WorldWideScience

Sample records for heavy metals present

  1. Case report: heavy metal burden presenting as Bartter syndrome.

    Science.gov (United States)

    Crinnion, Walter J; Tran, Jessica Q

    2010-12-01

    Maternal transfer of heavy metals during fetal development or lactation possibly contributed to the clinical manifestations of Bartter syndrome and developmental delay in the offspring. An 11-month-old child diagnosed with Bartter syndrome and failure to thrive was treated concurrently for elevated metal burden while he was undergoing standard medical interventions. Treatment with body-weight doses of meso-2,3-dimercaptosuccinic acid (DMSA) reduced the body burden of lead, beryllium, copper, mercury, and cadmium at the three- and sixth-month follow-up tests. During the course of the six-month treatment, the patient gained 2.4 kg (5.2 lb) and grew approximately 9.5 cm (3.75 in). His weight shifted from significantly below the 5th percentile in weight to within the 5th percentile, and from below the 5th to within the 10th percentile for length. The child's acquisition of lead, beryllium, and copper correspond to his mother's history of stained glass assembly and occurred during fetal development or lactation, since there were no other identifiable sources that could have contributed to the heavy metal burden. Tests for known genetic mutations leading to Bartter syndrome were all negative. This case report highlights the potential benefit of DMSA for treatment of heavy metal body burden in infants who present with Bartter syndrome.

  2. Present status and future perspective of R and D on lead heavy metal-cooled fast reactors

    International Nuclear Information System (INIS)

    Takahashi, Minoru

    2007-01-01

    Since a lead heavy metal (lead-bismuth eutectic) is chemically inert and has higher boiling point compared to a sodium, a lead heavy metal-cooled fast reactor can be inherently safe and has good nuclear characteristics and is so suitable to a medium-small size of the reactor. R and D on corrosion of a lead heavy metal has been carried out in the world and this issue might be solved to choose specific corrosion resistant alloys for structural materials and fuel cans of a lead heavy metal-cooled reactor. This article reviews present status and future perspective on lead heavy metal-cooled fast reactors. (T. Tanaka)

  3. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  4. Heavy metals

    OpenAIRE

    Adriano, Domy; VANGRONSVELD, Jaco; Bolan, N.S.; Wenzel, W.W.

    2005-01-01

    - Sources of Metals in the Environment - Environmental Contamination - Retention and Dynamics of Metals in Soils - Adsorption - Complexation - Precipitation - Bioavailability–Natural Attenuation Interactions - Biological Response to Metals - Soil Remediation

  5. Heavy metal jako subkultura

    OpenAIRE

    KOUTNÁ, Daniela

    2016-01-01

    This bachelor thesis deals with heavy metal subculture. Its aim is to introduce the most important branches and to show broadness of heavy metal. This bachelor thesis describes development and history, briefly shows Czech heavy metal history alongside with the biggest and most popular Czech heavy metal festivals. It shows the most dressing concerns of society against this style.

  6. heavy metals

    African Journals Online (AJOL)

    NICO

    aDepartment of Chemistry, Tshwane University of Technology, P.O. Box 56208, Arcadia, 0007, South Africa. bSchool of Health Systems and Public Health, Faculty of Health Sciences, ... ing the levels of toxic metals in food.15,19 Compared to ET-AAS or .... mum pressure 350 psi and maximum temperature 210 °C. The.

  7. Bioaccumulation of Heavy Metals

    African Journals Online (AJOL)

    komla

    acute toxicity and sublethal chronic action the devastating effects that the accumulation - including ... the laboratory and kept in holding glass (a) Copper as CuSO,.5H,0 ... from 2 psu to 21 psu) depending on time of The choice of heavy metals for this s year. ... serving as substrate and food source for Salinity of test media.

  8. (17) ACCUMULATION OF HEAVY METAL

    African Journals Online (AJOL)

    Adeyinka Odunsi

    Spectrophotometer (AAS) 2ID using their respective lamp and wavelengths. Calculation ... (Table 2). Concentration of heavy metals in the cassava. Lead and chromium were not significantly ..... Market basket survey for some heavy metals in ...

  9. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  10. Heavy metal distributions in Peru Basin surface sediments in relation to historic, present and disturbed redox environments

    Science.gov (United States)

    Koschinsky, Andrea

    Heavy metal distributions in deep-sea surface sediments and pore water profiles from five areas in the Peru Basin were investigated with respect to the redox environment and diagenetic processes in these areas. The 10-20-cm-thick Mn oxide-rich and minor metal-rich top layer is underlain by an increase in dissolved Mn and Ni concentrations resulting from the reduction of the MnO 2 phase below the oxic zone. The mobilised associated metals like Co, Zn and Cu are partly immobilised by sorption on clay, organic or Fe compounds in the post-oxic environment. Enrichment of dissolved Cu, Zn, Ni, Co, Pb, Cd, Fe and V within the upper 1-5 cm of the oxic zone can be attributed to the degradation of organic matter. In a core from one area at around 22-25 cm depth, striking enrichments of these metals in dissolved and solid forms were observed. Offset distributions between oxygen penetration and Mn reduction and the thickness of the Mn oxide-rich layer indicate fluctuations of the Mn redox boundary on a short-term time scale. Within the objectives of the German ATESEPP research programme, the effect of an industrial impact such as manganese nodule mining on the heavy metal cycle in the surface sediment was considered. If the oxic surface were to be removed or disturbed, oxygen would penetrate deep into the formerly suboxic sediment and precipitate Mn 2+ and metals like Ni and Co which are preferably scavenged by MnO 2. The solid enrichments of Cd, V, and other metals formed in post-oxic environments would move downward with the new redox boundary until a new equilibrium between oxygen diffusion and consumption is reached.

  11. Heavy metals in our foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    The special group ''chemistry of food and forensic chemistry'' of the Association of German Analytical Chemists in Munich in 1983 issued a statement on that subject. The publication points out how heavy metals (examples: lead, cadmium and mercury) make their way into the foodstuffs, how many heavy metals are contained in our foodstuffs, which heavy metals are indispensable minerals and which aren't, and which heavy metals are ingested with food. It concludes by discussing how heavy metal contamination of our food can be prevented.

  12. Poisoning of domestic animals with heavy metals

    Directory of Open Access Journals (Sweden)

    Velev Romel

    2009-01-01

    Full Text Available The term heavy metal refers to a metal that has a relatively high density and is toxic for animal and human organism at low concentrations. Heavy metals are natural components of the Earth's crust. They cannot be degraded or destroyed. To a small extent they enter animal organism via food, drinking water and air. Some heavy metals (e.g cooper, iron, chromium, zinc are essential in very low concentrations for the survival of all forms of life. These are described as essential trace elements. However, when they are present in greater quantities, like the heavy metals lead, cadmium and mercury which are already toxic in very low concentrations, they can cause metabolic anomalies or poisoning. Heavy metal poisoning of domestic animals could result, for instance, from drinking-water contamination, high ambient air concentrations near emission sources, or intake via the food chain. Heavy metals are dangerous because they tend to bioaccumulate in a biological organism over time. Manifestation of toxicity of individual heavy metals varies considerably, depending on dose and time of exposure, species, gender and environmental and nutritional factors. Large differences exist between the effects of a single exposure to a high concentration, and chronic exposures to lower doses. The aim of this work is to present the source of poisoning and toxicity of some heavy metals (lead, mercury, cadmium, thallium, arsenic, as well as new data about effects of those heavy metals on the health of domestic animals. .

  13. Heavy Metal Stars

    Science.gov (United States)

    2001-08-01

    strongly reinforce our current understanding of heavy element nucleosynthesis. But detecting the element Lead is not easy - the expected spectral lines of Lead in stellar spectra are relatively weak, and they are blended with many nearby absorption lines of other elements. Moreover, bona-fide, low-metallicity AGB stars appear to be extremely rare in the solar neighborhood . But if the necessary observations are so difficult, how is it then possible to probe nucleosynthesis in low-metallicity AGB stars? CH-stars in binary systems ESO PR Photo 26a/01 ESO PR Photo 26a/01 [Preview - JPEG: 350 x 400 pix - 232k] [Normal - JPEG: 700 x 800 pix - 616k] Caption : One of the three Lead stars, HD 196944 that was analyzed in the present research programme (at the center of the field). This star lies about 1600 light years away in the constellation Aquarius. At magnitude 9, it is not visible to the unaided eye, but easily seen through a small amateur telescope. Still, the detailed spectroscopic study reported in this Press release that revealed a high abundance of Lead in this star required a 4-m class telescope. This DSS-image are copyright by the UK SERC/PPARC (Particle Physics and Astronomy Research Council, formerly Science and Engineering Research Council), the Anglo-Australian Telescope Board and the Association of Universities for Research in Astronomy (AURA). The spikes seen in this photo are an optical effect in the telescope. In a determined effort in this direction, a team of Belgian and French astronomers [1] decided to try to detect the presence of Lead in some "CH-stars" [4] that are located about 1600 light-years away, high above the main plane of our Milky Way Galaxy. Over-abundance of some heavy elements has been observed in some "CH-stars". But CH-stars are not very luminous and have not yet evolved to the AGB phase. Hence they are totally unable to produce heavy elements. So how can there be heavy elements in the CH-stars? This mystery was solved when it was realized

  14. Bioremoval of heavy metals by bacterial biomass.

    Science.gov (United States)

    Aryal, Mahendra; Liakopoulou-Kyriakides, Maria

    2015-01-01

    Heavy metals are among the most common pollutants found in the environment. Health problems due to the heavy metal pollution become a major concern throughout the world, and therefore, various treatment technologies such as reverse osmosis, ion exchange, solvent extraction, chemical precipitation, and adsorption are adopted to reduce or eliminate their concentration in the environment. Biosorption is a cost-effective and environmental friendly technique, and it can be used for detoxification of heavy metals in industrial effluents as an alternative treatment technology. Biosorption characteristics of various bacterial species are reviewed here with respect to the results reported so far. The role of physical, chemical, and biological modification of bacterial cells for heavy metal removal is presented. The paper evaluates the different kinetic, equilibrium, and thermodynamic models used in bacterial sorption of heavy metals. Biomass characterization and sorption mechanisms as well as elution of metal ions and regeneration of biomass are also discussed.

  15. Heavy metal uptake of Geosiphon pyriforme

    Energy Technology Data Exchange (ETDEWEB)

    Scheloske, Stefan E-mail: stefan.scheloske@mpi-hd.mpg.de; Maetz, Mischa; Schuessler, Arthur

    2001-07-01

    Geosiphon pyriforme represents the only known endosymbiosis between a fungus, belonging to the arbuscular mycorrhizal (AM) fungi, and cyanobacteria (blue-green algae). Therefore we use Geosiphon as a model system for the widespread AM symbiosis and try to answer some basic questions regarding heavy metal uptake or resistance of AM fungi. We present quantitative micro-PIXE measurements of a set of heavy metals (Cu, Cd, Tl, Pb) taken up by Geosiphon-cells. The uptake is studied as a function of the metal concentration in the nutrient solution and of the time Geosiphon spent in the heavy metal enriched medium. The measured heavy metal concentrations range from several ppm to some hundred ppm. Also the influence of the heavy metal uptake on the nutrition transfer of other elements will be discussed.

  16. Heavy metals and soil microbes

    NARCIS (Netherlands)

    Giller, K.E.; Witter, E.; McGrath, S.

    2009-01-01

    The discovery in the early 1980s that soil microorganisms, and in particular the symbiotic bacteria Rhizobium, were highly sensitive to heavy metals initiated a new line of research. This has given us important insights into a range of topics: ecotoxicology, bioavailability of heavy metals, the role

  17. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Sandau, E.; Sandau, P.; Pulz, O.

    1996-01-01

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  18. Toxicity of heavy metals in the environment

    National Research Council Canada - National Science Library

    Oehme, F.W

    1978-01-01

    ... as the fundamental mechanisms of toxicity resulting from heavy metal chemicals. The more common toxic heavy metals, along with their biochemistry and associated clinical syndromes, are then described...

  19. Release kinetics and mechanisms of trace heavy metals from cement based material; Cinetiques et mecanismes de relargage des metaux lourds presents en traces dans les matrices cimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Moudilou, E.

    2002-12-15

    Chemical species contained in a solid matrix may be transferred to the environment through water leaching. Previous studies of trace metals released from building materials (particularly cement-based ones) highlight an important analytical difficulty. The aim of this study is to determine the kinetics and the mechanisms involved in the release of trace heavy metals (Cr, Cu, Ni, Pb, V and Zn) from industrial cement pastes (usually ranging from 20 to 300 ppm). The development of a dynamic leaching system, named CTG-LEACHCRETE, (used at pH=5, 20 C) which permits the evaluation of the kinetics of trace heavy metals is presented in the first part. Also, innovative solid analysis techniques (ICP-MS-Laser Ablation, local and Grazing Incidence X-rays Diffraction (GIXD) technique) were used to characterise the cement-degraded layers formed during leaching experiments. These techniques enable to monitor the mineralogical evolution and the distribution of trace metals in these areas. The confrontation of these two approaches, kinetic and solid analysis, coupled with a thorough investigation of previously developed models, lead to proposals concerning the mechanisms of release of the trace heavy metals studied. In all the cement pastes studied (CPA-CEM I, CPJ-CEM II/A and CLC-CEM V/A), chromium is trapped in ettringite by substitution SO{sub 4}{sup 2-}(U)CrO{sub 4}{sup 2-} and its release is then controlled by the dissolution of this hydrate. The behaviour of copper, nickel and zinc in degraded areas and in leachates, are correlated to the silicon of the hydrated calcium silicate (CSH), which imply that they are localised there. Lead, was never detected in the leachates. But it is also correlated to the silicon in the degraded layers. (author)

  20. HEAVY METALS IN VINEYARDS AND ORCHARD SOILS

    Directory of Open Access Journals (Sweden)

    GUSTAVO BRUNETTO

    Full Text Available ABSTRACT The application of foliar fungicides in vineyards and orchards can increase soil concentration of heavy metals such as copper (Cu and zinc (Zn, up to the toxicity threshold for fruit trees and cover crops. However, some agronomic practices, such as liming, addition of organic fertilizers, cultivation of soil cover crops and inoculation of young plants with arbuscular mycorrhizal fungi can decrease the availability and the potential of heavy metal toxicity to fruit trees. This review aims to compile and present information about the effects of increasing concentrations of heavy metals, especially Cu and Zn, on soils cultivated with fruit trees and provides some agronomic practices of remediation. Information about the sources of heavy metals found in soils cultivated with fruit trees are presented; mechanisms of absorption, transport, accumulation and potential toxicity to plants are described.

  1. Remediating sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Swartzbaugh, J.; Sturgill, J.; Cormier, B.; Williams, H.D.

    1992-01-01

    This article is intended to serve as a reference for decision makers who must choose an approach to remediate sites contaminated with heavy metals. Its purpose is to explain pertinent chemical and physical characteristics of heavy metals, how to use these characteristics to select remedial technologies, and how to interpret and use data from field investigations. Different metal species are typically associated with different industrial processes. The contaminant species behave differently in various media (i.e., groundwater, soils, air), and require different technologies for containment and treatment. We focus on the metals that are used in industries that generate regulated waste. These include steelmaking, paint and pigment manufacturing, metal finishing, leather tanning, papermaking, aluminum anodizing, and battery manufacturing. Heavy metals are also present in refinery wastes as well as in smelting wastes and drilling muds

  2. Process for removing heavy metal compounds from heavy crude oil

    Science.gov (United States)

    Cha, Chang Y.; Boysen, John E.; Branthaver, Jan F.

    1991-01-01

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  3. Heavy metals in Mindhola river estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Rokade, M.A; Mandalia, A

    The heavy metal concentrations are studied along the Mindhola river estuary. Surface and bottom water samples were collected using Niskin Sampler. The sediment samples were collected using a Van Veen grab. The heavy metal concentration is estimated...

  4. Mushrooms pollution by radioactivity and heavy metals

    International Nuclear Information System (INIS)

    Delatouche, L.

    2001-01-01

    Some basic notions of radioactivity are recalled first (definition, origin, measurement units, long- and short-term effects..). Then, the pedology of soils and the properties and toxicity of 3 heavy metals (lead, cadmium, mercury) are presented to better understand the influence of some factors (genre, age, ecological type, pollution, conservation..) on the contamination of macro-mycetes by radioactivity and heavy metals. The role of chemists is to inform the consumers about these chemical and radioactive pollutions and to give some advices about the picking up (quantities, species and places to avoid) and the cooking of mushrooms. (J.S.)

  5. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.

    2003-01-01

    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues...... related to the combustion of MSW and the formation of fly ash, especially in what concerns heavy metals. Treatment of the flue gas in air pollution control equipment plays an important role and the basic processes to accomplish this are explained. Fly ash from a semi-dry flue gas treatment system...

  6. Assessment and bioremediation of heavy metals from crude oil ...

    African Journals Online (AJOL)

    The assessment of the levels of heavy metals present in crude oil contaminated soil and the application of the earthworm - Hyperiodrilus africanus with interest on the bioremediation of metals from the contaminated soil was investigated within a 90-days period under laboratory conditions. Selected heavy metals such as ...

  7. Electrodialytic decontamination of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Karlsmose, Bodil

    1996-01-01

    Electrodialytic remediation of heavy metal polluted soil is a newly developed method, which combines the electrokinetic mevement of ions in soil with the principle of electrodialytis. The method has been proven to work in laboratory scale and at present two types of pilot plant tests are made....

  8. Approaches for enhanced phytoextraction of heavy metals.

    Science.gov (United States)

    Bhargava, Atul; Carmona, Francisco F; Bhargava, Meenakshi; Srivastava, Shilpi

    2012-08-30

    The contamination of the environment with toxic metals has become a worldwide problem. Metal toxicity affects crop yields, soil biomass and fertility. Soils polluted with heavy metals pose a serious health hazard to humans as well as plants and animals, and often requires soil remediation practices. Phytoextraction refers to the uptake of contaminants from soil or water by plant roots and their translocation to any harvestable plant part. Phytoextraction has the potential to remove contaminants and promote long-term cleanup of soil or wastewater. The success of phytoextraction as a potential environmental cleanup technology depends on factors like metal availability for uptake, as well as plants ability to absorb and accumulate metals in aerial parts. Efforts are ongoing to understand the genetics and biochemistry of metal uptake, transport and storage in hyperaccumulator plants so as to be able to develop transgenic plants with improved phytoremediation capability. Many plant species are being investigated to determine their usefulness for phytoextraction, especially high biomass crops. The present review aims to give an updated version of information available with respect to metal tolerance and accumulation mechanisms in plants, as well as on the environmental and genetic factors affecting heavy metal uptake. The genetic tools of classical breeding and genetic engineering have opened the door to creation of 'remediation' cultivars. An overview is presented on the possible strategies for developing novel genotypes with increased metal accumulation and tolerance to toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Micromycetes sensitiveness to heavy metals

    Directory of Open Access Journals (Sweden)

    O. N. Korinovskaya

    2011-07-01

    Full Text Available The sensitivity of 33 micromycete species to nitric compounds of copper, lead, zinc, nickel and cadmium has been determined. Absidia butleri Lendn, Mortierella vanesae Dixon-Stewart, Cunninghamella echinulata Thaxte, Curvularia tuberculata Jain, Cladosporium cladosporiodes (Fresen G. A. de Vries and Fusarium solani (C. Mart. Appel et Wollenw are sensitive to minimal content of the heavy metals (0.75 of maximum permissible concentration (MPC in the growth medium. At the same time Trixoderma longibrachiatiim Rifai, Alternaria alternatа (Fr. Keissl and Penicillium sp. 4 demonstrated moderate growth under maximal concentration (50 MPC. It is determined that minimal content of the heavy metals in the initial stage of influence (up to 48 h promotes growth of only Fusarium oxysporum E. F. Sm. et Swingle, while retards growth of the other species.

  10. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wenzhen Yuan

    2016-01-01

    Full Text Available With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1 Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS damage. (2 Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3 Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4 Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8 and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  11. Heavy metals in sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, S.A. (Millersville State College, PA); Frazier, J.G.

    1982-07-01

    Bone and barnacle samples from sea turtles (Hepidochelys olivacea) in Ecuador were analyzed for manganese, iron, copper, zinc and lead. Analysis was performed by flame atomic absorption spectroscopy. Results show that zinc and iron levels in bone and barnacles were greater than copper, manganese and lead levels. The significance of the findings is difficult to interpret because so little is known about baseline levels and physiological effects of heavy metals in the animals. (JMT)

  12. Micromycetes sensitiveness to heavy metals

    OpenAIRE

    O. N. Korinovskaya; V. N. Gryshko

    2011-01-01

    The sensitivity of 33 micromycete species to nitric compounds of copper, lead, zinc, nickel and cadmium has been determined. Absidia butleri Lendn, Mortierella vanesae Dixon-Stewart, Cunninghamella echinulata Thaxte, Curvularia tuberculata Jain, Cladosporium cladosporiodes (Fresen) G. A. de Vries and Fusarium solani (C. Mart.) Appel et Wollenw are sensitive to minimal content of the heavy metals (0.75 of maximum permissible concentration (MPC)) in the growth medium. At the same time Trixoderm...

  13. Heavy metals precipitation in sewage sludge

    NARCIS (Netherlands)

    Marchioretto, M.M.; Rulkens, W.H.; Bruning, H.

    2005-01-01

    There is a great need for heavy metal removal from strongly metal-polluted sewage sludges. One of the advantages of heavy metal removal from this type of sludge is the possibility of the sludge disposal to landfill with reduced risk of metals being leached to the surface and groundwater. Another

  14. Bioremediation of Toxic Heavy Metals: A Patent Review.

    Science.gov (United States)

    Verma, Neelam; Sharma, Rajni

    2017-01-01

    The global industrialization is fulfilling the demands of modern population at the cost of environmental exposure to various contaminants including heavy metals. These heavy metals affect water and soil quality. Moreover, these enter into the food chain and exhibit their lethal effects on the human health even when present at slightly higher concentration than required for normal metabolism. To the worst of their part, the heavy metals may become carcinogenic. Henceforth, the efficient removal of heavy metals is the demand of sustainable development. Remedy: Bioremediation is the 'green' imperative technique for the heavy metal removal without creating secondary metabolites in the ecosystem. The metabolic potential of several bacterial, algal, fungal as well as plant species has the efficiency to exterminate the heavy metals from the contaminated sites. Different strategies like bioaccumulation, biosorption, biotransformation, rhizofilteration, bioextraction and volatilization are employed for removal of heavy metals by the biological species. Bioremediation approach is presenting a splendid alternate for conventional expensive and inefficient methods for the heavy metal removal. The patents granted on the bioremediation of toxic heavy metals are summarized in the present manuscript which supported the applicability of bioremediation technique at commercial scale. However, the implementation of the present information and advanced research are mandatory to further explore the concealed potential of biological species to resume the originality of the environment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Performance of Raphidocelis subcapitata exposed to heavy metal mixtures.

    Science.gov (United States)

    Expósito, Nora; Kumar, Vikas; Sierra, Jordi; Schuhmacher, Marta; Giménez Papiol, Gemma

    2017-12-01

    Microalgae growth inhibition assays are candidates for referent ecotoxicological assays, and are a fundamental part in the strategy to reduce the use of fish and other animal models in aquatic toxicology. In the present work, the performance of Raphidocelis subcapitata exposed to heavy metals following standardized growth inhibition assays has been assessed in three different scenarios: 1) dilutions of single heavy metals, 2) artificial mixture of heavy metals at similar levels than those found in natural rivers and, 3) natural samples containing known mixtures of contaminants (heavy metals). Chemical speciation of heavy metals has been estimated with Eh-pH diagram and Visual MINTEQ software; heavy metal and free heavy metal ion concentrations were used as input data, together with microalgae growth inhibition, for Dr. Fit software. The final goal was to assess the suitability of the ecotoxicological test based on the growth inhibition of microalgae cultures, and the mathematic models based on these results, for regulatory and decision-making purposes. The toxicity of a given heavy metal is not only determined by its chemical speciation; other chemical and biological interaction play an important role in the final toxicity. Raphidocelis subcapitata 48h-h-EC50 for tested heavy metals (especially Cu and Zn) were in agreement with previous studies, when ion metal bioavailability was assumed to be 100%. Nevertheless, the calculated growth inhibition was not in agreement with the obtained inhibition when exposed to the artificial mixture of heavy metals or the natural sample. Interactions between heavy metal ions and the compounds of the culture media and/or the natural sample determine heavy metal bioavailability, and eventually their toxicity. More research is needed for facing the challenge posed by pollutant mixtures as they are present in natural environments, and make microalgae-based assays suitable for pollution management and regulatory purposes. Copyright

  16. Leaching of heavy metals from steelmaking slags

    International Nuclear Information System (INIS)

    Gomez, J. F. P.; Pino, C. G.

    2006-01-01

    Leaching tests with EAF and Ladle slags were performed, using a flow through tests and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. the chemical analysis of the leachates during this period shows, in general, for both types of slag, and increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slang samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-though test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5% (Ca) and 1% (other elements). (Author) 12 refs

  17. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa. [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1995-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  18. Atmospheric heavy metal deposition in Europe estimated by moss analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ruehling, Aa [Swedish Environmental Research Inst., Lund (Sweden). Dept. of Ecology

    1996-12-31

    Atmospheric heavy metal deposition in Europe including 21 countries was monitored in 1990-1992 by the moss technique. This technique is based on the fact that the concentrations of heavy metals in moss are closely correlated to atmospheric deposition. This was the first attempt to map heavy metal deposition in this large area. The objectives of the project were to characterise qualitatively and quantitatively the regional atmospheric deposition pattern of heavy metals in background areas in Europe, to indicate the location of important heavy metal pollution sources and to allow retrospective comparisons with similar studies. The present survey is a follow-up of a joint Danish and Swedish project in 1980 and an extended survey in 1985 within the framework of the Nordic Council of Ministers. In Sweden, heavy-metal deposition was first mapped on a nation-wide scale in 1968-1971 and 1975. (author)

  19. Distribution of heavy metals in Tamshui mangrove forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C Y; Chou, C H

    1990-06-01

    Tamsui estuary area is one of the few places in Taiwan where mangrove is still growing. Heavy metals, carried by the water of the Tamsui river, are accumulated in the estuary soil. Most heavy metals in soil, however, are immobile under reducing conditions and are fixed in the large amount of organic matter present. Heavy metals are distributed at different concentrations in various tissues of Kandelia candel as well as grasses of Phragmites communis, Imperata cylindrica, and Cyperus malaccensis growing in the swamp area. The concentration of heavy metals was significantly higher root than in stems and leaves. The absorption of heavy metals by the plants was less in soil that was frequently submerged. Kandelia candel seems to have no special tolerance to copper and zinc. The soil environment which favors reduced availability of heavy metals may help Kandelia candel adapt to growth in the polluted estuary.

  20. Improved inventory for heavy metal emissions from stationary combustion plants

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Hoffmann, Leif

    On behalf of the Ministry of the Environment DCE at Aarhus University annually reports heavy metals (HM) emissions to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long-Range Transboundary Air Pollution). This report presents updated heavy metal emission factors......-2009. The report also include methodology, references and an uncertainty estimate. In Denmark, stationary combustion plants are among the most important emission sources for heavy metals. Emissions of all heavy metals have decreased considerably (73 % - 92 %) since 1990. The main HM emission sources are coal...

  1. Removal of dissolved heavy metals and radionuclides by microbial spores

    International Nuclear Information System (INIS)

    Revis, N.W.; Hadden, C.T.; Edenborn, H.

    1997-01-01

    Microbial systems have been shown to remove specific heavy metals from contaminated aqueous waste to levels acceptable to EPA for environmental release. However, systems capable of removing a variety of heavy metals from aqueous waste to environmentally acceptable levels remain to be reported. The present studies were performed to determine the specificity of spores of the bacterium Bacillus megaterium for the adsorption of dissolved metals and radionuclides from aqueous waste. The spores effectively adsorbed eight heavy metals from a prepared metal mix and from a plating rinse waste to EPA acceptable levels for waste water. These results suggest that spores have multiple binding sites for the adsorption of heavy metals. Spores were also effective in adsorbing the radionuclides 85 strontium and 197 cesium. The presence of multiple sites in spores for the adsorption of heavy metals and radionuclides makes this biosorbent a good candidate for the treatment of aqueous wastes associated with the plating and nuclear industries. 17 refs., 4 tabs

  2. Oil Spill Related Heavy Metal: A Review

    International Nuclear Information System (INIS)

    Ahmad Dasuki Mustafa; Hafizan Juahir; Kamaruzzaman Yunus; Mohammad Azizi Amran; Che Noraini Che Hasnam; Fazureen Azaman; Ismail Zainal Abidin; Syahril Hirman Azmee; Nur Hishaam Sulaiman

    2015-01-01

    Oil spill occurs every day worldwide and oil contamination is a significant contributor for the higher levels of heavy metals in the environment. This study is purposely to summarize the heavy metals which significant to major oil spill incidents around the world and effects of toxic metals to human health. The study performed a comprehensive review of relevant scientific journal articles and government documents concerning heavy metals contamination and oil spills. Overall, the heavy metals most frequently been detected in oil spill related study where Pb>Ni>V>Zn>Cd and caused many effects to human health especially cancer. In conclusion, the comparison of heavy metal level between the post - spill and baseline levels must be done, and implementation of continuous monitoring of heavy metal. In addition, the result based on the strategies must be transparent to public in order to maintaining human health. (author)

  3. Heavy metals concentration in various tissues of two freshwater ...

    African Journals Online (AJOL)

    Heavy metals like cadmium, zinc, copper, chromium, lead and mercury were measured in the various tissues of Labeo rohita and Channa striatus and in the water samples collected from ... The values of heavy metals concentration in the present study are within the maximum permissible levels for drinking water and fish.

  4. Occurrence and distribution of heavy metals in indoor settled ...

    African Journals Online (AJOL)

    The results showed widespread heavy metals contamination especially Fe and Zn, which were present as the highest concentration while Cd was the lowest in the settled particles (dust). The order of occurrence of heavy metals in settled particles (dust) collected indoor in 2007 and 2008 respectively were as follows, ...

  5. Experimental testing facilities for ultrasonic measurements in heavy liquid metal

    International Nuclear Information System (INIS)

    Cojocaru, V.; Ionescu, V.; Nicolescu, D.; Nitu, A.

    2016-01-01

    The thermo-physical properties of Heavy Liquid Metals (HLM), like lead or its alloy, Lead Bismuth Eutectic (LBE), makes them attractive as coolant candidates in advanced nuclear systems. The opaqueness, that is common to all liquid metals, disables all optical methods. For this reason ultrasound waves are used in different applications in heavy liquid metal technology, for example for flow and velocity measurements and for inspection techniques. The practical use of ultrasound in heavy liquid metals still needs to be demonstrated by experiments. This goal requires heavy liquid metal technology facility especially adapted to this task. In this paper is presented an experimental testing facility for investigations of Heavy Liquid Metals acoustic properties, designed and constructed in RATEN ICN. (authors)

  6. Divergent biology of facultative heavy metal plants.

    Science.gov (United States)

    Bothe, Hermann; Słomka, Aneta

    2017-12-01

    Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current

  7. Heavy metals in the hydrological cycle

    International Nuclear Information System (INIS)

    Astruc, M.; Lester, J.N.

    1988-01-01

    An integrated approach to the problems associated with heavy metals in the hydrological cycle is presented. Research and practical experience from a broad spectrum of disciplines are drawn together concentrating on the following themes: water quality, domestic and industrial wastes, sludge and dredge materials, soil interactions, effects on aquatic ecosystems, organometallics (with particular reference to tin compounds), speciation, the marine environment and health effects. One paper is within INIS scope and is processed separately. (U.K.)

  8. Heavy metal emissions for Danish road transport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Slentoe, E.

    2010-04-15

    This report presents new heavy metal emission factors for cars, vans, trucks, buses, mopeds and motorcycles for each of the emission sources fuel consumption, engine oil, tyre wear, brake wear and road abrasion. The emission components covered are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn), all of them relevant for emission reporting to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long Range Transboundary Pollutants) convention. The report also presents a new Danish inventory for the year 2007. The following emissions in total TSP (in brackets) are calculated for the year 2007: As (8 kg), Cd (48 kg), Cr (197 kg), Cu (51 779 kg), Hg (28 kg), Ni (158 kg), Pb (6 989 kg), Se (33 kg) and Zn (28 556 kg). Per vehicle type cars are the most important source of emission for all heavy metal species, followed by vans, trucks, buses and 2-wheelers. By using the detailed emission factors and inventory calculation methods established in the present project, estimates of heavy metal emissions can be made for other years than 2007. (author)

  9. MICROBIAL REMOVAL OF HEAVY METALS FROM WASTEWATER

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2014-10-01

    Full Text Available Industrialization and urbanization result in increase of heavy metals released into the environment (soil, lakes, rivers, seas, oceans, groundwater. Studies on biosorption of heavy metals are aimed to specify types of microorganisms which could efficiently bind metals. This approach has a very important significance for both slowing down metals exploitation by recovery, and also reduction of environmental pollution by decrease of their excessive concentration. Recent studies have reported about the capabilities of fungi, algae, yeasts, bacteria, waste and agricultural residues or materials containing chitosan derived from crustacean shells as a biosorbents. Biohydrometallurgy could be considered as a new “green” technology of heavy metals removal from wastewater.

  10. Electrodialytic remediation of heavy metal polluted soil

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2012-01-01

    Electrodialytic soil remediation is a method for removal of heavy metals. Good results have previously been obtained with both treatment of a stationary, water saturated soil matrix and with remediation of a stirred suspension of soil in water. The two different setups have different uses....... The first as in-situ or on-site treatment when there is no requirement for fast remediation, as the removal rate of the heavy metals are dependent on the distance between the electrodes (everything else equal) and in such application the electrode spacing must have a certain distance (often meters......). In the stirred setup it is possible to shorten the transport route to few mm and to have a faster and continuous process. The present paper for the first time reports a direct comparison of the two options. The remediation of the stirred suspension showed faster than remediation of the water saturated soil even...

  11. Heavy metals in packaging : a literature survey

    NARCIS (Netherlands)

    van Putten EM; IMG

    2011-01-01

    The use of the heavy metals cadmium, mercury, chromium and lead in packaging is forbidden internationally for some years because these substances are harmful to the environment. In 2002 the Dutch national Inspectorate for the Environment determined the presence of heavy metals in packaging for

  12. ASSESSMENT OF HEAVY METALS AND CRUDE PROTEIN ...

    African Journals Online (AJOL)

    UNICORN

    to quantify heavy metals (Cu, Zn, Pb and Cd) and crude protein content of these species that are sold in ... in protein, omega 3 and low fat content. Furthermore ... high levels of cadmium can cause kidney and liver damage in man [6]. Motivation .... analysis. Determination of heavy metals in the edible tissues of the organisms.

  13. Microbial treatment of heavy metal leachates

    International Nuclear Information System (INIS)

    Alvarez Aliaga, M. T.

    2009-01-01

    Ore-mining metallurgy and other industrial activities represent the source of heavy metal and radionuclide contamination in terrestrial and aquatic environments. Physico-chemical processes are employed for heavy metal removal from industrial wastewaters. However, limitations due to the cost-effectiveness and use of contaminating reagents make these processes not environmentally friendly. (Author)

  14. Behaviour of heavy metals in soils

    NARCIS (Netherlands)

    Harmsen, K.

    1977-01-01

    Fractions of Zn, Cd, Cu, Pb, Fe and Mn extractable with water, a salt solution and dilute acid, and residual fractions were determined in soils with raised contents of heavy metals, near zinc smelters, along a river formerly discharging heavy metals, and in a sewage farm. Special attention

  15. Biosorption of heavy metals by a marine bacterium

    International Nuclear Information System (INIS)

    Iyer, Anita; Mody, Kalpana; Jha, Bhavanath

    2005-01-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here

  16. Biosorption of heavy metals by a marine bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Anita [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India); Mody, Kalpana [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)]. E-mail: khmody@csmcri.org; Jha, Bhavanath [Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat (India)

    2005-03-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here.

  17. Predictive Modelling of Heavy Metals in Urban Lakes

    OpenAIRE

    Lindström, Martin

    2000-01-01

    Heavy metals are well-known environmental pollutants. In this thesis predictive models for heavy metals in urban lakes are discussed and new models presented. The base of predictive modelling is empirical data from field investigations of many ecosystems covering a wide range of ecosystem characteristics. Predictive models focus on the variabilities among lakes and processes controlling the major metal fluxes. Sediment and water data for this study were collected from ten small lakes in the ...

  18. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.

    Science.gov (United States)

    Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin

    2016-10-01

    Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of heavy metal on survival of certain groups of indigenous soil ...

    African Journals Online (AJOL)

    Heavy metal pollution of soil is known to adversely effect microbial activities at elevated concentration. However, response of indigenous soil bacterial population to added heavy metal and metal combinations is poorly understood. In the present study salts of heavy metals like Cu, Cd, Cr, Hg, Mn, Ni, Pb and Zn were added ...

  20. Heavy Metal Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/heavymetalbloodtest.html Heavy Metal Blood Test To use the sharing features ... this page, please enable JavaScript. What is a Heavy Metal Blood Test? A heavy metal blood test ...

  1. Historical review of the sanitary filling of Rio Azul and considerations about heavy metals treated in it and the presents in our homes

    International Nuclear Information System (INIS)

    Mora Chinchilla, Rolando; Mora Amador, Raul

    2003-01-01

    A summary has been done on the most outstanding events during the history of Rio Azul sanitary landfill by consultating documents and local newspapers. The historical outline starts in 1972, when the Inter municipal Cooperative Agreement (COCIM) was created, until May 27, 2002, when a warning was issued on the possible harmful effects on health due to technological waste disposal. Likewise, the method for estimating the mass of metals deposited in the landfill is disclosed. In this landfill the mass of metals varies between 70000 and 100000 tm. Finally, some considerations on household chemical products are made and recommendations are presented to improve metal waste management. (Author) [es

  2. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) and their mixtures on clays. Different clays and bentonites (Ca 2+ -bentonite, activated Na + -bentonite, special heavy metal adsorber bentonite, two organophilic bentonites and a mixed layer clay) were used. The adsorbed metal ions were desorbed by appropriate solutions of HCl, EDTA and dioctadecyl dimethylammonium bromide. High concentrations of the heavy metal ions in the solutions can be reached. The desorption guarantees economical recycling. After desorption the clays were used (up to three times) for purification of contaminated water. The best experimental conditions, i.e. the highest adsorption of heavy metal ions from aqueous solutions was found for the greatest ratio of adsorbent/adsorbate. The adsorption was very fast. Calcium, sodium bentonites and the heavy metal adsorber bentonite attained the highest adsorption and desorption for Cu 2+, Zn 2+ and Pb 2+ ions. Cd 2+ ions were only absorbed by Silitonit, a special heavy metal absorber bentonite. The mixed layer clay (Opalit) ranges in adsorption and desorption properties below the unmodified Ca 2+ -bentonite (Montigel) or the activated Na + -bentonite. Only Tixosorb and Tixogel (organophilic bentonites) reach the lowest value of heavy metal adsorption. Only lead cations which are characterised by good polarizability were adsorbed at higher rates, therefore the organophilic bentonites are not appropriate for adsorption of heavy metal ions from aqueous solutions. Mixing of the metal ions generally decreases the adsorption of Pb 2+ and increases the adsorption of Cd 2+ . From mixtures if heavy metal ions adsorption and desorption of Cu 2+ ions reached a maximum for all clays. (author) figs., tabs., 56 refs

  3. Heavy metals in the snow pack of Semey town

    International Nuclear Information System (INIS)

    Panin, M.S.; Esenzholova, A.Zh.; Toropov, A.S.

    2008-01-01

    The data about the maintenance of heavy metals in the snow pack in various zones of Semey and biogeochemical operation factors of snow pack in Semey are presented in this work. Also the correlation connection between elements is calculated.

  4. The effects of heavy metals concentration on some commercial fish ...

    African Journals Online (AJOL)

    Badmus B S

    heavy metals (lead, cadmium, copper and zinc) were analyzed and only copper and zinc were found to be present in the ... contents of essential minerals, vitamins and unsaturated fatty acids .... that the interaction effect is significant. This effect ...

  5. Heavy metal accumulation in a flow restricted, tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Balachandran, K.K.; Laluraj, C.M.; Nair, M.; Joseph, T.; Sheeba, P.; Venugopal, P.

    Levels of heavy metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), organic carbon content and textural characteristics in the surficial sediments of Cochin estuary (SW coast of India) and adjacent coast are presented. Anthropogenic inputs from...

  6. Heavy metal speciation and their accumulation in sediments of Lake ...

    African Journals Online (AJOL)

    UFUOMA

    African Journal of Environmental Science and Technology Vol. 5(4), pp. 280-298, April ..... present study gave higher values due to the effect of increasing ...... on The Heavy Metal. Pollution of Guanabara Bay Sediments and Evaluation of The.

  7. Biomolecules for Removal of Heavy Metal.

    Science.gov (United States)

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Heavy metals in municipal solid waste deposits

    Energy Technology Data Exchange (ETDEWEB)

    Flyhammar, P.

    1997-12-01

    Extensive use of heavy metals in modern society influences routes followed by fluxes on the surface of the Earth. The changed flow paths may be harmful for the balance of biological systems at different levels, micro-organisms, human beings and whole ecosystems, since the toxicity of heavy metals is determined by their concentrations and chemical forms. Despite the low mobility of heavy metals (Zn, Cu, Pb, Cr, Ni and Cd) in municipal landfills, it was found that extensive transformations of the binding forms of heavy metal take place within the waste mass during the degradation of the waste. These changes appear to be closely related to the development of early diagenetic solid phases, i.e. new secondary solid phases formed in the waste. The heavy metals often constitute a minor part of these phases and the bindings include several forms such as adsorption, complexation, coprecipitation, precipitation, etc. It was also found that the associations between heavy metals and solid phases are dominated by several binding forms to one specific substrate rather than bindings to various solid phases. The mobility of iron and manganese seems to increase during the processes involved in waste degradation due to the solution of oxide/hydroxide phases, while the heavy metals appear to become less mobile due to their binding to organic compounds and sulphides. However, one exception in this case may be nickel. Another aspect of the transformation of heavy metals is the accumulation of pools of heavy metals which can become susceptible to environmental changes, such as oxidation or acidification. However, the risk of increased mobilization caused by lower pH values seem to be limited since municipal solid waste has a large buffer capacity. 66 refs, 9 figs, 3 tabs 66 refs, 9 figs, 3 tabs

  9. Heavy metals in vegetables and potential risk for human health

    Directory of Open Access Journals (Sweden)

    Fernando Guerra

    2012-02-01

    Full Text Available Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the São Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the São Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the São Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.

  10. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    Science.gov (United States)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  11. Heavy metal oxide glasses as gamma rays shielding material

    International Nuclear Information System (INIS)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir

    2016-01-01

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal (_5_6Ba, _6_4Gd, _8_2Pb, _8_3Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  12. Heavy metal oxide glasses as gamma rays shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Preet; Singh, Devinder; Singh, Tejbir, E-mail: dr.tejbir@gmail.com

    2016-10-15

    The gamma rays shielding parameters for heavy metal oxide glasses and concrete samples are comparable. However, the transparent nature of glasses provides additional feature to visualize inside the shielding material. Hence, different researchers had contributed in computing/measuring different shielding parameters for different configurations of heavy metal oxide glass systems. In the present work, a detailed study on different heavy metal ({sub 56}Ba, {sub 64}Gd, {sub 82}Pb, {sub 83}Bi) oxide glasses has been presented on the basis of different gamma rays shielding parameters as reported by different researchers in the recent years. It has been observed that among the selected heavy metal oxide glass systems, Bismuth based glasses provide better gamma rays shielding. Hence, Bismuth based glasses can be better substitute to concrete walls at nuclear reactor sites and nuclear labs.

  13. Phytoremediation of heavy metals: Recent techniques | Jadia ...

    African Journals Online (AJOL)

    microorganisms/biomass or live plants to clean polluted areas. Phytoremediation is an emerging technology for cleaning up contaminated sites, which is ... A brief review on phytoremediation of heavy metals and its effect on plants have been ...

  14. Atmospheric Heavy Metal Pollution - Development of Chronological ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 4. Atmospheric Heavy Metal Pollution - Development of Chronological Records and Geochemical Monitoring. Rohit Shrivastav. General Article Volume 6 Issue 4 April 2001 pp 62-68 ...

