runoff compared with other heavy metals because of its presence in galvanized structures and crumbs of car tire rubber. Heavy metal runoff concentrations of parking lots differ widely according to their use (e.g., employee, supermarket, rest areas for trucks). Bridge deck runoff can contain high Zn concentrations from safety fences and galvanizing elements. Roads with more than 5000 vehicles per day are often more polluted than highways because of other site-specific factors such as traffic signals. Four relevant heavy metals (Zn, Cu, Ni, and Cd) can occur in the dissolved phase. Knowledge of metal partitioning is important to optimize stormwater treatment strategies and prevent toxic effects to organisms in receiving waters. - Highlights: • Heavy metal runoff concentrations in parking lots, bridges, and roads • Large dataset of dissolved and total metal concentrations in traffic area runoff • Description of site-specific and monitoring method-specific factors • Summary of traffic-related and anthropogenic heavy metals in road runoff • Reduction in Pb

  5. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China.

    Science.gov (United States)

    Briki, Meryem; Zhu, Yi; Gao, Yang; Shao, Mengmeng; Ding, Huaijian; Ji, Hongbing

    2017-08-19

    Mining and smelting areas in Hezhang have generated a large amount of heavy metals into the environment. For that cause, an evaluative study on human exposure to heavy metals including Co, Ni, Cu, Zn, Cr, As, Cd, Pb, Sb, Bi, Be, and Hg in hair and urine was conducted for their concentrations and correlations. Daily exposure and non-carcinogenic and carcinogenic risk were estimated. Sixty-eight scalp hair and 66 urine samples were taken from participants of different ages (6-17, 18-40, 41-60, and ≥ 65 years) living in the vicinity of an agricultural soil near mine and smelting areas. The results compared to the earlier studies showed an elevated concentration of Pb, Be, Bi, Co, Cr, Ni, Sb, and Zn in hair and urine. These heavy metals were more elevated in mining than in smelting. Considering gender differences, females were likely to be more affected than male. By investigating age differences in this area, high heavy metal concentrations in male's hair and urine existed in age of 18-40 and ≥ 66, respectively. However, females did not present homogeneous age distribution. Hair and urine showed a different distribution of heavy metals in different age and gender. In some cases, significant correlation was found between heavy metals in hair and urine (P > 0.05 and P > 0.01) in mining area. The estimated average daily intake of heavy metals in vegetables showed a great contribution compared to the soil and water. Non-carcinogenic and carcinogenic risk values of total pathways in mining and smelting areas were higher than 1 and exceeded the acceptable levels. Thus, the obtained data might be useful for further studies. They can serve as a basis of comparison and assessing the effect of simultaneous exposure from heavy metals in mining and smelting areas, and potential health risks from exposure to heavy metals in vegetables need more consideration.

  6. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region.

    Science.gov (United States)

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-07-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All

  7. Inhibition of the bioavailability of heavy metals in sewage sludge biochar by adding two stabilizers.

    Science.gov (United States)

    Huang, Zhujian; Lu, Qin; Wang, Jun; Chen, Xian; Mao, Xiaoyun; He, Zhenli

    2017-01-01

    Agricultural application of sewage sludge (SS) after carbonization is a plausible way for disposal. Despite its benefits of improving soil fertility and C sequestration, heavy metals contained in sewage sludge biochars (SSB) are still a concern. In this study, two types of heavy metal stabilizers were chosen: fulvic acid (FA) and phosphogypsum (with CaSO4, CS, as the main component). The two stabilizers were incorporated into SS prior to 350°C carbonization for 1 h at the rates of 1%, 2%, or 4%. The obtained SSBs were then analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Total and available concentrations of four heavy metals, i.e., Zn, Pb, Cd, and Ni, in the SSBs were determined. In addition, a series of pot soil culture experiments was conducted to investigate the effects of stabilizers incorporation into SSB on heavy metal bioavailability and the uptake by plants (corn as an indicator) and plant biomass yield, with SS and SSB (no stabilizers) as controls. The results showed that incorporation of both FA and CS increased functional groups such as carboxyl, phenol, hydroxyl, amine and quinine groups in the SSBs. The percentage of heavy metals in sulfuric and oxidizable state and residual state of SSBs were significantly increased after carbonization, and hence the mobility of the heavy metals in SSBs was decreased. The introduction of the stabilizers (i.e., FA or CS) significantly lowered the total and available concentrations of Zn, Pb, Cd, and Ni. The reduction in available heavy metal concentration increased with incorporation rate of the stabilizers from 1% to 4%. In the treatments with FA or CS incorporated SSB, less heavy metals were taken up by plants and more plant biomass yields were obtained. The mitigating effects were more pronounced at higher rates of FA or CS stabilizer. These findings provide a way to lower bioavailability of heavy metals in SS or SSB for land application or horticulture as a

  8. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard.

    Science.gov (United States)

    Rahman, M Azizur; Rahman, Mohammad Mahmudur; Reichman, Suzie M; Lim, Richard P; Naidu, Ravi

    2014-02-01

    Dietary exposure to heavy metals is a matter of concern for human health risk through the consumption of rice, vegetables and other major foodstuffs. In the present study, we investigated concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in Australian grown and imported rice and vegetables on sale in Australia. The mean concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Australian grown rice were 7.5 µg kg(-1), 21 µg kg(-1), 144 µg kg(-1), 2.9 mg kg(-1), 24.4 mg kg(-1), 166 µg kg(-1), 375 µg kg(-1), and 17.1 mg kg(-1) dry weight (d. wt.), respectively. Except Cd, heavy metal concentrations in Australian grown rice were higher than Bangladeshi rice on sale in Australia. However, the concentrations of Cd, Cr, Cu, and Ni in Indian rice on sale in Australia were higher than Australian grown rice. The concentrations of Cu and Ni in Vietnamese rice, and that of Cd, Cr, Cu, Ni, and Pb in Thai rice on sale in Australia were also higher than Australian grown rice. Heavy metal concentrations in Pakistani rice on sale in Australia were substantially lower than that in Australian grown rice. In Australian grown rice varieties, the concentrations of heavy metals were considerably higher in brown rice varieties than white rice varieties, indicating Australian brown rice as a potential source of dietary heavy metals for Australian consumers. The mean concentrations of heavy metals in Australian grown and Bangladeshi vegetables on sale in Australia were also determined. Some of the Australian grown and Bangladeshi vegetables contained heavy metals higher than Australian standard maximum limits indicating them as potential sources of dietary heavy metals for Australian consumers. Further investigation is required to estimate health risks of heavy metals from rice and vegetables consumption for Australian consumers. © 2013 Published by Elsevier Inc.

  9. Heavy metals phytoremediation using Typha domingensis ...

    African Journals Online (AJOL)

    Phytoremediation as a tool employs aquatic macrophytes as a principal and inexpensive strategy for controlling environmental pollution. It is achieved through various mechanisms such as phytoextraction, phytostabilization, and phytovolatilization. In this study, heavy metal content of a contaminated drainage that empties ...

  10. Heavy Metals and Related Trace Elements.

    Science.gov (United States)

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  11. Assessment of physicochemical qualities, heavy metal ...

    African Journals Online (AJOL)

    Ogbe

    2012-08-23

    Aug 23, 2012 ... Key words: Aquatic biota, contamination, pollution, public health, microbial indicators, toxic effects. INTRODUCTION. Water is ... commonly occur in water and wastewater can be divided into four separate groups. ... heavy/toxic metal contamination of the Shanomi creek of the Warri river, hence the need for ...

  12. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  13. Evaluation of Physicochemical Properties and Heavy Metals ...

    African Journals Online (AJOL)

    Physicochemical properties of municipal dumpsite compost in Kano metropolis and concentration of heavy metals were investigated. Analysis was carried out by atomic absorption spectrometry (Buck Scientific VPG 210). The results shows that the compost pH (6.63-8.19), electric conductivity of compost (638-933μs/cm), ...

  14. 202 197 Heavy Metals and Microbial Contamin

    African Journals Online (AJOL)

    2008-12-02

    Dec 2, 2008 ... ABSTRACT: The heavy metal and microbial contaminants levels were evaluated in a commercial polyherbal .... (Cowan and Steel) was carried out to identify ... Statistical Analysis. Analysis of data obtained from this study was done using Excel Microsoft software. Analysis of Variance (ANOVA) was used for.

  15. HEAVY METALS PHYTOREMEDIATION USING Typha domingensis ...

    African Journals Online (AJOL)

    pc

    ABSTRACT. Phytoremediation as a tool employs aquatic macrophytes as a principal and inexpensive strategy for controlling environmental pollution. It is achieved through various mechanisms such as phytoextraction, phytostabilization, and phytovolatilization. In this study, heavy metal content of a contaminated drainage ...

  16. ASSESSMENT OF MACRONUTRIENTS AND HEAVY METALS IN ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. The macronutrients and heavy metals content of different parts of a locally found herb named ... inductively coupled plasma optical emission spectrometry (ICP-OES) and atomic absorption spectrophotometry. (AAS). .... involved in the formation of vitamin B12 or cobalamin and as such essential for erythrocyte.

  17. Environmental remediation from heavy metal pollution using ...

    African Journals Online (AJOL)

    Graft copolymers of polyacrlamide-grafted gum arabic were synthesized, blended with Moringa oleifera and characterized by IR spectroscopy. The potentials of the products to remove heavy metals from aqueous solutions were studied at room temperature (30oC) and this was experimented on iron (III) ions (Fe3+).

  18. ASSESSMENT OF HEAVY METALS AND CRUDE PROTEIN ...

    African Journals Online (AJOL)

    UNICORN

    MOLLUSCS AND CRUSTACEANS FROM TWO SELECTED CITIES IN. NIGERIA. Ogundiran ... are good sources of animal protein if they are found in contamination free environment. Key words: Heavy metals, ..... commonly used traditional preservation methods include sun-drying and hot-smoking. [28]. The sun-drying ...

  19. Comparative anatomy, nutraceutical potentials and heavy metal ...

    African Journals Online (AJOL)

    This study investigated the anatomical features, nutraceutical potentials and heavy metal compositions in two varieties of Lasianthera africana (P. Beauv) which is a member of the family Icacinaceae predominantly found mostly in southern Nigeria. The anatomical studies were carried out with free hand sectioning using a ...

  20. Decomposition of heavy metal contaminated nettles (Urtica dioica L.) in soils subjected to heavy metal pollution by river sediments.

    Science.gov (United States)

    Khan, Khalid Saifullah; Joergensen, Rainer Georg

    2006-11-01

    Two incubation experiments were conducted to evaluate differences in the microbial use of non-contaminated and heavy metal contaminated nettle (Urtica dioica L.) shoot residues in three soils subjected to heavy metal pollution (Zn, Pb, Cu, and Cd) by river sediments. The microbial use of shoot residues was monitored by changes in microbial biomass C, biomass N, biomass P, ergosterol, N mineralisation, CO(2) production and O(2) consumption rates. Microbial biomass C, N, and P were estimated by fumigation extraction. In the non-amended soils, the mean microbial biomass C to soil organic C ratio decreased from 2.3% in the low metal soil to 1.1% in the high metal soils. In the 42-d incubation experiment, the addition of 2% nettle residues resulted in markedly increased contents of microbial biomass P (+240%), biomass C (+270%), biomass N (+310%), and ergosterol (+360%). The relative increase in the four microbial properties was similar for the three soils and did not show any clear heavy metal effect. The contents of microbial biomass C, N and P and ergosterol contents declined approximately by 30% during the incubation as in the non-amended soils. The ratios microbial biomass C to N, microbial biomass C to P, and ergosterol to microbial biomass C remained constant at 5.2, 26, and 0.5%, respectively. In the 6-d incubation experiment, the respiratory quotient CO(2)/O(2) increased from 0.74 in the low metal soil to 1.58 in the high metal soil in the non-amended soils. In the treatments amended with 4% nettle residues, the respiratory quotient was constant at 1.13, without any effects of the three soils or the two nettle treatments. Contaminated nettle residues led generally to significantly lower N mineralisation, CO(2) production and O(2) consumption rates than non-contaminated nettle residues. However, the absolute differences were small.

  1. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    Directory of Open Access Journals (Sweden)

    Anna Grobelak

    Full Text Available Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry and inorganic amendments (lime, superphosphate, and potassium phosphate on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1. A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the

  2. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, Rongzhong; Wei, Jingjing; Huang, Chao; Xu, Piao; Wan, Jia; Zhang, Chen

    2018-01-05

    This study aimed to investigate the effect of pyrolysis on the stabilization of heavy metals in plant residues obtained after phytoremediation. Ramie residues, being collected after phytoremediation of metal contaminated sediments, were pyrolyzed at different temperatures (300-700 °C). Results indicated that pyrolysis was effective in the stabilization of Cd, Cr, Zn, Cu, and Pb in ramie residues by converting the acid-soluble fraction of metals into residual form and decreasing the TCLP-leachable metal contents. Meanwhile, the reutilization potential of using the pyrolysis products generated from ramie residues obtained after phytoremediation as sorbents was investigated. Adsorption experiments results revealed that the pyrolysis products presented excellent ability to adsorb methylene blue (MB) with a maximum adsorption capacity of 259.27 mg/g. This study demonstrated that pyrolysis could be used as an efficient alternative method for stabilizing heavy metals in plant residues obtained after phytoremediation, and their pyrolysis products could be reutilized for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Risk Assessment of Heavy Metal Pollution in Soils of Gejiu Tin Ore and Other Metal Deposits of Yunnan Province

    Science.gov (United States)

    Yang, Shuran; Danek, Tomas; Cheng, Xianfeng; Huang, Qianrui

    2017-12-01

    This paper aims to study three main metal mining areas in Yunnan Province, to summarize and analyze the heavy metal pollution situation in each mining area, and to assess the ecological risk of the mining areas. The results showed that heavy metal pollution existed in different regions of the three mining areas with pollution elements of Cd, As, Cu, Pb, Zn. Risk level, besides Zhen Yuan mining area (class C), for the other two areas was class D, with Beichang mining area in Lanping as the most serious polluted mining area.

  4. [Pollution characteristics of heavy metals in sludge from wastewater treatment plants and sludge disposal in Chinese coastal areas].

    Science.gov (United States)

    Zhang, Can; Chen, Hong; Yu, Yi-Xuan; Wang, Li-Jun; Han, Jian-Bo; Tao, Ping

    2013-04-01

    Thirteen sludge samples from Guangzhou, Shanghai and Dalian were collected and analysed for heavy metals to investigate the distribution and variation trend of heavy metals in sludge from wastewater treatment plants in Chinese coastal areas. The results showed that contents of heavy metals in sludge varied significantly, and the average contents exhibited an order of Cr > Zn > Cu > Pb > As > Hg > Cd. Additionally, contents of Cr, Cu and As exceeded their corresponding standard levels. Compared with contents of heavy metals in 2006 and 2001, content of Zn in sludge increased while contents of Cr, Cu and As decreased. Results also indicated that the industrial sludge was more seriously polluted than domestic sludge in terms of Zn, Cu and As. Only 23% sludge samples exceeded the standards for fertilization of sludge, suggesting that most of the sludge could be disposed by land application. These results also provide further information about the establishment of ocean disposal assessment for sludge.

  5. Accumulation and source of heavy metals in sediment of a reservoir near an industrial park of northwest China

    Science.gov (United States)

    Zhu, Yuanjie; Lu, Xinwei; Yang, Linna; Wang, Lijun

    2016-12-01

    The accumulation and source of heavy metals As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in the surface sediment of a reservoir near an industrial park of northwest China were determined by enrichment factor and multi-variate statistical analysis. Multivariate statistical analyses, i.e., factor analysis, cluster analysis, and correlation coefficient analysis, were used to identify the possible sources of the heavy metals. The results show that the mean concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in the reservoir sediment are higher than their corresponding concentrations in the control sample, indicating all analyzed heavy metals accumulated in the surface sediments. The values of the mean concentrations of heavy metals in the surface sediment divided by their corresponding concentrations in the control sample increase in the order of Ba = Crindustrial sources and local consumption residues; Pb and Zn mainly originate from industrial activities, while Ba and Cr primarily originate from natural sources.

  6. Metabolic Demands of Heavy Metal Drumming

    Directory of Open Access Journals (Sweden)

    Bryan Romero

    2016-07-01

    Full Text Available Background: The drum set involves dynamic movement of all four limbs. Motor control studies have been done on drum set playing, yet not much is known about the physiological responses to this activity. Even less is known about heavy metal drumming. Aims: The purpose of this study was to determine metabolic responses and demands of heavy metal drumming. Methods: Five semi-professional male drummers (mean ± SD age = 27.4 ± 2.6 y, height = 177.2 ± 3.8 cm, body mass = 85.1 ± 17.8 kg performed four prescribed and four self-selected heavy metal songs. Oxygen consumption (VO2, minute ventilation (VE and respiratory exchange ratio (RER were measured using a metabolic cart.  Heart rate (HR was measured using a heart rate monitor. VO2max was determined using a graded cycle ergometer test. Results: The results indicated a metabolic cost of 6.3 ± 1.4 METs and heart rate of 145.1 ± 15.7 beats·min-1 (75.4 ± 8.3% of age-predicted HRmax. VO2 peak values reached approximately 90% of the drummer’s VO2max when performing at the fastest speeds. According to these results, heavy metal drumming may be considered vigorous intensity activity (≥ 6.0 METs. The relative VO2max of 40.2 ± 9.5 mL·kg·min-1 leads to an aerobic fitness classification of “average” for adult males. Conclusions: The metabolic demands required during heavy metal drumming meet the American College of Sports Medicine guidelines for the development of health related fitness.  Keywords: Drum set, Exercise physiology, VO2, Music

  7. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution.

  8. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7

    National Research Council Canada - National Science Library

    Chen, Songcan; Li, Xiaomin; Sun, Guoxin; Zhang, Yingjiao; Su, Jianqiang; Ye, Jun

    2015-01-01

    Co-contamination of antibiotics and heavy metals prevails in the environment, and may play an important role in disseminating bacterial antibiotic resistance, but the selective effects of heavy metals...

  9. Bioaccumulation of heavy metals in crop plants grown near Almeda Textile Factory, Adwa, Ethiopia.

    Science.gov (United States)

    Gitet, Hintsa; Hilawie, Masho; Muuz, Mehari; Weldegebriel, Yirgaalem; Gebremichael, Dawit; Gebremedhin, Desta

    2016-09-01

    The contents of heavy metals cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) present in water (wastewater and wetland), soils, and food crops collected from the vicinity of Almeda Textile Factory were quantified using Flame Atomic Absorption Spectrometer (FAAS) in order to assess the environmental impact of the textile factory. The contents of heavy metals determined in the wastewater were found below the recommended limit set by WHO and United States Environmental Protection Agency (US EPA) except for Cr, which was found slightly higher than WHO permissible limit. Besides, the contents of the heavy metals determined in soils were below the permissible level of FAO/WHO and Canada maximum allowable limits. Moreover, only the concentrations of Cd and Pb were found above the permissible level set by FAO/WHO in the crop plants studied. Generally, the mean concentrations of heavy metals in the plants were in the decreasing order of: Mn > Zn > Cu > Pb > Ni > Co > Cr > Cd. Nevertheless, higher bioconcentration factor (BCF) was found for Cd (0.108-1.156) followed by Zn (0.081-0.499). In conclusion, comparison of heavy metal concentrations with the permissible limits in all collected sample types i.e. water, soil, and crop plants did not show significant pollution from the factory.

  10. Heavy metals mobility associated with the molybdenum mining-concentration complex in the Buryatia Republic, Germany.

    Science.gov (United States)

    Sarapulova, Angelina; Dampilova, Bayarma V; Bardamova, Irina; Doroshkevich, Svetlana G; Smirnova, Olga

    2017-04-01

    Mining of Dzhida ore deposits in Russia has caused the formation of a large tailings dam with technogenic sands and contamination of nearby district soils. Geochemical fractions of technogenic sands were divided by a sequential extraction procedure. The sampling points with maximum concentration of Pb, Cu, and Zn were selected for investigation of heavy metal mobility. Two previously described methods of heavy metal fractionation using selective extraction were applied: a procedure developed by the Community Bureau of Reference of the Commission of the European Communities (BCR procedure) and Tessier's fractionation scheme. Despite some differences in Pb extractions, the two procedures describe equally well the distribution of heavy metals on geochemical fractions. BCR procedure was chosen as a fast method of heavy metal mobile form estimation. For considered mining object, it is revealed that there are different characters of heavy metal mobility sequence in the soils Zn > Cu > Pb and technogenic sands Pb > Zn > Cu.

  11. Phytoremediation of heavy metal-contaminated water and sediment by eleocharis acicularis

    Energy Technology Data Exchange (ETDEWEB)

    Sakakibara, Masayuki; Ha, Nguyen Thi Hoang [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Ohmori, Yuko [Graduate School of Science and Engineering, Ehime University, Matsuyama (Japan); Taisei Kiso Sekkei Co., Ltd., Tokyo (Japan); Sano, Sakae [Faculty of Education, Ehime University, Matsuyama (Japan); Sera, Koichiro [Cyclotron Center, Iwate Medical University, Takizawa-mura (Japan)

    2011-08-15

    Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log-linear fashion. The bioconcentration factor for these elements decreases log-linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Pollution distribution of heavy metals in surface soil at an informal electronic-waste recycling site.

    Science.gov (United States)

    Fujimori, Takashi; Takigami, Hidetaka

    2014-02-01

    We studied distribution of heavy metals [lead (Pb), copper (Cu) and zinc (Zn)] in surface soil at an electronic-waste (e-waste) recycling workshop near Metro Manila in the Philippines to evaluate the pollution size (spot size, small area or the entire workshop), as well as to assess heavy metal transport into the surrounding soil environment. On-site length-of-stride-scale (~70 cm) measurements were performed at each surface soil point using field-portable X-ray fluorescence (FP-XRF). The surface soil at the e-waste recycling workshop was polluted with Cu, Zn and Pb, which were distributed discretely in surface soil. The site was divided into five areas based on the distance from an entrance gate (y-axis) of the e-waste recycling workshop. The three heavy metals showed similar concentration gradients in the y-axis direction. Zn, Pb and Cu concentrations were estimated to decrease to half of their maximum concentrations at ~3, 7 and 7 m from the pollution spot, respectively, inside the informal e-waste recycling workshop. Distance from an entrance may play an important role in heavy metal transport at the soil surface. Using on-site FP-XRF, we evaluated the metal ratio to characterise pollution features of the solid surface. Variability analysis of heavy metals revealed vanishing surficial autocorrelation over metre ranges. Also, the possibility of concentration prediction at unmeasured points using geostatistical kriging was evaluated, and heavy metals had a relative "small" pollution scales and remained inside the original workshop compared with toxic organohalogen compounds. Thus, exposure to heavy metals may directly influence the health of e-waste workers at the original site rather than the surrounding habitat and environmental media.

  13. Variation of heavy metal speciation during the pyrolysis of sediment collected from the Dianchi Lake, China

    Directory of Open Access Journals (Sweden)

    Zhenggang Gu

    2017-05-01

    Full Text Available Sediment samples with high organic carbon were collected from the Dianchi Lake in China and thermally treated using a method analogous to biochar production. The speciation of the heavy metals Cu, Cd, Pb, and Zn in sediment and thermally treated sediments (TTSs were analyzed by European Community Bureau of Reference (BCR sequential extraction methods. Heavy metal bioavailability and eco-toxicity were assessed by risk assessment code. This study demonstrates that BCR sequential extraction methods and risk assessment code can be used as valuable tools to assess heavy metal mobility, bioavailability and eco-toxicity. Compared to biochar derived from biomass, TTSs had different characteristics, which may contribute to the formation of organo-mineral complexes. The heavy metals Cu, Cd, Pb, and Zn speciated in TTSs show different patterns from that of the sediment and pyrolysis temperature has a great influence on the fractional distribution of heavy metals. Those different distributions may attribute to the geochemistry of the sediment and the different physicochemical characteristics of heavy metals. In order for the safe application of thermally –treatment sediments (TTSs as a soil amendment, further studies such as field experiments may be required.

  14. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan.

    Science.gov (United States)

    Khan, Kifayatullah; Lu, Yonglong; Khan, Hizbullah; Ishtiaq, Muhammad; Khan, Sardar; Waqas, Muhammad; Wei, Luo; Wang, Tieyu

    2013-08-01

    This study assessed the concentrations of heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni) and zinc (Zn) in agricultural soils and crops (fruits, grains and vegetable) and their possible human health risk in Swat District, northern Pakistan. Cd concentration was found higher than the limit (0.05 mg/kg) set by world health organization in 95% fruit and 100% vegetable samples. Moreover, the concentrations of Cr, Cu, Mn, Ni and Zn in the soils were shown significant correlations with those in the crops. The metal transfer factor (MTF) was found highest for Cd followed by Cr>Ni>Zn>Cu>Mn, while the health risk assessment revealed that there was no health risk for most of the heavy metals except Cd, which showed a high level of health risk index (HRI⩾10E-1) that would pose a potential health risk to the consumers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    Science.gov (United States)

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  16. Capability and Mechanisms of Macrofungi in Heavy Metal Accumulation:A Review

    Directory of Open Access Journals (Sweden)

    CHEN Miao-miao

    2017-10-01

    Full Text Available Some macrofungi have the ability to accumulate heavy metals, which is comparable to hyper-accumulator plants. Cordyceps militaris can accumulate Zn up to 20 000 mg·kg-1. Therefore, macrofungi have the potential to be used as an important bioremediation tool for heavy metals. In this review, we summarized the heavy metal resistant capacity of typical macrofungi and known relevant mechanisms. Generally, straw-decay fungi presented better capability for Cu, Ag and Cd enrichment than wood-decay fungi, while wood-decay fungi could accumulate Cr, Mg, Se and Pb. Different macrofungi species, different growth periods(mycelium and fruiting body and different parts of fruiting body showed different capability for heavy metals accumulation. General mechanisms for heavy metals accumulation in macrofungi included extracellular precipitation in the forms of polymeric substances, cell wall adsorption and intracellular absorption. Macrofungi could also detoxify by chelating metal ions by metallothionein(MT, secreting antioxidant enzymes(SOD, CAT, POD and degradating the misfolded proteins by ubiquitin-proteasome system(UPS. We also explored the potential of macrofungi in heavy metal remediation and pollution diagnostics as a biological indicator. Some macrofungi had been applied in the remediation of heavy metal contaminated soils and water. Finally, some future research areas including strain breeding and genetic engineering were discussed, which might provide references for the future studies.

  17. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions.

    Science.gov (United States)

    Park, Jong-Hwan; Ok, Yong Sik; Kim, Seong-Heon; Cho, Ju-Sik; Heo, Jong-Soo; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    Objective of this research was to evaluate adsorption of heavy metals in mono and multimetal forms onto sesame straw biochar (SSB). Competitive sorption of metals by SSB has never been reported previously. The maximum adsorption capacities (mgg(-1)) of metals by SSB were in the order of Pb (102)≫Cd (86)≫Cr (65)>Cu (55)≫Zn (34) in the monometal adsorption isotherm and Pb (88)≫Cu (40)≫Cr (21)>Zn (7)⩾Cd (5) in the multimetal adsorption isotherm. Based on data obtained from the distribution coefficients, Freundlich and Langmuir adsorption models, and three-dimensional simulation, multimetal adsorption behaviors differed from monometal adsorption due to competition. Especially, during multimetal adsorption, Cd was easily exchanged and substituted by other metals. Further competitive adsorption studies are necessary in order to accurately estimate the heavy metal adsorption capacity of biochar in natural environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Adsorption of heavy metal by natural clayey soil

    OpenAIRE

    Budianta, Wawan

    2015-01-01

    This study focused on the capability of Clayey soil to retain and release heavy metals. Batch experiment for sample of clayey soil was conducted with several concentrated solutions of heavy metals. The results show that the clayey soil sample may have a relatively high heavy metal retention capacity. This is particularly positive in the context of municipal waste disposal (landfills) in Indonesia Keywords: Adsorption, heavy metal, clayey soil, batch experiment

  19. Perilous Effects of Heavy Metals Contamination on Human Health

    OpenAIRE

    Naseem Zahra; Imran Kalim; Minahil Mahmood; Nageen Naeem

    2017-01-01

    Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, ...

  20. Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: Batch and column experiment.

    Science.gov (United States)

    Park, Jong-Hwan; Cho, Ju-Sik; Ok, Yong Sik; Kim, Seong-Heon; Kang, Se-Won; Choi, Ik-Won; Heo, Jong-Soo; DeLaune, Ronald D; Seo, Dong-Cheol

    2015-01-01

    The objective of this research was to evaluate adsorption of heavy metals in single- and ternary-metal forms onto chicken bone biochar (CBB). Competitive sorption of heavy metals by CBB has never been reported previously. The maximum adsorption capacities of metals by CBB were in the order of Cu (130 mg g(-1)) > Cd (109 mg g(-1)) > Zn (93 mg g(-1)) in the single-metal adsorption isotherm and Cu (108 mg g(-1)) > Cd (54 mg g(-1)) ≥ Zn (44 mg g(-1)) in the ternary-metal adsorption isotherm. Cu was the most retained cation, whereas Zn could be easily exchanged and substituted by Cu. Batch experimental data best fit the Langmuir model rather than the Freundlich isotherms. In the column experiments, the total adsorbed amounts of the metals were in the following order of Cu (210 mg g(-1)) > Cd (192 mg g(-1)) > Zn (178) in single-metal conditions, and Cu (156) > Cd (123) > Zn (92) in ternary-metal conditions. Results from both the batch and column experiments indicate that competitive adsorption among metals increases the mobility of these metals. Especially, Zn in single-metal conditions lost it adsorption capacity most significantly. Based on the 3D simulation graphs of heavy metals, adsorption patterns under single adsorption condition were different than under competitive adsorption condition. Results from both the batch and column experiments show that competitive adsorption among metals increases the mobility of these metals. The maximum metal adsorption capacity of the metals in the column experiments was higher than that in the batch experiment indicating other metal retention mechanisms rather than adsorption may be involved. Therefore, both column and batch experiments are needed for estimating retention capacities and removal efficiencies of metals in CBB.

  1. The Relationship between TOC and pH with Exchangeable Heavy Metal Levels in Lithuanian Podzols

    Science.gov (United States)

    Khaledian, Yones; Pereira, Paulo; Brevik, Eric C.; Pundyte, Neringa; Paliulis, Dainius

    2017-04-01

    Heavy metals can have a negative impact on public and environmental health. The objective of this study was to investigate the relationship between total organic carbon (TOC) and pH with exchangeable heavy metals (Pb, Cd, Cu and Zn) in order to predict exchangeable heavy metal content in soils sampled near Panevėžys and Kaunas, Lithuania. Principal component regression (PCR) and nonlinear regression methods were tested to find the statistical relationship between TOC and pH with heavy metals. The results of PCR [R2 = 0.68, RMSE = 0.07] and non-linear regression [R2 = 0.74, RMSE= 0.065] (pH with TOC and exchangeable parameters) were statistically significant. However, this was not observed in the relationships of pH and TOC separately with exchangeable heavy metals. The results indicated that pH had a higher correlation with exchangeable heavy metals (non-linear regression [R2 = 0.72, RMSE= 0.066]) than TOC with heavy metals [R2 = 0.30, RMSE= 0.004]. It can be concluded that even though there was a strong relationship between TOC and pH with exchangeable metals, the metal mobility (exchangeable metals) can be explained by pH better than TOC in this study. Finally, manipulating soil pH could likely be productive to assess and control heavy metals when financial and time limitations exist (Khaledian et al. 2016). Reference(s) Khaledian Y, Pereira P, Brevik E.C, Pundyte N, Paliulis D. 2016. The Influence of Organic Carbon and pH on Heavy Metals, Potassium, and Magnesium Levels in Lithuanian Podzols. Land Degradation and Development. DOI: 10.1002/ldr.2638

  2. Risk assessment of mineral and heavy metal content of selected tea products from the Ghanaian market.

    Science.gov (United States)

    Nkansah, Marian Asantewah; Opoku, Francis; Ackumey, Abiathar Abraham

    2016-06-01

    Food consumption is the most likely route of human exposure to metals. Tea (Camellia sinensis L.) is among the most widely consumed non-alcoholic beverages. Concentrations of heavy metals and minerals in tea from 15 different brands in Kumasi, Ghana were measured to assess the health risk associated with their consumption. The mineral and metal contents (Fe, Cu, Zn, Pb, As, Cd) were analyzed using atomic absorption spectrophotometer (Z-8100 polarized Zeeman). The results revealed that the mean concentrations were in the order: Ca > Fe > As > Cd > Zn > Pb. The average contents of Ca, Fe, Zn, Pb, Cd, and As in the samples were 94.08, 6.15, 0.20, 0.16, 0.36, and 1.66 mg/kg, respectively. All the minerals and heavy metals were below the maximum permissible limits stipulated by the World Health Organization (WHO) and US Pharmacopeia (USP). Metal-to-metal correlation indicated strong correlations between As/Zn, Cd/Zn, Cd/As, and Pb/As pairs. Factor analysis demonstrated a clear separation between minerals, grouped on one side, and heavy metals, clustered on another side. Both the target hazard quotient (THQ) and hazard index (HI) levels in green tea were far below 1, suggesting that consumption of green tea should pose no potential risk to human health. However, carcinogenic risk levels for arsenic were high; R > 10(-6). The results showed that residents in Kumasi consume tea could be at risk from exposure to these heavy metals and minerals.

  3. Stockhome: A Spreadsheet Model of Urban Heavy Metal Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Hedbrant, J. [Linkoeping University, Department of Water and Environmental Studies (Sweden)], E-mail: johhe@ikp.liu.se

    2001-05-15

    Computer models for analysis,visualising and decision support in environmental research have become increasingly popular. The Stockhome project, where the urban metabolism of heavy metals in Stockholm was studied, resulted in a database with historical data of the use of goods containing cadmium (Cd), chromium (Cr),copper (Cu), lead (Pb), mercury (Hg), nickel (Ni)and zinc (Zn). A spreadsheet model was developed to study flows and stocks of the metal consumption process and emissions. The model indicates uncertainties of the data, societal aspects such as field of use and rights of disposition of the goods. By considering goods as the drivers of the emissions, the model would be well suited for policy support.

  4. Evaluation of the bioaccumulation of heavy metals in white shrimp (Litopenaeus vannamei) along the Persian Gulf coast.