  15. Spectrophotometric Determination Of Heavy Metals In Cosmetics

    African Journals Online (AJOL)

    ISSN 1597-6343. Spectrophotometric Determination Of Heavy Metals In Cosmetics ... analysed using atomic absorption spectrophotometer – coupled with a hydride ... presence of arsenic (As), mercury (Hg), cadmium (Cd) and lead. (Pb) in ...

  16. Heavy metal removal and recovery using microorganisms

    International Nuclear Information System (INIS)

    Wilde, E.W.; Benemann, J.R.

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  17. Heavy metal removal and recovery using microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E.W. (Westinghouse Savannah River Co., Aiken, SC (United States)); Benemann, J.R. (Benemann (J.R.), Pinole, CA (United States))

    1991-02-01

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding.

  18. Heavy metals anthropogenic pollutants in Austria

    International Nuclear Information System (INIS)

    Anderl, M.; Gager, M.; Gugele, B.; Huttunen, K.; Kurzweil, A.; Poupa, S.; Ritter, M.; Wappel, D.; Wieser, M.

    2004-01-01

    Several heavy metals from anthropogenic sources are emitted in the atmosphere damaging the air quality and the human health, besides they accumulate on the soil and lately are transmitted into the human food chain. Therefore at international level there is a concern to reduce them. Austrian heavy metals emissions (cadmium, mercury and lead) during 1990-2002 are given including an analysis of causes and sources. Lead is the main pollutant and the main sector responsible is the industry. 5 figs. (nevyjel)

  19. Mobile heavy metal fractions in soils

    International Nuclear Information System (INIS)

    Horak, O.; Kamel, A.A.; Ecker, S.; Benetka, E.; Rebler, R.; Lummerstorfer, E.; Kandeler, E.

    1994-01-01

    A long term outdoor experiment was conducted in plastic containers (50 litres) with three soils, contaminated by increasing concentrations of zinc, copper, nickel, cadmium and vanadium. The aim of the study was to investigate the influence of heavy metal contamination on soil microbial processes as well as the accumulation of heavy metals in plants. Spring barley, followed by winter endive were grown as experimental crops in a first vegetation period, while spring wheat was grown during the second year. The soil microbial activities, indicated by arylsulfatase, dehydrogenase, and substrate-induced respiration, decreased with increasing heavy metal contamination. Significant correlations were observed between the inhibition of soil microorganisms and the easily mobilizable heavy metal fractions of soils, extracted by a solution of 1 M ammoniumacetate at pH = 7. The heavy metal accumulation in vegetative and generative parts of the crop plants also showed a good agreement with mobilizable soil fractions. The results of the experiment indicate, that the extraction with ammoniumacetate can be used as a reference method for determination of tolerable heavy metal concentrations in soils. (authors)

  20. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    OpenAIRE

    Chao Su; LiQin Jiang; WenJun Zhang

    2014-01-01

    Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg), cadmium (Cd), lead (Pb), chromium (Cr), and arsenic (As), etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/count...

  1. Heavy metals content in plant-growing products as the results of agroecological monitoring

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.; Lunev, M.I.; Pavlikhina, A.V.; Lobas, N.V.

    2008-01-01

    The generalised data on the heavy metals and arsenic contents in grain and vegetable cultures, green mass and hay of various grasses are presented. The dependence of heavy metal accumulation factors in plant-growing products on soil properties is shown. The estimation of levels of the heavy metals contents in accordance with the admissible content standards is given.

  2. Gender identity and the electric guitar in heavy metal music

    OpenAIRE

    Kelly, Philip

    2009-01-01

    In this chapter I will attempt to outline the gendered characteristics of heavy metal and the electric guitar and address the question: has society’s impression of heavy metal as a primarily masculine pursuit been so imbedded in Western culture that we will never see a female heavy metal band achieve the same level of success as a male heavy metal band?

  3. Leaching of heavy metals from steelmaking slags

    Directory of Open Access Journals (Sweden)

    Gomes, J. F. P

    2006-12-01

    Full Text Available Leaching tests with EAF and Ladle slags were performed, using a flow through test and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. The chemical analysis of the leachates during this period shows, in general, for both types of slag, an increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slag samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-through test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5 % (Ca and 1% (other elements.

    Este articulo contiene los resultados obtenidos en ensayos de lixiviación de escorias de acero (horno electrico y cuchara ejecutados siguiendo la metodologia de flujo dinámico así como el ensayo normalizado DIN 38414-S4. El primer ensayo intenta simular el comportamiento de lixiviación de las escorias en vertedero. Para las escorias ensayadas se han complementado los ensayos con el análisis químico de los lixiviados y se ha verificado un aumento de la liberación de metales pesados. El ensayo DIN 38414-S4 se ha utilizado para evaluar la lixiviación por agua de metales pesados, en muestras de escorias originales. Despues de un año de ensayos, se han observado niveles muy bajos de lixiviación. Los elementos mas lixiviados han sido calcio y magnesio. No obstante, en los ensayos de flujo dinámico, el calcio y el magnesio lixiviados de las escorias sólidas era menor de 0,5% y el resto de los otros metales era inferior a 0,1%. Los lixiviados obtenidos con el ensayo DIN 38414-S4 presentan, como era de esperar, valores

  4. Distribution of heavy metals from flue gas in algal bioreactor

    Science.gov (United States)

    Napan, Katerine

    Flue gas from coal-fired power plants is a major source of CO2 to the atmosphere. Microalgae can use this enriched form of CO2 as carbon source and in turn the biomass can be used to produce food, feed, fertilizer and biofuels. However, along with CO2, coal-based flue gas will inevitably introduce heavy metals, which have a high affinity to bind algal cells, could be toxic to the organisms and if transferred to the products could limit their uses. This study seeks to address the distribution and impact of heavy metals present in flue gas on microalgae production systems. To comprehend its effects, algae Scenedesmus obliquus was grown in batch reactors in a multimetal system. Ten heavy metals (Cu, Co, Zn, Pb, As, Se, Cr, Hg, Ni and Cd) were selected and were evaluated at four concentrations (1X, 2X, 5X and 10X). Results show that most heavy metals accumulated mainly in biomass and were found in very low concentrations in media. Hg was shown to be lost from the culture, with low amounts present in the biomass. An upper limit for As uptake was observed, suggesting its likelihood to build-up in the system during medium recycle. The As limited bioaccumulation was overcome by addition of sulfur to the algal medium. Heavy metal at 2X, 5X and 10X inhibited both growth and lipid production, while at the reference concentration both biomass and lipids yields were increased. Heavy metal concentrations in the medium and biomass were time dependent, and at the end of the cultivation most heavy metals in the supernatant solution complied with the recommendations for irrigation water, while biomass was below limits for cattle and poultry feed, fertilizer, plastic and paper. This research shows that bioremediation of CO2 and heavy metals in combination with energy production can be integrated, which is an environmentally friendly form of biotechnology.

  5. Heavy metals: teeth as environmental biomarkers

    OpenAIRE

    Lumbau, Aurea Maria Immacolata; Lugliè, Pietrina Francesca; Carboni, Donatella; Ginesu, Sergio; Falchi, Simonetta; Schinocca, Laura

    2012-01-01

    Aim of this study was to measure the concentration of heavy metals in tooth matrix and to determine the factors that affect their presence. During tooth development and mineralization several metals can be absorbed in the tooth matrix, thus allowing us to use them as biological markers.

  6. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza; Siam, Rania; Mohamed, Yasmine M.

    2014-01-01

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II

  7. Research on heavy metal pollution of river Ganga: A review

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2017-06-01

    Full Text Available River Ganga is considered sacred by people of India for providing life sustenance to environment and ecology. Anthropogenic activities have generated important transformations in aquatic environments during the last few decades. Advancement of human civilization has put serious questions to the safe use of river water for drinking and other purposes. The river water pollution due to heavy metals is one of the major concerns in most of the metropolitan cities of developing countries. These toxic heavy metals entering the environment may lead to bioaccumulation and biomagnifications. These heavy metals are not readily degradable in nature and accumulate in the animal as well as human bodies to a very high toxic amount leading to undesirable effects beyond a certain limit. Heavy metals in riverine environment represent an abiding threat to human health. Exposure to heavy metals has been linked to developmental retardation, kidney damage, various cancers, and even death in instances of very high exposure. The following review article presents the findings of the work carried out by the various researchers in the past on the heavy metal pollution of river Ganga.

  8. The remediation of heavy metals contaminated sediment.

    Science.gov (United States)

    Peng, Jian-Feng; Song, Yong-Hui; Yuan, Peng; Cui, Xiao-Yu; Qiu, Guang-Lei

    2009-01-30

    Heavy metal contamination has become a worldwide problem through disturbing the normal functions of rivers and lakes. Sediment, as the largest storage and resources of heavy metal, plays a rather important role in metal transformations. This paper provides a review on the geochemical forms, affecting factors and remediation technologies of heavy metal in sediment. The in situ remediation of sediment aims at increasing the stabilization of some metals such as the mobile and the exchangeable fractions; whereas, the ex situ remediation mainly aims at removing those potentially mobile metals, such as the Mn-oxides and the organic matter (OM) fraction. The pH and OM can directly change metals distribution in sediment; however oxidation-reduction potential (ORP), mainly through changing the pH values, indirectly alters metals distribution. Mainly ascribed to their simple operation mode, low costs and fast remediation effects, in situ remediation technologies, especially being fit for slight pollution sediment, are applied widely. However, for avoiding metal secondary pollution from sediment release, ex situ remediation should be the hot point in future research.

  9. Heavy Metal Poisoning and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Eman M. Alissa

    2011-01-01

    Full Text Available Cardiovascular disease (CVD is an increasing world health problem. Traditional risk factors fail to account for all deaths from CVD. It is mainly the environmental, dietary and lifestyle behavioral factors that are the control keys in the progress of this disease. The potential association between chronic heavy metal exposure, like arsenic, lead, cadmium, mercury, and CVD has been less well defined. The mechanism through which heavy metals act to increase cardiovascular risk factors may act still remains unknown, although impaired antioxidants metabolism and oxidative stress may play a role. However, the exact mechanism of CVD induced by heavy metals deserves further investigation either through animal experiments or through molecular and cellular studies. Furthermore, large-scale prospective studies with follow up on general populations using appropriate biomarkers and cardiovascular endpoints might be recommended to identify the factors that predispose to heavy metals toxicity in CVD. In this review, we will give a brief summary of heavy metals homeostasis, followed by a description of the available evidence for their link with CVD and the proposed mechanisms of action by which their toxic effects might be explained. Finally, suspected interactions between genetic, nutritional and environmental factors are discussed.

  10. [Resistance to heavy metals in ruminal staphylococci].

    Science.gov (United States)

    Lauková, A

    1994-01-01

    Ruminal, coagulase-negative, urease and bacteriocin-like substances producing staphylococci were screened for their heavy metal ions and antibiotics resistance. All strains tested were resistant to disodium arsenate at a minimal inhibition concentration (MIC > 5 g/l) and cadmium sulphate (MIC > 4 g/l). MIC = 50-60 mg/l was determined in eight staphylococci screened in mercury chloride resistance test (Tab. I). Silver nitrate resistance was detected in seven of the bacteria used (MIC = 40-50 mg/l). All strains were novobiocin resistant. Staphylococcus cohnii subsp. urealyticum SCU 40 was found as a strain with resistance to all heavy metal ions and 5 antibiotics (Tab. II). In addition, this strain produced bacteriocin-like substance which inhibited growth of six indicators of different origin (Tab. II). The most of staphylococci were detected as heavy metal ion polyresistant strains and antibiotic polyresistant strains producing antimicrobial substances with inhibition effects against at least one indicator of different origin. These results represent the first information on heavy metal ion resistance in ruminal bacteria. They also show relation or coresistance between heavy metal ions and antibiotics. Resulting from this study, staphylococci can be used as a bioindicator model for animal environmental studies. In addition, it can be used for specific interactions studies within the framework of ruminal bacterial ecosystem and also mainly with regard to molecular genetic studies.

  11. Heavy metal content in compost and earthworms from home composters

    Directory of Open Access Journals (Sweden)

    Bożym Marta

    2017-12-01

    Full Text Available The paper presents the results of compost tests from home composters and earthworms living there, that treating waste into compost. The samples were taken from home composters and allotment gardens from Opole Region. The composting material was green waste. The total content of heavy metals (Cd, Pb, Cu, Zn, Ni Cr in compost and compost earthworms’ samples were determined. It was found that the compost samples were not contaminated with heavy metals. According to the Polish classification of composts from municipal wastes, the composts met the requirements for first class of quality. The composts did not exceed the limits of heavy metals specified in the Polish law for solid organic fertilizers. The degree of metal accumulation by compost earthworms depended on the type of metal. The high value of the bioaccumulation factor (BAF was obtained for Cd, Pb and Zn. No accumulation of other metals (Ni, Cr, Cu in earthworm bodies was found. It has been found that earthworm species, naturally occurring in Poland, can also be used as potential bioindicators of metals in the environment, such as the species Eisenia fetida. The aim of the study was to evaluate the heavy metal content in composts from home composters and ability to accumulate metals by compost earthworms.

  12. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  13. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Rosa Duque de la, M.E.

    1984-01-01

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y 2 wsup(a)/y 2 wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  14. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    Science.gov (United States)

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Body burdens of heavy metals in Lake Michigan wetland turtles.

    Science.gov (United States)

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  16. Nutrients and heavy metal distribution in thermally treated pig manure

    DEFF Research Database (Denmark)

    Kuligowski, Ksawery; Poulsen, Tjalfe G.; Stoholm, Peder

    2008-01-01

    Ash from pig manure treated by combustion and thermal gasification was characterized and compared in terms of nutrient, i.e., potassium (K), phosphorus (P) and heavy metal, i.e., cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni) and zinc (Zn) contents. Total nutrient and metal concentrations...... that ash from gasified manure contained more water-extractable K in comparison with combusted manure whereas the opposite was the case with respect to P. Heavy metals Ni, Cr and Cd were present in higher concentrations in the fine particle size fractions (

  17. Accumulation of Heavy Metals by Wild Mushrooms in Ibadan, Nigeria

    OpenAIRE

    Chinatu Charity Ndimele; Prince Emeka Ndimele; Kanayo Stephen Chukwuka

    2017-01-01

    Background. Many companies in Nigeria generate industrial effluents, including heavy metals. These metals can be accumulated by biota such as mushrooms, which are then eaten by the populace. Objectives. The present study investigates the metal content of wild mushrooms in order to educate the local population on the safety of their consumption. Methods. Seven different species of wild mushrooms (Cortinarius melliolens, Chlorophyllum brunneum, Pleurotus florida, Volvariella speciosa, Can...

  18. Heavy metal hazards of Nigerian herbal remedies

    Energy Technology Data Exchange (ETDEWEB)

    Obi, E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria); Akunyili, Dora N. [National Agency of Food and Drug Administration and Control (NAFDAC), Lagos (Nigeria); Ekpo, B. [Department of Biochemistry, College of Medical Sciences, Abia State University, Uturu (Nigeria); Orisakwe, Orish E. [Toxicology Unit, Department of Pharmacology, College of Health Sciences, Nnamdi Azikiwe University, Nnewi (Nigeria)]. E-mail: eorish@yahoo.com

    2006-10-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO{sub 3}.The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies.

  19. Heavy metal hazards of Nigerian herbal remedies

    International Nuclear Information System (INIS)

    Obi, E.; Akunyili, Dora N.; Ekpo, B.; Orisakwe, Orish E.

    2006-01-01

    The uses of herbal products are not regulated in Nigeria and in many low-income countries and are freely available to everyone. The safety of these herbal medicines is poorly understood. This study characterizes the content of cadmium, copper, iron, nickel, selenium, zinc, lead and mercury in a random sample of Nigerian traditional products. Ready-to-use herbal products were purchased from the open market and digested using HNO 3 .The heavy metal content of the digested filtrate was determined by atomic absorption spectrometry Uni-cam Model 929. The result showed that 100% of the samples contained elevated amounts of heavy metals. These data alert us to the possibility of heavy metal toxicity from herbal products in Nigeria. The public health hazards from ingestion of herbal medicines should be identified and disclosed by in-depth risk assessment studies

  20. Heavy metal pollution of agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.C.

    1975-01-01

    Inputs of heavy metals to soils have increased recently and there is much concern that they may be toxic at various stages along the food chain and ultimately to man. Cobalt, copper, iron, manganese, molybdenum, zinc, chromium, nickel, cadmium and lead move from geochemical sources to plants and then to animals and man; they then are returned in various forms to soil to complete the cycle. The ways in which heavy metals may be added to soils are reviewed. They include: aerial inputs by air pollution, fertilizers, pesticides, farm slurries and sewage sludge. Possibly the source of contamination which is to have the most impact on soils used for the production of crops is sewage sludge. The fate of heavy metal added to soils is discussed in relation to form, mobility, uptake by plants, effect of soil conditions on availability to plants, and toxicity to animals. 56 references.

  1. Transformation of heavy metals in lignite during supercritical water gasification

    International Nuclear Information System (INIS)

    Chen, Guifang; Yang, Xinfei; Chen, Shouyan; Dong, Yong; Cui, Lin; Zhang, Yong; Wang, Peng; Zhao, Xiqiang; Ma, Chunyuan

    2017-01-01

    Highlights: • The transformations of heavy metals during lignite SCWG were investigated. • The risks of heavy metals in lignite and residues after SCWG were evaluated. • The effects of experimental conditions on corrosion during SCWG were studied. - Abstract: Transformation characteristics of heavy metals during lignite supercritical water gasification (SCWG) were studied. A sequential extraction procedure (modified Tessier method) was used to selectively extract different fractions of Pb, Cd, Cr, Mn, Cu, Ni, and Zn. Heavy metals transformed into more stable fractions after SCWG. For Pb, Cd, Mn, Cu, and Zn, SCWG reduced the bioavailability and the risks posed by heavy metals in lignite. Under the experimental conditions, the conversion rates for Pb and Cd were 16.0%–25.2% and 16.3%–23.4%, respectively, whereas those for Mn, Cu, and Zn were much lower. Solid products enriched with Pb, Cd, Mn, Cu, and Zn were obtained after SCWG; the contents of these metals varied slightly in the liquid products under different experimental conditions. Excess Cr and Ni that did not originate from lignite were found in the residues, owing to reactor corrosion during lignite SCWG. Higher temperatures alleviated corrosion, whereas higher pressures and equivalence ratios (ER) had the opposite effect. None of the heavy metals were detected in the gas phase under the experimental conditions used in the present study. The correlation between the distributions of heavy metals and the experimental conditions were also studied. The transformation pathways of Pb, Cd, Mn, Cu, and Zn during SCWG were deduced according to the experimental results.

  2. Heavy Metal Pollution Around International Hatay Airport

    Directory of Open Access Journals (Sweden)

    Abdullah Özkan

    2017-02-01

    Full Text Available In this study, it was aimed to determine the heavy metal pollution in the agricultural lands around Hatay airport and travel possible alteration in the amount of heavy metal on the land in accordance with the distance to the airport. For this purpose, the airport was chosen as the center and 27 soil samples were obtained around the airport at 2 km intervals in depth ranging from 0 to 30 cm. Lead (Pb, cadmium (Cd, nickel (Ni, chrome (Cr, cobalt (Co, aluminium (Al, iron (Fe, copper (Cu, manganese (Mn and zinc (Zn elements in soil samples were analysed using MP-AES instrument by DTPA method. (3 repetition for each sample. As a result of the analysis, heavy metal concentrations were found as Pb 0-1.45 mg/kg, Cd 0-0.220 mg/kg, Ni 0-3.95 mg/kg, Cr 0-0.780 mg/kg, Co 0-0.270 mg/kg, Al 0-0.700 mg/kg, Fe 1.47- 16.2 mg/kg, Cu 0.400-5.35 mg/kg, Mn 0-19 mg/kg and Zn 0.050-3.14 mg/kg. When comparing the obtained data through this study with allowable concentrations of heavy metals in soil of Environment and Forest Directorates Guidance, it was determined that the heavy metal concentration of the soil does not pose any problems in terms of heavy metal pollution. Besides, iron concentration was decreased when the distance to the airport is increased.

  3. A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques

    Directory of Open Access Journals (Sweden)

    Chao Su

    2014-06-01

    Full Text Available Heavy metals in the soil refers to some significant heavy metals of biological toxicity, including mercury (Hg, cadmium (Cd, lead (Pb, chromium (Cr, and arsenic (As, etc. With the development of the global economy, both type and content of heavy metals in the soil caused by human activities have gradually increased in recent years, which have resulted in serious environment deterioration. In present study we compared and analyzed soil contamination of heavy metals in various cities/countries, and reviewed background, impact and remediation methods of soil heavy metal contamination worldwide.

  4. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    Science.gov (United States)

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Heavy metal absorption by vegetables grown in different soils

    International Nuclear Information System (INIS)

    Canova, F.; Riolfatti, M.; Ravazzolo, E.; Da Ros, D.; Brigato, L.

    1995-01-01

    The authors study the bibliographic and experimental data on absorption by vegetables of several heavy metals present in the soil or brought to it via fertilizations, especially with the use of compost coming from waste treatment plants. The presence of heavy metals in the soil causes increased levels of these toxic substances in the edible parts of the vegetables grown in that soil. Not to be neglected is also the absorption by the leaf apparatus of airborne particulate containing heavy metals which deposit on the parts of the vegetable exposed to the air. The available data lack homogeneity of investigation as they have been draw from studies which followed different methodologies. Therefore further studies are required in order to: eliminate some of the variables that might affect the absorption of metals from the soil and supply comparable data. Moreover, a greater number of vegetable species and their different edible parts will have to be taken into consideration

  6. Transfer of heavy metals through terrestrial food webs: a review.

    Science.gov (United States)

    Gall, Jillian E; Boyd, Robert S; Rajakaruna, Nishanta

    2015-04-01

    Heavy metals are released into the environment by both anthropogenic and natural sources. Highly reactive and often toxic at low concentrations, they may enter soils and groundwater, bioaccumulate in food webs, and adversely affect biota. Heavy metals also may remain in the environment for years, posing long-term risks to life well after point sources of heavy metal pollution have been removed. In this review, we compile studies of the community-level effects of heavy metal pollution, including heavy metal transfer from soils to plants, microbes, invertebrates, and to both small and large mammals (including humans). Many factors contribute to heavy metal accumulation in animals including behavior, physiology, and diet. Biotic effects of heavy metals are often quite different for essential and non-essential heavy metals, and vary depending on the specific metal involved. They also differ for adapted organisms, including metallophyte plants and heavy metal-tolerant insects, which occur in naturally high-metal habitats (such as serpentine soils) and have adaptations that allow them to tolerate exposure to relatively high concentrations of some heavy metals. Some metallophyte plants are hyperaccumulators of certain heavy metals and new technologies using them to clean metal-contaminated soil (phytoextraction) may offer economically attractive solutions to some metal pollution challenges. These new technologies provide incentive to catalog and protect the unique biodiversity of habitats that have naturally high levels of heavy metals.

  7. Heavy metal pollutant tolerance of Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, A.; Jana, S.

    1986-01-01

    The effects of Hg, As, Pb, Cu, Cd, and Cr (1,2 and 5 mg L/sup -1/ each) on Azolla pinnata R. Br. were analyzed. The treatments (2 and 5 mg L/sup -1/) of the heavy metal pollutants decreased Hill activity, chlorophyll, protein and dry wt, and increased tissue permeability over control values. The effects were most pronounced with the treatment of 5 mg L/sup -1/. The harmful effects of the metals were, in general, found by the treatments in the order: Cd > Hg > Cu > As > Pb > Cr. There was no significant change in these parameters at 1 mg L/sup -1/ of the metals over control. Thus Azolla pinnata shows tolerance to the heavy metals tested up to 1 mg L/sup -1/ each.

  8. Esterase resistant to inactivation by heavy metals

    KAUST Repository

    El, Dorry Hamza

    2014-09-25

    EstATII is an esterase that a halotolerant, thermophilic and resistant to a spectrum of heavy metals including toxic concentration of metals. It was isolated from the lowest convective layer of the Atlantis II Red Sea brine pool. The Atlantis II brine pool is an extreme environment that possesses multiple harsh conditions such as; high temperature, salinity, pH and high concentration of metals, including toxic heavy metals. A fosmid metagenomic library using DNA isolated from the lowest convective layer this pool was used to identify EstATII. Polynucleotides encoding EstATII and similar esterases are disclosed and can be used to make EstATII. EstATII or compositions or apparatuses that contain it may be used in various processes employing lipases/esterases especially when these processes are performed under harsh conditions that inactivate other kinds of lipases or esterases.

  9. Pyrolized biochar for heavy metal adsorption

    Science.gov (United States)

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  10. Heavy metals and related trace elements

    International Nuclear Information System (INIS)

    Leland, H.V.; Luoma, S.N.; Wilkes, D.J.

    1977-01-01

    A review is given of heavy metals and related trace elements in the aquatic environment. Other reviews and bibliographies are cited, dealing with the metabolism and transport of metal ions and with the toxic effects of stable and radioactive trace metals on aquatic organisms. The sources of trace elements in natural waters are discussed. It is suggested that atmospheric inputs of several trace metals comprise sizable fractions of total inputs to the Great Lakes and continental shelf waters. Information on stack emissions of trace elements from a coal-fired steam plant was used to estimate the likely range of air concentrations and inputs to a forested watershed in Tennessee. Some basic concepts of cycling of elements through aquatic communities were examined, such as the Pb, Mn and Zn concentrations in sediment and estuarine plants and animals colonizing dredge-spoil disposal areas. The use of plants as biological indicators of trace element contamination was outlined, as well as bioaccumulation in aquatic fauna. The effects of environmental factors on the kinetics of element exchange were noted, for example the influx rates of Cs 137 in tubificid worms, and Co 60 and Zn 65 in shrimp were shown to be temperature dependent. The toxicity of heavy metals on aquatic fauna was discussed, such as the histopathological lesions in the kidney and liver of fishes caused by heavy metals, and the effects of Hg and Cu on the olfactory response of rainbow trout

  11. Heavy metals and terrestrial cryptograms. A bibliographic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Margot, J.; Romain, M.T.

    1976-01-01

    Heavy metals pollution is a present-day problem as it concerns the entire continent. Terrestrial cryptograms are not of long-standing use as bioindicators in this respect and require a synthesis of the recent publications. Characteristics of heavy metals in the atmosphere, especially mosses and lichens, utilizable as bioindicators are briefly reported. They are followed by more accurate descriptions of phenomena on the level with the plant itself: absorption, accumulation, translocation, tolerance and other physico-chemical processes. The statement of deleterious effects on these organisms is then given: external symptoms, cytological localization, metabolic disturbances and ecological aspects. Further research propositions are presented. 128 references.

  12. Hydroponics reducing effluent's heavy metals discharge.

    Science.gov (United States)

    Rababah, Abdellah; Al-Shuha, Ahmad

    2009-01-01

    This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.

  13. Evaluation of Physicochemical Properties and Heavy Metals ...

    African Journals Online (AJOL)

    Physicochemical properties of municipal dumpsite compost in Kano metropolis and concentration of heavy metals were investigated. Analysis was carried out by atomic absorption spectrometry (Buck Scientific VPG 210). The results shows that the compost pH (6.63-8.19), electric conductivity of compost (638-933μs/cm), ...

  14. Heavy metal contamination in TIMS Branch sediments

    International Nuclear Information System (INIS)

    Pickett, J.B.

    1990-01-01

    The objective of this memorandum is to summarize results of previous sediment studies on Tims Branch and Steed's Pond conducted by Health Protection (HP) and by the Savannah River Laboratory (SRL) in conjunction with Reactor Materials Engineering ampersand Technology (RMET). The results for other heavy metals, such as lead, nickel, copper, mercury, chromium, cadmium, zinc, and thorium are also summarized

  15. Heavy metal bioaccumulation in Callinectes amnicola and ...

    African Journals Online (AJOL)

    The bioaccumulation of heavy metals in organisms is as a result of pollutants discharge generated by anthropogenic and natural activities which has become a tremendous concern in developing nations. The levels of cadmium, copper, chromium, lead, zinc and nickel in the tissue of Callinectes amnicola and ...

  16. Heavy metals contamination of Chrysichthys nigrodigitatus and ...

    African Journals Online (AJOL)

    This study investigates the presence of heavy metal contamination of Chrysichthys nigrodigitatus and Lates niloticus. Adult C. nigrodigitatus and L. niloticus were obtained from fishermen in Ikere Gorge, Oyo state, Nigeria. Water samples were also collected during the wet and dry seasons of the year in the same locality.

  17. Heavy metal levels, physicochemical properties and microbial ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... out to assess the microbial, physicochemical and heavy metal characteristics of soil samples from five different waste collection sites within the University of Benin, Benin City and evaluated using standard analytical and classical microbiological methods.

  18. On chemical activity of heavy metal oxides

    International Nuclear Information System (INIS)

    Mechev, V.V.

    1994-01-01

    Interaction of solid oxides of heavy nonferrous metals with sulfur and carbon is investigated. The results are discussed. Direct dependence of chemical activity of oxides on disordering of their crystal lattice at heating is established. Beginning of interaction in the systems studied is accompanied by change of oxide conductivity type

  19. Photoelectrochemical detection of toxic heavy metals

    CSIR Research Space (South Africa)

    Chamier, J

    2010-09-01

    Full Text Available on various substrates introduced the possibility for portable and on-site instant verification of heavy metal pollutants. In this work, the favorable properties of the mercury-sensitive fluorescent molecule, Rhodamine 6G hydrozone derivative (RS), were...

  20. HEAVY METALS CONTAMINATION OF TOPSOIL AND ...

    African Journals Online (AJOL)

    a

    emissions from automobile exhaust, waste incineration, land disposal of wastes, use of .... of total organic carbon increased from 2.0 ± 1.5 % in the top soil to 3.42 ± 0.83 ..... Thus, accumulation of heavy metals in the soil has potential to restrict.

  1. Heavy metal removal from water/wastewater by nanosized metal oxides: A review

    International Nuclear Information System (INIS)

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-01-01

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs’ preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance.

  2. A novel heavy metal ATPase peptide from Prosopis juliflora is involved in metal uptake in yeast and tobacco.

    Science.gov (United States)

    Keeran, Nisha S; Ganesan, G; Parida, Ajay K

    2017-04-01

    Heavy metal pollution of agricultural soils is one of the most severe ecological problems in the world. Prosopis juliflora, a phreatophytic tree species, grows well in heavy metal laden industrial sites and is known to accumulate heavy metals. Heavy Metal ATPases (HMAs) are ATP driven heavy metal pumps that translocate heavy metals across biological membranes thus helping the plant in heavy metal tolerance and phytoremediation. In the present study we have isolated and characterized a novel 28.9 kDa heavy metal ATPase peptide (PjHMT) from P. juliflora which shows high similarity to the C-terminal region of P 1B ATPase HMA1. It also shows the absence of the invariant signature sequence DKTGT, and the metal binding CPX motif but the presence of conserved regions like MVGEGINDAPAL (ATP binding consensus sequence), HEGGTLLVCLNS (metal binding domain) and MLTGD, GEGIND and HEGG motifs which play important roles in metal transport or ATP binding. PjHMT, was found to be upregulated under cadmium and zinc stress. Heterologous expression of PjHMT in yeast showed a higher accumulation and tolerance of heavy metals in yeast. Further, transgenic tobacco plants constitutively expressing PjHMT also showed increased accumulation and tolerance to cadmium. Thus, this study suggests that the transport peptide from P. juliflora may have an important role in Cd uptake and thus in phytoremediation.

  3. Characterization of landfill leachates and studies on heavy metal removal.

    Science.gov (United States)

    Ceçen, F; Gürsoy, G

    2000-10-01

    This study covers a thorough characterisation of landfill leachates emerging from a sanitary landfill area. The landfill leachates were obtained in the acidic stage of landfill stabilisation. Their organic content was high as reflected by the high BOD5 (5 day biological oxygen demand) and COD (chemical oxygen demand) values. They were also highly polluted in terms of the parameters TKN (total Kjeldahl nitrogen), NH4-N, alkalinity, hardness and heavy metals. Nickel was present in these wastewaters at a significant concentration. With regard to the high heavy metal content of these wastewaters, several physicochemical removal alternatives for the heavy metals Cu, Pb, Zn, Ni, Cd, Cr, Mn and Fe were tested using coagulation, flocculation, precipitation, base addition and aeration. Additionally, COD removal and ammonia stripping were examined. Co-precipitation with either alum or iron salts did not usually lead to significantly higher heavy metal removal than lime alone. The major methods leading to an effective heavy metal removal were aeration and lime addition. Nickel and cadmium seemed to be strongly complexed and were not removed by any method. Also lead removal proved to be difficult. The results are also discussed in terms of compliance with standards.

  4. Metabolic Demands of Heavy Metal Drumming

    Directory of Open Access Journals (Sweden)

    Bryan Romero

    2016-07-01

    Full Text Available Background: The drum set involves dynamic movement of all four limbs. Motor control studies have been done on drum set playing, yet not much is known about the physiological responses to this activity. Even less is known about heavy metal drumming. Aims: The purpose of this study was to determine metabolic responses and demands of heavy metal drumming. Methods: Five semi-professional male drummers (mean ± SD age = 27.4 ± 2.6 y, height = 177.2 ± 3.8 cm, body mass = 85.1 ± 17.8 kg performed four prescribed and four self-selected heavy metal songs. Oxygen consumption (VO2, minute ventilation (VE and respiratory exchange ratio (RER were measured using a metabolic cart.  Heart rate (HR was measured using a heart rate monitor. VO2max was determined using a graded cycle ergometer test. Results: The results indicated a metabolic cost of 6.3 ± 1.4 METs and heart rate of 145.1 ± 15.7 beats·min-1 (75.4 ± 8.3% of age-predicted HRmax. VO2 peak values reached approximately 90% of the drummer’s VO2max when performing at the fastest speeds. According to these results, heavy metal drumming may be considered vigorous intensity activity (≥ 6.0 METs. The relative VO2max of 40.2 ± 9.5 mL·kg·min-1 leads to an aerobic fitness classification of “average” for adult males. Conclusions: The metabolic demands required during heavy metal drumming meet the American College of Sports Medicine guidelines for the development of health related fitness.  Keywords: Drum set, Exercise physiology, VO2, Music

  5. Heavy metals in soils: a possible rule of Fungi

    International Nuclear Information System (INIS)

    Bedini, S.; Argese, E.; Giovannetti, M.; Gobbo, L.; Pietrangeli, B.

    2009-01-01

    The development of effective bio technologies is a mail goal in reclaiming polluted soils. Plants may represent a very useful tool, since they are able to reduce pollution by means of the synergic action of rhizospheric microorganisms. Arbuscular mycorrhizal (A M) fungi, root symbionts of most land plants, produce a proteinaceous substance named glomalin-related soil protein (GRSP) that has been demonstrated to interact with metallic ions. In this study we investigated the role of GRSP in the immobilization of potentially toxic heavy metals both in an agricultural and in a highly polluted soil. The results show that in heavy metal contaminated soils, GRSP can ease soil pollution by sequestering toxic metallic ions. On the other hand, in agricultural soils, where metallic elements are present in low concentrations, GRSP may be important also as a nutrient slow-releasing fraction of the soil organic matter.

  6. Heavy Metal - Exploring a magnetised metallic asteroid

    Science.gov (United States)

    Wahlund, J.-E.; Andrews, D. J.

    2017-09-01

    We propose an ESA/M5 spacecraft mission to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×1019 kg of (16) Psyche make it one of the largest and densest of asteroids, 4.5 g cm-3, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. (16) Psyche orbits the Sun with semi-major axis 2.9 AU, 3º inclination, and is as yet unexplored in-situ.

  7. classification of plants according to their heavy metal content around

    African Journals Online (AJOL)

    Mgina

    accumulated heavy metals around North Mara Gold Mine were not known. To study such ... heavy metal hyperaccumulator plants for possible future remediation of the study area. ... mine is about 100 kilometers east of Lake. Victoria and 20 ...

  8. Evaluation of some heavy metal contaminants in biscuits, fruit drinks ...

    African Journals Online (AJOL)

    Evaluation of some heavy metal contaminants in biscuits, fruit drinks, concentrates, ... effect in human due to continual consumption of food contaminated with heavy metals gotten from raw materials, manufacturing and packaging processes.

  9. Determination of selected heavy metals in inland fresh water of ...

    African Journals Online (AJOL)

    Agadaga

    Key words: Heavy metals, freshwater, concentrations, quality, variation, distribution. ... prevalence of heavy metals in inland water of lower River. Niger drain are scarce ..... Niger waters at Ajaokuta were found to be low and within guideline.

  10. Concentration and Health Implication of Heavy Metals in Drinking ...

    African Journals Online (AJOL)

    Concentration and Health Implication of Heavy Metals in Drinking Water from Urban ... water is not mentioned by WHO, but all the samples analyzed were found to ... Key words: Drinking water quality, Heavy metals, Maximum admissible limit, ...

  11. Phytoremediation of heavy metals with several efficiency enhancer ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... Key words: phytoremediation, heavy metal, plant growth promoting rhizobacteria, multi-functional method. ... population in the twentieth century, heavy metal ... This natural and environmental friendly technology is.

  12. heavy metals and cyanide distribution in the villages surrounding ...

    African Journals Online (AJOL)

    detection limit) were higher in the wells closest to the Tailing Storage Facility ... Key Words: Heavy metals pollution, Total cyanide, ground water pollution and ..... cyanide, heavy metals and probably other hazardous substances, leakage of.

  13. Studies of heavy metal contents and microbial composition of ...

    African Journals Online (AJOL)

    FLEXI-DONEST

    the use of private electricity generating sets, in recent times, have ... soil and evaluate the impact of heavy metal on soil degradable ..... a reasonable length of time by herbivores may .... Heavy Metals in Root, Stem and Leaves of Acalypha.

  14. Source of atmospheric heavy metals in winter in Foshan, China.

    Science.gov (United States)

    Tan, Ji-Hua; Duan, Jing-Chun; Ma, Yong-Liang; Yang, Fu-Mo; Cheng, Yuan; He, Ke-Bin; Yu, Yong-Chang; Wang, Jie-Wen

    2014-09-15

    important source of atmospheric heavy metals. The present paper suggests a control policy on the four heavy metals Cd, Pb, Zn, and Cu, and suggests the inclusion of As in the ceramic industry emission standard in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Solubility of heavy metals added to MSW

    International Nuclear Information System (INIS)

    Lo, H.M.; Lin, K.C.; Liu, M.H.; Pai, T.Z.; Lin, C.Y.; Liu, W.F.; Fang, G.C.; Lu, C.; Chiang, C.F.; Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C.

    2009-01-01

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO 3 and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K d (l g -1 ) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K d (l g -1 ) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions

  16. Solubility of heavy metals added to MSW

    Energy Technology Data Exchange (ETDEWEB)

    Lo, H.M. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)], E-mail: hmlo@cyut.edu.tw; Lin, K.C. [Department of Occupational Safety and Health, Chung Shan Medical University, 110, Sec. 1, Jiangguo N. Rd., Taichung 402, Taiwan (China); Liu, M.H.; Pai, T.Z. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China); Lin, C.Y. [Department of Soil and Water Conservation, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Liu, W.F. [Department of Electronical Engineering, Feng Chia University, 100 Wenhwa Road, Taichung 407, Taiwan (China); Fang, G.C. [Department of Environmental Engineering, Hungkuang University, 34 Chung-Chie Road, Sha Lu, Taichung 433, Taiwan (China); Lu, C. [Department of Environmental Engineering, Chung Hsing University, 250 Kuokuang Road, Taichung 402, Taiwan (China); Chiang, C.F. [Department of Health Risk Management, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Wang, S.C.; Chen, P.H.; Chen, J.K.; Chiu, H.Y.; Wu, K.C. [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168 Gifong E. Road, Wufong, Taichung County 41349, Taiwan (China)

    2009-01-15

    This paper aims to investigate the six heavy metal levels (Cd, Cr, Cu, Pb, Ni and Zn) in municipal solid waste (MSW) at different pHs. It intends to provide the baseline information of metals solubility in MSW co-disposed or co-digested with MSW incinerator ashes in landfill or anaerobic bioreactors or heavy metals contaminated in anaerobic digesters. One milliliter (equal to 1 mg) of each metal was added to the 100 ml MSW and the batch reactor test was carried out. The results showed that higher HNO{sub 3} and NaOH were consumed at extreme pH of 1 and 13 compared to those from pH 2 to 11 due to the comparably higher buffer capacity. Pb was found to have the least soluble level, highest metal adsorption (%) and highest partitioning K{sub d} (l g{sup -1}) between pH 3 and 12. In contrast, Ni showed the highest soluble level, lowest metal adsorption (%) and lowest K{sub d} (l g{sup -1}) between pH 4 and 12. Except Ni and Cr, other four metals seemed to show the amphibious properties as comparative higher solubility was found in the acidic and basic conditions.

  17. Treatment of heavy metal contaminated soils by in situ vitrification

    International Nuclear Information System (INIS)

    Hansen, J.E.

    1991-01-01

    Contaminated soil site remediation objectives call for the destruction, removal, and/or immobilization of contaminant species. Destruction is applicable to hazardous compounds (e.g., hazardous organics such as PCBs; hazardous inorganics such as cyanide); however, it is not applicable to hazardous elements such as the heavy metals. Removal and/or immobilization are typical objectives for heavy metal contaminants present in soil. Many technologies have been developed specifically to meet these needs. One such technology is In Situ Vitrification (ISV), an innovative mobile, onsite, in situ solids remediation technology that has been available on a commercial basis for about two years. ISV holds potential for the safe and permanent treatment/remediation of previously disposed or current process solids waste (e.g., soil, sludge, sediment, tailings) contaminated with hazardous chemical and/or radioactive materials. This paper focuses on the application of ISV to heavy metal-contaminated soils

  18. Interactions between plant hormones and heavy metals responses.

    Science.gov (United States)

    Bücker-Neto, Lauro; Paiva, Ana Luiza Sobral; Machado, Ronei Dorneles; Arenhart, Rafael Augusto; Margis-Pinheiro, Marcia

    2017-01-01

    Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  19. Interactions between plant hormones and heavy metals responses

    Directory of Open Access Journals (Sweden)

    Lauro Bücker-Neto

    2017-04-01

    Full Text Available Abstract Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

  20. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    Science.gov (United States)

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  1. Phytoremediation of water bodies contaminated with radioactive heavy metal

    International Nuclear Information System (INIS)

    Yan Zhen; Yuan Shichao; Ling Hui; Xie Shuibo

    2012-01-01

    The sources of the radioactive heavy metal in the water bodies were analyzed. The factors that affect phyto remediation of water contaminated with radioactive heavy metal were discussed. The plant species, mechanism and major technology of phyto remediation of water contaminated with radioactive heavy metal were particularly introduced. The prospective study was remarked. (authors)

  2. Heavy metals content in the stem bark of Detarium microcarpum ...

    African Journals Online (AJOL)

    The heavy metal analysis was carried out on the stem bark of D. microcarpum using an atomic absorption spectrophotometer (AAS). The heavy metals screened for include: lead, chromium, manganese, zinc and iron. The levels of manganese, zinc and iron were 13.91, 4.89 and 21.89 mg/L respectively. These heavy metals ...

  3. Arbuscular Mycorrhizal Fungi Can Benefit Heavy Metal Tolerance and Phytoremediation

    Science.gov (United States)

    Forgy, David

    2012-01-01

    Sites contaminated by heavy metals, such as industrial waste sites, create unwelcoming environments for plant growth. Heavy metals can have a wide range of toxic effects such as replacing essential elements or disrupting enzyme function. While some heavy metals are essential to plant nutrition at low concentrations, high concentrations of any…

  4. Classification of Plants According to Their Heavy Metal Content ...

    African Journals Online (AJOL)

    Plants like other living organisms respond differently under different environmental conditions. An elevated level of heavy metals is one of the stresses which results into three classes of plants depending on their heavy metal content. The classes of plant species according to their accumulated heavy metals around North ...

  5. Bioaccumulation and toxic effects of some heavy metals in ...

    African Journals Online (AJOL)

    The contamination of the aquatic systems with heavy metals from natural anthropogenic sources has become a global problem which poses threats to ecosystems and natural communities. Hence this study reviews the effects of heavy metals in freshwater fishes. Fishes bioaccumulate heavy metals (including cadmium, zinc ...