    Science.gov (United States)

    Dadar, Maryam; Peyghan, Rahim; Memari, Hamid Rajabi

    2014-09-01

    The concentrations of heavy metals in Persian Gulf are low, but petrochemical and refinery activities have caused an increase in heavy metal wastes, especially in coastal regions. The present study was done to determine the bioaccumulation of heavy metals in the muscle of white shrimp (Litopenaeus vannamei) using flame atomic absorption spectrophotometry. The experiment was conducted in four important coastal regions of the Persian Gulf: Bushehr, Deylam, Mahshahr, and Abadan. Amounts of seven heavy metals such as Copper (Cu), Iron (Fe), Lead (Pb), Zinc (Zn), Nickel (Ni), Cadmium (Cd), and Cobalt (Co), were measured as µg/g heavy metal in dry weight in the muscle of white shrimp from the afore-mentioned regions during 2011. This study revealed information that the primary risk for human health and the marine life chain was lead in the muscles of white shrimp in Mahshahr, where intense petrochemical and refinery activities are conducted. Concentrations of other heavy metals were lower than world standards.

  5. Levels of heavy metals in the environment of a wastewater treatment plant. Metales pesados en aguas, sedimentos y suelos de las inmediaciones de una EDAR

    Energy Technology Data Exchange (ETDEWEB)

    Nuez Delgado, A.; Cardenas Botas, S.; Diaz-Fierros Viqueira, F. (Facultad de Farmacia. Universidad de Santiago de Compostela. Corua (Spain))

    1994-01-01

    The concentration levels of the heavy metals Zn, Cu, Ni, Pb, Cr, and Cd, were studied in different points of a wastewater treatment plant, in sediment and water samples of the riverbeds, and in soil samples of its environment. The concentrations of heavy metals in influent and effluent waters were not high: only Zn and Cu were detected and they were always below the legal threshold level, as they were in the waters of the riverbeds in the nearby. however, in several soil and sediment samples, phytotoxic levels of Pb and Zn were found.

  6. Heavy metal concentrations and speciation in riverine sediments and the risks posed in three urban belts in the Haihe Basin.

    Science.gov (United States)

    Zhang, Chao; Shan, Baoqing; Tang, Wenzhong; Dong, Lixin; Zhang, Wenqiang; Pei, Yuansheng

    2017-05-01

    Heavy metal (Cr, Cu, Ni, Pb, and Zn) pollution and the risks posed by the heavy metals in riverine sediments in a mountainous urban-belt area (MB), a mountain-plain urban-belt area (MPB), and a plain urban-belt area (PB) in the Haihe Basin, China, were assessed. The enrichment factors indicated that the sediments were more polluted with Cu and Zn than with the other metals, especially in the MPB. The sediments in the MPB were strongly affected by Cu and Zn inputs from anthropogenic sources. The risk assessment codes and individual contamination factors showed that Zn was mobile and posed ecological risks, the exchangeable fractions being 21.1%, 21.2%, and 19.2% of the total Zn concentrations in the samples from the MB, MPB, and PB, respectively. Cr, Cu, and Zn in the sediments from the MPB were potentially highly bioavailable because the non-residual fractions were 56.2%, 54.9%, and 56.5%, respectively, of the total concentrations. The potential risks posed by the heavy metals (determined from the chemical fractions of the heavy metals) in the different areas generally decreased in the order MPB > MB > PB. Pictorial representation of cluster analysis results showed that urbanization development level could cause Cr and Zn pollution in the urban riverine sediments to become more severe. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Integrating classification and regression tree (CART) with GIS for assessment of heavy metals pollution.

    Science.gov (United States)

    Cheng, Wei; Zhang, Xiuying; Wang, Ke; Dai, Xuelong

    2009-11-01

    The classification and regression tree (CART) model integrated with geographical information systems and the assessment of heavy-metals pollution system was developed to assess the heavy metals pollution in Fuyang, Zhejiang, China. The integration of the decision tree model with ArcGIS Engine 9 using a COM implementation in Microsoft Visual Basic 6.0 provided an approach for assessing the spatial distribution of soil Zn content with high predictive accuracy. The Zn concentration classes estimated by CART assigned the right classes with an accuracy of near 90%. This is a great improvement compared to the ordinary Kriging method for the spatial autocorrelation of the study area severely destroyed by human activities. Also, it can be used to investigate the inter-relationships between the heavy metals pollution and environmental and anthropogenic variables. Moreover, the research presents model predictions over space for further applications and investigations.

  8. Quantitative relations between soil heavy metal contamination and landscape pattern in Wuxi, China

    Science.gov (United States)

    Zhu, Ming; Pu, Lijie; Xu, Yan

    2017-04-01

    Land use practices changed landscape pattern and meanwhile, brought forth numerous environmental problems including heavy metal contamination in soil. In this study, we investigated the quantitative relations between soil heavy metal contamination and its surrounding landscape pattern based on topsoil samples and land use map of Wuxi in 2009. The results of vector fitting with Redundancy analysis in R package vegan showed that Percent Coverage of build-up area (PCB) within 2500 m, Perimeter-Area Fractal Dimension (PAFD) within 2500 m, Edge Density (ED) within 2500 m, Patch Density (PD) within 200 m, Percent Coverage of wetland (PCW) within 2000 m and Patch Cohesion (PC) within 200 m significantly affected the contents of heavy metal elements. The results of Stepwise regression suggested that increase of build-up area and fragmentation would increase Cu and Zn, while increase of wetland would decrease the contents of As and Cu. PAFD was negative with Cd, Hg, Pb and Zn.

  9. Biomonitoring of heavy metals contamination by mosses and lichens around Slovinky tailing pond (Slovakia).

    Science.gov (United States)

    Demková, Lenka; Bobul'ská, Lenka; Árvay, Július; Jezný, Tomáš; Ducsay, Ladislav

    2017-01-02

    Three moss (Pleurozium spp., Polytrichum spp., and Rhytidiadelphus spp.) and two lichen (Hypogymnia physodes and Pseudevernia furfuracea) taxons covered in the bags were used to monitor air quality. Bags were exposed at the different distances from the tailing pond because of insufficient security and source of heavy metal pollution. Moss/lichen bags were exposed for six weeks at 0-, 50-, 100-, 150- and 200-m distances from Slovinky tailing pond, in the main wind direction (down the valley). Accumulation ability of heavy metals expressed by relative accumulation factor (RAF) increases in the order of Polytrichum spp.heavy metals. Rhytidiadelphus spp. was found to possess the significantly highest (P < 0.01) ability to accumulate Cd, Zn, Ni, Mn and Fe. The highest RAF values of Pb, Zn, Ni and Fe were determined in samples exposed at 200-m distance from pollution source.

  10. Removing heavy metals from Isfahan composting leachate by horizontal subsurface flow constructed wetland.

    Science.gov (United States)

    Bakhshoodeh, Reza; Alavi, Nadali; Soltani Mohammadi, Amir; Ghanavati, Hossein

    2016-06-01

    Composting facility leachate usually contains high concentrations of pollutants including heavy metals that are seriously harmful to the environment and public health. The main purpose of this study was to evaluate heavy metals removal from Isfahan composting facility (ICF) leachate by a horizontal flow constructed wetland (HFCWs) system. Two horizontal systems were constructed, one planted with vetiver and the other without plant as a control. They both operated at a flow rate of 24 L/day with a 5-day hydraulic retention time (HRT). The average removal efficiencies for Cr (53 %), Cd (40 %), Ni (35 %), Pb (30 %), Zn (35 %), and Cu (40 %) in vetiver constructed wetland were significantly higher than those of the control (P < 0.05). Accumulations of heavy metals in roots were higher than shoots. Cd and Zn showed the highest and the lowest bioconcentration factor (BCF), respectively. Vetiver tolerates the extreme condition in leachate including high total dissolved solids.

  11. ACCUMULATION OF HEAVY METALS IN BIOTA OF VYRLYTSA LAKE

    Directory of Open Access Journals (Sweden)

    Tetiana Bilyk

    2011-03-01

    Full Text Available Abstract. The main task was to investigate the pollution by heavy metals of biota of Vyrlytsa Lake. Thecontents of movable forms of heavy metals in aquatic plants, fish and snails was determined by atomicabsorbtion method and were made the conclusions about general state of the water object.Keywords: heavy metals, accumulation, biota, pollution, atomic absorption spectroscopy.

  12. Classification of Plants According to Their Heavy Metal Content ...

    African Journals Online (AJOL)

    Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals around North ...

  13. classification of plants according to their heavy metal content around

    African Journals Online (AJOL)

    Mgina

    ABSTRACT. Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals ...

  14. Heavy metals content in the stem bark of Detarium microcarpum ...

    African Journals Online (AJOL)

    The heavy metal analysis was carried out on the stem bark of D. microcarpum using an atomic absorption spectrophotometer (AAS). The heavy metals screened for include: lead, chromium, manganese, zinc and iron. The levels of manganese, zinc and iron were 13.91, 4.89 and 21.89 mg/L respectively. These heavy metals ...

  15. Absorption and bioaccumulation of heavy metals in giant African ...

    African Journals Online (AJOL)

    This study aimed at investigating the ability and effects (if any) of heavy metal accumulation in Giant African Land Snails (Archachatina marginata). 120 A. marginata growers were randomly allotted to 2 feed treatments (T1: Heavy metal contaminated pawpaw fruits and leaves; and T2: Heavy metal free pawpaw fruits and ...

  16. Studies of action of heavy metals on caffeine degradation by ...

    African Journals Online (AJOL)

    The isolate was encapsulated in gellan gum and its ability to degrade caffeine in the presence of heavy metals was determined. Out of the nine heavy metals tested, Copper (Cu), Mercury (Hg), and Silver (Ag) had significant effects on caffeine degradation at 1mg/L. Therefore, the concentration of these heavy metals was ...

  17. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    Science.gov (United States)

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  18. incidence of heavy metals in kano metropolis drinking water sources ...

    African Journals Online (AJOL)

    userpc

    into these sources as domestic sewage might be of kitchen and toilet origin heavily accumulated with soaps of heavy metals constituents. Heavy metal contamination with ... Water pollution has been a major challenge which requires ongoing evaluation. (Okonko et al., 2008).Presence of excessive amounts of heavy metals ...

  19. Bioaccumulation and toxic effects of some heavy metals in ...

    African Journals Online (AJOL)

    The contamination of the aquatic systems with heavy metals from natural anthropogenic sources has become a global problem which poses threats to ecosystems and natural communities. Hence this study reviews the effects of heavy metals in freshwater fishes. Fishes bioaccumulate heavy metals (including cadmium, zinc ...

  20. Assessment and sources of heavy metals in surface sediments of Miyun Reservoir, Beijing.

    Science.gov (United States)

    Zhu, Xianfang; Ji, Hongbing; Chen, Yan; Qiao, Mingming; Tang, Lei

    2013-07-01

    Heavy metals concentrations in surface sediments from Miyun Reservoir were determined to evaluate the pollution and identify the sources. The average content of metals in sediments from Miyun Reservoir followed the order Al>Fe>Ti>Mn>V>Zn>Cr>Ni>Cu>Pb>As>Cd>Hg, and the most mean values were lower than the globe average shale. Heavy metals concentrations at the inflow area of Baihe were higher than those at the inflow area of Chaohe. Heavy metals pollution assessment was carried out by factor enrichment (EF), geoaccumulation index (I(geo)), and potential ecological risk (RI). The EF values for all heavy metals except Hg, Cd, and Cr at several sites were lower than 3, suggesting low anthropogenic impact on the metals level. The I(geo) values of Pb indicated that half of the sites were unpolluted to moderately polluted and mainly located in the Baihe area of the reservoir. The RI showed that heavy metals of Miyun Reservoir were low potential risk, however, Hg approached or belonged to moderate ecological risk at sites of M5, M7, and M13. Correlation analysis and principal component suggested that Ni, Cu, V, Zn, Mn, Cr, Ti, and Pb were derived from soil erosion in upper reaches of the reservoir, while Fe, Cd, Hg, As, and partial Pb originated from anthropogenic sources, particularly industrial mining and gold tailings.

  1. Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park.

    Science.gov (United States)

    Li, Haiyan; Shi, Anbang; Zhang, Xiaoran

    2015-06-01

    Due to rapid urbanization and industrialization, heavy metals in road-deposited sediments (RDSs) of parks are emitted into the terrestrial, atmospheric, and water environment, and have a severe impact on residents' and tourists' health. To identify the distribution and characteristic of heavy metals in RDS and to assess the road environmental quality in Chinese parks, samples were collected from Beijing Olympic Park in the present study. The results indicated that particles with small grain size (particle size distribution, as indicated by the variation of size fraction with the increase of dry days. The amount of heavy metal (i.e., Cu, Zn, Pb and Cd) content was the largest in particles with small size (particles was 74.7%, 55.5%, 56.6% and 71.3%, respectively. Heavy metals adsorbed in sediments may mainly be contributed by road traffic emissions. The contamination levels of Pb and Cd were higher than Cu and Zn on the basis of the mean heavy metal contents. Specifically, the geoaccumulation index (Igeo) decreased in the order: Cd>Pb>Cu>Zn. This study analyzed the mobility of heavy metals in sediments using partial sequential extraction with the Tessier procedure. The results revealed that the apparent mobility and potential metal bioavailability of heavy metals in the sediments, based on the exchangeable and carbonate fractions, decreased in the order: Cd>Zn≈Pb>Cu. Copyright © 2015. Published by Elsevier B.V.

  2. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers.

    Science.gov (United States)

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-11-06

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake's only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr.

  3. Concentrations of heavy metals in soil and leaves of plant species ...

    African Journals Online (AJOL)

    This paper sums up the results of the research on heavy metals contents (Pb, Ni, Fe, Zn and Mn) in soil and leaves of the plant species, Paulownia elongata S.Y. Hu and Paulownia fortunei Hemsl. at the plantation established on the eutric brown soil in Banat (Vojvodina). The plantation, which served as the control field is at ...

  4. determination of the level of some heavy metals in water collected

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. Industrial effluents discharged into the environment pose a serious threat to our agricultural products and health. In view of this, levels of some heavy metals, Zn, Pb, Cr, Cu, Ni, Co, Ag, Fe and. Mn were determined in water samples collected from two pollution prone areas around Kano. (Sharada and Bompai ...

  5. Distribution and Ecological Risk Assessment of Heavy Metals in Arable Soils in Bijiang Watershed, China

    Directory of Open Access Journals (Sweden)

    HUANG Wei-heng

    2017-08-01

    Full Text Available It has been paid much attention to soil heavy metal pollution in the Bijiang watershed caused by the Lanping lead-zinc mine. We collected 35 arable soil samples along Bijiang, then sampled and tested the contents of As, Cu, Zn, Cd, Pb, Hg. And then with Nemerow Multi-Factor Index and the Potential Ecological Risk Index method, we evaluated the heavy metal pollution risk. The results showed:(1The accumulation of Pb, Zn, Cd was in a relatively high level, the average was 1 146.97, 579.15, 4.85 mg·kg-1 respectively, which was seriously polluted; the average accumulation of As was 26.85 mg·kg-1; but Cu, Hg was slightly polluted. (2Statistical analysis showed that Lanping area was a main point source pollution of As, Zn, Pb, Cd, while Cu, Hg was pollution caused by different non-point source pollution.(3Within this basin, the Nemerow index was 17.69, which was serious heavy metal pollution, while the comprehensive potential ecological risk index was 773.38, which was a strong potential ecological risk. The contribution of pollutants was Cd > Pb > Zn> As> Hg > Cu. (4As a whole, the soil heavy metal pollution of paddy field was higher than of the dry land.

  6. Climate change impacts on the leaching of a heavy metal contamination in a small lowland catchment

    NARCIS (Netherlands)

    Visser, A.; Kroes, J.; Vliet, M.T.H. van; Blenkinsop, S.; Fowler, H.J.; Broers, H.P.

    2012-01-01

    The Keersop catchment (43 km2) in the south of The Netherlands has been contaminated by the emissions of four zinc ore smelters. The objective of this study was to assess the effects of future projected climate change on the hydrology and the leaching of heavy metals (i.e. Cd and Zn) in the

  7. Assessment of some heavy metals in the surrounding soils of an ...

    African Journals Online (AJOL)

    OYELEKE PETER

    The levels of heavy metals (Pd, Zn, Cr, Cd, Fe and Cu in mg/kg) in soils were assessed with respect to distance in different directions around an abandoned battery company in Ibadan, Western Nigeria by using flame atomic absorption spectrophotometry method. The results generally show a decrease of lead (Pb) ...

  8. Distributions and sources of heavy metals in sediments of the Bohai Sea, China: a review.

    Science.gov (United States)

    Duan, Xiaoyong; Li, Yanxia

    2017-11-01

    This paper summarizes the recent research results from studies concerning heavy metals in the Bohai Sea in recent decades. The temporal and spatial variations and potential sources of the heavy metals in the surface sediments were analyzed. Based on these obtained data, the average concentrations in surface sediments collected in recent years (summarized 3171 samples) were 0.31, 87.0, 25.7, 25.8, 0.11, 16.9, 52.2, and 27.7 μg/g for Cd, Zn, Cu, Pb, Hg, As, Cr, and Ni, respectively. In the samples collected in the 1980s, the concentrations were 22.6, 21.3, 69.13, 0.26, and 57.5 μg/g (summarized 218 samples) for Cu, Pb, Zn, Cd, and Cr. The concentrations of Cu, Pb, Zn, and Cd increased slightly. Generally, higher concentrations were measured in the Bohai Bay and central Bohai Sea. The distribution patterns of heavy metals were significantly different between samples collected after the year of 2000 and those in the 1980s. In the 1980s and recent years, higher concentrations of Zn, Cd, and Pb were measured in the samples collected from Bohai Bay and Liaodong Bay, respectively. This indicated that the sources of heavy metals in Bohai Sea were changed significantly during the past decades.

  9. Levels of heavy metals in fish obtained from two fishing sites in ...

    African Journals Online (AJOL)

    Ekam

    Akwa Ibom State is located in the Niger Delta region of Nigeria and a substantial amount of the fishes consumed in the area are bought at Ifiayong and Ibaka beaches. This study was carried out to analyze heavy metals (Zn, Cu, Cd, Pb, Cr and As) in kidney, heart, gills and liver of silver catfish (Chrysichthys nigrodigitatus) ...

  10. a case s ation of heavy metals' health risk index in vegetable unflower

    African Journals Online (AJOL)

    userpc

    ABSTRACT. The lack of regular Control of pollution pr the environment. Vegetable Amaranth and of heavy metals (Mn, Zn, Cr, Fe, Cd, Pb, N selected areas in Kano state, Nigeria. Ato analyze the samples obtained. Six (6) para. Rate (DIR), Average daily Dose (ADD), Canc. Index (HI), were computed. 60, 05, 30, 50, found to ...

  11. Climate change impacts on the leaching of a heavy metal contimination in a small lowland catchment

    NARCIS (Netherlands)

    Visser, A.; Kroes, J.G.; Vliet, van M.T.H.; Blenkinsop, S.; Fowler, H.J.; Broers, H.P.

    2012-01-01

    The Keersop catchment (43 km2) in the south of The Netherlands has been contaminated by the emissions of four zinc ore smelters. The objective of this study was to assess the effects of future projected climate change on the hydrology and the leaching of heavy metals (i.e. Cd and Zn) in the

  12. An analysis of some heavy metals in the water, sediments and some ...

    African Journals Online (AJOL)

    The concentration of heavy metals(Zn, Ni, Pb, Cd and Cu) in the muscle of three fishery organisms (Chrysicththys nigrodigitatus, Sarotherodon galilaeus and Peneaus monodon)and in environmental samples of waterand sediment were tested in Yewa Lagoon, Nigeria. Five fishing villages along the lagoon were selected as ...

  13. Study of heavy metal in sewage sludge and in Chinese cabbage ...

    African Journals Online (AJOL)

    The study was performed to investigate the heavy metal content and availability for crops in sewage sludge and its accumulation in Chinese cabbage grown in sewage sludge amended soil. We determined the total and chemical fraction of As, Cr, Cd, Pb, Ni, Cu, Zn, Fe, Mg and Mn in sewage sludge and the total content of ...

  14. determination of the level of some heavy metals in water collected ...

    African Journals Online (AJOL)

    DR. AMINU

    In view of this, levels of some heavy metals, Zn, Pb, Cr, Cu, Ni, Co, Ag, Fe and. Mn were determined in .... Moreover, hyper reactivity and learning disorders have been ... Environmental Pollution (Series) B7, 11: 241 – 253. Connel, B.S., Cox, M.

  15. Changes in soil properties and plant uptake of heavy metals on ...

    African Journals Online (AJOL)

    Administrator

    were found to be enriched with the heavy metals (Zn, Cu and Cd) more than the adjacent soils (control) but were still within tolerable ... atmospheric deposition, manure and fertilizers, pesticides and industrial discharge (Holgate, 1979) .... against pH change in addition to the release of basic cations during the organic matter ...

  16. Analysis of the distribution of heavy metals in the soils of Bagega ...

    African Journals Online (AJOL)

    Uncontrolled exploitation and degradation in the environment over the past few decades as the result of urbanization and poverty has caused a serious damage to lives and properties. The study analysed the spatial distribution of heavy metal (Fe, Cu and Zn) in Bagega, Zamfara state. Three mapping units were identified ...

  17. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soils

    Science.gov (United States)

    Sewage sludge-amended soils may alter their ability to adsorb heavy metals over time, due to the decomposition of sludge-borne organic matter. Thus, we studied Cd, Ni, and Zn adsorption by a sewage sludge-amended soil (Typic Xerofluvent) before and after one-year incubation in both monometal and com...

  18. Glyphosate degradation as a soil health indicator for heavy metal polluted soils.

    NARCIS (Netherlands)

    Kools, S.A.E.; van Roovert, M.; van Gestel, C.A.M.; van Straalen, N.M.

    2005-01-01

    Glyphosate is a commonly used herbicide in grassland soils and microorganisms control its degradation. We introduce the concept of using the degradation rate as an indicator for ecosystem health. Testing this concept, we used soils with a long history of heavy metal pollution (Cu, Pb, and Zn). We

  19. Health risk assessment of heavy metals via dietary intake of wheat grown in Tianjin sewage irrigation area.

    Science.gov (United States)

    Zeng, Xiangfeng; Wang, Zuwei; Wang, Jun; Guo, Jinting; Chen, Xijuan; Zhuang, Jie

    2015-12-01

    The possible health risks from heavy metal (Zn, Cu, Cr, Ni, Pb, and Cd) contamination to the local population through the food chain were evaluated in Tianjin, China, a city with a long history of sewage irrigation. Results showed that the continuous application of wastewater has led to an accumulation of heavy metals in the soil, and 54.5 and 18.25% soil samples accumulated Cd and Zn in concentrations exceeding the permissible limits in China. Concentrations of heavy metals in wheat grain decreased in the order of Zn > Cu > Cr > Ni > Pb > Cd, and transfer factors for the six heavy metals showed the trend as Zn > Cd > Cu > Pb > Cr > Ni. The risk assessment for the six heavy metals through wheat consumption suggests that concentrations of Cr and Cd in some wheat samples exceed their reference oral dose for adults and children. In general, no target hazard quotient value of any individual element was greater than one, which means they are within the safe interval. However, 36.4 and 63.6% hazard index values for adults and children were greater than one, respectively. The health risk due to the added effects of heavy metals was significant for children and adults, and more attention should be paid tothe potential added threat fromheavy metals to the health of children via dietary intake of wheat in Tianjin.

  20. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    Science.gov (United States)

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  1. Heavy metal enrichment in the riparian sediments and soils of the Three Gorges Reservoir, China

    Directory of Open Access Journals (Sweden)

    Q. Tang

    2015-03-01

    Full Text Available The Three Gorges Reservoir encompasses a riparian zone with a vertical height of 30 m and a total area of 349 km2 that has been subjected to alternate inundation and exposure due to regular impoundment. Sedimentation on the riparian landforms constitutes an important pathway for riverine contaminant redistribution. In an attempt to understand heavy metal enrichment since water inundation, riparian sediments and soils were sampled along five transects in a typical riparian zone composed of cultivated bench terraces in the middle reaches. Heavy metals (Cr, Ni, Cu, Zn, As, Cd and Pb were determined to characterize the lateral distribution and vertical transfer ratio. The results indicated that all heavy metals were enriched to varying extents both in the riparian sediments and soils, compared with regional background contents in soils and the reference levels in sediments. However, heavy metal levels in the riparian sediments were generally higher than those in the riparian soils, while those in the upper riparian soils (0–5 cm were overall slightly higher than those in the lower riparian soils (5–10 cm. There was a decreasing trend of heavy metal contents with increasing elevation. The elevated levels of heavy metals in the riparian sediments may be attributed to sediment yields from upstream anthropogenic sources, especially during major rainstorms in the wet season when large loads of contaminated sediment may be produced from diffuse source areas. Heavy metals can also be adsorbed to pure sediment in the course of mobilization or after deposition. Considering that the riparian soils are local weathering products without mobilization, the enrichment of heavy metals may principally be ascribed to chemical adsorption from dissolved fractions or vertical transfer from overlaid sediments. Heavy metal enrichment may further be affected by the specific type of hydrologic regime such that relatively long flooding duration caused by water

  2. Customizable Biopolymers for Heavy Metal Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred [University of California, Department of Chemical and Environmental Engineering (United States)], E-mail: wilfred@engr.ucr.edu

    2005-10-15

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  3. [History of heavy metal pollution from tidal flat in Haizhou Bay].

    Science.gov (United States)

    Zhang, Rui; Zhang, Fan; Liu, Fu-Cheng; Yin, Fu-Jun; Ding, Ying-Jun; Gao, Jin-Rong; Chen, Jing; Shao, Wei

    2013-03-01

    Coastal zone could be considered as an important sink of regional source to sink and preserve historical records of environmental evolution. Four sediment cores, collected from tidal flat at Haizhou Bay near Lianyungang City, were examined for concentrations of heavy metals including Cd, Cr, Cu, Mn, Pb and Zn in core sediments to investigate the historical input of trace metals. In addition, sediment rates of cores LH3 and LH4 were determined based on radionuclide 210Pb. The results showed that grain size control effect was not the main factor that influenced the distribution of heavy metals. Heavy metals concentrations in the surface sediments were higher than these regional background values. Furthermore, Al element as a proxy of grain size was selected for normalization and calculation of metal enrichment factor (EF) and anthropogenic heavy metal fluxes. The results revealed that heavy metals in tidal flats were continuously enriched in the past decades, meanwhile, tidal flats have been significantly subjected to contaminations due to anthropogenic activities. Moreover, the depth profiles of heavy metals fluxes correspond to scenario of social-economy development of Lianyungang, which is an important urban area near Haizhou Bay. From 1950s to 2005, anthropogenic fluxes of metals increased with fluctuations, whereas, since 2005 anthropogenic fluxes declined, which may be correlated to the adjustment of industrial structure as well as the strengthened environmental regulation.

  4. Heavy metals in air depositions; I metalli pesanti nelle deposizioni atmosferiche

    Energy Technology Data Exchange (ETDEWEB)

    Barilli, L.; Bonanni, P.; Olivieri, P.; Scifo, A. [ENEA, Bologna (Italy). Dipt. ambiente

    1999-08-01

    A new way to calculate critical pollutant loads is presented. This paper describes a methodological approach, including modelling procedure, for assessing the critical loads of heavy metals and the findings produced by a monitoring programme designed to establish the amount of several heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) resulting from wet and dry deposition. An innovative system is used to collect cry deposits at a sampling located in Northern Italy (Bologna urban area, Italy). Rating total deposition flows against critical loads makes it possible to identify exceedence areas. [Italian] E' presentata la metodologia del calcolo dei carichi critici, che permette di valutare per ogni inquinante la qualita' ambientale di un territorio.

  5. Assessment of heavy metals leaching from (biochar obtained from industrial sewage sludge

    Directory of Open Access Journals (Sweden)

    Julija Pečkytė

    2015-10-01

    Full Text Available Biochar can be produced from many various feedstock including biomass residues such as straw, branches, sawdust and other agricultural and forestry waste. One of the alternatives is to obtain biochar from industrial sewage sludge, however, the use of such a product could be limited due to high quantities of heavy metals in the biochar as a product. Total concentration of heavy metals provides only limited information on the behavior of heavy metals, therefore, batch leaching and up-flow percolation leaching tests were applied to study the leaching of heavy metals (Cd, Pb, Cr, Ni, Zn, Cu from (biochar produced from two types of sewage sludge: from paper mill and leather industries.

  6. Contamination by urban superficial runoff: accumulated heavy metals on a road surface

    Directory of Open Access Journals (Sweden)

    Carlos Alfonso Zafra Mejía

    2007-01-01

    Full Text Available Studying the behaviour of accumulated contamination on urban surfaces is important in designing control methods minimising the impacts of surface runoff on the environment. This paper presents data regarding the sediment collected on the surface of an urban road in the city of Torrelavega in northern Spain during a period of 65 days during which 132 samples were collected. Two types of sediment collection samples were obtained: vacuumed dry samples (free load and those swept up following vacuuming (fixed load. The results showed that heavy metal concentration in the collected sediment (Pb, Zn, Cu and Cd was inversely proportional to particle diameter. High heavy metal concentrations were found in the smaller fraction (63 pm. Regression equations were calculated for heavy metal concentration regarding particle diameter. Large heavy metal loads were found in the larger fraction (125 pm. The results provide information for analysing runoff water quality in urban areas and designing treatment strategies.

  7. Behavior of solid matters and heavy metals during conductive drying process of sewage sludge

    Directory of Open Access Journals (Sweden)

    Jianping Luo

    2016-12-01

    Full Text Available Behavior of solid matters and heavy metals during conductive drying process of sewage sludge was evaluated in a sewage sludge disposal center in Beijing, China. The results showed most of solid matters could be retained in the dried sludge after drying. Just about 3.1% of solid matters were evaporated with steam mainly by the form of volatile fatty acids. Zn was the dominant heavy metal in the sludge, followed by Cu, Cr, Pb, Ni, Hg, and Cd. The heavy metals in the condensate were all below the detection limit except Hg. Hg in the condensate accounted for less than 0.1% of the total Hg. It can be concluded that most of the heavy metals are also retained in the dried sludge during the drying process, but their bioavailability could be changed significantly. The results are useful for sewage sludge utilization and its condensate treatment.

  8. Contamination by urban superficial runoff: accumulated heavy metals on a road surface

    Directory of Open Access Journals (Sweden)

    Carlos Alfonso Zafra Mejía

    2010-04-01

    Full Text Available Studying the behaviour of accumulated contamination on urban surfaces is important in designing control methods minimising the impacts of surface runoff on the environment. This paper presents data regarding the sediment collected on the surface of an urban road in the city of Torrelavega in northern Spain during a period of 65 days during which 132 samples were collected. Two types of sediment collection samples were obtained: vacuumed dry samples (free load and those swept up following vacuuming (fixed load. The results showed that heavy metal concentration in the collected sediment (Pb, Zn, Cu and Cd was inversely proportional to particle diameter. High heavy metal concentrations were found in the smaller fraction (63 pm. Regression equations were calculated for heavy metal concentration regarding particle diameter. Large heavy metal loads were found in the larger fraction (125 pm. The results provide information for analysing runoff water quality in urban areas and designing treatment strategies.

  9. Electrodialytic Separation of Phosphorus and Heavy Metals from Two Types of Sewage Sludge Ash

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2014-01-01

    of P and heavy metals is required. The present work is an experimental screening of a new combination of acid extraction and electrodialysis–electrodialytic separation (EDS) for simultaneous P recovery and removal of heavy metals. Experiments were conducted with two different ashes; rich in Fe or Al......During sewage sludge incineration phosphorus (P) is retained in the ash in a form not directly available to plants. As P is a sparse resource, it is important to develop techniques for recovery of P from incinerated sewage sludge ashes (ISSA). Heavy metals are concentrated in ISSA and separation....... The separation method was best suited for the Fe-rich ash, where it was possible to separate P into one processing solution, heavy metals (Cu, Zn, Ni, Pb) into another, keeping the ash suspended in a third solution (which though still contained P after 1 week of EDS). For the Al rich ash, the separation...

  10. Influence of temperature and salinity on heavy metal uptake by submersed plants

    Energy Technology Data Exchange (ETDEWEB)

    Fritioff, A. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)]. E-mail: fritioff@botan.su.se; Kautsky, L. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden); Greger, M. [Department of Botany, Stockholm University, S-106 91 Stockholm (Sweden)

    2005-01-01

    Submersed plants can be useful in reducing heavy metal concentrations in stormwater, since they can accumulate large amounts of heavy metals in their shoots. To investigate the effects of water temperature and salinity on the metal uptake of two submersed plant species, Elodea canadensis (Michx.) and Potamogeton natans (L.), these plants were grown in the presence of Cu, Zn, Cd, and Pb at 5, 11, and 20 deg. C in combination with salinities of 0, 0.5, and 5%o. The metal concentrations in the plant tissue increased with increasing temperature in both species; the exception was the concentration of Pb in Elodea, which increased with decreasing salinity. Metal concentrations at high temperature or low salinity were up to twice those found at low temperature or high salinity. Plant biomass affected the metal uptake, with low biomass plants having higher metal concentrations than did high biomass plants. - Metal concentrations increase with increasing temperature and decreasing salinity in two aquatic plants.

  11. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    Science.gov (United States)

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  12. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    Science.gov (United States)

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health.

  13. Determination of heavy metals in the ambient atmosphere.

    Science.gov (United States)

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2017-01-01

    Heavy metal determination in ambient air is an important task for environmental researchers because of their toxicity to human beings. Some heavy metals (hexavalent chromium (Cr), arsenic (As), cadmium (Cd) and nickel (Ni)) have been listed as carcinogens. Furthermore, heavy metals in the atmosphere can accumulate in various plants and animals and enter humans through the food chain. This article reviews the determination of heavy metals in the atmosphere in different areas of the world since 2006. The results showed that most researchers concentrated on toxic metals, such as Cr, Cd, Ni, As and lead. A few studies used plant materials as bio-monitors for the atmospheric levels of heavy metals. Some researchers found higher concentrations of heavy metals surrounding industrial areas compared with residential and/or commercial areas. Most studies reported the major sources of the particulate matter and heavy metals in the atmosphere to be industrial emissions, vehicular emissions and secondary aerosols.

  14. Flow analysis of heavy metals in a pilot-scale incinerator for residues from waste electrical and electronic equipment dismantling

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yu-Yang; Feng, Yi-Jian; Cai, Si-Shi; Ding, Wei-Xu; Shen, Dong-Sheng, E-mail: shends@zju.edu.cn

    2013-10-15

    Highlights: • Cu, Zn, Pb, and Ni are enriched in bottom ash from WEEE dismantling residues. • The heavy metal residual fraction restricts transfer in the incinerator. • Pre-treatment to remove heavy metals from WEEE residues would reduce emissions. -- Abstract: The large amount of residues generated from dismantling waste electrical and electronic equipment (WEEE) results in a considerable environmental burden. We used material flow analysis to investigate heavy metal behavior in an incineration plant in China used exclusively to incinerate residues from WEEE dismantling. The heavy metals tested were enriched in the bottom and fly ashes after incineration. However, the contents of heavy metals in the bottom ash, fly ash and exhaust gas do not have a significant correlation with that of the input waste. The evaporation and recondensation behavior of heavy metals caused their contents to differ with air pollution control equipment because of the temperature difference during gas venting. Among the heavy metals tested, Cd had the strongest tendency to transfer during incineration (T{sub Cd} = 69.5%) because it had the lowest melting point, followed by Cu, Ni, Pb and Zn. The exchangeable and residual fractions of heavy metals increased substantially in the incineration products compared with that of the input residues. Although the mass of residues from WEEE dismantling can be reduced by 70% by incineration, the safe disposal of the metal-enriched bottom and fly ashes is still required.