  6. Bioremediation of Heavy Metal by Algae

    Directory of Open Access Journals (Sweden)

    Seema Dwivedi

    2012-07-01

    Full Text Available Instead of using mainly bacteria, it is also possible to use mainly algae to clean wastewater because many of the pollutant sources in wastewater are also food sources for algae. Nitrates and phosphates are common components of plant fertilizers for plants. Like plants, algae need large quantities of nitrates and phosphates to support their fast cell cycles. Certain heavy metals are also important for the normal functioning of algae. These include iron (for photosynthesis, and chromium (for metabolism. Because marine environments are normally scarce in these metals, some marine algae especially have developed efficient mechanisms to gather these heavy metals from the environment and take them up. These natural processes can also be used to remove certain heavy metals from the environment. The use of algae has several advantages over normal bacteria-based bioremediation processes. One major advantage in the removal of pollutants is that this is a process that under light conditions does not need oxygen. Instead, as pollutants are taken up and digested, oxygen is added while carbon dioxide is removed. Hence, phytoremediation could potentially be coupled with carbon sequestration. Additionally, because phytoremediation does not rely on fouling processes, odors are much less a problem. Microalgae, in particular, have been recognized as suitable vectors for detoxification and have emerged as a potential low-cost alternative to physicochemical treatments. Uptake of metals by living microalgae occurs in two steps: one takes place rapidly and is essentially independent of cell metabolism – “adsorption” onto the cell surface. The other one is lengthy and relies on cell metabolism – “absorption” or “intracellular uptake.” Nonviable cells have also been successfully used in metal removal from contaminated sites. Some of the technologies in heavy metal removals, such as High Rate Algal Ponds and Algal Turf Scrubber, have been justified for

  7. Proceedings of 15th International Conference on Heavy Metals in the Environment

    International Nuclear Information System (INIS)

    Barganska, Z.; Beyer, A; Klimaszewska, K.; Namiesnik, J.; Tobiszewski, M.; Rutkiewicz, I.

    2010-01-01

    15 th International Conference on Heavy Metals in the Environment (15 th ICHMET) is a continuation of a series of conferences that have been held since 1975. These conferences typically draw 500-1000 participants from countries in many parts of the world. The ICHMETs are the only forum that provide an integrated perspective on research and policy initiatives on all heavy metals in a trans-disciplinary context. There is a need to understand not only the unique features and behavior of individual heavy metals but also the differences, similarities and interactions of different metals at the ecosystem, systemic and cellular levels if we are to deal with the problems of global heavy metal pollution in a sustainable manner. The presented contributions concerned problems: (1) trend tracking/analysis of heavy metals data; (2) analytical tools and techniques; (3) heavy metals in the marine environment; (4) accumulation in foods and crops; (5) soil contamination; (6) heavy metals in sediments and remediation technologies; (7) effects on human health; (8) heavy metals in the atmosphere; (9) sources, emissions and control of heavy metals; (10) phytoremediation; (11) wastewater treatment; (12) heavy metals in the historical pollution record.

  8. Customizable Biopolymers for Heavy Metal Remediation

    International Nuclear Information System (INIS)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred

    2005-01-01

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted

  9. Heavy metals hazards from Nigerian spices.

    Science.gov (United States)

    Asomugha, Rose Ngozi; Udowelle, Nnaemeka Arinze; Offor, Samuel James; Njoku, Chinonso Judith; Ofoma, Ifeoma Victoria; Chukwuogor, Chiaku Chinwe; Orisakwe, Orish Ebere

    Natural spices are commonly used by the people in Nigeria. They may be easily contaminated with heavy metals when they are dried and then pose a health risk for the consumers. The aim of this study was to determine the levels of heavy metals in some commonly consumed natural spices namely Prosopis Africana, Xylopia aethiopica, Piper gineense, Monodora myristica, Monodora tenuifolia and Capsicum frutescens sold in the local markets of Awka, Anambra state, South East Nigeria to estimate the potential health risk. The range of heavy metal concentration was in the order: Zn (14.09 - 161.04) > Fe (28.15 - 134.59) > Pb (2.61 - 8.97) > Cr (0.001 - 3.81) > Co (0.28 - 3.07) > Ni (0.34 - 2.89). Pb, Fe and Zn exceeded the maximum allowable concentrations for spices. The Target Hazard Quotient (THQ) of the spices varied from 0.06-0.5. Estimated daily intakes (EDI) were all below the tolerable daily intake (TDI). The lead levels in Prosopis africana, Xylopia aethiopica, Piper gineense, Monodora myristica and Capsicum frutescens which are 8-30 times higher than the WHO/FAO permissible limit of 0.3 mg/kg. Lead contamination of spices sold in Awka (south east Nigeria) may add to the body burden of lead. A good quality control for herbal food is important in order to protect consumers from contamination. food products, spices, potential toxic metals, risk assessment, public health.

  10. Assessment of Heavy Metal Content of Branded Pakistani Herbal ...

    African Journals Online (AJOL)

    Purpose: To investigate the heavy metals present in branded Pakistani herbal medicines used in the management of various human ailments. Method: The herbal dosage forms assessed were tablets, capsules and syrups. The samples were prepared for analysis by wet digestion method using nitric acid and perchloric acid ...

  11. Geospatial analyses in support of heavy metal contamination ...

    African Journals Online (AJOL)

    This paper presents an exploratory assessment of heavy metal contamination along the main highways in Mafikeng, and illustrates how spatial analyses of the contamination for environmental management purposes can be supported by GIS and Remote Sensing. Roadside soil and grass (Stenotaphrum sp.) samples were ...

  12. Heavy metal burden of the Pinnau river

    International Nuclear Information System (INIS)

    1993-01-01

    The water phase and sediment of the Pinnau river were investigated for their heavy-metal pollution. Tests for the elements chromium, mercury, nickel, arsenic, lead, copper, cadmium, zinc and iron were carried through with sediment samples in 1984 and 1989 and with water samples in 1987 and 1989. Whereas no significant changes in the levels of these metals were found in the water phase during the two-year period of invetigation, slightly reduced levels of zinc, cadmium and mercury were established in the sediment in 1989 as compared to 1984. (orig.) [de

  13. Heavy Metals Pollution in Lake Mariut

    International Nuclear Information System (INIS)

    Saad, M.A.H.; Ezzat, A.A.E.; El-Rayis, O.A.; Hafez, H.

    1981-01-01

    The occurrence and distribution of heavy metals in the water of the heavily polluted Lake Mariut (Egypt) during August 1978 to September 1979 as well as the accumulation of these metals in the different parts of the common fish, Tilapia species, were studied. The study represents a second part of a pilot project on pollution of Lake Mariut supported by IAEA. The mean concentrations of the measured Zn, Gu, Fe, Mn and Cd in the lake water were 10.9, 4.2, 19.1, 26.2 and 0.62 μg/l, respectively

  14. Health concerns of heavy metals and metalloids.

    Science.gov (United States)

    Cooksey, Chris

    2012-01-01

    There is a long history and an overwhelming amount of data on the toxicity of heavy metal compounds. Here a brief look is taken of some aspects of the toxicity of lead, cadmium, mercury and arsenic, chosen for their historical importance and environmental significance, highlighting especially the contrast between the acute and chronic toxicity of purely inorganic species and their organic derivatives. For further details of other toxic metal compounds, the reader might like to consult "Elements of murder: a history of poison" by John Emsley (2005, Oxford University Press).

  15. Heavy metals in carabids (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Ruslan Butovsky

    2011-05-01

    Full Text Available Carabid beetles (Coleoptera, Carabidae are one of the most studied soil groups in relation to heavy metal (HM accumulation and use for bioindication of environmental pollution. Accumulation of Zn and Cu in carabid beetles was species-, sex- and trophic group-specific. No differences were found in HM contents between omnivorous and carnivorous species. The use of carabid beetles as indicators of HM accumulation appears to be rather limited.

  16. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, Ashraf E.M.; King Saud University, Riyadh

    2008-01-01

    Full text: Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples were collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration were measured. The annual addition of these elements in soil due to soil fertilization were calculated and discussed. (author)

  17. Polution of the environment by heavy metals

    International Nuclear Information System (INIS)

    Houtman, J.P.W.

    1980-01-01

    An overview is given of the problems caused by pollution of the environment by heavy metals and the important role played by nuclear examination methods such as activation analysis and particle induced X-ray emission. A number of examples taken from work initiated by the interuniversitair Reactor Instituut, demonstrate that this research should be continued and extended, particularly in relation to the expected increase in the use of coal for energy generation in electricity centres. (C.F.)

  18. Adsorption of heavy metals by road deposited solids.

    Science.gov (United States)

    Gunawardana, Chandima; Goonetilleke, Ashantha; Egodawatta, Prasanna

    2013-01-01

    The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb, for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments, confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic studies and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electronegativity and high charge density of trivalent cation (Cr(3+)). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.

  19. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China.

    Science.gov (United States)

    Li, Ning; Kang, Yuan; Pan, Weijian; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen

    2015-07-15

    There is limited study focusing on the bioaccumulation of heavy metals in vegetables and human exposure to bioaccessible heavy metals in soil. In the present study, heavy metal concentrations (Cr, Ni, Cu, Pb and Cd) were measured in five types of vegetables, soil, root, and settled air particle samples from two sites (at a domestic waste incinerator and at 20km away from the incinerator) in Guangzhou, South China. Heavy metal concentrations in soil were greater than those in aerial parts of vegetables and roots, which indicated that vegetables bioaccumulated low amount of heavy metals from soil. The similar pattern of heavy metal (Cr, Cd) was found in the settled air particle samples and aerial parts of vegetables from two sites, which may suggest that foliar uptake may be an important pathway of heavy metal from the environment to vegetables. The highest levels of heavy metals were found in leaf lettuce (125.52μg/g, dry weight) and bitter lettuce (71.2μg/g) for sites A and B, respectively, followed by bitter lettuce and leaf lettuce for sites A and B, respectively. Swamp morning glory accumulated the lowest amount of heavy metals (81.02μg/g for site A and 53.2μg/g for site B) at both sites. The bioaccessibility of heavy metals in soil ranged from Cr (2%) to Cu (71.78%). Risk assessment showed that Cd and Pb in soil samples resulted in the highest non-cancer risk and Cd would result in unacceptable cancer risk for children and risk. The non-dietary intake of soil was the most important exposure pathway, when the bioaccessibility of heavy metals was taken into account. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Research advances in heavy metals pollution ecology of diatom].

    Science.gov (United States)

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  1. Removal of heavy metal from industrial effluents using Baker's yeast

    Science.gov (United States)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  2. Heavy metal movement in metal-contaminated soil profiles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhenbin; Shuman, L.M. [Univ. of Georgia, Griffin, GA (United States)

    1996-10-01

    Heavy metal movement in soil profiles is a major environmental concern because even slow transport through the soil may eventually lead to deterioration of groundwater quality. In this study, three metal-contaminated soil (Fuquay, Dothan, and Clarendon) were selected from cropland were a high-metal flue dust had been applied annually for 6 years to raise soil pH, with application ending 4 years before sampling. One uncontaminated soil (Tifton) from the same physiographic area was also sampled as a control. Soil samples were collected in 15-cm increments from the surface to 105 cm in depth. Total contents of Zn, Cd, and Pb in the soils samples were determined. To better understand metal movement in relation to metal fractions in the soil profile, soil samples were also extracted sequentially for exchangeable (EXC), organic matter (OM), Mn oxide (MNO), amorphous Fe oxide (AFEO), crystalline Fe oxide (CFEO), and residual (RES) fractions. 35 refs., 6 figs., 2 tabs.

  3. Sediment, water pollution indicators for heavy metals

    International Nuclear Information System (INIS)

    Cabaleiro, S.; Horn, A.

    2010-01-01

    The complexity of an aquatic system requires consideration of its dynamics: spatial and temporal variations of physical, chemical and biological. Heavy metals have peculiar behavior in the aquatic system and may not be available in the waters, but on sediments.The sub-basin of the Sarandi stream is responsible for the contamination of Pampulha Lake. The Instituto Mineiro das Águas – IGAM - uses tool for monitoring the quality of surface water for developing strategies for conservation, restoration and rational use of water resources. So through the indices: IQA ( Indice de qualidade de águas) Index of water quality, and TC- toxic contamination, reduces conflicts, implements the disciplining of the environmental economy.This study determined the monitoring of sediment and water of Sarandi Stream, so in the samples collected during dry and rainy seasons (2007- 2008) were analyzed heavy metals (Cu, Cd, Cr, Co, Ni, Zn, Pb) and physical-chemical factors (conductivity, solids dissolved, temperature, turbidity). This allowed the determination of Hackanson factors of contamination and Muller Index geoaccumulation, indicating very high contamination in sediments regarding the elements Cr, Cu, and Cd, and high contamination for Pb, Zn, and Mn. The comparison with the indices of water quality- IQA (IGAM - 2006, 2007 and 2008), combined with exploratory data analysis and graphs of correlation between the variables indicated favorable conditions for metals contamination on water and sediment for these metals, besides allowing the identification of its source

  4. Phytoremediation of Heavy Metals in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Felix Aibuedefe AISIEN

    2010-12-01

    Full Text Available One of the major environmental problems is the pollution of water and soil by toxic heavy metals. This study investigated the phytoremediation potential of water hyacinth, for the removal of cadmium (Cd, lead (Pb and zinc (Zn. Water hyacinths were cultured in bore-hole water, supplemented with 5mg/l of Zn and Pb and 1mg/l of Cd at pH 4.5, 6.8 and 8.5. The plants were separately harvested each week for six weeks. The results showed that removal of these metals from solution was fast especially in the first two weeks, after which it became gradual till saturation point was reached. The accumulation of Cd and Zn in leaves and roots increased with increase in pH. The highest accumulation was in the roots with metal concentration of 4870mg/kg, 4150mg/kg and 710mg/kg for Zn, Pb and Cd respectively at pH 8.5. The maximum values of bioconcentration factor (BCF for Zn, Pb and Cd were 1674, 1531 and 1479 respectively, suggesting that water hyacinth was good accumulator of Zn, Pb and Cd, and could be used to treat industrial wastewater contaminated with heavy metals such as Zn, Pb and Cd.

  5. Assessment of Heavy Metals in the Water of Sahastradhara Hill Stream at Dehradun, India

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Bharti

    2014-09-01

    Full Text Available A study on heavy metals assessment in the water of Sahastradhara hill-stream was conducted with different five sites at significant differences. The present paper deals with the water quality status of Sahastradhara stream by the assessment of heavy metals. Heavy Metals were found in fluctuated trend from first upstream to last downstream. The values of almost all Heavy Metals were found in increasing manner especially after the fourth sampling site. After the third sampling station, a solid waste dumping site was found. So, there may be a relation between heavy metals in stream water and solid waste dumping site. Concentrations of all Heavy Metals at fourth and fifth sampling site were found very high. DOI: http://dx.doi.org/10.3126/ije.v3i3.11076 International Journal of Environment Vol.3(3 2014: 164-172

  6. On the structure of heavy metals

    International Nuclear Information System (INIS)

    Friedel, J.

    1958-01-01

    The properties of the last series of Mendeleef's table are compared with those of the elements of the preceding series. This comparison suggests an electronic structure of the 'transition metal' type, with narrow bands, at the beginning of this series (up to certain phases at least of plutonium); then of the rare earth metal type, with independent non-saturated internal layers, further on in the series. The 5 f orbits seem to play an important part in these two types of structure, from uranium on. A more detailed study of the very heavy elements (americium and beyond) and alloys would allow these conclusions to be confirmed. Certain general points, concerning the nature of homopolar connections and paramagnetism in the transition metals, are developed in an additional section. (author) [fr

  7. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    Science.gov (United States)

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio. Copyright © 2015

  8. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  9. Heavy metals binding properties of esterified lemon

    Energy Technology Data Exchange (ETDEWEB)

    Arslanoglu, Hasan; Altundogan, Hamdi Soner [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey); Tumen, Fikret, E-mail: ftumen@firat.edu.tr [Department of Chemical Engineering, Firat University, 23279 Elazig (Turkey)

    2009-05-30

    Sorption of Cd{sup 2+}, Cr{sup 3+}, Cu{sup 2+}, Ni{sup 2+}, Pb{sup 2+} and Zn{sup 2+} onto a carboxyl groups-rich material prepared from lemon was investigated in batch systems. The results revealed that the sorption is highly pH dependent. Sorption kinetic data indicated that the equilibrium was achieved in the range of 30-240 min for different metal ions and sorption kinetics followed the pseudo-second-order model for all metals studied. Relative sorption rate of various metal cations was found to be in the general order of Ni{sup 2+} > Cd{sup 2+} > Cu{sup 2+} > Pb{sup 2+} > Zn{sup 2+} > Cr{sup 3+}. The binding characteristics of the sorbent for heavy metal ions were analyzed under various conditions and isotherm data was accurately fitted to the Langmuir equation. The metal binding capacity order calculated from Langmuir isotherm was Pb{sup 2+} > Cu{sup 2+} > Ni{sup 2+} > Cd{sup 2+} > Zn{sup 2+} > Cr{sup 3+}. The mean free energy of metal sorption process calculated from Dubinin-Radushkevich parameter and the Polanyi potential was found to be in the range of 8-11 kJ mol{sup -1} for the metals studied showing that the main mechanism governing the sorption process seems to be ion exchange. The basic thermodynamic parameters of metals ion sorption process were calculated by using the Langmuir constants obtained from equilibration study. The {Delta}G{sup o} and {Delta}H{sup o} values for metals ion sorption on the lemon sorbent showed the process to be spontaneous and exothermic in nature. Relatively low {Delta}H{sup o} values revealed that physical adsorption significantly contributed to the mechanism.

  10. Heavy metal toxicity and iron chlorosis

    Energy Technology Data Exchange (ETDEWEB)

    DeKock, P C

    1956-01-01

    The toxicity of copper, nickel, cobalt, zinc, chromium, and manganese to mustard was studied in water culture, utilizing either the ionic form or the EDTA chelate of the metal in the presence of either ferric chloride or ferric EDTA. In presence of ferric chloride the activity of the metals in producing chlorosis was as given above, i.e. in the order of stability of their chelates. In the presence of ferric versenate, toxicity of the ionic metal was much reduced. The metal chelates gave very little indication of toxicity with either form of iron. It was found that the ratio of total phosphorus to total iron was higher in chlorotic plants than in green plants, irrespective of which metal was causing the toxicity. Copper could be demonstrated in the phloem cells of the root using biscyclohexanone-oxalydihydrazone as histochemical reagent. It is postulated that transport of iron probably takes place in the phloem as an active process. It would appear that as a major part of the iron in plant cells is attached to nucleo- or phospho-proteins, the heavy metals must be similarly attached to phospho-proteins.

  11. A review of phytoremediation technology: heavy metals uptake by plants

    Science.gov (United States)

    Sumiahadi, A.; Acar, R.

    2018-03-01

    Heavy metal is one of the serious environmental pollutions for now days as impact of industrial development in several countries. Heavy metals give toxic effects on human health and cause several serious diseases. Several techniques have been using for removing heavy metal contaminants from the environmental but these techniques have limitations such as high cost, long time, logistical problems and mechanical complexity. Phytoremediation can be used as an alternative solution for heavy metal remediation process because of its advantages as a cost-effective, efficient, environment- and eco-friendly technology based on the use of metal-accumulating plants. According to previous studies, several plants have a high potential as heavy metals bioaccumulator and can be used for phytoremediation process of heavy metals.

  12. Heavy Metal Contaminated Soil Imitation Biological Treatment Overview

    Science.gov (United States)

    Pan, Chang; Chen, Jun; Wu, Ke; Zhou, Zhongkai; Cheng, Tingting

    2018-01-01

    In this paper, the treatment methods of heavy metal pollution in soils were analyzed, the existence and transformation of heavy metals in soil were explored, and the mechanism of heavy metal absorption by plants was studied. It was concluded that the main form of plants absorb heavy metals in the soil is exchangeable. The main mechanism was that the plant cell wall can form complex with heavy metals, so that heavy metals fixed on the cell wall, and through the selective absorption of plasma membrane into the plant body. In addition, the adsorption mechanism of the adsorbed material was analyzed. According to the results of some researchers, it was found that the mechanism of adsorption of heavy metals was similar to that of plants. According to this, using adsorbent material as the main material, Imitate the principle of plant absorption of heavy metals in the soil to removing heavy metals in the soil at one-time and can be separated from the soil after adsorption to achieve permanent removal of heavy metals in the soil was feasibility.

  13. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.

    Science.gov (United States)

    Liu, Tingting; Liu, Zhengang; Zheng, Qingfu; Lang, Qianqian; Xia, Yu; Peng, Nana; Gai, Chao

    2018-01-01

    The heavy metals distribution during hydrothermal carbonization (HTC) of sewage sludge, and pyrolysis of the resultant hydrochar was investigated and compared with raw sludge pyrolysis. The results showed that HTC reduced exchangeable/acid-soluble and reducible fraction of heavy metals and lowered the potential risk of heavy metals in sewage sludge. The pyrolysis favored the transformation of extracted/mobile fraction of heavy metals to residual form especially at high temperature, immobilizing heavy metals in the chars. Compared to the chars from raw sludge pyrolysis, the chars derived from hydrochar pyrolysis was more alkaline and had lower risk and less leachable heavy metals, indicating that pyrolysis imposed more positive effect on immobilization of heavy metals for the hydrochar than for sewage sludge. The present study demonstrated that HTC is a promising pretreatment prior to pyrolysis from the perspective of immobilization of heavy metals in sewage sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Prospects for separating heavy metal from contaminated soil

    International Nuclear Information System (INIS)

    Langen, M.; Hoberg, H.; Hamacher, B.

    1994-01-01

    For decades, large quantities of organic and inorganic pollutants have been brought into the soil as a result of the industrial operations of smelting and coking plants. This paper reports on the prospects of separating heavy metals from soil contaminated by smelting and coking plants by means of a physical/chemical washing procedure. Besides the description of virgin soil characteristics, cleaning results and process parameters of calssification, density separation and flotation processes are presented. It is shown that heavy metal pollution of virgin soil can be reduced by the classical process stages of soil washing. The metal content of virgin soil are critically assessed whereby the limits of the physical-chimical washing process will also be entered into. Emphasis is placed on the significance of the determination of limiting values for inorganic contamination, especially for soil contaminated with both organic and inorganic pollution. (orig.) [de

  15. Gamma radiation-polymerized methacrylates used as heavy metals adsorbents

    International Nuclear Information System (INIS)

    Barrera D, C.; Roa M, G.; Balderas H, P.; Bilyeu, B.; Urena N, F.

    2009-01-01

    Heavy metal removal from aqueous solution is a priority research area since the actual methods are costly and a major drawback is the large amounts of sludge generated when applying traditional techniques. Adsorption is a physiochemical wastewater treatment process, which is gaining prominence as a means of producing high quality effluents, which are low in metal ion concentrations. The development of inexpensive adsorbents for the treatment of wastewater is an important area in environmental sciences. In this work we describe some of the physical and chemical phenomena that take place in the polymerization of methacrylates when gamma radiation is used. We explain how polymeric material characterization equipment are used for obtaining information regarding the material properties. Then we explain how the new polymeric material obtained can be use for the wastewater treatment. Finally, a comparison in the heavy metal removal from aqueous solution with other sorbent materials is presented. (Author)

  16. Heavy metals in atmospheric surrogate dry deposition

    Science.gov (United States)

    Morselli; Cecchini; Grandi; Iannuccilli; Barilli; Olivieri

    1999-02-01

    This paper describes a methodological approach for the assessment of the amount of surrogate dry deposition of several toxic heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) associated with atmospheric particulate matter at ground level. The objectives of the study were twofold: i) the evaluation of several techniques for the digestion of dry deposition samples for trace metal analysis; ii) the comparison of the results from two samplers with different collecting surfaces. A dry solid surface sampler (DRY sampler, Andersen--USA) and a water layer surface sampler (DAS sampler--MTX Italy) were employed. The samples were collected over a one-year period in an urban site of Bologna (northern Italy). A description is given of the complete procedure, from sampling to data elaboration, including sample storage, digestion and analytical methods. According to the results obtained with three different digestion techniques (Teflon bomb, microwave digester and Teflon flask with vapour cooling system), the highest recovery rate was achieved by the Teflon bomb procedure employing an NBS 1648 Standard Reference Material; 90-95% of the elements considered were recovered by dissolution in a pressurized Teflon bomb with an HNO3-HF mixture. Given these results, the technique was adopted for dry deposition sample digestion. On the basis of the amount of heavy metals measured as monthly deposition fluxes (microg/m2), the collecting efficiency of the DAS sampler for a number of elements was found to be as much as two to three times greater than that of the DRY sampler.

  17. Facultative hyperaccumulation of heavy metals and metalloids.

    Science.gov (United States)

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Removal and recovery of heavy metals of residual water industrial

    International Nuclear Information System (INIS)

    Gil P, Edison

    1999-01-01

    On the next work the state of the art about the different methods and technologies for the present removal and recovery of heavy metals for the de-contamination and control of industrial wastewater is presented. Further more, it is introduce a removal alternative for chromium (III) and chromium (V I) using a solid waste material as an adsorbent, obtaining successful results which makes this proposal circumscribe into the clean technology program and residues bag

  19. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro.

    Science.gov (United States)

    Usha, B; Venkataraman, Gayatri; Parida, Ajay

    2009-01-01

    Prosopis juliflora is a tree species that grows well in heavy metal laden industrial sites and accumulates heavy metals. To understand the possible contribution of metallothioneins (MTs) in heavy metal accumulation in P. juliflora, we isolated and compared the metal binding ability of three different types of MTs (PjMT1-3). Glutathione S-transferase fusions of PjMTs (GSTMT1-3) were purified from Escherichia coli cells grown in the presence of 0.3 mM cadmium, copper or zinc. Analysis of metal bound fusion proteins using atomic absorption spectrometry showed that PjMT1 bound higher levels of all three heavy metals as compared to PjMT2 and PjMT3. A comparative analysis of the genomic regions (including promoter for all three PjMTs) is also presented. All three PjMTs are induced by H(2)O(2) and ABA applications. PjMT1 and PjMT2 are induced by copper and zinc respectively while PjMT3 is induced by copper, zinc and cadmium. Variation in induction of PjMTs in response to metal exposure and their differential binding to metals suggests that each MT has a specific role in P. juliflora. Of the three MTs analyzed, PjMT1 shows maximum heavy metal sequestration and is thus a potential candidate for use in heavy metal phytoremediation.

  20. Identification and Quantification of Heavy Metals Concentrations in Pistacia

    Directory of Open Access Journals (Sweden)

    Gholamhossein DAVARYNEJAD

    2013-12-01

    Full Text Available The levels of heavy metals are very important in pistachio nuts, because the edible nuts have an important and increasing role in human nutrition. Pistachio is one of the native nuts of Iran which contains high genetic resources, but there is insufficient information regarding nutritional properties and other elements like heavy metals. The objective of the present study was to investigate and compare heavy metals contents in the kernels of various pistachio samples including; ‘Daneshmandi’, ‘Sephid’, ‘Garmeh’, ‘Momtaz’, ‘Ahmad Aghaei’, ‘Badami Zarand’, Pistacia atlantica Desf. (‘Baneh’, Pistacia vera ‘Sarakhs’ and chance seedling as ‘Non-grafted 1’, ‘Non-grafted 2’ and ‘Non-grafted 3’. Inductively coupled plasma emission spectrophotometer (ICP was used for the determination of aluminium, chromium, nickel, copper, strontium, arsenic, cadmium and cobalt concentrations in pistachio kernels. This study showed that there were significant differences among the samples in all measured heavy metals except the arsenic, cadmium and cobalt. The content of aluminium varied from 3.22 to 9.59 (mg kg-1 of dry matter and chromium concentration from 0.60 to 1.86 (mg kg-1 of dry matter. The nickel content of examined pistachio samples was found between 0.43 and 3.63 (mg kg-1 of dry matter and copper ranged from 3.20 to 12.33 (mg kg-1 of dry matter. The strontium content was observed between 4.96 and 24.93 (mg kg-1 of dry matter. The contents of arsenic, cadmium and cobalt not reported, because their amounts were lower than the detection limit of the applied measuring method (ICP. These data demonstrated that the concentrations of heavy metals in pistachios varied by cultivar.

  1. Adsorption of heavy metal ions on activated carbon, (5)

    International Nuclear Information System (INIS)

    Yoshida, Hisayoshi; Kamegawa, Katsumi; Arita, Seiji

    1978-01-01

    The adsorption effect of heavy metal ions Cd 2+ , Zn 2+ and Hg 2+ on activated carbon by adding EDTA is reported, utilizing the experimental data. The activated carbons used for the experiment are mostly D, and B, C and F partly. As for the experimental procedure, the solutions of 100 ml which are composed of activated carbon, pH adjusting liquid, EDTA solution and solutions of heavy metals Cd, Zn and Hg, are shaken for 24 hours at 20 deg C, and after the activated carbon is centrifuged and separated for 15 minutes at 3000 rpm, the remaining heavy metal concentrations and pH in the supernatant are measured. The experimental results showed the useful effect on the adsorption of heavy metal ions of Cd, Zn and Hg by adding about 1 mol ratio of (EDTA/heavy metals). The individual experimental results are presented in detail. Concerning the adsorption quantity, 83% of Cd ions remained in the supernatant without addition of EDTA, but less than 1% with addition of about 1 to 5 mol ratio of (EDTA/Cd), and this adsorption effect was almost similar to Zn and Hg, i.e. 100% to 1% in Zn and 70% to 2 or 3% in Hg, under the condition written above. As for the influence of pH on Cd adsorption, the remaining Cd ratio is less than 10%, when pH is 7 to 10.5 at the mol ratio of 1 and 5.5 to 9 at the mol ratio of 10. The adsorption effect was different according to the kinds of activated carbon. The influencing factors for adsorption effect are the concentration of coexisting cations in the solution and the mixing time, etc. The effects of pH on Zn and Hg adsorption were almost similar to Cd. (Nakai, Y.)

  2. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    Science.gov (United States)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2018-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  3. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, A.E.M.

    2008-01-01

    Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples where collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration, in ppm, were measured. The annual addition of these elements in soil due to fertilization were calculated and discussed. (author)(tk)

  4. Evaluation of heavy metal complex phytotoxicity

    Directory of Open Access Journals (Sweden)

    Vita Vasilyevna Datsenko

    2016-07-01

    Full Text Available The experimental data dealing with the effect of heavy metals contained in the technogenic contaminated soils on plant objects under controlled conditions was discussed. The aim of this work is to define the quantitative indicators of copper and zinc potential phytotoxicity, namely germination energy, simultaneous germination and duration of the test plants. It was found that the activity of the test plant growth is linked with copper and zinc complex action. Joint effect of copper and zinc is manifested both in inhibition of lettuce growth and determined, above all, by the nature contamination, soil properties and biological specificity of the test plants.

  5. Physico-chemical characteristics and Heavy metal levels in Drinking ...

    African Journals Online (AJOL)

    Physico-chemical characteristics and Heavy metal levels in Drinking Water ... composition was analysed using X-ray Fluorescence spectroscopy. Majority of the water samples had neutral pH (6.80 – 7.20) few were slightly alkaline and one was acidic. ... Heavy metals (copper and lead), rare earth metals (gallium, rubidium, ...

  6. Fractionation, characterization and speciation of heavy metals in ...

    African Journals Online (AJOL)

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation ...

  7. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    The most dominant A. candidus on the isolation plates exhibited the highest activity for biosorption of heavy metals. The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. Keywords: Fungi, industrial wastewater, biosorption, heavy metals. African Journal of Biotechnology Vol.

  8. Applicability of concentration factors for the heavy metals hazard identification

    International Nuclear Information System (INIS)

    Guzzi, Luigi

    2006-01-01

    The bioconcentration factor (BCF) and bioaccumulation factor (BAF) used as criteria for heavy metals hazards identification are inadequate. These considerations is based on the argument that the BCF-BAF model was developed and validated for xenobiotic synthetic organic substances and that does not recognize the complex internal metal dynamic of uptake, the internal sequestration, and the essentially of some heavy metals [it

  9. Predicting toxic heavy metal movements in upper Sanyati catchment ...

    African Journals Online (AJOL)

    Water samples from boreholes located in areas where mining, mineral processing and agricultural activities were dominant, yielded the highest values of toxic heavy metals. Dilution Attenuation Factor (DAF) for each toxic heavy metal was calculated to observe metal behaviour along the contaminant path for each season.

  10. Use of heavy ions to model radiation damage of metals

    International Nuclear Information System (INIS)

    Shirokov, S.V.; Vyshemirskij, M.P.

    2011-01-01

    The methods for modeling radiation damage of metals using heavy ions are reviewed and the results obtained are analyzed. It is shown that irradiation of metals with heavy ion can simulate neutron exposure with the equivalent dose with adequate accuracy and permits a detailed analysis of radiation damage of metals

  11. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  12. Heavy metal removal using reverse osmosis

    Directory of Open Access Journals (Sweden)

    Lucia Gajdošová

    2009-12-01

    Full Text Available The aim of this work was to study reverse osmosis characteristics for copper, nickel and zinc removal from technological aqueoussolutions. Reverse osmosis (RO is a separation process that uses pressure to force a solution through a membrane that retainsthe solute on one side and allows the pure solvent to pass to the other side. A polyamide thin-film composite membrane TW30-1812-50was used. The difference in flux decline is significant. There is a significant difference in flux decline depending on the anions of usedheavy metal salts. The heavy metal concentration also has a significant influence on the membrane separation. There is alsoa significant difference in flux decline depending on the transmembrane pressure.

  13. Perilous Effects of Heavy Metals Contamination on Human Health

    Directory of Open Access Journals (Sweden)

    Naseem Zahra

    2017-06-01

    Full Text Available Heavy metals form a versatile group of high density elements that vary considerably in their biological roles and chemical properties. Although many heavy metals are essential trace elements yet they have long been recognized as environmental pollutants due their toxic effects. Increased industrialization, urbanization anthropogenic activities like mining, smelting and other agricultural activities have resulted in accumulation of heavy metals in the environment. Heavy metals such as nickel, cadmium, zinc, copper, mercury, arsenic and chromium are not easily degradable and tend to build up in soil. These heavy metals through various routes such as fish and plants make their way into the human body and are known to have serious detrimental effects on human health at elevated levels. The harmful effects of some important heavy metals on human health have been discussed.

  14. Heavy metal decontamination of sludges and soils. Pt. 2

    International Nuclear Information System (INIS)

    Niemann, J.

    1993-06-01

    This research project deals with decontamination technology for contaminated soil and sediments. A pilot plant for the decontamination of soil contaminated with heavy metals has been erected and is operated. The process is arranged in two steps: - heavy metal contaminated solid is decontaminted with acidic extraction. - the heavy metals are separated in a recyclable formation from the process solution you gain in the first process step. Heavy metal contaminated soil, heavy metal contaminated sediments (habour sediments) as well as residue from a soil regeneration plant have been successfully decontaminated in the pilot plan. An adaption of the process is necessary for various materials. High rates of mobilisation of heavy metals (e.g. lead, cadmium, chromium, copper, nickel, zinc) were obtained, especially with soil which contains less organic matter. (orig.). 54 figs., 30 tabs., 45 refs [de

  15. Heavy metal ions are potent inhibitors of protein folding

    International Nuclear Information System (INIS)

    Sharma, Sandeep K.; Goloubinoff, Pierre; Christen, Philipp

    2008-01-01

    Environmental and occupational exposure to heavy metals such as cadmium, mercury and lead results in severe health hazards including prenatal and developmental defects. The deleterious effects of heavy metal ions have hitherto been attributed to their interactions with specific, particularly susceptible native proteins. Here, we report an as yet undescribed mode of heavy metal toxicity. Cd 2+ , Hg 2+ and Pb 2+ proved to inhibit very efficiently the spontaneous refolding of chemically denatured proteins by forming high-affinity multidentate complexes with thiol and other functional groups (IC 50 in the nanomolar range). With similar efficacy, the heavy metal ions inhibited the chaperone-assisted refolding of chemically denatured and heat-denatured proteins. Thus, the toxic effects of heavy metal ions may result as well from their interaction with the more readily accessible functional groups of proteins in nascent and other non-native form. The toxic scope of heavy metals seems to be substantially larger than assumed so far

  16. Electrodialytic Separation of Phosphorus and Heavy Metals from Two Types of Sewage Sludge Ash

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2014-01-01

    of P and heavy metals is required. The present work is an experimental screening of a new combination of acid extraction and electrodialysis–electrodialytic separation (EDS) for simultaneous P recovery and removal of heavy metals. Experiments were conducted with two different ashes; rich in Fe or Al...

  17. Screening for the next generation heavy metal hyperaccumulators for dryland decontamination

    NARCIS (Netherlands)

    Ravanbakhsh, Mohammadhossein; Ronaghi, Abdol Majid; Taghavi, Seyed Mohsen; Jousset, Alexandre

    2016-01-01

    Heavy metal removal by plants bears a great potential to decontaminate soils. A major challenge remains to find plant species that accumulate heavy metal, harbor a sufficient biomass and grow in the desired environmental conditions. Here we present candidate plants for phytoremediation in arid

  18. Chemical speciation of heavy metals in sandy soils in relation to availability and mobility

    NARCIS (Netherlands)

    Temminghoff, E.J.M.

    1998-01-01

    The environmental risk of heavy metals which are present in soil at a certain total content is highly dependent on soil properties. Chemical speciation is a comprehensive term for the distribution of heavy metals over all possible chemical forms (species) in soil solution and in the solid

  19. Mobility and accumulation of heavy metals in podsolic soil via fertilizers usage

    International Nuclear Information System (INIS)

    Pukhovskaya, T.Yu.; Pukhovskij, A.V.

    2008-01-01

    Forecasting of heavy metal mobility and accumulation in soil has a great value for ecosystem status assessment. Results of long-term field and greenhouse experiments with the using X-ray fluorescence method are presented in this paper. New approaches have been proposed for using X-ray spectrometry in agrochemical investigations and heavy metal mobility measurements. (author)

  20. Heavy metal biosorption by bacterial cells

    NARCIS (Netherlands)

    Vecchio, A; Finoli, C; Di Simine, D; Andreoni, [No Value

    Microbial biomass provides available ligand groups on which metal ions bind by different mechanisms. Biosorption of these elements from aqueous solutions represents a remediation technology suitable for the treatment of metal-contaminated effluents. The purpose of the present investigation was the

  1. Effect of heavy metal and EDTA application on heavy metal uptake ...

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... Cadmium, lead and ... removal of Cd, Cr, Cu, Ni, Pb, and Zn (Prasad and ... collected for the analysis of heavy metal concentrations of Cd, Cr ... One hundred millgram (100 mg) of leaf tissues ..... Variability for the fatty acid.

  2. Leaching of heavy metals from timah langat amang

    International Nuclear Information System (INIS)

    Shukri bin Othman

    1990-01-01

    Accelerated leaching studies of amang from Timah Langat for heavy metals showed that the material was rather stable. From almost 24 types of heavy metals contained in the material, the metal that leached out most was Al, followed by Pb, U, Cu, Mn, Fe, Mg, Y and La but at smaller quantities. The studies also showed that amang was very porous. The high seepage rate resulted in the solubilities of the metals not reaching equilibrium. In that situation, the leaching of heavy metals from amang was dependent on the seepage rate of water, the height of the material, the volume of water that seeped through and the solubility of the metals

  3. Characteristics of heavy metal pollution on roadside soil along highway

    Science.gov (United States)

    Zheng, Chaocheng

    2017-10-01

    Highway traffic is the main source of heavy metal pollution. Due to limited cropland, it is very common to plant crops along the highways. So, in view of agricultural products safety, heavy metal pollution by highway traffic to soils along highway is widely concerned. Therefore, to study distribution traits, accumulative laws and influence factors of heavy metals in agricultural soils could provide scientific evidence and theoretical basis for environmental protection along express way.

  4. Effects of heavy metal adsorption on silicene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2014-06-02

    Based on first-principles calculations, we study the effects of heavy metal atoms (Au, Hg, Tl, and Pb) adsorbed on silicene. We find that the hollow site is energetically favorable in each case. We particulary address the question how the adsorption modifies the band structure in the vicinity of the Fermi energy. Our results demonstrate that the heavy metal adatoms result in substantial energy gaps and band splittings in the silicene sheet as long as the binding is strong, which, however, is not always the case. (© 2014 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim) Carbon nanotube flexible sponge was manufactured as high performance electromagnetic shielding material. Chemical vapour deposition (CVD) synthesized sponges with extreme light weight show an electromagnetic shielding above 20 dB and a specific electromagnetic shielding as high as 1100 dB cm3g-1 in the whole 1-18 GHz range. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  6. Heavy metals hazard in agriculture in NWFP

    International Nuclear Information System (INIS)

    Bhatti, A.; Perveen, S.

    2005-01-01

    Metals contamination is a persistent problem at many contaminated sites. In the U.S., the most commonly occurring metals at Superfund sites are lead, chromium, arsenic, zinc, cadmium, copper and mercury. The presence of metals in surface and ground waters, and soils can pose a significant threat to human health and ecological systems. Surface water and groundwater many be contaminated with metals from wastewater discharges or by direct contact with metals contaminated soils, sludges, mining wastes and debris. Due to use of sewage water and industrial effluents for agriculture in NWFP, there is a great threat to the human and animal health. In a survey of sewage water from three channels, it was found that 10 out of 18 samples ha lead content above the safe limits, while two in cadmium and 8 in chromium. While in soils irrigated with these channels, all the 18 samples were high in Cu and Pb, and 6 in Mn. As regards plants growing on these soils, samples of garlic, 4 of wheat and 3 of berseem were high in Pb. Cd content was high in 5 garlic samples, 5 wheat and 3 berseem. Effluents from two industries were high in Pb and four in Ni. In another study, all the nine water samples were high in Cu, 3 in Cd, and 6 in Pb. A survey of 20 Industries in Industrial Estate Hattar showed that all the effluent samples collected from these Industries were above the safe limits in Ni, Pb, Cd and Cr. From these studies, it seems that use of sewage water and industrial effluents for longer period can create heavy metals hazard in agriculture in NWFP. (author)

  7. Adsorption of heavy metal in freeway by asphalt block

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    Heavy metals are toxic, persistent, and carcinogenic in freeway. Various techniques are available for the removal of heavy metals from waste water among soils during freeway including ion-exchange, membrane filtration, electrolysis, coagulation, flotation, and adsorption. Among them, bio-sorption processes are widely used for heavy metal and other pollutant removal due to its sustainable, rapid and economic. In this paper, heavy metal removal facilitated by adsorption in plants during freeway was illustrated to provide concise information on exploring the adsorption efficiency.

  8. Heavy metals in the cell nucleus - role in pathogenesis.

    Science.gov (United States)

    Sas-Nowosielska, Hanna; Pawlas, Natalia

    2015-01-01

    People are exposed to heavy metals both in an occupational and natural environment. The most pronounced effects of heavy metals result from their interaction with cellular genetic material packed in form of chromatin. Heavy metals influence chromatin, mimicking and substituting natural microelements in various processes taking place in the cell, or interacting chemically with nuclear components: nucleic acids, proteins and lipids. This paper is a review of current knowledge on the effects of heavy metals on chromatin, exerted at the level of various nuclear components.

  9. Remediation of biochar on heavy metal polluted soils

    Science.gov (United States)

    Wang, Shuguang; Xu, Yan; Norbu, Namkha; Wang, Zhan

    2018-01-01

    Unreasonable mining and smelting of mineral resources, solid waste disposal, sewage irrigation, utilization of pesticides and fertilizers would result in a large number of heavy metal pollutants into the water and soil environment, causing serious damage to public health and ecological safety. In recent years, a majority of scholars tried to use biochar to absorb heavy metal pollutants, which has some advantages of extensive raw material sources, low-cost and high environmental stability. This paper reviewed the definition, properties of biochar, the mechanism of heavy metal sorption by biochar and some related problems and prospects, to provide some technical support for the application of biochar into heavy metal polluted soils.

  10. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    OpenAIRE

    Marek Slávik,Tomáš Tóth; Július Árvay; Miriama Kopernická; Luboš Harangozo; Radovan Stanovič; Pavol Trebichalský; Petra Kavalcová

    2014-01-01

    In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86...