  15. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Science.gov (United States)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-04-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb2+), copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  16. Organic matter and heavy metals content modeling in sewage sludge treated with reed bed system

    Science.gov (United States)

    Boruszko, Dariusz; Dąbrowski, Wojciech; Malinowski, Paweł

    2017-11-01

    The long process of sludge stabilization (7-15 years) remarkably reduces the organic matter content and causes the process of sludge humifaction. This paper presents the results of using low-cost methods of sludge treatment in the wastewater treatment plant located in Zambrow, Podlaskie Province. The results of studies on the organic matter and heavy metals content in sewage sludge after treatment in a reed bed system are presented. The aim of the research was to evaluate and model organic matter and heavy metals concentrations during sewage stabilization in reed bed lagoons. The lowest concentration, below 1.3 mg/kg DM of the examined seven heavy metals was mercury (Hg). The highest concentration, exceeding 1300 mg/kg DM was zinc (Zn). The obtained results for the heavy metals in sewage sludge from the reed bed lagoons in Zambrow show that the average content of the analyzed heavy metals is approximately 1620 mg/kg DM. The results of the study demonstrate a high efficiency of low-cost methods used in Zambrów WWTP in terms of the quality of the processed sludge. Sewage sludge from the lowest layer of the reed lagoon (12-14 years of dewatering and transformation) is characterized by the lowest organic matter and heavy metals content. The higher a sediment layer lies, i.e. the shorter the time of processing, the higher is the heavy metals content. This indicates a great role of reeds in the accumulation of these compounds.

  17. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment

    Science.gov (United States)

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-01-01

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion. PMID:26959043

  18. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment.

    Science.gov (United States)

    Zhou, Hang; Yang, Wen-Tao; Zhou, Xin; Liu, Li; Gu, Jiao-Feng; Wang, Wen-Lei; Zou, Jia-Ling; Tian, Tao; Peng, Pei-Qin; Liao, Bo-Han

    2016-03-04

    The objectives of the present study were to investigate heavy metal accumulation in 22 vegetable species and to assess the human health risks of vegetable consumption. Six vegetable types were cultivated on farmland contaminated with heavy metals (Pb, Cd, Cu, Zn, and As). The target hazard quotient (THQ) method was used to assess the human health risks posed by heavy metals through vegetable consumption. Clear differences were found in the concentrations of heavy metals in edible parts of the different vegetables. The concentrations of heavy metals decreased in the sequence as leafy vegetables > stalk vegetables/root vegetables/solanaceous vegetables > legume vegetables/melon vegetables. The ability of leafy vegetables to uptake and accumulate heavy metals was the highest, and that of melon vegetables was the lowest. This indicated that the low accumulators (melon vegetables) were suitable for being planted on contaminated soil, while the high accumulators (leafy vegetables) were unsuitable. In Shizhuyuan area, China, the total THQ values of adults and children through consumption of vegetables were 4.12 and 5.41, respectively, suggesting that the residents may be facing health risks due to vegetable consumption, and that children were vulnerable to the adverse effects of heavy metal ingestion.

  19. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    Science.gov (United States)

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence. © 2013 Published by Elsevier Inc.

  20. Heavy metal contamination of stream water and sediment in the Taejon area

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Woong [Paichai University, Taejon (Korea, Republic of); Lee, Hyun Koo [Chungnam National University, Taejon (Korea, Republic of)

    1996-08-31

    Associated with the rapid pace of overpopulation and industrialization is the increase of municipal and industrial wastewater and heavy metal contamination from these point sources have received much attention in the Taejon area. To reduce the environmental problems, 21 stream sediments from Gap-chun, Yudeung-chun, Yusung-chun and Keum river have been analyzed for Cd, Cu, Pb and Zn. The results show that heavy metal concentrations are high in sediments from the Sintanjin and Taehwa Industrial Complex area with particular reference to 1388 {mu}g/g Cu in the stream sediment of Yusung-chun. When the geochemical map drawn from the Kriging technique of these data are compared with the industrialization and urbanization index map, high concentrations of heavy metals are found in stream sediments in industrialized areas resulting from the accumulation of heavy metals from the polluting factories. Concentrations of Cu in sediments from the Taehwa Industrial Complex area and those of Zn in sediments from the Sintanjin Complex area higher than EPA standard in the U.S.A and may be the potential sources of pollution in Keum river with possible implications to human health. For the speciation of Cu, Pb and Zn, the high proportions of exchangeable phase of Cu and Zn in stream sediments indicate that the metals originate not from parent materials but from wastewater and exist as the adsorbed phase on the surface of sediments. These metals are easily dissolved into the water by the reaction and relative amounts of easily dissolved phase of metals are in the order of Cu = Zn > Pb. (author). 17 refs., 4 tabs., 7 figs.

  1. Pollution and pollution tolerance in the case of heavy metals; Schadstoffbelastung und -belastbarkeit. Schwermetalle

    Energy Technology Data Exchange (ETDEWEB)

    Kretschmer, H.; Neumann, A.; Surkus, A.E. [Rostock Univ. (Germany). Inst. fuer Bodenkunde

    1997-12-31

    Urban soils often have high concentrations of heavy metals. This is particularly true of the technogenic substrates often found in cities and industrial and trading estates. The aim of the present project was therefore to mitigate the deficits of our present knowledge on problems relating to heavy metals in technogenic substrates. The studies presented in the following were carried out in pursuit of the following tasks: determination of the total concentration and mobility of the elements Cu, Pb, Cd, Zn, and Ni in 11 lead soil profiles from technogenic substrates in Rostock, Kiel, Eckernfjoerde and Halle/Saale; study of the dependence of heavy metal mobility on different soil characteristics (e.g. pH, clay, organic carbon, and total heavy metal content); recording of adsorption isotherms characterising the sorption and desorption behaviour of heavy metals; estimation of the heavy metal binding capacity of technogenic substrates following the method quoted by DVWK (1988) for heavy metals; and performance of percolation experiments on soil columns for deriving material transport parameters and of model calculations on heavy metal migration. [Deutsch] Urbane Boeden, besonders die in Staedten, Industrie- und Gewerbegebieten verbreitet lagernden technogenen Substrate, weisen oft hohe Schwermetallgehalte auf. Ziel dieses Projektes ist daher, Erkenntnisdefizite zur Schwermetallproblematik technogener Substrate zu verringern. Den nachfolgend dargestellten Untersuchungen liegt folgende Aufgabenstellung zugrunde: - Bestimmung der Gesamtgehalte und Mobilitaeten der Elemente Cu, Pb, Cd, Zn und Ni an 11 Leitprofilen aus technogenen Substraten in Rostock, Kiel, Eckernfoerde und Halle/Saale, - Untersuchung der Abhaengigkeit der Schwermetallmobilitaet von verschiedenen Bodenkennwerten (pH-Wert, Ton-, Corg-, Kalkgehalt, KAK, Schwermetall-Gesamtgehalt), - Aufnahme von Adsorptionsisothermen zur Kennzeichnung des Sorptions- und Desorptionsverhaltens von Schwermetallen, - Schaetzung

  2. Effect of heavy metals on bacterial transport

    Science.gov (United States)

    Zhang, H.; Olson, M. S.

    2010-12-01

    Adsorption of metals onto bacteria and soil takes place as stormwater runoff infiltrates into the subsurface. Changes in both bacterial surfaces and soil elemental content have been observed, and may alter the attachment of bacteria to soil surfaces. In this study, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyses were performed on soil samples equilibrated with synthetic stormwater amended with copper, lead and zinc. The results demonstrate the presence of copper and zinc on soil surfaces. To investigate bacterial attachment behavior, sets of batch sorption experiments were conducted on Escherichia Coli (E. coli) under different chemical conditions by varying solution compositions (nutrient solution vs synthetic stormwater). The adsorption data is best described using theoretical linear isotherms. The equilibrium coefficient (Kd) of E. coli is higher in synthetic stormwater than in nutrient solution without heavy metals. The adsorption of heavy metals onto bacterial surfaces significantly decreases their negative surface charge as determined via zeta potential measurements (-17.0±5.96mv for E. coli equilibrated with synthetic stormwater vs -21.6±5.45mv for E. coli equilibrated with nutrient solution), indicating that bacterial attachment may increase due to the attachment of metals onto bacterial surfaces and their subsequent change in surface charge. The attachment efficiency (α) of bacteria was also calculated and compared for both solution chemistries. Bacterial attachment efficiency (α) in synthetic stormwater is 0.997, which is twice as high as that in nutrient solution(α 0.465). The ratio of bacterial diameter : collector diameter suggests minimal soil straining during bacterial transport. Results suggest that the presence of metals in synthetic stormwater leads to an increase in bacterial attachment to soil surfaces. In terms of designing stormwater infiltration basins, the presence of heavy metals seems to

  3. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses......). In the stirred setup it is possible to shorten the transport route to few mm and to have a faster and continuous process. The present paper for the first time reports a direct comparison of the two options. The remediation of the stirred suspension showed faster than remediation of the water saturated soil even...... without a short distance between the membranes. The acidification of the suspended soil was fastest and following the mobilization of heavy metals. This may indicate that water splitting at the anion exchange membrane is used more efficiently in the stirred setup....

  4. Heavy metals extraction from municipal solid waste incineration fly ash using adapted metal tolerant Aspergillus niger.

    Science.gov (United States)

    Yang, Jie; Wang, Qunhui; Wang, Qi; Wu, Tingji

    2009-01-01

    This study focused on the adaptation of Aspergillus niger tolerating high concentration of heavy metals for bioleaching of fly ash. The Plackett-Burman design indicated that Al and Fe inhibited the growth of A. niger (AS 3.879 and AS 3.40) significantly. The single metal (Al and Fe) and multi-metals adapted AS 3.879 strain tolerated up to 3500 mg/L Al, 700 mg/L Fe, and 3208.1mg/L multi-metals, respectively. The order of metal extraction yield in two-step bioleaching of 60 and 70 g/L fly ash using Al adapted, multi-metals adapted and un-adapted AS 3.879 strains was as follows: multi-metals adapted>Al adapted>un-adapted. The multi-metals adapted strain grew with up to 70 g/L fly ash and secreted 256 mmol/L organic acids after 288 h, where 87.4% Cd, 64.8% Mn, 49.4% Zn and 45.9% Pb were dissolved. The extracted metals in TCLP test of the bioleached fly ash by multi-metals adapted strain were under the regulated levels in China.

  5. Modeling Heavy Metal Removal in Wetlands.

    Science.gov (United States)

    1992-05-01

    1976 a,b,c) and Pettersson (1976) treated heavy metals uptake according to Michaelis-Menten kinetics ( Lehninger , 1975), discussed later in detail...copper kinetics equation as used in this modeling effort is presented below, after Lehninger (1975): dv_ dV, Ca (5) dt dt C.+K, where: v = rate of copper...the bulk solution, Cb, using either the Lineweaver-Burk double reciprocal or Eadie-Hofstee graphical methods ( Lehninger , 1975). Nielsen (1976 b) used

  6. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type

    DEFF Research Database (Denmark)

    Egemose, Sara; Sønderup, Melanie J.; Grudinina, Anna

    2015-01-01

    Heavy metals have toxic effects on flora and fauna in the aquatic environments and are of great concern in stormwater. Heavy metal runoff was studied in 37 stormwater ponds in Denmark with varying heavy metal load, catchment type and pond design. The studied metals were Cu, Cr, Cd, Pb, Ni and Zn....... The concentrations varied considerably depending on the catchment type, with the highest concentrations coming from industrial areas and the lowest from uncultivated and rural areas. Ponds can effectively remove heavy metals in particulate forms through sedimentation processes, but the dissolved forms are more...... difficult to retain. The removal efficiency in the ponds varied considerably, with the highest retention of Pb, Ni and Zn due to higher particulate fraction. The retention increased with increased pond volume-to-reduced catchment area ratio. In addition, the pond age affected the efficiency; whereas ponds...

  7. Spatial distribution of heavy metals density in cultivated soils of Central and East Parts of Black Sea Region in Turkey

    Directory of Open Access Journals (Sweden)

    Mehmet Arif Ozyazici

    2017-07-01

    Full Text Available Heavy metal contamination has caused serious environmental and health-related problems around the world. To identify the concentrations and sources of heavy metals, 3400 surface soil samples (0-20 cm depth were collected from the study area. Subsequently, the concentrations of Cd, Co, Cu, Ni, Pb and Zn in the samples were measured. In order to evaluate natural or anthropogenic sources of heavy metal content and their spatial distribution in agricultural fields of Central and East Parts of Black Sea Region soil geostatistic approach were combined with geographic information system (GIS. GIS technology was employed to produce spatial distribution maps of the 6 elements in the study area. The results showed that the concentration of Ni and Co exceeded its threshold level. The local pollution from Ni was attributed to the natural influences. The concentrations of the other heavy metals are relatively lower than the critical values. The mean values of the heavy metal contents arranged in the following decreasing order: Ni > Zn > Cu >Pb> Co > Cd in the study area. On the other hand, according to distribution ratio of heavy metals in total soil samples, except for Co and Ni distribution in total soil samples, all other heavy metal element exceeded concentration in samples were determined about less than 10% total soil samples. However, in some regions of the study area, the Cd, Cu and Zn contents were also slightly raised, this case possibly stem from excessive P fertilization and field traffic.

  8. [Effects of stabilization treatment on migration and transformation of heavy metals in mineral waste residues].

    Science.gov (United States)

    Zhao, Shu-Hua; Chen, Zhi-Liang; Zhang, Tai-Ping; Pan, Wei-Bin; Peng, Xiao-Chun; Che, Rong; Ou, Ying-Juan; Lei, Guo-Jian; Zhou, Ding

    2014-04-01

    Different forms of heavy metals in soil will produce different environmental effects, and will directly influence the toxicity, migration and bioavailability of heavy metals. This study used lime, fly ash, dried sludge, peanut shells as stabilizers in the treatment of heavy metals in mineral waste residues. Morphological analyses of heavy metal, leaching experiments, potted plant experiments were carried out to analyze the migration and transformation of heavy metals. The results showed that after adding stabilizers, the pH of the acidic mineral waste residues increased to more than neutral, and the organic matter content increased significantly. The main existing forms of As, Pb, and Zn in the mineral waste residues were the residual. The contents of exchangeable and organic matter-bound As decreased by 65.6% and 87.7% respectively after adding fly ash, dried sludge and peanut shells. Adding lime, fly ash and peanut shells promoted the transformation of As from the Fe-Mn oxide-bound to the carbonate-bound, and adding lime and fly ash promoted the transformation of Pb and Zn from the exchangeable, Fe-Mn oxide-bound, organic matter-bound to the residual. After the early stage of the stabilization treatment, the contents of As, Pb and Zn in the leachate had varying degrees of decline, and adding peanut shells could reduce the contents of As, Pb and Zn in the leachate further. Among them, the content of As decreased most significantly after treatment with fly ash, dried sludge and peanut shells, with a decline of 57.4%. After treatment with lime, fly ash and peanut shells, the content of Zn decreased most significantly, by 24.9%. The addition of stabilizers was advantageous to the germination and growth of plants. The combination of fly ash, dried sludge and peanut shell produced the best effect, and the Vetiveria zizanioides germination rate reached 76% in the treated wasted mineral residues.

  9. Heavy metals fractionation and desorption in pine bark amended mine soils.

    Science.gov (United States)

    Fernández-Calviño, David; Cutillas-Barreiro, Laura; Paradelo-Núñez, Remigio; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, María J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Arias-Estévez, Manuel

    2017-05-01

    The European Community Bureau of Reference method (BCR) was used for evaluating the effects of pine bark amendment (0, 24 and 48 g kg-1) and ageing (1 and 30 days) on Cd, Cu, Ni, Pb and Zn fractionation, on samples from an acid mine soil. In addition, the stirred flow chamber technique was applied for analyzing heavy metals desorption from the unamended and pine bark amended mine soil. When the unamended soil were not subjected to ageing, the added heavy metals were mainly accumulated as soluble fraction (>90% for Cd, Ni and Zn; 71% for Cu; and 45% for Pb). Pine bark amendment and ageing had little effect on Cd, Ni and Zn fractionation, whereas important changes were detected for Cu and Pb in response to both pine bark amendment and ageing (decrease in the soluble fractions, and increase in less mobile fractions). Desorption experiments showed that both pine bark amendment and ageing decreased heavy metals release from the mine soil. The results of this study indicate that pine bark amendment could be used to increase heavy metals retention (especially in the case of Cu and Pb) in acid mine soils, thus reducing the risks of metal transfer to uncontaminated environmental zones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [Distribution Characteristics of Heavy Metals in Environmental Samples Around Electroplating Factories and the Health Risk Assessment].