  11. To study the recovery of L-Cysteine using halloysite nanotubes after heavy metal removal

    Science.gov (United States)

    Thakur, Juhi

    2016-04-01

    Industrial wastes are a major source of soil and water pollution that originate from mining industries, chemical industries, metal processing industries, etc. These wastes consist of a variety of chemicals including phenolics, heavy metals, etc. Use of industrial effluent and sewage sludge on agricultural land has become a common practice in the world which results in these toxic metals being transferred and ultimately concentrate in plant tissues from water and the soil. The metals that get accumulated, prove detrimental to plants themselves and may also cause damage to the healths of animals as well as man. This is because the heavy metals become toxins above certain concentrations, over a narrow range. As a further matter, these metals negatively affect the natural microbial populations as well, that leads to the disruption of fundamental ecological processes. However, many techniques and methods have been advanced to clear the heavy metal polluted soils and waters. One important method is by removing heavy metals with the help of amino acids like L-Cysteine and L-Penicillamine. But also, economy of removal of pollutant heavy metals from soils and waters is a major concern. Present study helps in decreasing the cost for large-scale removal of heavy metals from polluted water by recovering the amino acid (L-Cysteine) after removal of nickel (Ni+2) at a fixed pH, by binding the Ni+2 with halloysite nanotubes(HNT), so that L-Cysteine can be reused again for removal of heavy metals.

  12. Heavy Metal Pollution Evolution in Sediments from Urdaibai Bay (Spain)

    International Nuclear Information System (INIS)

    Soto, J.; Soto, J.A.; Corral, D.; Gelen, A.; Diaz, O.; Navas, A.

    2003-01-01

    Full Text: The Urdaibai bay is a biosphere reservoir located in the north of Spain. The mayor components of bay sediments come from marls and clays eroded which are deposited together with metallic pollutants present in water, air and rain. For this reason it is possible to study the temporal evolution of the bay pollution by measuring the heavy metal concentrations in the sediments and considering the correspondence with its age. To this aim, sediments cores were taken in two different points of the Urdaibai bay. The cores were cut into 1 cm thick horizontal sections. Sediment dating was performed using a low background gamma spectrometry with GeHP to determine Cs-137, Ra-226 and Pb-210 activities and applying the CIC and CRS models. The heavy metal concentrations in sediments were determined by ICP-MS. The obtained results in one of the studied positions show an increment of the Pb, Zn, Ni, Cu and Cr concentrations in the first 10 cm of the sediment core. This fact can be related to an increase of the bay pollution in the last 100 years. In the second studied core the heavy metal concentrations are constant in depth or lower in the superficial layers. This could be due to an increment the deposition rate of eroded material

  13. Competitive adsorption of dyes and heavy metals on zeolitic structures.

    Science.gov (United States)

    Hernández-Montoya, V; Pérez-Cruz, M A; Mendoza-Castillo, D I; Moreno-Virgen, M R; Bonilla-Petriciolet, A

    2013-02-15

    The adsorption of Acid blue 25, basic blue 9, basic violet 3, Pb(2+), Ni(2+), Zn(2+) and Cd(2+) ions has been studied in single and dye-metal binary solutions using two mineral materials: Clinoptilolite (CL) and ER (Erionite). These zeolites were characterized by FT-IR spectroscopy; potentiometric titration and nitrogen adsorption isotherms at 77 K to obtain their textural parameters. Results indicated that ER has an acidic character and a high specific surface (401 m(2) g(-1)) in contrast with the zeolite CL (21 m(2) g(-1)). Surprisingly, the removal of dyes was very similar for the two zeolites and they showed a considerable selectivity by the basic dyes in comparison with the acid dyes. In the case of heavy metals, ER was more effective in the adsorption process showing a selectivity of: Pb(2+) > Ni(2+) > Zn(2+) > Cd(2+). In the multicomponent adsorption experiments an antagonistic effect was observed in the removal of basic dyes and heavy metals. Particularly, the adsorbed amount of basic violet 3 decreased more significantly when the heavy metals are presents in contrast with the basic blue 9. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Heavy metal residues in tissues of marine turtles

    International Nuclear Information System (INIS)

    Storelli, M.M.; Marcotrigiano, G.O.

    2003-01-01

    Heavy metal concentrations in the tissues of marine turtles are presented. The most frequently monitored elements are mercury, cadmium and lead; and the tissues mainly analysed in nearly all the stranded individuals are muscle, liver and kidney. The highest mercury and cadmium levels were found in liver and kidney respectively; the majority of the lead burden existed in bones and carapace, while arsenic was present mainly in muscle tissue. Mercury occurred quite completely as methylmercury in muscle, whereas in liver the main form was the inorganic one. Arsenic was exclusively present in the metallorganic form either in muscle tissue or in liver. Metals in the eggs were mainly present in the yolk. Significantly higher concentration of mercury, copper, zinc and iron were found in yolk than albumen, while shell contained highest levels of manganese and copper. The load of trace metals in these animals strictly correlated with the species seems to depend on their different food behaviour

  15. Heavy metal residues in tissues of marine turtles

    Energy Technology Data Exchange (ETDEWEB)

    Storelli, M.M.; Marcotrigiano, G.O

    2003-04-01

    Heavy metal concentrations in the tissues of marine turtles are presented. The most frequently monitored elements are mercury, cadmium and lead; and the tissues mainly analysed in nearly all the stranded individuals are muscle, liver and kidney. The highest mercury and cadmium levels were found in liver and kidney respectively; the majority of the lead burden existed in bones and carapace, while arsenic was present mainly in muscle tissue. Mercury occurred quite completely as methylmercury in muscle, whereas in liver the main form was the inorganic one. Arsenic was exclusively present in the metallorganic form either in muscle tissue or in liver. Metals in the eggs were mainly present in the yolk. Significantly higher concentration of mercury, copper, zinc and iron were found in yolk than albumen, while shell contained highest levels of manganese and copper. The load of trace metals in these animals strictly correlated with the species seems to depend on their different food behaviour.

  16. Heavy metal and proximate composition associated with the ...

    African Journals Online (AJOL)

    User

    2014-05-08

    May 8, 2014 ... Levels of Cu, Mn, Pd and Zn in mushroom samples analysed were ... metal concentration in soil and fungal factors such as species ..... Levels of trace elements in the fruiting bodies ... Toxicity of non-radioactive heavy metals.

  17. Assessment of Heavy Metals Level of River Kaduna at Kaduna ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management ... status and the implications of the heavy metal pollution on human health and the environment. ... metals discharged into the river especially from the industries and municipal ...

  18. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    EJIRO

    Key words: Biosorption, bacteria, heavy metal, dead bacterial cells, immobilization. INTRODUCTION ... Moreover, the metals cannot be degraded to harmless products and ... a sterile plastic container and taken immediately to the laboratory.

  19. Waste printing paper as analogous adsorbents for heavy metals in ...

    African Journals Online (AJOL)

    user

    heavy metals uptake from aqueous solutions but the recovery efficacy as economic and environmental ... system. 1 . Wastes containing metals are directly or indirectly discharge into the environment ... According to World health Organization. 5.

  20. Analysis of Heavy Metals Concentration in Kano Herbal ...

    African Journals Online (AJOL)

    2017-09-23

    Sep 23, 2017 ... toxic metals in the body system of the consumers of these herbal preparations in order to attain to safe and effective ..... heavy metal availability and vegetation recovery at a grown ... World Health Organization (WHO,. 2007).

  1. urban dietary heavy metal intake from protein foods and vegetables

    African Journals Online (AJOL)

    Mgina

    Contamination of food and food products by heavy metals has made dietary intake as one of the ... metals cadmium, copper, lead and zinc from protein-foods (beans, meat, fish, milk) and green ..... on food additives Technical report series. No.

  2. Rhizofiltration of heavy metals from the tannery sludge by the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... The accumulation of toxic metals in the plants was significantly increased, with increasing exposure time ..... in the conversion of organic carbon into carbon dioxide. It ... Once absorbed by the plants, toxic or heavy metals can.

  3. Accumulation of Proline under Salinity and Heavy metal stress in ...

    African Journals Online (AJOL)

    Michael Horsfall

    Seed germination and growth parameters of seedlings of cauliflower were observed after 5, 10 and 15 ... Keywords: Abiotic stress, salinity, proline and heavy metals. The responses of ..... induced accumulation of free proline in a metal-tolerant.

  4. Heavy Metal Analyses and Nutritional Composition of Raw and ...

    African Journals Online (AJOL)

    PROF HORSFALL

    KEYWORDS: Nutritional composition, heavy metals, fresh water fishes, marine water fishes, lagoons. Introduction. Fish is an .... the flame and 90% passed out as waste. The flame ..... metals in surface water, sediments, fish and periwinkles of ...

  5. Trend of Heavy Metal Concentrations in Lagos Lagoon Ecosystem

    African Journals Online (AJOL)

    komla

    The distribution and occurrence of heavy metals in the sediment, water and benthic animals of the Lagos lagoon ... The concentrations of the metals detected in the lagoon sediment and water ..... waste products contaminating water sources.

  6. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  7. Phycoremediation of Heavy Metals in Wet Market Wastewater

    Science.gov (United States)

    Apandi, Najeeha; Saphira Radin Mohamed, Radin Maya; Al-Gheethi, Adel; Latiffi, Atikah; Nor Hidayah Arifin, Siti; Gani, Paran

    2018-04-01

    The efficiency of phycoremediation using microalgae for removing nutrients and heavy metals from wastewaters has been proved. However, the differences in the composition of wastewaters as well as microalgae species play an important role in the efficient of this process. Therefore, the present study aimed to investigate the effectiveness of Scenedesmus sp. to removal of heavy metals from wet market wastewater. Scenedesmus sp. was inoculated with 106 cells/mL into each wet market wastewater concentration included 10, 25, 50, 75 and 100% and incubated for 18 days. The highest growth rate was recorded in 50% WM with a maximum dry weight of 2006 mg L-1 which subsequently removed 93.06% of Cd, 91.5% of Cr, 92.47% of Fe, 92.40% of Zn. These findings reflected the high potential of Scenedesmus sp. in the treatment of wet market wastewater and production microalgae biomass.

  8. Atmospheric heavy metal deposition in the Copenhagen area

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, A; Hovmand, M F; Johnsen, I

    1978-10-01

    Transport of heavy metals from the atmosphere to the soil and vegetation takes place by dust fall, bulk precipitation, and gas/aerosol adsorption processes. Atmospheric dry and wet deposition of the heavy metals lead, zinc, nickel, vanadium, iron, and copper over the Copenhagen area was measured by sampling in plastic funnels from 17 stations throughout the area for 12 months. Epigeic bryophytes, epiphytic lichen, and topsoil samples were analyzed. A linear correlation between bulk precipitation and heavy metal concentration in lichens and bryophytes was found. An exponential correlation between bulk precipitation and heavy metal concentration in soil was noted. Regional variation of the heavy metal levels in the Copenhagen area was described, and three sub-areas with high metal burdens were distinguished. (10 diagrams, 8 graphs, 13 references, 2 tables)

  9. Heavy metal contamination in bats in Britain

    International Nuclear Information System (INIS)

    Walker, L.A.; Simpson, V.R.; Rockett, L.; Wienburg, C.L.; Shore, R.F.

    2007-01-01

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb

  10. Toxic Heavy Metals: Materials Cycle Optimization

    Science.gov (United States)

    Ayres, Robert U.

    1992-02-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies.

  11. Scaling behavior of heavy fermion metals

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a, Chernova str. Syktyvkar, 167982 (Russian Federation)

    2010-07-15

    Strongly correlated Fermi systems are fundamental systems in physics that are best studied experimentally, which until very recently have lacked theoretical explanations. This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as heavy-fermion (HF) metals and two-dimensional (2D) Fermi systems. It is shown that the basic properties and the scaling behavior of HF metals can be described within the framework of a fermion condensation quantum phase transition (FCQPT) and an extended quasiparticle paradigm that allow us to explain the non-Fermi liquid behavior observed in strongly correlated Fermi systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Having analyzed the collected facts on strongly correlated Fermi systems with quite a different microscopic nature, we find these to exhibit the same non-Fermi liquid behavior at FCQPT. We show both analytically and using arguments based entirely on the experimental grounds that the data collected on very different strongly correlated Fermi systems have a universal scaling behavior, and materials with strongly correlated fermions can unexpectedly be uniform in their diversity. Our analysis of strongly correlated systems such as HF metals and 2D Fermi systems is in the context of salient experimental results. Our calculations of the non-Fermi liquid behavior, the scales and thermodynamic, relaxation and transport properties are in good agreement with experimental facts.

  12. Heavy metal contamination in bats in Britain

    Energy Technology Data Exchange (ETDEWEB)

    Walker, L.A. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Simpson, V.R. [Wildlife Veterinary Investigation Centre, Jollys Bottom Farm, Chacewater, Truro, Cornwall TR4 8PB (United Kingdom); Rockett, L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Wienburg, C.L. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom); Shore, R.F. [NERC Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire PE28 2LS (United Kingdom)]. E-mail: rfs@ceh.ac.uk

    2007-07-15

    Toxic metals are bioaccumulated by insectivorous mammals but few studies (none from Britain) have quantified residues in bats. We measured renal mercury (Hg), lead (Pb) and cadmium (Cd) concentrations in bats from south-west England to determine how they varied with species, sex, age, and over time, and if they were likely to cause adverse effects. Residues were generally highest in whiskered bats (Myotis mystacinus). Compared with other species, pipistrelle (Pipistrellus spp) and Natterer's bats (Myotis nattereri) had significantly lower kidney Hg and Pb concentrations, respectively. Renal Hg increased over time in pipistrelles but the contributory sources are unknown. Kidney Pb did not decrease over time despite concurrent declines in atmospheric Pb. Overall, median renal metal concentrations were similar to those in bats from mainland Europe and 6- to 10-fold below those associated with clinical effect, although 5% of pipistrelles had kidney Pb residues diagnostic of acute lead poisoning. - Heavy metal contamination has been quantified in bats from Britain for the first time and indicates increased accumulation of Hg and no reduction in Pb.

  13. Earliest evidence of pollution by heavy metals in archaeological sites.

    Science.gov (United States)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  14. Heavy Metals in the Vegetables Collected from Production Sites

    Directory of Open Access Journals (Sweden)

    Hassan Taghipour

    2013-12-01

    Full Text Available Background: Contamination of vegetable crops (as an important part of people's diet with heavy metals is a health concern. Therefore, monitoring levels of heavy metals in vegetables can provide useful information for promoting food safety. The present study was carried out in north-west of Iran (Tabriz on the content of heavy metals in vegetable crops. Methods: Samples of vegetables including kurrat (n=20 (Allium ampeloprasumssp. Persicum, onion (n=20 (Allium cepa and tomato (n=18 (Lycopersiconesculentum var. esculentum, were collected from production sites in west of Tabriz and analyzed for presence of Cd, Cr, Cu, Ni, Pb and Zn by atomic absorption spectroscopy (AAS after extraction by aqua regia method (drying, grounding and acid digestion. Results: Mean ± SD (mg/kg DW concentrations of Cd, Cu, Cr, Ni and Zn were 0.32 ± 0.58, 28.86 ± 28.79, 1.75 ± 2.05, 6.37± 5.61 and 58.01 ± 27.45, respectively. Cr, Cu and Zn were present in all the samples and the highest concentrations were observed in kurrat (leek. Levels of Cd, Cr and Cu were higher than the acceptable limits. There was significant difference in levels of Cr (P<0.05 and Zn (P<0.001 among the studied vegetables. Positive correlation was observed between Cd:Cu (R=0.659, P<0.001 Cr:Ni (R=0.326, P<0.05 and Cr:Zn (R=0.308, P<0.05. Conclusion: Level of heavy metals in some of the analyzed vegetables, especially kurrat samples, was higher than the standard levels. Considering the possible health outcomes due to the consumption of contaminated vegetables, it is required to take proper actions for avoiding people's chronic exposure.

  15. PLANT CONTAMINATION AND PHYTOTOXICITY DUE TO HEAVY METALS FROM SOIL AND WATER

    Directory of Open Access Journals (Sweden)

    Judith Prieto Mendez

    2008-12-01

    Full Text Available High levels of heavy metals, such as: lead, nickel, cadmium and manganese, which are present in soil and wastewater used for agricultural irrigation, are due to the fact that these metals can be accumulated into these systems, of main importance for agriculture. Because of its non-biodegradability features, toxicity effects onto several crops and consequences on their bio-availability, this may result hazardous. This literature survey highlights and remarks relative sensitivity of some plants before heavy metals presence and crops trend to accumulate them, emphasizing aspects related to some soil physicochemical characteristics and heavy metals phyto-toxicity.

  16. Analysis of Accumulating Ability of Heavy Metals in Lotus (Nelumbo nucifera) Improved by Ion Implantation

    International Nuclear Information System (INIS)

    Zhang Jianhua; Wang Naiyan; Zhang Fengshou

    2012-01-01

    Heavy metals have seriously contaminated soil and water, and done harm to public health. Academician WANG Naiyan proposed that ion-implantation technique should be exploited for environmental bioremediation by mutating and breeding plants or microbes. By implanting N + into Taikonglian No.1, we have selected and bred two lotus cultivars, Jingguang No.1 and Jingguang No.2. The present study aims at analyzing the feasibility that irradiation can be used for remediation of soil and water from heavy metals. Compared with parent Taikonglian No.1, the uptaking and accumulating ability of heavy metals in two mutated cultivars was obviously improved. So ion implantation technique can indeed be used in bioremediation of heavy metals in soil and water, but it is hard to select and breed a cultivar which can remedy the soil and water from all the heavy metals.

  17. Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (Common carp)

    International Nuclear Information System (INIS)

    Vinodhini, R.; Narayanan, M.

    2008-01-01

    The objective of the present study is to determine the bioaccumulation of heavy metals in various organs of the fresh water fish exposed to heavy metal contaminated water system. The experimental fish was exposed to Cr. Ni, Cd and Pb at sublethal concentrations for periods of 32 days. The elements Cd, Pb, Ni and Cr were assayed using Shimadzu AA 6200 atomic absorption spectrophotometry and the results were given as μg/g dry wt. The accumulation of heavy metal gradually increases in liver during the heavy metal exposure period. All the results were statistically significant at p Pb > Ni > Cr and Pb > Cd > Ni > Cr. Similarly, in case of kidney and flesh tissues, the order was Pb > Cd > Cr > Ni and Pb > Cr > Cd > Ni. In all heavy metals, the bioaccumulation of lead and cadmium proportion was significantly increased in the tissues of Cyprinus carpio (Common carp)

  18. HEAVY METAL AND ANTIBIOTIC RESISTANCE BACTERIA IN MARINE SEDIMENT OF PAHANG COASTAL WATER

    Directory of Open Access Journals (Sweden)

    Zaima Azira

    2018-01-01

    Full Text Available The presence of heavy metal and antibiotic resistance bacteria in the marine sediment may indicate heavy metal pollution and antibiotic abuse present in the environment. In this study, a total of 89 bacteria isolated from sediment collected in Teluk Chempedak and Pantai Batu Hitam of Pahang coastal water underwent heavy metal resistance test against Chromium, Cadmium, Nickel, Copper and Cobalt. Previously, these isolates were found to exhibit antibiotic resistance capabilities to at least 5 antibiotics tested. Heavy metal resistance pattern for isolates from Teluk Chempedak was in the form of Cr > Ni >Co >Cd = Cu while for isolates from Pantai Batu Hitam showed a pattern of Cr = Ni >Co >Cu >Cd. Further investigation on the identity of selected isolates that exhibited both antibiotic and heavy metals resistance capabilities using 16S rRNA gene sequences revealed isolates with closest similarities to Staphylococcus saprophyticus and Brevundimonas vesicularis..

  19. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India

    Directory of Open Access Journals (Sweden)

    Richa Bhardwaj

    2017-04-01

    Full Text Available The objective of the present study is to investigate the current status of heavy metal pollution in River Yamuna, Delhi stretch. The concentrations of Nickel, Cadmium, Chromium, Copper, Iron, Lead, and Zinc in water samples have been studied during December 2013–August 2015. The overall mean concentration of heavy metals was observed in the following order Fe > Cu > Zn > Ni > Cr > Pb > Cd. Correlation analysis formed two distinct groups of heavy metals highlighting similar sources. This was further corroborated by results from principal components analysis that showed similar grouping of heavy metals (Ni, Zn, Fe, Pb, Cd into PC1 having one common source for these heavy metals and PC2 (Cu, Cr having another common source. Further, our study pointed out two sites i.e. Najafgarh drain and Shahdara drain outlet in river Yamuna as the two potential sources responsible for the heavy metal contamination. Based on heavy metal pollution index value (1491.15, we concluded that our study area as a whole is critically polluted with heavy metals under study due to pollutant load from various anthropogenic activities.

  20. Heavy metal contamination in canned foods

    International Nuclear Information System (INIS)

    Sand, W.A.; Flex, H.; Allan, K.F.; Mahmoud, R.M.; Abdel-Haleem, A.E.

    2001-01-01

    The work carried out in this paper aims to the study of contamination of different foodstuffs, that are consumed frequently in our daily life, such as tomatoes concentrate, jam, tuna, and bean, as a result of canning in glass or tin cans. The effect of the storage time on the contamination of the aforementioned foods with heavy metals was also investigated. The technique used for the simultaneous determination of these elements was the instrumental neutron activation analysis (INAA). This technique was selected due to its high accuracy, sensitivity and selectivity. In the light of the obtained results it was suggested that tin cans is the best choice for canning jam and it is suitable also for preserving tuna. On the other hand, glass utensils were found to be the most suitable for preserving tomatoes concentrate. detailed studies are needed to throw more light on the effect of canning material on the concentration level of both essential and toxic trace elements in bean

  1. Hydroponic phytoremediation of heavy metals and radionuclides

    International Nuclear Information System (INIS)

    Hartong, J.; Szpak, J.; Hamric, T.; Cutright, T.

    1998-01-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated

  2. Hydroponic phytoremediation of heavy metals and radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, J; Szpak, J; Hamric, T; Cutright, T

    1998-07-01

    It is estimated that the Departments of Defense, Energy, and Agriculture will spend up to 300 billion federal dollars on environmental remediation during the next century. Current remediation processes can be expensive, non-aesthetic, and non-versatile. Therefore, the need exists for more innovative and cost effective solutions. Phytoremediation, the use of vegetation for the remediation of contaminated sediments, soils, and ground water, is an emerging technology for treating several categories of persistent, toxic contaminants. Although effective, phytoremediation is still in a developmental stage, and therefore is not a widely accepted technology by regulatory agencies and public groups. Research is currently being conducted to validate the processes effectiveness as well as increase regulatory and community acceptance. This research will focus on the ability of plants to treat an aquifer contaminated with heavy metals and radionuclides. Specifically, the effectiveness of hydroponically grown dwarf sunflowers and mustard seed will be investigated.

  3. Heavy metals biogeochemistry in abandoned mining areas

    Directory of Open Access Journals (Sweden)

    Favas P. J. C.

    2013-04-01

    Full Text Available Plants growing on the abandoned Portuguese mines, highly contaminated with W, Sn, As, Cd, Cu, Zn and Pb, have been studied for their biogeochemical indication/prospecting and mine restoration potential. The results of analysis show that the species best suited for biogeochemical indicating are: aerial tissues of Halimium umbellatum (L. Spach, for As and W; leaves of Erica arborea L. for Bi, Sn, W and mostly Pb; stems of Erica arborea L. for Pb; needles of Pinus pinaster Aiton and aerial tissues of Pteridium aquilinum (L. Kuhn for W; and leaves of Quercus faginea Lam. for Sn. The aquatic plant studied (Ranunculus peltatus Schrank can be used to decrease the heavy metals, and arsenic amounts into the aquatic environment affected by acid mine drainages.

  4. Remediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Boni, M.R.; D' Aprile, L. [Univ. of Rome ' ' La Sapienza' ' , Dept. of Hydraulic Transportation and Roads (Italy)

    2001-07-01

    In December 1999 Italy issued the national regulation (DM 471/99) for the clean-up of contaminated sites. This regulation applies both to derelict and to still operating industrial plants and waste management facilities. Target concentration values for clean-up interventions are issued and the requirements for design and planning of technical operation are defined. The selection of the appropriate clean-up technology are based on the following main criteria: - reduce the concentration in environmental media and the migration of pollutants without removing soil off-site; - in order to reduce contaminated material removal and transportation, remedial actions of soil, subsoil and groundwater should preferably be based on in-situ treatments. In-situ technologies commonly applied in Italy to the remediation of soils contaminated by heavy metals (As, Cd, Cr, Hg, Pb) are: - containment (caps, vertical barriers); - soil flushing; - cement based solidification/stabilization. (orig.)

  5. Heavy Metals in Agricultural Soils in Nigeria: A Review

    Directory of Open Access Journals (Sweden)

    J. J. Musa

    2017-10-01

    Full Text Available This review paper presents the health risks of heavy metals such as: lead (Pb, chromium (Cr, zinc (Zn, cadmium (Cd, copper (Cu, mercury (Hg, nickel (Ni and arsenic (As etc contamination in soils. The review reveals the major sources of these metals which are urban and industrial effluents, deterioration of sewage pipe, treatment water works, sewage sludge, fertilizers and pesticides. It also reveals the adopted standard for drinking water (maximum tolerable limit by FAO, JECFA and WHO which are as follows: 0.05mg/L, 0.05mg/L, 1.5mg/L, 0.001mg/L, 0.02mg/L, 15mg/L, 0.3mg/L, 0.5mg/L, 0.01mg/L, 0.05mg/L and 0.05mg/L for Pb, Cr, Cu, Hg, Ni, Zn, Fe, Mn, Se, As and Cd respectively. The accumulation of heavy metals in agricultural soils is of increasing concern because of food safety issues, potential health risks such as neurological disorder, cancer, kidney damage, fragile bone etc and their detrimental effects on soil ecosystem. However, the regular monitoring of levels of these metals from dump sites, effluents and sewages in soil and drinking water is essential to prevent excessive buildup of these metals thereby increasing toxicity and elevating the public health risk.

  6. Heavy metal levels in soil samples from highly industrialized Lagos ...

    African Journals Online (AJOL)

    Anyakora

    2013-09-05

    Sep 5, 2013 ... The effect of heavy metals on the environment is of serious concern and threatens life in all forms. Environmental ... have affected the quality of soil due to contamination of soil with heavy metals and the consequent effects on the ..... tested for remediation of chromium-contaminated soils. (Collen, 2003).

  7. Heavy metals in soils of cocoa plantation (Theobroma cacao L.)

    Science.gov (United States)

    Cocoa has experienced significant growth in recent years in Peru and the presence of heavy metals in the soils of these plantations is a potential problem for the export of this product. Contents of heavy metals (Cd, Ni, Pb, Fe, Cu, Zn, Mn) in soils from 19 plantations that have been in production f...

  8. Selected mineral and heavy metal concentrations in blood and ...

    African Journals Online (AJOL)

    Unknown

    Pb in the dead vultures were generally above values characteristic of heavy metal poisoning. ... of the food chain), may accumulate and concentrate heavy metals in their ..... µg/g wet weight) (Honda et al., 1990), which validates the order of ...

  9. A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal ...

    African Journals Online (AJOL)

    A Review of Polycyclic Aromatic Hydrocarbons and Heavy Metal Contamination of Fish from Fish Farms. ... Journal of Applied Sciences and Environmental Management ... Polycyclic aromatic hydrocarbons (PAHs) and heavy metals contribute to pollutants in aquaculture facilities and thus need to be further investigated.

  10. Urban water pollution by heavy metals and health implication in ...

    African Journals Online (AJOL)

    Studies of common heavy metals were conducted at Onitsha, Anambra State, the most urbanized city in Southeastern Nigeria. It was discovered that both surface and subsurface water were heavily polluted. Seven (7) heavy metals namely: arsenic (As+2), cadmium (Cd+2), lead (Pb+2), mercury (Hg+2), zinc (Zn+2), copper ...

  11. Heavy Metals Pollution on Surface Water Sources in Kaduna ...

    African Journals Online (AJOL)

    This study examine the effects of heavy metal pollutants to aquatic ecosystems and the environment by considering the role of urban, municipal, agricultural, industrial and other anthropogenic processes as sources of heavy metal pollution in surface water sources of Kaduna metropolis. Samples of the polluted water were ...

  12. Bioaccumulation of Heavy Metals by Moringa Oleifera in Automobile ...

    African Journals Online (AJOL)

    Plants accumulate minerals essential for their growth from the environment alongside with heavy metals from contaminated areas.This study investigated bioaccumulation of heavy metals by Moringa oleifera in automobile workshops in three selected local government areas in Ibadan. This was done with a view to ...

  13. Determination of Some Heavy Metals in Selected Beauty and ...

    African Journals Online (AJOL)

    Several epidemiologic studies have investigated the potential carcinogenicity of human exposure to heavy metals from diverse sources but few or none was on African black and beauty soaps. Hence, this study examines the presence of some heavy metals in selected African black and beauty soaps commonly used in ...

  14. Heavy metal biosorption sites in Penicillium cyclopium | Tsekova ...

    African Journals Online (AJOL)

    The biomass of Penicillium cyclopium was subjected to chemical treatment to study the role of the functional groups in the biosorption of heavy metal ions. The modifications of the functional groups were examined with infrared spectroscopy. Hydroxyl groups were identified as providing the major sites of heavy metal ...

  15. Safety Evaluation of Osun River Water Containing Heavy Metals and ...

    African Journals Online (AJOL)

    Summary: This study evaluated the pH, heavy metals and volatile organic compounds (VOCs) in Osun river water. It also evaluated its safety in rats. Heavy metals were determined by atomic absorption spectrophotometry (AAS) while VOCs were determined by gas chromatography coupled with flame ionization detector ...

  16. Evaluation of heavy metal uptake and translocation by Acacia ...

    African Journals Online (AJOL)

    Many organic and inorganic pollutants, including heavy metals are being transported and mixed with the cultivated soils and water. Heavy metals are the most dangerous pollutants as they are nondegradable and accumulate and become toxic to plants and animals. An experiment was conducted in the glasshouse to ...

  17. Comparative assessment of heavy metal removal by immobilized ...

    African Journals Online (AJOL)

    Microorganisms play a vital role in heavy metal contaminated soil and wastewater by the mechanisms of biosorption. In this study, heavy metal resistant bacteria were isolated from an electroplating industrial effluent samples that uses copper, cadmium and lead for plating. These isolates were characterized to evaluate their ...

  18. assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    userpc

    guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit of WHO. Keywords: Atomic Absorption Spectrophotometers, Heavy Metals, Water, Kauru Local. Government Area.

  19. Uptake and elimination kinetics of heavy metals by earthworm ...

    African Journals Online (AJOL)

    Earthworm inoculation of petroleum hydrocarbon contaminated soil is thought to catalyze the bioremediation. Most bioremediation studies focus on the petroleum hydrocarbon content and not on the heavy metals. Here, the uptake kinetics of heavy metals by earthworm in used engine oil contaminated soil was investigated.

  20. Bioaccumulation of eight heavy metals in cave animals from Dashui ...

    African Journals Online (AJOL)

    ajl2

    karst caves and water systems in the caves are well developed. So, heavy metals can contaminate cave envi- ronment and affect cave animals. Karst topography is widely distributed in Guizhou province, China, accounting for 73.8% of the total land area. So, the examination of heavy metal pollution in cave soil and water ...

  1. Heavy metal accumulation in under crown Olea europaea L forest ...

    African Journals Online (AJOL)

    Heavy metal concentration in plants increased in site irrigation with wastewater. Zn, Pb and Ni exceeded their permitted limits in soils and Pb, Cr and Ni exceeded their permitted limits in roots of plants irrigated with wastewater. It was concluded that the use of wastewater in urban forest enriched the soils with heavy metals ...

  2. Tracing heavy metals in 'swine manure - maggot - chicken' production chain.

    Science.gov (United States)

    Wang, Wanqiang; Zhang, Wenjuan; Wang, Xiaoping; Lei, Chaoliang; Tang, Rui; Zhang, Feng; Yang, Qizhi; Zhu, Fen

    2017-08-21

    With the development of large-scale livestock farming, manure pollution has drawn much attention. Conversion by insects is a rapid and cost-effective new method for manure management. Swine manure conversion with maggots (Musca domestica larvae) has developed, and the harvested maggots are often used as animal feed. However, the flow of heavy metals from manure to downstream processes cannot be ignored, and therefore, heavy metal content was measured in untreated raw manure, maggot-treated manure, harvested maggots and maggot-eating chickens (chest muscle and liver) to evaluate potential heavy metal risks. The levels of zinc, copper, chromium, selenium, cadmium and lead had significant differences between untreated raw manure and maggot-treated manure. The concentrations of all detected heavy metals, except for cadmium and selenium, in maggots met the limits established by the feed or feed additive standards of many countries. The bioaccumulation factor (BAF) of heavy metals decreased with the increase of the maggot instar, indicating that heavy metals were discharged from the bodies of maggots with the growth of maggots. Also, the contents of overall heavy metals in chickens fed harvested maggots met the standards for food. In conclusion, regarding heavy metals, it is eco-safe to use maggots in manure management.

  3. THE HEAVY METALS CONNTENT IN VEGETABLES FROM MIDDLE SPIŠ AREA

    Directory of Open Access Journals (Sweden)

    Marek Slávik,Tomáš Tóth

    2014-02-01

    Full Text Available In the middle area of Spiš, it is significantly burden by heavy metals what is documented by radical content of Hg in soil from Rudňany 58.583645 mg.kg -1. On the content of heavy metals in vegetables grown in this soil it has the same effect. 61.5% samples exceeded the limit value of heavy metals. The most dangerous vegetables were Lactuca sativa L. The limit value was exceed in all determine heavy metals - Hg, Cd, Pb and Cu in this vegetables. In the case of Hg, the limit value exceed 93.86 times. For relatively safety is growing of Pisum sativum L., where there was no exceed any limits values. The root vegetables are dangerous, where the sample of Raphanus sativus L. exceed 6.71978 times the limit values for Pb although the content of lead in the soil was under hygienic limits. Transfer of heavy metals into consume parts of vegetables was no limited by high content of humus into soil. Transfer of heavy metals into consume parts of vegetables was no limited by weakly alkaline soil reaction. These factors are considered for factors limited mobility and input heavy metals into plants. We determined heavy metals by AAS method on a Varian 240 FS and method AMA 254.

  4. Heavy metal contamination of some vegetables from pesticides and ...

    African Journals Online (AJOL)

    Vegetable farming in developing countries is characterized by the indiscriminate application of pesticides and the resultant pollution of agricultural soil with heavy metals that form constituents of these pesticides. These heavy metals have long term toxicity to human and other biota in the ecosystem. This problem is ...

  5. Comparative Studies on Mosses for Heavy Metals Pollution ...

    African Journals Online (AJOL)

    The sources of these heavy metals were discovered to include: vehicular emission and incineration of domestic wastes and the heavy metals from these sources were discovered to pose severe toxicological risks to the environment and human health. Samples of mosses were collected at eight different locations in each ...

  6. X-ray fluorescence spectroscopic determination of heavy metals and ...

    African Journals Online (AJOL)

    Purpose: To determine the heavy metal and trace element composition of the powdered aerial parts of Origanum sipyleum L. and its water extract. Methods: The heavy metal and trace elements content of the powdered plant material and 2 % aqueous extract were evaluated by x-ray fluorescence spectroscopy with silicon ...

  7. Heavy Metals Accumulation Characteristics of Vegetables in Hangzhou City, China

    Directory of Open Access Journals (Sweden)

    GU Yan-qing

    2015-08-01

    Full Text Available A field survey of heavy metal concentrations in soils and vegetables grown in 30 vegetable farmlands of Hangzhou City were carried out. Through calculating the bioconcentration factor(BCFand transfer factor(TFfor different heavy metals(Cu, Zn, Cd, Cr and Pbin 27 kinds of different vegetables which belong to leafy vegetables, root vegetables or eggplant fruit vegetables, assessing their accumulation characteristics of heavy metals according to the differences of the bio-concentration factor, the reasonable proposals were put forward to optimize the planting structure of vegetables in mild and middle-level heavy metal contamination soils. The experimental results were as follows: In soils with mild and middle-level heavy metal contamination, leafy vegetables, such as crown daisy, cabbage, celery and Chinese long cabbage, had relatively low enrichment ability of heavy metals, so as the root and fruit vegetables like white radish, carrot, tomatoes, hence these vegetables could be planted preferentially. In contrast, some kinds of vegetables, including white amaranth, red amaranth, tatsoi, broccoli, gynura, brassica juncea and lettuce of leafy vegetables, lactuca sativa, taro, red radish and cherry radish of rhizome vegetables and sweet pepper of fruit vegetables, had relatively high accumulation ability of heavy metal, which should be avoided to be planted in soils with mild and middle-level heavy metal contamination.

  8. Heavy metals – a silent threat to health

    Directory of Open Access Journals (Sweden)

    Karolina Kosek-Hoehne

    2017-01-01

    Environmental pollution makes it impossible to produce goods and food from products completely free from heavy metals contamination. That is why we should focus on reducing the amount of heavy metals to the minimum when it comes to the world around us.

  9. selected heavy metals in some vegetables produced through ...

    African Journals Online (AJOL)

    toshiib

    Haramaya University; P. O. Box 138, Dire Dawa, Ethiopia. 10013 ... and trace elements that have potential health benefits [1]. ... leads to a build-up of heavy metals in soils and foods [3]. Exposure of ... Based on the effect of heavy metals on ... (Buck Scientific Model 210VGP AAS, East Norwalk, USA) with air-acetylene flame.

  10. Heavy Metal Pollution of Vegetable Crops Irrigated with Wastewater ...

    African Journals Online (AJOL)

    User

    Cr (< 0.006), Cd (< 0.002) and Co (< 0.005), soil Fe (164.38; 162.92), Mn (39.39; 20.09), Cu (7.21; ... extent of heavy metal contamination, steps must be taken to reduce human activities at the sites. ...... The degree of toxicity of heavy metals to.

  11. Physicochemical characteristics and heavy metal levels in soil ...

    African Journals Online (AJOL)

    Distribution pattern of heavy metals in petrol stations, abattoirs, mechanic workshops and hospital incinerator sites were Mn > Zn > Pb > Cd, while for dumpsites Zn > Mn > Pb > Cd. Pollution index indicated that soil qualities varied between slightly contaminated to severely polluted status. This showed that the heavy metal ...

  12. Influence of Heavy Metals on the Environmental from Tarnita Mining Area

    Directory of Open Access Journals (Sweden)

    Jucan Victor

    2016-07-01

    Full Text Available This paper presents aspects related to water pollution with heavy metals from the Tarnita mining area before and after the cessation of the mining activity. The impact of heavy metals on waters is important because these metals have a negative impact on both human health and aquatic ecosystems. All research data showed that, even the mining activities from this area were suspended, the sterile still pollutes the soil and water

  13. Modelling the extra and intracellular uptake and discharge of heavy metals in Fontinalis antipyretica transplanted along a heavy metal and pH contamination gradient

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Vazquez, M.D.; Lopez, J.; Carballeira, A.

    2006-01-01

    Samples of the aquatic bryophyte Fontinalis antipyretica Hedw. were transplanted to different sites with the aim of characterizing the kinetics of the uptake and discharge of heavy metals in the extra and intracellular compartments. The accumulation of metals in extracellular compartments, characterized by an initial rapid accumulation, then a gradual slowing down over time, fitted perfectly to a Michaelis-Menten model. The discharge of metals from the same compartment followed an inverse linear model or an inverse Michaelis-Menten model, depending on the metal. In intracellular sites both uptake and discharge occurred more slowly and progressively, following a linear model. We also observed that the acidity of the environment greatly affected metal accumulation in extracellular sites, even when the metals were present at relatively high concentrations, whereas the uptake of metals within cells was much less affected by pH. - The kinetics of uptake and discharge of heavy metals, in different cellular locations, were studied in transplanted aquatic mosses

  14. Heavy metal content of soil in urban parks of Belgrade

    Directory of Open Access Journals (Sweden)

    Kuzmanoski Maja M.

    2014-01-01

    Full Text Available This study focuses on soil pollution in four urban parks of Belgrade. The sampling locations within each park were chosen based on proximity to streets characterized by heavy traffic, and soil samples were taken at different depths down to 50 cm. Concentrations of six heavy metals (Cr, Cu, Fe, Mn, Ni and Zn were measured using Energy Dispersive X-Ray Fluorescence (EDXRF spectrometer. The following average abundance order of heavy metals was found: Fe >> Mn > Zn > Cr > Ni > Cu in topsoil samples. The highest enrichment in topsoil was observed for Zn. Copper and Zn, metals mainly related to traffic emissions, exhibited the highest concentrations at the sampling location close to a bus and trolleybus terminus. The highest Ni and Cr concentrations were observed in a park located in a city suburb, where a large number of individual heating units is present. The largest decrease in concentrations with soil dept was observed for Zn and Cu, followed by Ni and Cr, in the parks with the highest concentrations of these elements in topsoil. Generally high topsoil Cr and Ni concentrations were observed in comparison with average values reported in literature for other world cities. [Projekat Ministartsva nauke Republike Srbije, br. III43007

  15. Sewage sludge pyrolysis - the distribution of heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, R.; Widmer, F.; Brunner, P.

    1986-01-01

    The paper informs about the heavy metal contents of sewage sludges and discusses the origin of household, industry and surface sewerage of the respective heavy metals. The study aimed at assessing whether and in how far heavy metal volatility may be checked by reducing the temperature during sewage sludge pyrolysis. The testing equipment used was made of glass/silica glass. Instead of in particles heavy metals were precipitated in the gaseous state. Except from mercury heavy metals are retained by the ashes up to temperatures from 450 to 555/sup 0/C. Due to the persistence of mercury care should be taken to keep the sewerage clear of it from the very beginning. Emissions caused by reactor materials can be avoided by choosing appropriate pyrolysis reactors.

  16. [Biosorption of heavy metals in fluoritum decoction by fungal mycelium].

    Science.gov (United States)

    Cui, Pei-wu; Hu, Wei; Hu, Ya-qiang; Tan, Zhao-yang

    2014-09-01

    To explore the biosorption technology of heavy metals in Fluoritum decoction by fungal mycelium. Four factors including fungal mycelium amount, adsorption time, pH value and temperature were employed to estimate the fungal biomass adsorption conditions for removing the heavy metals in Fluoritum decoction. Then an orthogonal experimental design was taken to optimize the biosorption process, and the removal efficiency was also evaluated. Under the optimized conditions of 1.0 g/50 mL Fluoritum decoction, 3 hours adsorption time, pH 5.0 and 40 degrees C, a result of 70.12% heavy metals removal rate was accomplished with 35.99% calcium ion loss. The study indicates that removing of heavy metals in Fluoritum decoction through fungal mycelium is feasible, and the experiment results can also provide a basis for further research on biosorption of heavy metals in traditional Chinese medicine

  17. Indicators of Lake Temsah Potential by some heavy metals Heavy Metals in Sediment

    International Nuclear Information System (INIS)

    Abdel Sabour, M.F.; Aly, R.O.; Khalil, M.T.; Attwa, A.H.A.

    1999-01-01

    The Environmental impact of industrial, agricultural and domestic waster on heavy metals sediment content in lake Temsah has been investigated. Seven sites were chosen, differ in nature of activity and quantity of wastes, namely from south to north-west; Arab contractors shipyard workshop(A), The junction between the western logon and the lake(B), El-Temsah workshop (C), El-Temsah shipyard (private workshop) (D), El-Karakat workshop for SCA (E), El-Forsan drain out fall to the lake (F) and SCA Press outlet (G). Eight of heavy metal concentrations of concern (Fe, Mn, Zn, Cu, Co, Ni, Cd and Pb) were estimated in sediment samples collected from different chosen sites during the seasons; summer , autumn 1995 and winter , spring 1996. Results of this study reveal that pollution is directly related to the type of the activity in each site. Sediment samples results showed that the most suffering sites were found to be in the order of B> D> C> G> F, and the least polluted ones were E> A. And the highest polluted season was summer, whereas the least one was winter. It is obvious that the general mean values of Cu, Ni and Cd are exceeding the allowed concentrations documented for diverse trace components in coastal sediments. Strict regulations that must be followed in order to minimize this pollution specially, by heavy metals from marine workshop

  18. Heavy metal stabilization in contaminated road-derived sediments.

    Science.gov (United States)

    Rijkenberg, Micha J A; Depree, Craig V

    2010-02-01

    There is increasing interest in the stabilization of heavy metals in road-derived sediments (RDS), to enable environmentally responsible reuse applications and circumvent the need for costly landfill disposal. To reduce the mobility of heavy metals (i.e. Cu, Pb and Zn) the effectiveness of amendments using phosphate, compost and fly ash addition were investigated using batch leaching experiments. In general, phosphate amendments of RDS were found to be ineffective at stabilizing heavy metals, despite being used successfully in soils. Phosphate amendment resulted in enhanced concentrations of dissolved organic carbon (DOC), which increased the solubilisation of heavy metals via complexation. Amendment with humified organic matter (compost) successfully stabilized Cu and Pb in high DOC leaching RDS with an optimum loading of 15-20% (w/w). Compost, however, was ineffective at stabilizing Zn. Increasing the pH by amending RDS/compost blends with 2.5-15% (w/w) coal fly ash resulted in the stabilization of Zn, Cu and Pb. However, above a pH of approximately 7.5 and 8 enhanced leaching of organic matter resulted in an increase in leached Cu and Pb, respectively. Accordingly, the optimum level of fly ash amendment for the RDS/compost blends was estimated to be ca. 10%. Boosted regression trees analysis (BRT) of the data revealed that DOC accounted for 56% and 65% of the Cu and Pb leaching, respectively, whereas pH only accounted for ca. 18% of Cu and Pb leaching. RDS sample characteristics (i.e. metal concentrations, size fractionation and organic matter content) were more important at reconciling the leaching concentrations of copper Cu (27%) than Pb (16%). The most important parameter explaining Zn leaching was pH. Overall, the choice of a suitable stabilization agent/s depends on the composition of RDS with respect to the amount of organic matter present, and the sorption chemistry of the heavy metal of interest. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Heavy metals in commercial fish in New Jersey

    International Nuclear Information System (INIS)

    Burger, Joanna; Gochfeld, Michael

    2005-01-01

    Levels of contaminants in fish are of particular interest because of the potential risk to humans who consume them. While attention has focused on self-caught fish, most of the fish eaten by the American public comes from commercial sources. We sampled 11 types of fish and shellfish obtained from supermarkets and specialty fish markets in New Jersey and analyzed them for arsenic, cadmium, chromium, lead, manganese, mercury, and selenium. We test the null hypothesis that metal levels do not vary among fish types, and we consider whether the levels of any metals could harm the fish themselves or their predators or pose a health risk for human consumers. There were significant interspecific differences for all metals, and no fish types had the highest levels of more than two metals. There were few significant correlations (Kendall tau) among metals for the three most numerous fish (yellowfin tuna, bluefish, and flounder), the correlations were generally low (below 0.40), and many correlations were negative. Only manganese and lead positively were correlated for tuna, bluefish, and flounder. The levels of most metals were below those known to cause adverse effects in the fish themselves. However, the levels of arsenic, lead, mercury, and selenium in some fish were in the range known to cause some sublethal effects in sensitive predatory birds and mammals and in some fish exceeded health-based standards. The greatest risk from different metals resided in different fish; the species of fish with the highest levels of a given metal sometimes exceeded the human health guidance or standards for that metal. Thus, the risk information given to the public (mainly about mercury) does not present a complete picture. The potential of harm from other metals suggests that people not only should eat smaller quantities of fish known to accumulate mercury but also should eat a diversity of fish to avoid consuming unhealthy quantities of other heavy metals. However, consumers should

  20. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption.

    Science.gov (United States)

    Gong, Xiaomin; Huang, Danlian; Liu, Yunguo; Zeng, Guangming; Wang, Rongzhong; Wei, Jingjing; Huang, Chao; Xu, Piao; Wan, Jia; Zhang, Chen

    2018-04-01

    This study aimed to investigate the effect of pyrolysis on the stabilization of heavy metals in plant residues obtained after phytoremediation. Ramie residues, being collected after phytoremediation of metal contaminated sediments, were pyrolyzed at different temperatures (300-700 °C). Results indicated that pyrolysis was effective in the stabilization of Cd, Cr, Zn, Cu, and Pb in ramie residues by converting the acid-soluble fraction of metals into residual form and decreasing the TCLP-leachable metal contents. Meanwhile, the reutilization potential of using the pyrolysis products generated from ramie residues obtained after phytoremediation as sorbents was investigated. Adsorption experiments results revealed that the pyrolysis products presented excellent ability to adsorb methylene blue (MB) with a maximum adsorption capacity of 259.27 mg/g. This study demonstrated that pyrolysis could be used as an efficient alternative method for stabilizing heavy metals in plant residues obtained after phytoremediation, and their pyrolysis products could be reutilized for dye adsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Evaluación de la eficiencia de una batería de filtros empacados en zeolita en la remoción de metales pesados presentes en un licor mixto bajo condiciones de laboratorio Evaluation of efficiency of a filter battery packaging zeolite in the removal of heavy metals in a mixed liquor under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Diana Rocío Acevedo Cifuentes

    2011-01-01

    Full Text Available En este artículo se muestran resultados de investigación obtenidos en la remoción de los metales pesados, plomo, níquel, cromo, cadmio y mercurio, presentes en una solución compuesta por licor mixto proveniente de la planta de tratamiento de aguas residuales de San Fernando y una solución preparada con metales pesados con una concentración conocida, mediante el uso de una batería de filtros empacados en zeolita clinoptilolita. La experimentación se desarrolló bajo condiciones controladas de caudal y pH, a temperatura ambiente. Se encontró que la eficiencia de los filtros bajo las condiciones específicas de diseño es significativamente alta en la remoción de los metales pesados evaluados en la solución acuosa. Se encontró, además, que sin importar el valor de la concentración inicial, se obtuvo una remoción importante en los contaminantes luego de pasar por los filtros con una mayor eficiencia en la remoción del mercurio.This article shows the research results on the removal of five heavy metals (lead, nickel, chromium, cadmium and mercury present in a liquor made of a mixture of wastewater from San Fernando wastewater treatment plant and a solution prepared with known concentrations of heavy metals, using a series of batery filters packed with zeolita clinoptilolita. The experiments were run under controlled conditions of flow and pH, at room temperature. It was found that the removal efficiency was significantly high under the specified design conditions; also, it was found an important removal of the contaminants after passing through the filters, independently of the initial concentration, with the highest observed removal for mercury.

  2. Modeling of Heavy Metal Transformation in Soil Ecosystem

    Science.gov (United States)

    Kalinichenko, Kira; Nikovskaya, Galina N.

    2017-04-01

    The intensification of industrial activity leads to an increase in heavy metals pollution of soils. In our opinion, sludge from biological treatment of municipal waste water, stabilized under aerobic-anaerobic conditions (commonly known as biosolid), may be considered as concentrate of natural soil. In their chemical, physical and chemical and biological properties these systems are similar gel-like nanocomposites. These contain microorganisms, humic substances, clay, clusters of nanoparticles of heavy metal compounds, and so on involved into heteropolysaccharides matrix. It is known that microorganisms play an important role in the transformation of different nature substances in soil and its health maintenance. The regularities of transformation of heavy metal compounds in soil ecosystem were studied at the model of biosolid. At biosolid swelling its structure changing (gel-sol transition, weakening of coagulation contacts between metal containing nanoparticles, microbial cells and metabolites, loosening and even destroying of the nanocomposite structure) can occur [1, 2]. The promotion of the sludge heterotrophic microbial activities leads to solubilization of heavy metal compounds in the system. The microbiological process can be realized in alcaligeneous or acidogeneous regimes in dependence on the type of carbon source and followed by the synthesis of metabolites with the properties of flocculants and heavy metals extragents [3]. In this case the heavy metals solubilization (bioleaching) in the form of nanoparticles of hydroxycarbonate complexes or water soluble complexes with oxycarbonic acids is observed. Under the action of biosolid microorganisms the heavy metals-oxycarbonic acids complexes can be transformed (catabolised) into nano-sizing heavy metals- hydroxycarbonates complexes. These ecologically friendly complexes and microbial heteropolysaccharides are able to interact with soil colloids, stay in the top soil profile, and improve soil structure due

  3. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  4. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

    International Nuclear Information System (INIS)

    Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P.

    2009-01-01

    Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C 3 S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H + attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C 3 S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique

  5. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region

    International Nuclear Information System (INIS)

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-01-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0–20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. - Causation between the

  6. Assessment of heavy metals in Averrhoa bilimbi and A. carambola fruit samples at two developmental stages.

    Science.gov (United States)

    Soumya, S L; Nair, Bindu R

    2016-05-01

    Though the fruits of Averrhoa bilimbi and A. carambola are economically and medicinally important, they remain underutilized. The present study reports heavy metal quantitation in the fruit samples of A. bilimbi and A. carambola (Oxalidaceae), collected at two stages of maturity. Heavy metals are known to interfere with the functioning of vital cellular components. Although toxic, some elements are considered essential for human health, in trace quantities. Heavy metals such as Cr, Mn, Co, Cu, Zn, As, Se, Pb, and Cd were analyzed by atomic absorption spectroscopy (AAS). The samples under investigation included, A. bilimbi unripe (BU) and ripe (BR), A. carambola sour unripe (CSU) and ripe (CSR), and A. carambola sweet unripe (CTU) and ripe (CTR). Heavy metal analysis showed that relatively higher level of heavy metals was present in BR samples compared to the rest of the samples. The highest amount of As and Se were recorded in BU samples while Mn content was highest in CSU samples and Co in CSR. Least amounts of Cr, Zn, Se, Cd, and Pb were noted in CTU while, Mn, Cu, and As were least in CTR. Thus, the sweet types of A. carambola (CTU, CTR) had comparatively lower heavy metal content. There appears to be no reason for concern since different fruit samples of Averrhoa studied presently showed the presence of various heavy metals in trace quantities.

  7. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Full Text Available Introduction. It has been recognized that environmental pollution can affect the quality of health of the human population. Heavy metals are among the group of highly emitted contaminants and their adverse effect of living organisms has been widely studied in recent decades. Lifestyle and quality of the ambient environment are among these factors which can mainly contribute to the heavy metals exposure in humans. Objective. A review of literature linking heavy metals and the female reproductive system and description of the possible associations with emission and exposure of heavy metals and impairments of female reproductive system according to current knowledge. Results. The potential health disorders caused by chronic or acute heavy metals toxicity include immunodeficiency, osteoporosis, neurodegeneration and organ failures. Potential linkages of heavy metals concentration found in different human organs and blood with oestrogen-dependent diseases such as breast cancer, endometrial cancer, endometriosis and spontaneous abortions, as well as pre-term deliveries, stillbirths and hypotrophy, have also been reported. Conclusions. Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  8. Investigation of heavy metals content in medicinal plant, eclipta alba L

    International Nuclear Information System (INIS)

    Hussain, I.; Khan, H.

    2010-01-01

    Heavy metal such as Cr, Fe, Zn, Mn, Ni, Pb, Cu and Cd were investigated in a= medicinally important plant, Eclipta alba L. as well as in the soil it was grown using atomic absorption spectrophotometer. The plant samples were collected from their natural habitat at three different locations of Peshawar Pakistan. The whole plant materials (roots, stems and leaves) were found to contain all heavy metals except Cd, which corresponds to their concentration in the soil it was grown. Among all the heavy metals, Fe was found to be at the highest level (8.95 to 27.7 mg/kg) followed by Mn (0.44 to 14.0 mg/kg) and Zn (1.04 to 4.50 mg/kg), while the rest of metals were at low concentration. The present study showed that E. alba L. is suitable for the control of environmental pollutants such as heavy metals, however, for medicinal purposes; it should be collected from those areas which are not contaminated with heavy metals. The purpose of the current study was to standardize various indigenous medicinal plants for heavy metals contamination and to make awareness among the public regarding its safer use and collection areas, containing high level of heavy metals and their adverse health affects. (author)

  9. Low-cost bioremediation of heavy metals and radionuclides of contaminated soils

    International Nuclear Information System (INIS)

    Sathiyamoorthy, P.; Golan-Goldhrish, A.

    2005-01-01

    The environmental pollution by toxic metals, especially lead (Pb), mercury (Hg), cadmium (Cd), nickel (Ni), copper (Cu), selenium (Se), chromium (Cr) and radionuclides ( 137 Cs, 90 Sr, 238 Pu, 226 Ra) is a potential hazard to health and welfare of mankind. Rapid industrial revolution has left an international legacy of soil and water contaminated with a combination of toxic and potentially carcinogenic compounds and heavy metals. Many of the contaminated sites were abandoned due to high cost of traditional clean-up approaches. Various approaches are being practiced to decontaminate heavy metals and radionuclides from polluted-soil. Remediation of heavy metal and radionuclides contaminated soils poses a significant expense to many industries and government organizations. Remediation cost in the United States and European Union alone is expected to exceed US$20 billion annually. Bioremediation strategy depends on the limitations of technology, cost and nature of the contaminant in the soil. Certain higher plants are capable of accumulation of heavy metals (2-5 %) in roots and shoots to the level far exceeding those present in the soils, these are called hyper-accumulators. Using heavy metal hyper-accumulating higher plants for environmental clean-up of contaminated soil is a recently emerged technology known as 'phytoremediation'. Genetically engineered (Transgenic) plants have a remarkable potential to absorb heavy metals and show a new avenue for biotechnology technique in Phytoremediation. The cost-effective approach of using heavy metal and radionuclide hyper-accumulators in phytoremediation is discussed. (author)

  10. Capability and Mechanisms of Macrofungi in Heavy Metal Accumulation:A Review

    Directory of Open Access Journals (Sweden)

    CHEN Miao-miao

    2017-10-01

    Full Text Available Some macrofungi have the ability to accumulate heavy metals, which is comparable to hyper-accumulator plants. Cordyceps militaris can accumulate Zn up to 20 000 mg·kg-1. Therefore, macrofungi have the potential to be used as an important bioremediation tool for heavy metals. In this review, we summarized the heavy metal resistant capacity of typical macrofungi and known relevant mechanisms. Generally, straw-decay fungi presented better capability for Cu, Ag and Cd enrichment than wood-decay fungi, while wood-decay fungi could accumulate Cr, Mg, Se and Pb. Different macrofungi species, different growth periods(mycelium and fruiting body and different parts of fruiting body showed different capability for heavy metals accumulation. General mechanisms for heavy metals accumulation in macrofungi included extracellular precipitation in the forms of polymeric substances, cell wall adsorption and intracellular absorption. Macrofungi could also detoxify by chelating metal ions by metallothionein(MT, secreting antioxidant enzymes(SOD, CAT, POD and degradating the misfolded proteins by ubiquitin-proteasome system(UPS. We also explored the potential of macrofungi in heavy metal remediation and pollution diagnostics as a biological indicator. Some macrofungi had been applied in the remediation of heavy metal contaminated soils and water. Finally, some future research areas including strain breeding and genetic engineering were discussed, which might provide references for the future studies.

  11. Heavy metal pollution in immobile and mobile components of lentic ecosystems-a review.

    Science.gov (United States)

    Meena, Ramakrishnan Anu Alias; Sathishkumar, Palanivel; Ameen, Fuad; Yusoff, Abdull Rahim Mohd; Gu, Feng Long

    2018-02-01

    With growing population and urbanization, there is an increasing exploitation of natural resources, and this often results to environmental pollution. In this review, the levels of heavy metal in lentic compartments (water, sediment, fishes, and aquatic plants) over the past two decades (1997-2017) have been summarized to evaluate the current pollution status of this ecosystem. In all the compartments, the heavy metals dominated are zinc followed by iron. The major reason could be area mineralogy and lithogenic sources. Enormous quantity of metals like iron in estuarine sediment is a very natural incident due to the permanently reducing condition of organic substances. Contamination of cadmium, lead, and chromium was closely associated with anthropogenic origin. In addition, surrounding land use and atmospheric deposition could have been responsible for substantial pollution. The accumulation of heavy metals in fishes and aquatic plants is the result of time-dependent deposition in lentic ecosystems. Moreover, various potential risk assessment methods for heavy metals were discussed. This review concludes that natural phenomena dominate the accumulation of essential heavy metals in lentic ecosystems compared to anthropogenic sources. Amongst other recent reviews on heavy metals from other parts of the world, the present review is executed in such a way that it explains the presence of heavy metals not only in water environment, but also in the whole of the lentic system comprising sediment, fishes, and aquatic plants.

  12. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  13. Heavy metal sensitivity and bioconcentration in oribatid mites (Acari, Oribatida)

    Energy Technology Data Exchange (ETDEWEB)

    Skubala, Piotr, E-mail: piotr.skubala@us.edu.pl [Department of Ecology, University of Silesia, Bankowa 9, 40-007 Katowice (Poland); Zaleski, Tomasz [Department of Soil Science and Soil Protection, Agricultural University in Krakow, Mickiewicza 21, 31-120 Cracow (Poland)

    2012-01-01

    In this study we aimed to identify different reactions of oribatid species to heavy metal pollution and to measure concentrations of cadmium, zinc and copper in oribatid species sampled along a gradient. Oribatid mites were sampled seasonally during two years in five meadows located at different distances from the zinc smelter in the Olkusz District, southern Poland. Oribatids were shown to withstand critical metal concentration and established comparatively abundant and diverse communities. The highest abundance and species richness of oribatids were recorded in soils with moderate concentrations of heavy metals. Four different responses of oribatid species to heavy metal pollution were recognized. Heavy metals (Zn, Pb, Cd, Ni) and various physical (bulk density, field capacity, total porosity) and chemical (K{sub av}, P{sub av}, N, C, pH) factors were recognized as the structuring forces that influence the distribution of oribatid species. Analysis by atomic absorption spectrophotometry revealed large differences in metal body burdens among species. None of the species can be categorized as accumulators or non-accumulators of the heavy metals - the pattern depends on the metal. The process of bioconcentration of the toxic metal (regulated) and essential elements (accumulated) was generally different in the five oribatid species studied. - Highlights: Black-Right-Pointing-Pointer Responses of oribatid mites to metal contamination along a gradient in meadow soils were studied. Black-Right-Pointing-Pointer Small concentrations of heavy metals positively influenced the abundance of oribatid mites. Black-Right-Pointing-Pointer Four different responses of oribatid species to heavy metal pollution were recognised. Black-Right-Pointing-Pointer Bioaccumulation of the toxic metal and essential elements proceeded differently in oribatid species. Black-Right-Pointing-Pointer Five studied oribatid species were deconcentrators of cadmium.

  14. A preliminary study on the effects of sewage sludge disposal on soil polluted by heavy metals

    International Nuclear Information System (INIS)

    Calace, N.; Maggi, C.; Pellegrini, F.; Petronio, B. M.; Pietroletti, M.

    1998-01-01

    A preliminary study on the effects of sewage sludge disposal on soil polluted by heavy metal has been carried out in order to evaluate the possibility of reducing heavy metal mobility. Sewage sludge disposal on soil polluted by zinc and lead can modify their speciation, immobilizing a portion of metal present in mobile forms. In this way environmental hazards due to heavy metal presence can be reduced, because these derive essentially from the amount of metal present in mobile chemical forms. The results obtained show that sludge addition increases the fraction of metal sorbed from the soil; the characterization of the sludge before and after the treatment with the soil point out that this behaviour can be ascribed both to organic substances present in the sludge with the creation of new adsorbing sites, and to an increase of the ph value of the soil, due to the organic and inorganic compounds in the sludge [it

  15. Microalgae - A promising tool for heavy metal remediation.

    Science.gov (United States)

    Suresh Kumar, K; Dahms, Hans-Uwe; Won, Eun-Ji; Lee, Jae-Seong; Shin, Kyung-Hoon

    2015-03-01

    Biotechnology of microalgae has gained popularity due to the growing need for novel environmental technologies and the development of innovative mass-production. Inexpensive growth requirements (solar light and CO2), and, the advantage of being utilized simultaneously for multiple technologies (e.g. carbon mitigation, biofuel production, and bioremediation) make microalgae suitable candidates for several ecofriendly technologies. Microalgae have developed an extensive spectrum of mechanisms (extracellular and intracellular) to cope with heavy metal toxicity. Their wide-spread occurrence along with their ability to grow and concentrate heavy metals, ascertains their suitability in practical applications of waste-water bioremediation. Heavy metal uptake by microalgae is affirmed to be superior to the prevalent physicochemical processes employed in the removal of toxic heavy metals. In order to evaluate their potential and to fill in the loopholes, it is essential to carry out a critical assessment of the existing microalgal technologies, and realize the need for development of commercially viable technologies involving strategic multidisciplinary approaches. This review summarizes several areas of heavy metal remediation from a microalgal perspective and provides an overview of various practical avenues of this technology. It particularly details heavy metals and microalgae which have been extensively studied, and provides a schematic representation of the mechanisms of heavy metal remediation in microalgae. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. A Drinking Water Sensor for Lead and Other Heavy Metals.

    Science.gov (United States)

    Lin, Wen-Chi; Li, Zhongrui; Burns, Mark A

    2017-09-05

    Leakage of lead and other heavy metals into drinking water is a significant health risk and one that is not easily detected. We have developed simple sensors containing only platinum electrodes for the detection of heavy metal contamination in drinking water. The two-electrode sensor can identify the existence of a variety of heavy metals in drinking water, and the four-electrode sensor can distinguish lead from other heavy metals in solution. No false-positive response is generated when the sensors are placed in simulated and actual tap water contaminated by heavy metals. Lead detection on the four-electrode sensor is not affected by the presence of common ions in tap water. Experimental results suggest the sensors can be embedded in water service lines for long-time use until lead or other heavy metals are detected. With its low cost (∼$0.10/sensor) and the possibility of long-term operation, the sensors are ideal for heavy metal detection of drinking water.

  17. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms.

    Science.gov (United States)

    Bansod, BabanKumar; Kumar, Tejinder; Thakur, Ritula; Rana, Shakshi; Singh, Inderbir

    2017-08-15

    Heavy metal ions are non-biodegradable and contaminate most of the natural resources occurring in the environment including water. Some of the heavy metals including Lead (Pb), Mercury (Hg), Arsenic (As), Chromium (Cr) and Cadmium (Cd) are considered to be highly toxic and hazardous to human health even at trace levels. This leads to the requirement of fast, accurate and reliable techniques for the detection of heavy metal ions. This review presents various electrochemical detection techniques for heavy metal ions those are user friendly, low cost, provides on-site and real time monitoring as compared to other spectroscopic and optical techniques. The categorization of different electrochemical techniques is done on the basis of different types of detection signals generated due to presence of heavy metal ions in the solution matrix like current, potential, conductivity, electrochemical impedance, and electrochemiluminescence. Also, the recent trends in electrochemical detection of heavy metal ions with various types of sensing platforms including metals, metal films, metal oxides, nanomaterials, carbon nano tubes, polymers, microspheres and biomaterials have been evoked. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biosorption of heavy metals and uranium from dilute solutions

    International Nuclear Information System (INIS)

    Schneider, I.A.H.; Misra, M.; Smith, R.W.

    1995-01-01

    Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. It is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system

  19. Improving crop tolerance to heavy metal stress by polyamine application.

    Science.gov (United States)

    Soudek, Petr; Ursu, Marina; Petrová, Šárka; Vaněk, Tomáš

    2016-12-15

    Many areas have been heavily contaminated by heavy metals from industry and are not suitable for food production. The consumption of contaminated foods represents a health risk in humans, although some heavy metals are essential at low concentrations. Increasing the concentrations of essential elements in foods is one goal to improve nutrition. The aim of this study was to increase the accumulation of heavy metals in plant foods by the external application of putrescine. The levels of cadmium, zinc and iron were measured in different vegetables grown in hydroponic medium supplemented with heavy metals and compared with those grown in a reference medium. The estimated daily intake, based on the average daily consumption for various vegetable types, and the influence of polyamines on metal uptake were calculated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Heavy metals' data in soils for agricultural activities

    Directory of Open Access Journals (Sweden)

    T.A. Adagunodo

    2018-06-01

    Full Text Available In this article, the heavy metals in soils for agricultural activities were analyzed statistically. Ten (10 soil samples were randomly taken across the agricultural zones in Odo-Oba, southwestern Nigeria. Ten (10 metals; namely: copper (Cu, lead (Pb, chromium (Cr, arsenic (As, zinc (Zn, cadmium (Cd, nickel (Ni, antimony (Sb, cobalt (Co and vanadium (V were determined and compared with the guideline values. When the values were compared with the international standard, none of the heavy metals in the study area exceeded the threshold limit. However, the maximum range of the samples showed that Cr and V exceeded the permissible limit which could be associated with ecological risk. The data can reveal the distributions of heavy metals in the agricultural topsoil of Odo-Oba, and can be used to estimate the risks associated with the consumption of crops grown on such soils. Keywords: Agricultural soils, Heavy metals, Contamination, Environment, Soil screening, Geostatistics

  1. Heavy metals, PAHs and toxicity in stormwater wet detention ponds

    DEFF Research Database (Denmark)

    Wium-Andersen, Tove; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild

    2011-01-01

    Concentrations of 6 different heavy metals and total Polycyclic Aromatic Hydrocarbons (PAH) were determined in stormwater runoff and in the pond water of two Danish wet detention ponds. The pond water samples were analyzed for toxic effects, using the algae Selenastrum capricornutum as a test...... organism. Stormwater and pond water from a catchment with light industry showed high levels of heavy metals, especially zinc and copper. The pond water showed high toxic effects and copper were found to be the main toxicant. Additionally, a large part of the copper was suspected to be complex bound......, reducing the potential toxicity of the metal. Another catchment (residential) produced stormwater and pond water with moderate concentration of heavy metals. The pond water occasionally showed toxic effects but no correlation between heavy metals and toxicity was identified. PAHs concentrations were...

  2. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals.

    Science.gov (United States)

    Kavamura, Vanessa Nessner; Esposito, Elisa

    2010-01-01

    Soils have been submitted to several contaminants that vary in concentration and composition. Heavy metals can be widely spread and accumulated in those environments due to some inappropriate actions. In this present review some remediation techniques to remediate soils are presented, focusing on the use of plants that are capable of surviving in soils with heavy metals along with the function of some microorganisms in the restoration process.

  3. Solidification and Immobilization of Heavy metals in Soil using with nano-metallic Ca/CaO Dispersion Mixture

    Directory of Open Access Journals (Sweden)

    Mallampati S. R.

    2013-04-01

    Full Text Available In the present work, the use of nano-metallic calcium (Ca and calcium oxide (CaO dispersion mixture for the immobilization of heavy metals (As, Cd, Cr and Pb in soil was investigated. With simple grinding, 85-90% of heavy metals immobilization could be achieved, while it could be enhanced to 98-100% by grinding with the addition of nano-metallic Ca/CaO dispersion mixture. By SEM-EDS elemental maps as well as semi-quantitative analysis observed that the amount of As, Cd, Cr and Pb measurable on soil particle surface decreases after nano-metallic Ca/CaO treatment. The leachable heavy metals concentrations were reduced, to the concentration lower than the Japan soil elution standard regulatory threshold, i. e., < 0.01 mg/l for As, Cd and Pb and 0.05mg/l for Cr. Whereas, the effect of soil moisture and pH on heavy metals immobilization was not much influenced. The results suggest that nano-metallic Ca/CaO mixture is suitable to be used for the gentle immobilization of heavy metals contaminated soil at normal moisture conditions.

  4. Heavy metal ion uptake properties of polystyrene-supported ...

    Indian Academy of Sciences (India)

    Unknown

    concentration on the uptake of metal ions have been studied. The uptake ... employed for the removal of heavy metal pollutants from industrial waste water. ... nitrate, mercuric chloride, cadmium nitrate and potassium dichromate salts. ... polymer resin was determined by reacting 50, 100, 150, 200, 250 and 300 ppm of metal.

  5. Prevalence of exposure of heavy metals and their impact on health consequences.

    Science.gov (United States)

    Rehman, Kanwal; Fatima, Fiza; Waheed, Iqra; Akash, Muhammad Sajid Hamid

    2018-01-01

    Even in the current era of growing technology, the concentration of heavy metals present in drinking water is still not within the recommended limits as set by the regulatory authorities in different countries of the world. Drinking water contaminated with heavy metals namely; arsenic, cadmium, nickel, mercury, chromium, zinc, and lead is becoming a major health concern for public and health care professionals. Occupational exposure to heavy metals is known to occur by the utilization of these metals in various industrial processes and/or contents including color pigments and alloys. However, the predominant source resulting in measurable human exposure to heavy metals is the consumption of contaminated drinking water and the resulting health issues may include cardiovascular disorders, neuronal damage, renal injuries, and risk of cancer and diabetes. The general mechanism involved in heavy metal-induced toxicity is recognized to be the production of reactive oxygen species resulting oxidative damage and health related adverse effects. Thus utilization of heavy metal-contaminated water is resulting in high morbidity and mortality rates all over the world. Thereby, feeling the need to raise the concerns about contribution of different heavy metals in various health related issues, this article has discussed the global contamination of drinking water with heavy metals to assess the health hazards associated with consumption of heavy metal-contaminated water. A relationship between exposure limits and ultimate responses produced as well as the major organs affected have been reviewed. Acute and chronic poisoning symptoms and mechanisms responsible for such toxicities have also been discussed. © 2017 Wiley Periodicals, Inc.

  6. Antioxidant modulation in response to heavy metal induced oxidative stress in Cladophora glomerata.

    Science.gov (United States)

    Murugan, K; Harish, S R

    2007-11-01

    The present investigation was carried out to study the induction of oxidative stress subjected to heavy metal environment. Lipoperoxides showed positive correlation at heavy metal accumulation sites indicating the tissue damage resulting from the reactive oxygen species and resulted in unbalance to cellular redox status. The high activities of ascorbate peroxidase and superoxide dismutase probably counter balance this oxidative stress. Glutathione and soluble phenols decreased, whereas dehydroascorbate content increased in the algae from polluted sites. The results suggested that alga responded to heavy metals effectively by antioxidant compounds and scavenging enzymes.

  7. Heavy liquid metal cooled FBR. Results 2001

    International Nuclear Information System (INIS)

    Enuma, Yasuhiro; Soman, Yoshindo; Konomura, Mamoru; Mizuno, Tomoyasu

    2003-08-01

    In the feasibility studies of commercialization of an FBR fuel cycle system, the targets are economical competitiveness to future LWRs, efficient utilization of resources, reduction of environmental burden and enhancement of nuclear non-proliferation, besides ensuring safety. Both medium size pool-type lead-bismuth cooled reactor with primary pumps system and without primary pumps system are studied to pursue their improvement in heavy metal coolant considering design requirements form plant structures. The design of plant systems are reformed, and the conceptual design is made and the commodities are analyzed. (1) Conceptual design of lead-bismuth cooled reactor with pumping system: Electrical output 750 MWe and 4-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (2) Structural analysis of main components. (3) Conceptual design of natural circulation type lead-bismuth cooled reactor: Electrical output 550 MWe and 6-module system. The heat-mass balance is optimized and drawings are made about plant layout, cooling system, reactor structure and cooling component structures. (4) Study of R and D program. (author)

  8. "Periodic-table-style" paper device for monitoring heavy metals in water.

    Science.gov (United States)

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  9. Chelant extraction of heavy metals from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W. [Energy Systems Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    1999-04-23

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple

  10. Chelant extraction of heavy metals from contaminated soils

    International Nuclear Information System (INIS)

    Peters, R.W.

    1999-01-01

    The current state of the art regarding the use of chelating agents to extract heavy metal contaminants has been addressed. Results are presented for treatability studies conducted as worst-case and representative soils from Aberdeen Proving Ground's J-Field for extraction of copper (Cu), lead (Pb), and zinc (Zn). The particle size distribution characteristics of the soils determined from hydrometer tests are approximately 60% sand, 30% silt, and 10% clay. Sequential extractions were performed on the 'as-received' soils (worst case and representative) to determine the speciation of the metal forms. The technique speciates the heavy metal distribution into an easily extractable (exchangeable) form, carbonates, reducible oxides, organically-bound, and residual forms. The results indicated that most of the metals are in forms that are amenable to soil washing (i.e. exchangeable+carbonate+reducible oxides). The metals Cu, Pb, Zn, and Cr have greater than 70% of their distribution in forms amenable to soil washing techniques, while Cd, Mn, and Fe are somewhat less amenable to soil washing using chelant extraction. However, the concentrations of Cd and Mn are low in the contaminated soil. From the batch chelant extraction studies, ethylenediaminetetraacetic acid (EDTA), citric acid, and nitrilotriacetic acid (NTA) were all effective in removing copper, lead, and zinc from the J-Field soils. Due to NTA being a Class II carcinogen, it is not recommended for use in remediating contaminated soils. EDTA and citric acid appear to offer the greatest potential as chelating agents to use in soil washing the Aberdeen Proving Ground soils. The other chelating agents studied (gluconate, oxalate, Citranox, ammonium acetate, and phosphoric acid, along with pH-adjusted water) were generally ineffective in mobilizing the heavy metals from the soils. The chelant solution removes the heavy metals (Cd, Cu, Pb, Zn, Fe, Cr, As, and Hg) simultaneously. Using a multiple-stage batch extraction

  11. Heavy Metal Content in Terraced Rice Fields at Sruwen Tengaran Semarang - Indonesia

    Science.gov (United States)

    Hindarwati, Yulis; Soeprobowati, Tri Retnaningsih; Sudarno

    2018-02-01

    The presence of heavy metal on agricultural soils can be caused not only natural factors but also due to human intervention. Differences in management and lack of understanding of farmers in the production input of fertilizers and pesticides ensued in land ravaged. Periodic testing of paddy fields is necessary to minimize the contaminants from being absorbed by plants that will have an impact on health decline. The purpose of the assessment was to identify the heavy metal content in the terraced rice field in Sruwen Village, Tengaran District, Semarang Regency. Survey was conducted in February 2017. Sampling on terraced rice fields of different heights consisted of upper, middle, and upper down. Taken as many as eight single points and composed at a depth of 0-20 cm and 20-40 cm. The identification results showed that heavy metal content of Pb, Cd, and Cu were present at all altitudes. Heavy Metals Pb and Cd at a depth of 0-20 cm were higher from 20-40 cm in the upper and lower rice fields but lower in the middle rice field. Cu heavy metal at a depth of 0-20 cm was higher than 20-40 cm in all altitude land. The heavy metal content of Pb, Cd, and Cu was still below the heavy metal standard set by the European Union and India.

  12. Biotechnological recovery of heavy metals from secondary sources-An overview

    International Nuclear Information System (INIS)

    Hoque, Md E.; Philip, Obbard J.

    2011-01-01

    The demand for heavy metals is ever increasing with the advance of the industrialized world, whereas worldwide reserves of high-grade ores are diminishing. However, there exist large stockpiles of low and lean grade ores that are yet to be exploited. In addition, heavy metals that are present in a spectrum of waste streams including mine drainage, industrial effluents, river sediments, electronic scraps and ashes are also available for recovery and utilization. Heavy metal recovery from low and lean grade ores using conventional techniques such as pyrometallurgy, etc. chemical metallurgy encompass several inherent constraints like, high energy and capital inputs, and high risk of secondary environmental pollution. As environmental regulations become ever more stringent, particularly regarding the disposal of toxic wastes, the costs for ensuring environmental protection will continue to rise. Therefore, there is a need to utilize more efficient technologies to recover heavy metals from secondary sources in order to minimize capital outlay, environmental impact and to respond to increased demand. Biohydrometallurgy, which exploits microbiological processes to recover heavy metal ions, is regarded as one of the most promising and revolutionary biotechnologies. The products of such processes are deposited in aqueous solution thereby rendering them to be more amenable to containment, treatment and recovery. On top of this, biohydrometallurgy can be conducted under mild conditions, usually without the use of any toxic chemicals. Consequently, the application of biohydrometallurgy in recovery of heavy metals from lean grade ores, and wastes, has made it an eco-friendly biotechnology for enhanced heavy metal production.

  13. Biotechnological recovery of heavy metals from secondary sources-An overview

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, Md E., E-mail: enamul.hoque@nottingham.edu.my [Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan (Malaysia); Philip, Obbard J., E-mail: esejpo@nus.edu.sg [Division of Environmental Science and Engineering, National University of Singapore, 119260 (Singapore)

    2011-03-12

    The demand for heavy metals is ever increasing with the advance of the industrialized world, whereas worldwide reserves of high-grade ores are diminishing. However, there exist large stockpiles of low and lean grade ores that are yet to be exploited. In addition, heavy metals that are present in a spectrum of waste streams including mine drainage, industrial effluents, river sediments, electronic scraps and ashes are also available for recovery and utilization. Heavy metal recovery from low and lean grade ores using conventional techniques such as pyrometallurgy, etc. chemical metallurgy encompass several inherent constraints like, high energy and capital inputs, and high risk of secondary environmental pollution. As environmental regulations become ever more stringent, particularly regarding the disposal of toxic wastes, the costs for ensuring environmental protection will continue to rise. Therefore, there is a need to utilize more efficient technologies to recover heavy metals from secondary sources in order to minimize capital outlay, environmental impact and to respond to increased demand. Biohydrometallurgy, which exploits microbiological processes to recover heavy metal ions, is regarded as one of the most promising and revolutionary biotechnologies. The products of such processes are deposited in aqueous solution thereby rendering them to be more amenable to containment, treatment and recovery. On top of this, biohydrometallurgy can be conducted under mild conditions, usually without the use of any toxic chemicals. Consequently, the application of biohydrometallurgy in recovery of heavy metals from lean grade ores, and wastes, has made it an eco-friendly biotechnology for enhanced heavy metal production.

  14. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    International Nuclear Information System (INIS)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-01-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb"2"+), copper (Cu"2"+), nickel (Ni"2"+), and zinc (Zn"2"+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  15. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    Science.gov (United States)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-04-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb2+), copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  16. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.

    Science.gov (United States)

    Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V

    2005-01-01

    Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned

  17. Handheld colorimeter for determination of heavy metal concentrations

    Science.gov (United States)

    López Ruiz, N.; Ariza, M.; Martínez Olmos, A.; Vukovic, J.; Palma, A. J.; Capitan-Vallvey, L. F.

    2011-08-01

    A portable instrument that measures heavy metal concentration from a colorimetric sensor array is presented. The use of eight sensing membranes, placed on a plastic support, allows to obtain the hue component of the HSV colour space of each one in order to determinate the concentration of metals present in a solution. The developed microcontroller-based system captures, in an ambient light environment, an image of the sensor array using an integrated micro-camera and shows the picture in a touch micro-LCD screen which acts as user interface. After image-processing of the regions of interest selected by the user, colour and concentration information are displayed on the screen.

  18. Handheld colorimeter for determination of heavy metal concentrations

    International Nuclear Information System (INIS)

    Lopez Ruiz, N; Martinez Olmos, A; Palma, A J; Ariza, M; Capitan-Vallvey, L F; Vukovic, J

    2011-01-01

    A portable instrument that measures heavy metal concentration from a colorimetric sensor array is presented. The use of eight sensing membranes, placed on a plastic support, allows to obtain the hue component of the HSV colour space of each one in order to determinate the concentration of metals present in a solution. The developed microcontroller-based system captures, in an ambient light environment, an image of the sensor array using an integrated micro-camera and shows the picture in a touch micro-LCD screen which acts as user interface. After image-processing of the regions of interest selected by the user, colour and concentration information are displayed on the screen.

  19. Handheld colorimeter for determination of heavy metal concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Ruiz, N; Martinez Olmos, A; Palma, A J [ECSens ETSIIT, Departamento de Electronica, Universidad de Granada. C/ Periodista Daniel Saucedo s/n 18071 Granada (Spain); Ariza, M; Capitan-Vallvey, L F [Department of Analytical Chemistry. Faculty of Sciences. University of Granada, E-18071 Granada (Spain); Vukovic, J, E-mail: nurilr@ugr.es [Department of Analytics and Control of Medicines, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacica 1,HR-10000 Zagreb (Croatia)

    2011-08-17

    A portable instrument that measures heavy metal concentration from a colorimetric sensor array is presented. The use of eight sensing membranes, placed on a plastic support, allows to obtain the hue component of the HSV colour space of each one in order to determinate the concentration of metals present in a solution. The developed microcontroller-based system captures, in an ambient light environment, an image of the sensor array using an integrated micro-camera and shows the picture in a touch micro-LCD screen which acts as user interface. After image-processing of the regions of interest selected by the user, colour and concentration information are displayed on the screen.

  20. Heavy metals in superficial sediment of Algiers Bay

    International Nuclear Information System (INIS)

    Benamar, M.A.; Toumert, C.L.; Chaouch, L.; Bacha, L.; Tobbeche, S.

    1996-01-01

    Sediment samples were collected in 33 stations from the bay of Algiers for the potential sources of pollution. the analyses were made x-ray fluorescence (XRF) and atomic absorption spectrometry (AAS) the results give information about level of concentrations morphology of the bay (funnel form of bay). only Co,Mn,Fe, and Cd present a particular repartition (unrelated to the sedimentary facies). the level pollution bu heavy metals of the bottom sediments in algiers bay have been compared with those of Surkouk considered as a region with low anthropogenic activities

  1. Heavy metals contamination: implications for health and food safety

    Directory of Open Access Journals (Sweden)

    Yulieth C. Reyes

    2016-07-01

    Full Text Available Contamination by heavy metals in water resources, soil and air poses one of the most severe problems that compromise food safety and public health at global and local level. In this review, the specific problem of contamination by mercury (Hg, arsenic (As, cadmium (Cd and lead (Pb in the environment and food is presented. A description of the sources of contamination, exposure in living beings, accumulation and retention in food and consumer products is carried out. Study cases and results in some countries included Colombia are discussed.

  2. Removal of heavy metals and radionuclides by seeded magnetic filtration

    International Nuclear Information System (INIS)

    Bibler, J.P.; Norrell, G.; Hemmings, R.L.; Bradbury, D.; Dunn, M.J.; Kalinauskas, G.L.

    1991-01-01

    Removal of traces of heavy metal or radionuclide contamination from solution at high flow rate presents a considerable technical challenge. Low flow methods of treatment such as particle gravity settling require expensive large volume equipment, whereas traditional methods of filtration can cause significant energy costs. Magnetic filtration can be used to provide a low cost method of solid-liquid separation at high flow rate, provided contaminants can be selectively bound to a magnetic solid particle. This paper describes the use of such selective magnetic particles made up of inorganic particles coupled with organic polymers

  3. HEAVY METALS AS UNWANTED COMPONENTS OF BACKWASH WATER DERIVED FROM GROUNDWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-06-01

    Full Text Available The paper presents some aspects of the problem of heavy metals presence in wastewater and sewage sludge from water treatment. In the first part, issues on quality of wastewaters and sludge produced during water treatment along with actions aimed at the neutralization of such wastes, were discussed. Subsequent parts of the work present the example of 12 groundwater treatment stations in a particular municipality, and the problem of backwash water quality, in particular, heavy metals contents. The analysis covered a period of three years: 2013, 2014, and 2015. The authors, using the discussed examples, have shown that besides hydrated iron and manganese oxides, also other toxic contaminants can be present in backwash water from groundwater treatment. In particular, the qualitative analysis of the backwash water revealed the presence of heavy metals, mainly zinc. The test results for backwash water were compared with those of filtrate qualitative assessment, wherein the heavy metals were not found. This fact indicated the metal retention in the filter bed and their unsustainable immobilization resulting in penetration of heavy metals from deposit to the backwash water along with other impurities, mainly iron and manganese oxides. The main conclusion from the study is to demonstrate the need for constant monitoring of the backwash water quality, including the presence of toxic heavy metals. This is also important because of the requirement to minimize the negative environmental impact of wastes generated during the water treatment process.

  4. Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances

    Directory of Open Access Journals (Sweden)

    Vaibhav Srivastava

    2017-10-01

    Full Text Available With modern day urbanization and industrialization, heavy metal (HM contamination has become a prime concern for today's society. The impacts of metal contamination on agriculture range from the agricultural soil to the produce in our food basket. The heavy metals (HMs and metalloids, including Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Hg, Pb, among others, can result in significant toxic impacts. The intensification of agricultural land use and changes in farming practices along with technological advancement have led to heavy metal pollution in soil. Metals/metalloids concentrations in the soil are increasing at alarming rate and affect plant growth, food safety, and soil microflora. The biological and geological reorganization of heavy metal depends chiefly on green plants and their metabolism. Metal toxicity has direct effects to flora that forms an integral component of ecosystems. Altered biochemical, physiological, and metabolic processes are found in plants growing in regions of high metal pollution. However, metals like Cu, Mn, Co, Zn, and Cr are required in trace amounts by plants for their metabolic activities. The present review aims to catalog major published works related to heavy metal contamination in modern day agriculture, and draw a possible road map toward future research in this domain.

  5. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan; Qi, Genggeng; Wang, Peng; Giannelis, Emmanuel P.