    Science.gov (United States)

    Guo, Peng-ran; Lei, Yong-qian; Zhou, Qiao-li; Wang, Chang; Pan, Jia-chuan

    2015-09-01

    This study aimed to investigate the pollution degree and human health risk of heavy metals in soil and air samples around electroplating factories. Soil, air and waste gas samples were collected to measure 8 heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in two electroplating factories, located in Baiyun district of Guangzhou city. Geoaccumulation index and USEPA Risk Assessment Guidance for Superfund (RAGS) were respectively carried out. Results showed that concentrations of Hg and Pb in waste gas and Cr in air samples were higher than limits of the corresponding quality standards, and concentrations of Cd, Hg and Zn in soil samples reached the moderate pollution level. The HQ and HI of exposure by heavy metals in air and soil samples were both lower than 1, indicating that there was no non-carcinogen risk. CRAs and CRCr in soil samples were beyond the maximum acceptable level of carcinogen risk (10(-4)), and the contribution rate of CRCr to TCR was over 81%. CRCr, CRNi and TCR in air samples were in range of 10(-6) - 10(-4), indicating there was possibly carcinogen risk but was acceptable risk. CR values for children were higher than adults in soils, but were higher for adults in air samples. Correlation analysis revealed that concentrations of heavy metals in soils were significantly correlated with these in waste gas samples, and PCA data showed pollution sources of Cd, Hg and Zn in soils were different from other metals.

  11. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China.

    Science.gov (United States)

    Liu, Guannan; Wang, Juan; Zhang, Erxi; Hou, Jing; Liu, Xinhui

    2016-05-01

    Heavy metal contamination of soils has been a long-standing environmental problem in many parts of the world, and poses enormous threats to ecosystem and human health. Speciation of heavy metals in soils is crucial to assessing environmental risks from contaminated soils. In this study, total concentrations and speciation of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn were measured for agricultural soils near mines along the Diaojiang River in Guangxi Zhuang Autonomy Region, China. The sources of heavy metals in soils also were identified to assess their effect on speciation distribution of soil heavy metals. Furthermore, the speciation distribution of Cd and Zn, main soil heavy metal pollutants, in dry land and paddy soils were compared. Results showed that there were two severely polluted regions near mine area reaching alarming pollution level. As, Cd, Pb, and Zn were more affected by mining activities, showing very strong pollution level in soils. The mean percentage of exchangeable and carbonate fraction was highest and up to 46.8 % for Cd, indicating a high environmental risk. Greater bioavailable fractions of As, Cd, Cu, Mn, Pb, and Zn were found in soils heavily polluted by mining activities, whereas Cr and Ni as geogenic elements in the stable residual fraction. In addition, in the dry land soils, reducible fraction proportion of Cd was higher than that in the paddy soils, whereas exchangeable and carbonate fraction of Cd was lower than that in the paddy soils. Oxidizable fraction of Zn was higher in the paddy soils than that in the dry land soils. The results indicate that the sources of soil heavy metals and land types affect heavy metal speciation in the soil and are significant for environmental risk assessment of soil heavy metal pollutions.

  12. Heavy metal concentration in mangrove surface sediments from the north-west coast of South America.

    Science.gov (United States)

    Fernández-Cadena, J C; Andrade, S; Silva-Coello, C L; De la Iglesia, R

    2014-05-15

    Mangrove ecosystems are coastal estuarine systems confined to the tropical and subtropical regions. The Estero Salado mangrove located in Guayaquil, Ecuador, has suffered constant disturbances during the past 20 years, due to industrial wastewater release. However, there are no published data for heavy metals present in its sediments and the relationship with anthropogenic disturbance. In the present study, metal concentrations were evaluated in surface sediment samples of the mangrove, showing that B, Cd, Cu, Pb, Se, V, and Zn levels exceeded those declared in international environmental quality standards. Moreover, several metals (Pb, Sn, Cd, Ag, Mo, Zn and Ni) could be linked to the industrial wastewater present in the studied area. In addition, heavy metal levels detected in this mangrove are higher than previous reports on mangrove sediments worldwide, indicating that this mangrove ecosystem is one of the most disrupted on earth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Heavy metal distribution and bioaccumulation in Chihuahuan Desert Rough Harvester ant (Pogonomyrmex rugosus) populations

    Energy Technology Data Exchange (ETDEWEB)

    Del Toro, I., E-mail: ideltoro@nsm.umass.ed [Department of Organismic and Evolutionary Biology, University of Massachusetts at Amherst, 611 N. Pleasant Street Amherst, MA 01003 (United States); Floyd, K. [Environmental Science and Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States); Gardea-Torresdey, J. [Department of Chemistry, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States); Borrok, D. [Department of Geological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968 (United States)

    2010-05-15

    Heavy metal contamination can negatively impact arid ecosystems; however a thorough examination of bioaccumulation patterns has not been completed. We analyzed the distribution of As, Cd, Cu, Pb and Zn in soils, seeds and ant (Pogonomyrmex rugosus) populations of the Chihuahuan Desert near El Paso, TX, USA. Concentrations of As, Cd, Cu, and Pb in soils, seeds and ants declined as a function of distance from a now inactive Cu and Pb smelter and all five metals bioaccumulated in the granivorous ants. The average bioaccumulation factors for the metals from seeds to ants ranged from 1.04x (As) to 8.12x (Cd). The findings show bioaccumulation trends in linked trophic levels in an arid ecosystem and further investigation should focus on the impacts of heavy metal contamination at the community level. - Heavy metals bioaccumulate in desert ants.

  14. Uptake of certain heavy metals from contaminated soil by mushroom--Galerina vittiformis.

    Science.gov (United States)

    Damodaran, Dilna; Vidya Shetty, K; Raj Mohan, B

    2014-06-01

    Remediation of soil contaminated with heavy metals has received considerable attention in recent years. In this study, the heavy metal uptake potential of the mushroom, Galerina vittiformis, was studied in soil artificially contaminated with Cu (II), Cd (II), Cr (VI), Pb (II) and Zn (II) at concentrations of 50 and 100mg/kg. G. vittiformis was found to be effective in removing the metals from soil within 30 days. The bioaccumulation factor (BAF) for both mycelia and fruiting bodies with respect to these heavy metals at 50mg/kg concentrations were found to be greater than one, indicating hyper accumulating nature by the mushroom. The metal removal rates by G. vittiformis was analyzed using different kinetic rate constants and found to follow the second order kinetic rate equation except for Cd (II), which followed the first order rate kinetics. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  16. Removal of heavy metals from wastewater using electrocoagulation

    OpenAIRE

    Pokhrel, Nikunj

    2017-01-01

    Heavy metal contamination of water sources is a constant threat to human health. High exposure of heavy metals have often resulted in severe health hazards such as cancer, growth deficiency, liver and kidney damage and in some extreme cases death (World Health Organization, 2005). Heavy metals are often released into the environment and mainly into the water sources in the form of industrial and municipal wastewater. This thesis aims at examining the possibility of removing 5 different heavy ...

  17. Analysis of Heavy Metal in Electrocoagulated Metal Hydroxide Sludge (EMHS from the Textile Industry by Energy Dispersive X-Ray Fluorescence (EDXRF

    Directory of Open Access Journals (Sweden)

    Tanveer Mehedi Adyel

    2012-12-01

    Full Text Available Environmental pollution due to discharges of heavy metal containing sludge from textile industries is a common nuisance in Bangladesh, where no treatment of sludge is carried out before final disposals. Energy Dispersive X-ray Fluorescence (EDXRF was employed in the present study to analyze the heavy metal content of Electrocoagulated Metal Hydroxide Sludge (EMHS collected from a composite textile industry. Thirteen heavy metals, viz., Mn, Ti, Cu, Zn, Ni, Sr, V, Cr, Zr, Hg, Cd, Nb and Ga, were detected. Mn, Ni, Cu, Zn and Cd exceeded the permissible limit to apply the EMHS in agricultural land. Cr, Ni, Cu and Zn were compared to the values of the European legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control landfilled. EMHS was categorized as class I and needs to be deposited in controlled landfills.

  18. Assessing phytotoxicity of heavy metals in remediated soil.

    Science.gov (United States)

    Branzini, A; Zubillaga, M S

    2010-01-01

    Copper (Cu), zinc (Zn) and chromium (Cr) are pollutants that usually are accumulated in soils. Their toxicity can be decreased by applying amendments. We proposed to evaluate changes in Cu, Zn, and Cr availability, due to the application of amendments, through chemical analysis and phytotoxicity tests. The phytotoxicity test was carried out using species belonging to Sesbania genus; plant parameters were measured 48, 72, 96, and 168 hours after the start of incubation. The treatments included enriched soil, in addition to biosolid compost and triple superphosphate. Cu and Zn amounts were higher in treatments without amendments, indicating immobilization on the part of these. The amounts of Cr tended to decrease with amendments application. The amendments increased pH values and decreased EC; however, this had no impact on the results. No relationship was found among pH, EC, and plant parameters. Different behaviors were observed. S. virgata showed germination seed delay. In addition, while in S. virgata the IG increased during the assay, in S. punicea it diminished. The application of compost, fertilizer or both combined could be of interest for contaminated soils remediation. The use of chemical analysis and phytotoxicity tests allowed to estimate heavy metal availability and the effect on both Sesbania species.

  19. Enrichment of marsh soils with heavy metals by effect of anthropic pollution

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Flora A.; Covelo, Emma F.; Cerqueira, Beatriz [Departamento de Biologia Vegetal y Ciencia del Suelo, Universidad de Vigo, As Lagoas. Marcosende 4, 36310 Vigo (Spain); Andrade, Maria Luisa, E-mail: mandrade@uvigo.es [Departamento de Biologia Vegetal y Ciencia del Suelo, Universidad de Vigo, As Lagoas. Marcosende 4, 36310 Vigo (Spain)

    2009-10-30

    The impact of waste disposal on marsh soils was assessed in topsoil samples collected at eight randomly selected points in the salt marsh in Ramallosa (Pontevedra, Spain) at 4-month intervals for 2 years. Polluted soil samples were characterized in physico-chemical terms and their heavy metal contents determined by comparison with control, unpolluted samples. The results revealed a marked effect of waste discharges on the soils in the area, which have low contents in heavy metals under normal environmental conditions. In fact, the studied soils were found to contain substantial amounts of total and DTPA-extractable Cd, Cu, Pb and Zn. Based on the relationship of the redox potential with the DTPA-extractable Cd, Cu, Pb, and Zn contents of the soils, strongly reductive conditions raised the total contents in these elements by effect of their remaining in the soils as precipitated sulphides. Such contents, however, decreased as oxidative conditions gradually prevailed. The contents in DTPA-extractable metals increased with increasing Eh through the release of the metals in ionic form to the soil solution under oxidative conditions. The contents in heavy metals concentrating in the polluted soils were several times higher than those in the control soils (viz. 2 vs. 6 for Cd, 4 vs. 6 for Cu, 4 vs. 20 for Pb, and 2 vs. 15 for Zn, all in mg kg{sup -1}). This can be expected to influence the amounts of available heavy metals present in the soils, and hence the environmental quality of the area, in the near future. Based on its geoaccumulation index (Class {>=}3 for Cd and Cu, and 1-4 for Pb and Zn), the Ramallosa marsh is highly polluted with Cd and moderately to highly polluted with Cu, Pb and Zn. The enrichment factors obtained confirm that the salt marsh is highly polluted (especially with Cd) as the primary result of anthropic activity.

  20. Heavy Metal Bioaccumulation Capability of Woody Plants in Mine wasteland of Karst Areas

    Science.gov (United States)

    Xiuru, Wang; Zhongliang, Huang; Xuan, Zhang; Zijian, Wu

    2017-04-01

    The bioaccumulation capability and transfer characteristics of Pb, Zn, Cu and Cd in soil and 6 different woody plants collected from a typical lead-zinc mine wasteland of Karst area, Hunan province were investigated, including Cunninghamia lanceolata(Lamb.) Hook., Swida wilsoniana (Wanger.), Koelreuteria paniculata, Paulownia., Cinnamomum camphora (L.) Presl., and Sapium sebiferum (L.) Roxb. The results showed that the 6 plants could adapt to the heavy metal polluted environment, and there was a positive correlation between the heavy metal content in plants and soil.Swida wilsoniana (Wanger.) and Sapium sebiferum (L.) Roxb. had the largest Pb bioaccumulation factor of 0.03; Paulownia. had the highest Zn bioaccumulation factor of 0.37; the largest Pb transfer factor of 1.31 were found in Koelreuteria paniculata; and Zn transfer factor of Paulownia. reached 1.45. These 4 woody plants are suitable for phytoremediation of mine wasteland of Karst areas.

  1. Distribution of heavy metals and foraminiferal assemblages in sediments of Biscayne Bay, Florida, USA

    Science.gov (United States)

    Carnahan, E.A.; Hoare, A.M.; Hallock, P.; Lidz, B.H.; Reich, C.D.

    2008-01-01

    Heavy-metal pollution is an issue of concern in estuaries influenced by agriculture, urban, and harbor activities. Foraminiferal assemblages have been shown to be effective indicators of pollution. Sediment samples (n = 110) from Biscayne Bay were analyzed for heavy metals, foraminiferal assemblages, and grain-size distribution. Highest Cu, Zn, Cr, Hg, Pb, and Ni concentrations were found closest to Miami and near the mouths of several canals along the western margin of the bay. Few samples exceeded limits of possible biological effects as defined by previous studies. Ammonia and Cribroelphidium, two known stress-tolerant genera, correlated positively with Cu, Zn, Hg, and Ni (r ??? 0.43). Symbiont-bearing foraminifers, Archaias, Laevipeneroplis, and Androsina, correlated negatively with Cu, Zn, Hg, and Ni (r ??? -0.26).

  2. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    Science.gov (United States)

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution. PMID:28234944

  3. Preparation of magnetic carboxymethylchitosan nanoparticles for adsorption of heavy metal ions

    OpenAIRE

    Charpentier, Thibaut V.J.; Neville, Anne; Lanigan, Joseph L; Barker, Richard; Smith, Margaret J.; Richardson, Thomas

    2016-01-01

    The remediation of metal and heavy metal contaminants from water ecosystems is a long-standing problem in the field of water management. The development of efficient, cost effective, and environmentally friendly natural polymer-based adsorbents is reported here. Magnetic chitosan (CS) and carboxymethylchitosan (CMC) nanocomposites have been synthesized by a simple one-step chemical coprecipitation method. The nanoparticles were assessed for the removal of Pb2+, Cu2+, and Zn2+ ions from aqueou...

  4. Cultivation of microalgae for potential heavy metal reduction in a wastewater treatmet plant

    OpenAIRE

    KRUSTOK, Ivo; Nehrenheim, Emma; Odlare, Monica

    2012-01-01

    Sorption capacity of microalgae in 10 different mixtures of wastewater and lake water was evaluated for their ability to reduce heavy metal concentrations in wastewater. Cu, Zn and Ba concentrations were mostly reduced whereas Al and As concentrations actually increased in some samples. Co and Ni concentrations were more reduced in samples with pure wastewater compared to samples with wastewater/lake water mixtures. Hence, a mixture of wastewater and lake water seemed to decrease the metal re...

  5. Heavy Metal Contents in Spices from Markets in Sarajevo, Bosnia and Herzegovina

    OpenAIRE

    Huremović, J.; Badema, B.; Muhić-Šarac, T.; Selović,, A.; Memić, M.

    2014-01-01

    Spices are some of the most common foods in the human diet around the world. Spices are dried parts of plants used often as diet components to improve aroma and acceptability of food. The aim of this work was to determine the contents of seven heavy metals (Cr, Cu, Fe, Mn, Ni, Pb and Zn) in spices available at local markets in Sarajevo. Metal concentrations in six spice samples (black pepper (Piper nigrum), basil (Ocimum...

  6. Accumulation of heavy metals in the earthworm Eisenia foetida

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, R. (State Univ. of New York, Syracuse); Neuhauser, E.F.; Collier, J.

    1980-01-01

    Conversion of waste-activated sludge into egesta by the earthworm Eisenia foetida resulted in neither an increase nor decrease of 0.1 N HCl-extractable cadmium, copper, nickel, lead, or zinc. The addition of 2500 ppM copper as copper sulfate to activated sludge caused 100% mortality whthin 1 week, though feeding upon nonamended activated sludges with up to 1500 ppM copper over several months was innocuous. Amendment of sludge with 10, 50, and 100 ppM Cd as CdSO/sub 4/ resulted in 3.90-, 2.04-, and 1.44-fold concentrations in the earthworm over the quantities present in the sludge, with a range of 118 to 170 ppM being found on exposure to the highest level for periods of 1 to 5 weeks at 25/sup 0/C. In field trials with nonamended sludge, however, containing 12 to 27 ppM Cd, biweekly sampling for 28 weeks revealed accumulations in E. foetida ranging from 8 to 46 ppM; control earthworms not exposed to culture media with easily measurable Cd levels contained 0.3 to 2 ppM Cd. Upwards to about 50 ppM Ni, 325 ppM Pb, and 250 ppM Zn accumulated from sludges amended with ionic soluble forms of these metals. In the field, where these metals ranged from 2 to 46, 1 to 53, and 68 to 210 ppM, respectively, an upper concentration of about 50 ppM Ni, 55 ppM Pb, and 250 ppM Zn were found in the earthworm. Distinctions were made between accumulable and concentratable and a discussion is provided to show that each of the most problematic heavy metals, Cd, Zn, Ni, Pb, and Cu, may accumulate or concentrate in the earthworm.