    2012-01-01

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Advantages of heavy metal collars in directional drilling and deviation control

    International Nuclear Information System (INIS)

    Bradley, W.B.; Murphey, C.E.; McLamore, R.T.; Dickson, L.L.

    1976-01-01

    A heavy, stiff-bottom drill collar can substantially improve deviation performance, theoretically increasing penetration rates by 50 to 100 percent in deviation-prone areas. This paper presents the underlying theory, practical charts on performance characteristics, and Shell Development Co.'s experience in fabricating and field testing two depleted-uranium alloy, heavy metal collars

  7. A highly efficient and selective polysilsesquioxane sorbent for heavy metal removal

    KAUST Repository

    Duan, Xiaonan

    2012-02-29

    Suited for heavy stuff: An efficient mesoporous sorbent based on a pure ethylendiamine-bridged polysilsesquioxane is presented. This material, with both a high amine loading and a high surface area, is applied for heavy metal ion removal. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Analysis and Pollution Assessment of Heavy Metal in Soil, Perlis

    International Nuclear Information System (INIS)

    Siti Norbaya Mat Ripin; Siti Norbaya Mat Ripin; Sharizal Hasan; Mohd Lias Kamal; NorShahrizan Mohd Hashim

    2014-01-01

    Concentration of 5 heavy metals (Cu, Cr, Ni, Cd, Pb) were studied in the soils around Perlis, to assess heavy metals contamination distribution due to industrialization, urbanization and agricultural activities. Soil samples were collected at depth of 0-15 cm in eighteen station around Perlis. The soil samples (2 mm) were obtained duplicates and subjected to hot block digestion and the concentration of total metal was determined via ICP-MS. Overall concentrations of Cu, Cr, Ni, Cd and Pb in the soil samples ranged from 0.38-240.59, 0.642-3.921, 0.689-2.398, 0-0.63 and 0.39-27.47 mg/ kg respectively. The concentration of heavy metals in the soil display the following decreasing trend: Cu> Pb> Cr> Ni> Cd. From this result, found that level of heavy metal in soil near centralized Chuping industrial areas give maximum value compared with other location in Perlis. The Pollution index revealed that only 11 % of Cu and 6 % of Cd were classes as heavily contaminated. Meanwhile, Cu and Pb showed 6 % from all samples result a moderately contaminated and the others element give low contamination. Results of combined heavy metal concentration and heavy metal assessment indicate that industrial activities and traffic emission represent most important sources for Cu, Cd and Pb whereas Cr, Ni mainly from natural sources. Increasing anthropogenic influences on the environment, especially pollution loadings, have caused negative changes in natural ecosystems and decreased biodiversity. (author)

  9. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  10. Air separation of heavy metal contaminants from soil

    International Nuclear Information System (INIS)

    Nelson, M.E.; Harper, M.J.; Buckon, A.D.

    1995-01-01

    Several heavy metal separation techniques are currently being developed for soil remediation at various Department of Defense and Department of Energy (DOE) Facilities. The majority of these techniques involve a wet process using water, pH modifiers or other compounds. The US Naval Academy (USNA) has developed a dry process for heavy metal separation. The process uses air classification technology to concentrate the metal contaminant into a fraction of the soil. The advantages of this dry process are that it creates no contaminated byproduct and uses commercially available technology. The USNA process is based on using a Gayco-Reliance air classifier. Tests have been conducted with the system at the Naval Academy and the University of Nevada-Reno (UNR). The USNA tests used soil from the Nevada Test Site mixed with bismuth at a concentration of 500--1,000 ppm. The UNR tests used soil from four DOE sites mixed with uranium oxides and plutonium at an activity level of 100--700 pCi per gram. Concentration of activities and volume reduction percentages are presented for the various soils and contaminants tested

  11. Pollution of south of Tehran ground waters with heavy metals

    International Nuclear Information System (INIS)

    Salmasi, R.; Tavassoli, A.

    2006-01-01

    The reuse of nutrients and organic matter in wastewater sludge via on agricultural lands application is a desirable goal. However, trace or heavy metals present in sludge pose the risk of human or phyto toxicity from land application. The aim of this research is possibility of ground water pollution of south of Tehran because of ten years irrigation with Ni, Cd and Pb borne waste water. For this purpose, 6 soil samples from southern parts of Tehran city and 2 ones from Zanjan city without lime and organic matter were selected. The soils differed in their texture from sandy to clayey. Each soil sample in duplicate and uniformly packed into PVC columns. Soil samples were irrigated with Cd, Pb and Ni-added wastewater. After irrigating, the columns were cut and the soils separated from sectioned pieces and their heavy metal concentrations (Pb, Cd and Ni) were measured by atomic absorption spectrophotometer y use of HNO 3 , 4N solution. Because of high sorption capacity of these elements by soils, these metals were accumulated in surface layer of the soils. Movement in the soils without lime and organic matter were as low as other samples. Ni has had the most accumulation or the least vertical movement, and Pb the opposite ones

  12. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China.

    Science.gov (United States)

    Briki, Meryem; Zhu, Yi; Gao, Yang; Shao, Mengmeng; Ding, Huaijian; Ji, Hongbing

    2017-08-19

    Mining and smelting areas in Hezhang have generated a large amount of heavy metals into the environment. For that cause, an evaluative study on human exposure to heavy metals including Co, Ni, Cu, Zn, Cr, As, Cd, Pb, Sb, Bi, Be, and Hg in hair and urine was conducted for their concentrations and correlations. Daily exposure and non-carcinogenic and carcinogenic risk were estimated. Sixty-eight scalp hair and 66 urine samples were taken from participants of different ages (6-17, 18-40, 41-60, and ≥ 65 years) living in the vicinity of an agricultural soil near mine and smelting areas. The results compared to the earlier studies showed an elevated concentration of Pb, Be, Bi, Co, Cr, Ni, Sb, and Zn in hair and urine. These heavy metals were more elevated in mining than in smelting. Considering gender differences, females were likely to be more affected than male. By investigating age differences in this area, high heavy metal concentrations in male's hair and urine existed in age of 18-40 and ≥ 66, respectively. However, females did not present homogeneous age distribution. Hair and urine showed a different distribution of heavy metals in different age and gender. In some cases, significant correlation was found between heavy metals in hair and urine (P > 0.05 and P > 0.01) in mining area. The estimated average daily intake of heavy metals in vegetables showed a great contribution compared to the soil and water. Non-carcinogenic and carcinogenic risk values of total pathways in mining and smelting areas were higher than 1 and exceeded the acceptable levels. Thus, the obtained data might be useful for further studies. They can serve as a basis of comparison and assessing the effect of simultaneous exposure from heavy metals in mining and smelting areas, and potential health risks from exposure to heavy metals in vegetables need more consideration.

  13. Causal inference between bioavailability of heavy metals and environmental factors in a large-scale region.

    Science.gov (United States)

    Liu, Yuqiong; Du, Qingyun; Wang, Qi; Yu, Huanyun; Liu, Jianfeng; Tian, Yu; Chang, Chunying; Lei, Jing

    2017-07-01

    The causation between bioavailability of heavy metals and environmental factors are generally obtained from field experiments at local scales at present, and lack sufficient evidence from large scales. However, inferring causation between bioavailability of heavy metals and environmental factors across large-scale regions is challenging. Because the conventional correlation-based approaches used for causation assessments across large-scale regions, at the expense of actual causation, can result in spurious insights. In this study, a general approach framework, Intervention calculus when the directed acyclic graph (DAG) is absent (IDA) combined with the backdoor criterion (BC), was introduced to identify causation between the bioavailability of heavy metals and the potential environmental factors across large-scale regions. We take the Pearl River Delta (PRD) in China as a case study. The causal structures and effects were identified based on the concentrations of heavy metals (Zn, As, Cu, Hg, Pb, Cr, Ni and Cd) in soil (0-20 cm depth) and vegetable (lettuce) and 40 environmental factors (soil properties, extractable heavy metals and weathering indices) in 94 samples across the PRD. Results show that the bioavailability of heavy metals (Cd, Zn, Cr, Ni and As) was causally influenced by soil properties and soil weathering factors, whereas no causal factor impacted the bioavailability of Cu, Hg and Pb. No latent factor was found between the bioavailability of heavy metals and environmental factors. The causation between the bioavailability of heavy metals and environmental factors at field experiments is consistent with that on a large scale. The IDA combined with the BC provides a powerful tool to identify causation between the bioavailability of heavy metals and environmental factors across large-scale regions. Causal inference in a large system with the dynamic changes has great implications for system-based risk management. Copyright © 2017 Elsevier Ltd. All

  14. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard.

    Science.gov (United States)

    Rahman, M Azizur; Rahman, Mohammad Mahmudur; Reichman, Suzie M; Lim, Richard P; Naidu, Ravi

    2014-02-01

    Dietary exposure to heavy metals is a matter of concern for human health risk through the consumption of rice, vegetables and other major foodstuffs. In the present study, we investigated concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in Australian grown and imported rice and vegetables on sale in Australia. The mean concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Australian grown rice were 7.5 µg kg(-1), 21 µg kg(-1), 144 µg kg(-1), 2.9 mg kg(-1), 24.4 mg kg(-1), 166 µg kg(-1), 375 µg kg(-1), and 17.1 mg kg(-1) dry weight (d. wt.), respectively. Except Cd, heavy metal concentrations in Australian grown rice were higher than Bangladeshi rice on sale in Australia. However, the concentrations of Cd, Cr, Cu, and Ni in Indian rice on sale in Australia were higher than Australian grown rice. The concentrations of Cu and Ni in Vietnamese rice, and that of Cd, Cr, Cu, Ni, and Pb in Thai rice on sale in Australia were also higher than Australian grown rice. Heavy metal concentrations in Pakistani rice on sale in Australia were substantially lower than that in Australian grown rice. In Australian grown rice varieties, the concentrations of heavy metals were considerably higher in brown rice varieties than white rice varieties, indicating Australian brown rice as a potential source of dietary heavy metals for Australian consumers. The mean concentrations of heavy metals in Australian grown and Bangladeshi vegetables on sale in Australia were also determined. Some of the Australian grown and Bangladeshi vegetables contained heavy metals higher than Australian standard maximum limits indicating them as potential sources of dietary heavy metals for Australian consumers. Further investigation is required to estimate health risks of heavy metals from rice and vegetables consumption for Australian consumers. © 2013 Published by Elsevier Inc.

  15. The effects of fire temperatures on water soluble heavy metals.

    Science.gov (United States)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem, because at long term can increase soil acidity. After all base cations have being leached, pH values decrease, and

  16. Toxic effect of heavy metals on aquatic environment | Baby ...

    African Journals Online (AJOL)

    Toxic effect of heavy metals on aquatic environment. ... International Journal of Biological and Chemical Sciences ... The indiscriminate discharge of industrial effluents, raw sewage wastes and other waste pollute most of the environments and ...

  17. Assessment of heavy metals in chicken feeds available in Sokoto ...

    African Journals Online (AJOL)

    ADEYEYE

    2014-12-08

    Dec 8, 2014 ... through eggs and meats. Supplementation of some ... heavy metal contaminations of chicken meat, eggs and other products .... processing and mixing of ingredients to the feed. ... Additives and Contaminants, 22(2): 141-. 149.

  18. Heavy metal pollution of vegetable crops irrigated with wastewater ...

    African Journals Online (AJOL)

    144) and edible parts of both exotic and traditional vegetables (samples = 240) irrigated with wastewater from some parts of Accra were studied. The concentrations of heavy metals in mg/l were quantified in wastewater from Accra and ...

  19. Determination of heavy metals and genotoxicity of water from an ...

    African Journals Online (AJOL)

    Determination of heavy metals and genotoxicity of water from an artesian well ... do Amaral, Vanessa Marques de Oliveira Moraes, Luciana Pereira Silva ... environmental interest because it is the most important zinc producer district of Brazil.

  20. Heavy Metals Levels in Fish Samples from North Central Nigerian ...

    African Journals Online (AJOL)

    MBI

    2014-12-24

    Dec 24, 2014 ... Most aquatic organisms are capable of accumulating heavy metals to concentrations ... This indicates that the fish samples could be used to monitor Mn and Cr pollution levels .... was carried out to remove any organic plastic.

  1. Determination of some heavy metals concentration in the tissues of ...

    African Journals Online (AJOL)

    Jen

    Department of Pure and Industrial Chemistry, Bayero University, Kano, P.M.B. 3011, Kano, Nigeria ... contamination (e.g. lead pipes), high ambient air concentrations near emission ... Thus heavy metals acquired through the food chain as a.

  2. Sorption of Heavy Metal Ions from Mine Wastewater by Activated ...

    African Journals Online (AJOL)

    Michael

    2016-12-02

    Dec 2, 2016 ... assess their heavy metal ions adsorption potential. The results show that the .... De-ionised water obtained from the Mineral. Engineering Laboratory of ... Batch adsorption experiment for each of the derived activated carbons ...

  3. Assessment of Heavy Metal Content of Branded Pakistani Herbal ...

    African Journals Online (AJOL)

    Erah

    analyzed using a flame atomic absorption spectrometer. Results: Most of the products exceeded the permissible limits for lead (100 %), cadmium (68 %), .... absorption spectrometry. M e ta l n a m ..... Determination of Heavy Metals in Medicinal.

  4. 92 Assessment of Heavy Metals Pollution in Dumpsites in Ilorin ...

    African Journals Online (AJOL)

    Choice-Academy

    Speciation and distribution of heavy metals in soil controls the degree to which ... observed that the groundwater is vulnerable to contamination as no treated ... toxic materials such as lead, cadmium, .... designing remediation programme for.

  5. Removal of heavy metals from waste water of tanning leather ...

    African Journals Online (AJOL)

    LG

    2013-07-03

    Jul 3, 2013 ... The results indicate that fungi of contaminated soils have high level of metal biosorption capacities. ... such as mercury, lead, cadmium, selenium, copper, chromium and ... considered as an alternative remediation for heavy.

  6. Effect of depuration on heavy metal concentrations in periwinkle ...

    African Journals Online (AJOL)

    Tympanatonus fuscastus) was evaluated in this study. Periwinkle in depuration tanks were taken at intervals of 24, 48, 72 and 96 hours of depuration and analyzed for these heavy metals: Lead (Pb), Zinc (Zn), Chromium (Cr) and Cadmium (Cd).

  7. Heavy metals accumulation in edible part of vegetables irrigated ...

    African Journals Online (AJOL)

    Hassana Ibrahim Mustapha

    water quality and permissible levels of metals in food and water. It revealed that the heavy .... irrigation with partially treated or untreated sewage. This was reported by .... Reuse of domestic grey water for irrigation of food crops, unpublished ...

  8. Heavy Metal Contents in Some Commonly Consumed Vegetables

    African Journals Online (AJOL)

    dell

    This work reports on the levels of cadmium, lead, copper, manganese and ... source of both heavy metals and essential trace elements due to their ... content, clay mineral and other soil chemical ... addition, the interactions of soil-plant root-.

  9. Heavy metal exposure in patients suffering from electromagnetic hypersensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ghezel-Ahmadi, David, E-mail: david.ahmadi@web.de [Department of Psychiatry, University of Mainz (Germany); Engel, Alice; Weidemann, Joerg [Department of Psychiatry, University of Mainz (Germany); Budnik, Lygia Therese; Baur, Xaver [Institute for Occupational Medicine and Maritime Medicine (ZfAM), University of Hamburg (Germany); Frick, Ulrich [Department of Psychiatry, University of Regensburg (Germany); Department of Healthcare Management, Carinthia University of Applied Sciences (Austria); Hauser, Simone [Department of Psychiatry, University of Regensburg (Germany); Dahmen, Norbert [Department of Psychiatry, University of Mainz (Germany)

    2010-01-15

    Background: Risks from electromagnetic devices are of considerable concern. Electrohypersensitive (EHS) persons attribute a variety of rather unspecific symptoms to the exposure to electromagnetic fields. The pathophysiology of EHS is unknown and therapy remains a challenge. Objectives: Heavy metal load has been discussed as a potential factor in the symptomatology of EHS patients. The main objective of the study was to test the hypothesis of a link between EHS and heavy metal exposure. Methods: We measured lead, mercury and cadmium concentrations in the blood of 132 patients (n = 42 males and n = 90 females) and 101 controls (n = 34 males and n = 67 females). Results: Our results show that heavy metal load is of no concern in most cases of EHS but might play a role in exceptional cases. Conclusions: The data do not support the general advice to heavy metal detoxification in EHS.

  10. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    Directory of Open Access Journals (Sweden)

    G. U. Chibuike

    2014-01-01

    Full Text Available Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for the bioremediation of polluted soils. Using plants for the treatment of polluted soils is a more common approach in the bioremediation of heavy metal polluted soils. Combining both microorganisms and plants is an approach to bioremediation that ensures a more efficient clean-up of heavy metal polluted soils. However, success of this approach largely depends on the species of organisms involved in the process.

  11. Electrochemical activity of heavy metal oxides in the process of ...

    Indian Academy of Sciences (India)

    Unknown

    2002-02-02

    Feb 2, 2002 ... Electrochemical activity of heavy metal oxides in the process of chloride induced .... represents the protective barrier moderating the chloride attack which ... inhibitors and their influence on the physical properties of. Portland ...

  12. Potential Human Health Risk Assessment of Heavy Metals Intake via ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Gyawali et al., 2011). The concentrations of natural and synthetic ... traditional nutrients, heavy metals, pesticides and various other ... fertilizers and pesticides to soils, with a number of ..... selected brands of canned fish in Nigeria: Estimation of ...

  13. Heavy metal content of selected African leafy vegetables planted in ...

    African Journals Online (AJOL)

    Heavy metal content of selected African leafy vegetables planted in urban and peri-urban Nairobi, Kenya. ... African Journal of Environmental Science and Technology ... Government clean-up activities and monitoring of waste disposal is ...

  14. Seasonal variation in heavy metal concentration in mangrove foliage

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Wafar, S.; Bhosle, N.B.

    Seasonal variation in the concentration of some heavy metals in the leaves of seven species of mangrove vegetation from Goa, revealed that maximum concentration of iron and manganese occurs during the monsoon season without any significant toxic...

  15. incidence of heavy metals in kano metropolis drinking water sources

    African Journals Online (AJOL)

    userpc

    corrosion of brass fittings of certain submersible pumps and pipes used in borehole and taps specifically. The contamination of well with heavy metals might be due to seepage of sewage ... Chloride determination (Agumetric method):.

  16. Evaluation of pollution status of heavy metals in the groundwater ...

    African Journals Online (AJOL)

    Evaluation of pollution status of heavy metals in the groundwater system around ... cadmium (Cd), mercury (Hg), manganese (Mn), lead (pb) and arsenic (As) as ... Water samples (from bore holes, hand-dug wells, ponds and streams) were ...

  17. Assessment of Heavy Metals in Waterleaf from Various Sources in ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Standard method was followed for sample treatment, digestion, and analysis of selected heavy metals: lead .... research laboratory, University of Ibadan. Each ... Survey of consumption of waterleaf in Ota: Over 500 ..... In Encyclopedia of.

  18. Microbial and heavy metal contamination of pineapple products ...

    African Journals Online (AJOL)

    SAM

    Quantitative determination of heavy metals: zinc, iron, lead, copper, cadmium and aluminium ...... consumption of dairy products, fish/seafood and meat from Ismailia ... Contamination in Green Leafy Vegetables Grown in Bangalore Urban.

  19. Biomonitoring of heavy metals: Definitions, possibilities and limitations

    International Nuclear Information System (INIS)

    Markert, B.; Oehlmann, J.; Roth, M.

    2000-01-01

    Increasing attention given to heavy metals as components of the pollutant load in ecosystems makes it necessary to find reliable biological indicators. Fundamental investigations into the effect of heavy metals on organisms are therefore required. Different organisms (mosses, snails, etc.) were chosen as indicator organisms to optimize the indication of heavy metal loads at the physiological and biochemical level. All current programmes are designed to observe and measure pollutant inputs on a short or long-term basis. However, the changes in the environment of a phenological, physiological, sociological, genetic and physiological/biochemical nature have been investigated by biologists since the beginning of biological scientific research. So far excellent scientific results have been produced by qualification of the heavy metal status in ecosystems. Until now, the quantification of the results with regard to pollutant inputs in ecosystems (mass balances) and their action in these ecosystems have been investigated inadequately. (author)

  20. Estimation of Heavy Metals in Neem Tree Leaves along Katsina ...

    African Journals Online (AJOL)

    Michael Horsfall

    Key Words: Neem tree, Heavy metals, Pollution. Determination ... concentrations of pollutants in the tree bark correlate with those of ... hence are not readily detoxified and removed by .... levels can severely damage the brain and kidneys and.

  1. Distribution of Heavy Metals in Organs of Freshwater Fishes from ...

    African Journals Online (AJOL)

    MBI

    2015-12-24

    Dec 24, 2015 ... indicate that the concentrations of the heavy metals in the samples are generally well above the respective recommended ... weathering processes on rocks and soils (Babel and. Opiso ..... Source apportionment of suspended.

  2. Natural occurrence of heavy metal, fungi and mycotoxins in soybean ...

    African Journals Online (AJOL)

    Yomi

    2011-12-16

    Dec 16, 2011 ... Heavy metals are a definite human health hazard be- cause of their .... The mean values of nutrient composition of the soybean meal samples ..... A food borne disease outbreak due to the consumption of moldy sorghum and.

  3. Heavy metal exposure in patients suffering from electromagnetic hypersensitivity

    International Nuclear Information System (INIS)

    Ghezel-Ahmadi, David; Engel, Alice; Weidemann, Joerg; Budnik, Lygia Therese; Baur, Xaver; Frick, Ulrich; Hauser, Simone; Dahmen, Norbert

    2010-01-01

    Background: Risks from electromagnetic devices are of considerable concern. Electrohypersensitive (EHS) persons attribute a variety of rather unspecific symptoms to the exposure to electromagnetic fields. The pathophysiology of EHS is unknown and therapy remains a challenge. Objectives: Heavy metal load has been discussed as a potential factor in the symptomatology of EHS patients. The main objective of the study was to test the hypothesis of a link between EHS and heavy metal exposure. Methods: We measured lead, mercury and cadmium concentrations in the blood of 132 patients (n = 42 males and n = 90 females) and 101 controls (n = 34 males and n = 67 females). Results: Our results show that heavy metal load is of no concern in most cases of EHS but might play a role in exceptional cases. Conclusions: The data do not support the general advice to heavy metal detoxification in EHS.

  4. Determination of heavy metals in chinese prickly ash from different ...

    African Journals Online (AJOL)

    digestion, and the contents of copper (Cu), nickel (Ni), chromium (Cr), lead (Pb), cadmium ... concentrations of heavy metals in these CPA samples mean they are safe for human consumption. ... poisoning, including Pb, Cd, As, Hg, Sn, and Sb.

  5. Preliminary Assessment of Heavy Metal Pollution of Opa Reservoir, Ile

    African Journals Online (AJOL)

    big timmy

    Awolowo University (OAU), Ile-Ife, Nigeria, with a view to assessing its pollution level. ... Heavy metals are not biodegradable, but are assimilated .... samples were filtered (with Whatman filter paper. No 42) and ..... acidity,Water, Air Soil Pollut.

  6. Heavy metal pollution disturbs immune response in wild ant populations

    International Nuclear Information System (INIS)

    Sorvari, Jouni; Rantala, Liisa M.; Rantala, Markus J.; Hakkarainen, Harri; Eeva, Tapio

    2007-01-01

    Concern about the effects of environmental contaminants on immune function in both humans and wildlife is growing and practically nothing is known about this impact on terrestrial invertebrates, even though they are known to easily accumulate pollutants. We studied the effect of industrial heavy metal contamination on immune defense of a free-living wood ant (Formica aquilonia). To find out whether ants show an adapted immune function in a polluted environment, we compared encapsulation responses between local and translocated colonies. Local colonies showed higher heavy metal levels than the translocated ones but the encapsulation response was similar between the two groups, indicating that the immune system of local ants has not adapted to high contamination level. The encapsulation response was elevated in moderate whereas suppressed in high heavy metal levels suggesting higher risk for infections in heavily polluted areas. - Heavy metal pollution affects immune function in ants

  7. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Key words: Heavy metal, contamination, mining, soil, sediment. INTRODUCTION ... drinking water and inhaling air or soil contaminated by mining activities and the ..... indicates that copper waste discharged into the upper reaches of the Kafue ...

  8. Baby Teeth Link Autism and Heavy Metals, NIH Study Suggests

    Science.gov (United States)

    ... Release Thursday, June 1, 2017 Baby teeth link autism and heavy metals, NIH study suggests Cross-section ... Sinai Health System Baby teeth from children with autism contain more toxic lead and less of the ...

  9. Effect of irrigation on heavy metals content of wastewater irrigated ...

    African Journals Online (AJOL)

    There is an urgent need to educate farmers on the dangers of the presence of heavy metals in soils as well as the quality of irrigation water especially if it comes from tanning industries for increased crop production. Accordingly, soil and irrigation wastewater study was conducted to assess the concentrations of heavy ...

  10. Atmospheric heavy metal deposition in the Copenhagen area

    DEFF Research Database (Denmark)

    Andersen, Allan; Hovmand, Mads Frederik; Johnsen, Ib

    1978-01-01

    Atmospheric dry and wet deposition (bulk precipitation) of the heavy metals Cu, Pb, Zn, Ni, V and Fe over the Copenhagen area was measured by sampling in plastic funnels from 17 stations during a twelve-month period. Epigeic bryophytes from 100 stations in the area were analysed for the heavy...

  11. Mechanisms of chelation of heavy metals by chitosan

    International Nuclear Information System (INIS)

    Averbach, B.L.

    1980-01-01

    The concentration profiles of several heavy metal ions and anions have been measured in chitosan membranes immersed in dilute aqueous solutions. The shapes of the concentration curves for the metal ions is characteristic of a diffusion process in which the diffusion coefficient is a function of the concentration. The anion penetrates much more rapidly than the cation, however, and the concentration appears to be dependent on the reaction kinetics. We propose a mechanism whereby the metal ion bonds with the nitrogen in the functional amino group, with the bridging oxygen and with two hydroxyl groups in a neighboring glucose ring. The anion, on the other hand, bonds ionically to the metal-amino complex in order to neutralize the charge and to the protonated amino sites which have not reacted with the metal ion. In the case of uranium in sea water, it is probable that the uranium is present as a uranyl complex and that bonding with chitosan will occur by ionic bonding, that is, salt formation, rather than by covalent bonding to the amino groups. Uranyl complexes in dilute concentration will thus compete with chloride and the relative concentrations will be determined by the equilibrium constants. Work on the reaction between chitosan and dilute solutions of copper sulfate is reported. A mechanism for these reactions is postulated, and it is suggested that the same mechanism carries over to uranium in sea water. This suggests certain limitations on the process which should be explored if chitosan is to be used for this purpose

  12. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods

    OpenAIRE

    Chibuike, G. U.; Obiora, S. C.

    2014-01-01

    Soils polluted with heavy metals have become common across the globe due to increase in geologic and anthropogenic activities. Plants growing on these soils show a reduction in growth, performance, and yield. Bioremediation is an effective method of treating heavy metal polluted soils. It is a widely accepted method that is mostly carried out in situ; hence it is suitable for the establishment/reestablishment of crops on treated soils. Microorganisms and plants employ different mechanisms for...

  13. Antibiogram and heavy metal tolerance of bullfrog bacteria in Malaysia

    OpenAIRE

    Tee, L.W.; Najiah, M.

    2011-01-01

    Bacterial isolates from 30 farmed bullfrogs (Lithobates catesbeianus) weighing 500-600 g at Johore, Malaysia with external clinical signs of ulcer, red leg and torticollis were tested for their antibiograms and heavy metal tolerance patterns. A total of 17 bacterial species with 77 strains were successfully isolated and assigned to 21 antibiotics and 4 types of heavy metal (Hg2+, Cr6+, Cd2+, Cu2+). Results revealed that bacteria were resistant against lincomycin (92%), oleandomycin (72.7%) an...

  14. Study of heavy metals in urban runoff

    International Nuclear Information System (INIS)

    Nabizadeh, R.; Mahvi, A.; Mardani, G.; Yunesian, M.

    2005-01-01

    A cross-sectional survey was conducted through Tehran city and a field study was conducted to prepare main and accessory drainage channels map. Three main drainage channels were identified for this research and some sampling stations were chosen. Three stations selected in south of Tehran. The reason for selecting these stations is that all urban surface run off completely pass through these points and samples taken from these points are representative of all kinds of pollutants that transit from city surface. Another three stations were selected in center and further three stations were selected at north of Tehran. Surface runoff flow in three main channels, from north of south of Tehran, converge at south of Rey city and finally end up to Ghom Salt lake. The stations were chosen at three trajectories Sorkhe Hesar, Emad Avard, Kan. At each month two samples were from nine different stations. After collection of samples with respect to standard methods, they were dissolved in nitric acid and then analyzed by atomic absorption device. The results show that the concentrations of pollutants increased from north to south. For instance, Zinc had most concentration with monthly average of 0.98 mg/l and Nickel had the lowest amount with 0.02 mg/l in southern stations. Average concentration of Zn, Pb, Cd, Cu and Ni were: 0.638, 0.97, 0.04 and 0.035 mg/l respectively. Total average concentrations of heavy metals at three main channels were of 0.177, 0.176 and 0.145 mg/l. Emad Avard was the most polluted channel

  15. Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals

    OpenAIRE

    Jutsz Anna Małachowska; Gnida Anna

    2015-01-01

    Heavy metal pollution of soil is a significant environmental problem and has a negative impact on human health and agriculture. Phytoremediation can be an alternative environmental treatment technology, using the natural ability of plants to take up and accumulate pollutants or transform them. Proper development of plants in contaminated areas (e.g. heavy metals) requires them to generate the appropriate protective mechanisms against the toxic effects of these pollutants. This paper presents ...

  16. Heavy metals determination in the Medellin River

    International Nuclear Information System (INIS)

    Casta, S; H, B.

    1998-01-01

    During the last years the Medellin River has been a constant preoccupation for the inhabitants of the Aburra Valley. When the city began to grow took the river as its shaft and all the tailing produced by the domestic action, commercial and industrial were begun to pour of continuous way to its waters, what has caused the degradation that today is observed. Various industries established to what is long of the Medellin River, as are the metal mechanics, those of tanneries, of photographs, paintings and nutritional products, between other. These industries unload its effluents, without no type of treatment, to the river and to its affluent, became these water bodies in receiving of the industrial and domestic liquids effluents of the city. In the present study was sought to determine the presence of some metals in the water bulk and in the sediments of the Medellin River, such as the cadmium, chrome, copper and zinc. The content of these metals plays a role very important in the pollution of the water bodies, upon causing great impact by its toxicity and bio - accumulation. The investigation was accomplished in the section located between the municipalities of Caldas and Copacabana, in four sampling stations during a period of four months, from August until November of 1996

  17. Structural and functional studies of heavy metal ATPases

    DEFF Research Database (Denmark)

    Sitsel, Oleg

    2015-01-01

    to handle heavy metal ions. LpCopA is then compared to its two human homologues ATP7A and ATP7B, which cause the severe Menkes and Wilson diseases when malfunctioning. The differences between the three proteins are described and disease-causing mutations in the human proteins are analyzed. The crystal......Copper and zinc are trace elements that are crucial for the well-being of all cells and are an indispensable part of many proteins. At the same time, the intracellular levels of these metals require careful regulation, as an excess or deficiency may be lethal. P1B-ATPases are key players in Cu......+ and Zn2+ homeostasis that belong to the superfamily of P-type ATPases, transmembrane proteins which are present in virtually all lifeforms, with functions ranging from membrane potential generation to muscle relaxation. The goal of this thesis is to improve our understanding of P1B-ATPases by focusing...

  18. Modified silicates applied in adsorption of heavy metal

    International Nuclear Information System (INIS)

    Farias, M.C.M. de; Raposo, C.M.O.

    2010-01-01

    The levels of heavy metals in the environment has increased considerably in recent decades due to various human activities, which cause serious pollution problems, both in aquatic systems and in soil. The clay minerals present himself as amenable to the adsorption of metal ions and, sometimes, taking the advantage of being abundant and inexpensive. Vermiculite has intrinsic characteristics which favor its use as adsorbent. In this work, we investigate the adsorption of lead (II) from aqueous solutions by vermiculite fractions in commercial, fine to medium in molar concentration between 1-4 mmol (s). The samples provided by the Uniao Brasileira de Mineracao/Paraiba/Brazil were modified thermal and organically. The results of X-ray diffraction associated with the results of X-ray fluorescence showed that the average fraction vermiculite exfoliated organically modified responded most significantly to the adsorption process when compared to vermiculite fine fraction under the same conditions. (author)

  19. Taiwan's industrial heavy metal pollution threatens terrestrial biota

    International Nuclear Information System (INIS)

    Hsu, M.J.; Selvaraj, K.; Agoramoorthy, G.

    2006-01-01

    The bioconcentration levels of essential (Cu, Fe, Mg, Mn, and Zn) and non-essential (As, Cd, Hg, Pb, and Sn) elements have been investigated in different terrestrial biota such as fungi, plant, earthworm, snail, crab, insect, amphibian, lizard, snake, and bat including the associated soil, to investigate the ecosystem health status in Kenting National Park, Taiwan. High bioconcentrations of Cd, Hg, and Sn in snail, earthworm, crab, lizard, snake, and bat indicated a contaminated terrestrial ecosystem. High concentrations of Cd, Hg, and Sn in plant species, effective bioaccumulation of Cd by earthworm, snail, crab and bat, as well as very high levels of Hg found in invertebrates, amphibians, and reptiles revealed a strong influence from industrial pollution on the biotic community. This study for the first time presents data on the impact of heavy metal pollution on various terrestrial organisms in Taiwan. - Metal effects occur at any terrestrial levels in Taiwan

  20. Atmospheric deposition of heavy metals in Norway. Nationwide survey 2010

    International Nuclear Information System (INIS)

    Steinnes, Eiliv; Berg, Torunn; Uggerud, Hilde Thelle; Pfaffhuber, Katrine Aspmo

    2011-01-01

    The geographical distribution of atmospheric deposition of heavy metals in Norway was mapped in 2010 by analysis of moss samples from 464 sites all over the country. This report provides a presentation of the results and a comparison with data from a series of corresponding moss surveys starting 1977. The survey is part of an international program comprising large parts of Europe. The survey primarily concerns the ten metals of priority in the European program: vanadium, chromium, iron, nickel, copper, zinc, arsenic, cadmium, mercury, and lead. In addition data are reported for another 42 elements in the moss. The discussion of the obtained data mainly refers to contributions from air pollution. In addition influence from natural processes to the elemental composition of the moss and how it may influence the interpretation of the data is discussed. (Author)

  1. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Removal of heavy metals from metal-containing effluent by yeast biomass. ... Research studies have described this phenomenon of fast initial sorption with a ... chrome and tin from the chrome and tin effluents of a local iron and steel industry.

  2. Effects of heavy metals on soil microbial community

    Science.gov (United States)

    Chu, Dian

    2018-02-01

    Soil is one of the most important environmental natural resources for human beings living, which is of great significance to the quality of ecological environment and human health. The study of the function of arable soil microbes exposed to heavy metal pollution for a long time has a very important significance for the usage of farmland soil. In this paper, the effects of heavy metals on soil microbial community were reviewed. The main contents were as follows: the effects of soil microbes on soil ecosystems; the effects of heavy metals on soil microbial activity, soil enzyme activities and the composition of soil microbial community. In addition, a brief description of main methods of heavy metal detection for soil pollution is given, and the means of researching soil microbial community composition are introduced as well. Finally, it is concluded that the study of soil microbial community can well reflect the degree of soil heavy metal pollution and the impact of heavy metal pollution on soil ecology.

  3. Heavy metal concentration of settled surface dust in residential building

    International Nuclear Information System (INIS)

    Nor Aimi abdul Wahab; Fairus Muhamad Darus; Norain Isa; Siti Mariam Sumari; Nur Fatihah Muhamad Hanafi

    2012-01-01

    The concentrations of heavy metals (Cu, Ni, Pb and Zn) in settled surface dust were collected from nine residential buildings in different areas in Seberang Prai Tengah District, Pulau Pinang. The samples of settled surface dust were collected in 1 m 2 area by using a polyethylene brush and placed in the dust pan by sweeping the living room floor most accessible to the occupants. Heavy metals concentrations were determined by using inductively coupled plasma optical emission spectrometer (ICP-OES) after digestion with nitric acid and sulphuric acid. The results show that the range of heavy metals observed in residential buildings at Seberang Prai Tengah were in the range of 2.20-14.00 mg/ kg, 1.50-32.70 mg/ kg, 1.50-76.80 mg/ kg and 14.60-54.40 mg/ kg for Cu, Ni, Pb and Zn respectively. The heavy metal concentration in the investigated areas followed the order: Pb > Zn > Ni > Cu. Statistical analysis indicates significant correlation between all the possible pairs of heavy metal. The results suggest a likely common source for the heavy metal contamination, which could be traced most probably to vehicular emissions, street dust and other related activities. (author)

  4. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    Science.gov (United States)

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  5. [Urban air pollution with heavy metals and evaluating risk for public health].

    Science.gov (United States)

    Kazimov, M A; Alieva, R Kh; Alieva, N V

    2014-01-01

    The authors presented hygienic evaluation of ambient air in various districts of Baku city with heavy metals--lead, cadmium, chromium, nickel, copper and zinc. The metals contents of the air were assessed indirectly by their levels in soils of the areas under study. Findings are that soil levels of zinc, chromium and nickel exceeded those of the other metals by a degree. The highest levels were seen in the industrial area that can be assigned to a territory with highest risk for public health. The calculated daily doses of heavy metals inhaled by humans and levels of total daily doses inhaled by adult inhabitants could be risk factors in chronic exposure.

  6. Development of biochar and chitosan blend for heavy metals uptake from synthetic and industrial wastewater

    Science.gov (United States)

    Hussain, Athar; Maitra, Jaya; Khan, Kashif Ali

    2017-12-01

    Heavy metals are usually released into water bodies from industrial/domestic effluents such as metal plating industries, mining and tanneries. Adsorption is a fundamental process in the physiochemical treatment of wastewaters because of its low cost. Great efforts have been made to use the economically efficient and unconventional adsorbents to adsorb heavy metals from aqueous solutions, such as plant wastes and agricultural waste. Biochar mixed with chitosan after crosslinking can be casted into membranes, beads and solutions which can be effectively utilized as an adsorbent for metal ion uptake. Keeping these facts into consideration, the present study was undertaken with the objective to determine the effect of various proportions of biochar-modified chitosan membranes on the sorption characteristics of different heavy metals like Cu, Pb, As and Cd along with comparison of sorption characteristics between industrial waste water samples containing multi-metals and standard synthetic stock solution containing a particular metal. It is apparent from the results that the bioadsorbent prepared from biochar and chitosan are low-cost efficacious resource due to its easy availability. It is also eco-friendly material for making adsorbent for abstraction of heavy metals from aqueous solution. This adsorbent can be best utilized for adsorption of heavy metals.

  7. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  8. Phytoremediation of the environment polluted by heavy metals: how metal-accumulating plants can help us?

    International Nuclear Information System (INIS)

    Jovanovic, Lj.; Markovic, M.; Cupac, M. S.; Janjic, V.; Santric, Lj.; Saric, M.; Cokesa, Dj.; Andric, V.

    2002-01-01

    The paper discusses a new method of cleaning up soils polluted by heavy metals and radio nuclides and other wastes using plants. The method, known as phytoremediation, has proved to be effective in many aspects in cleaning up heavy metals from soil. Besides, it is cost-effective and environmentally-friendly. Most wild plants that can be used for phytoremediation due to their high ability to absorb different pollutants have low total biomass calculated per hectare and year. However, crop plants, even those with lower ability to absorb pollutants, have high biomass per hectare and year and are therefore very promising candidates for future use as phytoremediators. To prove that, we present here the results of investigation of crops and wild plants done in Serbia's former uranium mine Kalna. In laboratory conditions, experiments on sunflower roots and whole plants showed a high potential of uranium absorption. (author)

  9. Pollution and pollution tolerance in the case of heavy metals; Schadstoffbelastung und -belastbarkeit. Schwermetalle

    Energy Technology Data Exchange (ETDEWEB)

    Kretschmer, H.; Neumann, A.; Surkus, A.E. [Rostock Univ. (Germany). Inst. fuer Bodenkunde

    1997-12-31

    Urban soils often have high concentrations of heavy metals. This is particularly true of the technogenic substrates often found in cities and industrial and trading estates. The aim of the present project was therefore to mitigate the deficits of our present knowledge on problems relating to heavy metals in technogenic substrates. The studies presented in the following were carried out in pursuit of the following tasks: determination of the total concentration and mobility of the elements Cu, Pb, Cd, Zn, and Ni in 11 lead soil profiles from technogenic substrates in Rostock, Kiel, Eckernfjoerde and Halle/Saale; study of the dependence of heavy metal mobility on different soil characteristics (e.g. pH, clay, organic carbon, and total heavy metal content); recording of adsorption isotherms characterising the sorption and desorption behaviour of heavy metals; estimation of the heavy metal binding capacity of technogenic substrates following the method quoted by DVWK (1988) for heavy metals; and performance of percolation experiments on soil columns for deriving material transport parameters and of model calculations on heavy metal migration. [Deutsch] Urbane Boeden, besonders die in Staedten, Industrie- und Gewerbegebieten verbreitet lagernden technogenen Substrate, weisen oft hohe Schwermetallgehalte auf. Ziel dieses Projektes ist daher, Erkenntnisdefizite zur Schwermetallproblematik technogener Substrate zu verringern. Den nachfolgend dargestellten Untersuchungen liegt folgende Aufgabenstellung zugrunde: - Bestimmung der Gesamtgehalte und Mobilitaeten der Elemente Cu, Pb, Cd, Zn und Ni an 11 Leitprofilen aus technogenen Substraten in Rostock, Kiel, Eckernfoerde und Halle/Saale, - Untersuchung der Abhaengigkeit der Schwermetallmobilitaet von verschiedenen Bodenkennwerten (pH-Wert, Ton-, Corg-, Kalkgehalt, KAK, Schwermetall-Gesamtgehalt), - Aufnahme von Adsorptionsisothermen zur Kennzeichnung des Sorptions- und Desorptionsverhaltens von Schwermetallen, - Schaetzung

  10. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne

    2003-01-01

    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...... in lab scale, and the results were discussed in relation to the expected heavy metal speciation in the ashes. In initial leaching experiments the pH-dependent desorption characteristics of the heavy metals Cd, Pb, Zn and Cu were analogous in the two MSWI ashes, and thus it was expected......-moval efficiencies were observed, especially for Pb and Zn. Cd, the sole heavy metal of environmental concern in the wood ash, was found more tightly bonded in this ash than in the two MSWI ashes. It was suggested that complex Cd-silicates are likely phases in the wood ash whereas more soluble, condensed phases...

  11. Short-term uptake of heavy metals by periphyton algae

    Energy Technology Data Exchange (ETDEWEB)

    Vymazal, J.

    1984-12-31

    The utilization of periphyton for the removal of heavy metals from enriched small streams has been examined. By means of short-term batch laboratory experiments the courses of metal uptake have been studied. For uptake study naturally growing periphyton community and periphytic filamentous algae Cladophora glomerata and Oedogonium rivulare have been used. Uptakes of nine heavy metals (Pb, Cd, Cu, Co, Cr, Ni, Zn, Fe and Mn) have been determined during four hours exposure. In addition the influence of humic substances on heavy metals uptake has been determined. Uptake of all metals increased during four hours exposure but not in the same way. Some metals were removed continuously (Ni, Cr, Fe and Mn), other metals were removed more rapidly during the first hour or first two hours of exposure and then only slight removal continued (Cu, Pb, Cd, Co). Uptake of Zn was rather unambiguous. Results of these experiments suggest that the course of uptake for individual metals could be similar for most periphyton algae. It was established that humic substances significantly reduce heavy metals uptake. The highest decrease of uptake was observed in Cu, Cr, Co and Cd. The results of model experiments are being tested in a pilot scale with respect to the demands of engineering practice. (J.R.)

  12. Traversing the Links between Heavy Metal Stress and Plant Signaling

    Science.gov (United States)

    Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.