  7. Assessment of Heavy Metal Pollution in Sediment and Polychaete ...

    African Journals Online (AJOL)

    HEAVY METAL POLLUTION & POLYCHAETE WORMS FROM MZINGA CREEK & RAS DEGE MANGROVE ECOSYSTEM. 125 ... metal pollution. The concentration of metals in the geochemically available sediment fraction (easily reducible and oxidisable phases) is analysed to assess the ..... River inputs to the ocean.

  8. Surface sediment properties and heavy metal pollution assessment in the Pearl River Estuary, China.

    Science.gov (United States)

    Zhao, Guangming; Ye, Siyuan; Yuan, Hongming; Ding, Xigui; Wang, Jin

    2017-01-01

    Grain size and concentrations of heavy metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn)) of 148 surface sediments and activities of 210Pb and heavy metal concetrantions of one sediment core from the Pearl River Estuary were analyzed. The surface sediments were dominated by silt and sandy silt. Sediment type controlled the spatial distribution patterns of the heavy metals. The heavy metal concentrations in the sediments ranged from 3.34 to 37.11 mg/kg for As, 0.06 to 2.06 mg/kg for Cd, 12 to 130 mg/kg for Cr, 5.8 to 170.6 mg/kg for Cu, 0.01 to 0.25 mg/kg for Hg, 23 to 78 mg/kg for Pb, and 32 to 259 mg/kg for Zn. Both contents of clay and organic carbons were significantly positively correlated with heavy metals. The baseline values of elements in the study area were 12.97 mg/kg for As, 0.14 mg/kg for Cd, 68 mg/kg for Cr, 28.9 mg/kg for Cu, 0.08 mg/kg for Hg, 33 mg/kg for Pb, and 92 mg/kg for Zn. The metal enrichment factor (EF) and geoaccumulation index (Igeo) were calculated to assess anthropogenic contamination. Results showed slight to moderate Cd contamination in the region. Principle component analysis indicated that Cd could be attributed to anthropogenic sources; As and Hg were predominantly affected by human activities; and Pb, Cr, Cu, and Zn were associated with both natural and anthropogenic sources.

  9. Spatial assessment of soil contamination by heavy metals from informal electronic waste recycling in Agbogbloshie, Ghana

    Science.gov (United States)

    Greve, Klaus; Atiemo, Sampson M.

    2016-01-01

    Objectives This study examined the spatial distribution and the extent of soil contamination by heavy metals resulting from primitive, unconventional informal electronic waste recycling in the Agbogbloshie e-waste processing site (AEPS) in Ghana. Methods A total of 132 samples were collected at 100 m intervals, with a handheld global position system used in taking the location data of the soil sample points. Observing all procedural and quality assurance measures, the samples were analyzed for barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn), using X-ray fluorescence. Using environmental risk indices of contamination factor and degree of contamination (Cdeg), we analyzed the individual contribution of each heavy metal contamination and the overall Cdeg. We further used geostatistical techniques of spatial autocorrelation and variability to examine spatial distribution and extent of heavy metal contamination. Results Results from soil analysis showed that heavy metal concentrations were significantly higher than the Canadian Environmental Protection Agency and Dutch environmental standards. In an increasing order, Pb>Cd>Hg>Cu>Zn>Cr>Co>Ba>Ni contributed significantly to the overall Cdeg. Contamination was highest in the main working areas of burning and dismantling sites, indicating the influence of recycling activities. Geostatistical analysis also revealed that heavy metal contamination spreads beyond the main working areas to residential, recreational, farming, and commercial areas. Conclusions Our results show that the studied heavy metals are ubiquitous within AEPS and the significantly high concentration of these metals reflect the contamination factor and Cdeg, indicating soil contamination in AEPS with the nine heavy metals studied. PMID:26987962

  10. Material Removes Heavy Metal Ions From Water

    Science.gov (United States)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  11. Magnetotactic bacteria. Promising biosorbents for heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Zhang, Yanzong; Ding, Xiaohui; Liu, Yan; Shen, Fei; Zhang, Xiaohong; Deng, Shihuai; Xiao, Hong; Yang, Gang; Peng, Hong [Sichuan Agricultural Univ., Chengdu (China). Provincial Key Lab. of Agricultural Environmental Engineering

    2012-09-15

    Magnetotactic bacteria (MTB), which can orient and migrate along a magnetic line of force due to intracellular nanosized magnetosomes, have been a subject of research in the medical field, in dating environmental changes, and in environmental remediation. This paper reviews the recent development of MTB as biosorbents for heavy metals. Ultrastructures and taxis of MTB are investigated. Adsorptions in systems of unitary and binary ions are highlighted, as well as adsorption conditions (temperature, pH value, biomass concentration, and pretreatments). The separation and desorption of MTB in magnetic separators are also discussed. A green method to produce metal nanoparticles is provided, and an energy-efficient way to recover precious metals is put forward during biosorption. (orig.)

  12. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    Directory of Open Access Journals (Sweden)

    Keli Zhao

    2015-01-01

    Full Text Available There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%. The spatial distribution of copper (Cu, nickel (Ni, lead (Pb and zinc (Zn in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones.

  13. Effects of Heavy Metal Toxicity on Human Health

    OpenAIRE

    Guluzar Ozbolat; Abdullah Tuli

    2016-01-01

    Heavy metals are the elements that can be toxic even at low concentrations. It is often used as a group name for metals and semimetals (metalloids) that have been associated with contamination and potential toxicity or ecotoxicity. Heavy metals are toxic to human health. Because it cannot be discarded with (kidney, liver intestine, skin, lung) without special support from most of the body's normal excretion routes Therefore, a large part of the heavy metals accumulate in biological organisms...

  14. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments.

    Science.gov (United States)

    Suresh, G; Ramasamy, V; Meenakshisundaram, V; Venkatachalapathy, R; Ponnusamy, V

    2011-10-01

    The natural radiation level has been determined for the sediment samples of the Ponnaiyar River with an aim of evaluating the radiation hazard. The mineralogical characterizations of the sediments have been carried out using the Fourier Transform Infrared (FTIR) spectroscopic technique. The relative distribution of major minerals is determined by calculating extinction coefficient. The concentration and spatial distribution of heavy metals (Pb, Cr, Cu, Zn and Ni) have been studied to understand the heavy metal contamination and its level of toxicity. To evaluate the potential toxicity, heavy metal concentrations are compared with different toxicological and geological reference values. The comparison results suggest that the present metals create an adverse effect on the aquatic ecosystems associated with this river. To assess the sediment contamination due to the studied heavy metals, the Pollution Load Index (PLI) is calculated. Multivariate Statistical analyses (Pearson Correlation, Cluster and Factor analysis) were carried out between the parameters obtained from radioactivity, mineralogical and geochemical analysis to know the existing relations. Obtained results showed that the effect of mineralogy on level of radioactivity should be significant. However, mineralogy effect on heavy metal composition in the sediments should be limited, indicating that other factors such as vicinity of the pollution sources are more important. Also, the influence of mineralogical characterization on level of radioactivity is significant, whereas the influence of the heavy metal composition on level of radioactivity should be limited. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Biomonitoring Heavy Metal Pollution Using an Aquatic Apex Predator, the American Alligator, and Its Parasites.

    Directory of Open Access Journals (Sweden)

    Marisa Tellez

    Full Text Available Monitoring the bioaccumulation of chemical elements within various organismal tissues has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this study, we compared the bioaccumulations of As, Cd, Cu, Fe, Pb, Se, and Zn between the American alligator, Alligator mississippiensis, and its parasites in order to establish their use as bioindicators of heavy metal pollution. Concomitant with these results, we were interested to determine if parasites were more sensitive bioindicators of heavy metals relative to alligators. We found parasites collectively accumulated higher levels of As, Cu, Se, and Zn in comparison to their alligator hosts, whereas Fe, Cd, and Pb concentrations were higher in alligators. Interestingly, Fe levels were significantly greater in intestinal trematodes than their alligator hosts when analyzed independently from other parasitic taxa. Further analyses showed alligator intestinal trematodes concentrated As, Cu, Fe, Se, and Zn at significantly higher levels than intestinal nematodes and parasites from other organs. However, pentastomids also employed the role as a good biomagnifier of As. Interestingly, parasitic abundance decreased as levels of As increased. Stomach and intestinal nematodes were the poorest bioaccumulators of metals, yet stomach nematodes showed their ability to concentrate Pb at orders of magnitude higher in comparison to other parasites. Conclusively, we suggest that parasites, particularly intestinal trematodes, are superior biomagnifiers of As, Cu, Se, and Zn, whereas alligators are likely good biological indicators of Fe, Cd, and Pb levels within the environment.

  16. Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai.

    Science.gov (United States)

    Yang, Jing; Chen, Ling; Liu, Li-Zao; Shi, Wei-Ling; Meng, Xiang-Zhou

    2014-04-01

    Rapid urbanization has caused potential pollution of heavy metal in Shanghai. A comprehensive pollution study of heavy metals (Cd, Cu, Pb, and Zn) in 35 lake surface sediments from city parks in the four different urbanized areas of Shanghai was conducted. Intensive human activities caused moderate enrichment of the four metals in highly urbanized areas, especially Cd with the significant enrichment in the central urban core area. However, the levels of the four metals in all the sediments were lower than the corresponding consensus-based Probable Effect Concentration, indicating adverse effects not to occur frequently. The integrated pollution assessments of multiple heavy metals also suggested low ecological risk and 15-29 percent probability of toxicity in most of sediments. The metal speciation analysis showed that Cd, Cu, Pb, and Zn were dominated by the non-residual fractions and thus they have high mobility and bioavailability, indicating significant anthropogenic sources. According to the Risk Assessment Code, Cd had the highest bioavailable fraction and represented high or very high risk, followed by Zn with medium or high risks in most of samples, while no or low risk was found for Cu and Pb at most sites because they were dominated by reducible and residual fractions. Correlation analysis showed that chemical fractions of heavy metals were prone to transform among each other if environmental conditions changed. Therefore, in view of anthropogenic inputs and speciation distribution, heavy metals with very high bioavailability at very low total levels and those with low bioavailability at very high total levels should not be ignored. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Study on the behavior of heavy metals during thermal treatment of municipal solid waste (MSW) components.

    Science.gov (United States)

    Yu, Jie; Sun, Lushi; Wang, Ben; Qiao, Yu; Xiang, Jun; Hu, Song; Yao, Hong

    2016-01-01

    Laboratory experiments were conducted to investigate the volatilization behavior of heavy metals during pyrolysis and combustion of municipal solid waste (MSW) components at different heating rates and temperatures. The waste fractions comprised waste paper (Paper), disposable chopstick (DC), garbage bag (GB), PVC plastic (PVC), and waste tire (Tire). Generally, the release trend of heavy metals from all MSW fractions in rapid-heating combustion was superior to that in low-heating combustion. Due to the different characteristics of MSW fractions, the behavior of heavy metals varied. Cd exhibited higher volatility than the rest of heavy metals. For Paper, DC, and PVC, the vaporization of Cd can reach as high as 75% at 500 °C in the rapid-heating combustion due to violent combustion, whereas a gradual increase was observed for Tire and GB. Zn and Pb showed a moderate volatilization in rapid-heating combustion, but their volatilities were depressed in slow-heating combustion. During thermal treatment, the additives such as kaolin and calcium can react or adsorb Pb and Zn forming stable metal compounds, thus decreasing their volatilities. The formation of stable compounds can be strengthened in slow-heating combustion. The volatility of Cu was comparatively low in both high and slow-heating combustion partially due to the existence of Al, Si, or Fe in residuals. Generally, in the reducing atmosphere, the volatility of Cd, Pb, and Zn was accelerated for Paper, DC, GB, and Tire due to the formation of elemental metal vapor. TG analysis also showed the reduction of metal oxides by chars forming elemental metal vapor. Cu2S was the dominant Cu species in reducing atmosphere below 900 °C, which was responsible for the low volatility of Cu. The addition of PVC in wastes may enhance the release of heavy metals, while GB and Tire may play an opposite effect. In controlling heavy metal emission, aluminosilicate- and calcium-based sorbents can be co-treated with fuels. Moreover

  18. IOLOGICAL IMPORTANCE AND TOXICITY OF HEAVY METALS FOR BIOTA OF FRESHWATER BODIES (REVIEW

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-06-01

    Full Text Available Purpose. To investigate the sources of scientific information on biological functions of heavy metals (Fe, Zn, Mn, Cu, Ni, Co, Pb, Cd and their negative effect on biota of fresh water bodies. Findings. A review of works of a variety of scientists showed that the majority of the studied heavy metals (Fe, Zn, Mn, Cum and Co played an important role in vital functions of freshwater organisms. The significance of other studied heavy metals (Ni, Pb, and Cd is probable or unknown. Besides biological importance, we also know about toxicity of heavy metals – a group of mineral polluting substances, which are the most distributed and dangerous for biota. Their negative effect includes drastic deterioration of conditions for existence of the majority of aquatic organisms, some species disappear, others reduce their number, components of trophic chains are lost, links in ecosystems become broken, and productivity of biocenoses decreases. Practical value. An array of generalized information will be useful for scientists who investigate freshwater ecosystems and effect of toxicants on them, in particular heavy metals.

  19. The potential of different lime tree (Tilia spp genotypes for phytoextraction of heavy metals

    Directory of Open Access Journals (Sweden)

    Šijačić-Nikolić Mirjana

    2012-01-01

    Full Text Available The research of heavy metals contents (Pb, Mn, Zn, Ni, Fe in soil in the area of the National Park „Fruška gora”, along the highway M21 shows lower values for manganese, zinc and iron than the maximum allowed quantity prescribed by law. For nickel and lead it shows higher values than maximum allowed quantity. The heavy metals contents in leaves of lime tree in 12 analyzed genotypes are far below average values in accordance with ECCE with all genotypes except genotype 7 for lead and genotypes 7 and 8 for iron. The results of analysis of variance components show that out of four components (locality, genotype, locality x genotype and error only the interaction between locality and genotype does not contribute to variance. The contents of Pb, Mn, Fe and Zn in leaves is primarily influenced by genotype while Ni contents may be considered a consequence of locality. The selection of genotypes which is able to uptake greater quantities of heavy metals than other genotypes may serve as a solid basis for phytoextraction of heavy metals as a technology by which heavy metals, metalloids and radionuclides are extracted from environment through usage of suitable species and plant genotypes able to uptake and accumulate the given pollutants in parts of plant tissue. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Studying climate change and its influence on the environment: Impacts, adaptation and mitigation

  20. Heavy metal contamination in surface sediments of representative reservoirs in the hilly area of southern China.

    Science.gov (United States)

    Wang, Xiaolong; Zhang, Lu; Zhao, Zhonghua; Cai, Yongjiu

    2017-12-01

    A study on the characteristics of heavy metals in surface sediments of typical reservoirs in the hilly area of southern China was carried out. The results showed that contents of heavy metals had great temporal and spatial heterogeneity among studied reservoirs. Zn, Pb, and As presented significant enrichment ratio in reservoirs of Dou Shui (DS) and Feng Tang (FT), as well as Ti in reservoirs of DZ and GT. The content of Cd in reservoir of FT reservoirs was characterized with high health risk with the significantly highest value of 52.43 mg/kg. Furthermore, Pb was identified with high health risk in reservoirs of SFM, Ouyang Hai (OYH), FT, and DS, and As was in OYH and ZX. Multivariate statistical analysis suggested high consistency in the variations of Cr, Ni, and Cu; moreover, Cd, Zn, and Pb were characterized with great homogeneity in their sources. In addition, agricultural activities might exert less effect on variations of heavy metals in studied reservoirs, considered that there was a weak relationship between heavy metals and nutrients. These results could improve our understanding of the spatial variations of heavy metals and their potential sources in reservoirs in this ecologically fragile region.

  1. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    Science.gov (United States)

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  2. Heavy metal and associated antibiotic resistance of fecal coliforms ...

    African Journals Online (AJOL)

    Objective: The pollution of the environment with toxic heavy metals is increasing globally with industrial progress. Microorganisms can be good bio-accumulators of particulate and soluble forms of heavy metals and subsequently resist antibiotics. The present study aimed at assessing the resistance pattern to multiple heavy ...

  3. Effects of drip irrigation on migration and distribution of heavy metals in soil profile.

    Science.gov (United States)

    Wei, Binggan; Yu, Jiangping; Dong, Yunshe; Yang, Linsheng; Wang, Jing; Xue, Yuan; Guo, Shufang

    2016-02-01

    Drip irrigation systems have been widely applied in semiarid and arid regions of China. However, little is known about the migration of heavy metals in cultivated soil under drip irrigation. Therefore, the concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in soil were determined. The mean contents of Cd, Cr, Cu, Pb, Zn, and Ni in surface soil subjected to irrigation with low and high amounts of water (W1 and W2) were 0.11, 117.50, 37.51, 13.53, 78.10, and 38.41 mg/kg and 0.20, 94.45, 29.71, 22.48, 63.00, and 36.62 mg/kg, respectively. Metal concentrations in deep soil varied slightly between W1 and W2. Among different distances from the dropper, the metal levels in surface soil varied widely, while they varied slightly in deep soil. The Igeo (geo-accumulation index) values indicated that the soil was usually contaminated by Cr, Cu, and Cd. Under W1, Cd and Cu usually accumulated in surface soil near the dropper, while the other metals leached into subsurface soil. Moreover, the metals generally accumulated in soil away from the dropper. However, significant leaching of metals to the subsurface and deep soil was observed near the dropper under W2. Away from the dropper, Cd, Cr, Cu, Ni, and Pb usually accumulated in surface and deep soil. This suggested that heavy metals generally migrated to the soil away from the dropper when subjected to lower amounts of irrigation, while metals usually moved to surface soil and deep soil under high irrigation amounts. These findings indicate that drip irrigation greatly affected the distribution and migration of heavy metals in soil, with irrigation with lower amounts of irrigation water significantly affecting the horizontal migration of heavy metals and higher amounts influencing the vertical movement of heavy metals.