    2018-01-01

    Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874

  13. Assessment on Bacteria in the Heavy Metal Bioremediation

    International Nuclear Information System (INIS)

    Mohamad Romizan Osman; Mohamad Romizan Osman; Azman Azid; Kamaruzzaman Yunus; Ahmad Dasuki Mustafa; Mohammad Azizi Amran; Fazureen Azaman; Zarizal Suhaili; Yahya Abu Bakar; Syahrir Farihan Mohamed Zainuddin

    2015-01-01

    The aim of this study was to identify and verify the potential bacteria as the bioremediation agent. It involved bacteria isolation, identification through Gram staining, analytical profile index (API) test and determine bioremediation activities by using inductively coupled plasma mass spectrometry (ICPMS). The soil and water sample were collected from downstream of Galing River, Kuantan Malaysia. Based on phenotypic identification and biochemical analysis, the bacteria present at the vicinity area are possibility of Myroides spp. and Micrococcus spp. These bacteria were proven as bioremediation agent based on the ICPMS result. The result 1 ppm of Zink (Zn), Lead (Pb), Arsenic (As), Selenium (Se), Cadmium (Cd), Manganese (Mn), and Indium (In) dwindled after the bacteria inoculated and incubated for seven days in mixture of base salt media (BSM) with the heavy metal elements. Therefore, this proves that the bacteria which are present at downstream of Galing River, Kuantan Malaysia are significant to help us in the bioremediation activity to decrease the heavy metal pollution in the environment. (author)

  14. [Comparison of heavy metal elements between natural and plantation forests in a subtropical Montane forest].

    Science.gov (United States)

    Nie, Ming; Wan, Jia-Rong; Chen, Xiao-Feng; Wang, Li; Li, Bo; Chen, Jia-Kuan

    2011-11-01

    Heavy metals as one of major pollutants is harmful to the health of forest ecosystems. In the present paper, the concentrations of thirteen heavy metals (Fe, Al, Ti, Cr, Cu, Mn, V, Zn, Ni, Co, Pb, Se and Cd) were compared between natural and plantation forests in the Mt. Lushan by ICP-AES and atomic absorption spectroscopy. The results suggest that the soil of natural forest had higher concentrations of Fe, Al, Ti, Cu, Mn, V, Zn, Ni, Co, Pb, Se, and Cd than the plantation forest except for Cr. The soil of natural forest had a higher level of heavy metals than that of the plantation forest as a whole. This might be due to that the natural forest has longer age than the plantation forest, and fixed soil heavy metals take a longer period of time than the plantation forest.

  15. Geochemical and mineralogical study of a site severely polluted with heavy metals (Maatheide, Lommel, Belgium)

    Science.gov (United States)

    Horckmans, L.; Swennen, R.; Deckers, J.

    2006-07-01

    The former zinc smelter site ‘de Maatheide’ in Lommel (Belgium) was severely polluted with heavy metals and the pollution spread into the surroundings by rain water leaching and wind transportation. This study focuses on the processes of immobilization and natural attenuation that took place on the site. Three important factors were found. Firstly, the high pH values (pH 7-8) in the topsoil influence the mobility of heavy metals. Secondly, the spodic horizons below the polluted top layer seem to accumulate heavy metals, thereby slowing down their release into the environment. Finally, the glassy phases and iron oxi/hydroxides that are present can encapsulate heavy metals during their formation/recrystallization, thereby immobilizing them. An additional shielding effect results from the reaction rims of goethite around the contaminant phases, which partially inhibit the weathering process and release of contaminants. This shielding effect is an important factor to take into account when modelling contaminant release.

  16. Statistical Analysis Of Heavy Metals Concentration In Watermelon Plants Irrigated By Wastewater

    Science.gov (United States)

    Khanjani, M. J.; Maghsoudi moud, A. A.; Saffari, V. R.; Hashamipor, S. M.; Soltanizadeh, M.

    2008-01-01

    Concentration of heavy metals in vegetables irrigated by urban wastewater is a cause of serious concern due to the potentials health problems of consuming contaminated produce. In this study it is tried to model the concentration of heavy metals (Cd, Cr, Cu, Fe,…) as a function of their concentration in watermelon roots and stems. Our study shows there is a good relationship between them for most of collected data. By measuring the concentration in root and stem of watermelon plant samples before harvesting, the concentration of heavy metal in watermelon's fruit can be estimated by presented mathematical models. This study shows the concentrations of heavy metals in fruits, roots and stems of watermelon plants are very high and in dangerous level when irrigated by municipal waste water.

  17. Contamination by urban superficial runoff: accumulated heavy metals on a road surface

    Directory of Open Access Journals (Sweden)

    Carlos Alfonso Zafra Mejía

    2007-01-01

    Full Text Available Studying the behaviour of accumulated contamination on urban surfaces is important in designing control methods minimising the impacts of surface runoff on the environment. This paper presents data regarding the sediment collected on the surface of an urban road in the city of Torrelavega in northern Spain during a period of 65 days during which 132 samples were collected. Two types of sediment collection samples were obtained: vacuumed dry samples (free load and those swept up following vacuuming (fixed load. The results showed that heavy metal concentration in the collected sediment (Pb, Zn, Cu and Cd was inversely proportional to particle diameter. High heavy metal concentrations were found in the smaller fraction (63 pm. Regression equations were calculated for heavy metal concentration regarding particle diameter. Large heavy metal loads were found in the larger fraction (125 pm. The results provide information for analysing runoff water quality in urban areas and designing treatment strategies.

  18. Electrokinetic treatment of an agricultural soil contaminated with heavy metals.

    Science.gov (United States)

    Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K

    2016-07-28

    The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.

  19. Immunotoxicology in wood mice along a heavy metal pollution gradient

    International Nuclear Information System (INIS)

    Tersago, Katrien; De Coen, Wim; Scheirs, Jan; Vermeulen, Katrien; Blust, Ronny; Bockstaele, Dirk van; Verhagen, Ron

    2004-01-01

    We carried out an immunotoxicological field study of wood mice in three populations along a heavy metal pollution gradient. Heavy metal concentrations in liver tissue indicated that exposure to silver, arsenic, cadmium, cobalt and lead decreased with increasing distance from a non-ferrous smelter. Host resistance to the endoparasite Heligmosomoides polygyrus decreased with increasing exposure, while the abundance of tick larvae and the nematode Syphacia stroma was unrelated to heavy metal exposure. Spleen mass was increased at the intermediate and the most polluted sites and was positively correlated with the number of H. polygyrus and tick larvae. Proportion of early apoptotic leukocytes increased towards the smelter and was positively related to cadmium exposure. Red and white blood cell counts and lysozyme activity showed no relationship with metal exposure. All together, our observations suggest negative effects of heavy metal exposure on the immune function of wood mice under field conditions. - Capsule: Complex interactions among metal burden, immune response and parasite burden suggest negative effects of heavy metal exposure on the immune system of wood mice

  20. Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors

    International Nuclear Information System (INIS)

    Turek, M.; Heiden, W.; Riesen, A.; Chhabda, T.A.; Schubert, J.; Zander, W.; Krueger, P.; Keusgen, M.; Schoening, M.J.

    2009-01-01

    The cross-sensitivity of chemical sensors for several metal ions resembles in a way the overlapping sensitivity of some biological sensors, like the optical colour receptors of human retinal cone cells. While it is difficult to assign crisp classification values to measurands based on complex overlapping sensory signals, fuzzy logic offers a possibility to mathematically model such systems. Current work goes into the direction of mixed heavy metal solutions and the combination of fuzzy logic with heavy metal-sensitive, silicon-based chemical sensors for training scenarios of arbitrary sensor/probe combinations in terms of an electronic tongue. Heavy metals play an important role in environmental analysis. As trace elements as well as water impurities released from industrial processes they occur in the environment. In this work, the development of a new fuzzy logic method based on potentiometric measurements performed with three different miniaturised chalcogenide glass sensors in different heavy metal solutions will be presented. The critical validation of the developed fuzzy logic program will be demonstrated by means of measurements in unknown single- and multi-component heavy metal solutions. Limitations of this program and a comparison between calculated and expected values in terms of analyte composition and heavy metal ion concentration will be shown and discussed.

  1. METALert - an emergency response system for China for heavy metals in the environment

    Science.gov (United States)

    Joris, Ingeborg; Seuntjens, Piet; Dams, Jef; Desmet, Nele; Van Looy, Stijn; Raymaekers, Jens; Decorte, Lieve; Raben, Ingrid; Thijssen, Chris; Zhang, Hongzhen; Dong, Jingqi; Zhang, Qianwen

    2016-04-01

    The rapid industrialisation and economic growth of China has resulted in a mirrored increase of environmental issues and threats, which make the updating of the current environmental emergency response protocols very important. Heavy metal pollution accidents with high environmental risks are happening more frequently than ever in recent years. Despite efforts made by the authorites in respect to the formulation of sound policy, efficient technical methods and regulations for dealing with appropriate responses to emergency environmental incidents related to heavy metal pollution are still lacking. METALert is a generic Emergency Response System (ERS) for accidental pollution incidents caused by key heavy metal related industries in China and developed to support China in achieving its environmental targets. The METALert tool is based on environmental models for forecasting, simulation and visualisation of dispersion of heavy metal pollution in water, air and soil. The tool contains a generic database with scenarios for accidental release of metals in typical accidents related to the five key heavy metal industries in China. The tool can calculate the impact of an accident in water, air and soil and is evaluated and demonstrated for a river basin in the Chenzhou area, an important heavy metal mining area in China. The setup of the tool, the background models and the application in Chenzhou will be presented.

  2. Artificial intelligence/fuzzy logic method for analysis of combined signals from heavy metal chemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Turek, M. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany); Heiden, W.; Riesen, A. [Bonn-Rhein-Sieg University of Applied Sciences, Sankt Augustin (Germany); Chhabda, T.A. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Schubert, J.; Zander, W. [Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany); Krueger, P. [Institute of Biochemistry and Molecular Biology, RWTH Aachen, Aachen (Germany); Keusgen, M. [Institute for Pharmaceutical Chemistry, Philipps-University Marburg, Marburg (Germany); Schoening, M.J. [Institute of Nano- and Biotechnologies (INB), Aachen University of Applied Sciences, Campus Juelich, Juelich (Germany); Institute of Bio- and Nanosystems (IBN), Research Centre Juelich GmbH, Juelich (Germany)], E-mail: m.j.schoening@fz-juelich.de

    2009-10-30

    The cross-sensitivity of chemical sensors for several metal ions resembles in a way the overlapping sensitivity of some biological sensors, like the optical colour receptors of human retinal cone cells. While it is difficult to assign crisp classification values to measurands based on complex overlapping sensory signals, fuzzy logic offers a possibility to mathematically model such systems. Current work goes into the direction of mixed heavy metal solutions and the combination of fuzzy logic with heavy metal-sensitive, silicon-based chemical sensors for training scenarios of arbitrary sensor/probe combinations in terms of an electronic tongue. Heavy metals play an important role in environmental analysis. As trace elements as well as water impurities released from industrial processes they occur in the environment. In this work, the development of a new fuzzy logic method based on potentiometric measurements performed with three different miniaturised chalcogenide glass sensors in different heavy metal solutions will be presented. The critical validation of the developed fuzzy logic program will be demonstrated by means of measurements in unknown single- and multi-component heavy metal solutions. Limitations of this program and a comparison between calculated and expected values in terms of analyte composition and heavy metal ion concentration will be shown and discussed.

  3. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  4. Assessment of heavy metal removal technologies for biowaste by physico-chemical fractionation

    NARCIS (Netherlands)

    Veeken, A.H.M.; Hamelers, H.V.M.

    2003-01-01

    In the Netherlands, the heavy metal content of biowaste-compost frequently exceeds the legal standards for heavy metals. In order to assess heavy metal removal technologies, a physico-chemical fractionation scheme was developed to gain insight into the distribution of heavy metals (Cd, Cu, Pb and

  5. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, G., E-mail: gsureshphy_1983@yahoo.co.in [Department of Physics Thiruvalluvar College of Engg and Tech, Ponnur hills, Vandavasi, Tamilnadu 604 505 (India); Ramasamy, V. [Department of Physics, Annamalai University, Tamilnadu (India); Meenakshisundaram, V. [Health and Safety Division, IGCAR, Kalpakkam, Tamilnadu (India); Venkatachalapathy, R. [CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Tamilnadu (India); Ponnusamy, V. [Department of Physics, MIT Campus, Anna University Chennai, Tamilnadu (India)

    2011-10-15

    The natural radiation level has been determined for the sediment samples of the Ponnaiyar River with an aim of evaluating the radiation hazard. The mineralogical characterizations of the sediments have been carried out using the Fourier Transform Infrared (FTIR) spectroscopic technique. The relative distribution of major minerals is determined by calculating extinction coefficient. The concentration and spatial distribution of heavy metals (Pb, Cr, Cu, Zn and Ni) have been studied to understand the heavy metal contamination and its level of toxicity. To evaluate the potential toxicity, heavy metal concentrations are compared with different toxicological and geological reference values. The comparison results suggest that the present metals create an adverse effect on the aquatic ecosystems associated with this river. To assess the sediment contamination due to the studied heavy metals, the Pollution Load Index (PLI) is calculated. Multivariate Statistical analyses (Pearson Correlation, Cluster and Factor analysis) were carried out between the parameters obtained from radioactivity, mineralogical and geochemical analysis to know the existing relations. Obtained results showed that the effect of mineralogy on level of radioactivity should be significant. However, mineralogy effect on heavy metal composition in the sediments should be limited, indicating that other factors such as vicinity of the pollution sources are more important. Also, the influence of mineralogical characterization on level of radioactivity is significant, whereas the influence of the heavy metal composition on level of radioactivity should be limited. - Highlights: >Sediments radioactivity, mineralogical and heavy metal characterization have been analyzed. > Absorbed dose rate, PLI and kaolinite increase towards the river mouth. > Influence of minerals and heavy metals on level of radioactivity is assessed.

  6. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments

    International Nuclear Information System (INIS)

    Suresh, G.; Ramasamy, V.; Meenakshisundaram, V.; Venkatachalapathy, R.; Ponnusamy, V.

    2011-01-01

    The natural radiation level has been determined for the sediment samples of the Ponnaiyar River with an aim of evaluating the radiation hazard. The mineralogical characterizations of the sediments have been carried out using the Fourier Transform Infrared (FTIR) spectroscopic technique. The relative distribution of major minerals is determined by calculating extinction coefficient. The concentration and spatial distribution of heavy metals (Pb, Cr, Cu, Zn and Ni) have been studied to understand the heavy metal contamination and its level of toxicity. To evaluate the potential toxicity, heavy metal concentrations are compared with different toxicological and geological reference values. The comparison results suggest that the present metals create an adverse effect on the aquatic ecosystems associated with this river. To assess the sediment contamination due to the studied heavy metals, the Pollution Load Index (PLI) is calculated. Multivariate Statistical analyses (Pearson Correlation, Cluster and Factor analysis) were carried out between the parameters obtained from radioactivity, mineralogical and geochemical analysis to know the existing relations. Obtained results showed that the effect of mineralogy on level of radioactivity should be significant. However, mineralogy effect on heavy metal composition in the sediments should be limited, indicating that other factors such as vicinity of the pollution sources are more important. Also, the influence of mineralogical characterization on level of radioactivity is significant, whereas the influence of the heavy metal composition on level of radioactivity should be limited. - Highlights: →Sediments radioactivity, mineralogical and heavy metal characterization have been analyzed. → Absorbed dose rate, PLI and kaolinite increase towards the river mouth. → Influence of minerals and heavy metals on level of radioactivity is assessed.

  7. A 12-Month Study of Food Crops Contaminated by Heavy Metals, Lusaka, Zambia

    Science.gov (United States)

    Holden, J. A.; Malamud, B. D.; Chishala, B. H.; Kapungwe, E.; Volk, J.; Harpp, K. S.

    2009-04-01

    We investigate heavy-metal contamination of irrigation water used for urban agriculture and subsequent contamination of food crops in Chunga, NW Lusaka, the capital of Zambia. Inhabitants of the Chunga area rely on urban agriculture as both a major source of income and food. From August 2004 to July 2005, monthly samples of irrigation water used and edible portions of food crops were taken from a farmer's plot at Chunga. The food crops (cabbage, Chinese cabbage, pumpkin leaves, rape, sweet potato leaves and tomatoes) are grown using irrigation throughout the year. Irrigation water samples and digested food crop samples were analysed using ICP-MS at the Department of Geology, Colgate University, USA for Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Ba, Hg, Tl, Pb, and U. We find heavy-metal concentrations present in both irrigation water and food crop samples. Zambian sample concentrations were compared to Zambian and international legislative and guideline limits for concentrations of heavy metals in industrial effluent, heavy metals in irrigation water and heavy metals in foods. In irrigation water samples recommended national and/or international legislative limits for Al, Cr, Mn, Fe, Cu, Hg, Pb and U were exceeded. Limits for Hg were exceeded by up to 130 times. There were heavy-metal concentrations above recommended limits in food crops for Cr, Fe, Ni, Cu, Zn, Cd, Hg and Pb throughout the different food crops grown and throughout the year. In all 14 samples recommended limits for Cr, Fe and Hg were exceeded. Zambian legislated limits for food crops were exceeded by up to 16 times for Pb and 58 times for Hg. The results of this study show that heavy metal contamination is present in irrigation water used and food crops grown in urban agriculture in Chunga, Lusaka, Zambia. Recommended maximum limits for heavy metals in irrigation water and food are exceeded in some samples indicating there may be a risk to health.

  8. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.

    Science.gov (United States)

    Li, Jianxin; Chen, Jinbo; Chen, Shan

    2018-08-15

    Hyperaccumulator biomass, as a promising resource for renewable energy that can be converted into valuable fuel productions with high conversion efficiency, must be considered as hazardous materials and be carefully treated before further reuse due to the high contents of heavy metals. In this study, Pteris vittata L., an As-hyperaccumulator biomass was treated by an effective and environmental friendly method-supercritical water gasification (SCWG) using a bench-scale batch reactor. The contents of heavy metals (Cd, Pb and Zn) and arsenic metalloid in solid, liquid and gaseous products during SCWG process were thoroughly investigated. The speciation fractions including exchangeable, reducible, oxidizable and residual fractions of each heavy metal as the proportion of the total contents in solid residue were presented and the transformations trend of these heavy metals during the SCWG process was especially demonstrated. The significant operating parameters, including reaction temperature (395-445 °C), pressure (21-27 MPa) and residence time (0-40 min) were varied to explore their effects on the contents and forms. Moreover, the environmental risks of heavy metals in solid residues were evaluated based on risk assessment code, taking into consideration the speciation fractions and bioavailability. It was highlighted that although heavy metals particularly Pb and Zn tended to accumulate in solid residues with a maximum increment of about 50% in the total content, they were mostly converted to more stable oxidizable and residual fractions, and thus the ecotoxicity and bioavailability were greatly mitigated with no obvious increase in direct toxicity fractions. Each tested heavy metal presented no or low risk to the environments after SCWG treatments, meaning that the environmental pollution levels were markedly reduced with no or low risk to the environment. This study highlights the remarkable ability of SCWG for the heavy metal stabilization. Copyright

  9. A Study of Heavy Metal Pollution in China: Current Status, Pollution-Control Policies and Countermeasures

    Directory of Open Access Journals (Sweden)

    Hui Hu

    2014-09-01

    Full Text Available In the past 30 years, China’s economy has experienced rapid development, which led to a vast increase in energy consumption and serious environmental pollution. Among the different types of pollution, heavy metal pollution has become one of the major environmental issues in China. A number of studies show that high level of heavy metal exposure is a frequent cause of permanent intellectual and developmental disabilities. In recent years, some traditional pollutants, such as sulfur dioxide and carbon dioxide, have been put under control in China. However, heavy metal pollution, which poses even greater risks to public health and sustainable development, has yet to gain policymakers’ attention. The purpose of this paper is to explore effective countermeasures for heavy metal pollution in China. The present study reviews the current status of China’s heavy metal pollution and analyzes related public policies and countermeasures against that pollution. It also presents a few recommendations and measures for prevention of heavy metal pollution.

  10. Phytoremediation of heavy metal polluted sites

    International Nuclear Information System (INIS)

    Aery, N.C.; Panchal, Jayesh

    2007-01-01

    The nature of soil, the contaminant's chemical and physical characteristics and environmental factors such as climate and hydrology interact to determine the accumulation, mobility, toxicity, and overall significance of the contaminant in any specific instance. Although many metals are essential, all metals are toxic at higher concentrations, because they cause oxidative stress by formation of free radicals. Another reason why metals may be toxic is that they can replace essential metals in enzymes disrupting their function. Thus, metals render the land unsuitable for plant growth and destroy the biodiversity. Metal contaminated soil can be remediated by chemical, physical and biological techniques

  11. Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite.

    Science.gov (United States)

    Sun, Daniel T; Peng, Li; Reeder, Washington S; Moosavi, Seyed Mohamad; Tiana, Davide; Britt, David K; Oveisi, Emad; Queen, Wendy L

    2018-03-28

    Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb 2+ and Hg 2+ , from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe 3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg 2+ and 394 mg of Pb 2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na + , are present at concentrations up to 14 000 times that of Pb 2+ . The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles.

  12. Routine soil testing to monitor heavy metals and boron

    Directory of Open Access Journals (Sweden)

    Abreu Cleide Aparecida de

    2005-01-01

    Full Text Available Microelements are an important issue in agriculture, due to their need as micronutrients for plants and also to the possibility of the build-up of toxic levels for plants and animals. Five micronutrients (B, Cu, Fe, Mn, and Zn are routinely determined in soil analysis for advisory purposes. Other four elements (Cd, Cr, Pb, and Ni are considered environmentally important heavy metals in farmland soils. Thus high contents of these metals in cropland might go eventually unnoticed. In this paper we present an approach that can be used to monitor the contents of the nine elements in farmland soils using advisory soil testing. A total of 13,416 soil samples from 21 Brazilian states, 58% of them from the state of São Paulo, sent by farmers were analyzed. Boron was determined by hot water extraction and the other metals were determined by DTPA (pH 7.3 extraction. The ranges of content, given in mg dm-3 soil, were the following: B, 0.01-10.6; Cu, 0.1-56.2; Fe, 0.5-476; Mn, 1-325; Zn, 1-453; Cd, 0.00-3.43, Cr, 0.00-42.9; Ni, 0.00-65.1; Pb, 0.00-63.9. The respective average values for São Paulo were: B-0.32; Cu-2.5; Fe-36; Mn-16; Zn-4.8; Cd-0.02; Cr-0.03; Ni-0.18; Pb-0.85. For other states the results are in the same ranges. The higher values are indicative of anthropogenic inputs, either due to excess application of fertilizers or to industrial or mining activities. The conclusion is that massive chemical analysis of farmland soil samples could serve as a database for indicating potential micronutrient deficiency and excesses or heavy metal buil-up in croplands, allowing preventive actions to be taken.

  13. Possibility of using metal uranium fuel in heavy water reactors

    International Nuclear Information System (INIS)

    Djuric, B.; Mihajlovic, A.; Drobnjak, Dj.

    1965-01-01

    The review of metal uranium properties including irradiation in the reactor core lead to the following conclusions. Using metal uranium in the heavy water reactors would be favourable from economic point of view for ita high density, i.e. high conversion factor and low cost of fuel elements fabrication. Most important constraint is swelling during burnup and corrosion

  14. Variation of heavy metal levels in the tissues of Periophthalmus ...

    African Journals Online (AJOL)

    Variation of heavy metal levels in the tissues of Periophthalmus papillio from the mangrove swamps of the Bukuma oilfield, Rivers State. ... Generally elevated metal levels in both tissues were recorded at the stations with wellheads, implicating oil-related activities as the main source of contamination. However, the levels in ...

  15. Evaluation of Heavy and Trace Metals in Fingernails of Young ...

    African Journals Online (AJOL)

    WAHAB

    These elements have been produced by alteration and distribution via wind blow. The result indicates that soil or road dust plays an important role in the concentration buildup of the road side dust near automobile workshops. Table 2: Concentration of heavy metals in the soil samples in the automobile workshop. Metals.

  16. Heavy metal concentrations in, and human health risk assessment ...

    African Journals Online (AJOL)

    Water, sediment and fish samples were collected for six months and heavy metals were determined using an Atomic Absorption Spectrometer. Fe ranked highest in water and sediment, with concentrations of 2.74 mg l−1 and 61.60 mg kg−1, respectively. Metals followed the magnitude of Fe > Mn > Ni > V > Pb in the water ...

  17. Assessment of Heavy Metals Pollution in Dumpsites in Ilorin ...

    African Journals Online (AJOL)

    Speciation and distribution of heavy metals in soil controls the degree to which metals and their compounds are mobile, extractable, and plant available. Eight strategically located dumpsites in Ilorin metropolis (an averagely growing city and a state capital) were chosen for dumpsites-soil characteristics study. Both the ...

  18. Removal Of Heavy Metals From Industrial Wastewaters Using Local ...

    African Journals Online (AJOL)

    Wastewater samples from battery, paint and textile industries were treated with different doses of locally available alum, aluminum sulphate and ferric chloride in order to determine and compare their effectiveness in removing heavy metal contents from the wastewaters. The percentage removal of the metals from the ...

  19. Heavy metal speciation and their accumulation in sediments of Lake ...

    African Journals Online (AJOL)

    Several sediment samples in Lake Burullus have been affected by the discharges of heavy metals through different drains. The study aimed to analyze the chemical speciation of these metals. In particular, the chemical forms of Cd, Cu, Fe, Mn, Pb and Zn in sediments collected in spring season were studied using a ...

  20. Assessment of heavy metals concentration in drinking water ...

    African Journals Online (AJOL)

    The concentration of all the metals were considerably found to be below the limit permitted by WHO's drinking water guidelines (WHO 2005). Findings suggest that continues water quality monitoring should be carried out to check the concentration levels of heavy metals in that area, to prevent them from been above the limit ...

  1. levels of heavy metals in gubi dam water bauchi, nigeria

    African Journals Online (AJOL)

    Ada

    copper and lead were always highest in the suspended materials which indicate the dominant role played by ... essential. However, at high concentrations, these trace metals become toxic (Nurnberg, 1982). Heavy metals in .... mobilization of cobalt minerals into the dam. .... Interaction between sediments and fresh water ...

  2. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  3. Heavy metal removal from aqueous solutions by sorption using ...

    African Journals Online (AJOL)

    Heavy metal removal from aqueous solutions by sorption using natural clays from Burkina Faso. ... The high alkaline pH in one of the samples is attributable to the presence of ... The point of zero charge (pHpzc) values of the clays, as determined by ... significant contributions to the removal of metal ions in aqueous systems.

  4. Study of heavy metals bioaccumulation in the process of ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... The bioaccumulation of heavy metals (Cd, Zn, Ni, Pb and Cr) and the relationship between them was investigated on ... this elements in 14 days) exposure, the metal accumulation was measured using atomic absorption spectroscopy. ... sed to the point that it endangers human life in some areas, and the ...

  5. Physicochemical Characteristics and Levels of Some Heavy Metals ...

    African Journals Online (AJOL)

    Michael Horsfall

    indicated a significant degree of soil contamination for Pd, Cd, Co, Cu and Zn in the soils studied showing a higher ... disposed waste. These metals which are not biodegradable are accumulated in living organisms when released into the environment. Although trace ... heavy metals in Nigerian soils if such solid waste.

  6. Evaluation of heavy metals pollution of Nokoue Lake

    African Journals Online (AJOL)

    use

    African Journal of Environmental Science and Technology Vol. 5(3), pp. 255-261, March ... Key words: Nokoue Lake, pollution, heavy metal, texture. INTRODUCTION ... certain anthropogenic trace metals released by industries and domestic .... storage on ice, complete filling containers, use of plastic materials for storage ...

  7. Modelling heavy metal and phosphorus balances for farming systems

    NARCIS (Netherlands)

    Keller, A.N.; Schulin, R.

    2003-01-01

    Accounting for agricultural activities such as P fertilization in regional models of heavy metal accumulation provides suitable sustainable management strategies to reduce nutrient surpluses and metal inputs in agricultural soils. Using the balance model PROTERRA-S, we assessed the phosphorus ( P),

  8. Determination of Levels of Essential and Toxic Heavy Metals in ...

    African Journals Online (AJOL)

    The concentrations of trace essential metals (Co, Cu, Fe, Mn, Ni and Zn) and toxic heavy metals (Cd and Pb) in lentil samples collected from Dejen (East Gojjam), Boset (East Shewa) and Molale (North Shewa), Ethiopia, were determined by flame atomic absorption spectrometry. A wet digestion procedure, using mixtures of ...

  9. Heavy metals burden in Kidney and heart tissues of Scarus ...

    African Journals Online (AJOL)

    Levels of selected heavy metals (Pb, Co, Cu, Ni, Zn, Mn and Cd) in the heart and kidney tissues of parrot fish, collected from the Arabian Gulf, Eastern Province of Saudi Arabia, were determined by wet-digestion based atomic absorption method. The results showed that accumulation pattern of analyzed metals in the kidney ...

  10. Biomonitoring of heavy metals pollution in Lake Burullus, Northern ...

    African Journals Online (AJOL)

    aghomotsegin

    and they probably reduced the effect of high concentrations of these metals on the lake ... 31° 07' E. It's a shallow brackish lake connected with the sea by a ... The concentration of heavy metals in water (µg/l) at 15 stations at Lake Burullus.

  11. Concentration of heavy metals from traffic emissions on plant ...

    African Journals Online (AJOL)

    In recent years, emission and combustion of fossils and fuels have been identified as primary sources of atmospheric metallic burden. Detailed information about this is not readily available in Nigeria. This study was therefore carried out to determine the concentration of heavy metals (e.g. lead, mercury and cadmium} ...

  12. Analysis of Some Heavy Metals in Grass ( Paspalum Orbiculare ...

    African Journals Online (AJOL)

    The increased deposition of trace metals from vehicle exhausts on plants has raised concerns about the risks of the quality of food consumed by humans since the heavy metals emitted through the exhaust by vehicles can enter food chain through deposition on grass grazed by animals. Grass (Paspalum Orbiculare) and ...

  13. Analysis of heavy metals in road-deposited sediments.

    Science.gov (United States)

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A

    2006-07-07

    Road-deposited sediments were analysed for heavy metal concentrations at three different landuses (residential, industrial, commercial) in Queensland State, Australia. The sediments were collected using a domestic vacuum cleaner which was proven to be highly efficient in collecting sub-micron particles. Five particle sizes were analysed separately for eight heavy metal elements (Zn, Fe, Pb, Cd, Cu, Cr, Al and Mn). At all sites, the maximum concentration of the heavy metals occurred in the 0.45-75 microm particle size range, which conventional street cleaning services do not remove efficiently. Multicriteria decision making methods (MCDM), PROMETHEE and GAIA, were employed in the data analysis. PROMETHEE, a non-parametric ranking analysis procedure, was used to rank the metal contents of the sediments sampled at each site. The most polluted site and particle size range were the industrial site and the 0.45-75 microm range, respectively. Although the industrial site displayed the highest metal concentrations, the highest heavy metal loading coincided with the highest sediment load, which occurred at the commercial site. GAIA, a special form of principal component analysis, was applied to determine correlations between the heavy metals and particle size ranges and also to assess possible correlation with total organic carbon (TOC). The GAIA-planes revealed that irrespective of the site, most of the heavy metals are adsorbed to sediments below 150 microm. A weak correlation was found between Zn, Mn and TOC at the commercial site. This could lead to higher bioavailability of these metals through complexation reactions with the organic species in the sediments.

  14. THE IMPACT OF HEAVY METAL CONCENTRATION ON

    African Journals Online (AJOL)

    Temitope

    Index of geo-accumulation (Igeo), revealed no contamination of the trace metals. ... (Hg), arsenic (As) and cadmium (Cd). ... standards, and to suggest the best remedial methods ..... metal concentrations in urban soil of Ibadan metropolis,.

  15. Review of Phosphate in soils: Interaction with micronutrients, radionuclides, and heavy metals

    Science.gov (United States)

    Phosphate-phosphorus present in the vadose zone of soil as native, added, or residual fertilizer influences the retention, transport, and bioavailability of heavy metals, metalloids, or metallic radionuclides to aboveground vegetation, soil microorganisms, and fauna that browse that vegetation, or d...

  16. ASSESSMENT OF HEAVY METALS POLLUTION OF SEDIMENTS ...

    African Journals Online (AJOL)

    Preferred Customer

    2011 Chemical Society of Ethiopia. ______ ... 2Department of Laboratory Technology, University of Cape Coast, Ghana. (Received June 23 ... industrial and urban wastes are inevitably discharged into water bodies and consequently, heavy.

  17. Physiochemicals and Heavy Metal Removal from Domestic Wastewater via Phycoremediation

    Directory of Open Access Journals (Sweden)

    Ab Razak Abdul Rafiq

    2016-01-01

    Full Text Available The common sources of water pollution in Malaysia are domestic sewage and industrial waste. Therefore, domestic wastewater quality effluent should be improved before discharged through the outlets. The alternative method of treatment uses microalgae for water remediation which is known as phycoremediation was applied. This technique is to remove or reduce nutrients and harmful pollutants in domestic wastewater. Thus, objective of the present study is to bioremediate the physiochemical and heavy metal from domestic wastewater using freshwater green microalgae Botryococcus sp. A photobioreactor is used to treat the wastewater by employing the microalgae Botryococcus sp. as a vital part of the treatment system. The results show that several nutrients have been reduced successfully such as phosphate and total phosphorus of 100% removal, inorganic carbon of 99% removal, total carbon of 42% removal, and nitrate of 10%. The most prominent heavy metal content that has been removed is Aluminium of 41%. At the same time, the growth of microalgae Botryococcus sp. in this wastewater has achieved the maximum value at Day 4 with 2.58 × 105 cell/ml only. These results show the potential of Botryococcus sp. cultivation as an alternative method to treat domestic wastewater and any other biotechnology works in the future.

  18. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    Science.gov (United States)

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.

    2010-12-17

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  20. Heavy metal levels in commonly used traditional medicinal plants

    International Nuclear Information System (INIS)

    Said, S.; Zahir, E.

    2010-01-01

    In the present study a survey of 24 commonly used medicinal plants of Indian subcontinent origin was carried out to evaluate their levels of heavy metals by electrothermal atomic absorption spectroscopy. The results showed that the highest mean value for Cd (12.06 mu g.g/sup -1/), Cr (24.50 mu g.g/sup -1/), Cu (15.27 mu g.g/sup -1/), Pb (1.30 mu g.g/sup -1/), Fe (885.60 mu g.g/sup -1/), Mn (90.60 mu g.g/sup -1/), Ni (9.99 mu g.g/sup -1/) and Zn (77.15 mu g.g/sup -1/) were found in Lawsonia inermis, Murraya koenigii, Mentha spicata, Beta vulgaris Linn, Mentha spicata, Lagenaria sicerana standl, Lawsonia inermis, Emblica officinalis, respectively. The mean and maximum levels of Cd in plant samples were found higher than the recommended values of the Joint Expert Committee on Food Additives of the Food and Agriculture Organization of the United Nations and the World Health Organization and may constitute a health hazard for consumers. All other heavy metals in medicinal plants were found below the recommended tolerable limits. (author)

  1. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2010-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  2. Electrokinetic extraction of surfactants and heavy metals from sewage sludge

    International Nuclear Information System (INIS)

    Ferri, Violetta; Ferro, Sergio; Martinez-Huitle, Carlos A.; De Battisti, Achille

    2009-01-01

    Waste management represents a quite serious problem involving aspects of remediation technologies and potential re-utilization in different fields of human activities. Of course, wastes generated in industrial activities deserve more attention because of the nature and amount of xenobiotic components, often difficult to be eliminated. However, also ordinary wastes of urban origin are drawing more and more attention, depending on the concentration of noxious substances like surfactants and some heavy metal, which may eventually require expensive disposal. In the present paper, a research has been carried out on the application of electrokinetic treatments for the abatement of the above xenobiotic components from sewage sludge generated in urban wastewater treatment plants. Experiments were carried out on a laboratory scale, in a 250 mm x 50 mm x 100 mm cell, using 250-300 g of sludge for each test and current densities between 2.4 and 5.7 mA cm -2 . As a general result, quite significant abatements of heavy-metal ions and surfactants were achieved, with relatively low energy consumption

  3. Assessment of heavy metal contents of green leafy vegetables

    Directory of Open Access Journals (Sweden)

    V. Jena

    2013-01-01

    Full Text Available Vegetables are rich sources of vitamins, minerals, and fibers, and have beneficial antioxidative effects. Ingestion of vegetables containing heavy metals is one of the main routes through which these elements enter the human body. Slowly released into the body, however, heavy metals can cause an array of diseases. In this study we investigated the concentrations of copper, chromium, zinc, and lead in the most frequently consumed vegetables including Pimpinella anisum, Spinacia oleracea, Amaranthus viridis, Coriandrum sativum, and Trigonella foenum graecum in various sites in Raipur city, India. Atomic absorption spectrophotometry was used to estimate the levels of these metals in vegetables. The mean concentration for each heavy metal in the samples was calculated and compared with the permissible levels set by the Food and Agriculture Organization and World Health Organization. The intake of heavy metals in the human diet was also calculated to estimate the risk to human health. Our findings indicated the presence of heavy metals in vegetables in the order of Cr > Zn > Cu > Pb. Based on these findings, we conclude that the vegetables grown in this region are a health hazard for human consumption.

  4. Biosorption of heavy metals from wastewater by biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Orhan, Y.; Bueyuekguengoer, H. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, 55139 Samsun (Turkey); Hrenovic, J. [University of Zagreb, Faculty of Science, Department of Biology, Rooseveltov trg 6, 10000 Zagreb (Croatia)

    2006-08-15

    In a study where the removal of heavy metals from wastewater is the primary aim, the biosorption of heavy metals onto biosolids prepared as Pseudomonas aeruginosa immobilized onto granular activated carbon was investigated in batch and column systems. In the batch system, adsorption equilibriums of heavy metals were reached between 20 and 50 min, and the optimal dosage of biosolids was 0.3 g/L. The biosorption efficiencies were 84, 80, 79, 59 and 42 % for Cr(VI), Ni(II), Cu(II), Zn(II) and Cd(II) ions, respectively. The rate constants of biosorption and pore diffusion of heavy metals were 0.013-0.089 min{sup -1} and 0.026-0.690 min{sup -0.5}. In the column systems, the biosorption efficiencies for all heavy metals increased up to 81-100 %. The affinity of biosorption for various metal ions towards biosolids was decreased in the order: Cr = Ni > Cu > Zn > Cd. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Mosses accumulate heavy metals from the substrata of coal ash

    Directory of Open Access Journals (Sweden)

    Vukojević Vanja

    2005-01-01

    Full Text Available Plants that are able to accumulate and tolerate extraordinarily high concentrations of heavy metals (hyperaccumulators can be used for phytoremediation (removal of contaminants from soils or phytomining (growing a crop of plants to harvest the metals. Two moss species, Bryum capillare Hedw. and Ceratodon purpureus Hedw., were tested as potential phytoremedies under in vivo conditions on a coal ash disposal site in the surroundings of Obrenovac (NW Serbia. The content of various heavy metals (iron, manganese zinc, lead, nickel, cadmium, and copper in the mosses and substrata were investigated over a period of three years. Iron and zinc were found to have the highest concentration in the mosses.

  6. Novel polymer-based nanocomposites for application in heavy metal pollution remediation

    CSIR Research Space (South Africa)

    Kotzé-Jacobs, L

    2012-10-10

    Full Text Available and kidney damage and also cancer ? Heavy metals can accumulate in food sources through heavy metal contamination of soil and plants ? CSIR 2012 Slide 3 Removal of heavy metals ? Small volume applications: ion exchange ? Larger volumes eg. acid mine... pollution, treatment shortfalls at municipalities and contaminated surface water discharges ? Accumulation of heavy metals and endocrine disrupters ? CSIR 2012 Slide 2 Introduction: Heavy metals ? Cr, Ni, Cu, Pb, As etc. ? Exposure can cause liver...

  7. THE INFLUENCE OF SELECTED FACTORS ON THE LEACHING OF HEAVY METALS FROM SMELTER WASTE

    OpenAIRE

    Kamila Mizerna; Anna Król

    2015-01-01

    The paper presents the results of leaching research of selected heavy metals (Pb, Cu, Zn, Ni, Cd, Cr) from industrial waste. The impact of waste fragmentation on the level of heavy metals leaching was analyzed. The decrease of copper and zinc release and the increase of nickel leaching were observed with increasing grain size fraction of waste. Furthermore, release of contaminants in different ratio of liquid to solid (L/S = 10 dm3/kg and 2 dm3/kg) was studied. Higher concentrations of heavy ...

  8. Preparation of Dithizone Functionalized Polystyrene for Detecting Heavy Metal Ion

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyeon Ho; Kim, Younghun [Kwangwoon University, Seoul (Korea, Republic of)

    2015-04-15

    Colorimetric sensors were usually used to detect specific metal ions using selective color change of solutions. While almost organic dye in colorimetric sensors detected single molecule, dithizone (DTZ) solution could be separately detected above 5 kinds of heavy metal ions by the change of clear color. Namely, DTZ could be used as multicolorimetric sensors. However, DTZ was generally used as aqueous type and paper/pellet-type DTZ was not reported yet. Therefore, in this work, polystyrene (PS) was prepared to composite with DTZ and then DTZ/PS pellet was obtained, which was used to selectively detect 10 kinds of heavy metal ions. When 10 ppm of Hg and Co ions was exposed in DTZ/PS pellets, clear color change was revealed. It is noted that DTZ/PS pellet could be used in detecting of heavy metal ion as dry type.

  9. Predatory insects as bioindicators of heavy metal pollution

    International Nuclear Information System (INIS)

    Nummelin, Matti; Lodenius, Martin; Tulisalo, Esa; Hirvonen, Heikki; Alanko, Timo

    2007-01-01

    Heavy metal concentrations of different predatory insects were studied near by a steel factory and from control sites. Waterstriders (Gerridae), dragon fly larvae (Odonata), antlion larvae (Myrmeleontidae) and ants (Formicidae) were analyzed by AAS. In most cases the metal concentrations were higher near the factory, but e.g. waterstriders had higher cadmium concentrations in control area. Discriminant analysis clearly reveals that all these insect groups can be used as heavy metal indicators. However, the commonly used ants were the least effective in indicating the differences between the factory and control sites. Waterstriders are good in detecting differences in iron and manganese, but seem to be poor in accumulating nickel and lead. Antlions are efficient in detecting differences in iron. Antlions and ants are effective in accumulating manganese; as well antlions are efficient in accumulating cadmium. Waterstriders are poor in accumulating lead, but antlions and ants are effective. - Waterstriders, dragon fly larvae, antlion larvae, and ants can be used as heavy metal indicators

  10. Biogas production as affected by heavy metals in the anaerobic digestion of sludge

    Directory of Open Access Journals (Sweden)

    Hussein I. Abdel-Shafy

    2014-12-01

    The sewage sludge samples were separated from the sewage water of the pilot plant at the National Research Centre, TDC site. The effect of heavy metals on the biogas production of the anaerobic digester was studied. The inhibitory effect on the biogas production and toxic level of metals was determined in this study. The general ranking of heavy metal toxicity appears to be Hg > Cd > Cr (III. The present investigation reveals that heavy metals in addition to the anaerobic digester decreased the biogas production as an indication of efficiency of the process. A significant decrease in gas production and volatile organic matter removal was obtained. It was also noted that an accumulation of organic acid intermediates was obtained as a result of methanogenic bacterial inhibition. This accumulation was limited during the pulse feed of metals. This is due to the rapid poisoning of the active bacterial forms in the digester.

  11. Increased Tolerance to Heavy Metals Exhibited by Swarming Bacteria

    Science.gov (United States)

    Anyan, M.; Shrout, J. D.

    2014-12-01

    Pseudomonas aeruginosa is a ubiquitous, Gram-negative bacterium that utilizes several different modes of motility to colonize surfaces, including swarming, which is the coordinated movement of cells over surfaces in groups. Swarming facilitates surface colonization and biofilm development for P. aeruginosa, and it is known that swarming behavior is influenced by changes in nutrient composition and surface moisture. To understand the fate and cycling of heavy metals in the environment, it is important to understand the interaction and toxicity of these metals upon bacteria. While previous studies have shown surface-attached bacterial biofilms to be highly resistant to heavy metal toxicity, little is known about the influence of heavy metals upon surface motile bacteria and developing biofilms. Using a combination of laboratory assays we examined differences in bacterial behavior in response to two metals, Cd and Ni. We find that surface swarming bacteria are able to grow on 4x and 2.5x more Cd and Ni, respectively, than planktonic cells (i.e., test tube cultures). P. aeruginosa was able to swarm in the presence ≤0.051mM Ni and ≤0.045mM Cd. To investigate the bioavailability of metals to bacteria growing under our examined conditions, we separated cell and supernatant fractions of P. aeruginosa cultures, and used ICP-MS techniques to measure Cd and Ni sorption. A greater percentage of Cd than Ni was sorbed by both cells and supernatant (which contains rhamnolipid, a surfactant known to sorb some metals and improve swarming). While we show that cell products such as rhamnolipid bind heavy metals (as expected) and should limit metal bioavailability, our results suggest at least one additional mechanism (as yet undetermined) that promotes cell survival during swarming in the presence of these heavy metals.

  12. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    Science.gov (United States)

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  13. Genotoxicity of 11 heavy metals detected as food contaminants in two human cell lines.

    Science.gov (United States)

    Kopp, B; Zalko, D; Audebert, M

    2018-04-01

    Heavy metals, such as arsenic (As), antimony (Sb), barium (Ba), cadmium (Cd), cobalt (Co), germanium (Ge), lead (Pb), nickel (Ni), tellurium (Te), and vanadium (V) are widely distributed in the environment and in the food chain. Human exposure to heavy metals through water and food has been reported by different international agencies. Although some of these heavy metals are essential elements for human growth and development, they may also be toxic at low concentrations due to indirect mechanisms. In this study, the genotoxic and cytotoxic properties of 15 different oxidation statuses of 11 different heavy metals were investigated using high-throughput screening (γH2AX assay) in two human cell lines (HepG2 and LS-174T) representative of target organs (liver and colon) for food contaminants. Base on their lowest observed adverse effect concentration, the genotoxic potency of each heavy metal in each cell line was ranked in decreasing order, NaAsO 2  > CdCl 2  > PbCl 2 (only in LS-174T cells) > As 2 O 5  > SbCl 3  > K 2 TeO 3  > As 2 O 3 . No significant genotoxicity was observed with the other heavy metals tested. Cell viability data indicate that several heavy metals (As, Cd, Co, Ni, Sb, and Te) induce cytotoxicity at high concentrations, whereas an increase in the number of cells was observed for lead concentrations >100 µM in both cell lines tested, suggesting that lead stimulates cell growth. All these results highlight the possible human health hazards associated with the presence of heavy metals present in food. Environ. Mol. Mutagen. 59:202-210, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Covalent bonding in heavy metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S.; Nelin, Connie J.; Hrovat, Dave A.; Ilton, Eugene S.

    2017-04-07

    Novel theoretical methods were used to quantify the magnitude and the energetic contributions of 4f/5f-O2p and 5d/6d-O2p interactions to covalent bonding in lanthanide and actinide oxides. Although many analyses have neglected the involvement of the frontier d orbitals, the present study shows that f and d covalency are of comparable importance. Two trends are identified. As is expected, the covalent mixing is larger when the nominal oxidation state is higher. More subtly, the importance of the nf covalent mixing decreases sharply relative to (n+1)d as the nf occupation increases. Atomic properties of the metal cations that drive these trends are identified.

  15. Heavy metals in the volcanic environment and thyroid cancer.

    Science.gov (United States)

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2017-12-05

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  16. Effect of heavy metals ondecolorization of reactive brilliant red by newly isolated microorganisms

    International Nuclear Information System (INIS)

    Nosheen, S.; Arshad, M.

    2011-01-01

    This study involves aerobic decolorisation of reactive azo dye reactive brilliant red 2KBP by newly isolated microbial strains (two bacterial and one fungal strain) in presence of heavy metals including cobalt chloride, ferric chloride, zinc sulphate, copper sulphate and nickel chloride. Many heavy metals are necessary for microbial growth and are required in very small amounts however at higher levels they become toxic. So was the objective of present work to check the effect of concentration of heavy metals on the potential of microbial strains to decolorize azo dyes. All the heavy metals under consideration were added in range of 0.5 gl-1-2.5gl/sup -1/. All heavy metals showed inhibitory effect on decolorization capacity of bacterial as well as fungal strain .At optimum conditions bacterial strains named as B1 and B2 removed 84% and 78% while fungal strain decolorized 90.4% of dye. Cobalt and nickel showed greater inhibitors on% decolorization of dyes than Zinc and iron. Fungal strain showed greater negative effect. Heavy metals might affect enzyme activities and thus reducing removal of dye. (author)

  17. Hydrolytic stability of heavy metal compounds in fly ash of a heat power plant

    International Nuclear Information System (INIS)

    Suslova, E.P.; Pertsikov, I.Z.

    1991-01-01

    Ash and slag from solid fuels are utilized widely in building materials and road surfaces, and in agriculture for soil acidulation. For all these uses it is important to know the amount and form of heavy metal compounds contained in ash and their likely behavior when ash and slag wastes are utilized. Studying the behavior of heavy metals in ash residues at contact with water media is important also because, for most trace elements, the authors lack experimental data that would enable us to predict their behavior after prolonged storage and industrial utilization. The present paper describes a study of lixiviation (at various pH in static conditions) of heavy metals form fly ash obtained by burning Azeisk coal. Homogenized ash selected from electric filter sections 1-4 was used, which has the following composition (%): SiO 2 59.8; Al 2 O 3 ; Fe 23 O 3 7.1; CaO 4.1; MgO 1.3; other 2.8. In a neutral medium, Ni, Cu, Zn, Pb, and Mn lixiviation was slight, amounting to 0.01-0.4%. During coal combustion, these elements apparently form compounds that are slightly soluble in water, although it is also possible that ash retains high adsorptivity for heavy metals. As a result, in these conditions the reverse process of sorption of heavy metals from the solution by fly ash is also possible, which would reduce the heavy metal concentration in the solution

  18. Heavy Metals in ToxCast: Relevance to Food Safety (SOT)

    Science.gov (United States)

    Human exposure to heavy metals occurs through food contamination due to industrial processes, vehicle emissions and farming methods. Specific toxicity endpoints have been associated with metal exposures, e.g. lead and neurotoxicity; however, numerous varieties of heavy metals hav...

  19. EDGA amendment of slightly heavy metal loaded soil affects heavy metal solubility, crop growth and microbivorous nematodes but not bacteria and herbivorous nematodes

    NARCIS (Netherlands)

    Bouwman, L.A.; Bloem, J.; Römkens, P.F.A.M.; Japenga, J.

    2005-01-01

    Phytoextraction of heavy metals is a promising technology to remediate slightly and moderately contaminated soils. To enhance crops' uptake of heavy metals, chelates such as EDGA are being tested as soil additives. Heavy metal loaded EDGA can affect soil organisms such as bacteria and nematodes in

  20. Individual and competitive removal of heavy metals using capacitive deionization

    International Nuclear Information System (INIS)

    Huang, Zhe; Lu, Lu; Cai, Zhenxiao; Ren, Zhiyong Jason

    2016-01-01

    Highlights: • Capactive deionization can effectively remove cadmium, lead, and chromium from water. • The removal rates of the individual metal ions vary due to adsorption difference. • The interplay between different metal ions when co-present affects ion removal. - Abstract: This study presents the viability and preference of capacitive deionization (CDI) for removing different heavy metal ions in various conditions. The removal performance and mechanisms of three ions, cadmium (Cd"2"+), lead (Pb"2"+) and chromium (Cr"3"+) were investigated individually and as a mixture under different applied voltages and ion concentrations. It was found that CDI could effectively remove these metals, and the performance was positively correlated with the applied voltage. When 1.2 V was applied into solution containing 0.5 mM individual ions, the Cd"2"+, Pb"2"+, and Cr"3"+ removal was 32%, 43%, and 52%, respectively, and the electrosorption played a bigger role in Cd"2"+ removal than for the other two ions. Interestingly, while the removal of Pb"2"+ and Cr"3"+ remained at a similar level of 46% in the mixture of three ions, the Cd"2"+ removal significantly decreased to 14%. Similar patterns were observed when 0.05 mM was used to simulate natural contaminated water condition, but the removal efficiencies were much higher, with the removal of Pb"2"+, Cr"3"+, and Cd"2"+ increased to 81%, 78%, and 42%, respectively. The low valence charge and lack of physical sorption of Cd"2"+ were believed to be the reason for the removal behavior, and advanced microscopic analysis showed clear deposits of metal ions on the cathode surface after operation.

  1. Individual and competitive removal of heavy metals using capacitive deionization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhe; Lu, Lu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309 (United States); Cai, Zhenxiao [Access Business Group LLC, 7575 Fulton Street East, Ada, MI 49301 (United States); Ren, Zhiyong Jason, E-mail: jason.ren@colorado.edu [Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309 (United States)

    2016-01-25

    Highlights: • Capactive deionization can effectively remove cadmium, lead, and chromium from water. • The removal rates of the individual metal ions vary due to adsorption difference. • The interplay between different metal ions when co-present affects ion removal. - Abstract: This study presents the viability and preference of capacitive deionization (CDI) for removing different heavy metal ions in various conditions. The removal performance and mechanisms of three ions, cadmium (Cd{sup 2+}), lead (Pb{sup 2+}) and chromium (Cr{sup 3+}) were investigated individually and as a mixture under different applied voltages and ion concentrations. It was found that CDI could effectively remove these metals, and the performance was positively correlated with the applied voltage. When 1.2 V was applied into solution containing 0.5 mM individual ions, the Cd{sup 2+}, Pb{sup 2+}, and Cr{sup 3+} removal was 32%, 43%, and 52%, respectively, and the electrosorption played a bigger role in Cd{sup 2+} removal than for the other two ions. Interestingly, while the removal of Pb{sup 2+} and Cr{sup 3+} remained at a similar level of 46% in the mixture of three ions, the Cd{sup 2+} removal significantly decreased to 14%. Similar patterns were observed when 0.05 mM was used to simulate natural contaminated water condition, but the removal efficiencies were much higher, with the removal of Pb{sup 2+}, Cr{sup 3+}, and Cd{sup 2+} increased to 81%, 78%, and 42%, respectively. The low valence charge and lack of physical sorption of Cd{sup 2+} were believed to be the reason for the removal behavior, and advanced microscopic analysis showed clear deposits of metal ions on the cathode surface after operation.

  2. Heavy metal immobilization in mineral phases

    International Nuclear Information System (INIS)

    Apblett, A.

    1993-01-01

    A successful waste form for toxic or radioactive metals must not only have the ability to chemically incorporate the elements but it must also be extremely stable in the geological environment. Thus, ceramic wasteforms are sought which mimic those minerals that have sequestered the hazardous metals for billions of years. One method for producing ceramics, metal organic deposition (MOD) is outstanding in its simplicity, versatility, and inexpensiveness. The major contribution that the MOD process can make to ceramic waste forms is the ability to mix the toxic metals at a molecular level with the elements which form the ceramic matrix. With proper choice of organic ligands, the inclusion of significant amounts of alkali metals in the ceramic and, hence, their detrimental effect on durability may be avoided. In the first stage of our research we identified thermally-unstable ligands which could fulfill the role of complexing toxic metal species and allowing their precipitation or extraction into nonaqueous solvents

  3. Elimination of radionuclides and heavy metals from soils

    International Nuclear Information System (INIS)

    Navarcik, I.; Cipakova, A.; Palagyl, S.

    1994-01-01

    Sorption and desorption of radionuclides and heavy metals, their vertical migration and gradual extraction from soils were studied. Tessier sequential extraction method was used for determination the physicochemical forms of radionuclides and heavy metals absorbed by root system of plants and leached into ground water. Fixed forms of heavy metals and radionuclides are prevailing in soils. As to artificial ( 90 Sr, 137 Cs) isotope ratio of fixed forms bound with soil components, it is higher for 137 Cs (black earth - 95%, sandy soil - 62%) as compared to 90 Sr. Mobilization procedures for elimination of unfavourable influence of these pollutants in soils were used. The bacteria Pseudomonas sp. and Micrococcus l. are applied for this purpose. At the same time the growing of technical plants (Linum usitatissimum L. and Brassica napus L. var.) was studied as a method for mobilizing the heavy metals and radionuclides from soils. Retardation influence of bacteria on 85 Sr was noticed after as much as 3 months. The sum of water-soluble and exchangeable fractions reached 60%. Values of Cs distribution proved that microorganisms or plants used had no appreciable influence on Cs-mobility. After 3 months the relative ratio of accessible fraction increased with about 5%. As to heavy metals, both bacteria and plant growing influenced their retardation. In the case of Cd, one month operation of microorganisms resulted in important increase of easily available Cd-ratio (about 25%) in soils. (author)

  4. Heavy metal accumulation by carrageenan and agar producing algae

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, K.S. [Moscow State Univ. (Russian Federation). Faculty of Biology; Bird, K.T. [North Carolina Univ., Wilmington, NC (United States). Center for Marine Science Research

    1994-09-01

    The accumulation of six heavy metals Cu, Cd, Ni, Zn, Mn and Pb was measured in living and lzophilized algal thalli. The agar producing algae were Gracilaria tikvahiae and Gelidium pusillum. The carrageenan producing macroalgae were Agardhiella subulata and the gametophyte and tetrasporophyte phases of Chondrus crispus. These produce primarily iota, kappa and lambda carrageenans, respectively. At heavy metal concentrations of 0.5 mg L{sup -1}, living thalli of Gracilaria tikvahiae generally showed the greatest amount of accumulation of the 6 heavy metals tested. The accumulation of Pb was greater in the living thalli of all four species than in the lyophilized thalli. Except for Agardhiella subulata, lyophilized thalli showed greater accumulation of Ni, Cu and Zn. There was no difference in heavy metal accumulation between living and lyophilized thalli in the accumulation of Cd. Manganese showed no accumulation at the tested concentration. There did not appear to be a relationship between algal hydrocolloid characteristics and the amounts of heavy metals accumulated. (orig.)

  5. Heavy metal content of combustible municipal solid waste in Denmark.

    Science.gov (United States)

    Riber, Christian; Fredriksen, Gry S; Christensen, Thomas H

    2005-04-01

    Data on the heavy metal composition of outlets from Danish incinerators was used to estimate the concentration of Zn, Cu, Pb, Cr, Ni, Cd, As and Hg in combustible waste (wet as received) at 14 Danish incinerators, representing about 80% of the waste incinerated in Denmark. Zn (1020 mg kg(-1)), Cu (620 mg kg(-1)) and Pb (370 mg kg(-1)) showed the highest concentration, whereas Hg (0.6 mg kg(-1)) showed the lowest concentration. The variation among the incinerators was in most cases within a factor of two to three, except for Cr that in two cases showed unexplained high concentrations. The fact that the data represent many incinerators and, in several cases, observations from a period of 4 to 5 years provides a good statistical basis for evaluating the content of heavy metals in combustible Danish waste. Such data may be used for identifying incinerators receiving waste with high concentrations of heavy metals suggesting the introduction of source control, or, if repeated in time, the data must also be used for monitoring the impacts of national regulation controlling heavy metals. It is recommended that future investigations consider the use of sample digestion methods that ensure complete digestion in order to use the data for determining the total heavy metal content of waste.

  6. Stabilization of heavy metals in Tehran agricultural land

    International Nuclear Information System (INIS)

    Torabian, A.; Sadeghi, Sh.

    2001-01-01

    In order to prevent contamination of heavy metals accumulation in soil, plant, and ground water, several methods of prevention are studied, and tested worldwide. One of the method which has not been studied and applied in Iran is stabilization of heavy metals in soil by using clay minerals. Clay minerals due to hydration properties can adsorb organic and inorganic substances. Two clay minerals were used in this research: Bentonite with chemical structure of 2 to 1 (Two layers of silica and one layer of Aluminium) with CEC equal to 85 m eq/100 grams and Kao line with chemical structure of one to one (one layer silica and one layer Aluminum) and CEC=3 m eq/100 grams of soil. The physical and chemical properties of these two kinds of clays were different. Stabilization of heavy metals with different percentages of these two clays (7%, 15%, 22%) with different p H (4,7,8,11.5) were studied. The results indicate that with increasing of stabilizing agent at p H=7.8 and greater, stabilization of heavy metals increased significantly. The results also indicate the stabilization of heavy metals decreased rapidly at p H 4 and lower. The results of this study agree with the work of pervious researchers

  7. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Remediation of heavy metal contaminated ecosystem: an overview on technology advancement

    International Nuclear Information System (INIS)

    Singh, A.; Prasad, S. M.

    2015-01-01

    The issue of heavy metal pollution is very much concerned because of their toxicity for plant, animal and human beings and their lack of biodegradability. Excess concentrations of heavy metals have adverse effect on plant metabolic activities hence affect the food production, quantitatively and qualitatively. Heavy metal when reaches human tissues through various absorption pathways such as direct ingestion, dermal contact, diet through the soil-food chain, inhalation, and oral intake may seriously affect their health. Therefore, several management practices are being applied to minimize metal toxicity by attenuating the availability of metal to the plants. Some of the traditional methods are either extremely costly or they are simply applied to isolate contaminated site. The biology based technology like use of hyper metal accumulator plants occurring naturally or created by transgenic technology, in recent years draws great attention to remediate heavy metal contamination. Recently, applications of nanoparticle for metal remediation are also attracting great research interest due to their exceptional adsorption and mechanical properties and unique electrical property, highly chemical stability, and large specific surface area. Thus the present review deals with different management approaches to reduce level of metal contamination in soil and finally to the food chain

  9. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils

    OpenAIRE

    Jennifer L. Wood; Caixian Tang; Ashley E. Franks; Wuxing Liu

    2016-01-01

    The remediation of heavy-metal-contaminated soils is essential as heavy metals persist and do not degrade in the environment. Remediating heavy-metal-contaminated soils requires metals to be mobilized for extraction whilst, at the same time, employing strategies to avoid mobilized metals leaching into ground-water or aquatic systems. Phytoextraction is a bioremediation strategy that extracts heavy metals from soils by sequestration in plant tissues and is currently the predominant bioremediat...

  10. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination.

    Science.gov (United States)

    Li, Xiaoqi; Meng, Delong; Li, Juan; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan; Cheng, Cheng; Xiao, Yunhua; Liu, Zhenghua; Yan, Mingli

    2017-12-01

    Due to the persistence of metals in the ecosystem and their threat to all living organisms, effects of heavy metal on soil microbial communities were widely studied. However, little was known about the interactions among microorganisms in heavy metal-contaminated soils. In the present study, microbial communities in Non (CON), moderately (CL) and severely (CH) contaminated soils were investigated through high-throughput Illumina sequencing of 16s rRNA gene amplicons, and networks were constructed to show the interactions among microbes. Results showed that the microbial community composition was significantly, while the microbial diversity was not significantly affected by heavy metal contamination. Bacteria showed various response to heavy metals. Bacteria that positively correlated with Cd, e.g. Acidobacteria_Gp and Proteobacteria_thiobacillus, had more links between nodes and more positive interactions among microbes in CL- and CH-networks, while bacteria that negatively correlated with Cd, e.g. Longilinea, Gp2 and Gp4 had fewer network links and more negative interactions in CL and CH-networks. Unlike bacteria, members of the archaeal domain, i.e. phyla Crenarchaeota and Euryarchaeota, class Thermoprotei and order Thermoplasmatales showed only positive correlation with Cd and had more network interactions in CH-networks. The present study indicated that (i) the microbial community composition, as well as network interactions was shift to strengthen adaptability of microorganisms to heavy metal contamination, (ii) archaea were resistant to heavy metal contamination and may contribute to the adaption to heavy metals. It was proposed that the contribution might be achieved either by improving environment conditions or by cooperative interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks.

    Science.gov (United States)

    Ngole-Jeme, Veronica M

    2016-04-01

    Soils enriched with heavy metals from vehicular emission present a significant exposure route of heavy metals to individuals using unpaved roads. This study assessed the extent of Cd, Cr, Co, Cu, Ni, Pb and Zn contamination of soils along unpaved roads in Cameroon, and the health risks presented by incidental ingestion and dermal contact with the soils using metal contamination factor (CF) pollution load index, hazard quotients (HQ) and chronic hazard index (CHI). CF values obtained (0.9-12.2) indicate moderate to high contamination levels. HQ values for Cr, Cd and Pb exceeded the reference doses. Moderate health hazard exists for road users in the areas with intense anthropogenic activities and high average daily traffic (ADT) volume according to CHI values (1-4) obtained. The economy and quality of life in cities with unpaved roads could be threatened by health challenges resulting from long-term exposure to heavy metal derived from high ADT volumes.

  12. Heavy Metals in Brown Bears from the Central European Carpathians

    Directory of Open Access Journals (Sweden)

    O. Čelechovská

    2006-01-01

    Full Text Available The aim of the present study was to assess heavy metal load in the brown bear (Ursus arctos living in the central European Carpathians. Between 2002 and 2004, fifteen bears were examined to evaluate the distribution of cadmium, lead, mercury and copper in the animals' muscles (diaphragm, spleen, liver and kidney. The highest content of cadmium, lead and mercury was found in the kidney (17.4 ± 5.2 mg kg-1, 1.16 ± 0.39 mg kg-1, 0.39 ± 0.25 mg kg-1, whereas the lowest content of the metals was observed in the muscles (0.017 ± 0.009 mg kg-1, 0.299 ± 0.308 mg kg-1, 0.013 ± 0.011 mg kg-1. Second highest concentration of cadmium, lead and mercury was detected in the liver (0.83 ± 0.24 mg kg-1, 0.99 ± 0.61 mg kg-1, 0.11 ± 0.05 mg kg-1. Copper distributions and concentrations in bear tissues were as follows (in descending order: liver (23.9 ± 6.7 mg kg-1, > kidneys (9.0 ± 3.3 mg kg-1, > muscles (1.9 ± 1.6 mg kg-1 and > spleen (1.0 ± 0.2 mg kg-1. As compared with heavy metal load observed in bear tissues between 1988 and 1990, the concentration of cadmium in the muscles and liver was significantly lower (p p p < 0.01. Lead and copper tissue concentrations did not change substantially.

  13. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  14. Remediation of heavy metal contaminated soils by using Solanum nigrum: A review.

    Science.gov (United States)

    Rehman, Muhammad Zia Ur; Rizwan, Muhammad; Ali, Shafaqat; Ok, Yong Sik; Ishaque, Wajid; Saifullah; Nawaz, Muhammad Farrakh; Akmal, Fatima; Waqar, Maqsooda

    2017-09-01

    Heavy metals are among the major environmental pollutants and the accumulation of these metals in soils is of great concern in agricultural production due to the toxic effects on crop growth and food quality. Phytoremediation is a promising technique which is being considered as an alternative and low-cost technology for the remediation of metal-contaminated soils. Solanum nigrum is widely studied for the remediation of heavy metal-contaminated soils owing to its ability for metal uptake and tolerance. S. nigrum can tolerate excess amount of certain metals through different mechanism including enhancing the activities of antioxidant enzymes and metal deposition in non-active parts of the plant. An overview of heavy metal uptake and tolerance in S. nigrum is given. Both endophytic and soil microorganisms can play a role in enhancing metal tolerance in S. nigrum. Additionally, optimization of soil management practices and exogenous application of amendments can also be used to enhance metal uptake and tolerance in this plant. The main objective of the present review is to highlight and discuss the recent progresses in using S. nigrum for remediation of metal contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Analysis of heavy metals in corn

    International Nuclear Information System (INIS)

    Enger, B.; Dirdal, B.; Paus, P.E.

    1979-03-01

    Methods for the analysis of metals in Norwegian corn types have been tested. The main emphasis is on atomic absorption spectroscopy, with both wet and dry ashing, but the results are compared with emission spectroscopy and neutron activation analysis. In the latter only instrumental analysis has been carried out, restricting the number of metals which could be analysed. (JIW)

  16. Method for fixating sludges and soils contaminated with mercury and other heavy metals

    Science.gov (United States)

    Broderick, Thomas E.; Roth, Rachel L.; Carlson, Allan L.

    2005-06-28

    The invention relates to a method, composition and apparatus for stabilizing mercury and other heavy metals present in a particulate material such that the metals will not leach from the particulate material. The method generally involves the application of a metal reagent, a sulfur-containing compound, and the addition of oxygen to the particulate material, either through agitation, sparging or the addition of an oxygen-containing compound.

  17. Magnetism in heavy-electron metals

    International Nuclear Information System (INIS)

    Ott, H.R.

    1997-01-01

    Originally it was believed that the presence of heavy-mass charge carriers at low temperatures in some special rare-earth or actinide compounds was simply the result of a suppression of magnetic order in these materials. Various experiments reveal, however, that magnetic order may occur from a heavy-electron state or that a heavy-electron state may also develop within a magnetically ordered materix. It turned out that pure compounds without any sign of a cooperative phase transition down to very low temperatures are rare but examples are known where microscopic experimental probes give evidence for strong magnetic correlations involving moments of much reduced magnitude (≤ 0.1μ Β ) in such cases. It apperas that electronic and magnetic inhomogeneities, both in real and reciprocal space occur which are not simply the result of chemical inhomogeneities. Long range magnetic order among strongly reduced magnetic moments seems to be a particular feature of some heavy-electron materials. Other examples show, that disorder may lead to a suppression of cooperative phase transitions and both macroscopic and microscopic physical properties indicate that conservative model calculations are not sufficient to describe the experimental observations. The main difficulty is to find a suitable theoretical approach that considers the various interactions of similar strength on an equal footing. Different examples of these various features are demonstrated and discussed. (au)

  18. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  19. Effect of Heavy Metals in Plants of the Genus Brassica

    Science.gov (United States)

    Mourato, Miguel P.; Moreira, Inês N.; Leitão, Inês; Pinto, Filipa R.; Sales, Joana R.; Louro Martins, Luisa

    2015-01-01

    Several species from the Brassica genus are very important agricultural crops in different parts of the world and are also known to be heavy metal accumulators. There have been a large number of studies regarding the tolerance, uptake and defense mechanism in several of these species, notably Brassica juncea and B. napus, against the stress induced by heavy metals. Numerous studies have also been published about the capacity of these species to be used for phytoremediation purposes but with mixed results. This review will focus on the latest developments in the study of the uptake capacity, oxidative damage and biochemical and physiological tolerance and defense mechanisms to heavy metal toxicity on six economically important species: B. juncea, B. napus, B. oleracea, B. carinata, B. rapa and B. nigra. PMID:26247945

  20. Fluorescent and Colorimetric Electrospun Nanofibers for Heavy-Metal Sensing

    Directory of Open Access Journals (Sweden)

    Idelma A. A. Terra

    2017-12-01

    Full Text Available The accumulation of heavy metals in the human body and/or in the environment can be highly deleterious for mankind, and currently, considerable efforts have been made to develop reliable and sensitive techniques for their detection. Among the detection methods, chemical sensors appear as a promising technology, with emphasis on systems employing optically active nanofibers. Such nanofibers can be obtained by the electrospinning technique, and further functionalized with optically active chromophores such as dyes, conjugated polymers, carbon-based nanomaterials and nanoparticles, in order to produce fluorescent and colorimetric nanofibers. In this review we survey recent investigations reporting the use of optically active electrospun nanofibers in sensors aiming at the specific detection of heavy metals using colorimetry and fluorescence methods. The examples given in this review article provide sufficient evidence of the potential of optically electrospun nanofibers as a valid approach to fabricate highly selective and sensitive optical sensors for fast and low-cost detection of heavy metals.

  1. Accumulation of heavy metals in a tropical soil type Oxisol

    International Nuclear Information System (INIS)

    Reynaldo, I.M.; Escudey, M.; Utria, E.; Garcia, D.; Cartaya, O.; Morua, A.

    2003-01-01

    In this investigation sewage sludges from Quibu plant, located in City of the Havana, with the objective of evaluating the capacity of accumulation of heavy metals in a tropical soil type Oxisol when in the wheat plants are cultivated (Triticum aestivum L.) , as well as the potential damages in this plants. Rates of 0, 60, 180 and 300 sludges tons/ soil hectare was applied and the plants were growth in recipient of 5 L of capacity. The levels of heavy metals were evaluated before the and after the crop. The extraction one carries out with the mixture HCl:HNO3 and they were determined by spectroscopy inductively coupled to plasma. Presence of Zn, Cu and Pb were detected in sludges and a tendency decrease is observed to heavy metals retention is observed in soil with the increase of the disposition rate together to a differential behavior of the different chemical species

  2. Heavy metal concentrations in forest litter - indicators of pollutant depositions

    International Nuclear Information System (INIS)

    Angehrn-Bettinazzi, C.; Hertz, J.

    1990-01-01

    By means of a comparison of the heavy metal concentrations in organic litter from different sites it was examined to what extent the heavy metal concentrations correlate with the atmospheric pollution situation. It follows from the variance analyses: The atmospheric pollution situation is the dominating factor for the heavy metal concentration in L litter. The elements Cd and Zn show a pH-sensitivity at the same time. The lead concentration in the L n and L v horizons reflects the atmospheric pollution situation of the corresponding site. Specific pollution patterns, e.g. in the case of hillside sites, are neither detected through the gravitational deposition (open land) nor through the airborne dust concentration; these can be recognized by the monitor 'litter'. Only horizons in the intercrown area with identical tree vegetation, which are characterized in detail, must be used for monitoring. (orig.) [de

  3. Effect of heavy metals on growth and heavy metal content of Allium porrum L. and Pisum sativum L

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhage, L.; Jaeger, H.J.

    1985-01-01

    The effects of cadmium, lead, zinc and copper, singly and in combination, on yield, heavy metal content and the mineral composition of Allium porrum L. and Pisum sativum L. have been investigated. The Cd, Pb, Zn and Cu concentrations of shoots and roots of Allium porrum increased with increasing heavy metal contamination of soil. However, no visible symptoms of heavy metal toxicity were recognized. The dry matter production was reduced as a function of heavy metal concentration and combination. The mechanisms of combinations were mostly synergistic. The correlation between pollutant contents (nmol/shoot) and yield was higher than the correlation between heavy metal concentrations of soil or shoots (ppm) and yield. Results of regression analyses showed that the inhibition of copper translocation caused by Cd, Pb and Zn was responsible for the yield depressions. The antagonism between Cd and N-deficiency showed that the level of N-supply was without negative effects on yield depressions of Pisum sativum caused by Cd. In contrast to this, the N-form played an important role in Cd-toxicity as the synergism between Cd and NH4 illustrated. K-deficiency as well as acidic nutrient solution (pH=4) diminished the root/shoot-barrier for Cd and therefore Cd-translocation from roots to shoots increased. Concerning calcium, magnesium and iron the decrease of ion uptake caused by Cd was statistically significant higher than yield depression.

  4. Characterization of a heavy metal translocating P-type ATPase gene from an environmental heavy metal resistance Enterobacter sp. isolate.

    Science.gov (United States)

    Chien, Chih-Ching; Huang, Chia-Hsuan; Lin, Yi-Wei

    2013-03-01

    Heavy metals are common contaminants found in polluted areas. We have identified a heavy metal translocating P-type ATPase gene (hmtp) via fosmid library and in vitro transposon mutagenesis from an Enterobacter sp. isolate. This gene is believed to participate in the bacterium's heavy metal resistance traits. The complete gene was identified, cloned, and expressed in a suitable Escherichia coli host cell. E. coli W3110, RW3110 (zntA::Km), GG48 (ΔzitB::Cm zntA::Km), and GG51 (ΔzitB::Cm) were used to study the possible effects of this gene for heavy metal (cadmium and zinc in particular) resistance. Among the E. coli strains tested, RW3110 and GG48 showed more sensitivity to cadmium and zinc compared to the wild-type E. coli W3110 and strain GG51. Therefore, strains RW3110 and GG48 were chosen for the reference hosts for further evaluation of the gene's effect. The results showed that expression of this heavy metal translocating P-type ATPase gene could increase the ability for zinc and cadmium resistance in the tested microorganisms.

  5. Heavy metal pollution in coastal areas of South China: a review.

    Science.gov (United States)

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-11-15

    Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990 s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    Science.gov (United States)

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2018-01-01

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Heavy metal pollution in coastal areas of South China: A review

    International Nuclear Information System (INIS)

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-01-01

    Highlights: • Heavy metal contamination in coastal areas of South China has been reviewed. • Heavy metal levels were closely related to economic development in past decades. • Heavy metal levels from Hong Kong continually decreased from the early 1990s. • Higher concentrations of heavy metals were found in mollusk. • Levels of heavy metals in part of seafood exceeded the safety limit. -- Abstract: Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit

  8. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue; Ge, Qingchun; Liu, Xiangyang; Chung, Neal Tai-Shung

    2014-01-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  9. Novel forward osmosis process to effectively remove heavy metal ions

    KAUST Repository

    Cui, Yue

    2014-10-01

    In this study, a novel forward osmosis (FO) process for the removal of heavy metal ions from wastewater was demonstrated for the first time. The proposed FO process consists of a thin-film composite (TFC) FO membrane made from interfacial polymerization on a macrovoid-free polyimide support and a novel bulky hydroacid complex Na4[Co(C6H4O7)2]·r2H2O (Na-Co-CA) as the draw solute to minimize the reverse solute flux. The removal of six heavy metal solutions, i.e., Na2Cr2O7, Na2HAsO4, Pb(NO3)2, CdCl2, CuSO4, Hg(NO3)2, were successfully demonstrated. Water fluxes around 11L/m2/h (LMH) were harvested with heavy metals rejections of more than 99.5% when employing 1M Na-Co-CA as the draw solution to process 2000ppm(1 ppm=1 mg/L) heavy metal solutions at room temperature. This FO performance outperforms most nanofiltration (NF) processes. In addition, the high rejections were maintained at 99.5% when a more concentrated draw solution (1.5M) or feed solution (5000ppm) was utilized. Furthermore, rejections greater than 99.7% were still achieved with an enhanced water flux of 16.5LMH by operating the FO process at 60°C. The impressive heavy metal rejections and satisfactory water flux under various conditions suggest great potential of the newly developed FO system for the treatment of heavy metal wastewater. © 2014 Elsevier B.V.

  10. Using microbiological leaching method to remove heavy metals from sludge

    Directory of Open Access Journals (Sweden)

    Zhuyu Gu

    2017-01-01

    Full Text Available Microbial leaching is one of the most effective methods to remove heavy metals from sludge. In the conducted researches, the sludge samples were processed with Thiobacillus ferrooxidans and Thiobacillus thiooxidans obtained via cultivation, extraction and purification processes. Heavy metals such as Pb, Cd, Cu and Ni were leached from sludge by Thiobacillus ferrooxidans and Thiobacillus thiooxidans within different substrate concentration and pH value conditions. It is defined that from the point of view of economy and efficiency the optimal concentration of FeSO4.7H2O and sulfur for bio-leaching process was 0.2 g. The leaching rates of heavy metals such as Pb, Cd, Cu and Ni of the same concentration were 74.72%, 81.54%, 70.46% and 77.35% respectively. However, no significant differences depending on the pH value among the leaching rates were defined, even for the pH value of 1.5. Along with the removal of heavy metals from sludge, the organic matter, N, P, K were also leached to some extent. The losing rate of phosphorus was the highest and reached 38.44%. However, the content of organic matter, N, P, K in the processed sludge were higher in comparison with level I of the National Soil Quality Standards of China. Ecological risk of heavy metals in sludge before and after leaching was assessed by Index of Geo-accumulation (Igeo and comprehensive potential risk (RI. The results of research defined that the content of heavy metals in sludge meets the level of low ecological risk after leaching and their contents is lower in comparison with the National Agricultural Sludge Standard of China. Sludge leached by biological methods is possible to use for treatment for increasing soil fertility.

  11. IMPACT OF BIOSLUDGE APPLICATION ON HEAVY METALS CONTENT IN SUNFLOWER

    Directory of Open Access Journals (Sweden)

    Marek Slávik

    2012-02-01

    Full Text Available The application of decomposed substrate after continual biogas production is one of the possible ways how to use alternative energy sources with following monitoring of its complex influence on the hygienic state of soil with the emphasis on heavy metal input. The substances from bilge and drain sediments from water panels, also biosludge gained by continual co-fermentation of animal excrements belong to these compounds. The biosludge application is connected with possible risk of cadmium and lead, also other risky elements input into the soil. The analyses of applicated sludge prove that the determined heavy metals contents are compared with limitary value. These facts - hygienic state of soil, pH influence this limitary value and biosludge is suitable for soil application. The total heavy metals content in soil is related to the increased cadmium, nickel, chromium and cobalt contents. The analyses of heavy metals contents in sunflower seeds show that the grown yield does not comply with the legislative norms from the stand point of heavy metals content due to high zinc and nickel contents. Copper, cadmium, lead, chromium contents fulfil limitary values, for cobalt content the value is not mentioned in Codex Alimentarius. The nickel value in the control variant seeds is 2.2 times higher than the highest acceptable amount, then in variant where the sludge was applicated the nickel content was increased by 1.6 times. In the case of zinc there was increasing content in individual variants 4.7, or 4.8 times. The direct connection with the higher accumulation of zinc and nickel in soil by the influence of biosludge application is not definitely surveyed, the increased heavy metals contents in sunflower were primarily caused by their increased contents in soils.

  12. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients.

    Science.gov (United States)

    Scimeca, Manuel; Feola, Maurizio; Romano, Lorenzo; Rao, Cecilia; Gasbarra, Elena; Bonanno, Elena; Brandi, Maria Luisa; Tarantino, Umberto

    2017-04-01

    Bone metabolism is affected by mechanical, genetic, and environmental factors and plays a major role in osteoporosis. Nevertheless, the influence of environmental pollution on the occurrence of osteoporosis is still unclear and controversial. In this context, heavy metals are the most important pollutants capable to affect bone mass. The aim of this study was to investigate whether heavy metals accumulation in bone tissues could be related to the altered bone metabolism and architecture of osteoporotic patients. To this end, we analyzed 25 bone head biopsies osteoporotic patients and 25 bone head biopsies of osteoarthritic patients. Moreover we enrolled 15 patients underwent hip arthroplasty for high-energy hip fracture or osteonecrosis of the femoral head as a control group. Bone head biopsies were studied by BioQuant-osteo software, scanning electron microscopy and Energy Dispersive X-ray microanalysis. We found a prevalence of lead, cadmium and chromium accumulation in osteoporotic patients. Noteworthy, high levels of sclerostin, detected by immunohistochemistry, correlate with the accumulation of heavy metal found in the bone of osteoporotic patients, suggesting a molecular link between heavy metal accumulation and bone metabolism impairment. In conclusion, the presence of heavy metals into bone shed new light on the comprehension of the pathogenesis of osteoporosis since these elements could play a non redundant role in the development of osteoporosis at cellular/molecular and epigenetic level. Nevertheless, in vivo and in vitro studies need to better elucidate the molecular mechanism in which heavy metals can participate to osteoporosis. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1333-1342, 2017. © 2016 Wiley Periodicals, Inc.

  13. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  14. N-acyl thioureas - selective ligands for complexing of heavy metals and noble metals

    International Nuclear Information System (INIS)

    Schuster, M.

    1992-01-01

    Acyl thioureas are complexing agents for heavy metals that are easily produced and very stable. Their favourable toxicological data make them particularly suitable for industrial applications, e.g. detoxification of metallic process solutions or solvent extraction of metals. (orig.) [de

  15. Heavy metals and color retention by a synthesized inorganic membrane

    Directory of Open Access Journals (Sweden)

    A. Chougui

    2014-11-01

    The ceramic membranes were tested for the removal of cadmium, zinc, Methylene Blue and Malachite Green from water under a pressure of 5 bar and a treatment time of 2 h. Liquid filtration and flow tests through these membranes resulted in a rejection rate of 100% for Methylene Blue and Malachite Green. This paper also presents the ability of the tubular membrane prepared to separate heavy metals (cadmium and zinc from their synthetic aqueous solutions. The influence of the applied pressure, feed solute concentration, feed pH on the rejection of cadmium and zinc ions was studied. Retention rates of cadmium and zinc ions of 100% were observed for an initial feed concentration of 10−4 mol/L.

  16. Heavy metal analysis in groundwater samples by SR-TXRF

    International Nuclear Information System (INIS)

    Moreira, Silvana; Ficaris, Maria; Vives, Ana Elisa S. de; Zucchi, Orgheda L.A.D.; Nascimento Filho, Virgilio Franco do Centro de Energia Nuclear na Agricultura , Piracicaba, SP . Lab. Instrumentacao Nuclear.; Brazil)

    2005-01-01

    In order to obtain information about levels of heavy metals in groundwater, analysis were carried out on samples from monitoring and supplying wells located in Campinas, Sao Paulo State, Southeastern Brazil. The analytical technique used was Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) and all the measurements were performed at Synchrotron Light Source Laboratory, using a white beam and a Si(Li) detector in total reflection condition. The determined elements were Al, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. The results were compared with the maximum allowed values (MPV) established by the Brazilian Health Department. The detection limits obtained varying from 0.10 up to 8 μg.L -1 were in agreement with the values presented by others analytical techniques. (author)

  17. Removal of Heavy Metals and PAH in Highway Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Thorndahl, Søren Liedtke

    2005-01-01

    , which has been designed according to standard design criteria for several decades. The study will focus on heavy metals (Cd, Cr, Cu, Pb and Zn) and polyaromatic hydrocarbons (PAH). The long-term simulation of input of flow and pollution to the ponds will be a hind cast based on time series of historical......The paper presents some of the first results from a study of the removal of pollutants in highway detention ponds in Denmark. The objective of the study is to set up a procedure for long-term modelling of discharges of pollutants to the environment from the many Danish highway detention ponds...... rainfalls. The modelling will take place in a special version of the MIKE URBAN. The modelling is calibrated and validated on measurements from selected highway catchments. The removal of pollutants in the ponds is studied by local measurements in combination with CFD modelling using the MIKE 21 and MIKE 3...

  18. Heavy metal migration through clay below a domestic waste site

    Energy Technology Data Exchange (ETDEWEB)

    Yanful, E K

    1986-01-01

    Migration of contaminants from a domestic waste landfill overlying a 30 m thick natural clay deposit is presented. Profiles for Na/sup +/, Mg/sup 2 +/, DOC and other soluble species indicate that, at 16 years, contaminants have migrated up to 130 cm from the waste. Profiles for conservative species suggest that Cl-, /sup 3/H, /sup 18/O and /sup 2/H fronts are ahead of those species such as Na/sup +/, K/sup +/ and DOC. In comparison, the heavy metals, Fe, Mn, Cu, Zn and Pb, have migrated only 10-20 cm. Batch equilibrium studies involving Fe/sup 2 +/, Cu/sup 2 +/, Zn/sup 2 +/ and Pb/sup 2 +/ result in classical adsorption-pH curves which show increasing adsorption at higher pH levels and vice versa. The presence of soil carbonates is shown to significantly increase the mass of Pb and Cu removed from domestic landfill leachate.

  19. Heavy metal analysis in groundwater samples by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Ficaris, Maria [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo. Dept. de Recursos Hidricos]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Zucchi, Orgheda L.A.D. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Nascimento Filho, Virgilio Franco do [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. Instrumentacao Nuclear]. E-mail: virgilio@cena.usp.br

    2005-07-01

    In order to obtain information about levels of heavy metals in groundwater, analysis were carried out on samples from monitoring and supplying wells located in Campinas, Sao Paulo State, Southeastern Brazil. The analytical technique used was Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF) and all the measurements were performed at Synchrotron Light Source Laboratory, using a white beam and a Si(Li) detector in total reflection condition. The determined elements were Al, Cr, Mn, Fe, Ni, Cu, Zn, Ba and Pb. The results were compared with the maximum allowed values (MPV) established by the Brazilian Health Department. The detection limits obtained varying from 0.10 up to 8 {mu}g.L{sup -1} were in agreement with the values presented by others analytical techniques. (author)

  20. Heavy metals in Pantanoso and Miguelete small stream

    International Nuclear Information System (INIS)

    Odino, R.; Delmonte, D.; Feola, G.; Velez, A.; Cacho, C.

    1998-01-01

    The streams Miguelete and Pantanoso in the city of Montevideo present high levels of organic and inorganic contamination. The main causes of this deterioration are: old and inadequate reparation systems and the contamination is generated by the pokers and the industry. The tanneries and laundries of wools are the highly pollutant industries. The analytic technique applied is the Fluorescence of Rays x Dispersiva in Energy (EDFRX). In the two streams a marked relationship between the levels of heavy metals and the distribution of the industries responsible for the contamination was observed. A study of the enrichment of Pb,Cu, Zn and Cr in the sediments exists. Levels of Chromium in the Pantanoso Stream is very high due to the existence of three tanneries [es