  4. Electroremediation of heavy metals in sewage sludge

    Directory of Open Access Journals (Sweden)

    C. Elicker

    2014-06-01

    Full Text Available This paper presents the application of electrokinetic remediation in the treatment of sludge in a sewage treatment station. The study consisted of, in a first step, the characterization of physicochemical parameters of sludge and, in a second step, the implementation of the electrokinetic remediation technique. The concentrations of Cu, Cr, Pb and Zn in sludge samples, before and after the experiment, were determined by atomic absorption spectroscopy. After 40 hours of experiment, considering an electrolyte flow-rate of 1.34 L.h-1 at a voltage of 20 V, the removal rate of all the metals accompanied was over 50%; the highest removal efficiency was for Pb, with 72.49%. The results show the feasibility of using the electrochemical technique of electrokinetic remediation for metal removal from a sludge sewage treatment station.

  5. [Distribution and migration of heavy metals in soil profiles by high-resolution sampling].

    Science.gov (United States)

    Ruan, Xin-ling; Zhang, Gan-lin; Zhao, Yu-guo; Yuan, Da-gang; Wu, Yun-jin

    2006-05-01

    The vertical distribution of heavy metals in soils profiles is a result of heavy metals accumulation and migration under combining influence of edaphic factors and environmental conditions. It's an important basis for evaluation of heavy metals pollution and remediation of contaminated soils. By traditional sampling methods, i.e., soils were sampled according to pedogenetic horizons, only very general information about element migration can be learned. In the current study, three sites near a steel factory were selected to represent three types of land use, i.e. forest, dry land for vegetable cultivation and rice paddy field. Soils were sampled horizontally by high-resolution sampling method. In the top of 40 cm soils were sectioned in 2 cm intervals, then 5 cm intervals in next 40 cm, and 10 cm intervals in the last 20 cm of profile. Total content of Cu, Zn, Pb, Cr and Cd were determined, and the vertical distribution of Cu, Zn, Pb, Cr, Cd in every profile was analyzed. The results indicated that enrichment of heavy metals appeared in the upper most layer of the natural forest soil that without any anthropic disturbance, and this phenomenon proved that heavy metals were coming from atmospheric deposition. We found that Cu, Zn and Pb moved downward in a short distance, Cd migrated relatively faster than Cu, Zn and Pb, while Cr had no recognizable location of migration front. In the soil profiles of dry land and paddy field, there were influences of agricultural practice, the distribution and movement of metals were thus different form those of the forest soil. In cultivated layer heavy metals were evenly distributed because soils in the upper layer were mixed by cultivation, however, bellow the cultivated layer obvious migration took place again. It is concluded that different heavy metals have different mobility and there is such a relative order: Cd>Cu>Zn>Pb. The study shows that the distribution pattern can be obtained with the currently adopted high

  6. Assessment of heavy metal pollutants accumulation in the Tisza river sediments.

    Science.gov (United States)

    Sakan, Sanja M; Dordević, Dragana S; Manojlović, Dragan D; Predrag, Polić S

    2009-08-01

    In this study we have worked on the evaluation of heavy metal contamination in the sediments taken from the Tisza River and its tributaries, and thereby used the sequential extraction method, geochemical normalization, the calculation of the enrichment factor (EF), and the methods of statistical analysis. The chemical fractionation of Ni, Cu, Zn, Cr, Pb, Fe, and Mn, carried out by using the modified Tessier method, points to different substrates and binding mechanisms of Cu, Zn and Pb in sediments of the tributaries and sediments of the Tisza River. The similarities in the distributions of Fe and Ni in all types of sediments are the result of geochemical similarity as well as of the fact that natural sources mainly affect the concentration levels of these elements. The calculated enrichment factors (EF, measured metal vs. background concentrations) indicated that metal contamination (Cu, Pb, Zn and Cr) was recorded in the sediments of the Tisza River, while no indications of pollution were detected in the tributaries of the Tisza River and the surrounding pools. The maximum values of the EF were close to 6 for Cu and Pb (moderately severe enrichment) and close to 4.5 for Zn (indicating moderate enrichment). It can be said that the Tisza River is slightly to moderately severely polluted with Cu, Zn, and Pb, and minorly polluted with Cr. It is concluded that sediments of the Tisza serve as a repository for heavy metal accumulation from adjacent urban and industrial areas.

  7. The use of volcanic soil as mineral landfill liner--III. Heavy metals retention capacity.

    Science.gov (United States)

    Navia, Rodrigo; Fuentes, Bárbara; Diez, María C; Lorber, Karl E

    2005-06-01

    The volcanic soil of Southern Chile was tested for its heavy metal retention capacity. The maximum uptakes for CrO4(2-) (CrVI), Cu(2+), Zn(2+) and Pb(2+) were determined to be 2.74, 5.32, 5.86 and 7.44 mg g(-1), respectively. At a slightly alkaline pH value (7.5), it seems that a precipitation-adsorption process was responsible for the Cu(2+) and Zn(2+) uptake onto volcanic soil. All the determined values are of the same order of magnitude as natural zeolites heavy metals adsorption capacities. In addition, the heavy metals diffusion model through a 1 m volcanic soil mineral liner shows breakthrough times of 21.6, 10.2 and 8.9 years, for Pb(2+), Zn(2+) and Cu(2+), respectively, confirming the trend obtained in the adsorption isotherms. The natural volcanic soil of Southern Chile is an interesting material for possible use as landfill mineral basal sealing. It has an appropriate sealing potential (average Kf value of 5.85 x 10(-9) m s(-1)) and a heavy metals retention capacity comparable with natural zeolites. About two-thirds of the agricultural land in Chile (approximately 0.4 million km2) is derived from volcanic ash, suggesting an important soil volume for future landfill projects, that could be obtained in sufficient quantities from urban building activities.

  8. City, (from Point of Organic Pollutants and Heavy Metals

    Directory of Open Access Journals (Sweden)

    Sajad Mazlomi

    2014-03-01

    Full Text Available Background: In this study quality and quantity characteristics wastewater of hospitals, clinics and health centers of Arak city and the potential impacts of them on Arak wastewater plant investigated. Methods: In this cross-sectional  study, which done during 2011-2012, the quantity and quality  of wastewater via point of COD,BOD5, pH, TKN, PO4and also heavy metals in the hospitals, clinics and health center of Arak were studied. Then, the effects of these pollutants as equal to person on wastewater convey system and wastewater treatment plant were assisted. Results: Monitoring of BOD5, TKN, and PO4 indicated that the daily disposal rate of these pollutants were equal 778.14, 102.7, and 53.6 kg/d, respectively, which equal to 15763, 51351, and 6700 person, respectively. The average water consumption of these centers was equal to 8.2l/s, and the estimated measure of produced wastewater was6.14 l/s. Also, after analysis the measure of heavy metals, Hg production (99.331 g/d was more than other heavy metals, and the next rank was related to Zn (41.96 g/d and Ag (41.96g/d, respectively. Conclusion: Although existence pretreatment process units can help to decrease the side effects of produced wastewater, this kind of wastewater needs complete treatment. Discharge of this kind wastewater to absorption trenches led to adverse health impacts in future. Therefore, a construction separate wastewater treatment plants and proper operation of these systems can reduce ecosystem impacts of wastewater discharges.

  9. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    Directory of Open Access Journals (Sweden)

    Keiko Yamaji

    Full Text Available Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  10. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    Science.gov (United States)

    Yamaji, Keiko; Watanabe, Yumiko; Masuya, Hayato; Shigeto, Arisa; Yui, Hiroshi; Haruma, Toshikatsu

    2016-01-01

    Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s) underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  11. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wenzhen Yuan

    2016-01-01

    Full Text Available With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1 Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS damage. (2 Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3 Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4 Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8 and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  12. Heavy metal analysis in groundwater samples by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Ficaris, Maria [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Zucchi, Orgheda L.A.D. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Nascimento Filho, Virgilio Franco do [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    In order to obtain information about levels of heavy metals in groundwater, analysis were carried out on samples from monitoring and supplying wells located in Campinas, Sao Paulo State, Southeastern Brazil. The analytical technique used was Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) and all the measurements were performed at Synchrotron Light Source Laboratory, using a white beam and a Si(Li) detector in total reflection condition. The determined elements were Al, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. The results were compared with the maximum allowed values (MPV) established by the Brazilian Health Department. The detection limits obtained varying from 0.10 up to 8 {mu}g.L{sup -1} were in agreement with the values presented by others analytical techniques. (author)

  13. Heavy metals content in Serbian old plum brandies

    Directory of Open Access Journals (Sweden)

    Bonić Mirjana

    2013-01-01

    Full Text Available Seven elements, namely, arsenic, lead, cadmium, copper, zinc, iron and manganese were determined in 31 samples of Serbian plum brandies by applying atomic spectrometry techniques. Flame atomic absorption spectrometry was used for quantification of copper, iron, zinc, manganese, lead and cadmium; and hydride generation atomic spectrometry absorption for arsenic quantification. Measured concentrations of heavy metals and arsenic was assessed according to the Serbian regulations, official regulations of some other countries and in respect of microelements content in other similar distilled alcoholic beverages. Amounts of microelements in maximal recommended daily and weekly intake of plum brandy were determined. The influence of production (home made and industrial, type of wooden barrel (oak and mulberry, and duration of ageing process on the content of Zn, Cu, Fe and Mn in plum brandies, as well as coefficient of correlation between Cu content and pH value were also studied. [Projekat Ministarstva nauke Republike Srbije, br. 172053

  14. Contents of heavy metals in urban parks and university campuses

    Science.gov (United States)

    Zhang, Yong; Chen, Qian

    2018-01-01

    Because the city park has become an important place for people's daily leisure, and the university campus is one of the most densely populated areas of the city, their environmental pollution is critical for the health and safety of the residents. In this paper, two kinds of evaluation methods were used to evaluate the content of Cu, Zn, As and Pb in soils of city parks and university campus in Xiangtan. The results showed that only Juhuatang Park was a non-polluted area, and the other 7 sampling sites were lightly polluted; Analysis shows the heavy metal contents of soil in city parks are closely related to vehicle emissions, agriculture and irrigation, combustion of household waste, living area and commercial shops, the use of fossil fuels, industrial waste gas and waste residue and other human activities.

  15. The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles

    Directory of Open Access Journals (Sweden)

    Garrett Wheaton

    2015-07-01

    Full Text Available Extreme thermoacidophiles (Topt > 65 °C, pHopt < 3.5 inhabit unique environments fraught with challenges, including extremely high temperatures, low pH, as well as high levels of soluble metal species. In fact, certain members of this group thrive by metabolizing heavy metals, creating a dynamic equilibrium between biooxidation to meet bioenergetic needs and mechanisms for tolerating and resisting the toxic effects of solubilized metals. Extremely thermoacidophilic archaea dominate bioleaching operations at elevated temperatures and have been considered for processing certain mineral types (e.g., chalcopyrite, some of which are recalcitrant to their mesophilic counterparts. A key issue to consider, in addition to temperature and pH, is the extent to which solid phase heavy metals are solubilized and the concomitant impact of these mobilized metals on the microorganism’s growth physiology. Here, extreme thermoacidophiles are examined from the perspectives of biodiversity, heavy metal biooxidation, metal resistance mechanisms, microbe-solid interactions, and application of these archaea in biomining operations.

  16. Heavy metal concentrations of selected public parks of Istanbul City

    Directory of Open Access Journals (Sweden)

    Demir Goksel

    2016-01-01

    Full Text Available Many cities, especially larger metropolises, parks are very important recreational areas where people usually have closer contact with flora. Therefore, the pollution level in the parks can have a greater effect on human health. Heavy metals are ubiquitous with the environment, as a result of both natural and anthropogenic activities, and humans are exposed to them through various pathways. Essentially, these areas are assumed to be less exposed to routine contaminants, but especially in metropolises, this assumption could prove false considering these areas are stuck within the confines of a city full of pollutant activity such as intense traffic. In this study; the relationships between heavy metal pollution levels (Cd, Cr, Cu, Ni, Pb, Zn and the pH and electrical conductivity (EC of soil samples were investigated from the parks on the Asian side of Istanbul. For this purpose, the most frequently visited 16 parks were selected as sampling sites. In the second part of the study, linear correlation is used for the data analysis.

  17. Reduction of bioavailability and leachability of heavy metals during vermicomposting of water hyacinth.

    Science.gov (United States)

    Singh, Jiwan; Kalamdhad, Ajay S

    2013-12-01

    Vermicomposting of water hyacinth is a good alternative for the treatment of water hyacinth (Eichhornia crassipes) and subsequentially, beneficial for agriculture purposes. The bioavailability and leachability of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd, and Cr) were evaluated during vermicomposting of E. crassipes employing Eisenia fetida earthworm. Five different proportions (trials 1, 2, 3, 4, and 5) of cattle manure, water hyacinth, and sawdust were prepared for the vermicomposting process. Results show that very poor biomass growth of earthworms was observed in the highest proportion of water hyacinth (trial 1). The water soluble, diethylenetriaminepentaacetic acid (DTPA) extractable, and leachable heavy metals concentration (percentage of total heavy metals) were reduced significantly in all trials except trial 1. The total concentration of some metals was low but its water soluble and DTPA extractable fractions were similar or more than other metals which were present in higher concentration. This study revealed that the toxicity of metals depends on bioavailable fraction rather than total metal concentration. Bioavailable fraction of metals may be toxic for plants and soil microorganisms. The vermicomposting of water hyacinth by E. fetida was very effective for reduction of bioavailability and leachability of selected heavy metals. Leachability test confirmed that prepared vermicompost is not hazardous for soil, plants, and human health. The feasibility of earthworms to mitigate the metal toxicity and to enhance the nutrient profile in water hyacinth vermicompost might be useful in sustainable land renovation practices at low-input basis.

  18. Molecular Characterization of a Novel Heavy Metal Uptake Transporter from Higher Plants and its Potential for Use in Phytoremediation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J.

    2000-10-01

    Heavy metal toxicity poses major environmental and health problems, and heavy metals are more difficult to remediate than chemical contaminants, which can be degraded by microorganisms. Cadmium and arsenic, for example, are non-essential heavy metals which are toxic to living cells at very low concentrations. Cd 2+ ions displace Ca2+ or Zn2+ in proteins and can cause oxidative stress, while arsenic also causes oxidative stress damage and is a well known carcinogen.

  19. Investigation of Media Effects on Removal of Heavy Metals in Bioretention Cells

    Science.gov (United States)

    Gülbaz, Sezar; Melek Kazezyilmaz-Alhan, Cevza; Copty, Nadim K.

    2015-04-01

    Heavy metals are the most toxic elements at high concentrations, although some of them such as Cu and Zn are essential to plants, humans, and animals within a limited value. However, some heavy metals, such as Pb, have adverse effects even at low concentrations. Therefore, it is known that the toxic metals such as Zn, Cu and Pb in storm water runoff are serious threat for aquatic organisms. It is very important to control and reduce heavy metal concentration in urban storm water runoff. There are several methods to remove the aforementioned toxic metals such as electrolyte extraction, chemical precipitation, ion-exchange, reverse osmosis, membrane filtration, adsorption, cementation, and electrochemical treatment technologies. However, these methods are highly expensive and hard to implement for treatment of big volumes of water such as storm water. For this purpose, Low Impact Development (LID) Best Management Practices (BMPs) have become popular to collect, infiltrate, and treat toxic metals in storm water runoff in recent years. LID-BMP is a land planning method which is used to manage storm water runoff and improve water quality by reducing contaminant in storm water runoff. Bioretention is an example of LID-BMP application of which usage has recently been started in storm water treatment. Researchers have been investigating the advantages of bioretention systems and this study contributes to these research efforts by seeking for the media effects of bioretention on heavy metal removal. For this purpose, batch sorption experiments were performed to determine the distribution coefficients and retardation factor of copper (Cu), lead (Pb), and zinc (Zn) for bioretention media such as mulch, turf, local or vegetative soil, sand and gravel. Furthermore, sorption reaction kinetics of Cu, Pb and Zn are tested in order to assess the sorption equilibrium time of these metals for 5 bioretention media. The results of sorption test show that turf has higher sorption

  20. Heavy metal concentration in the coastal wetlands of Thiruvananthapuram district, southern India.

    Science.gov (United States)

    Arunkumar, K S; Joseph, Sabu; Thomas, Jobin

    2010-04-01

    Levels of heavy metals (Cu, Cr, Pb, Zn, Fe and Mn) in the surficial sediments of the four coastal wetlands, viz. Poovar, Poonthura, Akkulam-Veli and Kadinamkulam-Anjengo-Akathumuri of Thiruvananthapuram are presented in this study. Further the statistical tools like contamination factor (CF), index of geoaccumulation (Igeo) and pollution load index (PLI) are used to assess the heavy metal pollution. Among the wetlands, Poonthura and Akkulam-Veli were polluted by the heavy metals, as very high values are observed for Pb and Cu indicating high build up of these metals in the sediments. The highest value of CF can be attributed to anthropogenic inputs mainly from urban domestic sewage and land run-off. Based on the value of CF, PLI and Igeo, the Poonthura and Akkulam-Veli wetlands are identified as potential 'hot spots' in the district.